WO2013008462A1 - Current sensor substrate and current sensor - Google Patents

Current sensor substrate and current sensor Download PDF

Info

Publication number
WO2013008462A1
WO2013008462A1 PCT/JP2012/004488 JP2012004488W WO2013008462A1 WO 2013008462 A1 WO2013008462 A1 WO 2013008462A1 JP 2012004488 W JP2012004488 W JP 2012004488W WO 2013008462 A1 WO2013008462 A1 WO 2013008462A1
Authority
WO
WIPO (PCT)
Prior art keywords
current sensor
chip
current
view
current path
Prior art date
Application number
PCT/JP2012/004488
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 健治
秀人 今庄
大吾 高木
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to CN201280034639.0A priority Critical patent/CN103649762B/en
Priority to JP2013523832A priority patent/JP5695195B2/en
Priority to US14/131,723 priority patent/US9448256B2/en
Priority to KR1020147000480A priority patent/KR101503224B1/en
Priority to EP12810990.7A priority patent/EP2733496B1/en
Publication of WO2013008462A1 publication Critical patent/WO2013008462A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37012Cross-sectional shape
    • H01L2224/37013Cross-sectional shape being non uniform along the connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a current sensor substrate and a current sensor, and more particularly to a current sensor substrate and a current sensor provided with a primary conductor having a U-shaped current path.
  • a method of detecting a magnetic flux generated around the measurement current flowing is known.
  • a method of arranging a magnetoelectric conversion element in the vicinity of a primary conductor through which a measurement current flows is known.
  • FIG. 1 shows an example of a conventional current sensor.
  • a U-shaped current conductor portion 204a is formed in the conductive clip 204, and the Hall element 208 is disposed inside the U-shape. Since the magnetic flux density is high near the center of the U-shaped inner side, the measurement sensitivity is improved.
  • the current sensor shown in FIG. 1 requires manufacturing labor, such as requiring the conductive clip 204 to be separately provided and coupled to the lead terminals 202a to 202d, resulting in an increase in cost.
  • the present invention has been made in view of such problems, and a first object thereof is to reduce manufacturing costs in a current sensor including a primary conductor having a U-shaped current path.
  • a second object is to provide a substrate for the current sensor.
  • a first aspect of the present invention includes a primary conductor having a U-shaped current path, a support portion for supporting a magnetoelectric conversion element, and a lead terminal connected to the support portion.
  • the lead terminal may be connected to the support portion through a step.
  • the support portion has a notch portion, and the current path is disposed in the notch portion in plan view. Good.
  • the primary conductor may have a stepped portion connected to the current path.
  • the fifth aspect of the present invention may further include a magnetic material arranged so as to overlap the U-shaped current path in plan view in any of the first to fourth aspects.
  • the sixth aspect of the present invention may further include a magnetic material arranged so as to sandwich the U-shaped current path in any one of the first to fifth aspects.
  • the current sensor substrate according to any one of the first to fourth aspects, and the current of the current sensor substrate disposed on the support portion of the current sensor substrate. It is good also as a current sensor provided with the IC chip which has the magnetoelectric conversion element which detects the magnetic flux which arises from the current which flows through a course.
  • the magnetoelectric conversion element may be arranged inside the U-shape of the U-shaped current path in plan view.
  • the current sensor substrate according to the fifth or sixth aspect and a current flowing through the current path of the current sensor substrate disposed on the support portion of the current sensor substrate are generated.
  • the magnetic material is formed on the surface of the IC chip opposite to the surface on which the U-shaped current path is disposed. It may be formed so as to cover a part or the whole.
  • the magnetic material may be formed on the support portion apart from the primary conductor.
  • the magnetic material may be composed of a magnetic plating or a magnetic chip.
  • the IC chip may protrude from the support portion in a side view.
  • the IC chip overlaps the current path in a plan view, and the magnetoelectric conversion element has the U-shaped current path in the plan view. It may be arranged inside the character shape.
  • the IC chip may be disposed with a predetermined distance from the U-shaped current path in a side view.
  • the primary conductor may not support the IC chip.
  • the support portion of the current sensor substrate has a notch, and the U-shaped current path of the current sensor substrate is Further, it may be disposed in the cutout portion in plan view and overlap with the IC chip.
  • the magnetoelectric conversion element may be a Hall element.
  • the IC chip is arranged at a position outside the U-shape of the current path and close to the current path. You may make it further provide a magnetoelectric conversion element.
  • the magnetoelectric conversion element may be a Hall IC or a magnetoresistive IC including a signal processing circuit.
  • the twenty-first aspect may further include an insulating member formed between a primary conductor of the current sensor substrate and the IC chip.
  • the insulating member may be an insulating tape.
  • a U-shaped current conductor includes a primary conductor having a U-shaped current path, a support portion for supporting a magnetoelectric conversion element, and a signal terminal side member having a lead terminal connected to the support portion.
  • FIG. 3 is a side view of the current sensor of FIG. 2.
  • FIG. 3 is a sectional view taken along line IIIB-IIIB in FIG. 2.
  • FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment.
  • FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment.
  • FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment.
  • FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment.
  • FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment.
  • FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment.
  • FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment. It is a figure which shows the deformation
  • FIG. 2 shows a current sensor according to the first embodiment.
  • the current sensor 200 includes a primary conductor 210 having a U-shaped current path 210A, a support portion 220A for supporting a magnetoelectric conversion element 230A such as a Hall element, and a signal terminal side member 220 having lead terminals 220B_1 and 220B_2 (hereinafter referred to as a “terminal”). , Simply abbreviated as “member 220”), and an IC chip 230 having a magnetoelectric conversion element 230A that is disposed on the support 220A and detects a magnetic flux generated from a current flowing through the current path 210A.
  • the primary conductor 210, the member 220, and the IC chip 230 are molded with a resin 240 to form the current sensor 200.
  • a portion excluding the IC chip 230 and the resin 240 is a current sensor substrate.
  • the lead terminal 220B_1 represents a lead terminal connected to the support part 220A
  • the lead terminal 220B_2 represents a lead terminal not connected to the support part 220A.
  • each lead terminal is simply referred to as the lead terminal 220B.
  • the current path 210A is arranged close to the support portion 220A so as not to overlap the support portion 220A in plan view. Further, as can be seen from the side view of FIG. 3A and the cross-sectional view of FIG. 3B, in a side view, the flat portion of the surface on the side of placing the IC chip 230 of the support portion 220A, and the surface of the current path 210A near the IC chip 230 The support portion 220A and the current path 210A are arranged so that the height of the flat portion is different.
  • the support portion 220A and the lead terminal 220B_1 are integrally formed of a metal material, not a separate member. That is, the support portion 220A and the lead terminal 220B_1 are physically integrated, and are physically and electrically connected.
  • the magnetoelectric conversion element 230A is arranged inside the U-shaped of the current path 210A in plan view. Further, the IC chip 230 protrudes from the support portion 220A in a side view and overlaps with the current path 210A in a plan view.
  • the member 220 has a stepped portion 220C between the support portion 220A and the lead terminal 220B.
  • a step 220C having a thickness of about 20 to 100 ⁇ m can be provided by forming the member 220, whereby a clearance is obtained between the current path 210A and the IC chip 230.
  • the clearance ensures a high withstand voltage between the primary conductor 210 and the IC chip 230, and enables the high withstand voltage to be maintained inside the package.
  • the conductive path 210A of the primary conductor 210 and the IC chip 230 come into contact with each other, and even if an insulating sheet is pasted on the back surface of the IC chip 230 in advance, the dielectric strength is low and the dielectric breakdown is likely to occur. End up.
  • an insulating sheet may be pasted on the primary conductor 210 in advance, the process becomes complicated, and the feasibility is low in a situation where manufacturing cost is required to be suppressed.
  • FIGS. 4A to 4C and FIGS. 5A to 5C a method of manufacturing the current sensor 200 according to the first embodiment will be described.
  • a lead frame on which a desired pattern is formed is produced from a single metal plate.
  • FIG. 4A shows a portion corresponding to one current sensor.
  • the step 220C is provided in the member 220 by forming by pressing or the like (FIG. 4B).
  • the IC chip 230 is die-bonded to the support portion 220B
  • the lead terminal 220A and the IC chip 230 are wire-bonded (FIG. 4C).
  • FIG. 5A is a plan view
  • FIG. 5B is a front view
  • FIG. 5C is a right side view.
  • the current sensor 200 has a smaller number of parts than the conventional one, and the manufacturing cost is reduced. In addition, a high withstand voltage between the primary conductor 210 and the IC chip 230 is achieved. Can be guaranteed.
  • FIG. 6A shows a modification of the current sensor 200 according to the first embodiment.
  • the current sensor 600 is the same as the current sensor 200 except for the IC chip 630.
  • the first magnetoelectric conversion element 630A is arranged inside the U-shape of the current path 210A in plan view
  • the second magnetoelectric conversion element 630B is It is designed to be disposed outside the U-shape of the current path 210A and in a position close to the current path 210A.
