WO2013008476A1 - 動的設備管理システム - Google Patents

動的設備管理システム Download PDF

Info

Publication number
WO2013008476A1
WO2013008476A1 PCT/JP2012/004544 JP2012004544W WO2013008476A1 WO 2013008476 A1 WO2013008476 A1 WO 2013008476A1 JP 2012004544 W JP2012004544 W JP 2012004544W WO 2013008476 A1 WO2013008476 A1 WO 2013008476A1
Authority
WO
WIPO (PCT)
Prior art keywords
instance
information
level
data
equipment
Prior art date
Application number
PCT/JP2012/004544
Other languages
English (en)
French (fr)
Inventor
哲夫 大谷
雄二 木村
片山 茂樹
Original Assignee
一般財団法人電力中央研究所
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人電力中央研究所, 株式会社東芝 filed Critical 一般財団法人電力中央研究所
Priority to US14/232,522 priority Critical patent/US9733639B2/en
Priority to EP12811702.5A priority patent/EP2733662A4/en
Priority to CN201280034703.5A priority patent/CN103765469B/zh
Publication of WO2013008476A1 publication Critical patent/WO2013008476A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network

Definitions

  • the present invention relates to a dynamic facility management system. More specifically, the present invention relates to a technique suitable for application to a system that collects and uses information used for facility management by grasping a state for monitoring, maintaining, and maintaining a target facility.
  • Equipment maintenance systems are required to be able to quickly and easily build a mechanism for collecting and utilizing information used for equipment maintenance when state monitoring maintenance is required. This is because the lifetime of the sensors and information communication equipment that make up the equipment maintenance system is as short as 10 years or less. Therefore, it is possible to improve cost effectiveness by adding sensors at the stage where signs are seen in the normal condition or the transition from the random destruction stage to the deterioration destruction stage in the bathtub curve is performed by collecting the state with the minimum number of sensors in normal times. Based on what can be expected.
  • UPnP can obtain IP addresses for devices connected to a communication network, detect devices, and provide information on functions provided by devices, but how to collect information and procedures related to collection and processing of equipment management data. There is a problem that it is not covered until it is arranged and provided. For this reason, it is possible to quickly and easily construct a mechanism for collecting and utilizing information used for equipment management at the stage where state monitoring maintenance or the like is required in the equipment management system targeted by the present invention. It is hard to say that state monitoring can be started quickly and easily by automatically setting the relevant software in the equipment management system when installing or removing various measuring devices from the equipment to be managed and maintained. .
  • the related software is automatically set in the equipment management system, so that the status monitoring can be performed quickly. It is another object of the present invention to provide a plug-and-play dynamic facility management system that can be easily started.
  • the dynamic equipment management system of the present invention includes a measuring equipment reader that inputs and outputs signals to and from a measuring equipment that acquires information on target equipment handled by the system, and the measuring equipment reader.
  • a first device that inputs and outputs signals to and from a second device that has a set of software and inputs and outputs signals to and from the first device.
  • the second device determines the software required for the system based on the information about the measuring device, and sends the software from the second device to the first device and the measuring device reader.
  • the second device determines the software required for the system based on the information about the measuring device, and sends the software from the second device to the first device and the measuring device reader.
  • the second device autonomously determines the software required for the system and transmits it to the related device.
  • related software is automatically set in the system, and state monitoring is started quickly and easily.
  • the dynamic equipment management system of the present invention includes a measuring device that acquires information on target equipment handled by the system, a lower-level device that inputs / outputs signals to / from the measuring equipment directly or via a communication network, Measuring equipment comprising a higher level device that inputs / outputs signals to / from lower level devices directly or via a communication network, and a server that inputs / outputs signals between lower level devices and higher level devices
  • Information of the target equipment handled by the system (hereinafter referred to as class name) acquired by, class information for each class including the name of the instance generated corresponding to the class name, instance name, and instance layout Instance information for each instance including location and class name, class name corresponding to higher level equipment management data, higher level equipment management Class name corresponding to lower-level equipment management data used to generate data, usage of lower-level equipment management data to generate higher-level equipment management data, class corresponding to higher-level equipment management data And inter-class relations including the names of relation instances generated in association with classes corresponding to lower-level equipment management
  • the purpose of connecting the measuring device as an item of information on the type of measuring device and the target equipment handled by the system Is transmitted to the server by the lower-level device, and the server generates an instance by referring to the class information based on the type of the measuring device and the purpose of connecting the measuring device as the information item of the target equipment handled by the system. If the instance generated by searching the instance information does not exist, register it and refer to the inter-class relationship to generate and register the relationship instance, and then create the generated instance at a lower level based on the inter-instance relationship And the equipment management data are exchanged between the instances based on the inter-instance relationship.
  • the dynamic facility management system of the present invention allows the measurement instrument to be removed when the measurement instrument is removed from the lower-level device or the communication network that performs signal input / output with the lower-level device.
  • the name of the instance generated as corresponding is transmitted to the server by the lower-level device, and the instance information is updated and removed so that the server shifts to the state where the facility management data is not processed for the predetermined instance.
  • Process the equipment management data for the instance corresponding to the measurement device that was removed from the server. To have no state is so as to be migrated.
  • the server generates an instance based on the type of measuring device and transmits it to the related device, and also generates a related instance related to the instance and registers it with the server. Since the equipment management data is exchanged, the related software is automatically set in the system when the various measuring devices are attached to or removed from the equipment to be handled by the system, that is, the equipment to be managed. Start easily.
  • the target equipment handled by the system is a substation circuit breaker
  • the measuring device is a sensor that acquires the passing current of the circuit breaker and the pallet switch operation signal as information. By doing so, it can function as an equipment maintenance system for power distribution equipment.
  • all the related instance data is a character string.
  • the method can be called based on the information on the inter-instance relationship using reflection.
  • related software is automatically set in the system when attaching or removing various measuring devices to or from a target facility handled by the system, that is, the management target facility. Since it can be started easily, it becomes possible to improve the efficiency of work related to collection and utilization of information used for facility management.
  • the dynamic facility management system of the present invention function as a facility maintenance system for power distribution facilities, it is possible to improve the efficiency of work related to the collection and utilization of information used for the maintenance of power distribution facilities. Become.
  • FIG. 2 is a functional block diagram for explaining the operation of the facility management system / equipment maintenance system according to the embodiment, and is a diagram for explaining the operation when a sensor is connected;
  • FIG. 2 is a functional block diagram for explaining the operation of the facility management system / equipment maintenance system of the embodiment, and FIG. It is a figure explaining the object for every level, and its data flow.
  • FIG. 3 is a functional block diagram for explaining the operation of the facility management system / equipment maintenance system according to the embodiment, and is a diagram for explaining the operation when a sensor is connected;
  • FIG. 4 is a functional block diagram for explaining the operation of the facility management system / equipment maintenance system of the embodiment, and FIG. 4 is a diagram for explaining the operation when a sensor is connected;
  • FIG. 3 is a functional block diagram for explaining the operation of the facility management system / equipment maintenance system of the embodiment, and is a diagram for explaining the operation when the sensor is removed—Part 1;
  • FIG. 2 is a functional block diagram for explaining the operation of the facility management system / equipment maintenance system according to the embodiment, and is a diagram for explaining the operation when the sensor is removed;
  • FIG. 3 is a functional block diagram for explaining the operation of the facility management system / equipment maintenance system according to the embodiment, and is a diagram for explaining the operation when the sensor is removed; It is a figure explaining the transition to the object and "incomplete" state for every level.
  • FIG. 4 is a functional block diagram for explaining the operation of the facility management system / equipment maintenance system according to the embodiment, and is a diagram for explaining the operation when the sensor is removed—Part 4; It is a figure explaining arrangement
  • the dynamic facility management system includes a measuring device reader that inputs / outputs signals to / from a measuring device that acquires information on target facilities handled by the system, and a signal input between the measuring device reader.
  • a first device that performs output, and a second device that has a set of software and that inputs and outputs signals to and from the first device, and when the measuring instrument is connected to the measuring instrument reader.
  • the second device determines the software required for the system based on the information on the measuring device, and transmits the software from the second device to the first device and the measuring device reader.
  • the power distribution equipment is taken up as the target equipment handled by the system that performs monitoring, maintenance, maintenance, etc., that is, the management target equipment, and the dynamic equipment management system of the present invention is applied to the equipment maintenance system of the power distribution equipment.
  • the facility maintenance system is added when measuring devices such as various sensors for acquiring facility maintenance data of a substation facility that is a power distribution facility are applied as the application target of the present invention.
  • a case of performing plug and play that automatically executes the setting will be described as an example. Specifically, as shown in FIG.
  • sensors 2B and 2C are attached to the circuit breaker 1A in the substation 1, and sensors 2D and 2E are attached to the gas insulated switchgear 1B.
  • sensors 2A as a measuring device is newly attached to the circuit breaker 1A as a management target facility will be described as an example.
  • measurement devices such as various sensors are also simply referred to as sensors.
  • the measurement data of the sensors 2A, 2B, and 2C attached to or attached to the circuit breaker 1A is input to the measurement device reader 5A via the measurement device network 4 and attached to the gas insulated switchgear 1B.
  • the measurement data of the sensors 2D and 2E are directly input from the sensors 2D and 2E to the measuring device reader 5B. That is, interposing the measuring device network 4 is not an essential configuration in the present invention.
  • the measurement device network 4 is also called a sensor network, and can be specifically configured using, for example, ZigBee.
  • ZigBee ZigBee
  • the above-mentioned facility maintenance data and the above-described measurement data correspond to information on target facilities handled by the system.
  • the monitoring item / measurement item as the purpose of connecting the type of the measuring device and the measuring device corresponds to the information of the measuring device.
  • a device that captures an electrical signal transmitted from the sensor 2 via a cable or a device that captures a wireless signal communicated wirelessly is used.
  • a device that captures an electrical signal transmitted from the sensor 2 via a cable or a device that captures a wireless signal communicated wirelessly is used.
  • what kind of measuring device is used as the sensor 2 as the measuring device and how it is installed, and what kind of signal reading device is used as the measuring device readers 5A and 5B.
  • how to connect the sensor 2 as a measuring instrument and the measuring instrument readers 5A and 5B is not limited to a specific one, but is a target facility handled by the system, that is, a management target facility. It is selected as appropriate based on the type of equipment and the contents of facility management.
  • the measuring device readers 5A and 5B capture the signal sent from the sensor 2 in the data format handled by the equipment maintenance system.
  • the measuring instrument reading devices 5A and 5B input and output signals such as data signals and command signals to and from the data management device 7 through the local LAN 6 in the substation 1.
  • a communication network such as a LAN between the measuring instrument reading devices 5A and 5B and the data management device 7, and the measuring instrument reading device and the data management device 7 may be directly connected.
  • the data management device 7 is a first device.
  • the data signals sent from the sensor 2 are collected in the data management device 7 via the measuring device readers 5A and 5B.
  • the data management device 7 arranges and stores the data sent from the measuring device readers 5A and 5B in time series as necessary, or calculates new data by combining a plurality of data.
  • a personal computer is used as the data management device 7.
  • the data collected in the data management device 7 and processed as needed is transmitted to the equipment maintenance application server 9 via a communication network 8 such as an in-house network or the Internet network.
  • the facility maintenance application server 9 provides functions corresponding to maintenance business elements such as failure analysis and facility state determination.
  • a PC is used as the equipment maintenance application server 9.
  • the facility maintenance application server 9 is not the subject of the present invention. More specifically, the provision of the facility maintenance application server 9 itself is an essential element of the present invention. Alternatively, other systems that perform work management and the like may be linked.
  • ⁇ Level 1> Measuring device reading unit Reads a signal sent from a connected measuring device, converts it so that it can be handled as digital data, and imports it into an object.
  • the signal sent from the sensor 2 is read and converted, and the measurement instrument reading devices 5A and 5B correspond.
  • Data organizing unit Manages time series data for each monitoring item or measurement item, and calculates new monitoring item data obtained from measured values in multiple monitoring items for the data from the above-mentioned measuring device reading unit .
  • new monitoring item data obtained from the management of time-series data for each monitoring item such as the current value of the measuring device readers 5A and 5B and the measurement values of a plurality of monitoring items. The calculation is performed and the data management device 7 corresponds.
  • Statistical processing / abnormality diagnosis unit For example, maximum / minimum values and trends of data stored in the data organizing unit are managed to extract cases in which abnormalities such as excess thresholds and trend changes are suspected.
  • the equipment maintenance application server 9 corresponds.
  • providing the facility maintenance application server 9 is not an essential element of the present invention.
  • ⁇ Level 3> System linkage unit Performs necessary data exchange with other systems.
  • necessary data exchange is performed with a system other than the dynamic equipment management system of the present invention, for example, a work management system, and the equipment maintenance application server 9 can cope with it. .
  • a system other than the dynamic equipment management system of the present invention for example, a work management system
  • the equipment maintenance application server 9 can cope with it.
  • providing the facility maintenance application server 9 is not an essential element of the present invention.
  • plug and play that automatically sets the equipment management system or equipment maintenance system when a measuring device for acquiring equipment management data is added.
  • Target When attaching a measuring device, the following operations and functions are added in the equipment management system or equipment maintenance system.
  • the equipment management data is also referred to as equipment maintenance data in the equipment maintenance system of the present embodiment.
  • a measuring device is attached to a management target facility which is a measurement target.
  • the management target facility is the circuit breaker 1A
  • the measuring device is the sensor 2A.
  • a communication path between the sensor 2A and the measuring device reader 5A is installed and set.
  • an object for taking in the signal from the sensor 2A into an appropriate data format is generated and sent to the measuring device reader 5A.
