WO2013008682A1 - Solar cell backside protective sheet having reflectivity - Google Patents

Solar cell backside protective sheet having reflectivity Download PDF

Info

Publication number
WO2013008682A1
WO2013008682A1 PCT/JP2012/066991 JP2012066991W WO2013008682A1 WO 2013008682 A1 WO2013008682 A1 WO 2013008682A1 JP 2012066991 W JP2012066991 W JP 2012066991W WO 2013008682 A1 WO2013008682 A1 WO 2013008682A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
back surface
reflective layer
protective sheet
Prior art date
Application number
PCT/JP2012/066991
Other languages
French (fr)
Japanese (ja)
Inventor
猿渡 昌隆
洋 旭
孝展 寺澤
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to CN201280028840.8A priority Critical patent/CN103597608B/en
Publication of WO2013008682A1 publication Critical patent/WO2013008682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell back surface protective sheet that generates power by sunlight.
  • semiconductor cells made of crystalline silicon are most frequently used for photovoltaic power generation.
  • This cell has glass on the light receiving surface and a back surface protection sheet on the opposite surface, and a sealing material made of a thermoplastic resin such as ethylene-vinyl acetate copolymer (EVA) is used between each cell. And heat-pressed. And power generation is performed when sunlight reaches a cell through glass.
  • a thermoplastic resin such as ethylene-vinyl acetate copolymer (EVA)
  • such a cell is not arranged in the entire solar cell module when viewed in a plane in consideration of wiring for taking out electricity generated by the cell and an arrangement error. That is, when viewed on a plane, the portion without cells is the portion where the back surface protection sheet can be directly seen. Naturally, the part without this cell does not contribute to power generation. Further, the cell itself does not absorb 100% of light, and a part of the light hitting the cell reaches the back surface protection sheet through the sealing agent after passing through the cell. There is also a problem that light transmitted through the cell does not contribute to power generation.
  • Patent Document 1 In order to solve the above-described problem, in Patent Document 1, light reflection is achieved by using a back surface protection sheet in which a filler such as titanium oxide is mixed in a resin film on the side in contact with a cell through a sealing material. At the same time, a method has been devised in which light is diffusely reflected and light from the gap reaches the back surface of the cell.
  • a filler such as titanium oxide
  • a method has been devised in which light is diffusely reflected and light from the gap reaches the back surface of the cell.
  • solids such as fillers are mixed in the resin film, there is a problem that the resin film itself is easily broken.
  • the sealing material and the back surface protection sheet for enclosing the cell are bonded with a vacuum laminator or the like at the stage of manufacturing the module, but the bonding strength is required to be high to protect the cell. Therefore, when a large amount of filler is mixed in the resin film, even if the surface layer of the back surface protective film is sufficiently bonded, the resin film itself containing the filler is easily broken, which hinders the function of protecting the cell. Come on. In addition, even if the resin film mixed with the filler itself does not break, such as cracking, if the surface layer breaks in the thickness direction, the resin film There exists a problem that it peels with a weak force and cannot maintain a sufficient function as a cell.
  • a hole or slit through which wiring for collecting electricity generated in the junction box is provided in the protective sheet disposed on the back surface thereof.
  • the four sides of the frame of the solar cell module are sealed with a rubber sealant or the like.
  • the hole or slit is the part that causes the back protective sheet and the sealing material to be peeled off, and it is important to hold that part.
  • the transmissive layer has sufficient transparency
  • the reflective layer has sufficient reflectivity
  • the transmissive layer bonded to the sealing material has sufficient adhesive force
  • the transmissive layer It is an object of the present invention to provide a solar cell back surface protective sheet disposed on the back surface side of a solar cell module having sufficient strength in contact with the sealing material.
  • the present inventor has found that the above object can be achieved when using a solar cell back surface protective sheet having a specific transmission layer and reflection layer, and the present invention has been completed. It came to do.
  • this invention relates to the following back surface protection sheet for solar cells.
  • a solar cell back surface protection sheet disposed on the back surface side of the solar cell module, and is configured by laminating at least a transmission layer (1), a reflection layer (2), and a protection layer (3) in contact with the sealing material.
  • the transmission layer (1) transmits light having a wavelength of 400 nm to 1400 nm on an average of 70% or more
  • the reflective layer (2) includes a white filler and reflects light having a wavelength of 400 nm to 1400 nm;
  • the back surface protection sheet for solar cells characterized by the above-mentioned. 2.
  • the transmission layer (1) is made of polyethylene, ethylene vinyl acetate copolymer, ionomer, ethylene acrylic acid copolymer, ethylene methacrylic acid copolymer, ethylene methyl acrylate copolymer, ethylene methyl methacrylate copolymer, polyethylene terephthalate, Item 2.
  • the back protective sheet for a solar cell according to Item 1 which is a layer containing at least one polymer selected from the group consisting of an ethylene vinyl alcohol copolymer and vinyl chloride. 3.
  • Item 3 The solar cell back surface protective sheet according to Item 1 or 2, wherein the transmission layer (1) has a breaking strength of 10 N / cm or more. 4).
  • Item 5 The back protective sheet for solar cells according to any one of Items 1 to 4, wherein the reflective layer (2) contains bubbles. 6).
  • Item 7 The back protective sheet for solar cells according to any one of Items 1 to 6, wherein the white filler is contained in the reflective layer (2) in an amount of 5% by weight or more. 8).
  • Item 8. The back protective sheet for solar cells according to any one of Items 1 to 7, wherein the reflective layer (2) contains polyethylene terephthalate as a resin component. 9. A solar cell module using the solar cell back surface protective sheet according to any one
  • the solar cell back surface protective sheet of the present invention is a solar cell back surface protective sheet disposed on the back surface side of the solar cell module, and includes at least a transmissive layer (1), a reflective layer (2), and a sealing material.
  • the protective layer (3) is laminated in this order, the transmission layer (1) transmits light having a wavelength of 400 nm to 1400 nm on average 70% or more, and the reflection layer (2) contains a white filler, It is characterized by reflecting light having a wavelength of 400 nm to 1400 nm.
  • the back surface protection sheet for solar cells of this invention does not contain a filler etc. in the permeable layer (1) adhere
  • the sealing material and the solar cell back surface protective sheet can be peeled off if there is a cause of peeling.
  • a hole or a slit formed in the back protective sheet for solar cell for conducting electricity through the junction box corresponds to the factor.
  • the back surface protection sheet for solar cells of the present invention has a structure in which the reflective layer (2) is provided in the lower layer of the transmission layer (1) as described above, the back surface protection sheet for solar cells is used as a sealing material. It is possible to bond them sufficiently.
  • the solar cell back surface protective sheet of the present invention has a structure in which the reflective layer (2) is provided in the lower layer of the transmission layer (1) as described above. There is no worry that the adhesive strength between the layers will be lowered. In this way, the sealing material is present on the entire lower layer of the above-described hole or slit portion, and the peeling trigger occurs between the sealing material and the entire back surface protective sheet for solar cells. Therefore, the effect of providing the reflective layer (2) as the second layer on the back surface protective sheet for solar cells is great.
  • FIG. 1 is a cross-sectional view showing one embodiment of a back surface protection sheet for a solar cell of the present invention.
  • the back surface protection sheet for solar cells is as follows: 1. From the side relatively close to the solar cells. Transmission layer (1), 2. 2. reflective layer (2) and It is comprised from the laminated body laminated
  • the solar battery cell and the back protective sheet for solar battery are bonded to each other with a transmissive layer (1) through a sealing material.
  • the protective layer (3) is the outermost layer.
  • the transmissive layer (1), the reflective layer (2) and the protective layer (3) constituting the solar cell back surface protective sheet of the present invention will be described in detail.
  • a sealing material sealing material is a layer which adhere
  • the sealing material is not limited as long as it is a material that can be adhered to the back surface of the solar battery cell by heat fusion, but it preferably contains an ethylene-vinyl acetate copolymer (EVA) as a sealing agent.
  • EVA ethylene-vinyl acetate copolymer
  • the thickness of the sealing material is not limited, but is preferably 200 to 1000 ⁇ m, and more preferably 400 to 600 ⁇ m, because the step due to the thickness of the cell or wiring is filled.
  • Transmission layer (1) The transmission layer that adheres to the sealing material has a sufficient adhesive force, and the portion of the transmission layer that contacts the sealing material requires the strength of the base material itself. For this reason, it is preferable that the layer in contact with the sealing material does not contain a filler or the like, and it is important that sunlight is sufficiently transmitted.
  • the transmission layer (1) transmits light having a wavelength of 400 nm to 1400 nm on an average of 70% or more.
  • the peeling interface moves to the second layer, that is, the reflective layer (2) (described later) having low strength. To do. If it becomes so, sufficient adhesion
  • the permeable layer (1) needs to have sufficient adhesion after being heat-laminated with the sealing material.
  • a transmission layer (1) includes polyethylene, ethylene vinyl acetate copolymer, ionomer, ethylene acrylic acid copolymer, ethylene methacrylic acid copolymer, ethylene methyl acrylate copolymer, ethylene methyl methacrylate copolymer, A layer containing at least one polymer selected from the group consisting of polyethylene terephthalate, ethylene vinyl alcohol copolymer and vinyl chloride is preferable.
  • the permeable layer (1) is more preferably a film layer composed of polyethylene or ethylene vinyl acetate copolymer in consideration of price and handling.
  • “transmitting 70% or more on average” can be obtained by averaging the values for each wavelength of 1 nm in the range of 400 to 1400 nm with a spectrophotometer. In this way, since the transmittance of the transmission layer (1) is 70% or more on average, light is effectively transmitted to the reflection layer (2) adjacent to the transmission layer (1), and the reflection layer (2 ) The reflected light can be effectively returned to the solar battery cell.
  • the thickness of the transmissive layer (1) is better when considering light transmittance, but thicker from the viewpoint of strength. Accordingly, the thickness of the transmission layer (1) is preferably 10 to 100 ⁇ m, and more preferably 20 to 60 ⁇ m.
  • the adhesive strength between the sealing material and the back surface protection sheet for solar cells is related to the transmission layer (1) of the back surface protection sheet for solar cells that adheres to the sealing material.
  • the adhesive strength is obtained by laminating glass, a sealing material (S-11, manufactured by Bridgestone), and a back protective sheet for solar cells in this order, and vacuum laminating at 150 ° C. for 10 minutes. At this time, the sealing material and the permeable layer (1) are eroded. Thereafter, two cuts are made with a cutter from the back surface protection sheet side for solar cells so that the interval is 10 mm. In that state, the adhesive strength between the sealing material and the solar cell back surface protective sheet can be measured with a push-pull gauge by peeling off the solar cell back surface protective sheet between the two cuts. Moreover, the breaking strength can measure the strength when the transmission layer (1) before lamination is cut into a strip shape having a width of 15 mm and broken by a strograph.
  • the thickness and material of the transmission layer (1) can be determined based on the permeability of the transmission layer (1), the adhesive strength with the sealing material, and the breaking strength.
  • the back surface protection sheet for solar cells of the present invention has a reflective layer (2) having a function of allowing the transparent layer (1) in contact with the sealing material to transmit sunlight and sufficiently reflecting or irregularly reflecting sunlight immediately below it. Prepare.
  • the back surface protection sheet for solar cells of the present invention can achieve both adhesiveness and sufficient reflection of sunlight.
  • the back surface protective sheet for solar cells of the present invention is provided with a reflective layer (2) below the transmission layer (1), and such a back surface protective sheet for solar cells, It can be sufficiently adhered to the solar battery cell.
  • the interlayer strength cannot be maintained due to the destruction of the reflective layer when an attempt is made to peel the interlayer between the transmissive layer and the reflective layer.
  • the sealing material since the sealing material is present on the entire surface below the hole or the slit portion, the peeling trigger occurs between the sealing material and the entire solar cell back surface protective sheet. . Therefore, the effect of providing the reflective layer (2) as the second layer of the solar cell back surface protective sheet is great.
  • the reflective layer (2) includes a white filler and reflects light having a wavelength of 400 nm to 1400 nm.
  • the reflective layer (2) has a high reflectance by including a white filler, and can return sunlight from the gaps between the cells (solar cells) to the cell by irregular reflection.
  • a white filler titanium oxide, silicon oxide, magnesium oxide, magnesium carbonate, calcium carbonate, barium sulfate, barium oxide, and the like are more preferable because they can be easily mixed into the resin constituting the reflective layer (2).
  • the white filler is preferably contained in the reflective layer (2) in an amount of 5% by weight or more, more preferably 7 to 15% by weight, because it improves the reflectivity and at the same time maintains the strength of the film. preferable.
  • the reflective layer (2) preferably further contains air bubbles because it can reflect or diffusely reflect sunlight.
  • the size of the bubbles contained in the reflective layer (2) is preferably 0.2 to 20 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the reflective layer (2) preferably contains bubbles having a volume ratio of preferably 5 to 30% by volume, more preferably 10 to 20% by volume. By heating in a state where the heat-foamable filler is mixed in the film, bubbles can be included in the reflective layer (2).
  • the reflective layer (2) polyethylene, ethylene vinyl acetate copolymer, ionomer, ethylene acrylic acid copolymer, ethylene methacrylic acid copolymer, ethylene methyl acrylate copolymer, ethylene methyl methacrylate copolymer, polyethylene terephthalate, A layer containing at least one polymer selected from the group consisting of an ethylene vinyl alcohol copolymer and vinyl chloride is preferable.
  • the reflective layer (2) is more preferably polyethylene terephthalate in view of cost, ease of manufacture, and heat shrinkage.
  • the reflective layer (2) preferably reflects light having a wavelength of 400 nm to 1400 nm on an average of 80% or more.
  • the above-mentioned “reflect 80% or more on average” can be obtained by averaging the values for each wavelength of 1 nm in the range of 400 to 1400 nm with a spectrophotometer.
  • the reflection of the reflective layer (2) is 80% or more on average.
  • the thickness of the reflective layer (2) is preferably 30 to 350 ⁇ m, and more preferably 50 to 250 ⁇ m, for the reason of increasing the reflectance.
  • a protective layer (3) is a layer provided in the outermost layer (side opposite to the solar battery cell side) of the back surface protection sheet for solar cells.
  • the protective layer (3) preferably has weather resistance and electrical insulation.
  • constituents of the protective layer (3) include polyester films such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET); polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and ethylene tetrafluoroethylene (ETFE). ), Etc .; polyolefin films such as polyethylene and polypropylene; polystyrene films, polyamide films, polyvinyl chloride films, polycarbonate films, polyacrylonitrile films, polyimide films and the like.
  • PET hydrolysis resistant PET can be suitably used in consideration of outdoor durability.
  • engineering plastics and fluororesins are also included.
  • Engineering plastics include, for example, polyacetal (POM), polyamide (PA), polycarbonate (PC), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), GF reinforced polyethylene terephthalate (GF-PET), ultra-high Molecular weight polyethylene (UHPE), syndiotactic polystyrene (SPS), amorphous polyarylate (PAR), polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), Examples include polyimide (PI), polyetherimide (PEI), polyphenylene ether (PPE), and liquid crystal polymer (LCP).
  • the protective layer (3) is more preferably a film layer composed of polyvinyl fluoride or polyethylene terephthalate for weatherability and economic reasons.
  • the protective layer (3) may be a single layer or a multilayer (laminated film).
  • the thickness is preferably 20 to 2000 ⁇ m.
  • a multilayer it is preferably a laminate of a film having excellent weather resistance and a film having excellent electrical insulation.
  • a film having excellent electrical insulation is disposed on the resin film substrate side, and a film having excellent weather resistance is the outermost layer.
  • the film having excellent weather resistance is preferably a fluorine-based film having a thickness of 20 to 150 ⁇ m, and the film having excellent electrical insulation is preferably a PET film having a thickness of 100 to 250 ⁇ m.
  • the transmissive layer has sufficient transparency
  • the reflective layer has sufficient reflectivity
  • the transmissive layer bonded to the sealing material has sufficient adhesive strength.
  • the part which contacts the sealing material of the said permeable layer can provide the back surface protection sheet for solar cells arrange
  • the transmission layer (1) side is a side relatively close to the solar battery cell.
  • Example 1 The back surface protection sheet for solar cells used for a solar cell module was created as follows.
  • a back protective sheet was prepared in which a transmissive layer (1), a reflective layer (2), and a protective layer (3) were sequentially laminated.
  • polyethylene terephthalate resin (A) PET film having a thickness of 250 ⁇ m formed by mixing 15 parts of titanium oxide with 100 parts of polyethylene terephthalate resin and formed by a general T-die resin extrusion method. It was used.
  • a 38 ⁇ m DuPont Tedlar film (polyvinyl fluoride resin) as a protective layer (3) was adhered to the surface of the PET film (A) by a dry laminating method using a urethane adhesive.
  • a low-density linear polyethylene film having a density of 0.94 g / cm 3 having a density of 50 ⁇ m is bonded as a transmission layer (1) by a dry lamination method using a urethane-based adhesive. went. Thereby, the back surface protection sheet was obtained.
  • a sealing material (EVA) was laminated on the outer surface of the transmission layer (1) of the back protective sheet.
  • Example 2 As a reflective layer (2), 100 parts of polyethylene terephthalate resin is mixed with 10 parts of barium sulfate, and a 250 ⁇ m thick polyethylene terephthalate film (A) formed by a resin extrusion method using a general T die is used.
  • the back surface protection sheet for solar cells was produced similarly to Example 1, and the sealing material was laminated
  • Example 3 A back protective sheet for solar cell was prepared in the same manner as in Example 1 except that a 50 ⁇ m-thick Tamapoly ethylene vinyl acetate copolymer film SB-3 was used as the transmissive layer (1). A sealing material was laminated on the outer surface of 1).
  • Comparative Example 1 As a layer corresponding to the transmission layer (1) of Example 1, 10 parts of titanium oxide was mixed with 100 parts of low density linear polyethylene having a density of 0.94 g / cm 3 to form a film having a thickness of 50 ⁇ m. Using, the back surface protection sheet for solar cells was produced similarly to Example 1, and the sealing material was laminated
  • Comparative Example 2 As a layer corresponding to the transmission layer (1) of Example 1, 20 parts of titanium oxide was mixed with 100 parts of low density linear polyethylene having a density of 0.94 g / cm 3 to form a film having a thickness of 50 ⁇ m. Except having used, the back surface protection sheet for solar cells was produced similarly to Example 1, and the sealing material was laminated
  • the transmittance of the transmissive layer (1) was determined by measuring the transmittance of all light rays using an ultraviolet-visible near-infrared spectrophotometer (product name “JASCO V570 type” manufactured by JASCO Corporation).
  • the specifications of the photometer were as follows: holder type: integrating sphere type, measurement size: length 8 mm ⁇ width 9 mm, integrating sphere inner diameter: 60 mm, and integrating sphere inner wall coating agent: barium sulfate. It can be obtained by averaging the values for each wavelength of 1 nm in the range of 400 to 1400 nm.
  • (C) Rupture strength of the permeable layer (1) The rupture strength of the permeable layer (1) is obtained by cutting a sample into a strip shape having a width of 15 mm and a length of 150 mm, and the permeable layer is broken using a strograph made by Toyo Seiki Co., Ltd. It was obtained by measuring the stress at the time.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

This solar cell backside protective sheet arranged on the back side of a solar cell module comprises a transmissive layer with sufficient transmissivity and a reflective layer with sufficient reflectivity, wherein the transmissive layer, which adheres to a sealing material, has sufficient adhesion force, and the portion of the transmissive layer contacting the sealing material has sufficient strength. This solar cell backside protective sheet arranged on the back side of a solar cell module is characterized by being configured by laminating, in order, at least a transmissive layer (1) in contact with the sealing material, a reflective layer (2), and a protective layer (3), wherein the transmissive layer (1) transmits on average 70% or more light of wavelengths 400-1400nm, and the reflective layer (2) contains a white filler and reflects light of wavelengths 400-1400nm.