  • FIG. 7 shows a cross-sectional view along the line VII-VII in FIG. 6A.
  • the magnetic flux density at the position of the first magnetoelectric conversion element 630A generated by the current flowing through the primary conductor 210 is B1s
  • FIG. 6B shows an example in which three magnetoelectric conversion elements are used as another modification of the current sensor 200 according to the first embodiment.
  • the current sensor 700 is the same as the current sensor 200 except for the IC chip 730.
  • the first magnetoelectric conversion element 730A is disposed inside the U shape of the current path 210A in plan view, and the second magnetoelectric conversion element 730B and the second magnetoelectric conversion element 730B
  • the third magnetoelectric conversion element 730C is designed to be disposed outside the U-shaped ends of the current path 210A and in a position close to the current path 210A.
  • a current path having a C-shape, a V-shape, or a similar shape may be used for the current path 210A as one form of the U-shaped current path.
  • FIG. 8 shows a current sensor according to the second embodiment.
  • the current sensor 800 is different from the current sensor 200 of the first embodiment in that, instead of the IC chip 230 protruding from the support part 220A in a side view, the support part 820A of the member 220 has a notch part 820A ′, The current path 210A is arranged at the notch 820A ′ in plan view. Therefore, although the IC chip 230 does not protrude, the IC chip 230 and the current path 210A overlap in plan view.
  • 9A shows a side view and FIG. 9B shows a cross-sectional view.
  • the processing of the stamping mold of the lead frame is slightly complicated.
  • a degree of freedom is provided in the arrangement of the magnetoelectric conversion elements in the IC chip, and the magnetoelectric conversion elements can be arranged inside the IC chip. Therefore, it is possible to reduce the influence on the offset due to the stress. Further, since the bonding area between the support portion and the IC chip increases, the IC chip can be supported more stably.
  • the IC chip 230 may be an IC chip 630 having two magnetoelectric conversion elements or an IC chip 730 having three magnetoelectric conversion elements.
  • FIG. 10 shows a current sensor according to the third embodiment.
  • the current sensor 1000 is different from the current sensor 200 of the first embodiment in that the primary conductor 210 has a step portion 210C adjacent to the current path 210A, not the member 220.
  • the IC chip 230 protrudes from the support portion 220A in a side view and overlaps with the current path 210A in a plan view.
  • FIG. 11A shows a side view and FIG. 11B shows a cross-sectional view.
  • the IC chip 230 may be an IC chip 630 having two magnetoelectric conversion elements or an IC chip 730 having three magnetoelectric conversion elements.
  • FIG. 12 shows a configuration example of the current sensor according to the fourth embodiment.
  • this current sensor 500A similar to that shown in FIG. 2, for example, a primary conductor 210 having a U-shaped current path 210A and a conductor terminal 210B and a magnetoelectric conversion element 230A are supported.
  • a member 220 having a support portion 520A and a lead terminal 220B and an IC chip 230 having a magnetoelectric conversion element 230A are provided.
  • Primary conductor 210, member 220, and IC chip 230 are molded with resin 240A.
  • a magnetic material chip 540 made of a magnetic material is formed on the IC chip 230.
  • the support portion 520A is further configured to support a magnetic material chip 550 made of a magnetic material such as ferrite.
  • the support portion 520A includes, for example, two step portions 521A and 521B. The shape of the step portions 521A and 521B will be described with reference to FIG.
  • the magnetic material chips 540 and 550 are arranged so that the magnetic flux generated by the current flowing through the current path 210A of the primary conductor 210 is converged on the magnetic sensing part of the magnetoelectric conversion element 230A.
  • the current sensor 500A becomes a current sensor substrate by removing the IC chip 230 and the resin 240A from the above-described components of the current sensor 500A.
  • FIG. 13 is a side view of the current sensor 500A of FIG.
  • the step portion 521A of the support portion 520A is formed so that the center portion of the support portion 520A protrudes upward, and the tip portion of the support portion 520A is located below the primary conductor 210. It is formed to protrude.
  • tip 550 is formed in the lower part of this support part 520A.
  • the magnetic material chip 550 is formed on the support portion 520 ⁇ / b> A apart from the primary conductor 210.
  • the current sensor 500A With the configuration of the current sensor 500A, when a current flows through the current path of the primary conductor 210, the magnetic material chips 540 and 550 are formed. Therefore, the magnetic flux generated by the current is easily converged on the magnetic sensing part of the magnetoelectric transducer 230A. Become. Therefore, the current detection sensitivity of the current sensor 500A is improved.
  • the formation of the magnetic material chips 540 and 550 suppresses the intrusion of an external magnetic field into the current sensor 500A.
  • the present embodiment is a current sensor in which only one magnetic chip 540 is formed to improve the current detection sensitivity and to suppress the intrusion of an external magnetic field.
  • FIG. 14 shows a configuration example of the current sensor according to the fifth embodiment.
  • the current sensor 500B of the present embodiment includes a primary conductor 210 having a U-shaped current path 210A, a support portion 520B and a lead terminal 220B for supporting the magnetoelectric conversion element 230A, for example.
  • the IC chip 230 having the magnetoelectric conversion element 230A.
  • a magnetic material chip 540 made of a magnetic material is formed on the IC chip 230.
  • Primary conductor 210, member 220, and IC chip 230 are molded with resin 240A.
  • the support portion 520B of the present embodiment has, for example, only one step portion 521A.
  • the current sensor 500B becomes a current sensor substrate by removing the IC chip 230 and the resin 240A from the above-described components of the current sensor 500B.
  • FIG. 15 is a side view of the current sensor 500B of FIG. Similarly to the one shown in FIG. 13, in the current sensor 500B, the step portion 521A of the support portion 520B is formed so that the central portion of the support portion 520B protrudes upward. Similarly to the one shown in FIG. 13, the magnetic material chip 540 has an IC chip so that the magnetic flux generated by the current flowing through the current path 210A of the primary conductor 210 is converged on the magnetic sensitive part of the magnetoelectric conversion element 230A. 230.
  • the current sensor 500B With the configuration of the current sensor 500B, when a current flows through the current path of the primary conductor 210, the magnetic material chip 540 is formed, so that the magnetic flux generated by the current is easily converged on the magnetic sensing part of the magnetoelectric conversion element 230A. Therefore, the current detection sensitivity of the current sensor 500B is improved.
  • the formation of the magnetic material chip 540 suppresses the intrusion of an external magnetic field from the upper surface of the package to the current sensor 500B.
  • the present embodiment is a current sensor in which only one magnetic chip 550 is formed to improve the current detection sensitivity and to suppress the intrusion of an external magnetic field.
  • FIG. 16 shows a configuration example of a current sensor according to the sixth embodiment.
  • the current sensor 500C of this embodiment includes a primary conductor 210 having, for example, a U-shaped current path 210A, a support portion 520A and a lead terminal 220B for supporting the magnetoelectric conversion element 230A.
  • the IC chip 230 having the magnetoelectric conversion element 230A.
  • a magnetic material chip 540 made of a magnetic material is formed below the support portion 520A.
  • Primary conductor 210, member 220, and IC chip 230 are molded with resin 240A.
  • the current sensor 500C becomes a current sensor substrate by removing the IC chip 230 and the resin 240A from the above-described components of the current sensor 500C.
  • FIG. 17 is a side view of the current sensor 500C of FIG.
  • the step portion 521A of the support portion 520A is formed so that the center portion of the support portion 520A protrudes upward
  • the step portion 521B is formed of the support portion 520A.
  • the tip portion is formed so as to protrude below the primary conductor 210.
  • the magnetic material chip 550 has a support portion so that the magnetic flux generated by the current flowing through the current path 210A of the primary conductor 210 is converged on the magnetic sensitive portion of the magnetoelectric conversion element 230A. It is arranged at the bottom of 520A.
  • the magnetic resistance is lowered because the magnetic material chip 550 is formed, and the magnetic flux generated by the primary conductor current is increased. Therefore, the current detection sensitivity of the current sensor 500C is improved.
  • the formation of the magnetic material chip 550 suppresses the intrusion of an external magnetic field from the back surface of the package with respect to the current sensor 500C.
  • the primary conductor 210 having the U-shaped current path 210A has been described as an example.
  • the function of the current sensor can be realized as an example of another shape of the current path 210A.
  • other shapes may be used.
  • the case where the IC chip 230 having one magnetoelectric conversion element is applied has been described.
  • the IC chip for example, two or more magnetoelectric conversion elements are provided. May be.
  • the magnetic chips 540 and 550 made of a magnetic material are applied has been described.
  • the magnetic material for example, a magnetic plating formed on the IC surface or the like But you can.
  • the insulating member is an insulating tape made of a sheet material having an excellent pressure resistance, and it is preferable that one surface of the insulating tape is coated with an adhesive.
  • Each of the support portions 520A and 520B of the current sensors 500A, 500B, and 500C of each embodiment has a stepped portion, but the shape of the stepped portion may be changed as long as the height of the support portion can be changed. is there. Further, the number of the stepped portions may be three or more as long as the function of the current sensor can be realized.
  • the magnetoelectric conversion element of each embodiment may be a Hall IC or a magnetoresistive IC including a signal processing circuit.

