WO2013008733A1 - 製品の品質管理方法 - Google Patents

製品の品質管理方法 Download PDF

Info

Publication number
WO2013008733A1
WO2013008733A1 PCT/JP2012/067287 JP2012067287W WO2013008733A1 WO 2013008733 A1 WO2013008733 A1 WO 2013008733A1 JP 2012067287 W JP2012067287 W JP 2012067287W WO 2013008733 A1 WO2013008733 A1 WO 2013008733A1
Authority
WO
WIPO (PCT)
Prior art keywords
quality
design space
product
final product
active ingredient
Prior art date
Application number
PCT/JP2012/067287
Other languages
English (en)
French (fr)
Inventor
弘司 中川
信 釜田
仁 前田
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Priority to US14/129,858 priority Critical patent/US9977846B2/en
Priority to EP12811023.6A priority patent/EP2730269B1/en
Priority to ES12811023.6T priority patent/ES2648164T3/es
Priority to JP2013523923A priority patent/JP5860050B2/ja
Publication of WO2013008733A1 publication Critical patent/WO2013008733A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/005Coating of tablets or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/2853Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers, poly(lactide-co-glycolide)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility

Definitions

  • a design space related to important quality characteristics of a product is constructed by a quality creation method (quality by design approach), the manufacturing process is managed by the design space, and further, a test using the final product is performed.
  • the present invention relates to a method for realizing a real-time release test that guarantees the important quality characteristics, and a product obtained by this method.
  • the present invention provides: [1] A design space design method for quality characteristics of in-process products and / or final products, wherein the design space is designed using only material characteristics as input variables; [2] The method according to [1], (1) a process of extracting material characteristics and / or process parameters that affect the quality characteristics of in-process products and / or final products; (2) If the extracted item includes a process parameter, the step of converting the process parameter into a material property, and (3) the correlation between the material property and the quality property obtained in steps (1) and (2) Calculating a design space using the correlation, A method comprising: [3] The method according to [1] or [2], which is a method for designing a design space for quality characteristics of the preparation; [4] The method according to [3], wherein the preparation is a tablet or a capsule; [5] The method according to [4], wherein the quality characteristic is the content of an active ingredient in a tablet or capsule; [6] The method according to [5], wherein the substance characteristics are the active ingredient concentration and the uncoated
  • the method includes the step of measuring the material characteristics in the manufacturing process of the in-process product and / or the final product, and determining the quality of the in-process product and / or the final product from the measured value and the design space.
  • a quality test system for in-process products and / or final products, wherein the material properties measured in the manufacturing process are designed using the method described in any one of [1] to [10] A system including means for determining whether it falls within the design space; [17] A design method for a design space of a final product, characterized by designing using a design space for two or more in-process products; [18] A design method for the design space of the final product, which is designed using the design space for two or more in-process products designed by the method described in any one of [1] to [10] Characterized by a method, About.
  • a design method for a design space that constantly manages and / or guarantees an important quality characteristic of a product, which does not depend on a variation in process parameters due to a difference in manufacturing location and / or manufacturing equipment, and the design space A quality test method using is provided.
  • FIG. 1 represents a strategy for controlling the content of compound Ia (defined in the examples).
  • FIG. 2 shows the relationship between the actually measured value and the estimated value when the active ingredient (main drug) concentration of the granule for tableting is changed.
  • FIG. 3 shows the relationship between the actual measured value and the estimated value when the uncoated tablet mass is changed.
  • FIG. 4 represents the formulation uniformity management strategy for Compound Ia.
  • FIG. 5 shows the content of 95.0-105.0% when the mixing uniformity (RSD) is 5.0% and the formulation uniformity judgment value of 15.5, which is constructed using the formulas (a) and (b). Design space that satisfies 0% or less at the same time. In order to verify the validity of the design of the design space in FIG.
  • FIG. 6a shows a list of the active ingredient (main drug) concentration, uncoated tablet mass, and uncoated tablet mass deviation of the tableting granules at each verification point.
  • FIG. 7 is a table listing factors that may affect the quality of the preparation, divided into manufacturing processes.
  • Design space refers to multiple combinations and interactions of input variables (material properties and process parameters) of manufacturing processes that have been proven to ensure quality.
  • In-process product refers to a product that is not a final product but is obtained in the process of manufacturing a final product that requires quality assurance.
  • End product refers to the final product for which quality assurance is required. Examples of the final product include pharmaceutical preparations that are approved by the Pharmaceutical Affairs Law.
  • “Inputs” are variables during the manufacturing process, specifically, material properties and / or process parameters.
  • “Material properties” refers to properties derived from materials in the manufacturing process or parameters representing the properties.
  • Substance characteristics in the preparation of the preparation include, for example, physical properties of the active ingredient, physical properties of each additive (for example, excipient, binder or lubricant), drug substance particle diameter of the active ingredient, and granulated product in the granulation process.
  • Process parameter refers to parameters related to manufacturing operations such as various set values of manufacturing equipment, reaction temperature, and reaction time.
  • Process parameters in the preparation of the preparation include, for example, reaction temperature, reaction time, rotation speed of grinding hammer in the drug substance manufacturing process, mesh size or supply speed, supply temperature in the granulation process, spray speed, spray air flow rate or supply air Examples include air volume, mixing time or rotation speed in the mixing process, tableting pressure or turntable rotation speed in the tableting process, or supply air temperature, spray speed, spray air flow rate, supply air volume or pan rotation speed in the coating process. However, it is not limited to these.
  • Quality Attribute means a physical, chemical, biological or microbiological property that should be within appropriate limits, within a range, within a distribution, or to ensure the required product quality This refers to a property, and a quality characteristic that is particularly important is called “Critical Quality Attribute”.
  • Design space design using only material properties as input variables means that a design space is created using only material properties as input variables when calculating the design space by calculating the correlation between input variables and quality properties. To create.
  • Real-time release test refers to the evaluation of the quality of in-process products and / or final products based on the quality test results of raw materials and / or in-process data without conducting quality tests using the final product. A test that can ensure that quality is acceptable.
  • Quality refers to the property required of a product to conform to the intended use of the product. Which one of the plurality of qualities is to be managed can be arbitrarily set by the manufactured one.
  • the quality of the pharmaceutical preparation is not particularly limited as long as it can be set by those skilled in the art. For example, the purity of the active ingredient, the content of the active ingredient, the amount of impurities, the uniformity of the preparation, the dissolution property of the solid preparation or the preparation However, the present invention is not limited to these.
  • Determining quality means checking whether or not data on each material property obtained in the manufacturing process is included in the design space, and if the data is included in the design space, the in-process product, the final product, and To determine that the intended quality of the formulation is guaranteed and / or the intended quality of the in-process product, final product and / or formulation if the data is not included in the design space Determining that it is not guaranteed.
  • Management strategy refers to a set of planned management that guarantees the operational performance and product quality of the manufacturing process, derived from an understanding of the latest products and manufacturing processes.
  • Formulation refers to a pharmaceutical preparation that can be administered orally or parenterally, and may be a solid preparation or a non-solid preparation. Examples of the “formulation” include, but are not limited to, a tablet, a granule, a powder, a capsule, a liquid, or an injection.
  • Active ingredient in a formulation refers to an ingredient that exhibits medicinal effects, and can be used interchangeably with “main drug” in this specification.
  • One embodiment of the present invention relates to a design space design method for quality characteristics of an in-process product and / or a final product, wherein the design space is designed using only material properties as input variables.
  • the method includes the following steps (1) to (3): (1) a process of extracting material characteristics and / or process parameters that affect the quality characteristics of in-process products and / or final products; (2) If the extracted item includes a process parameter, the step of converting the process parameter into a material property, and (3) the correlation between the material property and the quality property obtained in steps (1) and (2) And creating a design space using the correlation.
  • Another embodiment of the present invention relates to a quality test method for an in-process product and / or a final product, characterized by using a design space designed in this way.
  • the present invention relates to a method for inspecting, confirming, verifying and / or guaranteeing the quality of an in-process product and / or a final product, characterized in that the quality is determined by a design space designed using only material properties as input variables, Relates to the product obtained by such a method.
  • the quality test method of the present invention includes a step of measuring material properties during a manufacturing process for a product whose quality is to be examined, and determining the quality of the in-process product and / or the final product from the measured value and the design space.
  • the in-process product and / or final product is determined to satisfy the target quality. If the measured value does not enter the design space, the in-process product and / or final product It is determined that the quality is not satisfied.
  • the method of the invention can preferably be used for real-time release testing of the final formulation.
  • the quality of the product is usually set in advance, and the manufacturing method is selected to achieve the quality.
  • the manufacturing process design is systematically developed in consideration of the manufacturing process management method and quality risk management, in addition to the understanding of products and manufacturing methods.
  • Real-time release testing is not a quality test that is performed after the product whose quality is to be guaranteed, but it is obtained later based on data on factors in the manufacturing process that affect the quality of the product that has been considered in advance. This is a method of guaranteeing the quality of the products obtained. If the real-time release test is used, there is an advantage that a quality test before shipment is unnecessary, and the product can be shipped immediately after production.
  • Real-time release testing may be performed using a design space represented by a multi-dimensional combination of manufacturing process input variables that have been proven to ensure quality. In the real-time release using the design space, if the data obtained in the manufacturing process is within the set design space, it is determined that the finally obtained product satisfies the target quality. In formulation development, once approval by a regulatory authority is obtained for a certain design space, it becomes possible to improve the manufacturing process without undergoing additional examination within the design space described in the approval document (Non-patent Document 1). ).
  • process parameters for example, various set values of equipment, reaction temperature, reaction time, etc.
  • substance characteristics resulting from the nature of the substance There are two factors in the manufacturing process that can affect the quality: process parameters (for example, various set values of equipment, reaction temperature, reaction time, etc.) and substance characteristics resulting from the nature of the substance.
  • process parameters for example, various set values of equipment, reaction temperature, reaction time, etc.