  • iv) Based on the data obtained from the sensor 2A, prepare the data format necessary for each maintenance work and add an object with an associated information processing function to the data management device 7 or the equipment maintenance application server 9. change.
  • the sensor 2A which is a measuring device
  • the circuit breaker 1A which is the measurement target
  • the measuring device reader 5A which is a portion that reads the measuring device, is physically and wired or wirelessly used. If the connection is established, the facility management system performs the remaining settings automatically and reliably. That is, if the above i) and ii) are performed manually, the above iii) and iv) are automatically performed.
  • the addition of the sensor 2, which is a measurement device as described above, is classified into the following three types depending on whether the measurement device and related data are already used.
  • the dynamic equipment management system of this embodiment is the sensor 2A as a measuring device which acquires the information of the circuit breaker 1A as a target equipment handled by the system, and the sensor 2A as the measuring device directly or through the communication network 4.
  • Measuring device reader 5A as a lower-level device that inputs and outputs signals via, and upper level that inputs and outputs signals directly or via communication network 6 with measuring device reader 5A as the lower-level device
  • a data management device 7 as a device of the above and a directory server 3 that inputs and outputs signals between the measurement device reading device 5A as a lower level device and the data management device 7 as a higher level device.
  • class name Item of target facility information handled by the system acquired by the device
  • Class information for each class including the name of the instance to be created, instance name, location of the instance, instance information for each instance including the class name, class name corresponding to higher-level equipment management data, and higher-level equipment management Class name corresponding to lower-level equipment management data used to generate data, usage of lower-level equipment management data to generate higher-level equipment management data, class corresponding to higher-level equipment management data
  • inter-class relations including the names of relation instances generated in association with classes corresponding to lower-level equipment management data, and the names of instances placed in higher-level equipment, placed in lower-level equipment Instance for each relationship instance that contains the name of the instance being
  • the measurement device reading device 5A as the device detects that the sensor 2A as the measurement device is connected ⁇ Function 1>, and the purpose of connecting the measurement device as an item of information on the type of the measurement device and the target equipment handled by the system Is transmitted to the directory server 3 as a lower-level device ⁇ Function 2>, and the directory server 3 connects the measuring device as an item of information on the type of the measuring device and the target equipment handled by the system.
  • the instance is created by referring to the class information based on the purpose and ⁇ function 3>, and the instance created by searching the instance information is If it does not exist, it is registered and a relationship instance is created by referring to the relationship between classes and registered ⁇ function 4>, and the created instance is transferred to a lower level device or a higher level device based on the relationship between instances.
  • ⁇ Function 5, Function 6> and ⁇ Function 7, Function 8, Function 9> for exchanging equipment management data between instances based on the inter-instance relationship.
  • FIG. 3 shows the basic configuration of a dynamic facility management system having the plug and play function of the present invention.
  • the upper level and the lower level in FIG. 3 correspond to and correspond to the upper level and the lower level in the four-layer system architecture shown in FIG. Specifically, for example, the upper level is level 1.5 and the lower level is level 1.
  • Plug and play module Deploys an instance of an information model in a dynamic equipment management system to enable management and processing of equipment management data. In FIG. 3, it is expressed as PnP.
  • Directory server Manages data necessary to implement plug and play.
  • Information model Manages and processes equipment management data.
  • Data update module Collects facility management data from lower-level information models and inputs them into appropriate information models.
  • an information terminal is provided as the measuring instrument reading device 5 ⁇ / b> A
  • a substation server is provided as the data management device 7
  • a maintenance server is provided as the facility maintenance application server 9.
  • the directory server 3 is connected to the communication network 8, and data signals and command signals are transmitted / received via the communication network 8.
  • a PC is used as the directory server 3 specifically.
  • the data management device 7 is the first device
  • the directory server 3 is the second device.
  • NCT an abbreviation of Network Computing Terminal
  • Plug and Play Module (4-1) Functional Specification of Plug and Play System A plug and play module does not realize a necessary function by itself, but a plurality of plug and play modules or directory services By implementing the above, PnP of the software module based on the information model is realized.
  • An information model is a set of software module specifications based on object-oriented power distribution facilities and related items.
  • IEC International Electrotechnical Commission
  • the IEC 61850 information model (IEC, “Communication” network “and” systems “for” power “utility” “automation”-“Part7-4”) is considered to be used mainly for substation monitoring and control systems.
  • an information model is used for the purpose of ensuring functionality and maintainability by making use of the features of object-oriented technology.
  • Functionality means “the ability of a software product to provide functions that meet explicit and implicit needs when the software is widely used under specified conditions”.
  • the ability of the software product to be amenable to modification which may include correcting or improving, or adapting the software to changes in the environment, changes in requirements, and changes in functional specifications ”(JIS X0129). See).
  • the information model object provides a method, and the application uses the information model object by calling the method. At this time, the mechanism is such that the position of the object is not conscious of the difference between the case where it is in the same device as the application and the case where it is in a remote device.
  • the details of the information model of the present invention will be described later in (6).
  • the behavior of the entire plug-and-play function according to the present invention will be described in chronological order by taking, as an example, cases when the sensor 2A is connected to the measuring device reader 5A and when it is removed. To do.
  • the circuit breaker of the substation 1 is monitored as a target facility to be handled by the system, that is, a management target facility, and the current passing through the circuit breaker and the pallet switch operation signal are monitored.
  • a target facility to be handled by the system that is, a management target facility
  • the current passing through the circuit breaker and the pallet switch operation signal are monitored.
  • the case of managing the number of times will be described as an example.
  • the sensor 2 ⁇ / b> A is connected to the measurement device reader 5 ⁇ / b> A via the measurement device network 4.
  • the measuring instrument reading device 5A corresponds to the “lower level” device in FIG. 3
  • the substation server 7 corresponds to the “upper level” device
  • the directory server 3 corresponds to the “directory server”.
  • the attachment of the sensor 2A is detected by the plug and play module 5a of the measuring device reader 5A.
  • the type information of the sensor 2A is given by the operator as an input to the plug and play module 5a. This process is represented by reference numeral 11 in FIG.
  • the plug-and-play module 5a of the measuring device reader 5A notifies the plug-and-play module 3a of the directory server 3 that the sensor 2A has been attached, and the type of the attached sensor 2A and the sensor attachment. Inform about the purpose and location of the sensor.
  • This process is represented by reference numeral 12 in FIG.
  • the purpose of attaching the sensor is identified with reference to the relationship between classes.
  • the type of sensor 2A is a pallet switch
  • the purpose of attachment is the cumulative number of circuit breaker operations
  • the installation location is the circuit breaker of substation 1.
  • the circuit breaker is also expressed as “CB” or “CB1”.
  • the plug and play module 3a of the directory server 3 searches the directory 3b in the directory server 3 based on the given information, extracts a necessary class file, and generates an instance from the class, that is, the information model class. And execute instantiation.
  • the contents of this processing are shown in FIG. 6, and in FIG. 6, “generated instance” in “class information” represents the name of the generated instance.
  • the “class name” in the “class information” in the figure corresponds to the item of information on the target equipment handled by the system, that is, the management target equipment, and is connected to the sensor described later. This also applies to monitoring items and measurement items as installation purposes.
  • the solid-line ellipse represents the “complete state”, that is, an instance in which the facility management data is being processed, and the broken-line arrows indicate the flow of the facility management data.
  • the subtree is a broken line portion in FIG.
  • an instance “pallet switch 1” corresponding to ⁇ level 1> and an instance “CB cumulative operation count 1” corresponding to ⁇ level 2> are generated.
  • the plug and play module 3 a registers the generated instance information in the directory 3 b of the directory server 3.
  • the substation 1 is expressed as “SSA”
  • the circuit breaker is expressed as “CB1”
  • the directory server 3 is described as “DB1”.
  • Step 4- It is determined in which computer the instance generated by the plug and play module 3a of the directory server 3 is to be placed.
  • the contents of this process are shown in FIGS. 8 and 9, and in FIGS. 8 and 9, “location” in “instance information” represents the location of the instance.
  • the solid-line ellipse represents an “complete state”, that is, an instance in which the facility management data is being processed. This determination of the arrangement is performed, for example, by inputting what is designated by the operator as an arrangement place of each instance to the plug and play module 3a. This process is represented by reference numeral 18 in FIG.
  • the generated instance is delivered to the plug and play module of each computer designated from the plug and play module 3a of the directory server 3.
  • the instance “pallet switch 1” is delivered to the plug and play module 5a of the measuring device reader 5A as indicated by reference numeral 13 in FIG.
  • the instance “CB cumulative operation count 1” is delivered to the plug and play module 7 a of the substation server 7.
  • the measuring instrument reading device 5A is described as “NCT1” in the “location” of “instance information” in FIG. 8, that is, the location of the instance, and the substation server 7 is shown in FIG. In the “location” of “instance information”, that is, the location of the instance, “SSA” is indicated.
  • the transmission of each instance from the plug-and-play module 3a of the directory server 3 to the plug-and-play module 5a of the measuring device reader 5A and the plug-and-play module 7a of the substation server 7 is, for example, an abbreviation of RMI (Remote Method Invocation). ) Is used.
  • RMI Remote Method Invocation
  • the plug-and-play module 3 a registers the location of each instance in the directory 3 b of the directory server 3.
  • the plug-and-play module that has accepted the instance searches the data update module for information necessary for data update from the directory 3b in the directory server 3 and passes the information.
  • the information necessary for this data update is the information represented by the relationship instance of the inter-instance relationship. Specifically, the instance that provides the data, its getter, and the instance that stores the data That is a setter. Details of the data update module will be described later in (7). Thereafter, the data of the object instance that handles the management information is updated in accordance with the content of the postscript (7) at a preset cycle or whenever a state change occurs.
  • the data update module is arranged in the data management device 7 or the facility maintenance application server 9.
  • the “data receiving side” in the “inter-class relationship” in the figure represents the class name corresponding to the higher-level facility management data and the “data transmitting side” Represents the class name corresponding to the lower-level equipment management data used to generate the upper-level equipment management data
  • “Detailed Relationships” represents the lower-level equipment management for generating the upper-level equipment management data.
  • Data usage is represented, and “generation instance” represents the name of a relation instance generated in association with a combination of a class corresponding to higher-level equipment management data and a class corresponding to lower-level equipment management data.
  • “Received instance name” in “Relationship between instances” in the figure represents the name of an instance placed in a higher-level device, and “Transmission instance name” represents the name of an instance placed in a lower-level device. .
  • the “data transmission side” in the “inter-class relationship” in FIG. 6 is a class on the side that transmits equipment management data
  • the “data reception side” is a class on the side that receives equipment management data.
  • the state of the pallet switch from the “pallet switch” class that is, ON / OFF is sent to the “CB cumulative operation count” class.
  • “transmission instance name” in “instance relation” in FIG. 6 is an instance on the side of sending equipment management data
  • “reception instance name” is an instance on the side of receiving equipment management data.
  • “CB cumulative operation count calculation 1” in the “relationship between instances” table means that the “pallet switch 1” instance is sent to the “CB cumulative operation count 1” instance.
  • the plug-and-play module 5a of the measuring device reader 5A notifies the plug-and-play module 3a of the directory server 3 that the sensor 2A has been removed, and the instance name and device corresponding to the removed sensor 2A. Inform about the name and. This process is represented by reference numeral 16 in FIG.
  • the plug-and-play module 3a of the directory server 3 searches the level tree by the instance, and recursively states the state of the instance of the level 1.5 or higher where all necessary data is not obtained by deleting this sensor instance. Write to the directory 3b as an "incomplete" state.
  • the contents of this processing are shown in FIG. 12 and FIG. 13.
  • the solid-line ellipse represents an instance of “complete state” in which the facility management data is being processed
  • the broken-line ellipse is An instance of “incomplete state” in which the facility management data is not processed is represented, and a dashed arrow indicates the flow of the facility management data).
  • the plug and play module 3a of the directory server 3 instructs the plug and play module of the device having the sensor instance to delete the sensor instance, and the plug and play module that receives the instruction deletes the instance. .
  • This process is represented by reference numeral 17 in FIG.
  • the device having the sensor instance is the measuring device reader 5A
  • the plug and play module is an element represented by reference numeral 5a.
  • Table 1 shows which device realizes each function by a plug-and-play module that operates.
  • the horizontal axis represents a plug and play module that operates in each device.
  • FIG. 15 shows a place where each function described in Table 1 is realized in the system of the present invention.
  • Function group A This function is realized by the plug-and-play module 5a of the measuring device reader 5A, and is specifically as follows.
  • ⁇ Function 10> Detection of sensor removal It is detected that the sensor 2A has been removed.
  • ⁇ Function 8> Reflecting the device monitoring data to the information model instance The device monitoring calculation result is reflected to the information model instance of the measuring device reading device 5A which is the measuring device reading device as needed.
  • Function group B This function is realized by the plug and play module 3a of the directory server 3, and is specifically as follows.
  • ⁇ Function 3> Generation of information model instance Processing is performed according to the following steps.
  • -Step 1 By the function of “ ⁇ Function 2> Notification of sensor connection”, from the plug and play module 5a of the measuring device reader 5A, “type of sensor”, “purpose of sensor connection (mounting purpose)”, “main machine to be monitored” Name (sensor installation location) ".
  • -Step 2- Referring to “class information” in the directory 3 b of the directory server 3, information model classes corresponding to “sensor type” and “purpose of attaching sensor (attachment purpose)” are found, and information model instances thereof are generated. .
  • -Step 3- Search the directory 3b for "relationship between classes” information, find entries whose "purpose of sensor connection (installation purpose)" is a higher-level class, and generate object instances for all lower-level classes To do.
  • ⁇ Function 4> Association between information model instances Processing is performed according to the following steps. -Step 1 The “instance information” in the directory 3b of the directory server 3 is searched to check whether an instance identical to the instance generated by the function “ ⁇ function 3> generation of information model instance” exists. If it exists, the instance generated in ⁇ Function 3> is deleted, and if it does not exist, it is registered. -Step 2- Instantiate the inter-class relation entry found in step 3 of ⁇ Function 3>, in other words, create a relation instance while referring to the inter-class relation and register it in the "instance relation" table.