Abstract

This invention aims to reduce manufacturing costs of a current sensor provided with a primary conductor having a U-shape current path. This current sensor (200) is provided with a primary conductor (210) having a U-shape current path (210A), a support unit (220A) for supporting a magnetoelectric conversion element (230A), and lead terminals (220B) connected to the support unit (210A). The current path (210A) is formed so as to have a height different than that of the support unit (220A) in lateral view while not overlapping with the support unit (220A) in planar view.

Description

電流センサ用基板及び電流センサCurrent sensor substrate and current sensor
 本発明は、電流センサ用基板及び電流センサに関し、より詳細には、U字形の電流経路を有する一次導体を備えた電流センサ用基板及び電流センサに関する。 The present invention relates to a current sensor substrate and a current sensor, and more particularly to a current sensor substrate and a current sensor provided with a primary conductor having a U-shaped current path.
 従来、導体に流れる電流を測定する電流センサとして、測定電流が流れることにより周囲に生じる磁束を検出する方法が知られている。例えば、測定電流が流れる一次導体近傍に磁電変換素子を配置する方法がある。 Conventionally, as a current sensor for measuring a current flowing through a conductor, a method of detecting a magnetic flux generated around the measurement current flowing is known. For example, there is a method of arranging a magnetoelectric conversion element in the vicinity of a primary conductor through which a measurement current flows.
 図1(特許文献1の図7に対応)に、従来の電流センサの一例を示す。導電性クリップ204にU字形の電流導体部204aを形成し、ホール素子208を当該U字形の内側に配置している。U字形内側の中心付近は磁束密度が高くなるので測定感度が向上する。 FIG. 1 (corresponding to FIG. 7 of Patent Document 1) shows an example of a conventional current sensor. A U-shaped current conductor portion 204a is formed in the conductive clip 204, and the Hall element 208 is disposed inside the U-shape. Since the magnetic flux density is high near the center of the U-shaped inner side, the measurement sensitivity is improved.
国際公開第2006/130393号パンフレットInternational Publication No. 2006/130393 Pamphlet
 しかしながら、図1記載の電流センサは、導電性クリップ204を別個に設けてリード端子202a~202dに結合することを要する等、製造上の手間がかかり、コストの増加を招く。 However, the current sensor shown in FIG. 1 requires manufacturing labor, such as requiring the conductive clip 204 to be separately provided and coupled to the lead terminals 202a to 202d, resulting in an increase in cost.
 本発明は、このような問題点に鑑みてなされたものであり、その第1の目的は、U字形の電流経路を有する一次導体を備えた電流センサにおいて、製造コストを低減することにある。また、第2の目的は、当該電流センサ用の基板を提供することにある。 The present invention has been made in view of such problems, and a first object thereof is to reduce manufacturing costs in a current sensor including a primary conductor having a U-shaped current path. A second object is to provide a substrate for the current sensor.
 このような目的を達成するために、本発明の第1の態様は、U字形の電流経路を有する一次導体と、磁電変換素子を支持するための支持部と、前記支持部と接続するリード端子を有する信号端子側部材と、を備え、前記電流経路は、平面視において前記支持部と重複せず、且つ、側面視において前記支持部と高さが異なることを特徴とする電流センサ用基板である。 In order to achieve such an object, a first aspect of the present invention includes a primary conductor having a U-shaped current path, a support portion for supporting a magnetoelectric conversion element, and a lead terminal connected to the support portion. A signal terminal side member, wherein the current path does not overlap with the support portion in a plan view and has a height different from that of the support portion in a side view. is there.
 また、本発明の第2の態様は、第1の態様において、前記リード端子は、前記支持部と段差を介して接続するようにしてもよい。 Further, according to a second aspect of the present invention, in the first aspect, the lead terminal may be connected to the support portion through a step.
 また、本発明の第3の態様は、第1又は第2の態様において、前記支持部が切欠部を有し、前記電流経路は、平面視において前記切欠部に配置されているようにしてもよい。 According to a third aspect of the present invention, in the first or second aspect, the support portion has a notch portion, and the current path is disposed in the notch portion in plan view. Good.
 また、本発明の第4の態様は、第1から第3の態様において、前記一次導体が前記電流経路に接続する段差部を有するようにしてもよい。 Further, in a fourth aspect of the present invention, in the first to third aspects, the primary conductor may have a stepped portion connected to the current path.
 本発明の第5の態様は、第1から第4のいずれかの態様において、平面視において前記U字形の電流経路と重なるように配置される磁性体材料を更に有するようにしてもよい。 The fifth aspect of the present invention may further include a magnetic material arranged so as to overlap the U-shaped current path in plan view in any of the first to fourth aspects.
 本発明の第6の態様は、第1から第5のいずれかの態様において、前記U字形の電流経路を挟むように配置される磁性体材料を更に有するようにしてもよい。 The sixth aspect of the present invention may further include a magnetic material arranged so as to sandwich the U-shaped current path in any one of the first to fifth aspects.
 また、本発明の第7の態様は、第1から第4の態様のいずれかの電流センサ用基板と、前記電流センサ用基板の前記支持部に配置された、前記電流センサ用基板の前記電流経路を流れる電流から生じる磁束を検出する磁電変換素子を有するICチップとを備える電流センサとしてもよい。 According to a seventh aspect of the present invention, there is provided the current sensor substrate according to any one of the first to fourth aspects, and the current of the current sensor substrate disposed on the support portion of the current sensor substrate. It is good also as a current sensor provided with the IC chip which has the magnetoelectric conversion element which detects the magnetic flux which arises from the current which flows through a course.
 また、本発明の第8の態様は、第7の態様において、前記磁電変換素子は、平面視において前記U字形の電流経路の前記U字形の内側に配置されているようにしてもよい。 Further, according to an eighth aspect of the present invention, in the seventh aspect, the magnetoelectric conversion element may be arranged inside the U-shape of the U-shaped current path in plan view.
 本発明の第9の態様は、第5又は6の態様の電流センサ用基板と、前記電流センサ用基板の前記支持部に配置された、前記電流センサ用基板の前記電流経路を流れる電流から生じる磁束を検出する磁電変換素子を有するICチップとを備え、前記磁電変換素子は、平面視において前記U字形の電流経路の前記U字形の内側に配置されていることを特徴とする電流センサとしてもよい。 According to a ninth aspect of the present invention, the current sensor substrate according to the fifth or sixth aspect and a current flowing through the current path of the current sensor substrate disposed on the support portion of the current sensor substrate are generated. An IC chip having a magnetoelectric conversion element for detecting magnetic flux, and the magnetoelectric conversion element is disposed inside the U shape of the U-shaped current path in plan view. Good.
 本発明の第10の態様は、第9の態様において、前記磁性材料は前記ICチップの前記U字形の電流経路が配置されている側の面とは反対の面側に、前記磁電変換素子の一部もしくは全体を覆うように形成されているようにしてもよい。 According to a tenth aspect of the present invention, in the ninth aspect, the magnetic material is formed on the surface of the IC chip opposite to the surface on which the U-shaped current path is disposed. It may be formed so as to cover a part or the whole.
 本発明の第11の態様は、第9又は10の態様において、前記磁性材料は、前記一次導体から離れて前記支持部上に形成されているようにしてもよい。 According to an eleventh aspect of the present invention, in the ninth or tenth aspect, the magnetic material may be formed on the support portion apart from the primary conductor.
 本発明の第12の態様は、第9から11のいずれかの態様において、前記磁性材料は、磁性体メッキまたは磁性体チップで構成されているようにしてもよい。 According to a twelfth aspect of the present invention, in any one of the ninth to eleventh aspects, the magnetic material may be composed of a magnetic plating or a magnetic chip.
 本発明の第13の態様は、第7から12のいずれかの態様において、前記ICチップは、側面視において前記支持部から突出しているようにしてもよい。 In a thirteenth aspect of the present invention, in any one of the seventh to twelfth aspects, the IC chip may protrude from the support portion in a side view.
 本発明の第14の態様は、第13の態様において、前記ICチップは、平面視において前記電流経路と重複しており、前記磁電変換素子は、平面視において前記U字形の電流経路の前記U字形の内側に配置されているようにしてもよい。 According to a fourteenth aspect of the present invention, in the thirteenth aspect, the IC chip overlaps the current path in a plan view, and the magnetoelectric conversion element has the U-shaped current path in the plan view. It may be arranged inside the character shape.
 本発明の第15の態様は、第13又は14の態様において、前記ICチップは、側面視において前記U字形の電流経路と所定の間隔をもって配置されているよにしてもよい。 According to a fifteenth aspect of the present invention, in the thirteenth or fourteenth aspect, the IC chip may be disposed with a predetermined distance from the U-shaped current path in a side view.
 本発明の第16の態様は、第13から15のいずれかの態様において、前記一次導体は前記ICチップを支持していないようにしてもよい。 In a sixteenth aspect of the present invention, in any of the thirteenth to fifteenth aspects, the primary conductor may not support the IC chip.
 本発明の第17の態様は、第7から12のいずれかの態様において、前記電流センサ用基板の前記支持部は、切欠部を有し、前記電流センサ用基板の前記U字形の電流経路は、平面視において前記切欠部に配置されており、かつ、前記ICチップと重複するようにしてもよい。 According to a seventeenth aspect of the present invention, in any one of the seventh to twelfth aspects, the support portion of the current sensor substrate has a notch, and the U-shaped current path of the current sensor substrate is Further, it may be disposed in the cutout portion in plan view and overlap with the IC chip.
 本発明の第18の態様は、第7から17のいずれかの態様において、前記磁電変換素子は、ホール素子であるようにしてもよい。 According to an eighteenth aspect of the present invention, in any one of the seventh to seventeenth aspects, the magnetoelectric conversion element may be a Hall element.
 本発明の第19の態様は、第7から18のいずれかの態様において、前記ICチップは、前記電流経路のU字形の外側であって前記電流経路に近接する位置に配置された第2の磁電変換素子をさらに備えるようにしてもよい。 According to a nineteenth aspect of the present invention, in any one of the seventh to eighteenth aspects, the IC chip is arranged at a position outside the U-shape of the current path and close to the current path. You may make it further provide a magnetoelectric conversion element.
 本発明の第20の態様は、第7から19のいずれかの態様において、前記磁電変換素子は、信号処理回路を含むホールICまたは磁気抵抗ICであるようにしてもよい。 According to a twentieth aspect of the present invention, in any one of the seventh to nineteenth aspects, the magnetoelectric conversion element may be a Hall IC or a magnetoresistive IC including a signal processing circuit.
 本発明の第21の態様は、第7から20のいずれかの態様において、前記電流センサ用基板の一次導体と前記ICチップとの間に形成される絶縁部材をさらに有するようにしてもよい。 In a twenty-first aspect of the present invention, the twenty-first aspect may further include an insulating member formed between a primary conductor of the current sensor substrate and the IC chip.
 本発明の第22の態様は、第21の態様において、前記絶縁部材は、絶縁テープであるようにしてもよい。 According to a twenty-second aspect of the present invention, in the twenty-first aspect, the insulating member may be an insulating tape.
 本発明によれば、U字形の電流経路を有する一次導体と、磁電変換素子を支持するための支持部と、支持部と接続するリード端子を有する信号端子側部材とを備え、U字形の電流経路を、平面視において支持部と重複せず、且つ、側面視において支持部と高さが異なるように設計することにより、電流センサ用基板及び電流センサの構成を、部品点数を抑えた簡便なものとし、製造コストを低減することができる。 According to the present invention, a U-shaped current conductor includes a primary conductor having a U-shaped current path, a support portion for supporting a magnetoelectric conversion element, and a signal terminal side member having a lead terminal connected to the support portion. By designing the path so that it does not overlap with the support part in a plan view and different in height from the support part in a side view, the configuration of the current sensor substrate and the current sensor can be simplified with a reduced number of parts. As a result, the manufacturing cost can be reduced.