  • substance characteristics resulting from the nature of the substance Conventionally, when a design space is used in a real-time release test, the design space is set by a combination of process parameters or a combination of material properties and process parameters. In these cases, if the manufacturing location, manufacturing equipment, and manufacturing scale are slightly different, the process parameters fluctuate, so the design space has to be reconstructed as necessary.
  • the present inventors considered that it is important to build a design space that does not depend on process parameters that can constantly guarantee quality. Therefore, instead of designing the design space based only on the results of the actual production scale, the design space is attempted by analyzing the results of the examination on all small, medium and large scales across the board. It has been found that it is possible to design only with material properties. In this way, if the design space is designed only with the material characteristics, the process parameters may be set so as to satisfy the material characteristics even if the manufacturing place, the manufacturing equipment, the manufacturing scale, or the like is changed. That is, since the quality characteristic is guaranteed by the material characteristic, the process parameter can be arbitrarily set as long as the process parameter satisfying the material characteristic is selected.
  • input variables that affect the quality characteristics of the in-process product and / or the final product
  • input variables that affect the quality characteristics of the drug product
  • input variables that affect the quality characteristics of the drug product are extracted from past experience and preliminary test results. It is confirmed by experiment whether or not the fluctuation of the above affects the quality characteristics of the preparation (see, for example, Non-Patent Documents 1 to 4).
  • Non-patent document 4 QUALITY RISK MANAGEMENT Q9, 2005 (Non-patent document 5), PHARMACEUTICAL QUALITY SYSTEM Q10, 2008 (Non-patent document 6).
  • Input variables that affect the quality characteristics of the in-process product and / or the final product can be selected by those skilled in the art, using techniques such as those shown in these guidelines. Specifically, but not limited to this procedure, the desired quality characteristics are extracted and selected based on the Target Product Quality Profile (QTPP) to ensure the desired quality of the formulation.
  • QTPP Target Product Quality Profile
  • Input variables that affect the target quality characteristics are extracted, risk assessment of the input variables (eg, risk identification, risk analysis or risk assessment) is performed, candidate input variables are extracted, and then candidate inputs Experiments confirm whether the variation of the variables affects the quality characteristics of the target formulation.
  • the design space is designed.
  • a material property that directly affects the process parameter is selected instead of the process parameter.
  • the material characteristics are extracted in this way, those skilled in the art can calculate the correlation between the material characteristics and the quality characteristics using a technique known in the art.
  • the design space is uniquely determined using the correlation. Specifically, a standard value of quality characteristics is determined by those skilled in the art, and a design space is created based on the calculated correlation with the standard value.
  • the in-process product and / or final product to be examined are measured for material properties during the manufacturing process, and if the measured value is included in the design space, the in-process product and / or final product is the target product. If it is determined that quality is achieved and the measurement value is not included in the design space, it is determined that the in-process product and / or the final product does not satisfy the target quality.
  • factors that may affect the preparation quality include, but are not limited to, the factors listed in FIG.
  • Another embodiment of the present invention relates to a quality test system provided with means for executing the quality test method of the present invention or a quality management system using the quality test system.
  • the system of the present invention provides a means for measuring preselected material properties to ensure the desired quality (eg, high performance liquid chromatography (HPLC), ultraviolet-visible absorptiometer, near infrared spectroscopy, Raman spectroscopy). , Moisture meter, precision balance, hardness meter, specific surface area meter, etc.), means for determining whether the measured material property falls within the design space designed using only the material property as an input variable (for example, a computer) Including, but not limited to, means for displaying the determination result (for example, a computer screen).
  • HPLC high performance liquid chromatography
  • UV-visible absorptiometer ultraviolet-visible absorptiometer
  • near infrared spectroscopy near infrared spectroscopy
  • Raman spectroscopy Raman spectroscopy
  • Still another embodiment of the present invention relates to an in-process product and / or a final product whose quality is guaranteed by the quality test method and / or system of the present invention.
  • the present invention also relates to a pharmaceutical preparation whose quality is guaranteed by the quality test method and / or system of the present invention.
  • Another embodiment of the present invention relates to a design method of a design space of a final product (preferably, a preparation), characterized by designing using a design space of two or more in-process products.
  • a preparation is a mixture composed of a large number of components, and depending on the product, the manufacturing method also requires a multi-step process, and high quality (for example, content of active ingredients, amount of impurities, dissolution property or Therefore, it has been considered extremely difficult to design a design space and to perform a real-time release test using this design space.
  • a design space for guaranteeing the material properties of the in-process product is designed as necessary, and the design space of the final product is further made using the design space configured by the material properties of the in-process product.
  • the design space of the in-process product may use either material characteristics or process parameters as input variables, but is preferably designed using only material characteristics as input variables.
  • Tablets were prepared by mixing ingredients other than hydroxypropylcellulose and magnesium stearate out of the formulations shown in Table 1 and granulating with an aqueous solution of hydroxypropylcellulose. This granule was mixed with magnesium stearate to form a granule for tableting, and then this was compression molded to produce a tablet. Coating was carried out by spraying uncoated tablets with a coating solution obtained by dissolving a mixture of hypromellose, titanium oxide, talc, macrogol 6000 and yellow ferric oxide or ferric oxide in purified water.
  • Example 1 Active ingredient content of final preparation (A. Quality determination method by conventional test) A 15 mg tablet was dissolved in a water / acetonitrile mixture (1: 1), and the amount of Compound Ia was measured using HPLC. The same calculation was performed for 30 mg tablets.
  • the active ingredient content of the final formulation is determined by the active ingredient concentration of the tableting granule in the mixing process and the tableting process. It was assumed that it could be controlled by the material property of uncoated tablet mass. Based on this assumption, the following formula (a) using the concentration of the compound Ia and the uncoated tablet mass of the granule for tableting was set as a method for calculating the estimated value of the content.
  • FIG. 2 and FIG. 3 show the results of evaluating the relationship between the actually measured value of Compound Ia in the tablet and the estimated value based on the formula (a) for the 30 mg tablet.
  • the content of Compound Ia in the tablet and the concentration of Compound Ia in the tableting granule were measured by HPLC.
  • FIG. 2 shows the relationship between the actually measured value and the estimated value when the active ingredient (main drug) concentration of the granule for tableting is changed.
  • FIG. 3 shows the relationship between the actual measured value and the estimated value when the uncoated tablet mass is changed.
  • the correlation coefficient (correlation coefficient is indicated by r in each figure) between the actually measured value of compound Ia in the tablet and the estimated value by the formula (a) is 0. It was found to be reasonable to calculate the content of the active ingredient by the formula (a).
  • the design space for the content of tablets containing Compound Ia as an active ingredient was created by setting the calculated value according to the formula (a) to an arbitrary range that satisfies the quality required as a pharmaceutical product. Using this design space, a content real-time release test was conducted to determine the quality.
  • Example 2 Formulation Uniformity of Final Formulation (A. Quality Judgment Method by Conventional Test)
  • the drug product uniformity test for tablets containing Compound Ia is conducted according to the content uniformity test in the drug product uniformity test method prescribed by the Japanese, US and European Pharmacopoeia. Specifically, the content of Compound Ia in the preparation of 10 mg or 30 mg tablets by 30 was measured by HPLC, the determination value (AV) was calculated by the following formula (b), and AV was 15.0% or less ( When 10 samples) or 25.0% or less (30 samples), the content in the preparation is determined to be uniform. The same calculation is made for 30 mg tablets.
  • FIG. As a result of examining the parameters during the production process that greatly affect the formulation uniformity of tablets containing Compound Ia as an active ingredient, based on the knowledge obtained by multiple productions on a 1 kg to 500 kg scale, FIG. As shown, the mixing time in the mixing process, the mixing uniformity and the active ingredient concentration in the tableting granules, and the tableting pressure, the uncoated tablet mass, and the unbalanced tablet mass in the tableting process were extracted. The mixing time and tableting pressure are process parameters, but these effects are reflected in the mixing uniformity and uncoated tablet mass, respectively. It was assumed that it could be controlled by component concentration, uncoated tablet mass and uncoated tablet mass deviation.
  • the standard deviation s is calculated by the following equation (d) using the active ingredient concentration, uncoated tablet mass, mixing uniformity and uncoated tablet mass deviation of the tableting granules (Chem. Pharm. Bull. 49 (11 ) 1412-1419 (2001)).
  • the design space for the formulation uniformity of tablets containing Compound Ia as an active ingredient is created by setting the formulation uniformity determination value (%) according to formula (e) to an arbitrary range that satisfies the quality required for pharmaceutical products. did. Using this design space, a real-time release test for drug product uniformity was performed to determine the quality.
  • the above formula (e) is an equation that depends only on the mixing uniformity, the active ingredient concentration of the granules for tableting, the uncoated tablet mass, and the mass deviation of the uncoated tablet. Therefore, the substance characteristics (for example, It is not necessary to consider the solubility of the active ingredient), and it can be used for designing the design space of the tablet formulation uniformity without being limited to the type of the active ingredient.
  • Example 3 Simultaneous determination of the active ingredient content of the final preparation and preparation uniformity (A. Method for determining quality by conventional test) By carrying out (a. Quality determination method by conventional test) of (Example 1) and (a. Quality determination method by conventional test) of (Example 2), respectively, the active ingredient content and formulation of the final preparation Each conformity to the uniformity standard is determined.
  • Example 1 (a) and Example 2 (a) Using the results of Example 1 (a) and Example 2 (a), a design space was designed for use in a conformance test for the active ingredient content and the uniformity of the preparation of a tablet preparation containing Compound Ia as an active ingredient.
  • the four substance characteristics active ingredient concentration of tableting granules, uncoated tablet mass, mixing uniformity (RSD) and unbalanced tablet mass deviation
  • FIGS. 1 and 4 were used.
  • FIG. 5 shows the design space (space (X) in the figure) when the standard values of the active ingredient content and the formulation uniformity are set to 95.0-105.0% and 15.0%, respectively.
  • FIG. 5 shows the design space when the mixing uniformity (RSD) is 5.0%.
  • FIG. 6 c shows a list of the active ingredient (main drug) concentration, uncoated tablet mass, and uncoated tablet mass deviation of the tableting granules at each verification point.
  • Each of the verification points is included in the range of the above formula (e) when the formulation uniformity determination value is 15.0%.
  • the present invention provides a product quality control method using a design space that does not depend on process parameters, and further provides a product quality test method using a real-time release test. According to the method of the present invention, it is possible to easily continue to manufacture products of the same quality even if the manufacturing location, manufacturing equipment, or manufacturing scale is changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Medicinal Preparation (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

