WO2013008624A1 - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
WO2013008624A1
WO2013008624A1 PCT/JP2012/066381 JP2012066381W WO2013008624A1 WO 2013008624 A1 WO2013008624 A1 WO 2013008624A1 JP 2012066381 W JP2012066381 W JP 2012066381W WO 2013008624 A1 WO2013008624 A1 WO 2013008624A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric
center
input shaft
eccentric disk
disk
Prior art date
Application number
PCT/JP2012/066381
Other languages
French (fr)
Japanese (ja)
Inventor
優史 西村
和樹 市川
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2013523881A priority Critical patent/JP5703379B2/en
Priority to CN201280031651.6A priority patent/CN103649594B/en
Publication of WO2013008624A1 publication Critical patent/WO2013008624A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H29/00Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action
    • F16H29/02Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts
    • F16H29/04Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts in which the transmission ratio is changed by adjustment of a crank, an eccentric, a wobble-plate, or a cam, on one of the shafts

Definitions

  • the present invention eccentrically rotates one end of the connecting rod by the input shaft, intermittently rotates the output shaft connected to the other end of the connecting rod via the one-way clutch, and changes the eccentric amount of the one end of the connecting rod. It is related with the continuously variable transmission which changes a gear ratio by making it.
  • Such a continuously variable transmission is known from Patent Document 1 below.
  • a disk-shaped eccentric cam is fixed to the input shaft in an eccentric state, and a disk-shaped eccentric disk is supported on the outer periphery of the eccentric cam so as to be relatively rotatable in an eccentric state.
  • the eccentric ratio of the eccentric disk with respect to the axis of the input shaft is changed to change the gear ratio.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to minimize the occurrence of vibration associated with the change in the amount of eccentricity of an eccentric disk of a continuously variable transmission.
  • an eccentric cam fixed in an eccentric state on the outer periphery of an input shaft connected to a drive source, and an eccentric cam that supports relative rotation in an eccentric state are supported.
  • the center of gravity position, a continuously variable transmission according to the first, characterized in that fitted to the eccentric center of rotation relative to the eccentric cam of the eccentric disk is proposed.
  • a continuously variable transmission is proposed in which the transmission shaft is driven by a transmission actuator.
  • the eccentric disk in addition to the first or second feature, is thinned so that the position of the center of gravity of the eccentric disk coincides with the eccentric rotation center of the eccentric disk with respect to the eccentric cam.
  • a continuously variable transmission having a third feature is provided.
  • the eccentric disk is configured so that a center of gravity position of the eccentric disk coincides with an eccentric rotation center of the eccentric disk with respect to the eccentric cam.
  • a continuously variable transmission having a fourth feature of providing a weight on the disk is proposed.
  • the engine E of the embodiment corresponds to the drive source of the present invention
  • the center O1 of the eccentric cam of the embodiment corresponds to the eccentric rotation center of the present invention
  • the lightening recess 19c of the embodiment corresponds to the present invention.
  • the eccentric cam fixed in the eccentric state on the outer periphery of the input shaft rotates eccentrically, and in the eccentric state on the outer periphery of the eccentric cam.
  • the supported eccentric disk rotates eccentrically.
  • the connecting rod connected at one end to the eccentric disk reciprocates, the output shaft rotates intermittently via a one-way clutch connected at the other end of the connecting rod.
  • the eccentric disk is rotated relative to the eccentric cam with the transmission shaft coaxially fitted inside the input shaft, the eccentric amount of the eccentric disk with respect to the input shaft changes, and the reciprocating stroke of the connecting rod changes.
  • the gear ratio is changed by changing the intermittent rotation angle of the shaft.
  • the center of gravity of the eccentric disk is made coincident with the center of eccentric rotation, so that the moment for rotating the eccentric disk relative to the eccentric cam even if an inertial force acts on the eccentric disk. Will not occur. Therefore, the moment is not transmitted back to the transmission actuator from the eccentric disk via the transmission shaft to the transmission actuator that drives the transmission shaft, and the control accuracy of the transmission actuator is improved.
  • the eccentric disk since the eccentric disk is provided with the thinning portion so that the center of gravity of the eccentric disk coincides with the eccentric rotation center of the eccentric disk with respect to the eccentric cam, the eccentric disk has a simple structure. Can be adjusted.
  • the center of gravity of the eccentric disk since the weight of the eccentric disk is provided in order to make the position of the center of gravity of the eccentric disk coincide with the center of eccentric rotation with respect to the eccentric cam of the eccentric disk, the center of gravity of the eccentric disk has a simple structure. The position can be adjusted.
  • FIG. 1 is an overall view of a continuously variable transmission.
  • FIG. 2 is a partially broken perspective view of a main part of the continuously variable transmission.
  • First embodiment 3 is a cross-sectional view taken along line 3-3 of FIG.
  • First embodiment is an enlarged view of part 4 of FIG.
  • First embodiment 5 is a cross-sectional view taken along line 5-5 of FIG.
  • FIG. 6 is a diagram showing the shape of the eccentric disk.
  • FIG. 7 is a diagram showing the relationship between the amount of eccentricity of the eccentric disk and the gear ratio.
  • FIG. 8 is a diagram showing the relationship between the amount of eccentricity of the eccentric disk and the locus of the center of gravity.
  • FIG. 9 corresponds to FIG. (Second Embodiment)
  • a transmission case 11 of a continuously variable transmission T for an automobile includes a frame 51 having a frame main body 51a and a pair of first and second side walls 51b and 51c and an upper surface being opened.
  • the upper cover 52 and the lower cover 53 are divided into two parts covering the periphery of the frame 51.
  • the input shaft 12 and the output shaft 13 are supported in parallel to each other on the first and second side walls 51b and 51c of the transmission case 11, and the rotation of the input shaft 12 connected to the engine E is six transmission units 14 and It is transmitted to the drive wheel via the output shaft 13.
  • a variable speed shaft 15 sharing an axis L with the input shaft 12 is fitted into the hollow formed input shaft 12 via seven needle bearings 16 so as to be relatively rotatable. Since the structure of the six transmission units 14 is substantially the same, the structure will be described below with one transmission unit 14 as a representative.
  • the transmission unit 14 includes a pinion 17 provided on the outer peripheral surface of the transmission shaft 15, and the pinion 17 is exposed from an opening 12 a formed in the input shaft 12.
  • a disc-shaped eccentric cam 18 divided into two in the direction of the axis L is splined to the outer periphery of the input shaft 12 so as to sandwich the pinion 17.
  • the center O1 of the eccentric cam 18 is eccentric with respect to the axis L of the input shaft 12 by a distance d. Further, the six eccentric cams 18 of the six transmission units 14 are offset in phase by 60 ° from each other.
  • a pair of eccentric recesses 19 a and 19 a formed on both end surfaces in the axis L direction of the disc-shaped eccentric disk 19 are rotatably supported via a pair of needle bearings 20 and 20. .
  • the center O1 of the eccentric recesses 19a, 19a (that is, the center O1 of the eccentric cam 18) is shifted from the center O2 of the eccentric disk 19 by a distance d. That is, the distance d between the axis L of the input shaft 12 and the center O1 of the eccentric cam 18 and the distance d between the center O1 of the eccentric cam 18 and the center O2 of the eccentric disk 19 are the same.
  • a pair of crescent-shaped guide portions 18a and 18a are provided on the split surface of the eccentric cam 18 divided into two in the direction of the axis L so as to be coaxial with the center O1 of the eccentric cam 18.
  • the one end side of the input shaft 12 is directly supported by the first side wall 51b of the mission case 11 via the ball bearing 21. Further, a cylindrical portion 18b provided integrally with one eccentric cam 18 positioned on the other end side of the input shaft 12 is supported by the second side wall 51c of the transmission case 11 via the ball bearing 22, and the eccentricity thereof. The other end side of the input shaft 12 splined to the inner periphery of the cam 18 is indirectly supported by the mission case 11.
  • the speed change actuator 23 that changes the speed ratio of the continuously variable transmission T by rotating the speed change shaft 15 relative to the input shaft 12 is a side cover 42 of the transmission case 11 so that the motor shaft 24a is coaxial with the axis L.
  • an planetary gear mechanism 25 connected to the electric motor 24.