  • a file describing the location of each information model instance is placed in advance in the location information management unit 3c of the directory server 3, and according to this content Determine the delivery destination of the information model instance.
  • ⁇ Function 12> Updating information of related information model instance Processing is performed according to the following steps. -Step 1
  • the “inter-instance relationship” table in the directory 3b of the directory server 3 is searched to find an entry in which the sensor instance to be deleted is in “lower level”, and the state of the upper level instance is set to “incomplete”.
  • -Step 2- In the above, an entry whose upper level instance is in the “lower level” is found, and if found, the upper instance is made “incomplete”. This is repeated recursively.
  • Function group C This function is realized by the plug-and-play module 7a of the substation server 7 and the plug-and-play module 9a of the maintenance server 9, and is specifically as follows.
  • ⁇ Function 9> Retrieval of relationship between information model instances ⁇ Notification to data update module Processing is performed according to the following steps.
  • -Step 1 The “inter-instance relation” table in the directory 3 b of the directory server 3 is searched, and an entry in which the information model instance held by itself is registered as “upper-level instance” is searched.
  • -Step 2- When there is an entry satisfying the condition of step 1, the following information is notified to the data update module. 1) Lower instance URL and getter name for acquiring lower instance data 2) Upper instance URL and setter name to which the lower instance data is passed 3) RPC (abbreviation of Remote Procedure Call) such as RMI Method 4) If it is necessary to specify parameters related to the above RPC method, the parameters
  • Information shown in Table 2 is registered in the directory 3b of the directory server 3 as information of the inter-class relationship table.
  • Table 3 the information shown in Table 3 is registered in the directory 3b of the directory server 3 as information of the inter-instance relationship table.
  • CB1 represents a circuit breaker.
  • Table 4 the information shown in Table 4 is registered in the directory 3b of the directory server 3 as information in the instance information table. Note that “XXX” in Table 4 represents a parameter when it is necessary to specify a parameter related to advanced communication.
  • the plug and play function extracts the information shown in Table 5 and passes it to the data update module.
  • the system according to this embodiment complies with the following specifications. 1)
  • the argument of the method “getter” that acquires data from the lower-level information model instance is only the time.
  • the getter returns data after the time passed in the argument.
  • the timing to acquire data from the lower level information model instance is left to the data update module. 3)
  • each getter process and setter process is executed for each data.
  • Function group D This function is realized by a plug-and-play module other than the directory server 3, and is specifically as follows.
  • the plug-and-play modules here are represented by reference numerals 5a, 7a, 9a.
  • the plug-and-play module 3a of the directory server 3 transmits the information model instance to the designated plug-and-play module at the placement destination.
  • the plug-and-play module 5a of the measurement device reader 5A remotely calls the method of the plug-and-play module 3a of the directory server 3 with "sensor type" as an argument.
  • ⁇ Function 13> Deletion of corresponding information model instance Processing is performed according to the following steps. -Step 1 Make the method of the instance that received the instruction not callable from the outside. -Step 2- The plug-and-play module 3a of the directory server 3 issues a deletion instruction, and the plug-and-play module 5a of the measuring device reader 5 that receives the instruction deletes the instance reference. Also, garbage collection is executed.
  • Function group F This function is realized by a plug-and-play module other than the measuring instrument reader 5, and is specifically as follows.
  • the plug-and-play modules here are represented by reference numerals 3a, 7a, 9a.
  • ⁇ Function 14> Transition to Incomplete State Based on the information of the information model instance updated in ⁇ Function 12>, the instance in the measuring device reader, substation server, and maintenance server is shifted to the incomplete state. The instance that has entered the incomplete state stops data collection and processing. Note that data stored in the instance can be read.
  • the directory service is a service that operates on the directory server 3.
  • a plug-and-play function that operates in an equipment management system and a function that registers / searches / deletes information required by an application are provided.
  • Class information represents information related to “class” in the information model. Specifically, for example, the information is managed in a table format shown in Table 6. Note that “xxxx” in Table 6 represents an arbitrary character string constituting the URL.
  • the “class” is realized as a Java (registered trademark) class.
  • the meaning of each item in Table 6 is as follows. 1) Class name (key): Name of class 2) Item name: Name of maintenance data item 3) URL: URL as the location where class files are stored 4) List of instance names: List of names of instances generated from the class
  • the class name is obtained from the class file name of the object of the equipment management system
  • the item name is obtained from information stored in the class file
  • the URL as the location stores the class file.
  • the instance name list obtained from the URL is added each time an instance is generated from the class.
  • the class name and location are automatically generated upon detection that the class file has been saved, or are directly input by the operator.
  • the instance name list is added during the instance generation process.
  • Inter-class relationship expresses how lower-level equipment maintenance data is used to generate higher-level equipment maintenance data. Specifically, for example, the information is managed in a table format shown in Table 7.
  • An example of “a function for calculating higher-level equipment maintenance data” in Table 7 is a setter method name, and the actual equipment maintenance data is calculated in the setter method.
  • Equation 1 means upper level equipment maintenance data, (x1, x2, x3,%) Means lower level equipment maintenance data, and f means a function for calculating upper level equipment maintenance data.
  • Formula 1 means that the higher-level equipment maintenance data and the lower-level equipment maintenance data can have a plurality of inputs and a plurality of outputs, respectively.
  • y f (x1, x2, x3,%)
  • Instance information expresses information related to "instance" in the information model. Specifically, for example, the information is managed in a table format shown in Table 8. In Table 8, “xxx” represents an arbitrary character string.
  • “instance” is realized by an instance of Java (registered trademark).
  • the meaning of each item in Table 8 is as follows. 1) Instance name (key): Name of instance 2) URL: URL as the location where the instance is stored 3) Monitored equipment name: Name that identifies the main machine being monitored, here, the circuit breaker, that is, the installation location of the measuring equipment.
  • Class name Name of the base class
  • Complete / Incomplete Distinguishing whether or not all the equipment maintenance data at its lower level is available 6)
  • List of reference application names List of names of applications that refer to the instance 7)
  • RPC method Specify whether the method for remotely calling the method of the information model instance is RMI or another method 8)
  • RPC method parameters Parameters passed to the communication function when it is necessary to specify parameters according to the remote method invocation method
  • Inter-instance relationship An inter-instance relationship, strictly speaking, a relationship instance of an inter-instance relationship, represents a method of actually exchanging data between instances. Specifically, for example, the information is managed in a table format shown in Table 9.
  • the information model that handles maintenance information uses an IEC 61850 information model and a common information model (abbreviation of CIM: Common Information Model) for each layer shown in the system architecture. Specifically, an information model of IEC 61850 is used at levels 1 and 1.5, and a common information model is used at levels 2 and 3.
  • CIM Common Information Model
  • an interface defined by a standard for example, IEC 61850, uses ACSI (abbreviation of Abstract, Communication, Service, and Interface), or a method defined uniquely.
  • ACSI abbreviation of Abstract, Communication, Service, and Interface
  • one logical node is composed of three classes: level-specific class / interface / implementation class.
  • FIG. 19 shows definition of an object class corresponding to an information model responsible for processing such as SCBR, which is a logical node for diagnosing a circuit breaker, that is, a contact wear rate of the circuit breaker.
  • SCBR three object classes of LV1_5, SCBR_IF, and SCBRImpl are used. Each corresponds to a level-specific class, an interface, and an implementation class.
  • ⁇ LV1_5> is an object class that defines the characteristics of all logical nodes placed at level 1.5.
  • a calculateData method for processing facility maintenance data for example, calculating a contact point wear rate of a circuit breaker, is prepared as a virtual method in a logical node arranged at level l.5.
  • Virtual methods do not define the processing entity in the upper class, define the processing of the method with the same name in the class derived from this class, and call the derived class by calling the method for the upper class. It is a function of the object-oriented technology that makes it possible to call the method.
  • ⁇ SCBR_IF> defines a method accessible from an external software module.
  • the external software module refers to an information model, a data update module, or the like located at a different level.
  • the external software module refers to an information model, a data update module, or the like located at a different level.
  • three types of getters for providing facility maintenance data to an external software module and three types of setters for registering data from the outside are prepared.
  • the functions seen from the caller side are as follows.
  • ⁇ Getter> Specify time as a parameter. Each method returns equipment maintenance data after this time.
  • the equipment maintenance data is arranged in time order.
  • the type of equipment maintenance data is the corresponding common data class. 1) getActAbrCoef: Gets the value of contact wear rate. 2) getPos: Acquires the position of the switchgear, specifically, on / open / switching. 3) getTripA: Get the value of the breaking current.
  • ⁇ Setter> Specify the array of equipment maintenance data to be saved as a parameter. Returns the time of the newest saved equipment maintenance data.
  • the B contact is a contact that turns ON when the circuit breaker is open.
  • setTripA Saves the instantaneous value of the breaking current.
  • ⁇ SCBR_IF> is an interface and does not have a specific processing procedure.
  • ⁇ SCBRImpl> which is an implementation class, defines the specific processing procedure of the methods defined in ⁇ LV1_5> and ⁇ SCBR_IF>. That is, the implementation class has a relationship of implementing ⁇ SCBR_IF> by inheriting ⁇ LV1_5>. If different processing methods are defined or used together, it is possible to define another object class that implements ⁇ SCBR_IF> by inheriting ⁇ LV1_5>, for example, ⁇ SCBRImpl2>. Even in this case, since the external software module sees ⁇ SCBR_IF>, it is not necessary to modify the external software module.
  • Data update module The plug and play function of the present invention collects facility management data based on a polling method.
  • the data update module is responsible for this collection process.
  • the polling method is simple to set, and more specifically, it is sufficient to know the object that holds the data to be collected by the data update module and the object that should store the data, so that the centralized management is possible.
  • the polling method periodically collects data, there is no immediate response to state changes, but this response is strongly required if it is used to determine management work etc. based on data obtained as a result of calculation. It is not a big problem.
  • the data update module is stored in all levels of ⁇ level 1.5> or higher in the four-layer system architecture.
  • Fig. 20 shows the internal structure of the data update module.
  • the data update module consists of the following three aspects.
  • Inter-instance relationship management information from which information model is collected and where it is stored is managed in a list structure. This process is described in “(5) Relationship between instances in directory server” described above. As the inter-instance relationship, strictly speaking, the relation instance of the inter-instance relationship, all the following information is stored as a character string. In the following, the right side of the colon is an example of data.
  • TCTR is an object corresponding to a current sensor, and has a function of managing and providing a current sampling value and the like.
  • the SCBR is an object that manages overall maintenance information of the circuit breaker, and in the case of this embodiment, has a function of processing, managing, and providing a contact wear rate value.
  • SAV is a data type representing sampling data, and a current sampling value in TCTR is represented using this SAV.
  • Getter call time management a character string combining the information source instance URL and the getter method name is used as a key, and the corresponding times are managed as a pair.
  • the time is the value returned by the setter method of the save destination instance. Thereby, the time range of data to be collected from the lower level can be specified.
  • UML abbreviation of unified modeling language
  • OMG abbreviation of Object Management Group
  • Processing contents related to collection and storage of equipment management data by the collection thread are as follows. First, the head of the inter-instance relation list is referred to (S1), and it is determined whether or not the next inter-instance relation exists (S2). If the next inter-instance relationship exists (S2: Y), the next inter-instance relationship data is acquired (S3).
  • the information source instance “getter” is called to acquire the equipment management data (S5).
  • the getter call time of the latest data acquired from the getter call time management in other words, the corresponding getter call time is acquired, and this is specified as the parameter of the getter method (S4).
  • the collection thread Since all the inter-instance relation data is a character string, the collection thread has a mechanism for calling a method based on this information. Specifically, for example, it is conceivable to realize this mechanism using reflection. Reflection is a technology that reads or rewrites the structure of a program itself during the execution of the program. That is, reference data on a program can be acquired from the name of a method, specifically, a character string.
  • Java registered trademark
  • C # Perl
  • Objective-C and the like exist as languages that support reflection.
  • the facility management data acquired in the process of S5 is stored in the storage destination instance indicated in the inter-instance relationship through calling the setter method (S6).
  • the time received as the return value of the setter method is used to update the corresponding getter call time in the getter call time management (S7).
  • the above processing is repeatedly executed for each data stored in the inter-instance relationship management (S1, S2: Y, S3 to S7). Each time the process returns from the process of S7 to the process of S2, the process target of S2 in the inter-instance relation list is advanced one by one.
  • the facility management data is processed in the storage destination instance, for example, the contact point wear rate of the circuit breaker
  • the calculateData method of the save destination instance is called (S8). Thereafter, the process is resumed by returning to the first inter-instance relationship (after S1).
  • the directory server 3 automatically generates an instance based on the type of measuring device and the like, and the inter-instance relationship related to the generated instance is represented by the directory server. 3), when installing / removing various measuring devices to / from the target equipment handled by the system, that is, the management target equipment, the related software is automatically set in the system, and the status monitoring can be performed quickly and easily. Can start.
  • the data update module can cope with the notification of only the names of the classes and methods by making all the inter-instance relation data into character strings. Therefore, even when a new measuring device is connected and a new class is introduced into the system, there is an advantage that it is not necessary to modify the data update module and it is not necessary to stop the system.
  • a circuit breaker of a substation as a power distribution facility is a target facility to be handled by the system, that is, a management target facility, and a passing current of the circuit breaker and a pallet switch operation signal are measured by a sensor as a measuring device.
  • a sensor as a measuring device.
  • the case of managing the cutoff current and the number of operations of the pallet switch has been described as an example.
  • the types of target equipment and measurement equipment handled by the system are not limited to those of the above-described embodiment.
  • the target equipment may be handled, or an ammeter, a voltmeter, a hydraulic gauge, a gas pressure gauge, or a thermometer may be used as a measuring device. Furthermore, the target equipment handled by the system may not be power distribution equipment.
  • the object class of IEC 61850 is used since the power distribution facility is taken up as the target facility handled by the system. However, when the present invention is applied to other than the power distribution facility, for example, the original class is used. Use the object class defined in.
  • the directory server 3 and the maintenance server 9 are represented as separate devices, but the directory server and the maintenance server may be integrated as a device configuration. Specifically, for example, both may be configured by a single PC.