本発明は、品質を恒常的に保証できるリアルタイムリリース試験および当該リアルタイムリリース試験を用いた製品の品質試験方法を提供することを目的とする。本発明により、物質特性のみを入力変数として設計されたデザインスペースによって品質を判定する工程を含む、リアルタイムリリース試験による工程内製品及び/又は最終製品の品質試験方法が提供される。本発明により、製造パラメータに依存しないリアルタイムリリース試験を用いた製品の品質試験方法が提供される。

Description

製品の品質管理方法
 本発明は、品質の作りこみ手法(クオリティー バイ デザイン アプローチ)により、製品の重要品質特性にかかわるデザインスペースを構築し、該デザインスペースにより製造工程を管理し、さらには、最終製品を用いた試験を実施せず、該重要品質特性を保証するリアルタイムリリース試験を実現するための方法、及びこの方法によって得られる製品に関する。
 近年、市場のグローバル化が進み、それに伴い製造業の生産拠点は世界各地に広がっている。医薬品分野においては、国際共同治験の活用により複数の国で同時に臨床開発が進められ、世界各国でほぼ同時期に製造販売承認申請、承認そして販売が行われるようになってきている。
 複数の製造拠点で同一の製品を製造する場合、製品に規格を設けて一定の品質を保証することが重要である。医薬品の規格管理は厳格であり、申請者は承認を受けようとする製品毎に規格を定め、その規格の妥当性について規制当局の審査を受けなければならない。製品が統一された規格に適合するかどうかは、一般に、出荷前の最終製品を用いた品質試験により判定されている。最近、最終製品の出荷可否を判定する品質試験として、製造工程内で得られたデータを用いたリアルタイムリリース試験による方法が提唱されている。リアルタイムリリース試験によれば、出荷前の最終製品を用いた品質試験が不要になるので、製造後すぐに出荷することができる。製剤開発におけるリアルタイムリリース試験に関しては、承認申請書類の記載例が公開されている(非特許文献1~4)が、実際の新薬の承認申請において適用された例は少ない。
 複数の製造拠点で同一の製品を製造する場合、入手する原材料の品質、製造スケール、製造機器の種類、製造者の習熟度等が大きく異なることを考慮しなければならない。各製造拠点においては、最終製品の定められた規格を達成するために、それぞれの設備や環境に合わせて製造機器のパラメータ、温度および/または反応時間等の工程パラメータを調整しなければならない。
ICH Harmonised Tripartite Guideline, Pharmaceutical Development Q8(R2), Current Step 4 version, August 2009 檜山行雄、平成20年度厚生労働科学研究費補助金(医薬品・医療機器等レギュラトリーサイエンス総合研究事業)医薬品製造開発・承認審査の迅速かつ効率的なプロセス構築に関する研究、平成20年度 分担研究報告書、重要工程におけるデザインスペースの設定及びControl StrategyとしてのReal Time Release等の研究 Yukio Hiyama et. al., MHLW Sponsored Science Research Study, Establishing Design Space in critical steps and Control Strategy, Quality Overall Summary Mock P2 (Description Examples), March 2009, 1-57 Application Form for Sakura Tablet, Mock-Up for the Manufacture Method, Specifications, and Test Method Columns of Drug Product (Sample Description), Application Form for Sakura tablet_V2_01_0900310, Research on the construction of steady and efficient processes for the manufacture, development, and approval review of drugs, First Section Meeting, 1-13
 品質を恒常的に保証するためのデザインスペースの設計及び該デザインスペースを利用した製品の品質試験方法を提供することである。
 すなわち、本発明は:
[1]工程内製品及び/又は最終製品の品質特性のデザインスペースの設計方法であって、物質特性のみを入力変数として用いてデザインスペースを設計することを特徴とする、方法;
[2][1]に記載の方法であって、
(1)工程内製品及び/又は最終製品の品質特性に影響を及ぼす物質特性及び/又は工程パラメータを抽出する工程、
(2)抽出した項目に工程パラメータが含まれる場合は該工程パラメータを物質特性に変換する工程、および
(3)工程(1)および(2)で得られた物質特性と品質特性との相関関係を算出し、該相関関係を用いてデザインスペースを作成する工程、
を包含する、方法;
[3]製剤の品質特性のデザインスペースの設計方法である、[1]または[2]に記載の方法;
[4]製剤が錠剤若しくはカプセル剤である、[3]に記載の方法;
[5]品質特性が錠剤若しくはカプセル剤の有効成分の含量である、[4]に記載の方法;
[6]物質特性が、打錠若しくはカプセル充てん用顆粒の有効成分濃度及び素錠若しくはカプセル剤質量である、[5]に記載の方法;
[7]以下の式(a)
Figure JPOXMLDOC01-appb-M000003
を用いて有効成分の含量のデザインスペースを設計する、[6]に記載の方法;
[8]品質特性が錠剤若しくはカプセル剤の製剤均一性である、[4]に記載の方法;
[9]物質特性が、混合均一性、打錠若しくはカプセル充てん用顆粒の有効成分濃度、素錠若しくはカプセル剤質量及び素錠若しくはカプセル剤の質量偏差である、[8]に記載の方法;
[10]以下の式(e)
Figure JPOXMLDOC01-appb-M000004
を用いて製剤均一性のデザインスペースを設計する、[9]に記載の方法;
[11][1]~[10]のいずれか1項に記載の方法を用いて設計されたデザインスペースを用いることを特徴とする、工程内製品及び/又は最終製品の品質試験方法;
[12]工程内製品及び/又は最終製品の製造工程における物質特性を測定し、該測定値と前記デザインスペースとから工程内製品及び/又は最終製品の品質を判定する工程を含む、[11]に記載の方法;
[13][11]または[12]に記載の方法によって品質が試験された、工程内製品及び/又は最終製品;
[14][11]または[12]に記載の方法によって品質が試験された、製剤;
[15]最終製品のリアルタイムリリース試験に用いる、[11]に記載の方法。
[16]工程内製品及び/又は最終製品の品質試験システムであって、製造工程において測定した物質特性が、[1]~[10]のいずれか1項に記載の方法を用いて設計されたデザインスペースの範囲内に入るか否かを判定する手段を含む、システム;
[17]最終製品のデザインスペースの設計方法であって、2以上の工程内製品のデザインスペースを用いて設計することを特徴とする、方法;
[18]最終製品のデザインスペースの設計方法であって、[1]~[10]のいずれか1項に記載の方法で設計された2以上の工程内製品のデザインスペースを用いて設計することを特徴とする、方法、
に関する。
 本発明により、製造場所及び/又は製造機器の違いに起因する工程パラメータの変動に依存しない、製品の重要な品質特性を恒常的に管理及び/又は保証するデザインスペースの設計方法、ならびに該デザインスペースを用いた品質試験方法が提供される。