  • the planetary gear mechanism 25 includes a carrier 27 that is rotatably supported by an electric motor 24 via a needle bearing 26, a sun gear 28 that is fixed to the motor shaft 24a, and a plurality of two stations that are rotatably supported by the carrier 27.
  • Each double pinion 29 includes a first pinion 29a having a large diameter and a second pinion 29b having a small diameter.
  • the first pinion 29a meshes with the sun gear 28 and the first ring gear 30, and the second pinion 29b has a second ring gear. Mesh with 31.
  • an annular portion 33a on one end side of the connecting rod 33 is supported via a roller bearing 32 so as to be relatively rotatable.
  • the output shaft 13 is supported on the first and second side walls 51b and 51c of the mission case 11 by a pair of ball bearings 34 and 35, and a one-way clutch 36 is provided on the outer periphery thereof.
  • the one-way clutch 36 includes a ring-shaped outer member 38 pivotally supported at the tip of the rod portion 33b of the connecting rod 33 via a pin 37, and an inner member disposed inside the outer member 38 and fixed to the output shaft 13. 39 and a plurality of rollers 41 arranged in a wedge-shaped space formed between the inner circular arc surface of the outer member 38 and the outer peripheral plane of the inner member 39 and biased by a plurality of springs 40. ... And.
  • the center O1 of the eccentric recesses 19a and 19a (that is, the center O1 of the eccentric cam 18) is shifted by a distance d with respect to the center O2 of the eccentric disc 19, the outer periphery of the eccentric disc 19 and the eccentric recess
  • interval with the inner periphery of 19a and 19a is non-uniform
  • the thinning recesses 19c, 19c are formed so as to face each other on both sides of the eccentric disk 19 with the thin bottom wall 19d interposed therebetween.
  • the thinning recess 19c may be formed so as to penetrate the eccentric disk 19 in the thickness direction.
  • the center of gravity G of the eccentric disk 19 exists in the vicinity of the center O2, but the center of gravity of the eccentric disk 19 is formed by forming the hollowing recesses 19c, 19c.
  • the position G moves in a direction away from the thinning recesses 19c and 19c, and in the present embodiment, is aligned with the center O1 of the eccentric recesses 19a and 19a (that is, the center O1 of the eccentric cam 18).
  • the output shaft 13 rotates intermittently when the input shaft 12 rotates continuously. Since the eccentric disks 19 of the six transmission units 14 are out of phase with each other by 60 °, the six transmission units 14 alternately transmit the rotation of the input shaft 12 to the output shaft 13. Thus, the output shaft 13 rotates continuously.
  • the transmission ratio of the continuously variable transmission T is maintained constant.
  • the electric motor 24 may be rotationally driven at the same speed as the input shaft 12.
  • the first ring gear 30 of the planetary gear mechanism 25 is connected to the input shaft 12 and rotates at the same speed as the input shaft 12, but when the electric motor 24 is driven at the same speed, the sun gear 28 and the first ring gear 30. Rotate at the same speed, the planetary gear mechanism 25 is locked and rotates as a whole.
  • the input shaft 12 and the transmission shaft 15 connected to the first ring gear 30 and the second ring gear 31 that rotate integrally are integrated and rotate at the same speed without relative rotation.
  • the first ring gear 30 coupled to the input shaft 12 and the sun gear 28 connected to the electric motor 24 rotate relative to each other.
  • the carrier 27 rotates relative to the first ring gear 30.
  • the gear ratio of the first ring gear 30 and the first pinion 29a meshing with each other is slightly different from the gear ratio of the second ring gear 31 and the second pinion 29b meshing with each other.
  • the transmission shaft 15 connected to the second ring gear 31 rotate relative to each other.
  • FIG. 7A shows a state where the speed ratio is minimum (speed ratio: TD).
  • speed ratio speed ratio: TD
  • the eccentric amount ⁇ of the center O2 of the eccentric disk 19 with respect to the axis L of the input shaft 12 is the axis L of the input shaft 12.
  • 2d which is the sum of the distance d from the center O1 of the eccentric cam 18 to the center O2 of the eccentric disk 19.
  • the amount of eccentricity ⁇ of the center O2 of the eccentric disk 19 with respect to the axis L of the input shaft 12 gradually decreases from the maximum value 2d, and the gear ratio increases.
  • the transmission shaft 15 further rotates relative to the input shaft 12
  • the eccentric disk 19 further rotates relative to the eccentric cam 18 integrated with the input shaft 12, and finally, as shown in FIG.
  • the center O2 of the eccentric disk 19 overlaps the axis L of the input shaft 12, the eccentricity ⁇ becomes zero, the transmission gear ratio is maximized (infinite) (transmission ratio: UD), and power is transmitted to the output shaft 13. Blocked.
  • FIG. 8A shows the state of the minimum speed ratio (speed ratio: TD) in which the amount of eccentricity ⁇ of the center O2 of the eccentric disk 19 with respect to the axis L of the input shaft 12 reaches the maximum value 2d.
  • the eccentric direction of the center O1 of the eccentric cam 18 with respect to the axis L (upward in the figure) and the eccentric direction of the center O2 of the eccentric disk 19 with respect to the center O1 of the eccentric cam 18 (upward in the figure) are the same direction.
  • the center of gravity G of the eccentric disk 19 coincides with the center O1 of the eccentric cam 18.
  • FIG. 8B shows the state of the maximum gear ratio (gear ratio: UD) in which the eccentric amount ⁇ of the center O2 of the eccentric disk 19 with respect to the axis L of the input shaft 12 is the minimum value zero.
  • the eccentric direction of the center O1 of the eccentric cam 18 with respect to the axis L (upward in the figure) is opposite to the eccentric direction of the center O2 of the eccentric disk 19 with respect to the center O1 of the eccentric cam 18 (downward in the figure).
  • the center of gravity G of the eccentric disk 19 coincides with the center O1 of the eccentric cam 18.
  • the eccentric disk 19 since the center of gravity G of the eccentric disk 19 coincides with the center O1 of the eccentric cam 18, the eccentric disk 19 is moved around the center O1 of the eccentric cam 18 with the change of the gear ratio. Even if it rotates eccentrically, the gravity center position G of the eccentric disk 19 always exists on the center O1 of the eccentric cam 18, and the distance between the axis L of the input shaft 12 and the gravity center position G of the eccentric disk 19 changes from a constant value d. None do.
  • the inertia moment of inertia of the eccentric disk 19 around the input shaft 12 increases the distance. Therefore, the rotation load of the input shaft 12 may fluctuate with the change of the gear ratio, and vibration may occur.
  • the inertia moment of the eccentric disk 19 around the input shaft 12 does not change, so that the vibration of the input shaft 12 can be minimized.
  • the eccentric disk 19 Since the eccentric disk 19 is supported by the eccentric cam 18 so as to be relatively rotatable, if the center of gravity G of the eccentric disk 19 does not coincide with the center O1 of the eccentric cam 18, the rotational speed of the input shaft 12 increases. Alternatively, when it decreases, the eccentric disk 19 tends to rotate relative to the eccentric cam 18 with inertial force, and the moment is transmitted from the ring gear 19b of the eccentric disk 19 to the electric motor 24 of the transmission actuator 23 via the pinion 17. Unnecessary torque may act on the electric motor 24 to reduce the accuracy of the shift control.
  • the eccentric disk 19 since the center of gravity G of the eccentric disk 19 coincides with the center O1 of the eccentric cam 18, even if the rotational speed of the input shaft 12 increases or decreases, the eccentric disk 19 is inertial. No moment is generated to rotate relative to the eccentric cam 18 by force, thereby preventing unnecessary torque from acting on the electric motor 24 and ensuring the accuracy of the shift control.
  • the center of gravity position G of the eccentric disc 19 is made to coincide with the center O1 of the eccentric recesses 19a, 19a by forming the hollow recesses 19c, 19c in the eccentric disc 19.
  • a pair of weights 19e, 19e are further provided on the side of the eccentric disc 19 opposite to the thinned recesses 19c, 19c so that the center of gravity G of the eccentric disc 19 is located at the center O1 of the eccentric recess 19a, 19a. Match. The reason why the weights 19e and 19e are divided into two is to avoid the interference with the roller bearing 32 and the connecting rod 33.
  • the center of gravity position G of the eccentric disk 19 is further increased by the weights 19e and 19e. It can be moved to coincide with the center O1 of the eccentric recesses 19a, 19a.
  • the center of gravity G of the eccentric disk 19 can be adjusted with a simple structure.
  • the drive source of the present invention is not limited to the engine E of the embodiment, and may be another drive source such as an electric motor.
  • the lightening part of the present invention is not limited to the lightening recessed part 19c of the embodiment, and may be a lightening hole penetrating the eccentric disk 19.
  • the weight 19e of the present invention is not necessarily formed integrally with the eccentric disk 19, and may be configured by a separate member and fixed to the eccentric disk 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