Abstract

 本発明に係る動的設備管理システムは、監視・維持・保全対象設備への各種計測機器の取り付けや取り外しに際し、関連するソフトウェアが設備管理システム内で自動的に設定され、状態監視を迅速且つ簡便に開始することができるようにするものであり、計測機器としてのセンサ2Aが接続されたときに、計測機器の種別と計測機器を接続した目的とを下位レベルの装置としての計測機器読取装置5Aがディレクトリサーバ3に伝送し、当該ディレクトリサーバ3がクラス情報を参照してインスタンスを生成すると共にクラス間関係を参照して関係インスタンスを生成して登録し且つ生成したインスタンスをインスタンス間関係に基づいて関係装置に送信し、そして、インスタンス間関係に基づいてインスタンス同士で設備管理データを交換するようにしている。

Description

動的設備管理システム
 本発明は、動的設備管理システムに関する。さらに詳述すると、本発明は、対象設備の監視や維持や保全等のための状態把握を行って設備管理に用いる情報を収集・活用するシステムに適用して好適な技術に関する。
 変圧器や開閉器などの電力流通設備においては、運転開始後30年以上経過する高経年化した設備の割合が増加している。また、年間に実施できる工事件数にも限りがあり、同時期に多数の設備等を一斉に更新することは不可能な状況にある。このため、高経年設備を安定的に維持し、経済性を考えて効率的に運用することが課題になっている。このような課題を克服するため、状態監視保全(CBM:Condition Based Maintenance の略)や信頼性重視保全(RCM:Reliability Centered Maintenance の略)等の手法の導入が進んでいる。これらの手法を実施する際には、運転している電力流通設備の状態把握が必要となる。このため、設備保全に用いる種々の情報を収集・活用するシステムが重要な役割を担う。本発明では、このようなシステムを設備保全システムと呼ぶ。また、設備保全に用いる種々の情報のことを保全情報或いは設備保全データとも呼ぶ。
 設備保全システムにおいては、状態監視保全等が必要になった段階で、設備保全に用いる情報を収集・活用する仕組みが迅速且つ簡便に構築できることが求められる。これは、設備保全システムを構成するセンサや情報通信機器の寿命が10年程度若しくはそれ以下と短いために監視・保全対象設備に故障が発生しにくい時期に常設してもコスト的に見合わないので、平常時には最小限のセンサで状態を収集するようにして予兆が見られる段階或いはバスタブ曲線におけるランダム破壊段階から劣化破壊段階に移行する付近でセンサを追加するようにすれば費用対効果を高めることが期待できることなどに基づく。
 このため、監視・保全対象設備へのセンサの取り付けや取り外しに際し、設備保全データの収集・管理・処理を行うソフトウェアが設備保全システム内で自動的に設定され、状態監視を迅速且つ簡便に開始できることが望ましい。このような自動設定機能を本発明ではプラグアンドプレイと呼び、PnPとも表記する。本発明者らは、このようなPnPを実現するために情報モデルに基づく設備保全システムの検討を行ってきた。情報モデルは、保全情報を処理・交換するものであってソフトウェアモジュールの一種であるオブジェクトの設計図に相当する。オブジェクトというモジュールを扱えるようにすることで、PnPにおける組合せの単位を明確にすることができる。
 そして、上述の設備保全システムを含む、対象設備の監視や維持や保全等を行う設備管理システムにおいては、複数のオブジェクトを相互に関連づける必要があり、さらに、関連するオブジェクト同士が通信ネットワークを経由して保全情報・設備保全データなどの設備管理に用いる種々の情報の収集と管理と処理とを行う必要がある。本発明では、このような、複数のオブジェクトが相互に関連づけられると共にこれら関連づけられたオブジェクト同士が状況に自律的に対応しながらデータ等の収集・管理・処理を行うシステムのことを動的設備管理システムと呼ぶ。また、設備管理に用いる種々の情報のことを設備管理データとも呼ぶ。
 通信ネットワークへの接続に関する従来の技術としては、Universal Plug and Playがある(特許文献1)。なお、Universal Plug and PlayのことをUPnPと表記する。
特開2007-188255号
 しかしながら、UPnPでは、通信ネットワークに接続した装置に対するIPアドレス取得,装置検出,装置が提供する機能の情報提供はできても、設備管理データの収集や処理に関する手順やオブジェクト間関連の情報をどのように整理し、提供するかというところまではカバーされていないという問題がある。このため、本発明が対象とするような設備管理システムにおいて状態監視保全等が必要になった段階で設備管理に用いる情報を収集・活用する仕組みが迅速且つ簡便に構築できる、言い換えると、監視・維持・保全等を行う管理対象設備への各種計測機器の取り付けや取り外しに際して関連するソフトウェアが設備管理システム内で自動的に設定されて状態監視を迅速且つ簡便に開始することができるとは言い難い。
 そこで、本発明は、監視・維持・保全対象設備などのシステムが取り扱う対象設備への各種計測機器の取り付けや取り外しに際し、関連するソフトウェアが設備管理システム内で自動的に設定され、状態監視を迅速且つ簡便に開始することができるプラグアンドプレイ型の動的設備管理システムを提供することを目的とする。
 かかる目的を達成するため、本発明の動的設備管理システムは、システムが取り扱う対象設備の情報を取得する計測機器との間で信号の入出力を行う計測機器読取装置と、当該計測機器読取装置との間で信号の入出力を行う第一の装置と、ソフトウェアの集合を有すると共に第一の装置との間で信号の入出力を行う第二の装置とを備え、計測機器が計測機器読取装置に接続されたときに、計測機器の情報を基にシステムに必要となるソフトウェアを第二の装置が決定し、当該ソフトウェアを第二の装置から第一の装置と計測機器読取装置とに送信するようにしている。
 したがって、この動的設備管理システムによると、システムとして必要になるソフトウェアの決定と関係装置への送信とを第二の装置が自律的に行うようにしているので、システムが取り扱う対象設備即ち管理対象設備への各種計測機器の取り付けや取り外しに際し、関連するソフトウェアがシステム内で自動的に設定され、状態監視が迅速且つ簡便に開始される。
 また、本発明の動的設備管理システムは、システムが取り扱う対象設備の情報を取得する計測機器と、当該計測機器と直接若しくは通信網を介して信号の入出力を行う下位レベルの装置と、当該下位レベルの装置と直接若しくは通信網を介して信号の入出力を行う上位レベルの装置と、下位レベルの装置及び上位レベルの装置との間で信号の入出力を行うサーバとを備え、計測機器によって取得されるシステムが取り扱う対象設備の情報の項目(以下、クラス名という),当該クラス名に対応させて生成されるインスタンスの名前を含むクラス毎のクラス情報と、インスタンスの名前,インスタンスの配置場所,クラス名を含むインスタンス毎のインスタンス情報と、上位レベルの設備管理データに対応するクラス名,上位レベルの設備管理データを生成するために使われる下位レベルの設備管理データに対応するクラス名,上位レベルの設備管理データを生成するための下位レベルの設備管理データの使い方,上位レベルの設備管理データに対応するクラスと下位レベルの設備管理データに対応するクラスとの組み合わせに対応させて生成される関係インスタンスの名前を含むクラス間関係と、上位レベルの装置に配置されるインスタンスの名前,下位レベルの装置に配置されるインスタンスの名前を含む関係インスタンス毎のインスタンス間関係とをサーバに格納し、計測機器が下位レベルの装置若しくは下位レベルの装置との間で信号の入出力を行う通信網に接続されたときに、計測機器の種別とシステムが取り扱う対象設備の情報の項目としての計測機器を接続した目的とを下位レベルの装置がサーバに伝送し、当該サーバが、計測機器の種別とシステムが取り扱う対象設備の情報の項目としての計測機器を接続した目的とに基づいてクラス情報を参照してインスタンスを生成し、インスタンス情報を検索して生成したインスタンスが存在していない場合には登録すると共にクラス間関係を参照して関係インスタンスを生成して登録し、生成したインスタンスをインスタンス間関係に基づいて下位レベルの装置や上位レベルの装置に送信し、そして、インスタンス間関係に基づいてインスタンス同士で設備管理データを交換するようにしている。
 また、本発明の動的設備管理システムは、計測機器が下位レベルの装置若しくは下位レベルの装置との間で信号の入出力を行う通信網から取り外されたときに、当該取り外された計測機器に対応するものとして生成されたインスタンスの名前を下位レベルの装置がサーバに伝送し、当該サーバが所定のインスタンスについて設備管理データの処理を行っていない状態に移行させるようにインスタンス情報を更新すると共に取り外された計測機器に対応するインスタンスの削除を下位レベルの装置に指示し、当該下位レベルの装置が取り外された計測機器に対応するインスタンスを削除し、さらに、インスタンス情報に基づいて上位レベルの装置とサーバとが取り外された計測機器に対応するインスタンスについて設備管理データの処理を行っていない状態に移行させるようにしている。
 したがって、これらの動的設備管理システムによると、サーバが計測機器の種別などに基づいてインスタンスを生成して関係装置に送信すると共に当該インスタンスに係る関係インスタンスを生成しサーバに登録してインスタンス同士で設備管理データを交換するようにしているので、システムが取り扱う対象設備即ち管理対象設備への各種計測機器の取り付けや取り外しに際し、関連するソフトウェアがシステム内で自動的に設定され、状態監視が迅速且つ簡便に開始される。
 また、本発明の動的設備管理システムにおいて、システムが取り扱う対象設備が変電所の遮断器であると共に、計測機器が遮断器の通過電流とパレットスイッチ動作信号とを情報として取得するセンサであるようにすることにより、電力流通設備の設備保全システムとして機能させることができる。
 また、本発明の動的設備管理システムにおいて、関係インスタンスのデータが全て文字列であるようにしている。この場合には、リフレクションを用いてインスタンス間関係の情報に基づいてメソッドを呼び出すことができる。
 本発明の動的設備管理システムによれば、システムが取り扱う対象設備即ち管理対象設備への各種計測機器の取り付けや取り外しに際し、関連するソフトウェアがシステム内で自動的に設定され、状態監視を迅速且つ簡便に開始することができるので、設備管理に用いる情報の収集・活用に纏わる作業の効率性の向上を図ることが可能になる。
 また、本発明の動的設備管理システムを電力流通設備の設備保全システムとして機能させることにより、電力流通設備の保全に用いる情報の収集・活用に纏わる作業の効率性の向上を図ることが可能になる。
本発明の動的設備管理システムの実施形態の概要を示す装置構成図である。 本発明の動的設備管理システムのシステムアーキテクチャを示す図である。 本発明の動的設備管理システムの基本構成を示す図である。 実施形態の設備管理システム/設備保全システムの概要を示す機能ブロック図である。 実施形態の設備管理システム/設備保全システムの働きを説明する機能ブロック図であり、センサが接続されたときの働きを説明する図-その1-である。 実施形態の設備管理システム/設備保全システムの働きを説明する機能ブロック図であり、センサが接続されたときの働きを説明する図-その2-である。 レベル毎のオブジェクトとそのデータフローとを説明する図である。 実施形態の設備管理システム/設備保全システムの働きを説明する機能ブロック図であり、センサが接続されたときの働きを説明する図-その3-である。 実施形態の設備管理システム/設備保全システムの働きを説明する機能ブロック図であり、センサが接続されたときの働きを説明する図-その4-である。 実施形態の設備管理システム/設備保全システムの働きを説明する機能ブロック図であり、センサが取り外されたときの働きを説明する図-その1-である。 実施形態の設備管理システム/設備保全システムの働きを説明する機能ブロック図であり、センサが取り外されたときの働きを説明する図-その2-である。 実施形態の設備管理システム/設備保全システムの働きを説明する機能ブロック図であり、センサが取り外されたときの働きを説明する図-その3-である。 レベル毎のオブジェクトと「不完全」状態への遷移を説明する図である。 実施形態の設備管理システム/設備保全システムの働きを説明する機能ブロック図であり、センサが取り外されたときの働きを説明する図-その4-である。 プラグアンドプレイ機能の配置とその間のデータ交換を説明する図である。 下位レベルのデータから上位レベルのデータを算出するイメージを説明する図である。 下位レベルのデータから上位レベルのデータを算出するイメージを説明する図である。 下位レベルのデータから上位レベルのデータを算出するイメージを説明する図である。 論理ノード「SCBR」に対応するオブジェクトクラスの定義を説明する図である。 データ更新モジュールの内部構成を説明する図である。 データ更新モジュール内の収集スレッドにおける処理フローを説明する図である。
 以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。
 本発明の動的設備管理システムは、システムが取り扱う対象設備の情報を取得する計測機器との間で信号の入出力を行う計測機器読取装置と、当該計測機器読取装置との間で信号の入出力を行う第一の装置と、ソフトウェアの集合を有すると共に第一の装置との間で信号の入出力を行う第二の装置とを備え、計測機器が計測機器読取装置に接続されたときに、計測機器の情報を基にシステムに必要となるソフトウェアを第二の装置が決定し、当該ソフトウェアを第二の装置から第一の装置と計測機器読取装置とに送信するものである。
 図1から図21に、監視・維持・保全等を行うシステムが取り扱う対象設備即ち管理対象設備として電力流通設備を取り上げ、本発明の動的設備管理システムを電力流通設備の設備保全システムに適用した実施形態の一例を示す。具体的には、本実施形態では、本発明の適用対象として電力流通設備である変電所設備の設備保全データを取得するための種々のセンサ等である計測機器が追加されたときに設備保全システムの設定を自動的に実行するプラグアンドプレイを行う場合を例に挙げて説明する。具体的には、図1に示すように、変電所1内の遮断器1Aにセンサ2B,2Cが取り付けられていると共にガス絶縁開閉装置1Bにセンサ2D,2Eが取り付けられており、これらに加え、管理対象設備としての遮断器1Aに計測機器としてのセンサ2Aを新たに取り付ける場合を例に挙げて説明する。なお、以下では、種々のセンサ等である計測機器のことを単にセンサとも適宜呼ぶ。
 なお、遮断器1Aに取り付けられている、或いは取り付けられるセンサ2A,2B,2Cの測定データは計測機器ネットワーク4を介して計測機器読取装置5Aに入力され、ガス絶縁開閉装置1Bに取り付けられているセンサ2D,2Eの測定データは各センサ2D,2Eから計測機器読取装置5Bに直接入力される。即ち、計測機器ネットワーク4を介在させることは本発明において必須の構成ではない。なお、計測機器ネットワーク4は、センサネットワークとも呼ばれるものであり、具体的には例えばZigBeeを用いて構成することが可能である。なお、以下では、各センサ2A,2B,2C,2D,2Eを区別する必要がない場合やこれらセンサ全体を指す場合には単にセンサ2と適宜表記する。なお、本発明の構成と対比すると、上述の設備保全データや上記の測定データが、システムが取り扱う対象設備の情報に該当する。また、計測機器の種別と計測機器を接続した目的としての監視項目・計測項目が、計測機器の情報に該当する。
 計測機器読取装置5A,5Bとしてはセンサ2からケーブルを介して送信された電気信号を取り込む装置や無線によって通信されている無線信号を取り込む装置が用いられる。この仕組みについては具体的には例えば、土屋武彦・庄野貴也・関口勝彦,”ネットワーク情報端末で広がる電力・電気設備監視計測”,東芝レビュー,Vol.61,No.11,pp.44-47,2006年 に説明されている。なお、センサ2から送られてくる信号としてはアナログ信号,ディジタル信号が考えられる。
 なお、本発明では、計測機器であるセンサ2としてどのような種類の計測機器を用いてどのように設置するか、また、計測機器読取装置5A,5Bとしてどのような種類の信号読取装置を用いるか、そして、計測機器であるセンサ2と計測機器読取装置5A,5Bとをどのように接続するか、については、特定のものに限定されるものではなく、システムが取り扱う対象設備即ち管理対象設備の種類や設備管理の内容などに基づいて適宜選択される。
 計測機器読取装置5A,5Bはセンサ2から送られてくる信号を設備保全システムで扱うデータ形式にして取り込む。また、計測機器読取装置5A,5Bは変電所1内の構内LAN6を通じてデータ管理装置7との間でデータ信号や指令信号等の信号の入出力を行う。ただし、計測機器読取装置5A,5Bとデータ管理装置7との間にLANなどの通信網を介在させることは必須ではなく計測機器読取装置とデータ管理装置7とを直接接続するようにしても良い。なお、本発明の構成と対比すると、データ管理装置7は第一の装置である。
 そして、センサ2から送られたデータ信号は計測機器読取装置5A,5Bを経由してデータ管理装置7に集められる。データ管理装置7は、計測機器読取装置5A,5Bから送られてきたデータを必要に応じて時系列順に整理・保存したり、複数のデータを組み合わせて新たなデータを計算したりする。データ管理装置7としては具体的には例えばパーソナルコンピュータが用いられる。
 データ管理装置7に集められて必要に応じて加工されたデータは、社内網或いはインターネット網などの通信網8を経由して設備保全アプリケーションサーバ9に伝送される。設備保全アプリケーションサーバ9は、例えば故障解析や設備状態判定などの保全の業務要素に相当する機能を提供する。設備保全アプリケーションサーバ9としては具体的には例えばPCが用いられる。なお、設備保全アプリケーションサーバ9においてどのような機能やデータを提供するかは本発明が対象とすることではなく、さらに言えば、設備保全アプリケーションサーバ9を設けること自体が本発明の必須の要素ではないし、作業管理等を行う他のシステムが連係されていても良い。
(1)設備管理システムの概要
 本発明では、全体としては、図2に示すように、4階層(レベル)のシステムアーキテクチャを想定する。各レベルの概要は以下の通りである。
<レベル1>計測機器読取部
 接続された計測機器から送られてくる信号を読み取り、ディジタルデータとして扱えるように変換し、オブジェクトに取り込む。図1に示す例の場合には、センサ2から送られてくる信号を読み取って変換するものであり、計測機器読取装置5A,5Bが対応する。
<レベル1.5>データ整理部
 上記計測機器読取部からのデータについて、監視項目或いは計測項目毎の時系列データの管理や、複数の監視項目における測定値から得られる新たな監視項目のデータ計算を行う。図1に示す例の場合には、計測機器読取装置5A,5Bの、例えば電流値などの監視項目毎の時系列データの管理や複数の監視項目における測定値から得られる新たな監視項目のデータ計算を行うものであり、データ管理装置7が対応する。
<レベル2>統計処理・異常診断部
 上記データ整理部に蓄積されているデータの例えば最大・最小値やトレンドを管理して閾値超過やトレンド変化等の異常発生が疑われる場合を抽出する。図1に示す例の場合には、設備保全アプリケーションサーバ9が対応する。ただし、前述の通り、設備保全アプリケーションサーバ9を設けることは本発明の必須の要素ではない。
<レベル3>システム連係部
 他のシステムとの間で必要なデータ交換を行う。図1に示す例の場合には、本発明の動的設備管理システム以外のシステム、例えば作業管理システム、との間で必要なデータ交換を行うものであり、設備保全アプリケーションサーバ9が対応し得る。ただし、前述の通り、設備保全アプリケーションサーバ9を設けることは本発明の必須の要素ではない。
(2)本発明におけるプラグアンドプレイの概要
 本実施形態では、設備管理データを取得するための計測機器が追加されたときに設備管理システム或いは設備保全システムの設定を自動的に行うプラグアンドプレイを対象にする。計測機器を取り付ける際には、設備管理システム或いは設備保全システムにおいて以下のような作業や機能追加を行う。なお、設備管理データのことを、本実施形態の設備保全システムにおけるものとして設備保全データともいう。
 i)測定対象である管理対象設備に計測機器を取り付ける。
   本実施形態では、管理対象設備は遮断器1Aであり、計測機器はセンサ2Aであ
   る。
 ii)センサ2Aと計測機器読取装置5Aとの通信路を設置・設定する。
 iii)計測機器としてのセンサ2Aの種別や測定対象としての遮断器1Aの認識に基づ
   いて、センサ2Aからの信号を適切なデータ形式に取り込むためのオブジェクト
   を生成し、計測機器読取装置5Aに展開する。
 iv)センサ2Aから得られたデータに基づいて、各保全業務に必要なデータ形式を準
   備し、関連する情報処理機能を備えたオブジェクトをデータ管理装置7や設備保
   全アプリケーションサーバ9に追加或いは変更する。
 ここで、本発明におけるプラグアンドプレイでは、測定対象である遮断器1Aに計測機器であるセンサ2Aを取り付けて当該計測機器を読み取る部分である計測機器読取装置5Aと有線又は無線を用いて物理的に接続すれば、残りの設定は自動的且つ高信頼に設備管理システムが行うようにする。すなわち、上記i)及びii)を手動で行えば、上記iii)及びiv)は自動で行われるようにする。
 上述のような計測機器であるセンサ2の追加は、計測機器や関連データを既に利用しているか否かによって以下の3種類に分類される。
 1)取り付ける計測機器とその利用方法とについて利用実績があるもの。すなわち、既知の計測機器の追加であるもの。
 2)取り付ける計測機器については利用実績がある一方で、利用方法については新しいもの。すなわち、新規データの追加であるもの。
 3)取り付ける計測機器とその利用方法とについて利用実績がないもの。すなわち、新規計測機器の追加であるもの。
 一方、計測機器を取り外すときには、i)センサの取外し検出,ii)センサに対応するオブジェクトの削除,iii)データ管理装置7に搭載されているオブジェクトの停止を自動的に行う。
 そして、本実施形態の動的設備管理システムは、システムが取り扱う対象設備としての遮断器1Aの情報を取得する計測機器としてのセンサ2Aと、当該計測機器としてのセンサ2Aと直接若しくは通信網4を介して信号の入出力を行う下位レベルの装置としての計測機器読取装置5Aと、当該下位レベルの装置としての計測機器読取装置5Aと直接若しくは通信網6を介して信号の入出力を行う上位レベルの装置としてのデータ管理装置7と、下位レベルの装置としての計測機器読取装置5A及び上位レベルの装置としてのデータ管理装置7との間で信号の入出力を行うディレクトリサーバ3とを備え、計測機器によって取得されるシステムが取り扱う対象設備の情報の項目(以下、クラス名ともいう),当該クラス名に対応させて生成されるインスタンスの名前を含むクラス毎のクラス情報と、インスタンスの名前,インスタンスの配置場所,クラス名を含むインスタンス毎のインスタンス情報と、上位レベルの設備管理データに対応するクラス名,上位レベルの設備管理データを生成するために使われる下位レベルの設備管理データに対応するクラス名,上位レベルの設備管理データを生成するための下位レベルの設備管理データの使い方,上位レベルの設備管理データに対応するクラスと下位レベルの設備管理データに対応するクラスとの組み合わせに対応させて生成される関係インスタンスの名前を含むクラス間関係と、上位レベルの装置に配置されるインスタンスの名前,下位レベルの装置に配置されるインスタンスの名前を含む関係インスタンス毎のインスタンス間関係とをディレクトリサーバ3に格納し、計測機器としてのセンサ2Aが下位レベルの装置若しくは下位レベルの装置との間で信号の入出力を行う通信網4に接続されたときに、下位レベルの装置としての計測機器読取装置5Aが計測機器としてのセンサ2Aが接続されたことを検出し<機能1>、計測機器の種別とシステムが取り扱う対象設備の情報の項目としての計測機器を接続した目的とを下位レベルの装置としての計測機器読取装置5Aがディレクトリサーバ3に伝送し<機能2>、当該ディレクトリサーバ3が、計測機器の種別とシステムが取り扱う対象設備の情報の項目としての計測機器を接続した目的とに基づいてクラス情報を参照してインスタンスを生成し<機能3>、インスタンス情報を検索して生成したインスタンスが存在していない場合には登録すると共にクラス間関係を参照して関係インスタンスを生成して登録し<機能4>、生成したインスタンスをインスタンス間関係に基づいて下位レベルの装置や上位レベルの装置に送信し<機能5,機能6>、そして、インスタンス間関係に基づいてインスタンス同士で設備管理データを交換する<機能7,機能8,機能9>ようにしている。
(3)本発明におけるプラグアンドプレイ実現方法の概要
 本発明のプラグアンドプレイ機能を備えた動的設備管理システムの基本構成を図3に示す。図3における上位レベルと下位レベルとは、図2に示す4階層のシステムアーキテクチャにおけるレベルの上位と下位とに対応・相当する。具体的には例えば、上位レベルがレベル1.5であって下位レベルがレベル1である、のようになる。
 本発明におけるプラグアンドプレイを実現するシステムを構成する要素は以下の通りである。
i)プラグアンドプレイモジュール
 情報モデルのインスタンスを動的設備管理システムに展開し、設備管理データの管理・処理を可能にする。なお、図3中ではPnPと表記されている。
ii)ディレクトリサーバ
 プラグアンドプレイを実現するために必要なデータを管理する。
iii)情報モデル
 設備管理データの管理・処理を行う。
iv)データ更新モジュール
 設備管理データを下位レベルの情報モデルから集め、適切な情報モデルに入力する。
 ここで、以下の説明では、図1に示す装置構成と対応させた図4に示す装置・機能構成によって計測機器としてのセンサ2Aが接続された場合のプラグアンドプレイ実現について説明する。具体的には、計測機器読取装置5Aとして情報端末が設けられ、データ管理装置7として変電所サーバが設けられ、設備保全アプリケーションサーバ9として保全サーバが設けられている。さらに、ディレクトリサーバ3が通信網8に接続されており、当該通信網8を介してデータ信号や指令信号等の送受信が行われる。なお、ディレクトリサーバ3としては具体的には例えばPCが用いられる。なお、本発明の構成と対比すると、前述の通りデータ管理装置7は第一の装置であり、ディレクトリサーバ3は第二の装置である。なお、前記の情報端末として具体的には例えば、株式会社東芝製の、センサ信号を直接取り込む装置であるNCT(Network Computing Terminal の略)が用いられ得る。
(4)プラグアンドプレイモジュール
(4-1)プラグアンドプレイシステムの機能仕様
 プラグアンドプレイモジュールは、それ単独で必要な機能を実現するのではなく、複数のプラグアンドプレイモジュール同士、またはディレクトリサービスとの連携によって、情報モデルに基づくソフトウェアモジュールのPnPを実現する。
 情報モデルとは、電力流通設備やその関連事項をオブジェクト指向に基づいてソフトウェアモジュールの仕様としてまとめられているものである。国際電気標準会議(IEC:International Electrotechnical Committee の略)では、変電所監視制御システムを主な用途として考えられているIEC 61850の情報モデル(IEC,”Communication network and systems for power utility automation - Part7-4: Basic communication structure - Compatible logical node classes and data classes”,IEC 61850-7-4 Ed.2 2009年を参照)や、給電指令所のシステムにおけるAPI(Application Program Interface の略)を対象とした共通情報モデル(IEC,”Energy management system application program interface (EMS-API) - Part 301: Common information model (CIM) base”,IEC 61970-301 Ed.2 2009年を参照)、さらには、共通情報モデルを配電管理の各種業務に適用したIEC 61968(IEC,”System interfaces for distribution management - Part 11: Distribution information exchange model”,IEC 61968-11 INF,2004年を参照)がある。IECにおける情報モデル活用の主目的は相互運用性の確保にある。これに対し、本発明では、オブジェクト指向技術が持つ特長を生かし、機能性と保守性とを確保する目的で情報モデルを利用する。なお、機能性とは「ソフトウェアが、指定された条件の下で広く利用されるときに明示的及び暗示的必要に合致する機能を提供するソフトウェア製品の能力」のこといい、保守性とは「修正のしやすさに関するソフトウェア製品の能力。修正は、是正若しくは向上、又は環境の変化、要求仕様の変更及び機能仕様の変更にソフトウェアを適応させることを含めてもよい」ことをいう(JIS X0129 を参照)。これらを踏まえ、本発明の動的設備管理システムでは、情報モデルのオブジェクトがメソッドを提供し、アプリケーションがメソッドを呼び出すことで情報モデルのオブジェクトを利用する。このとき、オブジェクトの位置がアプリケーションと同じ装置内にある場合と遠隔の装置にある場合との違いを意識しない仕組みとする。なお、本発明の情報モデルの詳細については後記(6)において説明される。
 本実施形態では、センサ2Aが計測機器読取装置5Aに接続されたときと取り外されたときとのそれぞれにおける場合を例に挙げて本発明におけるプラグアンドプレイ機能全体の振る舞いを時系列に沿って説明する。
 より具体的には、本実施形態では、変電所1の遮断器をシステムが取り扱う対象設備即ち管理対象設備として当該遮断器の通過電流とパレットスイッチ動作信号とを監視し、遮断電流とパレットスイッチ動作回数とを管理する場合を例に取り上げて説明する。
i)センサが接続されたときの振る舞い
 まず、センサ2Aが計測機器読取装置5Aに接続されたときの振る舞いを以下に説明する。本発明の動的設備管理システムにおけるプラグアンドプレイでは、センサを取り付ける際にセンサ自身の種別・仕様や測定対象即ちセンサの設置場所の情報、センサを取り付ける目的などから自動的に情報モデルのオブジェクトを生成・展開する。
-ステップ1-
 図5に示すように、計測機器読取装置5Aにセンサ2Aが計測機器ネットワーク4を介して接続される。図5では、計測機器読取装置5Aが図3の「下位レベル」の装置,変電所サーバ7が「上位レベル」の装置,ディレクトリサーバ3が「ディレクトリサーバ」にそれぞれ該当する。
 計測機器読取装置5Aのプラグアンドプレイモジュール5aによってセンサ2Aの取り付けが検出される。その際、プラグアンドプレイモジュール5aに対する入力として、センサ2Aの種別情報が作業者によって与えられる。この処理は図5中の符号11で表されている。
-ステップ2-
 計測機器読取装置5Aのプラグアンドプレイモジュール5aは、ディレクトリサーバ3のプラグアンドプレイモジュール3aに対し、センサ2Aが取り付けられた旨を通知すると共に、当該取り付けられたセンサ2Aの種別,センサの取り付けの目的,センサの設置場所について通知する。この処理は図5中の符号12で表されている。ここで、センサの取り付けの目的はクラス間関係を参照して識別される。なお、本実施形態では、センサ2Aの種別はパレットスイッチ,取り付けの目的は遮断器累積動作回数,設置場所は変電所1の遮断器であるとする。なお、本実施形態の説明においては、遮断器のことを「CB」や「CB1」とも表記する。
-ステップ3-
 ディレクトリサーバ3のプラグアンドプレイモジュール3aは、与えられた情報を基にディレクトリサーバ3内のディレクトリ3bを検索し、必要なクラスファイルを取り出すと共に、当該クラス即ち情報モデルクラスからインスタンスを生成する、言い換えると、インスタンス化を実行する。この処理の内容は図6に示されており、図6中では、「クラス情報」における「生成インスタンス」が、生成されるインスタンスの名前を表す。なお、本発明の構成と対比すると、図中の「クラス情報」における「クラス名」は、システムが取り扱う対象設備即ち管理対象設備の情報の項目に該当するものであり、後出のセンサを接続した目的である取付目的としての監視項目・計測項目にも該当する。また、図6においては、実線の楕円は「完全状態」、すなわち、設備管理データの処理を行っている状態のインスタンスを表し、破線の矢印は設備管理データの流れを示す。
 この際、取り付けられたセンサ2Aに対応するインスタンスだけでなく、レベルツリーにおいて与えられた目的をルートとするサブツリーに含まれる全てのクラスのインスタンスを生成する。なお、サブツリーは図7の破線部分である。図6に示す例では、<レベル1>に対応するインスタンス「パレットスイッチ1」並びに<レベル2>に対応するインスタンス「CB累積動作回数1」が生成される。そして、プラグアンドプレイモジュール3aは生成したインスタンスの情報をディレクトリサーバ3のディレクトリ3bに登録する。なお、図6中の「インスタンス情報」の「設置場所」即ち計測機器の設置場所では、変電所1を「SSA」と表記し、遮断器を「CB1」と表記し、また、図6中の「クラス情報」の「場所」では、ディレクトリサーバ3を「DB1」と表記している。
-ステップ4-
 ディレクトリサーバ3のプラグアンドプレイモジュール3aが生成したインスタンスをいずれの計算機に配置するか決定する。この処理の内容は図8及び図9に示されており、図8,図9中では、「インスタンス情報」における「場所」がインスタンスの配置場所を表す。なお、図8においては、実線の楕円は「完全状態」、すなわち、設備管理データの処理を行っている状態のインスタンスを表す。この配置の決定は、例えば、各インスタンスの配置場所として作業者が指定したものをプラグアンドプレイモジュール3aに入力することによって行われる。この処理は図9中の符号18で表されている。
 そして、生成されたインスタンスが、ディレクトリサーバ3のプラグアンドプレイモジュール3aから指定された各計算機のプラグアンドプレイモジュールに配送される。図8及び図9に示す例では、図9中の符号13で表されているようにインスタンス「パレットスイッチ1」は計測機器読取装置5Aのプラグアンドプレイモジュール5aに配送され、図9中の符号14で表されているようにインスタンス「CB累積動作回数1」は変電所サーバ7のプラグアンドプレイモジュール7aに配送される。なお、前記の計測機器読取装置5Aは、図8中の「インスタンス情報」の「場所」即ちインスタンスの配置場所では「NCT1」と表記されており、前記の変電所サーバ7は、図8中の「インスタンス情報」の「場所」即ちインスタンスの配置場所では「SSA」と表記されている。
 なお、ディレクトリサーバ3のプラグアンドプレイモジュール3aから計測機器読取装置5Aのプラグアンドプレイモジュール5aや変電所サーバ7のプラグアンドプレイモジュール7aへの各インスタンスの送信は、例えばRMI(Remote Method Invocation の略)を用いて行われる。
 そして、プラグアンドプレイモジュール3aは、各インスタンスの場所をディレクトリサーバ3のディレクトリ3bに登録する。
 インスタンスを受け入れたプラグアンドプレイモジュールは、データ更新モジュールに対し、データ更新のために必要な情報をディレクトリサーバ3内のディレクトリ3bから検索して当該情報を渡す。このデータ更新のために必要な情報は、インスタンス間関係の関係インスタンスで表されている情報であり、具体的には、データを提供する側のインスタンスとそのgetter及びデータを保存する側のインスタンスとそのsetterである。なお、データ更新モジュールの詳細については後記(7)において説明される。以降、後記(7)の内容に沿って、管理情報を取り扱うオブジェクトインスタンスのデータが予め設定された周期で或いは状態変化が生じる毎に更新される。なお、本実施形態では、データ更新モジュールは、データ管理装置7や設備保全アプリケーションサーバ9に配置される。
 図6等に示す構成と本発明の構成とを対比すると、図中の「クラス間関係」における「データ受信側」が上位レベルの設備管理データに対応するクラス名を表すと共に「データ送信側」が上位レベルの設備管理データを生成するために使われる下位レベルの設備管理データに対応するクラス名を表し、「関係の詳細」が上位レベルの設備管理データを生成するための下位レベルの設備管理データの使い方を表し、「生成インスタンス」が上位レベルの設備管理データに対応するクラスと下位レベルの設備管理データに対応するクラスとの組み合わせに対応させて生成される関係インスタンスの名前を表す。また、図中の「インスタンス間関係」における「受信インスタンス名」が上位レベルの装置に配置されるインスタンスの名前を表すと共に「送信インスタンス名」が下位レベルの装置に配置されるインスタンスの名前を表す。
 また、図6中の「クラス間関係」における「データ送信側」は設備管理データを送る側のクラスのことであり、「データ受信側」は設備管理データを受け取る側のクラスのことである。具体的には、「クラス間関係」の表内3段目「CB累積動作回数算出」では、「パレットスイッチ」クラスからパレットスイッチの状態、即ちON/OFFが「CB累積動作回数」クラスに送られることを意味する。また、図6中の「インスタンス間関係」における「送信インスタンス名」は設備管理データを送る側のインスタンスのことであり、「受信インスタンス名」は設備管理データを受け取る側のインスタンスのことである。具体的には、「インスタンス間関係」の表内「CB累積動作回数算出1」では、「パレットスイッチ1」インスタンスから「CB累積動作回数1」インスタンスに送られることを意味する。
ii)センサが取り外されたときの振る舞い
 次に、センサ2Aが計測機器読取装置5Aから取り外されたときの振る舞いを以下に説明する。
-ステップ1-
 センサ2Aが取り外されたことが計測機器読取装置5Aのプラグアンドプレイモジュール5aによって検出される。ここで、ディレクトリサーバ3のディレクトリ3b内のインスタンス情報に基づき、取り外されたセンサ2Aに対応するインスタンスが「パレットスイッチ1」であることが識別される。この処理は図10中の符号15で表されている。
-ステップ2-
 計測機器読取装置5Aのプラグアンドプレイモジュール5aは、ディレクトリサーバ3のプラグアンドプレイモジュール3aに対し、センサ2Aが取り外された旨を通知すると共に、当該取り外されたセンサ2Aに対応するインスタンス名と装置名とについて通知する。この処理は図11中の符号16で表されている。
-ステップ3-
 通知を受け取ったディレクトリサーバ3のプラグアンドプレイモジュール3aは、インスタンスによるレベルツリーを検索し、このセンサインスタンスが削除されることによって必要なデータが全て揃わなくなるレベル1.5以上のインスタンスの状態を再帰的に「不完全」状態としてディレクトリ3bに書き込む。この処理の内容は図12及び図13に示されており、図12においては、実線の楕円は設備管理データの処理を行っている状態である「完全状態」のインスタンスを表し、破線の楕円は設備管理データの処理を行っていない状態である「不完全状態」のインスタンスを表し、破線の矢印は設備管理データの流れを示す)。
-ステップ4-
 ディレクトリサーバ3のプラグアンドプレイモジュール3aは、センサインスタンスを有している装置のプラグアンドプレイモジュールに対し、当該センサインスタンスの削除を指示し、指示を受けたプラグアンドプレイモジュールは当該インスタンスを削除する。この処理は図14中の符号17で表されている。なお、本実施形態では、前記のセンサインスタンスを有している装置は計測機器読取装置5Aであり、前記のプラグアンドプレイモジュールは符号5aで表されている要素である。
 この仕様により、本発明のシステムでは、一度生成されたレベル1.5以上のインスタンスは、状態が再帰的に「不完全」状態にされるものの、センサを取り外してもシステムから削除はされない。
(4-2)各モジュールの機能仕様
 上述したように、本発明において実現されるプラグアンドプレイの機能は装置によって異なる。各機能が、いずれの装置で動作するプラグアンドプレイモジュールによって実現されるかを表1に示す。この表1においては、横軸は各装置で動作するプラグアンドプレイモジュールを意味する。
Figure JPOXMLDOC01-appb-T000001
 また、本発明のシステムにおいて表1に記載の各機能を実現する場所を図15に示す。
 以下に、表1に記載の<機能1>~<機能14>を以下のように[機能群A]~[機能群F]に分類し、各プラグアンドプレイモジュールが実現する機能を説明する。
i)機能群A
 計測機器読取装置5Aのプラグアンドプレイモジュール5aで実現する機能であり、具体的には以下の通りである。
<機能1>センサ接続の検出
 計測機器であるセンサ2Aが接続されたことを検出する。
<機能10>センサ取り外しの検出
 センサ2Aが取り外されたことを検出する。
<機能8>機器監視データの情報モデルインスタンスへの反映
 機器監視演算結果を、計測機器読取装置である計測機器読取装置5Aが持つ情報モデルインスタンスに随時反映する。
ii)機能群B
 ディレクトリサーバ3のプラグアンドプレイモジュール3aで実現する機能であり、具体的には以下の通りである。
<機能3>情報モデルインスタンスの生成
 次のステップに従って処理を行う。
 -ステップ1-
 「<機能2>センサ接続の通知」の機能により、計測機器読取装置5Aのプラグアンドプレイモジュール5aから「センサの種別」,「センサを接続した目的(取付目的)」,「監視している主機の名称(センサの設置場所)」が与えられる。
 -ステップ2-
 ディレクトリサーバ3のディレクトリ3bの「クラス情報」を参照して「センサの種別」及び「センサを接続した目的(取付目的)」に相当する情報モデルクラスを見つけると共に、それらの情報モデルインスタンスを生成する。
 -ステップ3-
 ディレクトリ3bの「クラス間関係」情報を一覧検索し、「センサを接続した目的(取付目的)」が上位レベルのクラスとなっているエントリを見つけ、そのすべての下位レベルのクラスのオブジェクトインスタンスを生成する。
<機能4>情報モデルインスタンス間の関連付け
 次のステップに従って処理を行う。
 -ステップ1-
 ディレクトリサーバ3のディレクトリ3bの「インスタンス情報」を検索し、「<機能3>情報モデルインスタンスの生成」の機能で生成したインスタンスと同一のインスタンスが既存か否かを調べる。そして、既存の場合は<機能3>で生成したインスタンスを削除し、未だ存在していない場合には登録する。
 -ステップ2-
 <機能3>のステップ3の処理にて見つけたクラス間関係エントリをインスタンス化して、言い換えると、クラス間関係を参照しながら関係インスタンスを生成して「インスタンス間関係」テーブルに登録する。
<機能5>情報モデルインスタンス配送先の指定
 本発明のシステムでは、各情報モデルインスタンスの配置先を記載したファイルをディレクトリサーバ3の配置先情報管理部3cに予め置いておき、この内容に応じて情報モデルインスタンスの配送先を決定する。
<機能12>関連する情報モデルインスタンスの情報の更新
 次のステップに従って処理を行う。
 -ステップ1-
 ディレクトリサーバ3のディレクトリ3bの「インスタンス間関係」テーブルを検索し、削除するセンサインスタンスが「下位レベル」にあるエントリを見つけ、その上位レベルインスタンスの状態を「不完全」にする。
 -ステップ2-
 上記で、上位レベルインスタンスが「下位レベル」にあるエントリを見つけ、見つかったらその上位インスタンスを「不完全」にする。これを再帰的に繰り返す。
iii)機能群C
 変電所サーバ7のプラグアンドプレイモジュール7aと保全サーバ9のプラグアンドプレイモジュール9aとで実現する機能であり、具体的には以下の通りである。
<機能9>情報モデルインスタンス間関係の検索→データ更新モジュールへの通知
 次のステップに従って処理を行う。
 -ステップ1-
 ディレクトリサーバ3のディレクトリ3bの「インスタンス間関係」テーブルを検索し、自身が保持している情報モデルインスタンスが「上位レベルのインスタンス」として登録されているエントリを探す。
 -ステップ2-
 上記ステップ1の条件を満たすエントリが存在する場合、以下の情報をデータ更新モジュールに通知する。
 1)下位インスタンスのデータを取得するための下位インスタンスURL及びgetter名
 2)下位インスタンスのデータを渡す宛先となる上位インスタンスURL及びsetter名
 3)例えばRMIなどの、RPC(Remote Procedure Call の略)の方式
 4)上記RPCの方式に関するパラメータの指定が必要な場合はそのパラメータ
 以下、20℃換算ガス圧を具体例として説明する。
 クラス間関係テーブルの情報として表2に示す情報をディレクトリサーバ3のディレクトリ3bに登録しておく。
Figure JPOXMLDOC01-appb-T000002
 このとき、下位レベルのデータから上位レベルのデータを算出するイメージを図16に示す。なお、図16に示される式において、記号「+」は単純な加算を意味するのではなく、20℃換算ガス圧は圧力と温度とから算出されることを意味する。
 一方、インスタンス間関係テーブルの情報として表3に示す情報をディレクトリサーバ3のディレクトリ3bに登録しておく。なお、表3等において「CB1」は遮断器を表す。
Figure JPOXMLDOC01-appb-T000003
 同じく、インスタンス情報テーブルの情報として表4に示す情報をディレクトリサーバ3のディレクトリ3bに登録しておく。なお、表4中の「XXX」は、高度通信に関するパラメータの指定が必要な場合のそのパラメータを表す。
Figure JPOXMLDOC01-appb-T000004
 上記三つのテーブルの情報から、プラグアンドプレイ機能は表5に示す情報を抽出し、データ更新モジュールに渡す。
Figure JPOXMLDOC01-appb-T000005
 本実施形態のシステムでは、以下の仕様に従う。
 1)下位レベルの情報モデルインスタンスからデータを取得するメソッド”getter”の引数は時刻のみとする。そして、getterは引数で渡された時刻以降のデータを返す。
 2)下位レベルの情報モデルインスタンスからデータを取得するタイミングはデータ更新モジュールに一任する。
 3)上記例のように、下位レベルのデータが複数必要な場合は、それぞれのgetter処理やsetter処理はデータ毎に実行される。
iv)機能群D
 ディレクトリサーバ3以外のプラグアンドプレイモジュールで実現する機能であり、具体的には以下の通りである。なお、ここでのプラグアンドプレイモジュールは符号5a,7a,9aで表されている。
<機能7>情報モデルインスタンスの外部への公開
 ディレクトリサーバ3から送られてきたインスタンスを、外部からメソッド呼出しが可能な状態にする。
v)機能群E
 プラグアンドプレイモジュール同士の協調によって実現する機能であり、具体的には以下の通りである。
<機能2>センサ接続の通知
 計測機器読取装置5Aのプラグアンドプレイモジュール5aはディレクトリサーバ3のプラグアンドプレイモジュール3aに対し、「センサの種別」「センサを接続した目的(取付目的)」「監視している主機の名称(センサの設置場所)」の情報を通知する。
<機能6>情報モデルインスタンスの配置
 ディレクトリサーバ3のプラグアンドプレイモジュール3aは、指定された配置先のプラグアンドプレイモジュールに情報モデルインスタンスを送信する。
<機能11>センサ取り外しの通知
 計測機器読取装置5Aのプラグアンドプレイモジュール5aは、「センサの種別」を引数にディレクトリサーバ3のプラグアンドプレイモジュール3aのメソッドを遠隔呼出しする。
<機能13>該当情報モデルインスタンスの削除
 次のステップに従って処理を行う。
 -ステップ1-
 指示を受けたインスタンスのメソッドを外部から呼び出せない状態にする。
 -ステップ2-
 ディレクトリサーバ3のプラグアンドプレイモジュール3aが削除の指示を出し、当該指示を受けた計測機器読取装置5のプラグアンドプレイモジュール5aがインスタンスの参照を削除する。また、ガベージコレクションを実行する。
vi)機能群F
 計測機器読取装置5以外のプラグアンドプレイモジュールで実現する機能であり、具体的には以下の通りである。なお、ここでのプラグアンドプレイモジュールは符号3a,7a,9aで表されている。
<機能14>不完全状態への移行
 <機能12>で更新された情報モデルインスタンスの情報に基づいて計測機器読取装置,変電所サーバ,保全サーバにある当該インスタンスを不完全状態に移行させる。不完全状態に移行した前記インスタンスは,データの収集・処理を停止する。なお,前記インスタンス内に保存されているデータの読み出しは可能とする。
(5)ディレクトリサービス
 ディレクトリサービスはディレクトリサーバ3上で動作するサービスである。設備管理システムで動作するプラグアンドプレイ機能やアプリケーションが必要とする情報を登録/検索/削除する機能を提供する。
(5-1)スキーマ
 ディレクトリサービスが管理する情報は4種類であり、以下、それぞれのスキーマについて記載する。ここで、スキーマとは、関係データベースで用いられている定義と同等であり、関係,関係内の属性,属性や関連の定義を指す。なお、関係データベースはRDB(Relational Database の略)とも表記される。
i)クラス情報
 クラス情報は、情報モデルにおける「クラス」に関する情報を表現する。具体的には例えば表6に示す表形式にてその情報を管理する。なお、表6中の「xxxx」はURLを構成する任意の文字列を表す。
Figure JPOXMLDOC01-appb-T000006
 ここで、本実施形態のシステムでは、「クラス」をJava(登録商標)のクラスで実現する。表6の各項目の意味は次の通りである。
 1)クラス名(key)  :クラスの名前
 2)項目名      :保全データ項目の名前
 3)URL      :クラスファイルが保管されている場所としてのURL
 4)インスタンス名一覧:そのクラスから生成されたインスタンスの名称の一覧
 なお、クラス情報について、クラス名は設備管理システムのオブジェクトのクラスファイル名から得られ、項目名はクラスファイルに保存されている情報から得られ,場所としてのURLは当該クラスファイルが保存されているURLから得られ、インスタンス名一覧は当該クラスからインスタンスが生成される度に追加される。そして、クラス名と場所とは、クラスファイルが保存されたことを検出して自動生成するか、或いは作業者が直接入力して与える。また、インスタンス名一覧はインスタンス生成処理の中で追加される。
ii)クラス間関係
 クラス間関係は、上位レベルの設備保全データを生成するために下位レベルの設備保全データをどのように使うかを表現する。具体的には例えば表7に示す表形式にてその情報を管理する。なお、表7における「上位レベルの設備保全データを計算するための関数」の例はsetterメソッド名であり、実際の設備保全データの演算はsetterメソッド内で実行する。
Figure JPOXMLDOC01-appb-T000007
 また、クラス間の関係は数式1として捉えることができる。ただし、yは上位レベルの設備保全データを、(x1,x2,x3,…)は下位レベルの設備保全データを、fは上位レベルの設備保全データを計算するための関数をそれぞれ意味する。そして、数式1は、上位レベルの設備保全データと下位レベルの設備保全データとはそれぞれ複数入力,複数出力があり得ることを意味する。
  (数式1) y=f(x1,x2,x3,…)
 数式1に照らし合わせて、表7の各項目の意味は次の通りである。
 1)クラス間関係名(key)             :クラス間関係の名前
 2)上位レベルの設備保全データの一覧       :y
 3)下位レベルの設備保全データの一覧       :x1,x2,x3,…
 4)上位レベルの設備保全データを計算するための関数:f
 これらの情報から導出される関係式は図17に示す通りである。なお、図17に示される式において、記号「+」は単純な加算を意味するのではなく、20℃換算ガス圧は圧力と温度とから算出されることを意味する。
iii)インスタンス情報
 インスタンス情報は、情報モデルにおける「インスタンス」に関する情報を表現する。具体的には例えば表8に示す表形式にてその情報を管理する。なお、表8中の「xxx」は任意の文字列を表す。
Figure JPOXMLDOC01-appb-T000008
 ここで、本実施形態の設備保全システムでは、「インスタンス」をJava(登録商標)のインスタンスで実現する。表8の各項目の意味は次の通りである。
 1)インスタンス名(key) :インスタンスの名前
 2)URL        :インスタンスが保管されている場所としてのURL
 3)監視対象機器名    :監視している主機、ここでは遮断器、を特定する名称
              即ち、計測機器の設置場所である。
 4)クラス名       :基になったクラスの名前
 5)完全/不完全     :自身の下位レベルにある設備保全データが全て揃ってい
              る場合か否かの区別
 6)参照アプリケーション名一覧:
  当該インスタンスを参照しているアプリケーションの名称の一覧
 7)RPC方式:
  当該情報モデルインスタンスのメソッドを遠隔呼出しする方式がRMIや他の方式
  のいずれの方式であるかの指定
 8)RPC方式パラメータ:
  遠隔メソッド呼出しの方式によってパラメータの指定が必要である場合の、通信機
  能に渡すパラメータ
iv)インスタンス間関係
 インスタンス間関係、厳密にはインスタンス間関係の関係インスタンス、は、インスタンス同士で実際にデータを交換する方法を表現する。具体的には例えば表9に示す表形式にてその情報を管理する。
Figure JPOXMLDOC01-appb-T000009
 表9の各項目の意味は次の通りである。
 1)インスタンス間関係名(key) :インスタンス間関係の名前
                 言い換えると、関係インスタンスの名前
 2)クラス間関係名       :クラス間関係の名前
                 言い換えると、関係クラスの名前
 3)上位レベルのインスタンス一覧:設備保全データを受信する全インスタンスの名前
 4)下位レベルのインスタンス一覧:設備保全データを送信する全インスタンスの名前
 このインスタンス間関係及びそこに関連づけされているクラス間関係から導出される関係式は図18に示す通りである。なお、図18に示される式において、記号「+」は単純な加算を意味するのではなく、20℃換算ガス圧は圧力と温度とから算出されることを意味する。
(5-2)サービス
 設備管理システムで動作するプラグアンドプレイ機能やアプリケーションに対して提供されるサービスは次の4つである。
i)データ登録
 上記(5-1)で説明した4つのスキーマ情報それぞれを登録する機能である。
ii)データ検索
 上記(5-1)で説明した4つのスキーマ情報それぞれを検索する機能である。
iii)全データ取得
 上記(5-1)で説明した4つのスキーマ情報それぞれで、ディレクトリサービスが有する全ての情報を返す機能である。
iv)データ削除
 上記(5-1)で説明した4つのスキーマ情報それぞれで、情報を削除する機能である。
(6)情報モデル
 保全情報を扱う情報モデルは、システムアーキテクチャで示した階層毎にIEC 61850の情報モデルと、共通情報モデル(CIM:Common Information Model の略)とを使い分ける。具体的には、レベル1及びレベル1.5においてはIEC 61850の情報モデルを用い、レベル2及びレベル3においては共通情報モデルを用いる。
 なお、規格で定められたインタフェース、例えばIEC 61850であればACSI(Abstract Communication Service Interface の略)、又は独自に定義したメソッドを利用する。
 独自に定義したメソッドについて、具体的には、共通データクラスの配列を用いて測定値を運び、メソッド名を用いて監視項目を指定する。IEC 61850をベースとした情報モデルに関しては、一つの論理ノードをレベル別クラス/インタフェース/実装クラスの三つにて構成する。その一例として、遮断器の診断を行う論理ノードであるSCBR、すなわち、遮断器の接点損耗率等の処理を担う情報モデルに対応するオブジェクトクラスの定義を図19に示す。SCBRを実現するため、LV1_5,SCBR_IF,SCBRImplの三つのオブジェクトクラスを用いる。それぞれが、レベル別クラス,インタフェース,実装クラスに対応する。
 <LV1_5>は、レベル1.5に配置される全ての論理ノードが有する特性を定義したオブジェクトクラスである。具体的には、レベルl.5に配置される論理ノードにおいて、設備保全データの加工、例えば遮断器の接点損耗率の演算、を行うcalculateDataメソッドを、仮想メソッドとして用意する。仮想メソッドとは、上位のクラスにおいて処理の実体は定義せず、このクラスから派生したクラスにおいて同じ名前のメソッドの処理を定義しておき、呼出し側からは上位のクラスに対するメソッド呼出しにて派生クラスのメソッドを呼び出すことを可能とするオブジェクト指向技術の機能である。
 <SCBR_IF>は、外部のソフトウェアモジュールからアクセス可能なメソッドを定義する。ここで、外部のソフトウェアモジュールとは、異なるレベルに位置する情報モデルやデータ更新モジュール等を指す。SCBRを用いた接点損耗率監視の場合には、例えば、設備保全データを外部のソフトウェアモジュールに提供するgetterを3種類、外部からのデータを登録するためのsetterを3種類用意する。呼出し側から見た機能は以下の通りである。
 <getter>
 パラメータとして時刻を指定する。各メソッドでは、この時刻以降の設備保全データを返す。設備保全データは時刻順の配列である。設備保全データの型は該当する共通データクラスである。
 1)getActAbrCoef:接点損耗率の値を取得する。
 2)getPos    :開閉装置の位置、具体的には投入・開放・切換中、を取得する。
 3)getTripA   :遮断電流の値を取得する。
 <setter>
 パラメータとして、保存すべき設備保全データの配列を指定する。保存した設備保全データの中で最も新しいものの時刻を返す。
 1)setACon:A接点のデータを保存する。
       なお、A接点は、遮断器が投入されているときにONとなる接点である。
 2)setBCon:B接点のデータを保存する。
       なお、B接点は、遮断器が開放されているときにONとなる接点である。
 3)setTripA:遮断電流の瞬時値を保存する。
 なお、<SCBR_IF>は、インタフェースであるため、具体的な処理手順は持たない。
 <LV1_5>と<SCBR_IF>とで定められたメソッドの具体的な処理手順を定めるのが実装クラスである<SCBRImpl>である。すなわち、実装クラスは、<LV1_5>を継承して<SCBR_IF>を実装する関係にある。もし、異なる処理方法を定めたり併用したりする場合には、<LV1_5>を継承して<SCBR_IF>を実装する別のオブジェクトクラス、例えば<SCBRImpl2>を定義することも可能である。この場合でも,外部ソフトウェアモジュールからは<SCBR_IF>として見ているので、外部ソフトウェアモジュールの修正は不要である。
(7)データ更新モジュール
 本発明のプラグアンドプレイ機能では、ポーリング方式に基づいて設備管理データを収集する。この収集処理を担うのがデータ更新モジュールである。ポーリング方式は、設定が簡潔であり、具体的には、データ更新モジュールが収集すべきデータを保持するオブジェクトとそれを格納すべきオブジェクトとを把握していれば良いので一元管理が可能である。なお、ポーリング方式は周期的にデータ収集を行うので状態変化に対する即応性はないものの、演算の結果得られるデータに基づいて管理作業等の決定を行う用途であればこの即応性を強く求められるものではないので大きな問題とはならない。また、データ更新モジュールは、4階層のシステムアーキテクチャにおける<レベル1.5>以上の全てのレベルに格納される。
 データ更新モジュールの内部構成を図20に示す。データ更新モジュールは以下の三つの様相から構成される。
i)インスタンス間関係管理
 インスタンス間関係管理では、いずれの情報モデルから情報を集め、どこに保存するかという関係をリスト構造にて管理する。この処理は、上述の「(5)ディレクトリサーバにおけるインスタンス間関係」において説明されている。インスタンス間関係、厳密にはインスタンス間関係の関係インスタンス、としては、以下の情報を全て文字列として保存する。以下において、コロンの右側はデータ例である。
 情報源クラス名     :dam61850.logicalnode.l.TCTR
 情報源インスタンスURL:TCTR1
 getterメソッド名    :getAmdSv
 保存先クラス名     :dam61850.logicalnode.s.SCBR
 保存先インスタンス名  :SCBR1
 setterメソッド名    :setTripA
 setterパラメータクラス名:dam61850.cdc.SAV
 なお、TCTR,SCBR,SAVはいずれもIEC 61850による国際規格である。各々の概要は、TCTRは、電流センサに相当するオブジェクトであり、電流のサンプリング値等を管理・提供する機能を備える。SCBRは、遮断器の保守情報全般を管理するオブジェクトであり、本実施形態の場合には接点損耗率の値を処理・管理・提供する機能を備える。また、SAVはサンプリングデータを表すデータタイプであり、TCTRにおける電流のサンプリング値はこのSAVを用いて表される。
ii)getter呼出し時刻管理
 getter呼出し時刻管理では、情報源インスタンスURLとgetterメソッド名とを併せた文字列をキーとし、対応する時刻を一対にして管理する。時刻は、保存先インスタンスのsetterメソッドが返す値とする。これにより、下位レベルから収集すべきデータの時間範囲が特定可能となる。
iii)収集スレッド
 収集スレッドは設備管理データの収集と保存とを担う。この処理フローをUML(Unified Modeling Language の略)のアクティビティ図を用いて図21に示す。なお、UMLとは、ソフトウェアの設計結果を表すための表記法であり、オブジェクト指向技術の業界標準を作成する団体であるOMG(Object Management Group の略)によって定められており、ソフトウェアの分野では広く利用されている。
 収集スレッドによる設備管理データの収集と保存とに係る処理内容は以下の通りである。まず、インスタンス間関係リストの先頭を参照し(S1)、次のインスタンス間関係が存在するか否かを判定する(S2)。そして、次のインスタンス間関係が存在する場合には(S2:Y)、当該次のインスタンス間関係のデータを取得する(S3)。
 そして、S3の処理において取得したインスタンス間関係のデータを基に情報源インスタンスの getter を呼出し、設備管理データを取得する(S5)。このとき、getter を呼び出す際には、getter呼出し時刻管理から取得済みの最新データの、言い換えると対応する、getter呼出し時刻を取得し、これをgetterメソッドのパラメータに指定する(S4)。なお、インスタンス間関係データは全て文字列であるので、この情報に基づいてメソッドを呼び出す仕組みを収集スレッドは備える。具体的には例えば、リフレクションを用いてこの仕組みを実現することが考えられる。リフレクションとは、プログラムの実行過程でプログラム自身の構造を読み取ったり書き換えたりする技術である。すなわち、メソッドの名前、具体的には文字列、からプログラム上の参照データを取得すること等ができる。なお、リフレクションをサポートする言語としては、Java(登録商標),C#,Perl,Objective-C等が存在する。
 S5の処理において取得された設備管理データは、インスタンス間関係に示された保存先インスタンスにsetterメソッドの呼出しを通じて保存する(S6)。setterメソッドの戻り値として受け取った時刻は、getter呼出し時刻管理の、対応するgetter呼出し時刻の更新に用いる(S7)。インスタンス間関係管理に保存されているデータ毎に上記の処理を繰り返して実行する(S1,S2:Y,S3~S7)。なお、S7の処理からS2の処理に戻る毎に、インスタンス間関係リストにおけるS2の処理対象を一つずつ次に進める。
 そして、すべてのデータに関する処理が終了してインスタンス間関係リストに次のインスタンス間関係が存在しない場合には(S2:N)、保存先インスタンスにおいて設備管理データの加工、例えば遮断器の接点損耗率の演算、を行うために保存先インスタンスのcalculateDataメソッドを呼び出す(S8)。その後、最初のインスタンス間関係に戻って処理を再開する(S1以降)。
 なお、インスタンス間関係管理のデータが途中で更新されたときは、修正後のデータに従って収集スレッドによる処理が行われる。
 以上のように構成された本発明の動的設備管理システムによれば、ディレクトリサーバ3が計測機器の種別などに基づいてインスタンスを自動的に生成して当該生成インスタンスに係るインスタンス間関係をディレクトリサーバ3に登録するようにしているので、システムが取り扱う対象設備即ち管理対象設備への各種計測機器の取り付けや取り外しに際し、関連するソフトウェアがシステム内で自動的に設定され、状態監視を迅速且つ簡便に開始することができる。
 また、本発明の動的設備管理システムによれば、インスタンス間関係のデータを全て文字列にすることによってクラス及びメソッドの名称だけを通知すればデータ更新モジュールが対応することができるようになっているので、新たな計測機器が接続されて新たなクラスがシステムに導入された場合でも、データ更新モジュールを修正する必要がなく、また、システムを停止する必要もないという利点を有する。
 なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の実施形態では電力流通設備である変電所の遮断器をシステムが取り扱う対象設備即ち管理対象設備とし当該遮断器の通過電流とパレットスイッチ動作信号とを計測機器としてのセンサによって計測して遮断電流とパレットスイッチ動作回数とを管理する場合を例に取り上げて説明したが、システムが取り扱う対象設備や計測機器の種類は上述の実施形態のものに限られず、例えばガス絶縁開閉装置をシステムが取り扱う対象設備としても良いし、例えば電流計,電圧計,油圧計,ガス圧計,温度計を計測機器としても良い。さらに言えば、システムが取り扱う対象設備は電力流通設備でなくても良い。なお、上述の実施形態ではシステムが取り扱う対象設備として電力流通設備をとりあげているのでIEC 61850のオブジェクトクラスを利用するようにしているが、電力流通設備以外に本発明を適用する場合には例えば独自に定義したオブジェクトクラスを用いるようにする。
 また、上述の実施形態ではディレクトリサーバ3と保全サーバ9とを機器構成として別体のものであるように表したが、ディレクトリサーバと保全サーバとを機器構成として一体のものとしても良い。具体的には例えば一台のPCによって両者を構成するようにしても良い。
 1A 管理対象設備/実施形態では遮断器
 2A 計測機器/実施形態ではセンサ
 3  第二の装置/実施形態ではディレクトリサーバ
 3b ディレクトリ
 5A 計測機器読取装置
 7  第一の装置/実施形態ではデータ管理装置
 8  通信網

Claims (5)

  1.  システムが取り扱う対象設備の情報を取得する計測機器との間で信号の入出力を行う計測機器読取装置と、当該計測機器読取装置との間で信号の入出力を行う第一の装置と、ソフトウェアの集合を有すると共に前記第一の装置との間で信号の入出力を行う第二の装置とを備え、前記計測機器が前記計測機器読取装置に接続されたときに、前記計測機器の情報を基にシステムに必要となるソフトウェアを前記第二の装置が決定し、当該ソフトウェアを前記第二の装置から前記第一の装置と前記計測機器読取装置とに送信することを特徴とする動的設備管理システム。
  2.  システムが取り扱う対象設備の情報を取得する計測機器と、当該計測機器と直接若しくは通信網を介して信号の入出力を行う下位レベルの装置と、当該下位レベルの装置と直接若しくは通信網を介して信号の入出力を行う上位レベルの装置と、前記下位レベルの装置及び前記上位レベルの装置との間で信号の入出力を行うサーバとを備え、前記計測機器によって取得される前記システムが取り扱う対象設備の情報の項目(以下、クラス名という),当該クラス名に対応させて生成されるインスタンスの名前を含むクラス毎のクラス情報と、前記インスタンスの名前,前記インスタンスの配置場所,前記クラス名を含むインスタンス毎のインスタンス情報と、上位レベルの設備管理データに対応するクラス名,前記上位レベルの設備管理データを生成するために使われる下位レベルの設備管理データに対応するクラス名,前記上位レベルの設備管理データを生成するための前記下位レベルの設備管理データの使い方,前記上位レベルの設備管理データに対応するクラスと前記下位レベルの設備管理データに対応するクラスとの組み合わせに対応させて生成される関係インスタンスの名前を含むクラス間関係と、前記上位レベルの装置に配置される前記インスタンスの名前,前記下位レベルの装置に配置される前記インスタンスの名前を含む前記関係インスタンス毎のインスタンス間関係とを前記サーバに格納し、前記計測機器が前記下位レベルの装置若しくは前記下位レベルの装置との間で信号の入出力を行う通信網に接続されたときに、前記計測機器の種別と前記システムが取り扱う対象設備の情報の項目としての前記計測機器を接続した目的とを前記下位レベルの装置が前記サーバに伝送し、当該サーバが、前記計測機器の種別と前記システムが取り扱う対象設備の情報の項目としての計測機器を接続した目的とに基づいて前記クラス情報を参照してインスタンスを生成し、前記インスタンス情報を検索して前記生成したインスタンスが存在していない場合には登録すると共に前記クラス間関係を参照して関係インスタンスを生成して登録し、前記生成したインスタンスを前記インスタンス間関係に基づいて前記下位レベルの装置や前記上位レベルの装置に送信し、そして、前記インスタンス間関係に基づいて前記インスタンス同士で前記設備管理データを交換することを特徴とする動的設備管理システム。
  3.  前記計測機器が前記下位レベルの装置若しくは前記下位レベルの装置との間で信号の入出力を行う通信網から取り外されたときに、当該取り外された計測機器に対応するものとして前記生成されたインスタンスの名前を前記下位レベルの装置が前記サーバに伝送し、当該サーバが所定のインスタンスについて前記設備管理データの処理を行っていない状態に移行させるように前記インスタンス情報を更新すると共に前記取り外された計測機器に対応するインスタンスの削除を前記下位レベルの装置に指示し、当該下位レベルの装置が前記取り外された計測機器に対応するインスタンスを削除し、さらに、前記インスタンス情報に基づいて前記上位レベルの装置と前記サーバとが前記取り外された計測機器に対応するインスタンスについて設備管理データの処理を行っていない状態に移行させることを特徴とする請求項2記載の動的設備管理システム。
  4.  前記関係インスタンスのデータが全て文字列であることを特徴とする請求項2記載の動的設備管理システム。
  5.  前記システムが取り扱う対象設備が変電所の遮断器であると共に、前記計測機器が前記遮断器の通過電流とパレットスイッチ動作信号とを前記情報として取得するセンサであることを特徴とする請求項2記載の動的設備管理システム。
PCT/JP2012/004544 2011-07-14 2012-07-13 動的設備管理システム WO2013008476A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/232,522 US9733639B2 (en) 2011-07-14 2012-07-13 Dynamic facility management system
EP12811702.5A EP2733662A4 (en) 2011-07-14 2012-07-13 DYNAMIC INFRASTRUCTURE MANAGEMENT SYSTEM
CN201280034703.5A CN103765469B (zh) 2011-07-14 2012-07-13 动态设备管理系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-155476 2011-07-14
JP2011155476A JP5912018B2 (ja) 2011-07-14 2011-07-14 動的設備管理システム

Publications (1)

Publication Number Publication Date
WO2013008476A1 true WO2013008476A1 (ja) 2013-01-17

Family

ID=47505779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004544 WO2013008476A1 (ja) 2011-07-14 2012-07-13 動的設備管理システム

Country Status (5)

Country Link
US (1) US9733639B2 (ja)
EP (1) EP2733662A4 (ja)
JP (1) JP5912018B2 (ja)
CN (1) CN103765469B (ja)
WO (1) WO2013008476A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724275A (zh) * 2020-05-11 2020-09-29 广东卓维网络有限公司 一种配电设备信息配置方法及系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326465B (zh) * 2013-05-17 2015-09-09 国家电网公司 一种基于iec61850标准的配电网终端接入方法
CN103888291A (zh) * 2014-02-24 2014-06-25 北京科东电力控制系统有限责任公司 基于iec61850标准的配电终端即插即用通信方法
CN106026397A (zh) * 2016-06-22 2016-10-12 中国南方电网有限责任公司 一种基于iec61850的配网终端实现即插即用的方法
DE102017115156B4 (de) 2017-07-06 2022-03-03 Endress+Hauser Flowtec Ag Verfahren zum Herstellen einer Spulenhalterung eines magnetisch-induktiven Durchflussmessgeräts und ein magnetisch-induktives Durchflussmessgerät
CN111415083A (zh) * 2020-03-18 2020-07-14 Oppo(重庆)智能科技有限公司 仪器管理方法和装置、服务器、计算机可读存储介质
CN111813533B (zh) * 2020-09-11 2020-12-11 腾讯科技(深圳)有限公司 模型实例化的动态管理方法和装置及存储介质
WO2022172416A1 (ja) * 2021-02-12 2022-08-18 株式会社東芝 機器分類記号特定装置
JP2023151976A (ja) * 2022-04-01 2023-10-16 オムロン株式会社 サーバ装置、情報モデルの提供方法、及び情報モデルの提供プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188255A (ja) 2006-01-12 2007-07-26 Seiko Epson Corp ネットワーク型プラグアンドプレイに対応したネットワーク中継制御
JP2010049560A (ja) * 2008-08-22 2010-03-04 Kiyoshi Honda 観測ステーション、観測ステーションのサーバー、観測システム、及び観測方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650936A (en) * 1994-12-30 1997-07-22 Cd Power Measurement Limited Power monitor apparatus and method with object oriented structure
JP4051534B2 (ja) * 2002-01-29 2008-02-27 株式会社日立製作所 変電所システム
JP2004086355A (ja) * 2002-08-23 2004-03-18 Tytrast Systems Inc 統合化システム
US10845399B2 (en) * 2007-04-03 2020-11-24 Electro Industries/Gaugetech System and method for performing data transfers in an intelligent electronic device
US8682612B2 (en) * 2008-12-18 2014-03-25 Abb Research Ltd Trend analysis methods and system for incipient fault prediction
DE102009012832A1 (de) 2009-03-02 2010-09-09 Khs Ag Verfahren und Vorrichtung zur automatischen Einbindung von Sensorvorrichtungen in eine zentrale Steuerung
CN102804084B (zh) * 2009-06-02 2016-08-24 施耐德电气美国股份有限公司 集成多个管理域的方法
US20120022713A1 (en) * 2010-01-14 2012-01-26 Deaver Sr Brian J Power Flow Simulation System, Method and Device
CN101833452A (zh) * 2010-04-30 2010-09-15 中国海洋大学 一种基于传感器的监测软件设计方法
WO2011156394A2 (en) * 2010-06-07 2011-12-15 Abb Research Ltd. Systems and methods for classifying power line events

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188255A (ja) 2006-01-12 2007-07-26 Seiko Epson Corp ネットワーク型プラグアンドプレイに対応したネットワーク中継制御
JP2010049560A (ja) * 2008-08-22 2010-03-04 Kiyoshi Honda 観測ステーション、観測ステーションのサーバー、観測システム、及び観測方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"IEC 61850-7-4", 2009, article "Communication network and systems for power utility automation - Part7-4: Basic communication structure - Compatible logical node classes and data classes"
"IEC 61968-11 INF", 2004, article "System interfaces for distribution management - Part 11: Distribution information exchange model"
"IEC 61970-301", 2009, article "Energy management system application program interface (EMS-API) - Part 301: Common information model (CIM) base"
IKUO KURIHARA: "Denchuken no Smart Grid Kenkyu", 2010, XP055136027, Retrieved from the Internet <URL:http://criepi.denken.or.jp/result/event/forum/2010/pdf/kurihara.pdf> [retrieved on 20121002] *
MASAHIRO KURONO: "'Johoka Kojo' eno FA Gijutsu no Yakuwari to Tekio -Hyojunka Gijutsu o Ikasu", KEISO, vol. 53, no. 7, 1 July 2010 (2010-07-01), pages 36 - 41, XP008172171 *
See also references of EP2733662A4
TSUCHIYA TAKEHIKO; SHONO TAKAYA; SEKIGUCHI KATSUHIKO: "Future of Power System Monitoring Systems Using Network Computing Terminals", TOSHIBA REVIEW, vol. 61, no. 11, 2006, pages 44 - 47

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724275A (zh) * 2020-05-11 2020-09-29 广东卓维网络有限公司 一种配电设备信息配置方法及系统
CN111724275B (zh) * 2020-05-11 2024-02-09 广东卓维网络有限公司 一种配电设备信息配置方法及系统

Also Published As

Publication number Publication date
JP5912018B2 (ja) 2016-04-27
EP2733662A4 (en) 2014-12-03
EP2733662A1 (en) 2014-05-21
CN103765469B (zh) 2017-02-15
CN103765469A (zh) 2014-04-30
US9733639B2 (en) 2017-08-15
JP2013020571A (ja) 2013-01-31
US20150148917A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP5912018B2 (ja) 動的設備管理システム
CN103235820B (zh) 一种集群系统中数据存储方法与装置
US20080195576A1 (en) Method, and Computer Based-System and Virtual Asset Register
CN106444631A (zh) 基于本体的智能机床运行状态信息采集平台及方法
CN102298365A (zh) 自动识别管理航天测控地面站设备变化的方法
WO2016010230A1 (ko) Iec61850와 opc ua 간의 상호 호환 방법 및 그 기록 매체
CN103905231A (zh) 对设备类型统一管理的方法和装置
CN111061802B (zh) 一种电力数据管理处理方法、装置及存储介质
Weng et al. Kmon: An in-kernel transparent monitoring system for microservice systems with ebpf
Osorio et al. Sensor network using power-over-ethernet
Jang et al. IEC 61850 SCL validation using UML model in modern digital substation
CN111212093A (zh) 数据处理系统及控制设备
JP2015088028A (ja) 情報収集システム
CN116108740A (zh) 一种电力设备的建模方法及装置
EP3582034A1 (en) Method and apparatus, in the field of automation technology, of updating processing data
CN104965497A (zh) 在线式生产数据快速生成与管理方法及系统
CN114691723A (zh) 工业数据处理方法、装置、设备及介质
EP3591481B1 (en) Device configuration management apparatus, system, and program
CN210724868U (zh) 数据处理系统及控制设备
JP2002157172A (ja) 計測情報ブローカー
CN112699117A (zh) 基于物联网的数据传输系统、数据传输方法、设备及介质
KR20220010294A (ko) 규칙 기반의 opc ua 노드 생성 시스템 및 방법
JP2021068365A (ja) 計算機システム及びデータの管理方法
CN105809577B (zh) 一种基于规则和组件的电厂信息化数据的分类处理方法
US20230056433A1 (en) Data management device and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012811702

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14232522

Country of ref document: US