図1は、化合物Ia(実施例中に定義される)の含量の管理戦略を表す。 図2は、打錠用顆粒の有効成分(主薬)濃度を変化させた場合の含量実測値と推定値の関係を示す。 図3は、素錠質量を変化させた場合の含量実測値と推定値の関係を示す。 図4は、化合物Iaの製剤均一性の管理戦略を表す。 図5は、式(a)及び式(b)を用いて構築した、混合均一性(RSD)が5.0%の場合における含量95.0-105.0%、製剤均一性判定値15.0%以下を同時に満たすデザインスペースを表す。 図5のデザインスペースの設計の妥当性を検証するために、任意の検証ポイントを選択し(図6aの検証ポイント1~13)、各検証ポイントにおける製剤均一性の実測値と推定値を比較した(図6b)。 図5のデザインスペースの設計の妥当性を検証するために、任意の検証ポイントを選択し(図6aの検証ポイント1~13)、各検証ポイントにおける製剤均一性の実測値と推定値を比較した(図6b)。 図6cは、各検証ポイントの打錠用顆粒の有効成分(主薬)濃度、素錠質量及び素錠の質量偏差の一覧を示す。 図7は、製剤品質に影響を及ぼす可能性のある因子を、製造工程に分けて列挙した表である。
 本明細書において用いられる用語について説明する。
 「デザインスペース」とは、品質を確保することが立証されている製造工程の入力変数(物質特性および工程パラメータ)の多元的な組み合わせと相互作用をいう。
 「工程内製品」とは、最終製品ではないが品質の保証が求められる最終製品を製造する過程で得られる製品をいう。
 「最終製品」とは、品質の保証が求められる最終段階の製品をいう。最終製品としては、例えば、薬事法による承認を受ける医薬品製剤が挙げられる。
 「入力変数(inputs)」とは、製造工程中の変数であって、具体的には物質特性及び/又は工程パラメータのことをいう。
 「物質特性(material attributes)」とは、製造工程内の物質に由来する性質または当該性質をあらわすパラメータのことをいう。製剤の製造における物質特性としては、例えば、有効成分の物性、各添加物(例えば、賦形剤、結合剤または滑沢剤)物性、有効成分の原薬粒子径、造粒工程における造粒物の水分、造粒顆粒粒子径若しくは造粒顆粒の粒度別含量、混合工程における混合均一性若しくは打錠用顆粒の有効成分濃度、打錠工程における素錠質量、素錠の質量偏差、素錠硬度若しくは打錠工程中の含量変動、コーティング中の錠剤水分又はコーティング膜量が挙げられるが、これらに限定されない。
 「工程パラメータ(process parameter)」とは、製造機器の各種設定値、反応温度、反応時間などの製造操作に関するパラメータのことをいう。製剤の製造における工程パラメータとしては、例えば、反応温度、反応時間、原薬製造工程における粉砕ハンマ回転数、メッシュサイズ若しくは供給速度、造粒工程における給気温度、スプレー速度、スプレーエア流量若しくは給気風量、混合工程における混合時間若しくは回転速度、打錠工程における打錠圧若しくはターンテーブル回転数、又は、コーティング工程における給気温度、スプレー速度、スプレーエア流量、給気風量若しくはパン回転数が挙げられるが、これらに限定されない。
 「品質特性(Quality Attribute)」とは、要求される製品品質を保証するため、適切な限度内、範囲内、分布内であるべき物理学的、化学的、生物学的または微生物学的特性又は性質のことをいい、品質特性のうち、特に重要なものを「重要品質特性(Critical Quality Attribute)」という。
 「物質特性のみを入力変数として用いてデザインスペースを設計」とは、入力変数と品質特性との相関関係を算出してデザインスペースを設計する際に、入力変数として物質特性のみを用いてデザインスペースを作成することをいう。
 「リアルタイムリリース試験」とは、最終製品を用いた品質試験を実施せず、原材料の品質試験結果及び/又は製造工程内データに基づいて工程内製品及び/又は最終製品の品質を評価し、その品質が許容されることを保証することができる試験をいう。
 「品質」とは、製品の意図した用途に適合するために製品に求められる性質をいう。複数の品質のうちどれを管理するかは、製造するものが任意に設定し得る。医薬品の製剤の品質としては、当業者が設定し得るものであれば特に限定されず、例えば、有効成分の純度、有効成分の含量、不純物の量、製剤均一性、固形製剤の溶出性または製剤の外観等が挙げられるが、これらに限定されない。
 「品質を判定する」とは、製造工程内で得られる各物質特性に関するデータがデザインスペース内に含まれる否かを調べ、当該データがデザインスペース内に含まれる場合に工程内製品、最終製品及び/又は製剤の目的とする品質が保証されていると判定すること、及び/又は、当該データがデザインスペース内に含まれない場合に工程内製品、最終製品及び/又は製剤の目的とする品質が保証されていないと判定することをいう。
 「管理戦略」とは、最新の製品及び製造工程の理解から導かれる、製造プロセスの稼動性能及び製品品質を保証する計画された管理の一式をいう。
 「製剤」とは、経口または非経口で投与可能な医薬品製剤をいい、固形製剤であっても非固形製剤であってもよい。「製剤」としては、例えば、錠剤、顆粒剤、散剤、カプセル剤、液剤または注射剤が挙げられるが、これらに限定されない。
 製剤における「有効成分」とは、薬効を発揮する成分のことをいい、本明細書において「主薬」と交換可能に使用され得る。
 次に、本発明の実施形態について具体的に説明する。
 本発明の1つの実施形態は、物質特性のみを入力変数として用いてデザインスペースを設計することを特徴とする、工程内製品及び/又は最終製品の品質特性のデザインスペースの設計方法に関する。当該方法は、以下(1)~(3)の工程を含む:
(1)工程内製品及び/又は最終製品の品質特性に影響を及ぼす物質特性及び/又は工程パラメータを抽出する工程、
(2)抽出した項目に工程パラメータが含まれる場合は該工程パラメータを物質特性に変換する工程、および
(3)工程(1)および(2)で得られた物質特性と品質特性との相関関係を算出し、該相関関係を用いてデザインスペースを作成する工程。
 本発明の別の実施形態は、このように設計されたデザインスペースを用いることを特徴とする、工程内製品及び/又は最終製品の品質試験方法に関する。本発明は、物質特性のみを入力変数として設計されたデザインスペースによって品質を判定することを特徴とする工程内製品及び/又は最終製品の品質を検査、確認、検証及び/又は保証する方法、さらには、このような方法によって得られた製品に関する。本発明の品質試験方法は、品質を調べようとする製品について製造工程中の物質特性を測定し、測定値とデザインスペースから工程内製品及び/又は最終製品の品質を判定する工程を含む。測定値がデザインスペースに入る場合、当該工程内製品及び/又は最終製品は目的の品質を満たすと判定され、測定値がデザインスペースに入らない場合、当該工程内製品及び/又は最終製品は目的の品質を満たさないと判定される。本発明の方法は、好ましくは、最終製剤のリアルタイムリリース試験に使用され得る。
 製造プロセスの設計は、通常、どのような品質の製品にするかを予め設定し、その品質を達成するように製造方法が選択される。製造プロセスの設計は、製品や製造方法の理解に加え、製造工程の管理方法や品質のリスクマネジメントも考慮して体系的に開発されていく。
 リアルタイムリリース試験とは、品質を保証しようとする製品を製造してから品質試験を行うのではなく、予め検討された製品の品質に影響を及ぼす製造工程中の因子のデータに基づいて後で得られる製品の品質を保証する方法である。リアルタイムリリース試験を用いれば、出荷前の品質試験が不要であるので、製造後すぐに出荷できるという利点がある。リアルタイムリリース試験は、品質を確保することが立証されている製造工程の入力変数の多元的な組み合わせにより示されるデザインスペースを用いて行われる場合がある。デザインスペースを用いたリアルタイムリリースでは、製造工程内で得られたデータが設定されたデザインスペースの範囲内であれば、最終的に得られる製品が目標とする品質を満たすと判断される。製剤開発においては、あるデザインスペースについて規制当局による承認が得られると、承認書に記載されたデザインスペース内で追加の審査を受けることなく製造工程を改良することが可能となる(非特許文献1)。