In the continuously variable transmission, when an eccentric disc (19) is rotated relative to an eccentric cam (18) using a gear change shaft (15) that fits coaxially into the inside of an input shaft (12), the eccentricity (ε) of the eccentric disc (19) with respect to the input shaft (12) changes and as a result of the reciprocation stroke of the connecting rod (33) changing, the intermittent rotation angle of the output shaft changes and the gear ratio is changed. Since the center of gravity (G) of the eccentric disc (19) has been made to coincide with the center of eccentric rotation (O1), even if the eccentric disc (19) is eccentrically rotated with respect to the eccentric cam (18) in order to change the gear ratio, the distance (d) from the axis line (L) of the input shaft (12) to the center of gravity (G) of the eccentric disc (19) does not change. Therefore, even if the gear ratio is changed, the second moment of inertia of the eccentric disc (19) with respect to the axial line (L) of the input shaft (12) does not change and vibrations that accompany changes in gear ratio can be kept to a minimum.

Description

無段変速機Continuously variable transmission
 本発明は、入力軸によりコネクティングロッドの一端部を偏心回転させ、コネクティングロッドの他端部がワンウエイクラッチを介して接続された出力軸を間欠回転させるとともに、コネクティングロッドの一端部の偏心量を変化させることで変速比を変更する無段変速機に関する。 The present invention eccentrically rotates one end of the connecting rod by the input shaft, intermittently rotates the output shaft connected to the other end of the connecting rod via the one-way clutch, and changes the eccentric amount of the one end of the connecting rod. It is related with the continuously variable transmission which changes a gear ratio by making it.
 かかる無段変速機は下記特許文献1により公知である。この無段変速機は、入力軸に円板状の偏心カムを偏心状態で固設し、この偏心カムの外周に円板状の偏心ディスクを偏心状態で相対回転自在に支持し、入力軸の内部に配置した変速軸で偏心カムに対して偏心ディスクを相対回転させることで、入力軸の軸線に対する偏心ディスクの偏心量を変化させて変速比を変更するようになっている。 Such a continuously variable transmission is known from Patent Document 1 below. In this continuously variable transmission, a disk-shaped eccentric cam is fixed to the input shaft in an eccentric state, and a disk-shaped eccentric disk is supported on the outer periphery of the eccentric cam so as to be relatively rotatable in an eccentric state. By rotating the eccentric disk relative to the eccentric cam with the transmission shaft arranged inside, the eccentric ratio of the eccentric disk with respect to the axis of the input shaft is changed to change the gear ratio.
ドイツ公開102009039993号German publication 102009039993
 ところで上記従来の無段変速機は、変速比の変更に伴って入力軸と一体の偏心カムに対して偏心ディスクが相対回転すると、入力軸に軸線と偏心ディスクの重心位置との距離が増減するため、その距離の増減に応じて入力軸まわりの偏心ディスクの慣性二次モーメントが変化してしまい、その結果として入力軸の回転負荷が変動して振動が発生する可能性があった。 By the way, in the conventional continuously variable transmission, when the eccentric disk rotates relative to the eccentric cam integral with the input shaft in accordance with the change of the gear ratio, the distance between the axis of the input shaft and the center of gravity position of the eccentric disk increases or decreases. Therefore, the inertial moment of inertia of the eccentric disk around the input shaft changes according to the increase or decrease of the distance, and as a result, the rotational load of the input shaft may fluctuate and vibration may occur.
 本発明は前述の事情に鑑みてなされたもので、無段変速機の偏心ディスクの偏心量の変更に伴う振動の発生を最小限に抑えることを目的とする。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to minimize the occurrence of vibration associated with the change in the amount of eccentricity of an eccentric disk of a continuously variable transmission.
 上記目的を達成するために、本発明によれば、駆動源に接続された入力軸の外周に偏心状態で固設された偏心カムと、前記偏心カムの外周に偏心状態で相対回転可能に支持された偏心ディスクと、前記入力軸の内部に同軸に嵌合して前記偏心カムに対して前記偏心ディスクを偏心回転させる変速軸と、出力軸の外周に設けられたワンウェイクラッチと、前記偏心ディスクおよび前記ワンウエイクラッチに両端を接続されて往復運動するコネクティングロッドとを備え、前記入力軸の回転を前記コネクティングロッドおよび前記ワンウエイクラッチを介して前記出力軸に間欠的に伝達するとともに、前記変速軸により前記入力軸の軸線に対する前記偏心ディスクの偏心量を変化させて変速比を変更する無段変速機であって、前記偏心ディスクの重心位置を、該偏心ディスクの前記偏心カムに対する偏心回転中心に一致させたことを第1の特徴とする無段変速機が提案される。 In order to achieve the above object, according to the present invention, an eccentric cam fixed in an eccentric state on the outer periphery of an input shaft connected to a drive source, and an eccentric cam that supports relative rotation in an eccentric state are supported. An eccentric disc, a transmission shaft that is coaxially fitted inside the input shaft and rotates the eccentric disc with respect to the eccentric cam, a one-way clutch provided on the outer periphery of the output shaft, and the eccentric disc And a connecting rod which is connected to both ends of the one-way clutch and reciprocates, and the rotation of the input shaft is intermittently transmitted to the output shaft via the connecting rod and the one-way clutch, and the transmission shaft A continuously variable transmission for changing a gear ratio by changing an amount of eccentricity of the eccentric disk with respect to an axis of the input shaft, wherein the eccentric disk The center of gravity position, a continuously variable transmission according to the first, characterized in that fitted to the eccentric center of rotation relative to the eccentric cam of the eccentric disk is proposed.
 また本発明によれば、前記第1の特徴に加えて、前記変速軸は変速アクチュエータにより駆動されることを第2の特徴とする無段変速機が提案される。 Further, according to the present invention, in addition to the first feature, a continuously variable transmission is proposed in which the transmission shaft is driven by a transmission actuator.
 また本発明によれば、前記第1または第2の特徴に加えて、前記偏心ディスクの重心位置を、該偏心ディスクの前記偏心カムに対する偏心回転中心に一致させるために、前記偏心ディスクに肉抜き部を設けたことを第3の特徴とする無段変速機が提案される。 According to the present invention, in addition to the first or second feature, the eccentric disk is thinned so that the position of the center of gravity of the eccentric disk coincides with the eccentric rotation center of the eccentric disk with respect to the eccentric cam. A continuously variable transmission having a third feature is provided.
 また本発明によれば、前記第1~第3の何れか1つの特徴に加えて、前記偏心ディスクの重心位置を、該偏心ディスクの前記偏心カムに対する偏心回転中心に一致させるために、前記偏心ディスクにウエイトを設けたことを第4の特徴とする無段変速機が提案される。 Further, according to the invention, in addition to any one of the first to third features, the eccentric disk is configured so that a center of gravity position of the eccentric disk coincides with an eccentric rotation center of the eccentric disk with respect to the eccentric cam. A continuously variable transmission having a fourth feature of providing a weight on the disk is proposed.
 尚、実施の形態のエンジンEは本発明の駆動源に対応し、実施の形態の偏心カムの中心O1は本発明の偏心回転中心に対応し、実施の形態の肉抜き凹部19cは本発明の肉抜き部に対応する。 The engine E of the embodiment corresponds to the drive source of the present invention, the center O1 of the eccentric cam of the embodiment corresponds to the eccentric rotation center of the present invention, and the lightening recess 19c of the embodiment corresponds to the present invention. Corresponds to the meat removal part.
 本発明の第1の特徴によれば、駆動源に接続された入力軸が回転すると、入力軸の外周に偏心状態で固設した偏心カムが偏心回転し、この偏心カムの外周に偏心状態で支持した偏心ディスクが偏心回転する。偏心ディスクに一端を接続されたコネクティングロッドが往復運動すると、コネクティングロッドの他端が接続されたワンウエイクラッチを介して出力軸が間欠回転する。入力軸の内部に同軸に嵌合する変速軸で偏心カムに対して偏心ディスクを相対回転させると、入力軸に対する偏心ディスクの偏心量が変化してコネクティングロッドの往復ストロークが変化することで、出力軸の間欠回転角が変化して変速比が変更される。 According to the first feature of the present invention, when the input shaft connected to the drive source rotates, the eccentric cam fixed in the eccentric state on the outer periphery of the input shaft rotates eccentrically, and in the eccentric state on the outer periphery of the eccentric cam. The supported eccentric disk rotates eccentrically. When the connecting rod connected at one end to the eccentric disk reciprocates, the output shaft rotates intermittently via a one-way clutch connected at the other end of the connecting rod. When the eccentric disk is rotated relative to the eccentric cam with the transmission shaft coaxially fitted inside the input shaft, the eccentric amount of the eccentric disk with respect to the input shaft changes, and the reciprocating stroke of the connecting rod changes. The gear ratio is changed by changing the intermittent rotation angle of the shaft.
 偏心ディスクの重心位置をその偏心回転中心に一致させたので、変速比を変更すべく偏心カムに対して偏心ディスクを偏心回転させても、入力軸の軸線から偏心ディスクの重心位置までの距離が変化することがない。よって変速比を変更しても入力軸の軸線に関する偏心ディスクの慣性二次モーメントは変化せず、変速比の変更に伴う振動の発生を最小限に抑えることができる。 Since the center of gravity of the eccentric disk is aligned with the center of eccentric rotation, even if the eccentric disk is eccentrically rotated with respect to the eccentric cam in order to change the gear ratio, the distance from the axis of the input shaft to the center of gravity of the eccentric disk is There is no change. Therefore, even if the gear ratio is changed, the inertial moment of inertia of the eccentric disk with respect to the axis of the input shaft does not change, and the occurrence of vibration associated with the change of the gear ratio can be minimized.
 また本発明の第2の特徴によれば、偏心ディスクの重心位置をその偏心回転中心に一致させたので、偏心ディスクに慣性力が作用しても偏心ディスクを偏心カムに対して相対回転させるモーメントが発生することがない。よって変速軸を駆動する変速アクチュエータには、前記モーメントが偏心ディスクから変速軸を介して変速アクチュエータに逆伝達されることがなく、変速アクチュエータの制御精度が向上する。 According to the second feature of the present invention, the center of gravity of the eccentric disk is made coincident with the center of eccentric rotation, so that the moment for rotating the eccentric disk relative to the eccentric cam even if an inertial force acts on the eccentric disk. Will not occur. Therefore, the moment is not transmitted back to the transmission actuator from the eccentric disk via the transmission shaft to the transmission actuator that drives the transmission shaft, and the control accuracy of the transmission actuator is improved.
 また本発明の第3の特徴によれば、偏心ディスクの重心位置を該偏心ディスクの偏心カムに対する偏心回転中心に一致させるために偏心ディスクに肉抜き部を設けたので、簡単な構造で偏心ディスクの重心位置を調整することができる。 According to the third feature of the present invention, since the eccentric disk is provided with the thinning portion so that the center of gravity of the eccentric disk coincides with the eccentric rotation center of the eccentric disk with respect to the eccentric cam, the eccentric disk has a simple structure. Can be adjusted.
 また本発明の第4の特徴によれば、偏心ディスクの重心位置を該偏心ディスクの偏心カムに対する偏心回転中心に一致させるために偏心ディスクにウエイトを設けたので、簡単な構造で偏心ディスクの重心位置を調整することができる。 According to the fourth aspect of the present invention, since the weight of the eccentric disk is provided in order to make the position of the center of gravity of the eccentric disk coincide with the center of eccentric rotation with respect to the eccentric cam of the eccentric disk, the center of gravity of the eccentric disk has a simple structure. The position can be adjusted.
図1は無段変速機の全体視図である。(第1の実施の形態)FIG. 1 is an overall view of a continuously variable transmission. (First embodiment) 図2は無段変速機の要部の一部破断斜視図である。(第1の実施の形態)FIG. 2 is a partially broken perspective view of a main part of the continuously variable transmission. (First embodiment) 図3は図1の3-3線断面図である。(第1の実施の形態)3 is a cross-sectional view taken along line 3-3 of FIG. (First embodiment) 図4は図3の4部拡大図である。(第1の実施の形態)FIG. 4 is an enlarged view of part 4 of FIG. (First embodiment) 図5は図3の5-5線断面図である。(第1の実施の形態)5 is a cross-sectional view taken along line 5-5 of FIG. (First embodiment) 図6は偏心ディスクの形状を示す図である。(第1の実施の形態)FIG. 6 is a diagram showing the shape of the eccentric disk. (First embodiment) 図7は偏心ディスクの偏心量と変速比との関係を示す図である。(第1の実施の形態)FIG. 7 is a diagram showing the relationship between the amount of eccentricity of the eccentric disk and the gear ratio. (First embodiment) 図8は偏心ディスクの偏心量と重心位置の軌跡との関係を示す図である。(第1の実施の形態)FIG. 8 is a diagram showing the relationship between the amount of eccentricity of the eccentric disk and the locus of the center of gravity. (First embodiment) 図9は図6に対応する図である。(第2の実施の形態)FIG. 9 corresponds to FIG. (Second Embodiment)
12    入力軸
13    出力軸
15    変速軸
18    偏心カム
19    偏心ディスク
19c   肉抜き凹部(肉抜き部)
19e   ウエイト
23    変速アクチュエータ
33    コネクティングロッド
36    ワンウェイクラッチ
E     エンジン(駆動源)
G     偏心ディスクの重心位置
L     入力軸の軸線
O1    偏心カムの中心(偏心回転中心)
ε     偏心ディスクの偏心量
12 Input shaft 13 Output shaft 15 Transmission shaft 18 Eccentric cam 19 Eccentric disk 19c Thinning recess (thickening portion)
19e Weight 23 Variable speed actuator 33 Connecting rod 36 One-way clutch E Engine (drive source)
G Center of gravity of eccentric disk L Input shaft axis O1 Center of eccentric cam (center of eccentric rotation)
ε Eccentric disc eccentricity
以下、本発明の実施の形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第1の実施の形態First embodiment
 先ず、図1~図8に基づいて本発明の第1の実施の形態を説明する。 First, a first embodiment of the present invention will be described with reference to FIGS.
 図1~図5に示すように、自動車用の無段変速機Tのミッションケース11は、フレーム本体51aおよび一対の第1、第2側壁51b,51cを有して上面が開放するフレーム51と、フレーム51の周囲を覆う2分割された上部カバー52および下部カバー53とで構成される。ミッションケース11の第1、第2側壁51b,51cに入力軸12および出力軸13が相互に平行に支持されており、エンジンEに接続された入力軸12の回転が6個の変速ユニット14および出力軸13を介して駆動輪に伝達される。中空に形成された入力軸12の内部に、その入力軸12と軸線Lを共有する変速軸15が7個のニードルベアリング16…を介して相対回転可能に嵌合する。6個の変速ユニット14の構造は実質的に同一構造であるため、以下、一つの変速ユニット14を代表として構造を説明する。 As shown in FIGS. 1 to 5, a transmission case 11 of a continuously variable transmission T for an automobile includes a frame 51 having a frame main body 51a and a pair of first and second side walls 51b and 51c and an upper surface being opened. The upper cover 52 and the lower cover 53 are divided into two parts covering the periphery of the frame 51. The input shaft 12 and the output shaft 13 are supported in parallel to each other on the first and second side walls 51b and 51c of the transmission case 11, and the rotation of the input shaft 12 connected to the engine E is six transmission units 14 and It is transmitted to the drive wheel via the output shaft 13. A variable speed shaft 15 sharing an axis L with the input shaft 12 is fitted into the hollow formed input shaft 12 via seven needle bearings 16 so as to be relatively rotatable. Since the structure of the six transmission units 14 is substantially the same, the structure will be described below with one transmission unit 14 as a representative.
 変速ユニット14は変速軸15の外周面に設けられたピニオン17を備えており、このピニオン17は入力軸12に形成した開口12aから露出する。ピニオン17を挟むように、入力軸12の外周に軸線L方向に2分割された円板状の偏心カム18がスプライン結合される。偏心カム18の中心O1は入力軸12の軸線Lに対して距離dだけ偏心している。また6個の変速ユニット14…の6個の偏心カム18…は、その偏心方向の位相が相互に60°ずつずれている。 The transmission unit 14 includes a pinion 17 provided on the outer peripheral surface of the transmission shaft 15, and the pinion 17 is exposed from an opening 12 a formed in the input shaft 12. A disc-shaped eccentric cam 18 divided into two in the direction of the axis L is splined to the outer periphery of the input shaft 12 so as to sandwich the pinion 17. The center O1 of the eccentric cam 18 is eccentric with respect to the axis L of the input shaft 12 by a distance d. Further, the six eccentric cams 18 of the six transmission units 14 are offset in phase by 60 ° from each other.
 偏心カム18の外周面には、円板状の偏心ディスク19の軸線L方向両端面に形成した一対の偏心凹部19a,19aが、一対のニードルベアリング20,20を介して回転自在に支持される。偏心ディスク19の中心O2に対して偏心凹部19a,19aの中心O1(つまり偏心カム18の中心O1)は距離dだけずれている。即ち、入力軸12の軸線Lおよび偏心カム18の中心O1間の距離dと、偏心カム18の中心O1および偏心ディスク19の中心O2間の距離dとは同一である。 On the outer peripheral surface of the eccentric cam 18, a pair of eccentric recesses 19 a and 19 a formed on both end surfaces in the axis L direction of the disc-shaped eccentric disk 19 are rotatably supported via a pair of needle bearings 20 and 20. . The center O1 of the eccentric recesses 19a, 19a (that is, the center O1 of the eccentric cam 18) is shifted from the center O2 of the eccentric disk 19 by a distance d. That is, the distance d between the axis L of the input shaft 12 and the center O1 of the eccentric cam 18 and the distance d between the center O1 of the eccentric cam 18 and the center O2 of the eccentric disk 19 are the same.
 軸線L方向に2分割された偏心カム18の割り面には、その偏心カム18の中心O1と同軸に一対の三日月状のガイド部18a,18aが設けられており、偏心ディスク19の一対の偏心凹部19a,19aの底部間を連通させるように形成されたリングギヤ19bの歯先が、偏心カム18のガイド部18a,18aの外周面に摺動可能に当接する。そして変速軸15のピニオン17が、入力軸12の開口12aを通して偏心ディスク19のリングギヤ19bに噛合する。 A pair of crescent- shaped guide portions 18a and 18a are provided on the split surface of the eccentric cam 18 divided into two in the direction of the axis L so as to be coaxial with the center O1 of the eccentric cam 18. The tooth tips of the ring gear 19b formed so as to communicate between the bottoms of the recesses 19a and 19a slidably contact the outer peripheral surfaces of the guide portions 18a and 18a of the eccentric cam 18. Then, the pinion 17 of the transmission shaft 15 meshes with the ring gear 19b of the eccentric disk 19 through the opening 12a of the input shaft 12.
 入力軸12の一端側はボールベアリング21を介してミッションケース11の第1側壁51bに直接支持される。また入力軸12の他端側に位置する1個の偏心カム18に一体に設けた筒状部18bが、ボールベアリング22を介してミッションケース11の第2側壁51cに支持されており、その偏心カム18の内周にスプライン結合された入力軸12の他端側は、ミッションケース11に間接的に支持される。 The one end side of the input shaft 12 is directly supported by the first side wall 51b of the mission case 11 via the ball bearing 21. Further, a cylindrical portion 18b provided integrally with one eccentric cam 18 positioned on the other end side of the input shaft 12 is supported by the second side wall 51c of the transmission case 11 via the ball bearing 22, and the eccentricity thereof. The other end side of the input shaft 12 splined to the inner periphery of the cam 18 is indirectly supported by the mission case 11.
 入力軸12に対して変速軸15を相対回転させて無段変速機Tの変速比を変更する変速アクチュエータ23は、モータ軸24aが軸線Lと同軸になるようにミッションケース11の側部カバー42に支持された電動モータ24と、電動モータ24に接続された遊星歯車機構25とを備える。遊星歯車機構25は、電動モータ24にニードルベアリング26を介して回転自在に支持されたキャリヤ27と、モータ軸24aに固定されたサンギヤ28と、キャリヤ27に回転自在に支持された複数の2連ピニオン29…と、中空の入力軸12の軸端(厳密には、前記1個の偏心カム18の筒状部18b)にスプライン結合された第1リングギヤ30と、変速軸15の軸端にスプライン結合された第2リングギヤ31とを備える。各2連ピニオン29は大径の第1ピニオン29aと小径の第2ピニオン29bとを備えており、第1ピニオン29aはサンギヤ28および第1リングギヤ30に噛合し、第2ピニオン29bは第2リングギヤ31に噛合する。 The speed change actuator 23 that changes the speed ratio of the continuously variable transmission T by rotating the speed change shaft 15 relative to the input shaft 12 is a side cover 42 of the transmission case 11 so that the motor shaft 24a is coaxial with the axis L. And an planetary gear mechanism 25 connected to the electric motor 24. The planetary gear mechanism 25 includes a carrier 27 that is rotatably supported by an electric motor 24 via a needle bearing 26, a sun gear 28 that is fixed to the motor shaft 24a, and a plurality of two stations that are rotatably supported by the carrier 27. A pinion 29, a first ring gear 30 splined to the shaft end of the hollow input shaft 12 (strictly speaking, the cylindrical portion 18b of the one eccentric cam 18), and a spline to the shaft end of the transmission shaft 15 And a second ring gear 31 coupled thereto. Each double pinion 29 includes a first pinion 29a having a large diameter and a second pinion 29b having a small diameter. The first pinion 29a meshes with the sun gear 28 and the first ring gear 30, and the second pinion 29b has a second ring gear. Mesh with 31.
 偏心ディスク19の外周には、ローラベアリング32を介してコネクティングロッド33の一端側の環状部33aが相対回転自在に支持される。 On the outer periphery of the eccentric disk 19, an annular portion 33a on one end side of the connecting rod 33 is supported via a roller bearing 32 so as to be relatively rotatable.
 出力軸13はミッションケース11の第1、第2側壁51b,51cに一対のボールベアリング34,35で支持されており、その外周にはワンウェイクラッチ36が設けられる。ワンウェイクラッチ36は、コネクティングロッド33のロッド部33bの先端にピン37を介して枢支されたリング状のアウター部材38と、アウター部材38の内部に配置されて出力軸13に固定されたインナー部材39と、アウター部材38の内周の円弧面とインナー部材39の外周の平面との間に形成された楔状の空間に配置されて複数個のスプリング40…で付勢された複数個のローラ41…とを備える。 The output shaft 13 is supported on the first and second side walls 51b and 51c of the mission case 11 by a pair of ball bearings 34 and 35, and a one-way clutch 36 is provided on the outer periphery thereof. The one-way clutch 36 includes a ring-shaped outer member 38 pivotally supported at the tip of the rod portion 33b of the connecting rod 33 via a pin 37, and an inner member disposed inside the outer member 38 and fixed to the output shaft 13. 39 and a plurality of rollers 41 arranged in a wedge-shaped space formed between the inner circular arc surface of the outer member 38 and the outer peripheral plane of the inner member 39 and biased by a plurality of springs 40. … And.
 図6に示すように、偏心ディスク19の中心O2に対して偏心凹部19a,19aの中心O1(つまり偏心カム18の中心O1)は距離dだけずれているため、偏心ディスク19の外周と偏心凹部19a,19aの内周との間隔は円周方向に不均一になっており、その間隔が大きい部分に三日月状の肉抜き凹部19c,19cが形成される。肉抜き凹部19c,19cは薄肉の底壁19dを挟んで偏心ディスク19の両面に相互に対向するように形成されているが、強度上の問題がなければ、底壁19dを廃止して単一の肉抜き凹部19cが偏心ディスク19を厚さ方向に貫通するように形成しても良い。 As shown in FIG. 6, since the center O1 of the eccentric recesses 19a and 19a (that is, the center O1 of the eccentric cam 18) is shifted by a distance d with respect to the center O2 of the eccentric disc 19, the outer periphery of the eccentric disc 19 and the eccentric recess The space | interval with the inner periphery of 19a and 19a is non-uniform | heterogenous in the circumferential direction, and the crescent-shaped thinning recessed parts 19c and 19c are formed in the part with the large space | interval. The thinning recesses 19c, 19c are formed so as to face each other on both sides of the eccentric disk 19 with the thin bottom wall 19d interposed therebetween. The thinning recess 19c may be formed so as to penetrate the eccentric disk 19 in the thickness direction.
 仮に肉抜き凹部19c,19cが存在しないとすると、偏心ディスク19の重心位置Gはその中心O2の近傍に存在することになるが、肉抜き凹部19c,19cを形成したことで偏心ディスク19の重心位置Gは肉抜き凹部19c,19cから遠ざかる方向に移動し、本実施の形態では偏心凹部19a,19aの中心O1(つまり偏心カム18の中心O1)に一致させられている。 If there are no hollowing recesses 19c, 19c, the center of gravity G of the eccentric disk 19 exists in the vicinity of the center O2, but the center of gravity of the eccentric disk 19 is formed by forming the hollowing recesses 19c, 19c. The position G moves in a direction away from the thinning recesses 19c and 19c, and in the present embodiment, is aligned with the center O1 of the eccentric recesses 19a and 19a (that is, the center O1 of the eccentric cam 18).
 次に、無段変速機Tの一つの変速ユニット14の作用を説明する。 Next, the operation of one transmission unit 14 of the continuously variable transmission T will be described.
 図5および図7(A)~図7(D)から明らかなように、入力軸12の軸線Lに対して偏心ディスク19の中心O2が偏心しているとき、エンジンEによって入力軸12が回転するとコネクティングロッド33の環状部33aが軸線Lまわりに偏心回転することで、コネクティングロッド33のロッド部33bが往復運動する。その結果、コネクティングロッド33のロッド部33bにピン37で接続されたワンウェイクラッチ36のアウター部材38が所定角度範囲で往復回転し、アウター部材38が一方向に回転したときにローラ41…が楔状の空間に噛み込んでインナー部材39に回転が伝達され、アウター部材38が他方向に回転したときにローラ41…がスリップしてインナー部材39への回転の伝達が遮断される。 As is apparent from FIGS. 5 and 7A to 7D, when the input shaft 12 is rotated by the engine E when the center O2 of the eccentric disk 19 is eccentric with respect to the axis L of the input shaft 12. As the annular portion 33a of the connecting rod 33 rotates eccentrically around the axis L, the rod portion 33b of the connecting rod 33 reciprocates. As a result, the outer member 38 of the one-way clutch 36 connected to the rod portion 33b of the connecting rod 33 by the pin 37 reciprocates within a predetermined angle range, and when the outer member 38 rotates in one direction, the rollers 41 are wedge-shaped. The rotation is transmitted to the inner member 39 by biting into the space, and when the outer member 38 rotates in the other direction, the rollers 41 slip and the transmission of the rotation to the inner member 39 is blocked.
 このようにして、入力軸12が1回転する間に、入力軸12の回転が所定時間だけ出力軸13に伝達されるため、入力軸12が連続回転すると出力軸13は間欠回転する。6個の変速ユニット14…の偏心ディスク19…の偏心方向の位相が相互に60°ずつずれているため、6個の変速ユニット14…が入力軸12の回転を交互に出力軸13に伝達することで、出力軸13は連続的に回転する。 Thus, since the rotation of the input shaft 12 is transmitted to the output shaft 13 for a predetermined time while the input shaft 12 makes one rotation, the output shaft 13 rotates intermittently when the input shaft 12 rotates continuously. Since the eccentric disks 19 of the six transmission units 14 are out of phase with each other by 60 °, the six transmission units 14 alternately transmit the rotation of the input shaft 12 to the output shaft 13. Thus, the output shaft 13 rotates continuously.
 このとき、偏心ディスク19の偏心量εが大きいほど、コネクティングロッド33の往復ストロークが大きくなって出力軸13の1回の回転角が増加し、無段変速機Tの変速比が小さくなる。逆に、偏心ディスク19の偏心量εが小さいほど、コネクティングロッド33の往復ストロークが小さくなって出力軸13の1回の回転角が減少し、無段変速機Tの変速比が大きくなる。そして偏心ディスク19の偏心量εがゼロになると、入力軸12が回転してもコネクティングロッド33が移動を停止するために出力軸13は回転せず、無段変速機Tの変速比が最大(無限大)になる。 At this time, as the eccentric amount ε of the eccentric disk 19 increases, the reciprocating stroke of the connecting rod 33 increases, and the rotation angle of the output shaft 13 increases one time, and the transmission ratio of the continuously variable transmission T decreases. Conversely, the smaller the eccentric amount ε of the eccentric disk 19, the smaller the reciprocating stroke of the connecting rod 33, the smaller the rotation angle of the output shaft 13, and the higher the gear ratio of the continuously variable transmission T. When the eccentric amount ε of the eccentric disk 19 becomes zero, the connecting rod 33 stops moving even when the input shaft 12 rotates, so the output shaft 13 does not rotate, and the gear ratio of the continuously variable transmission T is maximized ( Infinity).
 入力軸12に対して変速軸15が相対回転しないとき、つまり入力軸12および変速軸15が同一速度で回転するとき、無段変速機Tの変速比は一定に維持される。入力軸12および変速軸15を同一速度で回転させるには、入力軸12と同速度で電動モータ24を回転駆動すれば良い。その理由は、遊星歯車機構25の第1リングギヤ30は入力軸12に接続されて該入力軸12と同一速度で回転するが、それと同一速度で電動モータ24を駆動するとサンギヤ28および第1リングギヤ30が同一速度で回転するため、遊星歯車機構25はロック状態になって全体が一体に回転する。その結果、一体に回転する第1リングギヤ30および第2リングギヤ31に接続された入力軸12および変速軸15は一体化され、相対回転することなく同速度で回転するからである。 When the transmission shaft 15 does not rotate relative to the input shaft 12, that is, when the input shaft 12 and the transmission shaft 15 rotate at the same speed, the transmission ratio of the continuously variable transmission T is maintained constant. In order to rotate the input shaft 12 and the transmission shaft 15 at the same speed, the electric motor 24 may be rotationally driven at the same speed as the input shaft 12. The reason is that the first ring gear 30 of the planetary gear mechanism 25 is connected to the input shaft 12 and rotates at the same speed as the input shaft 12, but when the electric motor 24 is driven at the same speed, the sun gear 28 and the first ring gear 30. Rotate at the same speed, the planetary gear mechanism 25 is locked and rotates as a whole. As a result, the input shaft 12 and the transmission shaft 15 connected to the first ring gear 30 and the second ring gear 31 that rotate integrally are integrated and rotate at the same speed without relative rotation.
 入力軸12の回転数に対して電動モータ24の回転数を増速あるいは減速すると、入力軸12に結合された第1リングギヤ30と電動モータ24に接続されたサンギヤ28とが相対回転するため、キャリヤ27が第1リングギヤ30に対して相対回転する。このとき、相互に噛合する第1リングギヤ30および第1ピニオン29aの歯数比と、相互に噛合する第2リングギヤ31および第2ピニオン29bの歯数比とが僅かに異なるため、第1リングギヤ30に接続された入力軸12と第2リングギヤ31に接続された変速軸15とが相対回転する。 When the rotational speed of the electric motor 24 is increased or decreased with respect to the rotational speed of the input shaft 12, the first ring gear 30 coupled to the input shaft 12 and the sun gear 28 connected to the electric motor 24 rotate relative to each other. The carrier 27 rotates relative to the first ring gear 30. At this time, the gear ratio of the first ring gear 30 and the first pinion 29a meshing with each other is slightly different from the gear ratio of the second ring gear 31 and the second pinion 29b meshing with each other. And the transmission shaft 15 connected to the second ring gear 31 rotate relative to each other.
 このようにして入力軸12に対して変速軸15が相対回転すると、各変速ユニット14のピニオン17にリングギヤ19bを噛合させた偏心ディスク19の偏心凹部19a,19aが、入力軸12と一体の偏心カム18のガイド部18a,18aに案内されて回転し、入力軸12の軸線Lに対する偏心ディスク19の中心O2の偏心量εが変化する。 When the transmission shaft 15 rotates relative to the input shaft 12 in this manner, the eccentric recesses 19 a and 19 a of the eccentric disk 19 in which the ring gear 19 b is engaged with the pinion 17 of each transmission unit 14 are integrated with the input shaft 12. The cam 18 rotates while being guided by the guide portions 18a, 18a, and the eccentric amount ε of the center O2 of the eccentric disk 19 with respect to the axis L of the input shaft 12 changes.
 図7(A)は変速比が最小の状態(変速比:TD)を示すもので、このとき入力軸12の軸線Lに対する偏心ディスク19の中心O2の偏心量εは、入力軸12の軸線Lから偏心カム18の中心O1までの距離dと、偏心カム18の中心O1から偏心ディスク19の中心O2までの距離dとの和である2dに等しい最大値になる。入力軸12に対して変速軸15が相対回転すると、入力軸12と一体の偏心カム18に対して偏心ディスク19が相対回転することで、図7(B)および図7(C)に示すように、入力軸12の軸線Lに対する偏心ディスク19の中心O2の偏心量εは最大値の2dから次第に減少して変速比が増加する。入力軸12に対して変速軸15が更に相対回転すると、入力軸12と一体の偏心カム18に対して偏心ディスク19が更に相対回転することで、図7(D)に示すように、ついには入力軸12の軸線Lに偏心ディスク19の中心O2が重なり合って偏心量εがゼロになり、変速比が最大(無限大)の状態(変速比:UD)になって出力軸13に対する動力伝達が遮断される。 FIG. 7A shows a state where the speed ratio is minimum (speed ratio: TD). At this time, the eccentric amount ε of the center O2 of the eccentric disk 19 with respect to the axis L of the input shaft 12 is the axis L of the input shaft 12. To a center O1 of the eccentric cam 18 and a maximum value equal to 2d, which is the sum of the distance d from the center O1 of the eccentric cam 18 to the center O2 of the eccentric disk 19. When the transmission shaft 15 rotates relative to the input shaft 12, the eccentric disk 19 rotates relative to the eccentric cam 18 integral with the input shaft 12, as shown in FIGS. 7B and 7C. Furthermore, the amount of eccentricity ε of the center O2 of the eccentric disk 19 with respect to the axis L of the input shaft 12 gradually decreases from the maximum value 2d, and the gear ratio increases. When the transmission shaft 15 further rotates relative to the input shaft 12, the eccentric disk 19 further rotates relative to the eccentric cam 18 integrated with the input shaft 12, and finally, as shown in FIG. The center O2 of the eccentric disk 19 overlaps the axis L of the input shaft 12, the eccentricity ε becomes zero, the transmission gear ratio is maximized (infinite) (transmission ratio: UD), and power is transmitted to the output shaft 13. Blocked.
 図8(A)は、入力軸12の軸線Lに対する偏心ディスク19の中心O2の偏心量εが最大値2dになった最小変速比の状態(変速比:TD)を示すもので、入力軸12の軸線Lに対する偏心カム18の中心O1の偏心方向(図中上向き)と、偏心カム18の中心O1に対する偏心ディスク19の中心O2の偏心方向(図中上向き)とが同一方向になっている。このとき、偏心ディスク19の重心位置Gは、偏心カム18の中心O1に一致している。 FIG. 8A shows the state of the minimum speed ratio (speed ratio: TD) in which the amount of eccentricity ε of the center O2 of the eccentric disk 19 with respect to the axis L of the input shaft 12 reaches the maximum value 2d. The eccentric direction of the center O1 of the eccentric cam 18 with respect to the axis L (upward in the figure) and the eccentric direction of the center O2 of the eccentric disk 19 with respect to the center O1 of the eccentric cam 18 (upward in the figure) are the same direction. At this time, the center of gravity G of the eccentric disk 19 coincides with the center O1 of the eccentric cam 18.
 図8(B)は、入力軸12の軸線Lに対する偏心ディスク19の中心O2の偏心量εが最小値ゼロになった最大変速比の状態(変速比:UD)を示すもので、入力軸12の軸線Lに対する偏心カム18の中心O1の偏心方向(図中上向き)と、偏心カム18の中心O1に対する偏心ディスク19の中心O2の偏心方向(図中下向き)とが逆方向になっている。このとき、偏心ディスク19の重心位置Gは、偏心カム18の中心O1に一致している。 FIG. 8B shows the state of the maximum gear ratio (gear ratio: UD) in which the eccentric amount ε of the center O2 of the eccentric disk 19 with respect to the axis L of the input shaft 12 is the minimum value zero. The eccentric direction of the center O1 of the eccentric cam 18 with respect to the axis L (upward in the figure) is opposite to the eccentric direction of the center O2 of the eccentric disk 19 with respect to the center O1 of the eccentric cam 18 (downward in the figure). At this time, the center of gravity G of the eccentric disk 19 coincides with the center O1 of the eccentric cam 18.
 つまり、本実施の形態によれば、偏心ディスク19の重心位置Gは偏心カム18の中心O1に一致しているため、変速比の変更に伴って偏心カム18の中心O1まわりに偏心ディスク19が偏心回転しても、その偏心ディスク19の重心位置Gは常に偏心カム18の中心O1上に存在し、入力軸12の軸線Lと偏心ディスク19の重心位置Gとの距離は一定値dから変化することはない。 That is, according to the present embodiment, since the center of gravity G of the eccentric disk 19 coincides with the center O1 of the eccentric cam 18, the eccentric disk 19 is moved around the center O1 of the eccentric cam 18 with the change of the gear ratio. Even if it rotates eccentrically, the gravity center position G of the eccentric disk 19 always exists on the center O1 of the eccentric cam 18, and the distance between the axis L of the input shaft 12 and the gravity center position G of the eccentric disk 19 changes from a constant value d. Never do.
 もしも変速比の変更に伴って入力軸12の軸線Lから偏心ディスク19の重心位置Gまでの距離が変化すると仮定すると、入力軸12まわりの偏心ディスク19の慣性二次モーメントが前記距離の増加に応じて増加し、前記距離の減少に応じて減少するため、変速比の変更に伴って入力軸12の回転負荷が変動して振動が発生する可能性がある。しかしながら本実施の形態によれば、変速比を変更しても入力軸12まわりの偏心ディスク19の慣性二次モーメントが変化しないため、入力軸12の振動を最小限に抑えることができる。 If it is assumed that the distance from the axis L of the input shaft 12 to the center of gravity G of the eccentric disk 19 changes as the speed ratio changes, the inertia moment of inertia of the eccentric disk 19 around the input shaft 12 increases the distance. Therefore, the rotation load of the input shaft 12 may fluctuate with the change of the gear ratio, and vibration may occur. However, according to the present embodiment, even if the gear ratio is changed, the inertia moment of the eccentric disk 19 around the input shaft 12 does not change, so that the vibration of the input shaft 12 can be minimized.
 また偏心ディスク19は偏心カム18に相対回転自在に支持されているため、仮に偏心ディスク19の重心位置Gが偏心カム18の中心O1に一致していないとすると、入力軸12の回転数が増加あるいは減少したときに、偏心ディスク19は慣性力で偏心カム18まわりに相対回転しようとし、そのモーメントが偏心ディスク19のリングギヤ19bからピニオン17を介して変速アクチュエータ23の電動モータ24に伝達されるため、電動モータ24に不要なトルクが作用して変速制御の精度を低下させる可能性がある。 Since the eccentric disk 19 is supported by the eccentric cam 18 so as to be relatively rotatable, if the center of gravity G of the eccentric disk 19 does not coincide with the center O1 of the eccentric cam 18, the rotational speed of the input shaft 12 increases. Alternatively, when it decreases, the eccentric disk 19 tends to rotate relative to the eccentric cam 18 with inertial force, and the moment is transmitted from the ring gear 19b of the eccentric disk 19 to the electric motor 24 of the transmission actuator 23 via the pinion 17. Unnecessary torque may act on the electric motor 24 to reduce the accuracy of the shift control.
 しかしながら、本実施の形態によれば、偏心ディスク19の重心位置Gが偏心カム18の中心O1に一致しているため、入力軸12の回転数が増加あるいは減少しても、偏心ディスク19が慣性力で偏心カム18まわりに相対回転しようとするモーメントは発生せず、これにより電動モータ24に不要なトルクが作用するのを防止して変速制御の精度を確保することができる。 However, according to the present embodiment, since the center of gravity G of the eccentric disk 19 coincides with the center O1 of the eccentric cam 18, even if the rotational speed of the input shaft 12 increases or decreases, the eccentric disk 19 is inertial. No moment is generated to rotate relative to the eccentric cam 18 by force, thereby preventing unnecessary torque from acting on the electric motor 24 and ensuring the accuracy of the shift control.
第2の実施の形態Second embodiment
 次に、図9に基づいて本発明の第2の実施の形態を説明する。 Next, a second embodiment of the present invention will be described with reference to FIG.
 第1の実施の形態では、偏心ディスク19に肉抜き凹部19c,19cを形成することで、偏心ディスク19の重心位置Gを偏心凹部19a,19aの中心O1に一致させているが、第2の実施の形態では、偏心ディスク19における肉抜き凹部19c,19cと反対側に更に一対のウエイト19e,19eを突設することで、偏心ディスク19の重心位置Gを偏心凹部19a,19aの中心O1に一致させている。ウエイト19e,19eを2個に分割したのは、それがローラベアリング32やコネクティングロッド33と干渉するのを回避するためである。 In the first embodiment, the center of gravity position G of the eccentric disc 19 is made to coincide with the center O1 of the eccentric recesses 19a, 19a by forming the hollow recesses 19c, 19c in the eccentric disc 19. In the embodiment, a pair of weights 19e, 19e are further provided on the side of the eccentric disc 19 opposite to the thinned recesses 19c, 19c so that the center of gravity G of the eccentric disc 19 is located at the center O1 of the eccentric recess 19a, 19a. Match. The reason why the weights 19e and 19e are divided into two is to avoid the interference with the roller bearing 32 and the connecting rod 33.
 本実施の形態によれば、肉抜き凹部19c,19cを形成するだけでは重心位置Gを充分に移動させることができない場合であっても、ウエイト19e,19eによって偏心ディスク19の重心位置Gを更に移動させて、偏心凹部19a,19aの中心O1に一致させることができる。もちろん肉抜き凹部19c,19cを廃止し、ウエイト19e,19eだけによって偏心ディスク19の重心位置Gを偏心凹部19a,19aの中心O1に一致させても良い。 According to the present embodiment, even if the center of gravity position G cannot be sufficiently moved only by forming the hollow portions 19c and 19c, the center of gravity position G of the eccentric disk 19 is further increased by the weights 19e and 19e. It can be moved to coincide with the center O1 of the eccentric recesses 19a, 19a. Of course, it is also possible to eliminate the lightening recesses 19c and 19c and make the center of gravity G of the eccentric disk 19 coincide with the center O1 of the eccentric recesses 19a and 19a only by the weights 19e and 19e.
 本実施の形態によれば.第1の実施の形態と同様に、簡単な構造で偏心ディスク19の重心位置Gを調整することができる。 According to this embodiment. As in the first embodiment, the center of gravity G of the eccentric disk 19 can be adjusted with a simple structure.
 以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。 Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.
 例えば、本発明の駆動源は実施の形態のエンジンEに限定されず、電動モータ等の他の駆動源であっても良い。 For example, the drive source of the present invention is not limited to the engine E of the embodiment, and may be another drive source such as an electric motor.
 また本発明の肉抜き部は、実施の形態の肉抜き凹部19cに限定されず、偏心ディスク19を貫通する肉抜き孔であっても良い。 Further, the lightening part of the present invention is not limited to the lightening recessed part 19c of the embodiment, and may be a lightening hole penetrating the eccentric disk 19.
 また本発明のウエイト19eは必ずしも偏心ディスク19と一体に形成する必要はなく、別部材で構成して偏心ディスク19に固定しても良い。 In addition, the weight 19e of the present invention is not necessarily formed integrally with the eccentric disk 19, and may be configured by a separate member and fixed to the eccentric disk 19.

Claims (4)

  1.  駆動源(E)に接続された入力軸(12)の外周に偏心状態で固設された偏心カム(18)と、
     前記偏心カム(18)の外周に偏心状態で相対回転可能に支持された偏心ディスク(19)と、
     前記入力軸(12)の内部に同軸に嵌合して前記偏心カム(18)に対して前記偏心ディスク(19)を偏心回転させる変速軸(15)と、
     出力軸(13)の外周に設けられたワンウェイクラッチ(36)と、
     前記偏心ディスク(19)および前記ワンウエイクラッチ(36)に両端を接続されて往復運動するコネクティングロッド(33)とを備え、
     前記入力軸(12)の回転を前記コネクティングロッド(33)および前記ワンウエイクラッチ(36)を介して前記出力軸(13)に間欠的に伝達するとともに、前記変速軸(15)により前記入力軸(12)の軸線(L)に対する前記偏心ディスク(19)の偏心量(ε)を変化させて変速比を変更する無段変速機であって、
     前記偏心ディスク(19)の重心位置(G)を、該偏心ディスク(19)の前記偏心カム(18)に対する偏心回転中心(O1)に一致させたことを特徴とする無段変速機。
    An eccentric cam (18) fixed in an eccentric state on the outer periphery of the input shaft (12) connected to the drive source (E);
    An eccentric disk (19) supported on the outer periphery of the eccentric cam (18) so as to be relatively rotatable in an eccentric state;
    A transmission shaft (15) that coaxially fits inside the input shaft (12) and rotates the eccentric disk (19) eccentrically with respect to the eccentric cam (18);
    A one-way clutch (36) provided on the outer periphery of the output shaft (13);
    A connecting rod (33) reciprocatingly connected to both ends of the eccentric disk (19) and the one-way clutch (36);
    The rotation of the input shaft (12) is intermittently transmitted to the output shaft (13) through the connecting rod (33) and the one-way clutch (36), and the input shaft (15) is transmitted by the transmission shaft (15). 12) a continuously variable transmission that changes the gear ratio by changing the amount of eccentricity (ε) of the eccentric disk (19) with respect to the axis (L) of 12);
    A continuously variable transmission characterized in that the center of gravity (G) of the eccentric disk (19) is made to coincide with the eccentric rotation center (O1) of the eccentric disk (19) with respect to the eccentric cam (18).
  2.  前記変速軸(15)は変速アクチュエータ(23)により駆動されることを特徴とする、請求項1に記載の無段変速機。 The continuously variable transmission according to claim 1, wherein the transmission shaft (15) is driven by a transmission actuator (23).
  3.  前記偏心ディスク(19)の重心位置(G)を、該偏心ディスク(19)の前記偏心カム(18)に対する偏心回転中心(O1)に一致させるために、前記偏心ディスク(19)に肉抜き部(19c)を設けたことを特徴とする、請求項1または請求項2に記載の無段変速機。 In order to make the center of gravity (G) of the eccentric disk (19) coincide with the eccentric rotation center (O1) of the eccentric disk (19) with respect to the eccentric cam (18), a hollow portion is formed on the eccentric disk (19). The continuously variable transmission according to claim 1 or 2, wherein (19c) is provided.
  4.  前記偏心ディスク(19)の重心位置(G)を、該偏心ディスク(19)の前記偏心カム(18)に対する偏心回転中心(O1)に一致させるために、前記偏心ディスク(19)にウエイト(19e)を設けたことを特徴とする、請求項1~請求項3の何れか1項に記載の無段変速機。 In order to make the center of gravity (G) of the eccentric disk (19) coincide with the eccentric rotation center (O1) of the eccentric disk (19) with respect to the eccentric cam (18), a weight (19e) is applied to the eccentric disk (19). The continuously variable transmission according to any one of claims 1 to 3, wherein a continuously variable transmission is provided.
PCT/JP2012/066381 2011-07-13 2012-06-27 Continuously variable transmission WO2013008624A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013523881A JP5703379B2 (en) 2011-07-13 2012-06-27 Continuously variable transmission
CN201280031651.6A CN103649594B (en) 2011-07-13 2012-06-27 Stepless speed variator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011154521 2011-07-13
JP2011-154521 2011-07-13

Publications (1)

Publication Number Publication Date
WO2013008624A1 true WO2013008624A1 (en) 2013-01-17

Family

ID=47505921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066381 WO2013008624A1 (en) 2011-07-13 2012-06-27 Continuously variable transmission

Country Status (3)

Country Link
JP (1) JP5703379B2 (en)
CN (1) CN103649594B (en)
WO (1) WO2013008624A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968026A (en) * 2013-02-05 2014-08-06 本田技研工业株式会社 Vehicle power transmission apparatus
JP2014145390A (en) * 2013-01-28 2014-08-14 Honda Motor Co Ltd Continuously variable transmission
JP2014152806A (en) * 2013-02-05 2014-08-25 Honda Motor Co Ltd Vehicular power transmission device
JP2014206268A (en) * 2013-03-21 2014-10-30 本田技研工業株式会社 One-way rotation inhibiting mechanism
DE102013010753A1 (en) * 2013-06-27 2014-12-31 Audi Ag Eccentric arrangement and internal combustion engine
JP2015038371A (en) * 2013-08-19 2015-02-26 本田技研工業株式会社 Continuously variable transmission
CN104553741A (en) * 2013-10-09 2015-04-29 本田技研工业株式会社 Vehicle power transmission device
JP2015098923A (en) * 2013-11-20 2015-05-28 本田技研工業株式会社 Power transmission device for vehicle
JP2015132322A (en) * 2014-01-14 2015-07-23 本田技研工業株式会社 Infinity variable transmission
CN104832639A (en) * 2014-02-07 2015-08-12 本田技研工业株式会社 Power transmission device for vehicles
CN105317959A (en) * 2014-08-01 2016-02-10 本田技研工业株式会社 Continuously variable mechanism
WO2017012903A1 (en) 2015-07-21 2017-01-26 Martin Weilenmann Transmission having a flywheel and method for operating a transmission
CN106555867A (en) * 2017-01-20 2017-04-05 蔡明� A kind of gearbox
US10605321B2 (en) 2015-07-21 2020-03-31 Martin Weilenmann Transmission with a torsion spring and method for operating a transmission

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583647B (en) * 2012-09-13 2017-05-24 本田技研工业株式会社 Vehicle power transmission device
JP6163124B2 (en) * 2014-03-20 2017-07-12 本田技研工業株式会社 Continuously variable transmission
JP6180993B2 (en) * 2014-05-07 2017-08-16 本田技研工業株式会社 Continuously variable transmission
JP2016035287A (en) * 2014-08-01 2016-03-17 本田技研工業株式会社 Continuously variable transmission mechanism
JP2016138599A (en) * 2015-01-28 2016-08-04 本田技研工業株式会社 Vehicular power transmission device
JP6407119B2 (en) * 2015-09-10 2018-10-17 本田技研工業株式会社 Power transmission device
KR101889307B1 (en) * 2016-11-23 2018-09-28 이스트바이크 주식회사 continuously variable transmission
CN109236975A (en) * 2018-10-31 2019-01-18 江苏牛牌纺织机械有限公司 A kind of eccentric wheel and connecting rod engaging member
JP6760674B1 (en) * 2019-09-05 2020-09-23 昌幸 池田 Gear transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503166A (en) * 1987-04-13 1989-10-26 フライ,ハインツ crank drive
JPH04501452A (en) * 1988-11-08 1992-03-12 イーガン、マイケル・ジョセフ Variable speed drive power transmission device
JP2009138619A (en) * 2007-12-06 2009-06-25 Nissan Motor Co Ltd Internal combustion engine
JP2009197981A (en) * 2008-02-25 2009-09-03 Honda Motor Co Ltd Transmission
JP2010038184A (en) * 2008-07-31 2010-02-18 Honda Motor Co Ltd Transmission

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252937A (en) * 1985-04-30 1986-11-10 Honda Motor Co Ltd Power transmission device
JPH0842644A (en) * 1993-10-12 1996-02-16 Kenji Mimura Continuously variable transmission
JP4702505B2 (en) * 2000-05-25 2011-06-15 ミネベア株式会社 Gear device
JP2005502543A (en) * 2001-09-26 2005-01-27 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト Drive device
DE102009039993A1 (en) * 2008-09-11 2010-04-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Transmission arrangement for crank-continuously variable transmission of motor vehicle, has drive shaft comprising independent and different individual parts, which are connected together in torque proof, centrical and axial manner
DE102009042834A1 (en) * 2008-10-16 2010-04-22 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drive shaft assembly for a transmission of a motor vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01503166A (en) * 1987-04-13 1989-10-26 フライ,ハインツ crank drive
JPH04501452A (en) * 1988-11-08 1992-03-12 イーガン、マイケル・ジョセフ Variable speed drive power transmission device
JP2009138619A (en) * 2007-12-06 2009-06-25 Nissan Motor Co Ltd Internal combustion engine
JP2009197981A (en) * 2008-02-25 2009-09-03 Honda Motor Co Ltd Transmission
JP2010038184A (en) * 2008-07-31 2010-02-18 Honda Motor Co Ltd Transmission

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145390A (en) * 2013-01-28 2014-08-14 Honda Motor Co Ltd Continuously variable transmission
CN103968026A (en) * 2013-02-05 2014-08-06 本田技研工业株式会社 Vehicle power transmission apparatus
JP2014152806A (en) * 2013-02-05 2014-08-25 Honda Motor Co Ltd Vehicular power transmission device
JP2014206268A (en) * 2013-03-21 2014-10-30 本田技研工業株式会社 One-way rotation inhibiting mechanism
DE102013010753A1 (en) * 2013-06-27 2014-12-31 Audi Ag Eccentric arrangement and internal combustion engine
DE102013010753B4 (en) * 2013-06-27 2015-02-12 Audi Ag Eccentric arrangement and internal combustion engine
JP2015038371A (en) * 2013-08-19 2015-02-26 本田技研工業株式会社 Continuously variable transmission
CN104553741A (en) * 2013-10-09 2015-04-29 本田技研工业株式会社 Vehicle power transmission device
JP2015098923A (en) * 2013-11-20 2015-05-28 本田技研工業株式会社 Power transmission device for vehicle
JP2015132322A (en) * 2014-01-14 2015-07-23 本田技研工業株式会社 Infinity variable transmission
CN104832639A (en) * 2014-02-07 2015-08-12 本田技研工业株式会社 Power transmission device for vehicles
CN104832639B (en) * 2014-02-07 2017-04-19 本田技研工业株式会社 Power transmission device for vehicles
CN105317959A (en) * 2014-08-01 2016-02-10 本田技研工业株式会社 Continuously variable mechanism
WO2017012903A1 (en) 2015-07-21 2017-01-26 Martin Weilenmann Transmission having a flywheel and method for operating a transmission
US10605321B2 (en) 2015-07-21 2020-03-31 Martin Weilenmann Transmission with a torsion spring and method for operating a transmission
CN106555867A (en) * 2017-01-20 2017-04-05 蔡明� A kind of gearbox

Also Published As

Publication number Publication date
CN103649594B (en) 2016-03-09
CN103649594A (en) 2014-03-19
JPWO2013008624A1 (en) 2015-02-23
JP5703379B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5703379B2 (en) Continuously variable transmission
JP5885031B2 (en) Power transmission device for vehicle
JP5695516B2 (en) Continuously variable transmission
JP5695541B2 (en) Continuously variable transmission
JP5875091B2 (en) Power transmission device for vehicle
JP6057289B2 (en) Engine starting method by vehicle power transmission device
JP5885032B2 (en) Power transmission device for vehicle
JP5806410B2 (en) Power transmission device for vehicle
JP6172674B2 (en) Power transmission device for vehicle
JP6080206B2 (en) Power transmission device for vehicle
JP2019002478A (en) Power transmission device for vehicle
JP5885034B2 (en) Power transmission device for vehicle
JP6300847B2 (en) Power transmission device for vehicle
JP6175477B2 (en) Power transmission device for vehicle
JP6847772B2 (en) Vehicle power transmission device
JP6596407B2 (en) Power transmission device for vehicle
JP6251074B2 (en) Power transmission device for vehicle
JP2014152807A (en) Vehicular power transmission device
JP6251229B2 (en) Power transmission device for vehicle
JP6268143B2 (en) Power transmission device for vehicle
JP5955185B2 (en) Power transmission device for vehicle
JP6596408B2 (en) Power transmission device for vehicle
JP6581018B2 (en) Power transmission device for vehicle
JP6913512B2 (en) Vehicle power transmission device
JP6208790B2 (en) Power transmission device for vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280031651.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523881

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810710

Country of ref document: EP

Kind code of ref document: A1