Description

反射性を有する太陽電池用裏面保護シートReflective back surface protection sheet for solar cell
 本発明は太陽光により発電する太陽電池裏面保護シートに関する。 The present invention relates to a solar cell back surface protective sheet that generates power by sunlight.
 現在、太陽光発電として最も多く用いられているのは結晶シリコンによる半導体セル(太陽電池)である。このセルは、光を受ける面にガラスを備え、その反対面に裏面保護シートを備えており、夫々の間をエチレン-酢酸ビニル共重合体(EVA)等の熱可塑性樹脂による封止材を用いて加熱圧着されたものである。そして、太陽光がガラスを通してセルに到達する事で、発電が行われる。 At present, semiconductor cells (solar cells) made of crystalline silicon are most frequently used for photovoltaic power generation. This cell has glass on the light receiving surface and a back surface protection sheet on the opposite surface, and a sealing material made of a thermoplastic resin such as ethylene-vinyl acetate copolymer (EVA) is used between each cell. And heat-pressed. And power generation is performed when sunlight reaches a cell through glass.
 さて、この様なセルは、セルで発電した電気を取り出すための配線や配置の誤差等を考慮して、平面で見たときに太陽電池モジュール全体に隙間無く配置されていない。つまり、平面で見たときに、セルの無い部分は、裏面保護シートが直接見える部分となる。このセルの無い部分は当然に発電には寄与しない。また、セル自身も光を100%吸収するわけではなく、セルに当たった光の一部は、セルを透過後、封止剤を通して裏面保護シートに到達する。このセルを透過した光は発電には寄与しないという問題もあった。 Now, such a cell is not arranged in the entire solar cell module when viewed in a plane in consideration of wiring for taking out electricity generated by the cell and an arrangement error. That is, when viewed on a plane, the portion without cells is the portion where the back surface protection sheet can be directly seen. Naturally, the part without this cell does not contribute to power generation. Further, the cell itself does not absorb 100% of light, and a part of the light hitting the cell reaches the back surface protection sheet through the sealing agent after passing through the cell. There is also a problem that light transmitted through the cell does not contribute to power generation.
 上記の問題を解決するために、特許文献1では、封止材を介してセルに接する側の樹脂製フィルムに、酸化チタン等のフィラーを混入させた裏面保護シートを用いる事により、光の反射率を高めると同時に光を乱反射させて隙間からの光をセルの裏面に到達させる方法が考案されている。しかしながら、樹脂製フィルムにフィラー等の固形物が混入されていることから、その樹脂製フィルム自身が破壊され易くなるという問題が生じる。また、光を有効に反射させるためには、樹脂製フィルムに多くのフィラーを混入させる必要がある。 In order to solve the above-described problem, in Patent Document 1, light reflection is achieved by using a back surface protection sheet in which a filler such as titanium oxide is mixed in a resin film on the side in contact with a cell through a sealing material. At the same time, a method has been devised in which light is diffusely reflected and light from the gap reaches the back surface of the cell. However, since solids such as fillers are mixed in the resin film, there is a problem that the resin film itself is easily broken. Moreover, in order to reflect light effectively, it is necessary to mix many fillers into a resin film.
 また、セルを封入する封止材及び裏面保護シートは、モジュールを作製する段階では真空ラミネーター等で接着されるが、その接着強度はセルを保護するために高い強度が求められる。そのため、樹脂製フィルムにフィラーを大量に混入させた場合、裏面保護フィルムの表層は十分な接着がなされていても、フィラーを混入した樹脂製フィルムそのものが破壊されやすくセルを保護する機能に支障をきたす。また、フィラーを混入した樹脂製フィルム自身が割れる等の破壊が生じない場合であっても、厚み方向に表層破壊した場合は、封止材との接着が十分であっても、樹脂製フィルムが弱い力で剥離し、セルとして十分な機能を保持できないという問題がある。 In addition, the sealing material and the back surface protection sheet for enclosing the cell are bonded with a vacuum laminator or the like at the stage of manufacturing the module, but the bonding strength is required to be high to protect the cell. Therefore, when a large amount of filler is mixed in the resin film, even if the surface layer of the back surface protective film is sufficiently bonded, the resin film itself containing the filler is easily broken, which hinders the function of protecting the cell. Come on. In addition, even if the resin film mixed with the filler itself does not break, such as cracking, if the surface layer breaks in the thickness direction, the resin film There exists a problem that it peels with a weak force and cannot maintain a sufficient function as a cell.
 特に、太陽電池モジュールにおいては、その背面に配置される保護シートに、ジャンクションボックスに発電した電気を集める配線を通す穴またはスリットが設けられている。この太陽電池モジュールのフレームの四方は、ゴム系の封止材等で密閉されている。つまり、背面保護シートと封止材を引き剥がすきっかけとなる部分がこの穴またはスリットであり、その部分を保持する事が重要となる。 In particular, in the solar cell module, a hole or slit through which wiring for collecting electricity generated in the junction box is provided in the protective sheet disposed on the back surface thereof. The four sides of the frame of the solar cell module are sealed with a rubber sealant or the like. In other words, the hole or slit is the part that causes the back protective sheet and the sealing material to be peeled off, and it is important to hold that part.
特開2006-270025号公報JP 2006-270025 A
 本発明は、透過層は十分な透過性を有し、反射層は十分な反射性を持つと同時に、封止材と接着する前記透過層は十分な接着力を有し、且つ、当該透過層の封止材に接触する部分は十分な強度を有する太陽電池モジュールの裏面側に配置される太陽電池用裏面保護シートを提供することを目的とする。 In the present invention, the transmissive layer has sufficient transparency, the reflective layer has sufficient reflectivity, and at the same time, the transmissive layer bonded to the sealing material has sufficient adhesive force, and the transmissive layer It is an object of the present invention to provide a solar cell back surface protective sheet disposed on the back surface side of a solar cell module having sufficient strength in contact with the sealing material.
 本発明者は上記目的を達成すべく鋭意研究を重ねた結果、特定の透過層及び反射層を備える太陽電池用裏面保護シートを用いる場合には、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved when using a solar cell back surface protective sheet having a specific transmission layer and reflection layer, and the present invention has been completed. It came to do.
 即ち、本発明は下記の太陽電池用裏面保護シートに関する。
1. 太陽電池モジュールの裏面側に配置される太陽電池用裏面保護シートであって、少なくとも、封止材に接する透過層(1)、反射層(2)及び保護層(3)の順に積層されて構成され、
前記透過層(1)が、400nm~1400nmの波長の光線を平均で70%以上透過し、
前記反射層(2)が、白色フィラーを含み、400nm~1400nmの波長の光を反射する、
ことを特徴とする太陽電池用裏面保護シート。
2. 前記透過層(1)が、ポリエチレン、エチレン酢酸ビニル共重合体、アイオノマー、エチレンアクリル酸共重合体、エチレンメタクリル酸共重合体、エチレンメチルアクリレート共重合体、エチレンメチルメタクリレート共重合体、ポリエチレンテレフタレート、エチレンビニルアルコール共重合体及び塩化ビニルからなる群から選ばれた少なくとも1種の重合体を含む層である、上記項1に記載の太陽電池用裏面保護シート。
3. 前記透過層(1)が、10N/cm以上の破断強度を有するものである、上記項1又は2に記載の太陽電池用裏面保護シート。
4. 前記反射層(2)が、400nm~1400nmの波長の光線を平均で80%以上反射するものである、上記項1~3のいずれかに記載の太陽電池用裏面保護シート。
5. 前記反射層(2)が、気泡を含む、上記項1~4のいずれかに記載の太陽電池用裏面保護シート。
6. 前記白色フィラーが、酸化チタン、酸化ケイ素、酸化マグネシウム、炭酸マグネシウム、炭酸カルシウム、硫酸バリウム及び酸化バリウムからなる群から選ばれた少なくとも1種である、上記項1~5のいずれかに記載の太陽電池用裏面保護シート。
7. 前記白色フィラーが、前記反射層(2)中に、5重量%以上含まれる、上記項1~6のいずれかに記載の太陽電池用裏面保護シート。
8. 前記反射層(2)が、の樹脂成分として、ポリエチレンテレフタレートを含む、上記項1~7のいずれかに記載の太陽電池用裏面保護シート。
9. 上記項1~8のいずれかに記載の太陽電池用裏面保護シートを用いた太陽電池モジュール。
That is, this invention relates to the following back surface protection sheet for solar cells.
1. A solar cell back surface protection sheet disposed on the back surface side of the solar cell module, and is configured by laminating at least a transmission layer (1), a reflection layer (2), and a protection layer (3) in contact with the sealing material. And
The transmission layer (1) transmits light having a wavelength of 400 nm to 1400 nm on an average of 70% or more,
The reflective layer (2) includes a white filler and reflects light having a wavelength of 400 nm to 1400 nm;
The back surface protection sheet for solar cells characterized by the above-mentioned.
2. The transmission layer (1) is made of polyethylene, ethylene vinyl acetate copolymer, ionomer, ethylene acrylic acid copolymer, ethylene methacrylic acid copolymer, ethylene methyl acrylate copolymer, ethylene methyl methacrylate copolymer, polyethylene terephthalate, Item 2. The back protective sheet for a solar cell according to Item 1, which is a layer containing at least one polymer selected from the group consisting of an ethylene vinyl alcohol copolymer and vinyl chloride.
3. Item 3. The solar cell back surface protective sheet according to Item 1 or 2, wherein the transmission layer (1) has a breaking strength of 10 N / cm or more.
4). Item 4. The back protective sheet for solar cell according to any one of Items 1 to 3, wherein the reflective layer (2) reflects light having a wavelength of 400 nm to 1400 nm on an average of 80% or more.
5. Item 5. The back protective sheet for solar cells according to any one of Items 1 to 4, wherein the reflective layer (2) contains bubbles.
6). The sun according to any one of the above items 1 to 5, wherein the white filler is at least one selected from the group consisting of titanium oxide, silicon oxide, magnesium oxide, magnesium carbonate, calcium carbonate, barium sulfate and barium oxide. Battery back protection sheet.
7). Item 7. The back protective sheet for solar cells according to any one of Items 1 to 6, wherein the white filler is contained in the reflective layer (2) in an amount of 5% by weight or more.
8). Item 8. The back protective sheet for solar cells according to any one of Items 1 to 7, wherein the reflective layer (2) contains polyethylene terephthalate as a resin component.
9. A solar cell module using the solar cell back surface protective sheet according to any one of items 1 to 8.
 以下、本発明の太陽電池用裏面保護シートについて詳細に説明する。 Hereinafter, the back surface protection sheet for solar cells of the present invention will be described in detail.
 本発明の太陽電池用裏面保護シートは、太陽電池モジュールの裏面側に配置される太陽電池用裏面保護シートであって、少なくとも、封止材に接する透過層(1)、反射層(2)及び保護層(3)の順に積層されて構成され、前記透過層(1)が、400nm~1400nmの波長の光線を平均で70%以上透過し、前記反射層(2)が、白色フィラーを含み、400nm~1400nmの波長の光を反射する、ことを特徴とする。 The solar cell back surface protective sheet of the present invention is a solar cell back surface protective sheet disposed on the back surface side of the solar cell module, and includes at least a transmissive layer (1), a reflective layer (2), and a sealing material. The protective layer (3) is laminated in this order, the transmission layer (1) transmits light having a wavelength of 400 nm to 1400 nm on average 70% or more, and the reflection layer (2) contains a white filler, It is characterized by reflecting light having a wavelength of 400 nm to 1400 nm.
 この様に、本発明の太陽電池用裏面保護シートは、封止材に接着する透過層(1)はフィラー等を含まず、太陽光を十分に透過させることができ、且つ、透過層(1)の下層である反射層(2)は太陽光を十分に反射又は乱反射させる機能を有する。更に、封止材に接着する透過層(1)はフィラー等を含まいことから十分な接着力を有し、且つ透過層(1)の封止材に接触する部分は十分な強度を有している。そうして、本発明の太陽電池用裏面保護シートは、接着性と太陽光線の反射性を良好に両立できるものである。 Thus, the back surface protection sheet for solar cells of this invention does not contain a filler etc. in the permeable layer (1) adhere | attached on a sealing material, can fully permeate | transmit sunlight, and a permeable layer (1 The reflective layer (2) which is a lower layer of) has a function of sufficiently reflecting or irregularly reflecting sunlight. Further, since the permeable layer (1) that adheres to the sealing material contains a filler or the like, the permeable layer (1) has sufficient adhesive force, and the portion of the permeable layer (1) that contacts the sealing material has sufficient strength. ing. And the back surface protection sheet for solar cells of this invention can make adhesiveness and the reflection property of a solar ray favorable compatible.
 封止材と太陽電池用裏面保護シートの間は、剥離する要因があると剥がす事が可能である。太陽電池モジュールの場合は、ジャンクションボックスに電気を通すための、太陽電池用裏面保護シートに開けてある穴またはスリットが、その要因に相当する。しかしながら、本発明の太陽電池用裏面保護シートは、上記のように透過層(1)の下層に反射層(2)を設けた構造を有するので、太陽電池用裏面保護シートは、封止材に十分に接着させる事が可能である。 The sealing material and the solar cell back surface protective sheet can be peeled off if there is a cause of peeling. In the case of a solar cell module, a hole or a slit formed in the back protective sheet for solar cell for conducting electricity through the junction box corresponds to the factor. However, since the back surface protection sheet for solar cells of the present invention has a structure in which the reflective layer (2) is provided in the lower layer of the transmission layer (1) as described above, the back surface protection sheet for solar cells is used as a sealing material. It is possible to bond them sufficiently.
 太陽電池用裏面保護シートでは、透過層と反射層の層間を剥離しようとした時に、反射層の破壊により層間強度が保持できないという恐れがある。しかしながら、本発明の太陽電池用裏面保護シートは、上記のように透過層(1)の下層に反射層(2)を設けた構造を有するので、各層を剥がすきっかけが無く、剥離しないので、各層間の接着強度が低くなる心配がない。この様に、上述の穴またはスリット部分の下層には封止材が全面に存在しており、剥がすきっかけは封止材と太陽電池用裏面保護シート全体の間で発生する。従って、太陽電池用裏面保護シートに、第二層として反射層(2)を設ける事の効果は大きい。 In the back protective sheet for solar cells, there is a fear that the interlayer strength cannot be maintained due to the destruction of the reflective layer when an attempt is made to peel the interlayer between the transmissive layer and the reflective layer. However, the solar cell back surface protective sheet of the present invention has a structure in which the reflective layer (2) is provided in the lower layer of the transmission layer (1) as described above. There is no worry that the adhesive strength between the layers will be lowered. In this way, the sealing material is present on the entire lower layer of the above-described hole or slit portion, and the peeling trigger occurs between the sealing material and the entire back surface protective sheet for solar cells. Therefore, the effect of providing the reflective layer (2) as the second layer on the back surface protective sheet for solar cells is great.
 図1は、本発明の太陽電池用裏面保護シートの一つの実施の形態を示す断面図である。 FIG. 1 is a cross-sectional view showing one embodiment of a back surface protection sheet for a solar cell of the present invention.
 図1に示すように、太陽電池用裏面保護シートは、太陽電池セルから相対的に近い側から、順に、1.透過層(1)、2.反射層(2)及び3.保護層(3)の順に積層された積層体から構成されている。太陽電池セルと太陽電池用裏面保護シートは、封止材を介して、透過層(1)で接着される。太陽電池用裏面保護シートが、太陽電池が太陽電池セルと接着された状態において、保護層(3)が最外層となる。 As shown in FIG. 1, the back surface protection sheet for solar cells is as follows: 1. From the side relatively close to the solar cells. Transmission layer (1), 2. 2. reflective layer (2) and It is comprised from the laminated body laminated | stacked in order of the protective layer (3). The solar battery cell and the back protective sheet for solar battery are bonded to each other with a transmissive layer (1) through a sealing material. In the state where the solar cell back surface protective sheet is adhered to the solar battery cell, the protective layer (3) is the outermost layer.
 以下、本発明の太陽電池用裏面保護シートを構成する透過層(1)、反射層(2)及び保護層(3)について詳細に説明する。 Hereinafter, the transmissive layer (1), the reflective layer (2) and the protective layer (3) constituting the solar cell back surface protective sheet of the present invention will be described in detail.
 封止材
 封止材は、太陽電池用裏面保護シートと太陽電池セルの裏面とを熱融着により接着させる層である。封止材は、熱融着により太陽電池セルの裏面と接着できる材料であれば限定されないが、封止剤としてエチレン-酢酸ビニル共重合体(EVA)を含有することが好ましい。封止材の厚さは限定的ではないが、セルや配線の厚みによる段差を埋めるという理由から、200~1000μmが好ましく、400~600μmがより好ましい。
A sealing material sealing material is a layer which adhere | attaches the back surface protection sheet for solar cells, and the back surface of a photovoltaic cell by heat sealing | fusion. The sealing material is not limited as long as it is a material that can be adhered to the back surface of the solar battery cell by heat fusion, but it preferably contains an ethylene-vinyl acetate copolymer (EVA) as a sealing agent. The thickness of the sealing material is not limited, but is preferably 200 to 1000 μm, and more preferably 400 to 600 μm, because the step due to the thickness of the cell or wiring is filled.
 透過層(1)
 封止材と接着する透過層は十分な接着力を有し、且つ、透過層の封止材に接触する部分はその基材自身の強度が必要である。このため、封止材に接する層にはフィラー等を含まない方が好ましく、太陽光を十分に透過させることが重要である。
Transmission layer (1)
The transmission layer that adheres to the sealing material has a sufficient adhesive force, and the portion of the transmission layer that contacts the sealing material requires the strength of the base material itself. For this reason, it is preferable that the layer in contact with the sealing material does not contain a filler or the like, and it is important that sunlight is sufficiently transmitted.
 透過層(1)は、400nm~1400nmの波長の光線を平均で70%以上透過するものである。 The transmission layer (1) transmits light having a wavelength of 400 nm to 1400 nm on an average of 70% or more.
 透過層(1)は、封止材と引き剥がす時の力で透過層(1)のみが切れてしまえば、剥離の界面が第二層すなわち強度の弱い反射層(2)(後述)に移行する。そうなると、封止材との十分な接着が出来なくなる。そのため、透過層(1)の破断強度は、透過層(1)の封止材との接着力よりも強い強度が必要である。従って、透過層(1)はコートではなく、フィルムである事が望ましい。また、透過層(1)の厚みは、透過層(1)の破断強度が十分な厚みである事が望ましい。 If only the transmissive layer (1) is cut off by the force when peeling off the sealing material from the transmissive layer (1), the peeling interface moves to the second layer, that is, the reflective layer (2) (described later) having low strength. To do. If it becomes so, sufficient adhesion | attachment with a sealing material cannot be performed. Therefore, the breaking strength of the permeable layer (1) needs to be stronger than the adhesive strength between the permeable layer (1) and the sealing material. Therefore, it is desirable that the transmission layer (1) is not a coat but a film. Moreover, as for the thickness of a permeation | transmission layer (1), it is desirable that the breaking strength of a permeation | transmission layer (1) is sufficient thickness.
 透過層(1)は、封止材と加熱ラミネートされた後に十分な接着性を有する事が必要である。この様な透過層(1)としては、ポリエチレン、エチレン酢酸ビニル共重合体、アイオノマー、エチレンアクリル酸共重合体、エチレンメタクリル酸共重合体、エチレンメチルアクリレート共重合体、エチレンメチルメタクリレート共重合体、ポリエチレンテレフタレート、エチレンビニルアルコール共重合体及び塩化ビニルからなる群から選ばれた少なくとも1種の重合体を含む層であることが好ましい。透過層(1)は、価格及び取り扱いを考慮すると、ポリエチレンやエチレン酢酸ビニル共重合体から構成されるフィルム層が更に望ましい。 The permeable layer (1) needs to have sufficient adhesion after being heat-laminated with the sealing material. Such a transmission layer (1) includes polyethylene, ethylene vinyl acetate copolymer, ionomer, ethylene acrylic acid copolymer, ethylene methacrylic acid copolymer, ethylene methyl acrylate copolymer, ethylene methyl methacrylate copolymer, A layer containing at least one polymer selected from the group consisting of polyethylene terephthalate, ethylene vinyl alcohol copolymer and vinyl chloride is preferable. The permeable layer (1) is more preferably a film layer composed of polyethylene or ethylene vinyl acetate copolymer in consideration of price and handling.
 ここで、前記「平均で70%以上透過する」とは、分光光度計により400~1400nmの範囲の波長1nmごとの値を平均することで求める事ができる。この様に、透過層(1)の透過性が、平均で70%以上あることで、その透過層(1)に隣接する反射層(2)に光を有効に透過すると共に、反射層(2)より反射された光を太陽電池セルに有効に戻す事ができる。 Here, “transmitting 70% or more on average” can be obtained by averaging the values for each wavelength of 1 nm in the range of 400 to 1400 nm with a spectrophotometer. In this way, since the transmittance of the transmission layer (1) is 70% or more on average, light is effectively transmitted to the reflection layer (2) adjacent to the transmission layer (1), and the reflection layer (2 ) The reflected light can be effectively returned to the solar battery cell.
 透過層(1)は、光の透過性から考えると、厚みは薄いほうが良いが、強度の観点からは厚いほうが良い。従って、透過層(1)の厚さは、10~100μmが好ましく、20~60μmがより好ましい。 The thickness of the transmissive layer (1) is better when considering light transmittance, but thicker from the viewpoint of strength. Accordingly, the thickness of the transmission layer (1) is preferably 10 to 100 μm, and more preferably 20 to 60 μm.
 封止材と太陽電池用裏面保護シートとの接着強度は、封止材と接着する太陽電池用裏面保護シートの透過層(1)が関係する。封止材と太陽電池用裏面保護シートの接着強度に規定は無いが、10N/cm(15N/15mm)以上であれば十分に接着しているとことになり、20N/cm(30N/15mm)以上であることかがより好ましい。従って、上記透過層(1)の破断強度も10N/cmであれば反射層に界面移行することが抑制される。接着強度は、ガラス、封止材(ブリジストン社製S-11)、太陽電池用裏面保護シートの順に積層し、150℃で10分間真空ラミネートを行う。この時、封止材と透過層(1)が施食するようにする。その後、太陽電池用裏面保護シート側からカッターで切れ目を2本入れ、その間隔が10mmになるようにする。その状態で、2本の切れ目の間の太陽電池用裏面保護シートを引き剥がす事で封止材と太陽電池用裏面保護シート間の接着強度をプッシュプルゲージにて測定できる。また、破断強度は、積層前の透過層(1)を幅15mmの短冊状に切り出し、ストログラフにて破断するときの強度を測定できる。 The adhesive strength between the sealing material and the back surface protection sheet for solar cells is related to the transmission layer (1) of the back surface protection sheet for solar cells that adheres to the sealing material. There is no regulation on the adhesive strength between the sealing material and the back surface protective sheet for solar cells, but if it is 10 N / cm (15 N / 15 mm) or more, it means that it is sufficiently bonded, and 20 N / cm (30 N / 15 mm). It is more preferable that it is above. Therefore, if the breaking strength of the transmission layer (1) is also 10 N / cm, the interface transition to the reflection layer is suppressed. The adhesive strength is obtained by laminating glass, a sealing material (S-11, manufactured by Bridgestone), and a back protective sheet for solar cells in this order, and vacuum laminating at 150 ° C. for 10 minutes. At this time, the sealing material and the permeable layer (1) are eroded. Thereafter, two cuts are made with a cutter from the back surface protection sheet side for solar cells so that the interval is 10 mm. In that state, the adhesive strength between the sealing material and the solar cell back surface protective sheet can be measured with a push-pull gauge by peeling off the solar cell back surface protective sheet between the two cuts. Moreover, the breaking strength can measure the strength when the transmission layer (1) before lamination is cut into a strip shape having a width of 15 mm and broken by a strograph.
 透過層(1)の厚さや材質は、透過層(1)の透過性、封止材との接着強度及び破断強度の基に、決定することができる。 The thickness and material of the transmission layer (1) can be determined based on the permeability of the transmission layer (1), the adhesive strength with the sealing material, and the breaking strength.
 反射層(2)
 本発明の太陽電池用裏面保護シートは、封止材に接する透過層(1)は太陽光を透過させ、その直ぐ下層に太陽光を十分に反射又は乱反射させる機能を有する反射層(2)を備える。この様に、本発明の太陽電池用裏面保護シートは、接着性と太陽光線の十分な反射を両立できる。
Reflective layer (2)
The back surface protection sheet for solar cells of the present invention has a reflective layer (2) having a function of allowing the transparent layer (1) in contact with the sealing material to transmit sunlight and sufficiently reflecting or irregularly reflecting sunlight immediately below it. Prepare. Thus, the back surface protection sheet for solar cells of the present invention can achieve both adhesiveness and sufficient reflection of sunlight.
 封止材と太陽電池用裏面保護シートの間は剥離するきっかけがあると剥がす事が可能であり、太陽電池モジュールの場合は、ジャンクションボックスに電気を通すための太陽電池用裏面保護シートに開けてある穴又はスリットがそのきっかけに相当する。そこで、本発明の太陽電池用裏面保護シートには透過層(1)の下層に反射層(2)が設けられており、この様な太陽電池用裏面保護シートは、封止材を介して、太陽電池セルと十分に接着させる事が可能である。 If there is an opportunity to peel between the sealing material and the back surface protection sheet for solar cells, it can be peeled off. In the case of a solar cell module, open the back surface protection sheet for solar cells to conduct electricity to the junction box. A certain hole or slit corresponds to the trigger. Therefore, the back surface protective sheet for solar cells of the present invention is provided with a reflective layer (2) below the transmission layer (1), and such a back surface protective sheet for solar cells, It can be sufficiently adhered to the solar battery cell.
 太陽電池用裏面保護シートでは、透過層と反射層の層間を剥離しようとした時に、反射層の破壊により層間強度が保持できないという恐れがある。本発明の太陽電池用裏面保護シートでは、上述の穴又はスリット部分の下層には封止材が全面に存在するので、剥がすきっかけは封止材と太陽電池用裏面保護シート全体の間で発生する。従って、太陽電池用裏面保護シートの第二層として反射層(2)を設ける事の効果は大きい。 In the back protective sheet for solar cells, there is a fear that the interlayer strength cannot be maintained due to the destruction of the reflective layer when an attempt is made to peel the interlayer between the transmissive layer and the reflective layer. In the solar cell back surface protective sheet of the present invention, since the sealing material is present on the entire surface below the hole or the slit portion, the peeling trigger occurs between the sealing material and the entire solar cell back surface protective sheet. . Therefore, the effect of providing the reflective layer (2) as the second layer of the solar cell back surface protective sheet is great.
 反射層(2)は、白色フィラーを含み、400nm~1400nmの波長の光を反射するものである。 The reflective layer (2) includes a white filler and reflects light having a wavelength of 400 nm to 1400 nm.
 反射層(2)は、白色フィラーを含むことで、高い反射率を有し、乱反射することで、セル(太陽電池)の隙間からの太陽光をセルに戻すことができる。白色フィラーとしては、反射層(2)を構成する樹脂への練混が容易であることから、酸化チタン、酸化ケイ素、酸化マグネシウム、炭酸マグネシウム、炭酸カルシウム、硫酸バリウム及び酸化バリウム等が更に好ましい。 The reflective layer (2) has a high reflectance by including a white filler, and can return sunlight from the gaps between the cells (solar cells) to the cell by irregular reflection. As the white filler, titanium oxide, silicon oxide, magnesium oxide, magnesium carbonate, calcium carbonate, barium sulfate, barium oxide, and the like are more preferable because they can be easily mixed into the resin constituting the reflective layer (2).
 前記白色フィラーは、反射率を向上させると同時にフィルムの強度を維持するという理由から、反射層(2)中に、5重量%以上含まれることが好ましく、7~15重量%含まれることがより好ましい。 The white filler is preferably contained in the reflective layer (2) in an amount of 5% by weight or more, more preferably 7 to 15% by weight, because it improves the reflectivity and at the same time maintains the strength of the film. preferable.
 反射層(2)は、太陽光を反射又は乱反射することができるという理由から、更に、気泡を含むことが好ましい。反射層(2)に含まれる気泡の大きさは、0.2~20μmが好ましく、1~10μmがより好ましい。反射層(2)には、体積比率として好ましくは5~30体積%、更に好ましくは10~20体積%の気泡が含まれること良い。加熱発泡性のフィラーをフィルムに混入させた状態で加熱することで、反射層(2)に気泡を含ませることができる。 The reflective layer (2) preferably further contains air bubbles because it can reflect or diffusely reflect sunlight. The size of the bubbles contained in the reflective layer (2) is preferably 0.2 to 20 μm, more preferably 1 to 10 μm. The reflective layer (2) preferably contains bubbles having a volume ratio of preferably 5 to 30% by volume, more preferably 10 to 20% by volume. By heating in a state where the heat-foamable filler is mixed in the film, bubbles can be included in the reflective layer (2).
 反射層(2)としては、ポリエチレン、エチレン酢酸ビニル共重合体、アイオノマー、エチレンアクリル酸共重合体、エチレンメタクリル酸共重合体、エチレンメチルアクリレート共重合体、エチレンメチルメタクリレート共重合体、ポリエチレンテレフタレート、エチレンビニルアルコール共重合体及び塩化ビニルからなる群から選ばれた少なくとも1種の重合体を含む層であることが好ましい。反射層(2)は、価格、製造の容易性及び熱収縮を考慮すると、ポリエチレンテレフタレートがより好ましい。 As the reflective layer (2), polyethylene, ethylene vinyl acetate copolymer, ionomer, ethylene acrylic acid copolymer, ethylene methacrylic acid copolymer, ethylene methyl acrylate copolymer, ethylene methyl methacrylate copolymer, polyethylene terephthalate, A layer containing at least one polymer selected from the group consisting of an ethylene vinyl alcohol copolymer and vinyl chloride is preferable. The reflective layer (2) is more preferably polyethylene terephthalate in view of cost, ease of manufacture, and heat shrinkage.
 反射層(2)は、400nm~1400nmの波長の光線を平均で80%以上反射するものが好ましい。上記「平均で80%以上反射する」とは、分光光度計により400~1400nmの範囲の波長1nmごとの値を平均することで求める事ができる。この様に、反射層(2)の反射が、平均で80%以上あることで、太陽電池セルに有効に光を戻す事ができる。 The reflective layer (2) preferably reflects light having a wavelength of 400 nm to 1400 nm on an average of 80% or more. The above-mentioned “reflect 80% or more on average” can be obtained by averaging the values for each wavelength of 1 nm in the range of 400 to 1400 nm with a spectrophotometer. Thus, light can be effectively returned to the solar battery cell because the reflection of the reflective layer (2) is 80% or more on average.
 反射層(2)の厚さは、反射率を高めるという理由から、30~350μmが好ましく、50~250μmがより好ましい。 The thickness of the reflective layer (2) is preferably 30 to 350 μm, and more preferably 50 to 250 μm, for the reason of increasing the reflectance.
 保護層(3)
 保護層(3)は、太陽電池用裏面保護シートの最外層(太陽電池セル側とは反対の側)に設けられる層である。保護層(3)は、耐候性及び電気絶縁性を有するものが好ましい。
Protective layer (3)
A protective layer (3) is a layer provided in the outermost layer (side opposite to the solar battery cell side) of the back surface protection sheet for solar cells. The protective layer (3) preferably has weather resistance and electrical insulation.
 保護層(3)の構成成分としては、例えば、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)などのポリエステルフィルム;ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、エチレンテトラフルオロエチレン(ETFE)などのフッ素系フィルム;ポリエチレン、ポリプロピレンなどのポリオレフィンフィルム;その他、ポリスチレンフィルム、ポリアミドフィルム、ポリ塩化ビニルフィルム、ポリカーボネートフィルム、ポリアクリルニトリルフィルム、ポリイミドフィルム等が挙げられる。上記PETとしては、屋外での耐久性も考慮して耐加水分解性PETを好適に使用できる。その他、エンジニアリングプラスチック及びフッ素系樹脂も挙げられる。エンジニアリングプラスチックとしては、例えば、ポリアセタール(POM)、ポリアミド(PA)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE)、ポリブチレンテレフタレート(PBT)、GF強化ポリエチレンテレフタレート(GF-PET)、超高分子量ポリエチレン(UHPE)、シンジオタクチックポリスチレン(SPS)、非晶ポリアリレート(PAR)、ポリスルホン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニレンスルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリフェニレンエーテル(PPE)、液晶ポリマー(LCP)等が挙げられる。保護層(3)は、耐候性と経済的理由から、ポリフッ化ビニルやポリエチレンテレフタレートから構成されるフィルム層が更に望ましい。 Examples of constituents of the protective layer (3) include polyester films such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET); polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and ethylene tetrafluoroethylene (ETFE). ), Etc .; polyolefin films such as polyethylene and polypropylene; polystyrene films, polyamide films, polyvinyl chloride films, polycarbonate films, polyacrylonitrile films, polyimide films and the like. As the PET, hydrolysis resistant PET can be suitably used in consideration of outdoor durability. In addition, engineering plastics and fluororesins are also included. Engineering plastics include, for example, polyacetal (POM), polyamide (PA), polycarbonate (PC), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), GF reinforced polyethylene terephthalate (GF-PET), ultra-high Molecular weight polyethylene (UHPE), syndiotactic polystyrene (SPS), amorphous polyarylate (PAR), polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), Examples include polyimide (PI), polyetherimide (PEI), polyphenylene ether (PPE), and liquid crystal polymer (LCP). The protective layer (3) is more preferably a film layer composed of polyvinyl fluoride or polyethylene terephthalate for weatherability and economic reasons.
 保護層(3)は単層でも複層(積層フィルム)でもよい。保護層(3)が単層の場合には、厚さは20~2000μmであることが好ましい。複層の場合には、耐候性に優れるフィルムと電気絶縁性に優れるフィルムとの積層体であることが好ましい。この場合には、電気絶縁性に優れるフィルムを樹脂フィルム基材側に配置し、耐候性に優れるフィルムを最外層とすることが好ましい。耐候性に優れるフィルムとしては、厚みが20~150μmのフッ素系フィルムが好ましく、電気絶縁性に優れるフィルムとしては、厚みが100~250μmのPETフィルムが好ましい。 The protective layer (3) may be a single layer or a multilayer (laminated film). When the protective layer (3) is a single layer, the thickness is preferably 20 to 2000 μm. In the case of a multilayer, it is preferably a laminate of a film having excellent weather resistance and a film having excellent electrical insulation. In this case, it is preferable that a film having excellent electrical insulation is disposed on the resin film substrate side, and a film having excellent weather resistance is the outermost layer. The film having excellent weather resistance is preferably a fluorine-based film having a thickness of 20 to 150 μm, and the film having excellent electrical insulation is preferably a PET film having a thickness of 100 to 250 μm.
 本発明の太陽電池用裏面保護シートによれば、透過層は十分な透過性を有し、反射層は十分な反射性を持つと同時に、封止材と接着する前記透過層は十分な接着力を有し、且つ、当該透過層の封止材に接触する部分は十分な強度を有する太陽電池モジュールの裏面側に配置される太陽電池用裏面保護シートを提供することができる。 According to the back surface protective sheet for a solar cell of the present invention, the transmissive layer has sufficient transparency, the reflective layer has sufficient reflectivity, and at the same time, the transmissive layer bonded to the sealing material has sufficient adhesive strength. The part which contacts the sealing material of the said permeable layer can provide the back surface protection sheet for solar cells arrange | positioned at the back surface side of the solar cell module which has sufficient intensity | strength.
本発明の太陽電池用裏面保護シートの層構成を例示した図である。1.透過層(1)側が太陽電池セルから相対的に近い側である。It is the figure which illustrated the layer structure of the back surface protection sheet for solar cells of this invention. 1. The transmission layer (1) side is a side relatively close to the solar battery cell.
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
 実施例1
 太陽電池モジュールに用いられる太陽電池用裏面保護シートを以下の通り作成した。
Example 1
The back surface protection sheet for solar cells used for a solar cell module was created as follows.
 構成として、透過層(1)、反射層(2)及び保護層(3)を順に積層した裏面保護シートを作製した。 As a configuration, a back protective sheet was prepared in which a transmissive layer (1), a reflective layer (2), and a protective layer (3) were sequentially laminated.
 先ず、反射層(2)としてポリエチレンテレフタレート樹脂100部に酸化チタンを15部混合し、一般的なTダイによる樹脂押し出し方法で製膜された250μm厚さのポリエチレンテレフタレートフィルム(A)(PETフィルム)を使用した。 First, as a reflective layer (2), polyethylene terephthalate resin (A) (PET film) having a thickness of 250 μm formed by mixing 15 parts of titanium oxide with 100 parts of polyethylene terephthalate resin and formed by a general T-die resin extrusion method. It was used.
 次いで、PETフィルム(A)の表面に保護層(3)として、38μmのデュポン社製テドラーフィルム(ポリフッ化ビニル樹脂)をウレタン系接着剤を用いてドライラミネート法で接着を行った。 Next, a 38 μm DuPont Tedlar film (polyvinyl fluoride resin) as a protective layer (3) was adhered to the surface of the PET film (A) by a dry laminating method using a urethane adhesive.
 次いで、PETフィルム(A)の反対側には、透過層(1)として、50μmの密度0.94g/cmの低密度線状ポリエチレンフィルムをウレタン系接着剤を用いてドライラミネート法で接着を行った。これにより、裏面保護シートが得られた。 Next, on the opposite side of the PET film (A), a low-density linear polyethylene film having a density of 0.94 g / cm 3 having a density of 50 μm is bonded as a transmission layer (1) by a dry lamination method using a urethane-based adhesive. went. Thereby, the back surface protection sheet was obtained.
 次いで、この裏面保護シートの透過層(1)の外表面に封止材(EVA)を積層した。 Then, a sealing material (EVA) was laminated on the outer surface of the transmission layer (1) of the back protective sheet.
 実施例2
 反射層(2)として、ポリエチレンテレフタレート樹脂100部に硫酸バリウムを10部混合し、一般的なTダイによる樹脂押し出し方法で製膜された250μm厚さのポリエチレンテレフタレートフィルム(A)を使用した以外は、実施例1と同様に太陽電池用裏面保護シートを作製し、透過層(1)の外表面に封止材を積層した。
Example 2
As a reflective layer (2), 100 parts of polyethylene terephthalate resin is mixed with 10 parts of barium sulfate, and a 250 μm thick polyethylene terephthalate film (A) formed by a resin extrusion method using a general T die is used. The back surface protection sheet for solar cells was produced similarly to Example 1, and the sealing material was laminated | stacked on the outer surface of the permeation | transmission layer (1).
 実施例3
 透過層(1)として、50μm厚さのタマポリ株式会社製エチレン酢酸ビニル共重合体フィルムSB-3を使用した以外は、実施例1と同様に太陽電池用裏面保護シートを作製し、透過層(1)の外表面に封止材を積層した。
Example 3
A back protective sheet for solar cell was prepared in the same manner as in Example 1 except that a 50 μm-thick Tamapoly ethylene vinyl acetate copolymer film SB-3 was used as the transmissive layer (1). A sealing material was laminated on the outer surface of 1).
 比較例1
 実施例1の透過層(1)に相当する層として、密度0.94g/cmの低密度線状ポリエチレン100部に対して酸化チタンを10部混合し、50μm厚さのフィルムにしたものを用いて、実施例1と同様に太陽電池用裏面保護シートを作製し、透過層(1)の外表面に封止材を積層した。
Comparative Example 1
As a layer corresponding to the transmission layer (1) of Example 1, 10 parts of titanium oxide was mixed with 100 parts of low density linear polyethylene having a density of 0.94 g / cm 3 to form a film having a thickness of 50 μm. Using, the back surface protection sheet for solar cells was produced similarly to Example 1, and the sealing material was laminated | stacked on the outer surface of the permeation | transmission layer (1).
 比較例2
 実施例1の透過層(1)に相当する層として、密度0.94g/cmの低密度線状ポリエチレン100部に対して酸化チタンを20部混合し、50μm厚さのフィルムにしたものを用いた以外は、実施例1と同様に太陽電池用裏面保護シートを作製し、透過層(1)の外表面に封止材を積層した。
Comparative Example 2
As a layer corresponding to the transmission layer (1) of Example 1, 20 parts of titanium oxide was mixed with 100 parts of low density linear polyethylene having a density of 0.94 g / cm 3 to form a film having a thickness of 50 μm. Except having used, the back surface protection sheet for solar cells was produced similarly to Example 1, and the sealing material was laminated | stacked on the outer surface of the permeation | transmission layer (1).
 <評価方法>
 (A)反射率
 反射層(2)の反射率は紫外可視近赤外分光光度計(製品名「JASCO V570型」日本分光社製)を用いて全光線の反射率を求めた。なお上記光度計の仕様は、ホルダー形式:積分球式、測定サイズ:長さ8mm×幅9mm、積分球内径:60mm、積分球内壁塗布剤:硫酸バリウムとした。そして、400~1400nmの範囲の波長1nmごとの値を平均することで求める事ができる。
<Evaluation method>
(A) Reflectance The reflectance of the reflective layer (2) was determined by measuring the total light reflectance using an ultraviolet-visible near-infrared spectrophotometer (product name “JASCO V570 type” manufactured by JASCO Corporation). The specifications of the photometer were as follows: holder type: integrating sphere type, measurement size: length 8 mm × width 9 mm, integrating sphere inner diameter: 60 mm, and integrating sphere inner wall coating agent: barium sulfate. It can be obtained by averaging the values for each wavelength of 1 nm in the range of 400 to 1400 nm.
 (B)透過率
 透過層(1)の透過率は、紫外可視近赤外分光光度計(製品名「JASCO V570型」日本分光社製)を用いて全光線の透過率を求めた。なお上記光度計の仕様は、ホルダー形式:積分球式、測定サイズ:長さ8mm×幅9mm、積分球内径:60mm、積分球内壁塗布剤:硫酸バリウムとした。そして、400~1400nmの範囲の波長1nmごとの値を平均することで求める事ができる。
(B) Transmittance The transmittance of the transmissive layer (1) was determined by measuring the transmittance of all light rays using an ultraviolet-visible near-infrared spectrophotometer (product name “JASCO V570 type” manufactured by JASCO Corporation). The specifications of the photometer were as follows: holder type: integrating sphere type, measurement size: length 8 mm × width 9 mm, integrating sphere inner diameter: 60 mm, and integrating sphere inner wall coating agent: barium sulfate. It can be obtained by averaging the values for each wavelength of 1 nm in the range of 400 to 1400 nm.
 (C)透過層(1)の破断強度
 透過層(1)の破断強度は、試料を15mm幅・長さ150mm長さの短冊状に切り出し、東洋精機社製ストログラフを用い透過層が破断するときの応力を計測する事で求めた。
(C) Rupture strength of the permeable layer (1) The rupture strength of the permeable layer (1) is obtained by cutting a sample into a strip shape having a width of 15 mm and a length of 150 mm, and the permeable layer is broken using a strograph made by Toyo Seiki Co., Ltd. It was obtained by measuring the stress at the time.
 (D)封止材との接着強度
 460μm厚さのブリジストン社製封止材S11(エチレン酢酸ビニル共重合体樹脂)を青板ガラス上に乗せ、更にその上に透過層(1)が封止材に接するように実施例及び比較例で作成した太陽電池用裏面保護シートを乗せた後、真空ラミネーターにて150℃で10分間熱圧着(熱融着)させる事で、太陽電池用裏面保護シート及び封止材を接着させ、擬似モジュールを作製した。十分に冷却した後、太陽電池用裏面保護シートに15mm幅で150mmの長方形の切れ目を入れて、太陽電池用裏面保護シートを引き剥がした。この時の応力をプッシュプルゲージで計測した。
(D) Adhesive strength with the sealing material 460 μm thick Bridgestone's sealing material S11 (ethylene vinyl acetate copolymer resin) is placed on the soda-lime glass, and further a permeable layer (1) is provided on the sealing material. After putting the back surface protection sheet for solar cells prepared in Examples and Comparative Examples so as to come into contact with the back surface, the back surface protection sheet for solar cells and the solar cell are bonded by thermocompression bonding (thermal fusion) at 150 ° C. for 10 minutes using a vacuum laminator. A sealing module was adhered to produce a pseudo module. After cooling sufficiently, the solar cell back surface protective sheet was cut into a 15 mm wide, 150 mm rectangular cut, and the solar cell back surface protective sheet was peeled off. The stress at this time was measured with a push-pull gauge.
 試験結果を下記表1に示す。 The test results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
1 透過層(1)
2 反射層(2)
3 保護層(3)
 
1 Transmission layer (1)
2 Reflective layer (2)
3 Protective layer (3)

Claims (9)

  1. 太陽電池モジュールの裏面側に配置される太陽電池用裏面保護シートであって、
    少なくとも、封止材に接する透過層(1)、反射層(2)及び保護層(3)の順に積層されて構成され、
    前記透過層(1)が、400nm~1400nmの波長の光線を平均で70%以上透過し、
    前記反射層(2)が、白色フィラーを含み、400nm~1400nmの波長の光を反射する、
    ことを特徴とする太陽電池用裏面保護シート。
    A solar cell back surface protection sheet disposed on the back surface side of the solar cell module,
    At least, the transmissive layer (1) in contact with the sealing material, the reflective layer (2) and the protective layer (3) are laminated in that order,
    The transmission layer (1) transmits light having a wavelength of 400 nm to 1400 nm on an average of 70% or more,
    The reflective layer (2) includes a white filler and reflects light having a wavelength of 400 nm to 1400 nm;
    The back surface protection sheet for solar cells characterized by the above-mentioned.
  2. 前記透過層(1)が、ポリエチレン、エチレン酢酸ビニル共重合体、アイオノマー、エチレンアクリル酸共重合体、エチレンメタクリル酸共重合体、エチレンメチルアクリレート共重合体、エチレンメチルメタクリレート共重合体、ポリエチレンテレフタレート、エチレンビニルアルコール共重合体及び塩化ビニルからなる群から選ばれた少なくとも1種の重合体を含む層である、請求項1に記載の太陽電池用裏面保護シート。 The transmission layer (1) is made of polyethylene, ethylene vinyl acetate copolymer, ionomer, ethylene acrylic acid copolymer, ethylene methacrylic acid copolymer, ethylene methyl acrylate copolymer, ethylene methyl methacrylate copolymer, polyethylene terephthalate, The back surface protection sheet for solar cells of Claim 1 which is a layer containing the at least 1 sort (s) of polymer chosen from the group which consists of an ethylene vinyl alcohol copolymer and vinyl chloride.
  3. 前記透過層(1)が、10N/cm以上の破断強度を有するものである、請求項1又は2に記載の太陽電池用裏面保護シート。 The back surface protection sheet for solar cells according to claim 1 or 2, wherein the transmission layer (1) has a breaking strength of 10 N / cm or more.
  4. 前記反射層(2)が、400nm~1400nmの波長の光線を平均で80%以上反射するものである、請求項1~3のいずれかに記載の太陽電池用裏面保護シート。 The back protective sheet for a solar cell according to any one of claims 1 to 3, wherein the reflective layer (2) reflects light having a wavelength of 400 nm to 1400 nm on an average of 80% or more.
  5. 前記反射層(2)が、気泡を含む、請求項1~4のいずれかに記載の太陽電池用裏面保護シート。 The back protective sheet for a solar cell according to any one of claims 1 to 4, wherein the reflective layer (2) contains bubbles.
  6. 前記白色フィラーが、酸化チタン、酸化ケイ素、酸化マグネシウム、炭酸マグネシウム、炭酸カルシウム、硫酸バリウム及び酸化バリウムからなる群から選ばれた少なくとも1種である、請求項1~5のいずれかに記載の太陽電池用裏面保護シート。 The sun according to any one of claims 1 to 5, wherein the white filler is at least one selected from the group consisting of titanium oxide, silicon oxide, magnesium oxide, magnesium carbonate, calcium carbonate, barium sulfate and barium oxide. Battery back protection sheet.
  7. 前記白色フィラーが、前記反射層(2)中に、5重量%以上含まれる、請求項1~6のいずれかに記載の太陽電池用裏面保護シート。 The solar cell back surface protective sheet according to any one of claims 1 to 6, wherein the white filler is contained in the reflective layer (2) in an amount of 5 wt% or more.
  8. 前記反射層(2)が、の樹脂成分として、ポリエチレンテレフタレートを含む、請求項1~7のいずれかに記載の太陽電池用裏面保護シート。 The back protective sheet for a solar cell according to any one of claims 1 to 7, wherein the reflective layer (2) contains polyethylene terephthalate as a resin component.
  9. 請求項1~8のいずれかに記載の太陽電池用裏面保護シートを用いた太陽電池モジュール。
     
    A solar cell module using the solar cell back surface protective sheet according to any one of claims 1 to 8.
PCT/JP2012/066991 2011-07-13 2012-07-03 Solar cell backside protective sheet having reflectivity WO2013008682A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280028840.8A CN103597608B (en) 2011-07-13 2012-07-03 There is reflexive backside protective sheet used for solar batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011154756A JP6288902B2 (en) 2011-07-13 2011-07-13 Reflective back surface protection sheet for solar cell
JP2011-154756 2011-07-13

Publications (1)

Publication Number Publication Date
WO2013008682A1 true WO2013008682A1 (en) 2013-01-17

Family

ID=47505974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066991 WO2013008682A1 (en) 2011-07-13 2012-07-03 Solar cell backside protective sheet having reflectivity

Country Status (4)

Country Link
JP (1) JP6288902B2 (en)
CN (1) CN103597608B (en)
TW (1) TWI556458B (en)
WO (1) WO2013008682A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993000B (en) * 2015-06-05 2017-03-01 苏州佳亿达电器有限公司 A kind of cell piece for solar opto-electronic board
CA3043402A1 (en) 2016-11-11 2018-05-17 Dsm Ip Assets B.V. Backsheet comprising a polyolefine based functional layer facing the back encapsulant
JPWO2021079807A1 (en) * 2019-10-21 2021-04-29
AU2020372097A1 (en) * 2019-10-21 2022-05-26 Toyo Aluminium Kabushiki Kaisha Solar battery module
CN113471317A (en) * 2021-07-01 2021-10-01 江苏博煦电池科技有限公司 Solar cell backboard for street lamp
US20230369522A1 (en) * 2022-05-16 2023-11-16 Sunpower Corporation Photovoltaic laminate comprising single polymer composite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261085A (en) * 1998-03-10 1999-09-24 Mitsubishi Plastics Ind Ltd Backside protective sheet for solar battery
JP2008211034A (en) * 2007-02-27 2008-09-11 Toyo Aluminium Kk Rear surface protection sheet for solar battery, and solar battery module including the same
JP2010238760A (en) * 2009-03-30 2010-10-21 Lintec Corp Back protection sheet for solar cell module, solar cell module, and coating liquid for forming fluororesin cured coating film of back protection sheet for solar cell module
JP2011103428A (en) * 2009-11-10 2011-05-26 Dengiken:Kk Back sheet for solar cell, and solar cell module using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586181B2 (en) * 2009-07-09 2013-11-19 Lintec Corporation Protective sheet for solar cell module
CN101997038A (en) * 2009-08-19 2011-03-30 南京纳泉高科材料股份有限公司 Solar battery back panel film and preparation method thereof
JP2011061151A (en) * 2009-09-14 2011-03-24 Toppan Printing Co Ltd Back protective sheet for solar cell, method of manufacturing the same, and solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261085A (en) * 1998-03-10 1999-09-24 Mitsubishi Plastics Ind Ltd Backside protective sheet for solar battery
JP2008211034A (en) * 2007-02-27 2008-09-11 Toyo Aluminium Kk Rear surface protection sheet for solar battery, and solar battery module including the same
JP2010238760A (en) * 2009-03-30 2010-10-21 Lintec Corp Back protection sheet for solar cell module, solar cell module, and coating liquid for forming fluororesin cured coating film of back protection sheet for solar cell module
JP2011103428A (en) * 2009-11-10 2011-05-26 Dengiken:Kk Back sheet for solar cell, and solar cell module using the same

Also Published As

Publication number Publication date
CN103597608B (en) 2016-08-24
TWI556458B (en) 2016-11-01
JP6288902B2 (en) 2018-03-07
TW201310675A (en) 2013-03-01
JP2013021214A (en) 2013-01-31
CN103597608A (en) 2014-02-19

Similar Documents

Publication Publication Date Title
KR101314698B1 (en) Backside protective sheet for solar cell and solar cell module comprising the same
JP6288902B2 (en) Reflective back surface protection sheet for solar cell
WO2011142218A1 (en) Backside protective sheet for solar cell and solar cell module comprising same
JP2018014542A (en) Solar cell module
JP2014090160A (en) Solar cell module
JP5805366B2 (en) Solar cell back surface protection sheet and solar cell module using the same
JPWO2017150072A1 (en) Solar cell module sheet and solar cell module
JP2000307137A (en) Solar cell cover film and solar cell module using the same
TWI535045B (en) Back protection sheet for solar cell and solar cell module including the same
JP2009212122A (en) Rear surface protecting sheet for solar cell and solar cell using this
JP2005252117A (en) Recycle enabled solar battery module
JP6471501B2 (en) Back surface protection sheet for solar cell module and solar cell module using the same
WO2015001951A1 (en) Reverse-side protective substrate, solar cell module, and method for producing solar cell module
KR20120119295A (en) Olefin film for solar cell module
KR20190000875U (en) Photovoltaic building material sealed with a solar module
JP2016072540A (en) Rear surface protective sheet and solar cell module using the same
JP5397015B2 (en) Manufacturing method of back surface protection sheet for solar cell module and back surface protection sheet for solar cell module manufactured by the manufacturing method
JP2015130387A (en) Method of manufacturing solar cell module
JP5304444B2 (en) Solar cell back sheet and solar cell module using the same
JP2015191944A (en) Back protective sheet and solar cell module using the same
WO2013190823A1 (en) Solar cell module
JP2009212123A (en) Rear surface protecting sheet for solar cell and solar cell using this
WO2023238844A1 (en) Resin film for current collector sheets, film for current collector sheets, current collector sheet, solar cell element with current collector sheet, and solar cell
JP2016127200A (en) Reflection sheet for solar cell and solar cell module
TWI453922B (en) Back protection sheet for solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811332

Country of ref document: EP

Kind code of ref document: A1