 品質に影響を及ぼし得る製造工程中の要素としては、工程パラメータ(例えば、機器の各種設定値、反応温度または反応時間等)と、物質の性質に起因する物質特性の2つが挙げられる。従来、リアルタイムリリース試験でデザインスペースを用いる場合、デザインスペースは工程パラメータの組み合わせ又は物質特性と工程パラメータとの組み合わせにより設定されていた。これらの場合、製造場所、製造機器、製造スケールが少しでも異なると工程パラメータが変動するため、必要に応じてデザインスペースを再構築しなければならなかった。また、製剤開発においては、あるデザインスペースについて規制当局により承認を得ても、デザインスペースが工程パラメータにより設定されたものであると、製造機器の故障等に伴う製造機器又はその部品の交換や、当該製品の生産数量の変更等により製造場所や製造スケールなどが変更されると、デザインスペースを設定し直す必要があった。なぜなら、承認を得たデザインスペースは、変更後の製造で得られる製品の品質を保証するために、必ずしも最適なデザインスペースとはいえなくなるからである。そして、デザインスペースの変更に対しては、規制当局による追加の審査が必要になる場合がある。このように、従来の設計方法によるデザインスペースを用いたリアルタイムリリースは、承認書に記載されたデザインスペース内で追加の審査を受けることなく製造工程を改良することが可能となるという利点があるにも関わらず、デザインスペースが工程パラメータを用いて設計されていることに起因して、製造機器や製造場所等の製造条件の変更に伴い、デザインスペースの再設定や規制当局による再審査が必要になるという矛盾を抱えていた。
 本発明者らは、より品質を恒常的に保証できる工程パラメータに依存しないデザインスペースの構築が重要と考えた。そこで、実生産規模での検討結果のみでデザインスペースを設計するのではなく、小規模、中規模および大規模スケール全てでの検討結果を横断的に解析してデザインスペースの設計を試み、デザインスペースを物質特性のみで設計することが可能であることを見出した。このように物質特性のみで設計されたデザインスペースであれば、製造場所、製造機器または製造スケールなどが変更されても、当該物質特性を満たすように工程パラメータを設定すればよい。つまり、品質特性が物質特性により保証されているので、当該物質特性を満たす工程パラメータを選択する限り工程パラメータは任意に設定することができる。また、各工程の物質特性を多次元的に管理することから、各工程で測定された物質特性の結果を用いて次工程以降の目標物質特性値を調整することが可能となり、日常生産での品質変動幅を最小限に抑えることが可能となる。
 工程内製品及び/又は最終製品の品質特性に影響を及ぼす入力変数(物質特性または工程パラメータ)の選択は、当業者によって通常行われる手法を用いて行われ得る。例えば、製剤のリアルタイムリリース試験において、製剤の品質特性に影響を及ぼす入力変数(物質特性または工程パラメータ)は、過去の経験や予備試験の結果から候補入力変数が抽出され、次に、候補入力変数の変動が製剤の品質特性に影響を与えるか否かが実験により確認される(例えば、非特許文献1~4を参照)。日米EU医薬品規制調和国際会議(ICH)は、医薬品の開発に関して種々のガイドラインを公表している:非特許文献4、QUALITY RISK MANAGEMENT Q9, 2005(非特許文献5)、PHARMACEUTICAL QUALITY SYSTEM Q10, 2008(非特許文献6)。工程内製品及び/又は最終製品の品質特性に影響を及ぼす入力変数は、これらのガイドラインに示された手法等を用いることで、当業者によって選択され得る。具体的には、この手順に限定されるわけではないが、製剤の望ましい品質を保証するための標的製品品質プロファイル(QTPP:Quality Target Product Profile)に基づいて目的とする品質特性が抽出及び選択され、当該目的とする品質特性に影響を及ぼす入力変数が抽出され、当該入力変数のリスクアセスメント(例えば、リスク特定、リスク分析又はリスク評価)が行われ、候補入力変数が抽出され、次いで、候補入力変数の変動が目的製剤の品質特性に影響を与えるか否かが実験により確認される。
 次いで、デザインスペースが設計される。品質に影響を及ぼす因子として工程パラメータが含まれる場合は、該工程パラメータの代わりに該工程パラメータが直接的に影響を与える物質特性が選択される。このように物質特性が抽出されると、当業者は、当該分野において公知の手法を用いて物質特性と品質特性との相関関係を算出することができる。デザインスペースは当該相関関係を用いて一義的定められる。具体的には、当業者によって品質特性の規格値が定められ、この規格値と算出した相関関係に基づいて、デザインスペースが作成される。
 次に、調べようとする工程内製品及び/又は最終製品について製造工程中の物質特性が測定され、該測定値が該デザインスペースに含まれる場合は、工程内製品及び/又は最終製品が目的の品質を達成していると判定され、該測定値が該デザインスペースに含まれない場合は、工程内製品及び/又は最終製品が目的の品質を満たさないと判定される。
 また、製剤品質に影響を及ぼす可能性のある因子としては、例えば、図7に列挙される各因子が挙げられるが、これらに限定されない。
 本発明の別の実施形態は、本発明の品質試験方法を実行する手段を備えた品質試験システムまたは当該品質試験システムを用いた品質管理システムに関する。本発明のシステムは、目的の品質を保証するために予め選択された物質特性を測定する手段(例えば、高速液体クロマトグラフィー(HPLC)、紫外可視吸光光度計、近赤外分光法、ラマン分光法、水分計、精密天秤、硬度計、比表面積計など)、測定した物質特性が物質特性のみを入力変数として設計されたデザインスペースの範囲内に入るか否かを判定する手段(例えば、コンピュータ)、当該判定結果を表示する手段(例えば、コンピュータの画面)などを含むが、これらに限定されない。
 本発明のさらに別の実施形態は、本発明の品質試験方法及び/又はシステムによって品質が保証された工程内製品及び/又は最終製品に関する。本発明はまた、本発明の品質試験方法及び/又はシステムによって品質が保証された医薬品製剤に関する。
 本発明の別の実施形態は、2以上の工程内製品のデザインスペースを用いて設計することを特徴とする最終製品(好ましくは、製剤)のデザインスペースの設計方法に関する。製剤は多数の成分から構成される混合物であり、製品によっては製造方法も多工程を要し、かつ、医薬品として数々の項目について高い品質(例えば、有効成分の含量、不純物の量、溶出性または性状)が求められるため、これまでデザインスペースを設計することさらにはこのデザインスペースを用いてリアルタイムリリース試験を行うことは非常に困難であるとされていた。本発明の方法は、必要に応じて工程内製品の物質特性を保証するためのデザインスペースを設計し、さらに当該工程内製品の物質特性で構成されるデザインスペースを用いて最終製品のデザインスペースを構築するものである。本方法において、工程内製品のデザインスペースの設計は入力変数として物質特性および工程パラメータのいずれを用いてもよいが、好ましくは、物質特性のみを入力変数として用いて設計される。
 次に実施例を挙げて本発明を詳細に説明するが、本発明は何らこれら実施例に限定されるものではない。
 本実施例には、有効成分として下記の式(Ia)
Figure JPOXMLDOC01-appb-C000005
で表される、N-(5-クロロピリジン-2-イル)-N-((1S,2R,4S)-4-[(ジメチルアミノ)カルボニル]-2-{[(5-メチル-4,5,6,7-テトラヒドロチアゾロ[5,4-c]ピリジン-2-イル)カルボニル]アミノ}シクロヘキシル)エタンジアミド p-トルエンスルホン酸塩 1水和物(本明細書中、化合物Iaと称する場合がある。)を含有する、表1に記載された処方の錠剤を用いた。化合物Iaは、WO2003/000657もしくはWO2003/000680等に記載の方法またはこれらに準じる方法によって製造することができる。
 錠剤は、表1記載の処方のうち、ヒドロキシプロピルセルロース並びにステアリン酸マグネシウムを除く成分を、混合し、ヒドロキシプロピルセルロースの水溶液で造粒した。この顆粒にステアリン酸マグネシウムを混合し、打錠用顆粒とした後、これを圧縮成型することにより、製錠を行なった。ヒプロメロース、酸化チタン、タルク、マクロゴール6000および黄色三二酸化鉄または三二酸化鉄の混合物を精製水に溶解して得られたコーティング液を素錠に噴霧してコーティングを行った。