従来の電流センサを示す図である。It is a figure which shows the conventional current sensor. 第1の実施形態に係る電流センサを示す図である。It is a figure which shows the current sensor which concerns on 1st Embodiment. 図2の電流センサの側面図である。FIG. 3 is a side view of the current sensor of FIG. 2. 図2のIIIB-IIIB線に沿った断面図である。FIG. 3 is a sectional view taken along line IIIB-IIIB in FIG. 2. 実施形態1に係る電流センサの製造方法を説明するための図である。FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment. 実施形態1に係る電流センサの製造方法を説明するための図である。FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment. 実施形態1に係る電流センサの製造方法を説明するための図である。FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment. 実施形態1に係る電流センサの製造方法を説明するための図である。FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment. 実施形態1に係る電流センサの製造方法を説明するための図である。FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment. 実施形態1に係る電流センサの製造方法を説明するための図である。FIG. 5 is a diagram for explaining a method of manufacturing the current sensor according to the first embodiment. 実施形態1に係る電流センサの変形形態を示す図である。It is a figure which shows the deformation | transformation form of the current sensor which concerns on Embodiment 1. FIG. 実施形態1に係る電流センサの変形形態を示す図である。It is a figure which shows the deformation | transformation form of the current sensor which concerns on Embodiment 1. FIG. 図6AのVII-VII線に沿った断面図を示す図である。It is a figure which shows sectional drawing along the VII-VII line of FIG. 6A. 第2の実施形態に係る電流センサを示す図である。It is a figure which shows the current sensor which concerns on 2nd Embodiment. 図8の電流センサの側面図である。It is a side view of the current sensor of FIG. 図8の電流センサの断面図である。It is sectional drawing of the current sensor of FIG. 第3の実施形態に係る電流センサを示す図である。It is a figure which shows the current sensor which concerns on 3rd Embodiment. 図10の電流センサの側面図である。It is a side view of the current sensor of FIG. 図10の電流センサの断面図である。It is sectional drawing of the current sensor of FIG. 第4の実施形態に係る電流センサの一例を示す図である。It is a figure which shows an example of the current sensor which concerns on 4th Embodiment. 図12の電流センサの側面図である。It is a side view of the current sensor of FIG. 第5の実施形態に係る電流センサの一例を示す図である。It is a figure which shows an example of the current sensor which concerns on 5th Embodiment. 図14の電流センサの側面図である。It is a side view of the current sensor of FIG. 第5の実施形態に係る電流センサの一例を示す図である。It is a figure which shows an example of the current sensor which concerns on 5th Embodiment. 図16の電流センサの側面図である。It is a side view of the current sensor of FIG.
 以下、図面を参照して本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (第1の実施形態)
 図2に、第1の実施形態に係る電流センサを示す。電流センサ200は、U字形の電流経路210Aを有する一次導体210と、ホール素子等の磁電変換素子230Aを支持するための支持部220A、及びリード端子220B_1,220B_2を有する信号端子側部材220(以下、単に「部材220」と略記する。)と、支持部220Aに配置された、電流経路210Aを流れる電流から生じる磁束を検出する磁電変換素子230Aを有するICチップ230とを備える。一次導体210、部材220、及びICチップ230を樹脂240でモールドして、電流センサ200が形成される。ICチップ230及び樹脂240を除いた部分が電流センサ用基板である。
(First embodiment)
FIG. 2 shows a current sensor according to the first embodiment. The current sensor 200 includes a primary conductor 210 having a U-shaped current path 210A, a support portion 220A for supporting a magnetoelectric conversion element 230A such as a Hall element, and a signal terminal side member 220 having lead terminals 220B_1 and 220B_2 (hereinafter referred to as a “terminal”). , Simply abbreviated as “member 220”), and an IC chip 230 having a magnetoelectric conversion element 230A that is disposed on the support 220A and detects a magnetic flux generated from a current flowing through the current path 210A. The primary conductor 210, the member 220, and the IC chip 230 are molded with a resin 240 to form the current sensor 200. A portion excluding the IC chip 230 and the resin 240 is a current sensor substrate.
 リード端子220B_1は支持部220Aに接続されているリード端子を表し、リード端子220B_2は支持部220Aに接続されていないリード端子を表してある。なお、リード端子220B_1,220B_2に共通の説明では各リード端子が単にリード端子220Bとして参照される。 The lead terminal 220B_1 represents a lead terminal connected to the support part 220A, and the lead terminal 220B_2 represents a lead terminal not connected to the support part 220A. In the description common to the lead terminals 220B_1 and 220B_2, each lead terminal is simply referred to as the lead terminal 220B.
 電流経路210Aは、平面視において支持部220Aと重複しないように、支持部220Aに近接して配置されている。また、図3Aの側面図及び図3Bの断面図から分かるように、側面視において支持部220AのICチップ230を載せる側の面の平坦部分と、電流経路210AのICチップ230に近い側の面の平坦部分との高さが異なるように支持部220Aと電流経路210Aが配置されている。 The current path 210A is arranged close to the support portion 220A so as not to overlap the support portion 220A in plan view. Further, as can be seen from the side view of FIG. 3A and the cross-sectional view of FIG. 3B, in a side view, the flat portion of the surface on the side of placing the IC chip 230 of the support portion 220A, and the surface of the current path 210A near the IC chip 230 The support portion 220A and the current path 210A are arranged so that the height of the flat portion is different.
 支持部220Aとリード端子220B_1とは、別個の部材ではなく、金属材で一体形成されている。すなわち、支持部220Aとリード端子220B_1とは物理的に一体となっており、物理的にも電気的にも接続されている。 The support portion 220A and the lead terminal 220B_1 are integrally formed of a metal material, not a separate member. That is, the support portion 220A and the lead terminal 220B_1 are physically integrated, and are physically and electrically connected.
 上述したように、U字形内側の中心付近は磁束密度が高くなり電流検出感度が向上するため、磁電変換素子230Aは、平面視において、電流経路210AのU字形の内側に配置されている。また、ICチップ230は、側面視において支持部220Aから突出しており、平面視において電流経路210Aと重複する。 As described above, since the magnetic flux density is increased near the center of the U-shaped inner side and the current detection sensitivity is improved, the magnetoelectric conversion element 230A is arranged inside the U-shaped of the current path 210A in plan view. Further, the IC chip 230 protrudes from the support portion 220A in a side view and overlaps with the current path 210A in a plan view.
 本実施形態に係る電流センサ200においては、部材220が、支持部220Aとリード端子220Bとの間に段差部220Cを有する。例えば部材220のフォーミングにより、20~100μm程度の段差部220Cを設けることができ、これにより、電流経路210AとICチップ230との間にクリアランスが得られる。当該クリアランスは、一次導体210とICチップ230との間の高い絶縁耐圧を保証し、パッケージ内部における高い絶縁耐圧の維持を可能にする。段差部220Cが存在しないと、一次導体210の導電経路210AとICチップ230が接触することになり、ICチップ230の裏面に予め絶縁シートを貼ったとしても絶縁耐圧が低く、絶縁破壊し易くなってしまう。また、予め一次導体210に絶縁シートを貼ることも考えられるが、工程の複雑化を招き、製造コストの抑制が求められる状況において実現性が低い。 In the current sensor 200 according to the present embodiment, the member 220 has a stepped portion 220C between the support portion 220A and the lead terminal 220B. For example, a step 220C having a thickness of about 20 to 100 μm can be provided by forming the member 220, whereby a clearance is obtained between the current path 210A and the IC chip 230. The clearance ensures a high withstand voltage between the primary conductor 210 and the IC chip 230, and enables the high withstand voltage to be maintained inside the package. If the stepped portion 220C does not exist, the conductive path 210A of the primary conductor 210 and the IC chip 230 come into contact with each other, and even if an insulating sheet is pasted on the back surface of the IC chip 230 in advance, the dielectric strength is low and the dielectric breakdown is likely to occur. End up. In addition, although an insulating sheet may be pasted on the primary conductor 210 in advance, the process becomes complicated, and the feasibility is low in a situation where manufacturing cost is required to be suppressed.
 ここで、図4A~4C及び図5A~5Cを参照して、実施形態1に係る電流センサ200の製造方法を説明する。まず、一枚の金属板から、所望のパターンが形成されたリードフレームを作製する。図4Aは、一個の電流センサに対応する一部分を示している。次いで、プレス加工等でフォーミングを施すことにより、部材220に段差部220Cを設ける(図4B)。そして、支持部220BにICチップ230をダイボンディングした後、リード端子220AとICチップ230をワイヤボンディングする(図4C)。最後に、一次導体210、部材220、及びICチップ230を樹脂240でモールドし、リードカットを行い、フォーミングにより一次導体端子210B及びリード端子(信号端子)220Bを形成する。図5Aは平面図、図5Bは正面図、図5Cは右側面図である。 Here, with reference to FIGS. 4A to 4C and FIGS. 5A to 5C, a method of manufacturing the current sensor 200 according to the first embodiment will be described. First, a lead frame on which a desired pattern is formed is produced from a single metal plate. FIG. 4A shows a portion corresponding to one current sensor. Next, the step 220C is provided in the member 220 by forming by pressing or the like (FIG. 4B). Then, after the IC chip 230 is die-bonded to the support portion 220B, the lead terminal 220A and the IC chip 230 are wire-bonded (FIG. 4C). Finally, the primary conductor 210, the member 220, and the IC chip 230 are molded with the resin 240, lead cut is performed, and the primary conductor terminal 210B and the lead terminal (signal terminal) 220B are formed by forming. 5A is a plan view, FIG. 5B is a front view, and FIG. 5C is a right side view.
 このように、第1の実施形態に係る電流センサ200は、従来よりも部品点数が抑えられ、製造コストが低減することに加えて、一次導体210とICチップ230との間の高い絶縁耐圧を保証することができる。 As described above, the current sensor 200 according to the first embodiment has a smaller number of parts than the conventional one, and the manufacturing cost is reduced. In addition, a high withstand voltage between the primary conductor 210 and the IC chip 230 is achieved. Can be guaranteed.
 図6Aに、第1の実施形態に係る電流センサ200の変形形態を示す。電流センサ600は、ICチップ630を除いて電流センサ200と同一である。ICチップ630は、支持部220Aに配置した際に、第1の磁電変換素子630Aが、平面視において、電流経路210AのU字形の内側に配置されるとともに、第2の磁電変換素子630Bが、電流経路210AのU字形の外側であって、電流経路210Aに近接する位置に配置されるように設計されている。図7に、図6AのVII-VII線に沿った断面図を示す。1次導体210に電流が流れることにより発生する第1の磁電変換素子630Aの位置の磁束密度をB1s、第2の磁電変換素子630Bの位置の磁束密度をB2sとする。外来磁気ノイズにより発生する磁束密度をそれぞれB1n、B2nとすると、第1の磁電変換素子630A、第2の磁電変換素子630Bの出力Vo1、Vo2は、
     Vo1=k1×(B1s+B1n)+Vu1
     Vo2=k2×(-B2s+B2n)+Vu2
となる。但し、k1、k2は各々の感度係数、Vu1、Vu2は各々のオフセット値である。
FIG. 6A shows a modification of the current sensor 200 according to the first embodiment. The current sensor 600 is the same as the current sensor 200 except for the IC chip 630. When the IC chip 630 is arranged on the support portion 220A, the first magnetoelectric conversion element 630A is arranged inside the U-shape of the current path 210A in plan view, and the second magnetoelectric conversion element 630B is It is designed to be disposed outside the U-shape of the current path 210A and in a position close to the current path 210A. FIG. 7 shows a cross-sectional view along the line VII-VII in FIG. 6A. The magnetic flux density at the position of the first magnetoelectric conversion element 630A generated by the current flowing through the primary conductor 210 is B1s, and the magnetic flux density at the position of the second magnetoelectric conversion element 630B is B2s. If the magnetic flux densities generated by the external magnetic noise are B1n and B2n, the outputs Vo1 and Vo2 of the first magnetoelectric conversion element 630A and the second magnetoelectric conversion element 630B are
Vo1 = k1 × (B1s + B1n) + Vu1
Vo2 = k2 × (−B2s + B2n) + Vu2
It becomes. However, k1 and k2 are the respective sensitivity coefficients, and Vu1 and Vu2 are the respective offset values.
 ここで、双方の磁電変換素子の特性にばらつきが極めて小さく、k1=k2=k、Vu1=Vu2が成り立つとし、双方の磁電変換素子の距離が近いのでB1n=B2nと近似すると、
     Vo=Vo1-Vo2=k×(B1s+B2s)
となり、外来磁場によるノイズが消えるとともに、U字形内側の第1の磁電変換素子630Aのみの場合よりも大きな信号が得られるので、感度向上につながる。
Here, it is assumed that the variations in the characteristics of both magnetoelectric conversion elements are extremely small, and k1 = k2 = k and Vu1 = Vu2 hold, and since the distance between both magnetoelectric conversion elements is close, B1n = B2n is approximated.
Vo = Vo1−Vo2 = k × (B1s + B2s)
Thus, noise due to the external magnetic field disappears, and a larger signal is obtained than in the case of only the first magnetoelectric conversion element 630A inside the U-shape, leading to an improvement in sensitivity.
 また、図6Bに第1の実施形態に係る電流センサ200のもう一つの変形形態として磁電変換素子を3つ用いた例を示す。電流センサ700は、ICチップ730を除いて電流センサ200と同一である。ICチップ730は、支持部220Aに配置された際に、第1の磁電変換素子730Aが平面視において、電流経路210AのU字形の内側に配置されるとともに、第2の磁電変換素子730B及び第3の磁電変換素子730Cが、電流経路210AのU字形の両端の外側であって、電流経路210Aに近接する位置に配置されるように設計されている。1次導体210に電流が流れることにより発生する第3の磁電変換素子730Cの位置の磁束密度をB3sとし、外来磁気ノイズにより第3の磁電変換素子730Cの位置で発生する磁束密度をB3nとすると、
  Vo=Vo1-(Vo2+Vo3)/2=k×(B1s+(B2s+B3s)/2)
となり、2つの場合と同様に外来磁場によるノイズが消え感度も向上するとともに、1次導体210とICチップ730の位置関係が3つの磁電変換素子の配置方向にズレが生じた場合でも、出力Voの変動レベルを極力抑えることができるようになる。
FIG. 6B shows an example in which three magnetoelectric conversion elements are used as another modification of the current sensor 200 according to the first embodiment. The current sensor 700 is the same as the current sensor 200 except for the IC chip 730. When the IC chip 730 is disposed on the support portion 220A, the first magnetoelectric conversion element 730A is disposed inside the U shape of the current path 210A in plan view, and the second magnetoelectric conversion element 730B and the second magnetoelectric conversion element 730B The third magnetoelectric conversion element 730C is designed to be disposed outside the U-shaped ends of the current path 210A and in a position close to the current path 210A. If the magnetic flux density at the position of the third magnetoelectric conversion element 730C generated by the current flowing through the primary conductor 210 is B3s, and the magnetic flux density generated at the position of the third magnetoelectric conversion element 730C by external magnetic noise is B3n. ,
Vo = Vo1− (Vo2 + Vo3) / 2 = k × (B1s + (B2s + B3s) / 2)
As in the case of the two cases, noise due to the external magnetic field disappears and the sensitivity is improved, and even when the positional relationship between the primary conductor 210 and the IC chip 730 is shifted in the arrangement direction of the three magnetoelectric transducers, the output Vo The fluctuation level of can be suppressed as much as possible.
 また、電流経路210AにはU字形電流経路の一形態として、例えば、C字形、V字形、またはこれらに類似する形状の電流経路を使用しても良い。 In addition, for example, a current path having a C-shape, a V-shape, or a similar shape may be used for the current path 210A as one form of the U-shaped current path.
 (第2の実施形態)
 図8に、第2の実施形態に係る電流センサを示す。電流センサ800が第1の実施形態の電流センサ200と異なるのは、ICチップ230が側面視において支持部220Aから突出する代わりに、部材220の支持部820Aが、切欠部820A’を有し、電流経路210Aが、平面視において切欠部820A’に配置されている点である。したがって、ICチップ230は突出しないものの、平面視において、ICチップ230と電流経路210Aは重複する。図9Aに側面図、図9Bに断面図を示す。第1の実施形態と比較して側面視において高さの異なる電流経路210Aが、平面視において切欠部820A’に配置されているためにリードフレームのスタンピング金型の加工が若干複雑になるが、ICチップ内の磁電変換素子の配置に自由度が生まれ、ICチップのより内側に配置できるようになるため、応力起因によるオフセットへの影響を低減することができる。また支持部とICチップとの接着面積が増えるためICチップをより安定に支持することが可能となる。
(Second Embodiment)
FIG. 8 shows a current sensor according to the second embodiment. The current sensor 800 is different from the current sensor 200 of the first embodiment in that, instead of the IC chip 230 protruding from the support part 220A in a side view, the support part 820A of the member 220 has a notch part 820A ′, The current path 210A is arranged at the notch 820A ′ in plan view. Therefore, although the IC chip 230 does not protrude, the IC chip 230 and the current path 210A overlap in plan view. 9A shows a side view and FIG. 9B shows a cross-sectional view. Although the current path 210A having a different height in the side view as compared with the first embodiment is disposed in the notch 820A ′ in the plan view, the processing of the stamping mold of the lead frame is slightly complicated. A degree of freedom is provided in the arrangement of the magnetoelectric conversion elements in the IC chip, and the magnetoelectric conversion elements can be arranged inside the IC chip. Therefore, it is possible to reduce the influence on the offset due to the stress. Further, since the bonding area between the support portion and the IC chip increases, the IC chip can be supported more stably.
 なお、第1の実施形態と同様に、ICチップ230を、磁電変換素子を2つ有するICチップ630や磁電変換素子を3つ有するICチップ730とすることもできる。 Note that, as in the first embodiment, the IC chip 230 may be an IC chip 630 having two magnetoelectric conversion elements or an IC chip 730 having three magnetoelectric conversion elements.
 (第3の実施形態)
 図10に、第3の実施形態に係る電流センサを示す。電流センサ1000が第1の実施形態の電流センサ200と異なるのは、部材220ではなく、一次導体210が段差部210Cを電流経路210Aに隣接する位置に有する点である。ICチップ230は、側面視において支持部220Aから突出しており、平面視において電流経路210Aと重複する。図11Aに側面図、図11Bに断面図を示す。
(Third embodiment)
FIG. 10 shows a current sensor according to the third embodiment. The current sensor 1000 is different from the current sensor 200 of the first embodiment in that the primary conductor 210 has a step portion 210C adjacent to the current path 210A, not the member 220. The IC chip 230 protrudes from the support portion 220A in a side view and overlaps with the current path 210A in a plan view. FIG. 11A shows a side view and FIG. 11B shows a cross-sectional view.
 なお、第1の実施形態と同様に、ICチップ230を、磁電変換素子を2つ有するICチップ630や磁電変換素子を3つ有するICチップ730としてもよい。 Note that, similarly to the first embodiment, the IC chip 230 may be an IC chip 630 having two magnetoelectric conversion elements or an IC chip 730 having three magnetoelectric conversion elements.
 (第4の実施形態)
 次に、電流センサの一実施形態として、電流検出感度を向上させつつ、外部磁場の侵入の抑制をも可能とするようにした電流センサについて図12および図13を参照して説明する。本実施形態の電流センサは、全体の構成は図2に示した第1の実施形態のものとほぼ同様であるが、磁性材料を有する構成が第1の実施形態のものと異なる。
(Fourth embodiment)
Next, as an embodiment of the current sensor, a current sensor that can suppress the intrusion of an external magnetic field while improving the current detection sensitivity will be described with reference to FIGS. 12 and 13. The overall configuration of the current sensor of this embodiment is substantially the same as that of the first embodiment shown in FIG. 2, but the configuration having a magnetic material is different from that of the first embodiment.
 以下では、本実施形態における電流センサの構成について、第1の実施形態のものとの差異を中心に説明する。 Hereinafter, the configuration of the current sensor in the present embodiment will be described focusing on differences from the first embodiment.
 図12に、第4の実施形態に係る電流センサの構成例を示す。図12に示すように、この電流センサ500Aでは、図2に示したものと同様に、例えばU字形の電流経路210Aおよび導体端子210Bを有する一次導体210と、磁電変換素子230Aを支持するための支持部520A及びリード端子220Bを有する部材220と、磁電変換素子230Aを有するICチップ230とを備える。一次導体210、部材220、及びICチップ230は、樹脂240Aでモールドされている。 FIG. 12 shows a configuration example of the current sensor according to the fourth embodiment. As shown in FIG. 12, in this current sensor 500A, similar to that shown in FIG. 2, for example, a primary conductor 210 having a U-shaped current path 210A and a conductor terminal 210B and a magnetoelectric conversion element 230A are supported. A member 220 having a support portion 520A and a lead terminal 220B and an IC chip 230 having a magnetoelectric conversion element 230A are provided. Primary conductor 210, member 220, and IC chip 230 are molded with resin 240A.
 一方、図2に示したものと異なり、この実施形態では、ICチップ230の上には、磁性材料からなる磁性材チップ540が形成されている。また、図2に示したものと異なり、支持部520Aはさらに、フェライトなどの磁性材料からなる磁性材チップ550を支持するように構成されている。この実施形態では、支持部520Aは、例えば2つの段差部521A,521Bを有する。段差部521A,521Bの形状は、後述する図13で説明する。 On the other hand, unlike the one shown in FIG. 2, in this embodiment, a magnetic material chip 540 made of a magnetic material is formed on the IC chip 230. Further, unlike the one shown in FIG. 2, the support portion 520A is further configured to support a magnetic material chip 550 made of a magnetic material such as ferrite. In this embodiment, the support portion 520A includes, for example, two step portions 521A and 521B. The shape of the step portions 521A and 521B will be described with reference to FIG.
 磁性材チップ540,550は、一次導体210の電流経路210Aを流れる電流により生じる磁束が、磁電変換素子230Aの感磁部に収束されるように配置される。 The magnetic material chips 540 and 550 are arranged so that the magnetic flux generated by the current flowing through the current path 210A of the primary conductor 210 is converged on the magnetic sensing part of the magnetoelectric conversion element 230A.
 なお、電流センサ500Aの上記各構成要素から、ICチップ230及び樹脂240Aを除くことで、電流センサ500Aが、電流センサ用基板になる。 The current sensor 500A becomes a current sensor substrate by removing the IC chip 230 and the resin 240A from the above-described components of the current sensor 500A.
 図13は、図12の電流センサ500Aの側面図である。この電流センサ500Aでは、支持部520Aの段差部521Aは、支持部520Aの中央部が上方に突出するように形成され、段差部521Bは、支持部520Aの先端部が一次導体210よりも下方に突出するように形成されている。 FIG. 13 is a side view of the current sensor 500A of FIG. In this current sensor 500A, the step portion 521A of the support portion 520A is formed so that the center portion of the support portion 520A protrudes upward, and the tip portion of the support portion 520A is located below the primary conductor 210. It is formed to protrude.
 そして、この支持部520Aの下部において、磁性材チップ550が形成されている。換言すれば、磁性材チップ550は、一次導体210から離れて支持部520Aに形成されている。 And the magnetic material chip | tip 550 is formed in the lower part of this support part 520A. In other words, the magnetic material chip 550 is formed on the support portion 520 </ b> A apart from the primary conductor 210.
 上記電流センサ500Aの構成によって、一次導体210の電流経路に電流が流れると、磁性材チップ540,550が形成されているため、電流によって生じる磁束が磁電変換素子230Aの感磁部に収束されやすくなる。したがって、電流センサ500Aの電流検出感度が向上する。 With the configuration of the current sensor 500A, when a current flows through the current path of the primary conductor 210, the magnetic material chips 540 and 550 are formed. Therefore, the magnetic flux generated by the current is easily converged on the magnetic sensing part of the magnetoelectric transducer 230A. Become. Therefore, the current detection sensitivity of the current sensor 500A is improved.
 また、磁性材チップ540,550の形成によって、電流センサ500Aに対して外部磁場の侵入を抑制することになる。 Further, the formation of the magnetic material chips 540 and 550 suppresses the intrusion of an external magnetic field into the current sensor 500A.
 (第5の実施形態)
 次に、第5の実施形態について図14および図15を参照して説明する。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. 14 and 15.
 図12および図13に示した第4の実施形態では、2つの磁性材チップ540,550が形成されている。本実施形態は、1つの磁性体チップ540のみを形成することにより、電流検出感度を向上させつつ、外部磁場の侵入の抑制をも可能とするようにした電流センサである。 In the fourth embodiment shown in FIGS. 12 and 13, two magnetic material chips 540 and 550 are formed. The present embodiment is a current sensor in which only one magnetic chip 540 is formed to improve the current detection sensitivity and to suppress the intrusion of an external magnetic field.
 図14に、第5の実施形態に係る電流センサの構成例を示す。図12に示したものと同様に、本実施形態の電流センサ500Bは、例えばU字形の電流経路210Aを有する一次導体210と、磁電変換素子230Aを支持するための支持部520B及びリード端子220Bを有する部材220と、磁電変換素子230Aを有するICチップ230とを備える。また、図12に示したものと同様に、ICチップ230の上には、磁性材料からなる磁性材チップ540が形成されている。一次導体210、部材220、及びICチップ230は、樹脂240Aでモールドされている。 FIG. 14 shows a configuration example of the current sensor according to the fifth embodiment. Similarly to the one shown in FIG. 12, the current sensor 500B of the present embodiment includes a primary conductor 210 having a U-shaped current path 210A, a support portion 520B and a lead terminal 220B for supporting the magnetoelectric conversion element 230A, for example. And the IC chip 230 having the magnetoelectric conversion element 230A. Similarly to the one shown in FIG. 12, a magnetic material chip 540 made of a magnetic material is formed on the IC chip 230. Primary conductor 210, member 220, and IC chip 230 are molded with resin 240A.
 一方、図12に示したものと異なり、本実施形態の支持部520Bは、例えば1つの段差部521Aのみを有する。 On the other hand, unlike the one shown in FIG. 12, the support portion 520B of the present embodiment has, for example, only one step portion 521A.
 なお、電流センサ500Bの上記各構成要素から、ICチップ230及び樹脂240Aを除くことで、電流センサ500Bが、電流センサ用基板になる。 The current sensor 500B becomes a current sensor substrate by removing the IC chip 230 and the resin 240A from the above-described components of the current sensor 500B.
 図15は、図14の電流センサ500Bの側面図である。図13に示したものと同様に、この電流センサ500Bでは、支持部520Bの段差部521Aは、支持部520Bの中央部が上方に突出するように形成されている。また、図13に示したものと同様に、磁性材チップ540は、一次導体210の電流経路210Aを流れる電流により生じる磁束が、磁電変換素子230Aの感磁部に収束されるように、ICチップ230上に配置されている。 FIG. 15 is a side view of the current sensor 500B of FIG. Similarly to the one shown in FIG. 13, in the current sensor 500B, the step portion 521A of the support portion 520B is formed so that the central portion of the support portion 520B protrudes upward. Similarly to the one shown in FIG. 13, the magnetic material chip 540 has an IC chip so that the magnetic flux generated by the current flowing through the current path 210A of the primary conductor 210 is converged on the magnetic sensitive part of the magnetoelectric conversion element 230A. 230.
 上記電流センサ500Bの構成によって、一次導体210の電流経路に電流が流れると、磁性材チップ540が形成されているため、電流によって生じる磁束が磁電変換素子230Aの感磁部に収束されやすくなる。したがって、電流センサ500Bの電流検出感度が向上する。 With the configuration of the current sensor 500B, when a current flows through the current path of the primary conductor 210, the magnetic material chip 540 is formed, so that the magnetic flux generated by the current is easily converged on the magnetic sensing part of the magnetoelectric conversion element 230A. Therefore, the current detection sensitivity of the current sensor 500B is improved.
 また、磁性材チップ540の形成によって、電流センサ500Bに対してパッケージ上面からの外部磁場の侵入を抑制することになる。 Further, the formation of the magnetic material chip 540 suppresses the intrusion of an external magnetic field from the upper surface of the package to the current sensor 500B.
 (第6の実施形態)
 次に、第6の実施形態について図16および図17を参照して説明する。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIGS. 16 and 17.
 図12および図13に示した第4の実施形態では、2つの磁性材チップ540,550が形成されている。本実施形態は、1つの磁性体チップ550のみを形成することにより、電流検出感度を向上させつつ、外部磁場の侵入の抑制をも可能とするようにした電流センサである。 In the fourth embodiment shown in FIGS. 12 and 13, two magnetic material chips 540 and 550 are formed. The present embodiment is a current sensor in which only one magnetic chip 550 is formed to improve the current detection sensitivity and to suppress the intrusion of an external magnetic field.
 図16に、第6の実施形態に係る電流センサの構成例を示す。図12に示したものと同様に、本実施形態の電流センサ500Cは、例えばU字形の電流経路210Aを有する一次導体210と、磁電変換素子230Aを支持するための支持部520A及びリード端子220Bを有する部材220と、磁電変換素子230Aを有するICチップ230とを備える。また、図12に示したものと同様に、支持部520Aの下部には、磁性材料からなる磁性材チップ540が形成されている。一次導体210、部材220、及びICチップ230は、樹脂240Aでモールドされている。 FIG. 16 shows a configuration example of a current sensor according to the sixth embodiment. Similarly to the one shown in FIG. 12, the current sensor 500C of this embodiment includes a primary conductor 210 having, for example, a U-shaped current path 210A, a support portion 520A and a lead terminal 220B for supporting the magnetoelectric conversion element 230A. And the IC chip 230 having the magnetoelectric conversion element 230A. Similarly to the one shown in FIG. 12, a magnetic material chip 540 made of a magnetic material is formed below the support portion 520A. Primary conductor 210, member 220, and IC chip 230 are molded with resin 240A.
 なお、電流センサ500Cの上記各構成要素から、ICチップ230及び樹脂240Aを除くことで、電流センサ500Cが、電流センサ用基板になる。 The current sensor 500C becomes a current sensor substrate by removing the IC chip 230 and the resin 240A from the above-described components of the current sensor 500C.
 図17は、図16の電流センサ500Cの側面図である。図13に示したものと同様に、この電流センサ500Cでは、支持部520Aの段差部521Aは、支持部520Aの中央部が上方に突出するように形成され、段差部521Bは、支持部520Aの先端部が一次導体210よりも下方に突出するように形成されている。また、図13に示したものと同様に、磁性材チップ550は、一次導体210の電流経路210Aを流れる電流により生じる磁束が、磁電変換素子230Aの感磁部に収束されるように、支持部520Aの下部に配置されている。 FIG. 17 is a side view of the current sensor 500C of FIG. Similarly to the one shown in FIG. 13, in this current sensor 500C, the step portion 521A of the support portion 520A is formed so that the center portion of the support portion 520A protrudes upward, and the step portion 521B is formed of the support portion 520A. The tip portion is formed so as to protrude below the primary conductor 210. Similarly to the one shown in FIG. 13, the magnetic material chip 550 has a support portion so that the magnetic flux generated by the current flowing through the current path 210A of the primary conductor 210 is converged on the magnetic sensitive portion of the magnetoelectric conversion element 230A. It is arranged at the bottom of 520A.
 上記電流センサ500Cの構成によって、一次導体210の電流経路に電流が流れると、磁性材チップ550が形成されているため磁気抵抗が下がり、1次導体電流によって生じる磁束が増える。そのため、電流センサ500Cの電流検出感度が向上する。 When the current flows in the current path of the primary conductor 210 due to the configuration of the current sensor 500C, the magnetic resistance is lowered because the magnetic material chip 550 is formed, and the magnetic flux generated by the primary conductor current is increased. Therefore, the current detection sensitivity of the current sensor 500C is improved.
 また、磁性材チップ550の形成によって、電流センサ500Cに対して、パッケージ裏面からの外部磁場の侵入を抑制することになる。 Further, the formation of the magnetic material chip 550 suppresses the intrusion of an external magnetic field from the back surface of the package with respect to the current sensor 500C.
 (変形例)
 上述した各実施形態にかかる電流センサは例示に過ぎず、以下に示すような変更を行うことが可能である。
(Modification)
The current sensor according to each of the above-described embodiments is merely an example, and the following changes can be made.
 各実施形態の電流センサ500A,500B,500Cでは、例えばU字形の電流経路210Aを有する一次導体210を例にとって説明したが、電流経路210Aの他の形状の例として、電流センサの機能を実現可能であればよく、例えば、他の形状などを有するようにしてもよい。 In the current sensors 500A, 500B, and 500C of each embodiment, for example, the primary conductor 210 having the U-shaped current path 210A has been described as an example. However, the function of the current sensor can be realized as an example of another shape of the current path 210A. For example, other shapes may be used.
 各実施形態の電流センサ500A,500B,500Cでは、1つの磁電変換素子を有するICチップ230を適用した場合について説明したが、ICチップの例として、例えば2つ以上の磁電変換素子を有するようにしてもよい。この場合には、各磁電変換素子の感磁部に磁束が収束されるように、磁性材料を配置することが好ましい。 In the current sensors 500A, 500B, and 500C of each embodiment, the case where the IC chip 230 having one magnetoelectric conversion element is applied has been described. However, as an example of the IC chip, for example, two or more magnetoelectric conversion elements are provided. May be. In this case, it is preferable to arrange the magnetic material so that the magnetic flux is converged on the magnetic sensitive part of each magnetoelectric conversion element.
 各実施形態の電流センサ500A,500B,500Cでは、磁性材料からなる磁性体チップ540,550を適用した場合について説明したが、磁性材料の構成例として、例えばIC表面等に形成する磁性体メッキなどでもよい。 In the current sensors 500A, 500B, and 500C of each embodiment, the case where the magnetic chips 540 and 550 made of a magnetic material are applied has been described. However, as a configuration example of the magnetic material, for example, a magnetic plating formed on the IC surface or the like But you can.
 各実施形態の電流センサ500A,500B,500Cでは、一次導体210とICチップ230との間に、一次導体210を覆うように絶縁部材を形成することが好ましい。例えば絶縁部材は、耐圧に優れたシート材からなる絶縁テープであり、その絶縁テープの片面には接着剤が塗布されているものが好ましい。 In the current sensors 500 </ b> A, 500 </ b> B, and 500 </ b> C of each embodiment, it is preferable to form an insulating member between the primary conductor 210 and the IC chip 230 so as to cover the primary conductor 210. For example, the insulating member is an insulating tape made of a sheet material having an excellent pressure resistance, and it is preferable that one surface of the insulating tape is coated with an adhesive.
 各実施形態の電流センサ500A,500B,500Cの各支持部520A,520Bは、段差部を有するが、段差部の形状は、支持部の高さを変えることが可能であればよく、変更可能である。また、段差部の個数は、電流センサの機能を実現可能であればよく、3つ以上でもよい。 Each of the support portions 520A and 520B of the current sensors 500A, 500B, and 500C of each embodiment has a stepped portion, but the shape of the stepped portion may be changed as long as the height of the support portion can be changed. is there. Further, the number of the stepped portions may be three or more as long as the function of the current sensor can be realized.
 各実施形態の磁電変換素子は、信号処理回路を含むホールICまたは磁気抵抗ICであってもよい。 The magnetoelectric conversion element of each embodiment may be a Hall IC or a magnetoresistive IC including a signal processing circuit.
 200 電流センサ
 210 一次導体
 210A 電流経路
 210B 一次導体端子
 210C 段差部
 220 信号端子側部材
 220A 支持部
 220B,220B_1,220B_2 リード端子
 220C 段差部
 230 ICチップ
 230A 磁電変換素子
 500A,500B,500C 電流センサ
 520A,520B 段差部
 630 ICチップ
 630A 第1の磁電変換素子
 630B 第2の磁電変換素子
 800 電流センサ
 820A 支持部
 820A’ 切欠部
 1000 電流センサ
200 Current sensor 210 Primary conductor 210A Current path 210B Primary conductor terminal 210C Stepped portion 220 Signal terminal side member 220A Support portion 220B, 220B_1, 220B_2 Lead terminal 220C Stepped portion 230 IC chip 230A Magnetoelectric transducer 500A, 500B, 500C Current sensor 520A, 520B Stepped portion 630 IC chip 630A First magnetoelectric conversion element 630B Second magnetoelectric conversion element 800 Current sensor 820A Support portion 820A ′ Notch portion 1000 Current sensor

Claims (22)

  1.  U字形の電流経路を有する一次導体と、
     磁電変換素子を支持するための支持部と、
     前記支持部と接続するリード端子と、
    を備え、
     前記U字形の電流経路は、平面視において前記支持部と重複せず、且つ、
    側面視において前記支持部と高さが異なるように形成されていることを特徴とする電流センサ用基板。
    A primary conductor having a U-shaped current path;
    A support portion for supporting the magnetoelectric conversion element;
    A lead terminal connected to the support;
    With
    The U-shaped current path does not overlap with the support in a plan view, and
    A current sensor substrate having a height different from that of the support portion in a side view.
  2.  前記リード端子は、前記支持部と段差を介して接続していることを特徴とする請求項1に記載の電流センサ用基板。 The current sensor substrate according to claim 1, wherein the lead terminal is connected to the support portion through a step.
  3.  前記支持部は、切欠部を有し、
     前記U字形の電流経路は、平面視において前記切欠部に配置されていることを特徴とする請求項1又は2に記載の電流センサ用基板。
    The support part has a notch part,
    3. The current sensor substrate according to claim 1, wherein the U-shaped current path is disposed in the notch in a plan view.
  4.  前記一次導体は、前記U字形の電流経路に接続する段差部を有することを特徴とする請求項1から3のいずれかに記載の電流センサ用基板。 4. The current sensor substrate according to claim 1, wherein the primary conductor has a stepped portion connected to the U-shaped current path.
  5.  平面視において前記U字形の電流経路と重なるように配置される磁性体材料を更に有することを特徴とする請求項1から4のいずれかに記載の電流センサ用基板。 5. The current sensor substrate according to claim 1, further comprising a magnetic material disposed so as to overlap the U-shaped current path in plan view.
  6.  前記U字形の電流経路を挟むように配置される磁性体材料を更に有することを特徴とする請求項5に記載の電流センサ用基板。 The current sensor substrate according to claim 5, further comprising a magnetic material disposed so as to sandwich the U-shaped current path.
  7.  請求項1から4のいずれかに記載の電流センサ用基板と、
     前記電流センサ用基板の前記支持部に配置された、前記電流センサ用基板の前記U字形の電流経路を流れる電流から生じる磁束を検出する磁電変換素子を有するICチップと
    を備える電流センサ。
    A current sensor substrate according to any one of claims 1 to 4,
    A current sensor comprising: an IC chip having a magnetoelectric conversion element that detects a magnetic flux generated from a current flowing through the U-shaped current path of the current sensor substrate, disposed on the support portion of the current sensor substrate.
  8.  前記磁電変換素子は、平面視において前記U字形の電流経路の前記U字形の内側に配置されていることを特徴とする請求項7に記載の電流センサ。 The current sensor according to claim 7, wherein the magnetoelectric conversion element is arranged inside the U shape of the U-shaped current path in a plan view.
  9.  請求項5又は6に記載の電流センサ用基板と、
    前記電流センサ用基板の前記支持部に配置された、前記電流センサ用基板の前記電流経路
    を流れる電流から生じる磁束を検出する磁電変換素子を有するICチップと
    を備え、
     前記磁電変換素子は、平面視において前記U字形の電流経路の前記U字形の内側に配置されていることを特徴とする電流センサ。
    The current sensor substrate according to claim 5 or 6,
    An IC chip having a magnetoelectric conversion element that is disposed on the support portion of the current sensor substrate and detects a magnetic flux generated from a current flowing through the current path of the current sensor substrate;
    The magnetoelectric conversion element is arranged inside the U-shape of the U-shaped current path in plan view.
  10.  前記磁性材料は前記ICチップの前記U字形の電流経路が配置されている側の面とは反対の面側に、前記磁電変換素子の一部もしくは全体を覆うように形成されていることを特徴とする請求項9に記載の電流センサ。 The magnetic material is formed on the surface of the IC chip opposite to the surface on which the U-shaped current path is disposed so as to cover a part or the whole of the magnetoelectric conversion element. The current sensor according to claim 9.
  11.  前記磁性材料は、前記一次導体から離れて前記支持部上に形成されていることを特徴とする請求項9又は10に記載の電流センサ。 The current sensor according to claim 9 or 10, wherein the magnetic material is formed on the support portion apart from the primary conductor.
  12.  前記磁性材料は、磁性体メッキまたは磁性体チップで構成されていることを特徴とする請求項9から11のいずれかに記載の電流センサ。 The current sensor according to any one of claims 9 to 11, wherein the magnetic material is composed of a magnetic plating or a magnetic chip.
  13.  前記ICチップは、側面視において前記支持部から突出していることを特徴とする請求項7から12のいずれかに記載の電流センサ。 The current sensor according to claim 7, wherein the IC chip protrudes from the support portion in a side view.
  14.  前記ICチップは、平面視において前記電流経路と重複しており、前記磁電変換素子は、平面視において前記U字形の電流経路の前記U字形の内側に配置されていることを特徴とする請求項13に記載の電流センサ。 The IC chip overlaps with the current path in a plan view, and the magnetoelectric conversion element is disposed inside the U shape of the U-shaped current path in a plan view. 14. The current sensor according to 13.
  15.  前記ICチップは、側面視において前記U字形の電流経路と所定の間隔をもって配置されていることを特徴とする請求項13又は14に記載の電流センサ。 15. The current sensor according to claim 13, wherein the IC chip is arranged with a predetermined distance from the U-shaped current path in a side view.
  16.  前記一次導体は前記ICチップを支持していないことを特徴とする請求項13から15のいずれかに記載の電流センサ。 The current sensor according to claim 13, wherein the primary conductor does not support the IC chip.
  17.  前記電流センサ用基板の前記支持部は、切欠部を有し、
     前記電流センサ用基板の前記U字形の電流経路は、平面視において前記切欠部に配置されており、かつ、前記ICチップと重複することを特徴とする請求項7から12のいずれかに記載の電流センサ。
    The support portion of the current sensor substrate has a notch,
    The U-shaped current path of the current sensor substrate is disposed in the cutout portion in plan view and overlaps with the IC chip. Current sensor.
  18.  前記磁電変換素子は、ホール素子であることを特徴とする請求項7から17のいずれかに記載の電流センサ。 The current sensor according to claim 7, wherein the magnetoelectric conversion element is a Hall element.
  19.  前記ICチップは、前記電流経路のU字形の外側であって前記電流経路に近接する位置に配置された第2の磁電変換素子をさらに備えることを特徴とする請求項7から18のいずれかに記載の電流センサ。 The said IC chip is further equipped with the 2nd magnetoelectric conversion element arrange | positioned in the position close | similar to the said current path outside the said U-shape of the said current path. The current sensor described.
  20.  前記磁電変換素子は、信号処理回路を含むホールICまたは磁気抵抗ICであることを特徴とする請求項7から19のいずれかに記載の電流センサ。 The current sensor according to any one of claims 7 to 19, wherein the magnetoelectric conversion element is a Hall IC or a magnetoresistive IC including a signal processing circuit.
  21.  前記電流センサ用基板の一次導体と前記ICチップとの間に形成される絶縁部材をさらに有することを特徴とする請求項7から20のいずれかに記載の電流センサ。 21. The current sensor according to claim 7, further comprising an insulating member formed between a primary conductor of the current sensor substrate and the IC chip.
  22.  前記絶縁部材は、絶縁テープであることを特徴とする請求項21に記載の電流センサ。 The current sensor according to claim 21, wherein the insulating member is an insulating tape.
PCT/JP2012/004488 2011-07-13 2012-07-11 Current sensor substrate and current sensor WO2013008462A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280034639.0A CN103649762B (en) 2011-07-13 2012-07-11 Current sensor substrate and current sensor
JP2013523832A JP5695195B2 (en) 2011-07-13 2012-07-11 Current sensor substrate and current sensor
US14/131,723 US9448256B2 (en) 2011-07-13 2012-07-11 Current sensor substrate and current sensor
KR1020147000480A KR101503224B1 (en) 2011-07-13 2012-07-11 Current sensor substrate and current sensor
EP12810990.7A EP2733496B1 (en) 2011-07-13 2012-07-11 Current sensor substrate and current sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011154658 2011-07-13
JP2011-154658 2011-07-13
JP2012114392 2012-05-18
JP2012-114392 2012-05-18

Publications (1)

Publication Number Publication Date
WO2013008462A1 true WO2013008462A1 (en) 2013-01-17

Family

ID=47505765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004488 WO2013008462A1 (en) 2011-07-13 2012-07-11 Current sensor substrate and current sensor

Country Status (7)

Country Link
US (1) US9448256B2 (en)
EP (1) EP2733496B1 (en)
JP (1) JP5695195B2 (en)
KR (1) KR101503224B1 (en)
CN (1) CN103649762B (en)
TW (1) TWI480554B (en)
WO (1) WO2013008462A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152363A (en) * 2014-02-12 2015-08-24 旭化成エレクトロニクス株式会社 current sensor
JP2015190930A (en) * 2014-03-28 2015-11-02 旭化成エレクトロニクス株式会社 current sensor
WO2015198609A1 (en) * 2014-06-27 2015-12-30 旭化成エレクトロニクス株式会社 Current sensor
JP2017134022A (en) * 2016-01-29 2017-08-03 旭化成エレクトロニクス株式会社 Electric current sensor and manufacturing method
JP2019062222A (en) * 2013-03-15 2019-04-18 アレグロ・マイクロシステムズ・エルエルシー Packaging for electronic circuit
US10753963B2 (en) 2013-03-15 2020-08-25 Allegro Microsystems, Llc Current sensor isolation
WO2021039264A1 (en) * 2019-08-26 2021-03-04 株式会社村田製作所 Electrical current sensor
JP7329118B1 (en) * 2022-10-24 2023-08-17 旭化成エレクトロニクス株式会社 current sensor
US11768230B1 (en) 2022-03-30 2023-09-26 Allegro Microsystems, Llc Current sensor integrated circuit with a dual gauge lead frame

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504904B (en) * 2013-07-30 2015-10-21 Asahi Kasei Microdevices Corp Current sensor
JP6294034B2 (en) 2013-09-05 2018-03-14 ルネサスエレクトロニクス株式会社 Sensor device
KR102445270B1 (en) * 2016-12-20 2022-09-20 한국전자기술연구원 Current sensor and manufacturing method thereof
CN106653999A (en) * 2016-12-22 2017-05-10 上海南麟电子股份有限公司 Single-chip Hall current sensor and preparation method thereof
US10698005B2 (en) 2017-04-20 2020-06-30 Asahi Kasei Microdevices Corporation Magnetic detection device, current detection device, method for manufacturing magnetic detection device, and method for manufacturing current detection device
US10914765B1 (en) * 2019-07-31 2021-02-09 Allegro Microsystems, Llc Multi-die integrated current sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165963A (en) * 1999-12-09 2001-06-22 Sanken Electric Co Ltd Current detecting device
JP2001174486A (en) * 1999-12-20 2001-06-29 Sanken Electric Co Ltd Current detector with hall element
WO2006130393A1 (en) 2005-05-27 2006-12-07 Allegro Microsystems, Inc. Current sensor
JP2009210481A (en) * 2008-03-05 2009-09-17 Asahi Kasei Electronics Co Ltd Current sensor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224404B1 (en) * 1971-04-29 1977-07-01
DE69837694T2 (en) * 1997-05-21 2008-01-10 Sony Manufacturing Systems Corp., Kuki Magnetic metal probe and method of detecting a magnetic metal
JP2001339109A (en) 2000-05-26 2001-12-07 Sanken Electric Co Ltd Current sensing device equipped with hall element
US6563299B1 (en) 2000-08-30 2003-05-13 Micron Technology, Inc. Apparatus for measuring parasitic capacitance and inductance of I/O leads on an electrical component using a network analyzer
AU2002349497A1 (en) * 2001-11-26 2003-06-10 Asahi Kasei Electronics Co., Ltd. Current sensor
JP2003329749A (en) * 2002-05-13 2003-11-19 Asahi Kasei Corp Magnetic sensor and current sensor
US7709754B2 (en) * 2003-08-26 2010-05-04 Allegro Microsystems, Inc. Current sensor
US7098528B2 (en) * 2003-12-22 2006-08-29 Lsi Logic Corporation Embedded redistribution interposer for footprint compatible chip package conversion
JP2008507805A (en) 2004-07-27 2008-03-13 ユニバーシティー オブ トロント Adjustable magnetic switch
TWI312581B (en) 2006-07-17 2009-07-21 Chipmos Technologies Inc Chip-on-glass package of image sensor
JP5222542B2 (en) * 2007-12-07 2013-06-26 矢崎総業株式会社 Current sensor
JP2014085277A (en) * 2012-10-25 2014-05-12 Sumitomo Wiring Syst Ltd Current sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165963A (en) * 1999-12-09 2001-06-22 Sanken Electric Co Ltd Current detecting device
JP2001174486A (en) * 1999-12-20 2001-06-29 Sanken Electric Co Ltd Current detector with hall element
WO2006130393A1 (en) 2005-05-27 2006-12-07 Allegro Microsystems, Inc. Current sensor
JP2009210481A (en) * 2008-03-05 2009-09-17 Asahi Kasei Electronics Co Ltd Current sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733496A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062222A (en) * 2013-03-15 2019-04-18 アレグロ・マイクロシステムズ・エルエルシー Packaging for electronic circuit
US10753963B2 (en) 2013-03-15 2020-08-25 Allegro Microsystems, Llc Current sensor isolation
JP2015152363A (en) * 2014-02-12 2015-08-24 旭化成エレクトロニクス株式会社 current sensor
JP2015190930A (en) * 2014-03-28 2015-11-02 旭化成エレクトロニクス株式会社 current sensor
WO2015198609A1 (en) * 2014-06-27 2015-12-30 旭化成エレクトロニクス株式会社 Current sensor
JPWO2015198609A1 (en) * 2014-06-27 2017-04-20 旭化成エレクトロニクス株式会社 Current sensor
US10101368B2 (en) 2014-06-27 2018-10-16 Asahi Kasei Microdevices Corporation Current sensor
JP2017134022A (en) * 2016-01-29 2017-08-03 旭化成エレクトロニクス株式会社 Electric current sensor and manufacturing method
WO2021039264A1 (en) * 2019-08-26 2021-03-04 株式会社村田製作所 Electrical current sensor
US11768230B1 (en) 2022-03-30 2023-09-26 Allegro Microsystems, Llc Current sensor integrated circuit with a dual gauge lead frame
JP7329118B1 (en) * 2022-10-24 2023-08-17 旭化成エレクトロニクス株式会社 current sensor
US11867728B1 (en) 2022-10-24 2024-01-09 Asahi Kasei Microdevices Corporation Current sensor

Also Published As

Publication number Publication date
TW201314216A (en) 2013-04-01
JP5695195B2 (en) 2015-04-01
EP2733496A1 (en) 2014-05-21
CN103649762B (en) 2015-09-16
US20140167736A1 (en) 2014-06-19
KR101503224B1 (en) 2015-03-16
EP2733496B1 (en) 2016-09-07
EP2733496A4 (en) 2014-12-24
JPWO2013008462A1 (en) 2015-02-23
CN103649762A (en) 2014-03-19
US9448256B2 (en) 2016-09-20
KR20140019470A (en) 2014-02-14
TWI480554B (en) 2015-04-11

Similar Documents

Publication Publication Date Title
JP5695195B2 (en) Current sensor substrate and current sensor
US9983238B2 (en) Magnetic field current sensors having enhanced current density regions
US20130181703A1 (en) Sensor Package and Method for Producing a Sensor Package
US20090128129A1 (en) Current sensor having magnetic gap
WO2015015539A1 (en) Current sensor
US11112435B2 (en) Current transducer with integrated primary conductor
US10859642B2 (en) Magnetic sensor
JP6234263B2 (en) Current sensor
JP7115242B2 (en) magnetic sensor
JP5516947B2 (en) Current sensor
JP5356793B2 (en) Magnetic detection device and manufacturing method thereof
JP5695196B2 (en) Current sensor substrate and current sensor
JP6346738B2 (en) Current sensor
JP6314010B2 (en) Current sensor
JP2003302428A (en) Substrate mounting type current sensor and current measuring method
JP6767212B2 (en) Current sensor
JP2021025785A (en) Current sensor and manufacturing method of current sensor
US11493539B2 (en) Current transducer
JP2018112537A (en) Integrated magnetic sensor and lead frame used therefor
JP2020071095A (en) Magnetic sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523832

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147000480

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14131723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012810990

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012810990

Country of ref document: EP