Figure JPOXMLDOC01-appb-T000006
 (実施例1)最終製剤の有効成分含量
 (ア.従来試験による品質の判定方法)
 15mg錠を水/アセトニトリル混液(1:1)に溶解し、化合物Iaの量をHPLCを用いて測定した。30mg錠についても同様に計算した。
 (イ.リアルタイムリリース試験による品質の判定方法)
 最終製剤の有効成分含量に大きく影響を与える製造工程中のパラメータについて、1kg~500kgスケールでの複数回にわたる製造で得られた知見を踏まえて検討した結果、図1に示されるように、混合工程における打錠用顆粒の有効成分濃度、打錠工程における打錠圧および素錠質量が選択された。最終製剤はコーティング錠であるが、通常の製剤処方設計において素錠の有効成分含量に影響を与えるような成分はコーティング剤として選択されないので、コーティング工程の製造工程パラメータは考慮しなかった。打錠圧は工程パラメータであり、また打錠圧の影響は素錠質量に反映されることから、最終製剤の有効成分含量を、混合工程における打錠用顆粒の有効成分濃度と打錠工程における素錠質量という物質特性によって管理できると仮定した。この仮定に基づき、含量の推定値を算出する方法として、打錠用顆粒の化合物Iaの濃度及び素錠質量を用いる以下の式(a)を設定した。
Figure JPOXMLDOC01-appb-M000007
 30mg錠について錠剤中の化合物Iaの実測値と式(a)による推定値との関係を評価した結果を、図2および図3に示す。錠剤中の化合物Iaの含量および打錠用顆粒の化合物Iaの濃度は、HPLCにより測定した。図2は、打錠用顆粒の有効成分(主薬)濃度を変化させた場合の含量実測値と推定値の関係を示す。図3は、素錠質量を変化させた場合の含量実測値と推定値の関係を示す。
 図2および図3に示されるように、錠剤中の化合物Iaの実測値と式(a)による推定値との相関係数(相関係数は、各図の中のrで示される)は0.9981又は0.9992であり、有効成分の含量を式(a)で算出することは妥当であることがわかった。
 化合物Iaを有効成分として含有する錠剤の含量のデザインスペースは、式(a)による算出値を医薬品として求められる品質を満たす任意の範囲に設定することで作成した。このデザインスペースを用いて含量のリアルタイムリリース試験を行い、品質を判定した。
 上記式(a)は、打錠用顆粒の有効成分濃度と素錠質量のみに依存する式であるので、有効成分の性質に起因する物質特性(例えば、有効成分の溶解度)を考慮する必要がなく、有効成分の種類に限定されることなく錠剤の含量のデザインスペースの設計に使用され得る。
 (実施例2)最終製剤の製剤均一性
 (ア.従来試験による品質の判定方法)
 化合物Iaを含む錠剤の製剤均一性試験は、日本、米国、及び欧州薬局方に規定された製剤均一性試験法のなかの含量均一性試験に従って行う。具体的には、15mg錠10個若しくは30個について製剤中の化合物Iaの含量をHPLCにより測定し、以下の式(b)により判定値(AV)を計算し、AVが15.0%以下(試料10個)又は25.0%以下(試料30個)のとき、製剤中の含量は均一であると判定する。30mg錠についても同様に計算し、判定する。
Figure JPOXMLDOC01-appb-M000008
 (イ.リアルタイムリリース試験による品質の判定方法)
 化合物Iaを有効成分として含有する錠剤の製剤均一性に大きく影響を与える製造工程中のパラメータについて、1kg~500kgスケールでの複数回にわたる製造で得られた知見を踏まえて検討した結果、図4に示されるように、混合工程における混合時間、混合均一性および打錠用顆粒の有効成分濃度、ならびに打錠工程における打錠圧、素錠質量および素錠の質量偏差が抽出された。混合時間および打錠圧は工程パラメータであるが、これらの影響は、それぞれ混合均一性および素錠質量に反映されることから、最終製剤の製剤均一性を混合均一性、打錠用顆粒の有効成分濃度、素錠質量および素錠の質量偏差によって管理できると仮定した。
 日本、米国、及び欧州薬局方に規定された製剤均一性試験法のなかの含量均一性試験では判定値(AV)の計算方法として記載された式(b)は、実施例1(イ)の結果をふまえて、以下の式(c)のように記述できる。
Figure JPOXMLDOC01-appb-M000009
標準偏差sは、打錠用顆粒の有効成分濃度、素錠質量、混合均一性および素錠の質量偏差を用いて以下の式(d)で計算される(Chem.Pharm.Bull.49(11)1412-1419(2001))。
Figure JPOXMLDOC01-appb-M000010
 したがって、製剤均一性を混合均一性、打錠用顆粒の有効成分濃度、素錠質量および素錠の質量偏差によって管理できるとの仮定に基づき、製剤均一性を算出する方法として、以下の式(e)を設定した。
Figure JPOXMLDOC01-appb-M000011
 製造工程において得られた各値を用いて式(e)により計算した値は、式(b)により計算した値とほぼ同じであり、製剤均一性を式(e)で算出することは妥当であることがわかった。
 化合物Iaを有効成分として含有する錠剤の製剤均一性のデザインスペースは、式(e)による製剤均一性の判定値(%)を、医薬品として求められる品質を満たす任意の範囲に設定することで作成した。このデザインスペースを用いて製剤均一性のリアルタイムリリース試験を行い、品質を判定した。
 上記式(e)は、混合均一性、打錠用顆粒の有効成分濃度、素錠質量および素錠の質量偏差のみに依存する式であるので、有効成分の性質に起因する物質特性(例えば、有効成分の溶解度)を考慮する必要ななく、有効成分の種類に限定されることなく錠剤の製剤均一性のデザインスペースの設計に使用され得る。
 (実施例3)最終製剤の有効成分含量及び製剤均一性の同時判定
 (ア.従来試験による品質の判定方法)
 (実施例1)の(ア.従来試験による品質の判定方法)及び(実施例2)の(ア.従来試験による品質の判定方法)をそれぞれ実施することにより、最終製剤の有効成分含量及び製剤均一性の規格への適合性がそれぞれ判定される。
 (イ.リアルタイムリリース試験による品質の判定方法)
 実施例1(イ)および実施例2(イ)の結果を用いて、化合物Iaを有効成分として含有する錠剤製剤の有効成分含量及び製剤均一性の規格適合試験に用いるデザインスペースを設計した。本設計には、図1及び図4に示される4つの物質特性(打錠用顆粒の有効成分濃度、素錠質量、混合均一性(RSD)及び素錠の質量偏差)を用いた。図5は、有効成分含量及び製剤均一性の規格値を、それぞれ95.0-105.0%及び15.0%に設定した場合のデザインスペース(図中の空間(X))を表す。なお、図5は混合均一性(RSD)が5.0%とした場合のデザインスペースを示す。
 最終製剤の各物質特性(打錠用顆粒の有効成分濃度、素錠質量及び素錠の質量偏差)の当該デザインスペースへの適合性を判定することにより、最終製剤の有効成分含量及び製剤均一性の規格への適合性を同時に判定することができた。
 (ウ.デザインスペースの設計の妥当性の検証)
 上記イで設計したデザインスペースの妥当性を検証するために、任意の検証ポイントを選択した(図6aの検証ポイント1~13)。図6cは、各検証ポイントの打錠用顆粒の有効成分(主薬)濃度、素錠質量及び素錠の質量偏差の一覧を示す。各検証ポイントはいずれも、製剤均一性の判定値を15.0%とした場合の上記式(e)の範囲内に含まれる。各検証ポイントにおける製剤均一性の実測値と推定値を比較したところ、いずれの検証ポイントにおいても、製剤均一性の実測値と推定値に大きな差は認められなかった(図6b)。
 本発明により、工程パラメータに依存しないデザインスペースを用いた製品の品質管理方法が提供され、さらにリアルタイムリリース試験を用いた製品の品質試験方法が提供される。本発明の方法によれば、製造場所、製造機器又は製造スケールが変更されたとしても、容易に同じ品質の製品を製造し続けることが可能となる。

Claims (18)

  1. 工程内製品及び/又は最終製品の品質特性のデザインスペースの設計方法であって、物質特性のみを入力変数として用いてデザインスペースを設計することを特徴とする、方法。
  2. 請求項1に記載の方法であって、
    (1)工程内製品及び/又は最終製品の品質特性に影響を及ぼす物質特性及び/又は工程パラメータを抽出する工程、
    (2)抽出した項目に工程パラメータが含まれる場合は該工程パラメータを物質特性に変換する工程、および
    (3)工程(1)および(2)で得られた物質特性と品質特性との相関関係を算出し、該相関関係を用いてデザインスペースを作成する工程、
    を包含する、方法。
  3. 製剤の品質特性のデザインスペースの設計方法である、請求項1または2に記載の方法。
  4. 製剤が錠剤若しくはカプセル剤である、請求項3に記載の方法。
  5. 品質特性が錠剤若しくはカプセル剤の有効成分の含量である、請求項4に記載の方法。
  6. 物質特性が、打錠若しくはカプセル充てん用顆粒の有効成分濃度及び素錠若しくはカプセル剤質量である、請求項5に記載の方法。
  7. 以下の式(a)
    Figure JPOXMLDOC01-appb-M000001
    を用いて有効成分の含量のデザインスペースを設計する、請求項6に記載の方法。
  8. 品質特性が錠剤若しくはカプセル剤の製剤均一性である、請求項4に記載の方法。
  9. 物質特性が、混合均一性、打錠若しくはカプセル充てん用顆粒の有効成分濃度、素錠若しくはカプセル剤質量及び素錠若しくはカプセル剤の質量偏差である、請求項8に記載の方法。
  10. 以下の数式(e)
    Figure JPOXMLDOC01-appb-M000002
    を用いて製剤均一性のデザインスペースを設計する、請求項9に記載の方法。
  11. 請求項1~10のいずれか1項に記載の方法を用いて設計されたデザインスペースを用いることを特徴とする、工程内製品及び/又は最終製品の品質試験方法。
  12. 工程内製品及び/又は最終製品の製造工程における物質特性を測定し、該測定値と前記デザインスペースとから工程内製品及び/又は最終製品の品質を判定する工程を含む、請求項11に記載の方法。
  13. 請求項11または12に記載の方法によって品質が試験された、工程内製品及び/又は最終製品。
  14. 請求項11または12に記載の方法によって品質が試験された、製剤。
  15. 最終製品のリアルタイムリリース試験に用いる、請求項11に記載の方法。
  16. 工程内製品及び/又は最終製品の品質試験システムであって、製造工程において測定した物質特性が、請求項1~10のいずれか1項に記載の方法を用いて設計されたデザインスペースの範囲内に入るか否かを判定する手段を含む、システム。
  17. 最終製品のデザインスペースの設計方法であって、2以上の工程内製品のデザインスペースを用いて設計することを特徴とする、方法。
  18. 最終製品のデザインスペースの設計方法であって、請求項1~10のいずれか1項に記載の方法で設計された2以上の工程内製品のデザインスペースを用いて設計することを特徴とする、方法。
PCT/JP2012/067287 2011-07-08 2012-07-06 製品の品質管理方法 WO2013008733A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/129,858 US9977846B2 (en) 2011-07-08 2012-07-06 Product quality control method
EP12811023.6A EP2730269B1 (en) 2011-07-08 2012-07-06 Product quality control method
ES12811023.6T ES2648164T3 (es) 2011-07-08 2012-07-06 Procedimiento de control de calidad de productos
JP2013523923A JP5860050B2 (ja) 2011-07-08 2012-07-06 製品の品質管理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-152194 2011-07-08
JP2011152194 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008733A1 true WO2013008733A1 (ja) 2013-01-17

Family

ID=47506024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067287 WO2013008733A1 (ja) 2011-07-08 2012-07-06 製品の品質管理方法

Country Status (5)

Country Link
US (1) US9977846B2 (ja)
EP (1) EP2730269B1 (ja)
JP (1) JP5860050B2 (ja)
ES (1) ES2648164T3 (ja)
WO (1) WO2013008733A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102274363B1 (ko) * 2020-09-18 2021-07-08 주식회사 엘지화학 인공 지능 기반의 의약품 공정 개발 시스템 및 이의 자동화 접목 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014143725A1 (en) * 2013-03-15 2014-09-18 Lantheus Medical Imaging, Inc. Control system for radiopharmaceuticals
WO2015070025A1 (en) * 2013-11-08 2015-05-14 Ubc Late Stage, Inc. Document analysis and processing systems and methods
KR20210047441A (ko) * 2019-10-22 2021-04-30 주식회사 엘지화학 의약품 설계기반품질 고도화 방법 교육 시스템
CN112704644B (zh) * 2020-11-26 2022-09-06 石家庄东方药业股份有限公司 一种药材粉末和/或药材提取物粉末直接填充硬胶囊装量控制的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000657A1 (fr) 2001-06-20 2003-01-03 Daiichi Pharmaceutical Co., Ltd. Derives de diamine
WO2003000680A1 (fr) 2001-06-20 2003-01-03 Daiichi Pharmaceutical Co., Ltd. Derives de diamine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799273B2 (en) 2004-05-06 2010-09-21 Smp Logic Systems Llc Manufacturing execution system for validation, quality and risk assessment and monitoring of pharmaceutical manufacturing processes
US7444197B2 (en) 2004-05-06 2008-10-28 Smp Logic Systems Llc Methods, systems, and software program for validation and monitoring of pharmaceutical manufacturing processes
US20080282026A1 (en) * 2007-05-08 2008-11-13 Finesse Solutions, Llc. Bioprocess data management
EP2369549A1 (en) * 2010-02-25 2011-09-28 GEA Pharma Systems NV Method of performing a series of experiments, an integrated continuous pharmaceutical product system, and a computer program product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000657A1 (fr) 2001-06-20 2003-01-03 Daiichi Pharmaceutical Co., Ltd. Derives de diamine
WO2003000680A1 (fr) 2001-06-20 2003-01-03 Daiichi Pharmaceutical Co., Ltd. Derives de diamine

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Application Form for Sakura Tablet, Mock-Up for the Manufacture Method, Specifications, and Test Method Columns of Drug Product (Sample Description), Application Form for Sakura tablet V2 01 0900310", RESEARCH ON THE CONSTRUCTION OF STEADY AND EFFICIENT PROCESSES FOR THE MANUFACTURE, DEVELOPMENT, AND APPROVAL REVIEW OF DRUGS, pages 1 - 13
"ICH Harmonised Tripartite Guideline, Pharmaceutical Development Q8 (R2", CURRENT STEP 4 VERSION, August 2009 (2009-08-01)
"Seizai Kaihatsu ni Kansuru Guideline no Kaitei ni Tsuite", MINISTRY OF HEALTH, LABOUR AND WELFARE, 28 June 2010 (2010-06-28), XP008171914, Retrieved from the Internet <URL:http://www.pmda.go.jp/ich/q/q8r2_10_6_28.pdf> [retrieved on 20120829] *
CHEM. PHARM. BULL., vol. 49, no. 11, 2001, pages 1412 - 1419
See also references of EP2730269A4
YUKIO HIYAMA ET AL.: "MHLW Sponsored Science Research Study, Establishing Design Space in critical steps and Control Strategy", QUALITY OVERALL SUMMARY MOCK P2 (DESCRIPTION EXAMPLES, March 2009 (2009-03-01), pages 1 - 57
YUKIO HIYAMA: "Health and Labour Sciences Research Grants", RESEARCH ON THE RAPID AND EFFICIENT PROCESS CONSTRUCTION OF PHARMACEUTICAL MANUFACTURING OR DEVELOPMENT AND APPROVAL REVIEW, 2008 JOINT RESEARCH REPORT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102274363B1 (ko) * 2020-09-18 2021-07-08 주식회사 엘지화학 인공 지능 기반의 의약품 공정 개발 시스템 및 이의 자동화 접목 방법

Also Published As

Publication number Publication date
US20140136157A1 (en) 2014-05-15
EP2730269B1 (en) 2017-08-23
JPWO2013008733A1 (ja) 2015-02-23
EP2730269A4 (en) 2015-05-27
US9977846B2 (en) 2018-05-22
JP5860050B2 (ja) 2016-02-16
EP2730269A1 (en) 2014-05-14
ES2648164T3 (es) 2017-12-28

Similar Documents

Publication Publication Date Title
Dave et al. Excipient variability and its impact on dosage form functionality
JP5860050B2 (ja) 製品の品質管理方法
Blanco et al. Monitoring powder blending in pharmaceutical processes by use of near infrared spectroscopy
Pauli et al. Real-time monitoring of particle size distribution in a continuous granulation and drying process by near infrared spectroscopy
Karande et al. In-line quantification of micronized drug and excipients in tablets by near infrared (NIR) spectroscopy: Real time monitoring of tabletting process
Aksu et al. Quality by design approach: application of artificial intelligence techniques of tablets manufactured by direct compression
Hausman et al. Application of Raman spectroscopy for on-line monitoring of low dose blend uniformity
Otsuka et al. Application of principal component analysis enables to effectively find important physical variables for optimization of fluid bed granulator conditions
Gravestock et al. The “GI dissolution” method: a low volume, in vitro apparatus for assessing the dissolution/precipitation behaviour of an active pharmaceutical ingredient under biorelevant conditions
Furukawa et al. Effect of material properties on the residence time distribution (RTD) of a tablet press feed frame
Mohan et al. A robust quantitative near infrared modeling approach for blend monitoring
Qiu et al. Product and process development of solid oral dosage forms
Teixeira et al. Use of chemometrics to compare NIR and HPLC for the simultaneous determination of drug levels in fixed-dose combination tablets employed in tuberculosis treatment
Oishi et al. Creation of novel large dataset comprising several granulation methods and the prediction of tablet properties from critical material attributes and critical process parameters using regularized linear regression models including interaction terms
Palmer et al. Opportunities for process control and quality assurance using online NIR analysis to a continuous wet granulation tableting line
Sharma et al. Prospective validation: a review
Smetiško et al. Dissolution assessment of allopurinol immediate release tablets by near infrared spectroscopy
Ko et al. Granulation development in batch-to-batch and continuous processes from a quality by design perspective
Sun et al. Statistical modeling methods to analyze the impacts of multiunit process variability on critical quality attributes of Chinese herbal medicine tablets
Chavez et al. Control strategy definition for a drug product continuous wet granulation process: Industrial case study
Sharma et al. An overview of industrial process validation of tablets
Tambe et al. A review on: Applications of pharmaceutical quality by design in product development
Cespi et al. Use of in-die powder densification parameters in the implementation of process analytical technologies for tablet production on industrial scale
Stauffer Managing raw material variability in continuous manufacturing based on twin-screw granulation
Biba et al. In vitro performance tests for continuous manufacturing: the impact on the current compendial framework from the viewpoint of the USP New Advancements in Product Performance Testing Expert Panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811023

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012811023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012811023

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013523923

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14129858

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE