WO2013007892A2 - Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves - Google Patents

Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves Download PDF

Info

Publication number
WO2013007892A2
WO2013007892A2 PCT/FR2012/000281 FR2012000281W WO2013007892A2 WO 2013007892 A2 WO2013007892 A2 WO 2013007892A2 FR 2012000281 W FR2012000281 W FR 2012000281W WO 2013007892 A2 WO2013007892 A2 WO 2013007892A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrolysis
cathode
tank
electrical
short
Prior art date
Application number
PCT/FR2012/000281
Other languages
English (en)
Other versions
WO2013007892A3 (fr
Inventor
Olivier Martin
Steeve RENAUDIER
Benoit BARDET
Christian Duval
Original Assignee
Rio Tinto Alcan International Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NO12748725A priority Critical patent/NO2732074T3/no
Application filed by Rio Tinto Alcan International Limited filed Critical Rio Tinto Alcan International Limited
Priority to AU2012282372A priority patent/AU2012282372A1/en
Priority to EP12748725.4A priority patent/EP2732074B1/fr
Priority to US14/232,145 priority patent/US20140138240A1/en
Priority to CN201280034757.1A priority patent/CN103649376B/zh
Priority to EA201490257A priority patent/EA029022B1/ru
Priority to NZ619720A priority patent/NZ619720B2/en
Priority to IN885CHN2014 priority patent/IN2014CN00885A/en
Priority to CA2841297A priority patent/CA2841297A1/fr
Priority to BR112014000494A priority patent/BR112014000494A2/pt
Publication of WO2013007892A2 publication Critical patent/WO2013007892A2/fr
Publication of WO2013007892A3 publication Critical patent/WO2013007892A3/fr
Priority to DKPA201370805A priority patent/DK201370805A/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • Aluminerie including tanks with cathodic exit by the bottom of the box and means of stabilization of the vats
  • the present invention relates to a plant for producing aluminum from alumina by electrolysis, also known as an aluminum smelter. It is known to produce aluminum industrially from alumina by electrolysis according to the Hall-Héroult method.
  • an electrolytic cell composed in particular of a steel box, a refractory lining, and a cathode made of carbon material, connected to conductors used to carry the electrolysis current.
  • the electrolytic cell also contains an electrolytic bath consisting in particular of cryolite in which is dissolved alumina.
  • the Hall-Héroult process consists in partially immersing a carbon block constituting the anode in this electrolytic bath, the anode being consumed as and when the reaction progresses.
  • At the bottom of the electrolytic cell is deposited by gravity liquid aluminum, produced by the electrolysis reaction, which forms a sheet of liquid aluminum which completely covers the cathode.
  • aluminum production plants include several hundred electrolysis vessels connected in series in halls. These electrolysis tanks are traversed by an electrolysis current of the order of several hundreds of thousands of amperes, which creates significant magnetic fields. Depending on the distribution of the various components of the magnetic field in the tank, the aluminum sheet can be unstable, which greatly degrades the efficiency of the tank. It is known in particular that the vertical component of the magnetic field is a determining factor for the stability of an electrolytic cell.
  • FIG. 1 schematically illustrates, seen from above, an electrolytic tank 100 in which the magnetic field is self-compensated thanks to the arrangement of the conductors 101. connecting this tank N 100 to the next tank N + 1 downstream 102.
  • conductors 101 are eccentric with respect to the tank 100 and bypass.
  • FIG. 2 shows a vessel 200 electrolysis belonging to the state of the art, covered by an electrolysis current l 2 oo-
  • the electrolysis tank 200 has an anode 201, a housing 202 including an electrolytic bath containing 203 , a liquid aluminum sheet 204 and a cathode 205.
  • the horizontal currents are important in particularly conductive environments. This is particularly the case when the electrolysis current l 2 oo runs through the sheet of liquid aluminum 204.
  • the present invention aims to remedy all or part of these disadvantages, by proposing an aluminum smelter in which the stability of the liquids contained in the electrolysis tanks is improved, and having costs of design, manufacture and operation lower.
  • the subject of the present invention is an aluminum smelter comprising:
  • each electrolysis cell comprising at least one anode, a cathode and a box provided with a side wall and a bottom, each cathode comprising at least one cathode outlet,
  • a main electrical circuit traversed by an electrolysis current electrically connecting the electrolytic cells to each other, the electrolysis current firstly going through an electrolysis cell N, placed upstream, and secondly, an electrolysis cell N + 1 placed downstream, said main electrical circuit comprising an electrical conductor connected to each cathode output of the electrolysis cell N, the electrical conductor being also connected to the at least one anode of the electrolysis cell N + 1, for the purpose of conveying the current electrolysis of the electrolysis cell N to the electrolysis cell N + 1, characterized in that the aluminum smelter further comprises
  • the invention makes it possible to improve the stability of the electrolysis tanks in the smelter by acting on both the horizontal currents passing through the tanks and on the magnetic field generated by the electrolysis current and / or the stability kinetics of the aluminum sheet contained in the tanks. It simultaneously allows a reduction in the bulk and mass of conductors carrying the electrolysis current from one tank to another, and therefore a reduction in costs associated with the design and manufacture of the aluminum smelter according to the invention. The energy losses are further reduced.
  • each cathode further comprises at least one cathode outlet passing through the downstream side wall of the box. .
  • This characteristic has the advantage of further reducing the size and weight of the electrical conductors carrying the electrolysis current from one tank to another.
  • This cathodic output passes through the side wall of the chamber of the vessel N at its downstream side, in order to respect the characteristic that each electrical conductor extends in the direction of the vessel N + 1, in an upstream-downstream direction only. Due to the proximity of the downstream side of the tank N and the tank N + 1, the length of the electrical conductor connecting this cathodic output to the anode of the tank N + 1 is less than that of an electrical conductor connecting a cathodic outlet from the bottom of the tank N to the anode of the tank N + 1.
  • this embodiment has the advantage of a reduction in the size and the length of the electrical conductors with respect to an embodiment of the aluminum plant according to the invention in which the tanks comprise cathode outlets by the background only.
  • each downstream cathode output passing through the side wall of the box of the electrolysis vessel N comprises a metal bar, more particularly formed of steel, with an insert or a copper plate.
  • the casing of the electrolysis cell N comprises a plurality of arches fixed to the side wall and to the bottom of the casing, the electrical conductors connected to each cathode outlet passing through the bottom of the casing of the electrolysis cell N extending between the hoops.
  • the electrolysis cells comprise short-circuiting means.
  • the short-circuiting means make it possible to short-circuit an electrolysis cell with a view to removing it for maintenance operations, while continuing the exploitation of the other tanks of the series.
  • the short-circuiting means of the N + 1 electrolysis cell comprise at least one short-circuiting electrical conductor permanently placed between the electrolysis cell N and the electrolysis cell N + 1, each electrical conductor short-circuiting circuit being electrically connected to one of the electrical conductors connected to a b
  • the short-circuiting means of the electrolysis vessel N + 1 comprise at least one short-circuiting electrical conductor permanently placed between the reactor vessel.
  • each short-circuiting electrical conductor being electrically connected to one of the electrical conductors connected to a cathode output of the tank passing through the bottom of the chamber of the electrolysis cell N, and each short-circuiting electrical conductor being located at a short distance from one of the electrical conductors connected to one of the cathodic outputs of the N + 1 electrolysis cell.
  • the short distance between the shorting conductor and the other conductor forms locations for the introduction of shorting chocks.
  • These shims can be introduced from above or from below in the second case.
  • At least one secondary electric circuit comprises electrical conductors along the right side and / or the left side of the electrolytic cells of at least one row of electrolysis cells.
  • the at least one secondary electrical circuit comprises electrical conductors extending along at least one row of electrolytic cells, under said electrolysis cells.
  • the electrical conductors of the at least one secondary electrical circuit are of superconducting material. This makes it possible to reduce the voltage drop at which each secondary circuit is subjected, which allows energy savings and to use a substation for supplying each secondary circuit of lower power, which is therefore less expensive. This feature also reduces material costs, compared to aluminum or copper conductors. It finally makes it possible to reduce the size of the electrical conductors, which results in a saving of space in the aluminum smelter.
  • the electrical conductor of the at least one secondary electrical circuit runs at least twice the electrolytic cells of the one or more rows. This characteristic offers the possibility of reducing the intensity of the current flowing through this secondary circuit in order to achieve energy savings.
  • FIG. 1 is a schematic view from above of an electrolysis cell of the state of the technique
  • FIG. 2 is a schematic view of an electrolytic cell belonging to the state of the art
  • FIG. 3 is a diagrammatic plan view of an aluminum plant according to a particular embodiment of the present invention.
  • FIG. 4 is a schematic view of an N tank and an N + 1 tank of an aluminum plant according to a particular embodiment of the invention
  • FIGS. 5 and 6 are cross-sectional views respectively along the lines 1-I and 11-11 of FIG. 4;
  • FIG. 7 is a schematic view of an electrolytic cell according to the embodiment of FIG. 4;
  • FIG. 8 is a schematic view from above of the tank N and the tank N + 1 of an aluminum plant according to the particular embodiment of FIG. 4,
  • FIG. 9 is a sectional view along the line III-III of FIG. 8;
  • FIG. 10 is a schematic view of an N tank and an N + 1 tank of an aluminum plant according to another particular embodiment; embodiment of the invention,
  • FIGS. 11 and 12 are sectional views along lines IV-IV and V-V, respectively, of FIG. 10,
  • FIG. 3 is a schematic view from above of the tank N and the tank N + 1 of an aluminum plant according to the second particular embodiment of the invention
  • FIG. 14 is a sectional view along the line VI-VI of FIG. 13
  • FIGS. 15 and 16 are diagrammatic views from above of an aluminum smelter 1 according to particular embodiments of the invention
  • FIGS. 17, 18 and 19 are schematic views of the profile of crenated cathodes that can equip a tank of an aluminum plant according to one embodiment of the invention
  • FIG. 20 is a diagrammatic front view of a crenellated cathodic block that can equip a tank of an aluminum plant according to one embodiment of the invention
  • FIG. 21 is a schematic top view of a crenellated cathode block can equip a tank of an aluminum plant according to one embodiment of the invention.
  • FIG 3 shows an aluminum smelter 1 comprising a plurality of electrolysis tanks 2.
  • the electrolysis tanks 2 may for example be rectangular. They then have two long sides 2a corresponding to their length and two small sides 2b corresponding to their width.
  • each tank 2 can be divided into a left side and a right side.
  • Left side and right side are defined with respect to an observer placed at the level of the main electrical circuit 4 and looking in the overall direction of routing of the electrolysis current h.
  • each tank 2 can be divided into an upstream side and a downstream side.
  • the upstream side corresponds to the long side 2a of a tank 2 adjacent to the tank 2 above, that is to say that first traveled by the electrolysis current l t .
  • the downstream side corresponds to the long side 2a of a tank 2 adjacent to the next tank 2, that is to say that then traveled by the electrolysis current. More generally, upstream and downstream are defined with respect to the overall direction of circulation of the electrolysis current.
  • the tanks 2 are aligned along two parallel axes, so as to form a line F and a line F '.
  • Each file F, F ' may comprise for example one hundred tanks 2.
  • the lines F and F' are electrically connected in series with each other.
  • the tanks 2 are electrically connected in series with each other.
  • a series of tanks 2, which can contain several lines F, F ', is connected at its ends to a power substation 3.
  • the electrolysis current h passes through the tanks 2 one after the other, defining an electrical circuit main 4.
  • the electrolysis tanks 2 are arranged so that their long sides 2a are perpendicular to their alignment axis.
  • the aluminum smelter 1 comprises two secondary electrical circuits 5 and 6 that are distinct from the main electric circuit 4.
  • the secondary electrical circuits 5 and 6 are respectively traversed by electric currents l 2 and l 3 .
  • the value of the intensity of the electric currents I 2 and I 3 is between 20% and 100% of that of the intensity of the electrolysis current and preferably between 40% and 70%, and more particularly of the electrolysis current. order of half.
  • the direction of routing of the electric currents l 2 and l 3 is advantageously the same as the direction of routing of the electrolysis current.
  • the secondary electrical circuits 5 and 6 can each be connected to a respective power substation 20 and 21, distinct from the power substation 3, as can be seen for example in FIG. 15 or in FIG. 16.
  • the secondary electrical circuits 5 and 6 are formed by electrical conductors arranged parallel to the alignment axes of the 2. They go along the right and left sides of the electrolysis tanks 2 of each row F, F 'of the series.
  • the secondary electrical circuits 5 and 6 can also pass wholly or partly under the electrolysis tanks 2.
  • one or more cathode blocks 8 having a crenellated upper face, as shown in Figures 17 to 21.
  • the upper face of these cathode blocks 8 comprises at least one channel 8a extending longitudinally over at least a portion of the length of the cathode blocks 8.
  • the upper surface of the crenals is covered by the aluminum sheet and the channels 8a are occupied by the sheet 1 1 of aluminum which is formed during the electrolysis reaction.
  • the height of the aluminum sheet above the upper surface of the crenellations is in particular between 3 and 20 cm.
  • Each electrolysis tank 2 may contain a plurality of cathode blocks 8 placed next to one another.
  • channels 8a on the upper face of one or more of these cathode blocks 8 it is possible to provide an inclined upper face, so that the cathode blocks 8 placed next to one another form channels 8b, as this is shown schematically in Figure 19.
  • the upper face of these cathode blocks 8 provided with longitudinal channels 8a may also comprise a transverse central channel 8c, extending at least partially over the width of the cathode blocks 8.
  • the central channel 8c thus crosses the channel or channels 8a extending at least partially along the length of the cathode blocks 8.
  • the cathode unit 8 comprises on its upper face a central channel 8c arranged perpendicularly to the channels 8a extending substantially parallel to the length of the cathode block 8.
  • an electrolysis cell 2 comprises a metal box 7, for example made of steel.
  • the metal box 7 has a side wall 7a and a bottom 7b. It is lined internally by refractory materials (not visible).
  • the electrolysis tank 2 also comprises a cathode formed of cathode blocks 8 made of carbonaceous material and anodes 9 made of carbon material as well.
  • the anodes 9 are intended to be consumed as and when the electrolysis reaction in an electrolytic bath 13 including cryolite and alumina.
  • the anodes 9 are connected to a support structure by rods 10. During the electrolysis reaction, a sheet 1 1 of liquid aluminum is formed.
  • the cathode comprises cathode outlets 12 passing through the caisson 7.
  • the cathode outlets 12 are formed for example by metal bars fixed on the cathode blocks 8.
  • the cathode outlets 12 are themselves connected to electrical conductors 14 for conveying the cathode. electrolysis current from the cathode outlets 12 of a tank N (the one on the left in FIG. 4) towards the anodes 9 of an N + 1 tank (the one on the right in FIG. 4).
  • the electrolysis current first passes through the anode 9 of the tank N, then the electrolytic bath 13, the sheet 1 1 of liquid aluminum, the cathode, the cathode outlets 12 and the electrical conductors 14 which convey it. then to the anode 9 of the next vessel N + 1.
  • the cathode outlets 12 advantageously cross the bottom 7b of the box 7. This makes it possible to reduce the horizontal electric currents in order to improve the efficiency of the vats 2. Indeed, for the same mass of steel used for the horizontal part under the anodes of the cathodic output, the overall current density is decreased and thus the potential drop. Also, the current lines tend to extend substantially rectilinearly, and thus vertically in the aluminum sheet as naturally between the anodes and the electrical conductors.
  • Figure 7 shows for this purpose the current lines running through an electrolysis tank 2. Note that horizontal electric currents, in 1 particularly in the liquid aluminum sheet 11, are substantially reduced compared with those of FIG. 2.
  • the electrical conductors 14 extend rectilinearly and parallel to the axis of alignment of the electrolysis tanks 2 from the cathode outlets 12 of the tank N towards the tank N + 1 so to be traversed during the operation of the electrolytic cells 2 N, N + 1 by the electrolysis current only in an upstream-downstream direction.
  • the upstream-downstream direction corresponds to the overall flow direction of the electrolysis current.
  • the electrical conductors 14 connected to the cathode outlets 12 passing through the bottom 7b of the box 7 do not extend under the entire width of the box 7 of the tank N; there is no complete crossing of an electrolysis tank 2 under its box 7 or on the sides of the box by an electrical conductor 14. In particular, they do not pass through the plane containing the upstream side wall of the box 7 of the vessel N.
  • the rectilinear extension only downstream parallel to the axis of alignment of the electrolysis tanks 2 constitutes the shortest electrical path that can connect a cathode outlet of the tank N, passing through the bottom 7b of the box 7 of this tank N, up to the anode 9 of the next tank N + 1.
  • the electrolysis current flowing through the tank N passes through the cathode outlets 12 and the electrical conductors 14 connected to the cathode outlets 12.
  • the electrolysis current by traversing the electrical conductors 14 is routed in a straight line parallel to the axis of alignment of the tanks 2 towards the next tank N + 1. This allows in particular to save energy.
  • this arrangement makes it possible to limit the space in the vicinity of the electrolysis tanks 2. It then becomes possible to reduce the distance between two adjacent tanks 2 to increase the space available in the aluminum smelter 1, for example to add additional electrolysis tanks 2 or reduce the size of buildings.
  • the fact of using electrical conductors 14 extending rectilinearly from one tank to the other parallel to the axis of alignment of the tanks 2 simplifies the structure of these electrical conductors 14. Their modularity makes their more economical manufacturing. It should be noted that this particular arrangement is made possible in particular by the existence of the first secondary electric circuit 5 and the second secondary electric circuit 6 which compensate for the effects of the magnetic field created by the electrolysis current, or that of the cathode. crenellated upper face which stabilizes the movements of the sheet 1 1 of liquid aluminum. It is indeed not necessary to configure the electrical conductors 14 so as to obtain self-compensation effects of this magnetic field at the scale of each electrolysis tank 2.
  • FIGS. 5 and 6 show a sectional view of an electrolytic cell 2 according to an embodiment of the invention, respectively along the line 11 and the line 11-11 of FIG. 4. It is possible to see that the casing 7 of a tank 2 is supported by a plurality of arches 15. The arches 15 are arranged around the casing 7. The arches 15 are fixed against the side wall 7a and the bottom 7b of the casing 7. They are arranged in parallel one to another. A space delimited between two consecutive arches 15 is advantageously occupied by the electrical conductors 14. It will be noted that the electrical conductors 14 can connect the cathode outlets 12 in pairs.
  • FIG. 8 schematically shows the top of a tank N (on the left in FIG. 8), placed upstream, and of a tank N + 1 (on the right in FIG. 8), placed downstream, according to the mode of embodiment of Figure 4.
  • Figure 9 shows a sectional view along the line III-III of Figure 8.
  • the secondary electrical circuits 5 and 6, arranged parallel to the short sides 2b of the electrolysis tanks 2, are visible.
  • the electrical conductors 14 which extend in a straight line towards the tank N + 1.
  • the arches 15 fixed on the side wall 7b of the box 7 of the tank N and between which the electrical conductors 14 extend.
  • the cathode outlets 12 may be aligned along an axis parallel to the long sides 2a of the tank 2d. electrolysis, as shown in dashed lines in FIG.
  • FIGS. 11 and 12 show a cross-sectional view respectively along the lines IV-IV and VV of FIG. 10.
  • the electrolysis tanks 2 have first cathode outlets 12 passing through the bottom 7b of the box 7, while second cathode outlets 12, located downstream of the first cathode outlets 12, pass through the side wall 7a downstream of the box 7.
  • the electrolysis tanks 2 of the aluminum plant 1 according to this second embodiment thus have outlets cathodic 12 "mixed" because crossing the bottom 7b and the side wall 7a.
  • the second cathode outlets 12 passing through the side wall 7a may comprise an element made of a better electrically conductive material than steel, in particular copper, in the form of, for example, a plate 16 or an insert.
  • the copper plate 16 arranged on a steel bar makes it possible, by its high electrical conductivity, to rebalance the voltages at the first cathode outlets 12, passing through the bottom 7b, and the second cathode outlets 12, passing through the side wall 7a, and thus limit the horizontal electric currents in the aluminum sheet.
  • FIG. 13 schematically shows the top of a tank N, placed upstream (the one on the left in FIG. 13), and of a tank N + 1 placed downstream (the one on the right in FIG. 13), of an aluminum smelter 1 according to the embodiment shown in FIG. 10.
  • FIG. 14 is a sectional view along the line VI-VI of FIG. 13. As in the embodiment presented in FIG. 4, the electrical conductors 14 extend between the arches 15.
  • the secondary electrical circuits 5 and 6 are parallel to the axis of alignment of the tanks 2.
  • the aluminum smelter 1 may also advantageously comprise short-circuiting means for each tank 2. These short-circuiting means may comprise short-circuiting electrical conductors 17, visible in FIGS. 4, 8, 10 and 13.
  • the drivers Electrical short-circuiting 17 are arranged between two successive electrolysis tanks 2. In FIGS.
  • the electrical conductors 17 are placed in contact with the electrical conductors 14 connected to the cathode outlets 12 passing through the bottom 7b of the box 7 of the tank N + 1, and away from the connected electrical conductors 14 at the cathode outlets 12 of the tank N, such that a short space separates the electrical conductors 17 from the short-circuiting of the electrical conductors 14 connected to the cathode outlets 12 of the tank N, as can be seen in particular in FIG.
  • the short-circuiting electrical conductors 17 are intended to short-circuit an N + 1 tank, for example to remove the latter for maintenance operations.
  • the distance between the short-circuiting electrical conductors 17 and the electrical conductors 14 connected to the cathode outlets 12 of the tank N is then filled by a wedge into a conductive element (not shown) so as to conduct the electrolysis current h from the vessel N to the vessel N + 2 via this wedge, the electrical conductors 17 of short-circuiting and the electrical conductors 14 normally arranged under the vessel N + 1 (that is to say the electrical conductors 14 connected to the cathode outlets 12 passing through the bottom 7b of the box 7 of the tank N + 1 when it is in place).
  • the electrical conductors 17 shorting may be aluminum. Since they are traveled only occasionally during short-circuiting by the electrolysis current (for maintenance operations of a tank 2, or at intervals of several years), they can be sized to work at the same time. higher current density permissible, which allows to limit their mass.
  • the electrical conductors forming the secondary electrical circuits 5 and / or 6 may be of superconducting material.
  • These superconducting materials may for example comprise BiSrCaCuO, YaBaCuO, materials known from patent applications WO200801 1 184, US20090247412 or other materials known for their superconducting properties.
  • a superconducting cable comprises a central core of copper or aluminum, ribbons or fibers of superconducting material, and a cryogenic envelope.
  • the cryogenic envelope may be formed by a sheath containing a cooling fluid, for example liquid nitrogen.
  • the cooling fluid makes it possible to maintain the temperature of the superconducting materials at _.
  • the use of electrical conductors of superconducting material to form the secondary electrical circuits 5 and 6 is particularly interesting because of their length, of the order of two kilometers.
  • the use of electrical conductors of superconducting material requires less voltage compared to that required by electrical conductors of aluminum or copper.
  • the cost of the supply substations 20 and 21, respectively of the secondary electrical circuit 5 and the secondary electrical circuit 6, is reduced accordingly.
  • the electrical conductors of the secondary electrical circuits 5 and 6 may advantageously run at least twice a line F of electrolysis tanks 2.
  • the small size of the electrical conductors of superconducting material relative to electrical conductors made of aluminum or copper facilitates the realization of several rounds in series in the loops formed by the secondary electrical circuits 5 and 6.
  • the sheath may therefore contain several passages of the same electrical conductor of superconducting material.
  • the fact that the loop formed by the secondary electric circuits 5 and 6 comprise several turns in series makes it possible to divide (as many times as the number of turns made) the intensity of the electric current l 2 , l 3 passing respectively through the secondary electric circuit. 5 and the secondary electrical circuit 6. The reduction of the value of this intensity makes it possible to reduce Joule energy losses at the junctions between the electrical conductors of superconducting material and the poles of the power substations.
  • the power substation 20 or 21 of the secondary electrical circuit 5 or the secondary electrical circuit 6 comprising a conductor _
  • electrical superconducting material can deliver a current of intensity of the order of 5 kA to 40 kA. This allows the use of equipment commonly sold in commerce and therefore inexpensive.
  • the electrical conductors of superconducting material can be arranged under the electrolysis tanks 2.
  • the aluminum smelter 1 according to the invention has a set of characteristics whose combination contributes by a synergistic effect to the reduction of the costs of design, manufacture and operation of this smelter 1, and the increase in its yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

Aluminerie comprenant: (i) une série de cuves (2) d'électrolyse, comprenant une anode (9), une cathode et un caisson muni d'une paroi latérale (7a) et d'un fond, chaque cathode comprenant au moins une sortie cathodique (12), (ii) un circuit électrique principal parcouru par un courant d'électrolyse, comprenant un conducteur électrique (14) relié à chaque sortie cathodique (12) d'une cuve N, et à l'anode (9) d'une cuve N+1, (iii) un moyen pour stabiliser les cuves (2) d'électrolyse parmi un circuit électrique secondaire (5, 6) ou l'utilisation d'une cathode à surface crénelée. Une des sorties cathodiques (12) de la cuve N traverse le fond du caisson; chaque conducteur électrique (14) s'étend depuis chaque sortie cathodique (12) de la cuve N en direction de la cuve N+1 et est parcouru lors du fonctionnement des cuves (2) d'électrolyse N, N+1 par le courant d'électrolyse dans un sens amont-aval uniquement.

Description

Aluminerie comprenant des cuves à sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
La présente invention concerne une usine de production d'aluminium à partir d'alumine par électrolyse, également appelée aluminerie. II est connu de produire l'aluminium industriellement à partir d'alumine par électrolyse selon le procédé de Hall-Héroult. A cet effet, on prévoit une cuve d'électrolyse composée notamment d'un caisson en acier, d'un revêtement intérieur réfractaire, et d'une cathode en matériau carboné, reliée à des conducteurs servant à l'acheminement du courant d'électrolyse. La cuve d'électrolyse contient également un bain électrolytique constitué notamment de cryolithe dans lequel est dissout de l'alumine. Le procédé de Hall-Héroult consiste à plonger partiellement un bloc carboné constituant l'anode dans ce bain électrolytique, l'anode étant consommée au fur et à mesure de l'état d'avancement de la réaction. Au fond de la cuve d'électrolyse se dépose par gravité l'aluminium liquide, produit par la réaction d'électrolyse, ce qui forme une nappe d'aluminium liquide qui recouvre intégralement la cathode.
Généralement, les usines de production d'aluminium comprennent plusieurs centaines de cuves d'électrolyse connectées en série dans des halls. Ces cuves d'électrolyse sont parcourues par un courant d'électrolyse de l'ordre de plusieurs centaines de milliers d'Ampères, ce qui crée des champs magnétiques importants. Suivant la distribution des différentes composantes du champ magnétique dans la cuve, la nappe d'aluminium peut être instable, ce qui dégrade fortement le rendement de la cuve. Il est connu notamment que la composante verticale du champ magnétique est un facteur déterminant pour la stabilité d'une cuve d'électrolyse.
Il est connu d'améliorer la stabilité des cuves d'électrolyse en minimisant la composante verticale du champ magnétique présente dans la cuve. Pour cela, on compense le champ magnétique vertical à l'échelle d'une cuve d'électrolyse grâce à une disposition particulière des conducteurs acheminant le courant d'électrolyse d'une cuve N à une cuve N+1. Une partie de ces conducteurs, généralement des barres en aluminium, contournent les extrémités de la cuve N. La figure 1 illustre schématiquement, vue de dessus, une cuve 100 d'électrolyse dans laquelle le champ magnétique est autocompensé grâce à la disposition des conducteurs 101 reliant cette cuve N 100 à la cuve N+1 suivante 102 placée en aval. A cet effet, on remarque que des conducteurs 101 sont excentrés par rapport à la cuve 100 et la contournent. Une telle méthode d'autocompensation magnétique est notamment connue du document de brevet FR2469475.
Cependant, la méthode d'auto-compensation d'une cuve d'électrolyse impose beaucoup de contraintes de conception en raison de l'encombrement important dû à la disposition particulière des conducteurs. De plus, la longueur importante des conducteurs pour la mise en œuvre de cette solution génère de la perte électrique en ligne et nécessite beaucoup de matière (conducteurs en aluminium), d'où des coûts élevés en terme de consommation énergétique et à la fabrication.
Une autre cause d'instabilité des cuves d'électrolyse, en plus de la composante verticale du champ magnétique, est la présence de courants électriques horizontaux dans la nappe d'aluminium. La figure 2 montre une cuve 200 d'électrolyse appartenant à l'état de la technique, parcourue par un courant d'électrolyse l2oo- La cuve 200 d'électrolyse présente une anode 201 , un caisson 202 contenant notamment un bain électrolytique 203, une nappe d'aluminium liquide 204 et une cathode 205. Il est à noter que les courants horizontaux sont importants dans les milieux parcourus particulièrement conducteurs. C'est le cas notamment lorsque le courant d'électrolyse l2oo parcourt la nappe d'aluminium liquide 204.
Aussi la présente invention a pour but de remédier en tout ou partie à ces inconvénients, en proposant une aluminerie dans laquelle la stabilité des liquides contenus dans les cuves d'électrolyse est améliorée, et présentant des coûts de conception, de fabrication et d'exploitation moindres.
A cet effet, la présente invention a pour objet une aluminerie comprenant :
(i) une série de cuves d'électrolyse, destinées à la production d'aluminium selon le procédé de Hall-Héroult, chaque cuve d'électrolyse comprenant au moins une anode, une cathode et un caisson muni d'une paroi latérale et d'un fond, chaque cathode comprenant au moins une sortie cathodique,
(ii) un circuit électrique principal parcouru par un courant d'électrolyse, reliant électriquement les cuves d'électrolyse les unes aux autres, le courant d'électrolyse parcourant en premier lieu une cuve d'électrolyse N, placée à l'amont, et en deuxième lieu une cuve d'électrolyse N+1 , placée à l'aval, ledit circuit électrique principal comprenant un conducteur électrique relié à chaque sortie cathodique de la cuve d'électrolyse N, le conducteur électrique étant également relié à la au moins une anode de la cuve d'électrolyse N+1 , en vue d'acheminer le courant d'électrolyse de la cuve d'électrolyse N à la cuve d'électrolyse N+1 , caractérisée en ce que l'aluminerie comprend en outre
(iii) au moins un moyen pour stabiliser les cuves d'électrolyse parmi au moins un circuit électrique secondaire parcouru par un courant électrique, permettant de compenser le champ magnétique créé par le courant d'électrolyse, ou l'utilisation d'une cathode à surface crénelée, et en ce que une au moins parmi la ou les sorties cathodiques de la cathode de la cuve d'électrolyse N traverse le fond du caisson, chaque conducteur électrique s'étendant depuis chaque sortie cathodique de la cuve d'électrolyse N en direction de la cuve d'électrolyse N+1 est parcouru lors du fonctionnement des cuves (2) d'électrolyse N, N+1 par le courant d'électrolyse (h) dans un sens amont-aval uniquement.
Ainsi, l'invention permet d'améliorer la stabilité des cuves d'électrolyse dans l'aluminerie, en agissant à la fois sur les courants horizontaux traversant les cuves et sur le champ magnétique généré par le courant d'électrolyse et/ou la stabilité cinétique de la nappe d'aluminium contenu dans les cuves. Elle permet simultanément une réduction de l'encombrement et de la masse des conducteurs acheminant le courant d'électrolyse d'une cuve à une autre, et par conséquent une réduction des coûts associés à la conception et la fabrication de l'aluminerie selon l'invention. Les pertes d'énergies sont en outre réduites.
Selon une autre caractéristique de l'aluminerie selon l'invention, les cuves d'électrolyse sont alignées suivant un axe, et en ce que le conducteur électrique s'étend de manière sensiblement rectiligne et de manière sensiblement parallèle à l'axe d'alignement des cuves d'électrolyse. Selon une autre caractéristique de l'aluminerie selon l'invention, chaque cathode comprend en outre au moins une sortie cathodique traversant la paroi latérale avale du caisson. .
4
Cette caractéristique présente l'avantage de diminuer davantage l'encombrement et la masse des conducteurs électriques acheminant le courant d'électrolyse d'une cuve à une autre. Cette sortie cathodique traverse la paroi latérale du caisson de la cuve N au niveau de son côté aval, afin de respecter la caractéristique selon laquelle chaque conducteur électrique s'étend en direction de la cuve N+1 , dans un sens amont-aval uniquement. Du fait de la proximité du côté aval de la cuve N et de la cuve N+1 , la longueur du conducteur électrique reliant cette sortie cathodique à l'anode de la cuve N+1 est inférieure à celle d'un conducteur électrique reliant une sortie cathodique par le fond de la cuve N à l'anode de la cuve N+1. Ainsi, ce mode de réalisation présente l'avantage d'une diminution de l'encombrement et de la longueur des conducteurs électriques par rapport à un mode de réalisation de l'aluminerie selon l'invention dans lequel les cuves comportent des sorties cathodiques par le fond uniquement.
Préférentiellement, chaque sortie cathodique aval traversant la paroi latérale du caisson de la cuve d'électrolyse N comprend une barre métallique, plus particulièrement formée d'acier, avec un insert ou une plaque en cuivre.
Cela permet d'équilibrer la tension au niveau de la sortie cathodique traversant le fond du caisson par rapport à celle au niveau de la sortie cathodique traversant la paroi latérale du caisson.
De manière avantageuse, le caisson de la cuve d'électrolyse N comprend plusieurs arceaux fixés à la paroi latérale et au fond du caisson, les conducteurs électriques reliés à chaque sortie cathodique traversant le fond du caisson de la cuve d'électrolyse N s'étendant entre les arceaux.
Cette caractéristique présente l'avantage de diminuer l'encombrement des conducteurs électriques acheminant le courant d'électrolyse d'une cuve à une autre. Avantageusement, les cuves d'électrolyse comprennent des moyens de court- circuitage.
Les moyens de court-circuitage permettent de court-circuiter une cuve d'électrolyse en vue de la retirer pour des opérations de maintenance, tout en continuant l'exploitation des autres cuves de la série. Avantageusement, les moyens de court-circuitage de la cuve d'électrolyse N+1 comprennent au moins un conducteur électrique de court-circuitage placé à demeure entre la cuve d'électrolyse N et la cuve d'électrolyse N+1 , chaque conducteur électrique de court-circuitage étant relié électriquement à un des conducteurs électriques relié à une b
sortie cathodique de la cuve traversant le fond du caisson de la cuve d'électrolyse N+1 , et chaque conducteur électrique de court-circuitage étant situé à une faible distance d'un des conducteurs électriques relié à une des sorties cathodiques de la cuve d'électrolyse N. Selon une autre caractéristique de l'aluminerie selon l'invention, les moyens de court-circuitage de la cuve d'électrolyse N+1 comprennent au moins un conducteur électrique de court-circuitage placé à demeure entre la cuve d'électrolyse N et la cuve d'électrolyse N+1 , chaque conducteur électrique de court-circuitage étant relié électriquement à un des conducteurs électriques relié à une sortie cathodique de la cuve traversant le fond du caisson de la cuve d'électrolyse N, et chaque conducteur électrique de court-circuitage étant situé à une faible distance d'un des conducteurs électriques relié à une des sorties cathodiques de la cuve d'électrolyse N+1.
La faible distance entre le conducteur de court-circuitage et l'autre conducteur forme des emplacements pour l'introduction de cales de court-circuitage. Ces cales de court- circuitage peuvent être introduite par le dessus ou par le dessous dans le deuxième cas.
Préférentiellement, au moins un circuit électrique secondaire comprend des conducteurs électriques longeant le côté droit et/ou le côté gauche des cuves d'électrolyse d'au moins une file de cuves d'électrolyse.
De manière avantageuse, le au moins un circuit électrique secondaire comprend des conducteurs électriques s'étendant le long d'au moins une file de cuves d'électrolyse, sous lesdites cuves d'électrolyse.
De manière avantageuse, les conducteurs électriques du au moins un circuit électrique secondaire sont en matériau supraconducteur. Cela permet de diminuer la chute de tension à laquelle chaque circuit secondaire est soumis, ce qui permet des économies d'énergie et d'utiliser une sous-station d'alimentation de chaque circuit électrique secondaire de puissance plus faible, donc moins coûteuse. Cette caractéristique permet également de réduire les coûts de matière, par rapport à des conducteurs en aluminium ou en cuivre. Elle permet enfin de diminuer la taille des conducteurs électriques, ce qui se traduit par un gain de place dans l'aluminerie. Selon une autre caractéristique de l'aluminerie selon l'invention, le conducteur électrique du au moins un circuit électrique secondaire longe au moins deux fois les cuves d'électrolyse de la ou des files. Cette caractéristique offre la possibilité de diminuer l'intensité du courant parcourant ce circuit secondaire en vue de réaliser des économies d'énergie.
L'invention sera mieux comprise à l'aide de la description détaillée qui est exposée ci-dessous en regard des dessins annexés dans lesquels : - La figure 1 est une vue schématique de dessus d'une cuve d'électrolyse de l'état de la technique,
- La figure 2 est une vue schématique d'une cuve d'électrolyse appartenant à l'état de la technique,
- La figure 3 une vue schématique de dessus d'une aluminerie selon un mode particulier de réalisation de la présente invention,
- La figure 4 est une vue schématique d'une cuve N et d'une cuve N+1 d'une aluminerie selon un mode particulier de réalisation de l'invention,
- Les figures 5 et 6 sont des vues en coupe selon respectivement les lignes l-l et ll-ll de la figure 4, - La figure 7 est une vue schématique d'une cuve d'électrolyse selon le mode de réalisation de la figure 4,
- La figure 8 est une vue schématique de dessus de la cuve N et de la cuve N+1 d'une aluminerie selon le mode particulier de réalisation de la figure 4,
- La figure 9 est une vue en coupe selon la ligne lll-lll de la figure 8, - La figure 10 est une vue schématique d'une cuve N et d'une cuve N+1 d'une aluminerie selon un autre mode particulier de réalisation de l'invention,
- Les figures 1 1 et 12 sont des vues en coupe selon respectivement les lignes IV- IV et V-V de la figure 10,
- La figure 3 est une vue schématique de dessus de la cuve N et de la cuve N+1 d'une aluminerie selon le deuxième mode particulier de réalisation de l'invention,
- La figure 14 est une vue en coupe selon la ligne VI-VI de la figure 13
- Les figures 15 et 16 sont des vues schématiques de dessus d'une aluminerie 1 selon des modes particuliers de réalisation de l'invention, - Les figures 17, 18 et 19 sont des vues schématiques de profil de cathodes crénelées pouvant équiper une cuve d'une aluminerie selon un mode de réalisation de l'invention,
- La figure 20 est une vue schématique de face d'un bloc cathodique crénelé pouvant équiper une cuve d'une aluminerie selon un mode de réalisation de l'invention,
- La figure 21 est une vue schématique de dessus d'un bloc cathodique crénelé pouvant équiper une cuve d'une aluminerie selon un mode de réalisation de l'invention.
La figure 3 montre une aluminerie 1 comprenant une pluralité de cuves 2 d'électrolyse. Les cuves 2 d'électrolyse peuvent être par exemple rectangulaires. Elles présentent alors deux grands côtés 2a correspondant à leur longueur et deux petits côtés 2b correspondant à leur largeur.
Les petits côtés 2b de chaque cuve 2 peuvent être divisés en un côté gauche et un côté droit. Côté gauche et côté droit sont définis par rapport à un observateur placé au niveau du circuit électrique principal 4 et regardant dans le sens global d'acheminement du courant d'électrolyse h.
Les grands côtés 2a de chaque cuve 2 peuvent être divisés en un côté amont et un côté aval. Le côté amont correspond au grand côté 2a d'une cuve 2 adjacent à la cuve 2 précédente, c'est-à-dire celle parcourue d'abord par le courant d'électrolyse lt. Le côté aval correspond au grand côté 2a d'une cuve 2 adjacent à la cuve 2 suivante, c'est-à-dire celle parcourue ensuite par le courant d'électrolyse . D'une manière plus générale, amont et aval sont définis par rapport au sens global de circulation du courant d'électrolyse
Dans l'exemple de la figure 3, les cuves 2 sont alignées suivant deux axes parallèles, de manière à former une file F et une file F'. Chaque file F, F' peut comporter par exemple une centaine de cuves 2. Les files F et F' sont connectées électriquement en série l'une à l'autre. Les cuves 2 sont reliées électriquement en série les unes aux autres. Une série de cuves 2, pouvant contenir plusieurs files F, F', est reliée à ses extrémités à une sous-station d'alimentation 3. Le courant d'électrolyse h parcourt les cuves 2 les unes après les autres, définissant un circuit électrique principal 4. Dans le mode de réalisation de la figure 3, les cuves 2 d'électrolyse sont agencées de sorte que leurs grands côtés 2a soient perpendiculaires à leur axe d'alignement.
Comme cela est visible sur la figure 3, l'aluminerie 1 comprend deux circuits électriques secondaires 5 et 6 distincts du circuit électrique principal 4. Les circuits électriques secondaires 5 et 6 sont respectivement parcourus par des courants électriques l2 et l3. La valeur de l'intensité des courants électriques l2 et l3, est comprise entre 20% et 100% de celle de l'intensité du courant d'électrolyse et de préférence entre 40% et 70%, et plus particulièrement encore de l'ordre de la moitié. Le sens d'acheminement des courants électriques l2 et l3 est avantageusement le même que le sens d'acheminement du courant d'électrolyse Les circuits électriques secondaires 5 et 6 peuvent chacun être reliés à une sous-station d'alimentation respective 20 et 21 , distincte de la sous-station d'alimentation 3, comme cela est visible par exemple sur la figure 15 ou sur la figure 16. Les circuits électriques secondaires 5 et 6 sont formés par des conducteurs électriques disposés parallèlement aux axes d'alignement des cuves 2. Ils longent les côtés droits et gauches des cuves 2 d'électrolyse de chaque file F, F' de la série. Les circuits électriques secondaires 5 et 6 peuvent également passer en tout ou partie sous les cuves 2 d'électrolyse. Afin de stabiliser les liquides contenus dans les cuves 2 d'électrolyse, il est possible d'utiliser, de manière alternative ou complémentaire à l'utilisation des circuits électriques secondaires 5 et 6, un ou plusieurs blocs cathodiques 8 présentant une face supérieure crénelée, comme cela est visible sur les figures 17 à 21. La face supérieure de ces blocs cathodiques 8 comprend au moins un canal 8a s'étendant longitudinalement sur une partie au moins de la longueur des blocs cathodiques 8. En fonctionnement, la surface supérieure des crénaux est recouverte par la nappe d'aluminium et les canaux 8a sont donc occupés par la nappe 1 1 d'aluminium qui se forme au cours de la réaction d'électrolyse. La hauteur de la nappe d'aluminium au dessus de la surface supérieure des créneaux est notamment comprise entre 3 et 20 cm. Ainsi, les créneaux et canaux 8a permettent de limiter les mouvements de la nappe 11 d'aluminium pendant la réaction d'électrolyse et contribuent ainsi à la stabilité et à un meilleur rendement des cuves 2 d'électrolyse.
Chaque cuve 2 d'électrolyse peut contenir une pluralité de blocs cathodiques 8 placés les uns à côté des autres. Au lieu de canaux 8a sur la face supérieure d'une ou plusieurs de ces blocs cathodiques 8, il est possible de prévoir une face supérieure inclinée, de sorte que les blocs cathodiques 8 placées les uns à côté des autres forment des canaux 8b, comme cela est représenté schématiquement sur la figure 19.
De tels blocs cathodiques à face supérieure crénelée sont notamment connus du document de brevet US5683559. y
La face supérieure de ces blocs cathodiques 8 pourvus de canaux 8a longitudinaux peut également comporter un canal central 8c transversal, s'étendant au moins partiellement sur la largeur des blocs cathodiques 8. Le canal central 8c croise ainsi le ou les canaux 8a s'étendant au moins partiellement sur la longueur des blocs cathodiques 8. Dans l'exemple des figures 20 et 21 , le bloc cathodique 8 comprend sur sa face supérieure un canal central 8c disposé perpendiculairement aux canaux 8a s'étendant de manière sensiblement parallèle à la longueur du bloc cathodique 8.
Classiquement, comme cela est visible sur la figure 4, une cuve 2 d'électrolyse comprend un caisson 7 métallique, par exemple en acier. Le caisson 7 métallique présente une paroi latérale 7a et un fond 7b. Il est garni intérieurement par des matériaux réfractaires (non visibles). La cuve 2 d'électrolyse comporte également une cathode formée de blocs cathodiques 8 en matériau carboné et des anodes 9 en matériau carboné également. Les anodes 9 sont destinées à être consommées au fur et à mesure de la réaction d'électrolyse dans un bain électrolytique 13 comportant notamment de la cryolithe et de l'alumine. Les anodes 9 sont reliées à une structure porteuse par des tiges 10. Au cours de la réaction d'électrolyse, une nappe 1 1 d'aluminium liquide se forme. La cathode comprend des sorties cathodiques 12 traversant le caisson 7. Les sorties cathodiques 12 sont formées par exemple par des barres métalliques fixées sur les blocs cathodiques 8. Les sorties cathodiques 12 sont elles-mêmes reliées à des conducteurs électriques 14 permettant d'acheminer le courant d'électrolyse depuis les sorties cathodiques 12 d'une cuve N (celle de gauche sur la figure 4) vers les anodes 9 d'une cuve N+1 (celle de droite sur la figure 4).
Le courant d'électrolyse ^ traverse d'abord l'anode 9 de la cuve N, puis le bain électrolytique 13, la nappe 1 1 d'aluminium liquide, la cathode, les sorties cathodiques 12 et les conducteurs électriques 14 qui l'acheminent ensuite vers l'anode 9 de la cuve suivante N+1.
Comme cela est représenté à la figure 4, qui illustre un mode particulier de réalisation de la présente invention, les sorties cathodiques 12 traversent avantageusement le fond 7b du caisson 7. Cela permet de réduire les courants électriques horizontaux en vue d'améliorer le rendement des cuves 2. En effet, pour une même masse d'acier utilisée pour la partie horizontale sous les anodes de la sortie cathodique, la densité de courant globale est diminuée et donc la chute de potentiel. Aussi, les lignes de courant tendent à s'étendre de façon sensiblement rectiligne, et donc verticalement dans la nappe d'aluminium comme naturellement entre les anodes et les conducteurs électriques. La figure 7 montre à cet effet les lignes de courant parcourant une cuve 2 d'électrolyse. On remarque que les courants électriques horizontaux, en 1 particulier dans la nappe 11 d'aluminium liquide, sont sensiblement réduits par rapport à ceux de la figure 2.
Un autre point remarquable est que les conducteurs électriques 14 s'étendent de manière rectiligne et parallèle à l'axe d'alignement des cuves 2 d'électrolyse depuis les sorties cathodiques 12 de la cuve N en direction de la cuve N+1 de sorte à être parcouru lors du fonctionnement des cuves 2 d'électrolyse N, N+1 par le courant d'électrolyse uniquement dans un sens amont-aval. Le sens amont-aval correspond au sens global de circulation du courant d'électrolyse . Ainsi, un observateur placé au niveau d'une cuve 2 d'électrolyse N et se déplaçant dans le sens amont-aval ne peut que se diriger que vers la cuve N+1. En particulier, pour atteindre la cuve N+1 , cet observateur ne peut rebrousser chemin, même partiellement, en direction de la cuve N-1.
De plus, les conducteurs électriques 14 reliés aux sorties cathodiques 12 traversant le fond 7b du caisson 7 ne s'étendent pas sous la totalité de la largeur du caisson 7 de la cuve N; il n'y a aucune traversée complète d'une cuve 2 d'électrolyse sous son caisson 7 ou sur les côtés du caisson par un conducteur électrique 14. En particulier, ils ne traversent pas le plan contenant la paroi latérale amont du caisson 7 de la cuve N.
L'extension rectiligne uniquement vers l'aval parallèlement à l'axe d'alignement des cuves 2 d'électrolyse constitue le trajet électrique le plus court pouvant relier une sortie cathodique de la cuve N, traversant le fond 7b du caisson 7 de cette cuve N, jusqu'à l'anode 9 de la cuve N+1 suivante. En effet, comme cela a été précédemment mentionné, le courant d'électrolyse \, parcourant la cuve N traverse les sorties cathodiques 12 puis les conducteurs électriques 14 reliés aux sorties cathodiques 12. Le courant d'électrolyse en parcourant les conducteurs électriques 14 est acheminé en ligne droite parallèlement à l'axe d'alignement des cuves 2 en direction de la cuve N+1 suivante. Cela permet notamment de faire des économies d'énergie.
De plus, cette disposition permet de limiter l'encombrement à proximité des cuves 2 d'électrolyse. Il devient alors possible de réduire l'entraxe séparant deux cuves 2 adjacentes afin d'augmenter la place disponible dans l'aluminerie 1 , par exemple pour ajouter des cuves 2 d'électrolyse supplémentaires ou diminuer la taille des bâtiments. En outre, le fait d'utiliser des conducteurs électriques 14 s'étendant de manière rectiligne d'une cuve à l'autre parallèlement à l'axe d'alignement des cuves 2 simplifie la structure de ces conducteurs électriques 14. Leur modularité rend leur fabrication plus économique. Il est à noter que cette disposition particulière est rendue possible notamment par l'existence du premier circuit électrique secondaire 5 et du deuxième circuit électrique secondaire 6 qui compensent les effets du champ magnétique créé par le courant d'électrolyse , ou celle de la cathode à face supérieure crénelée qui stabilise les mouvements de la nappe 1 1 d'aluminium liquide. Il n'est en effet pas nécessaire de configurer les conducteurs électriques 14 de manière à obtenir une auto-compensation des effets de ce champ magnétique à l'échelle de chaque cuve 2 d'électrolyse.
Les figures 5 et 6 montrent une vue en coupe d'une cuve 2 d'électrolyse selon un mode de réalisation de l'invention, respectivement selon la ligne l-l et la ligne ll-ll de la figure 4. Il est possible de voir que le caisson 7 d'une cuve 2 est soutenu par une pluralité d'arceaux 15. Les arceaux 15 sont disposés autour du caisson 7. Les arceaux 15 sont fixés contre la paroi latérale 7a et le fond 7b du caisson 7. Ils sont disposés parallèlement les uns par rapport aux autres. Un espace, délimité entre deux arceaux 15 consécutifs, est avantageusement occupé par les conducteurs électriques 14. On remarquera que les conducteurs électriques 14 peuvent raccorder les sorties cathodiques 12 par paires.
La figure 8 montre schématiquement le dessus d'une cuve N (à gauche sur la figure 8), placée en amont, et d'une cuve N+1 (à droite sur la figure 8), placée en aval, selon le mode de réalisation de la figure 4. La figure 9 montre une vue en coupe selon la ligne III- III de la figure 8. Les circuits électriques secondaires 5 et 6, disposés parallèlement aux petits côtés 2b des cuves 2 d'électrolyse, sont visibles. On remarquera également sous le caisson 7, les conducteurs électriques 14 qui s'étendent en ligne droite en direction de la cuve N+1. On remarquera également les arceaux 15 fixés sur la paroi latérale 7b du caisson 7 de la cuve N et entre lesquels s'étendent les conducteurs électriques 14. Les sorties cathodiques 12 peuvent être alignées selon un axe parallèle aux grands côtés 2a de la cuve 2 d'électrolyse, comme cela est visible en pointillés sur la figure 8.
La figure 10 illustre de façon schématique un autre mode particulier de réalisation d'une aluminerie 1 selon la présente invention. Les figures 11 et 12 montrent une vue en coupe respectivement selon les lignes IV-IV et V-V de la figure 10. Dans ce mode de réalisation, les cuves 2 d'électrolyse présentent des premières sorties cathodiques 12 traversant le fond 7b du caisson 7, tandis que des deuxièmes sorties cathodiques 12, situées à l'aval des premières sorties cathodiques 12, traversent la paroi latérale 7a aval du caisson 7. Les cuves 2 d'électrolyse de l'aluminerie 1 selon ce deuxième mode de réalisation présentent ainsi des sorties cathodiques 12 « mixtes », car traversant le fond 7b et la paroi latérale 7a. Λ
12
Cette disposition permet de faire davantage d'économies de matière, en raison de la diminution de la longueur, donc de la masse, des conducteurs électriques 14.
Avantageusement, les deuxièmes sorties cathodiques 12 traversant la paroi latérale 7a peuvent comporter un élément en un matériau meilleur conducteur électrique que l'acier, notamment en cuivre, sous la forme par exemple d'une plaque 16 ou d'un insert. La plaque 16 en cuivre disposée sur une barre en acier permet, par sa conductivité électrique élevée, de rééquilibrer les tensions au niveau des premières sorties cathodiques 12, traversant le fond 7b, et les deuxièmes sorties cathodiques 12, traversant la paroi latérale 7a, et de limiter ainsi les courants électriques horizontaux dans la nappe d'aluminium.
La figure 13 montre de façon schématique le dessus d'une cuve N, placée en amont (celle de gauche sur la figure 13), et d'une cuve N+1 , placée en aval (celle de droite sur la figure 13), d'une aluminerie 1 selon le mode de réalisation présenté à la figure 10. La figure 14 est une vue en coupe selon la ligne VI-VI de la figure 13. Comme dans le mode de réalisation présenté à la figure 4, les conducteurs électriques 14 s'étendent entre les arceaux 15. De plus, ils s'étendent de manière rectiligne et sont parcourus lors du fonctionnement des cuves 2 d'électrolyse N, N+1 par le courant d'électrolyse uniquement en direction de la cuve N+1 située en aval de la cuve N, depuis les sorties cathodiques 12 traversant le fond 7b du caisson de la cuve N, afin de permettre l'acheminement du courant d'électrolyse ^ des sorties cathodiques 12 de la cuve N vers l'anode 9 de la cuve N+1.
Comme dans le mode de réalisation présenté à la figure 4, les circuits électriques secondaires 5 et 6 sont parallèles à l'axe d'alignement des cuves 2.
L'aluminerie 1 peut aussi comprendre avantageusement des moyens de court- circuitage de chaque cuve 2. Ces moyens de court-circuitage peuvent comprendre des conducteurs électriques 17 de court-circuitage, visibles sur les figures 4, 8, 10 et 13. Les conducteurs électriques 17 de court-circuitage sont disposés entre deux cuves 2 d'électrolyse successives. Sur les figures 4, 8, 10 et 13, les conducteurs électriques 17 sont placés au contact des conducteurs électriques 14 reliés aux sorties cathodiques 12 traversant le fond 7b du caisson 7 de la cuve N+1 , et à distance des conducteurs électriques 14 reliés aux sorties cathodiques 12 de la cuve N, de telle manière qu'un court espace sépare les conducteurs électriques 17 de court-circuitage des conducteurs électriques 14 reliés aux sorties cathodiques 12 de la cuve N, comme cela est notamment visible sur la figure 10. Les conducteurs électriques 17 de court-circuitage sont destinés à court-circuiter une cuve N+1 , par exemple pour enlever cette dernière pour des opérations de maintenance. La distance entre les conducteurs électriques 17 de court-circuitage et les conducteurs électriques 14 reliés aux sorties cathodiques 12 de la cuve N est alors comblée par une cale en un élément conducteur (non représenté) de manière à conduire le courant d'électrolyse h de la cuve N à la cuve N+2 via cette cale, les conducteurs électriques 17 de court-circuitage et les conducteurs électriques 14 normalement disposés sous la cuve N+1 (c'est-à-dire les conducteurs électriques 14 reliés aux sorties cathodiques 12 traversant le fond 7b du caisson 7 de la cuve N+1 lorsque celle-ci est en place).
Il est également possible de prévoir des conducteurs électriques 17 de court- circuitage placés au contact des conducteurs électriques 14 reliés aux sorties cathodiques 12 de la cuve N et à distance des conducteurs électriques 14 reliés aux sorties cathodiques 12 de la cuve N+1 traversant le fond 7a du caisson 7. Les conducteurs électriques 17 de court-circuitage peuvent être en aluminium. Etant donné qu'ils ne sont parcourus qu'occasionnellement lors de court-circuitage par le courant d'électrolyse (pour des opérations de maintenance d'une cuve 2, soit à intervalles de plusieurs années), ils peuvent être dimensionnés pour travailler à la plus haute densité de courant admissible, ce qui permet de limiter leur masse. Enfin, il est à noter que, de manière avantageuse, les conducteurs électriques formant les circuits électriques secondaires 5 et/ou 6 peuvent être en matériau supraconducteur.
Ces matériaux supraconducteurs peuvent par exemple comporter du BiSrCaCuO, du YaBaCuO, des matériaux connus des demandes de brevet WO200801 1 184, US20090247412 ou encore d'autres matériaux connus pour leurs propriétés supraconductrices.
Les matériaux supraconducteurs sont utilisés pour transporter du courant avec peu ou pas de perte par génération de chaleur par effet Joule, car leur résistivité est nulle lorsqu'ils sont maintenus en-dessous de leur température critique. A titre d'exemple, un câble supraconducteur comprend une âme centrale en cuivre ou en aluminium, des rubans ou des fibres en matériau supraconducteur, et une enveloppe cryogénique. L'enveloppe cryogénique peut être formée par une gaine contenant un fluide de refroidissement, par exemple de l'azote liquide. Le fluide de refroidissement permet de maintenir la température des matériaux supraconducteurs à _ .
14 une température inférieure à leur température critique, par exemple inférieure à 100 K (Kelvin), ou comprise entre 4 K et 80 K.
L'utilisation de conducteurs électriques en matériau supraconducteur pour former les circuits électriques secondaires 5 et 6 est particulièrement intéressante du fait de leur longueur, de l'ordre de deux kilomètres. L'utilisation de conducteurs électriques en matériau supraconducteur nécessite une tension moindre par rapport à celle nécessitée par des conducteurs électriques en aluminium ou en cuivre. Ainsi, il est possible de diminuer la tension de 30 V à 1 V. Cela représente une réduction de la consommation d'énergie de l'ordre de 75 % à 99 % par rapport à des conducteurs électriques en aluminium. De plus, le coût des sous-stations d'alimentation 20 et 21 , respectivement du circuit électrique secondaire 5 et du circuit électrique secondaire 6, est réduit en conséquence.
Les conducteurs électriques des circuits électriques secondaires 5 et 6 peuvent longer avantageusement au moins deux fois une file F de cuves 2 d'électrolyse. Le faible encombrement des conducteurs électriques en matériau supraconducteur par rapport à des conducteurs électriques en aluminium ou en cuivre (section jusqu'à 150 fois plus faible que la section d'un conducteur en cuivre pour une intensité égale, et davantage encore par rapport à un conducteur en aluminium) facilite en effet la réalisation de plusieurs tours en série dans les boucles formées par les circuits électriques secondaires 5 et 6.
De plus, il est possible de contenir le conducteur électrique d'un circuit à l'intérieur d'une unique gaine de refroidissement quelque soit le nombre de tours réalisés par ce même conducteur. A un endroit donné, la gaine peut donc contenir plusieurs passages du même conducteur électrique en matériau supraconducteur. Le fait que la boucle formée par les circuits électriques secondaires 5 et 6 comprennent plusieurs tours en série permet de diviser (autant de fois que le nombre de tours réalisés) l'intensité du courant électrique l2, l3 traversant respectivement le circuit électrique secondaire 5 et le circuit électrique secondaire 6. La réduction de la valeur de cette intensité permet de diminuer les pertes d'énergie par effet Joule au niveau des jonctions entre les conducteurs électriques en matériau supraconducteur et les pôles des sous-stations d'alimentation. La diminution de l'intensité globale avec des conducteurs électriques en matériau supraconducteur permet de diminuer la taille des sous-stations d'alimentation 20 et 21 . Par exemple, la sous-station d'alimentation 20 ou 21 du circuit électrique secondaire 5 ou du circuit électrique secondaire 6 comprenant un conducteur _
15
électrique en matériau supraconducteur peut délivrer un courant d'intensité de l'ordre de 5 kA à 40 kA. Cela permet ainsi d'utiliser des équipements couramment vendus dans le commerce et donc peu onéreux.
Il est à noter que les conducteurs électriques en matériau supraconducteur peuvent être disposés sous les cuves 2 d'électrolyse.
Ainsi, l'aluminerie 1 selon l'invention présente un ensemble de caractéristiques dont la combinaison concourt par un effet de synergie à la réduction des coûts de conception, fabrication et d'exploitation de cette aluminerie 1 , et l'augmentation de son rendement.
Bien entendu, l'invention n'est nullement limitée aux modes de réalisation décrits ci- dessus, ces modes de réalisation n'ayant été donnés qu'à titre d'exemples. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par la substitution d'équivalents techniques, sans pour autant sortir du domaine de protection de l'invention.

Claims

REVENDICATIONS
1. Aluminerie (1 ) comprenant :
(i) une série de cuves (2) d'électrolyse, destinées à la production d'aluminium selon le procédé de Hall-Héroult, chaque cuve (2) d'électrolyse comprenant au moins une anode (9), une cathode (8) et un caisson (7) muni d'une paroi latérale (7a) et d'un fond (7b), chaque cathode (8) comprenant au moins une sortie cathodique (12),
(ii) un circuit électrique principal (4) parcouru par un courant d'électrolyse (ΙΊ), reliant électriquement les cuves (2) d'électrolyse les unes aux autres, le courant d'électrolyse ( ) parcourant en premier lieu une cuve (2) d'électrolyse N, placée à l'amont, et en deuxième lieu une cuve (2) d'électrolyse N+1 , placée à l'aval, ledit circuit électrique principal (4) comprenant un conducteur électrique (14) relié à chaque sortie cathodique (12) de la cuve (2) d'électrolyse N, le conducteur électrique (14) étant également relié à la au moins une anode (9) de la cuve (2) d'électrolyse N+1 , en vue d'acheminer le courant d'électrolyse (l^ de la cuve (2) d'électrolyse N à la cuve (2) d'électrolyse N+1 , caractérisée en ce que l'aluminerie (1) comprend en outre
(iii) au moins un moyen pour stabiliser les cuves (2) d'électrolyse parmi au moins un circuit électrique secondaire (5, 6) parcouru par un courant électrique (l2, l3), permettant de compenser le champ magnétique créé par le courant d'électrolyse (h), ou l'utilisation d'une cathode à surface crénelée, et en ce que une au moins parmi la ou les sorties cathodiques (12) de la cathode (8) de la cuve (2) d'électrolyse N traverse le fond (7b) du caisson (7), chaque conducteur électrique (14) s'étendant depuis chaque sortie cathodique (12) de la cuve (2) d'électrolyse N en direction de la cuve (2) d'électrolyse N+1 est parcouru lors du fonctionnement des cuves (2) d'électrolyse N, N+1 par le courant d'électrolyse (l^ dans un sens amont-aval uniquement.
2. Aluminerie (1) selon la revendication 1 , caractérisée en ce que les cuves (2) d'électrolyse sont alignées suivant un axe, et en ce que le conducteur électrique (14) s'étend de manière sensiblement rectiligne et de manière sensiblement parallèle à l'axe d'alignement des cuves (2) d'électrolyse.
3. Aluminerie (1 ) selon la revendication 1 ou la revendication 2, caractérisée en ce que chaque cathode (8) comprend en outre au moins une sortie cathodique (12) traversant la paroi latérale (7a) aval du caisson (7).
4. Aluminerie (1) selon l'une des revendications 1 à 3, caractérisée en ce que chaque sortie cathodique aval (12) traversant la paroi latérale (7a) du caisson (7) de la cuve (2) d'électrolyse N comprend une barre métallique, plus particulièrement formée d'acier, avec un insert ou une plaque (16) en cuivre.
5. Aluminerie (1 ) selon l'une des revendications 1 à 4, caractérisée en ce que le caisson (7) de la cuve (2) d'électrolyse N comprend plusieurs arceaux (15) fixés à la paroi latérale (7a) et au fond (7b) du caisson (7), les conducteurs électriques (14) reliés à chaque sortie cathodique (12) traversant le fond (7b) du caisson (7) de la cuve (2) d'électrolyse N s'étendant entre les arceaux (15).
6. Aluminerie (1 ) selon l'une des revendications 1 à 5, caractérisée en ce que les cuves (2) d'électrolyse comprennent des moyens de court-circuitage.
7. Aluminerie (1 ) selon la revendication 6, caractérisée en ce que les moyens de court-circuitage de la cuve (2) d'électrolyse N+1 comprennent au moins un conducteur électrique ( 7) de court-circuitage placé à demeure entre la cuve (2) d'électrolyse N et la cuve (2) d'électrolyse N+1 , chaque conducteur électrique (17) de court-circuitage étant relié électriquement à un des conducteurs électriques (14) relié à une sortie cathodique (12) de la cuve (2) traversant le fond (7b) du caisson (7) de la cuve (2) d'électrolyse N+1 , et chaque conducteur électrique (17) de court-circuitage étant situé à une faible distance d'un des conducteurs électriques (14) relié à une des sorties cathodiques (12) de la cuve (2) d'électrolyse N.
8. Aluminerie (1 ) selon la revendication 6, caractérisée en ce que les moyens de court-circuitage de la cuve (2) d'électrolyse N+1 comprennent au moins un conducteur électrique (17) de court-circuitage placé à demeure entre la cuve (2) d'électrolyse N et la cuve (2) d'électrolyse N+1 , chaque conducteur électrique (17) de court-circuitage étant relié électriquement à un des conducteurs électriques (14) relié à une sortie cathodique (12) de la cuve (2) traversant le fond (7b) du caisson (7) de la cuve (2) d'électrolyse N, et chaque conducteur électrique (17) de court-circuitage étant situé à une faible distance d'un des conducteurs électriques (14) relié à une des sorties cathodiques (12) de la cuve (2) d'électrolyse N+1.
9. Aluminerie (1 ) selon l'une des revendications 1 à 8, caractérisée en ce que le au moins un circuit électrique secondaire (5, 6) comprend des conducteurs électriques longeant le côté droit et/ou le côté gauche des cuves (2) d'électrolyse d'au moins une file (F, F') de cuves (2) d'électrolyse.
10. Aluminerie (1) selon l'une des revendications 1 à 9, caractérisée en ce que le au moins un circuit électrique secondaire (5, 6) comprend des conducteurs électriques s'étendant le long d'au moins une file (F, F') de cuves (2) d'électrolyse, sous lesdites cuves (2) d'électrolyse.
11. Aluminerie (1) selon l'une des revendications 9 à 10, caractérisée en ce que les conducteurs électriques du au moins un circuit électrique secondaire (5, 6) sont en matériau supraconducteur.
12. Aluminerie (1) selon la revendication 1 1 , caractérisée en ce que le conducteur électrique du au moins un circuit électrique secondaire (5, 6) longe au moins deux fois les cuves (2) d'électrolyse de la ou des files (F, F').
PCT/FR2012/000281 2011-07-12 2012-07-10 Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves WO2013007892A2 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EA201490257A EA029022B1 (ru) 2011-07-12 2012-07-10 Установка получения алюминия электролизом, содержащая электролизеры с катодным выводом через днище кожуха и средства стабилизации электролизеров
AU2012282372A AU2012282372A1 (en) 2011-07-12 2012-07-10 Aluminum smelter including cells having a cathode outlet through the base of the casing, and a means for stabilizing the cells
EP12748725.4A EP2732074B1 (fr) 2011-07-12 2012-07-10 Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
US14/232,145 US20140138240A1 (en) 2011-07-12 2012-07-10 Aluminum smelter including cells with cathode output at the bottom of the pot shell and cell stabilizing means
CN201280034757.1A CN103649376B (zh) 2011-07-12 2012-07-10 包括在槽壳底部具有阴极输出的电解池和电解池稳定装置的铝厂
NO12748725A NO2732074T3 (fr) 2011-07-12 2012-07-10
NZ619720A NZ619720B2 (en) 2011-07-12 2012-07-10 Aluminium smelter including cells having a cathode outlet through the base of the casing, and a means for stabilizing the cells
BR112014000494A BR112014000494A2 (pt) 2011-07-12 2012-07-10 fundidor de alumínio, compreendendo cubas com saída catódica pelo fundo da caixa e dos meios de estabilização das cubas
CA2841297A CA2841297A1 (fr) 2011-07-12 2012-07-10 Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
IN885CHN2014 IN2014CN00885A (fr) 2011-07-12 2012-07-10
DKPA201370805A DK201370805A (en) 2011-07-12 2013-12-20 Aluminum smelter including cells with cathode output at the bottom of the pot shell and cell stabilizing means

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11/02199 2011-07-12
FR1102199A FR2977898A1 (fr) 2011-07-12 2011-07-12 Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves

Publications (2)

Publication Number Publication Date
WO2013007892A2 true WO2013007892A2 (fr) 2013-01-17
WO2013007892A3 WO2013007892A3 (fr) 2013-03-28

Family

ID=46717873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000281 WO2013007892A2 (fr) 2011-07-12 2012-07-10 Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves

Country Status (13)

Country Link
US (1) US20140138240A1 (fr)
EP (1) EP2732074B1 (fr)
CN (1) CN103649376B (fr)
AR (1) AR087123A1 (fr)
AU (1) AU2012282372A1 (fr)
BR (1) BR112014000494A2 (fr)
CA (1) CA2841297A1 (fr)
DK (1) DK201370805A (fr)
EA (1) EA029022B1 (fr)
FR (1) FR2977898A1 (fr)
IN (1) IN2014CN00885A (fr)
NO (1) NO2732074T3 (fr)
WO (1) WO2013007892A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009564A1 (fr) * 2013-08-09 2015-02-13 Rio Tinto Alcan Int Ltd Aluminerie comprenant un circuit electrique de compensation
US20200332427A1 (en) * 2018-03-14 2020-10-22 Norsk Hydro Asa Cathode elements for a hall-héroult cell for aluminium production and a cell of this type having such elements installed

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104797743B (zh) * 2012-11-13 2017-06-06 俄铝工程技术中心有限责任公司 用于具有惰性阳极的铝电解槽的衬垫
MY183698A (en) 2015-02-09 2021-03-08 Rio Tinto Alcan Int Ltd Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter
NZ733895A (en) * 2015-02-13 2018-09-28 Norsk Hydro As An anode for use in an electrolysis process for production of aluminium in cells of hall-heroult type, and a method for making same
GB2548830A (en) * 2016-03-29 2017-10-04 Dubai Aluminium Pjsc Cathode block with copper-aluminium insert for electrolytic cell suitable for the Hall-Héroult process
RU2678624C1 (ru) * 2017-12-29 2019-01-30 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Ошиновка модульная для серий алюминиевых электролизеров

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2469475A1 (fr) 1979-11-07 1981-05-22 Pechiney Aluminium Procede et dispositif pour la suppression des perturbations magnetiques dans les cuves d'electrolyse a tres haute intensite placees en travers
US5683559A (en) 1994-09-08 1997-11-04 Moltech Invent S.A. Cell for aluminium electrowinning employing a cathode cell bottom made of carbon blocks which have parallel channels therein
WO2008011184A2 (fr) 2006-07-21 2008-01-24 American Superconductor Corporation Conducteurs de fort courant, compacts, souples, contenant des bandes supraconductrices à haute température
US20090247412A1 (en) 2008-03-28 2009-10-01 American Superconductor Corporation Superconducting cable assembly and method of assembly

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216843B2 (fr) * 1973-10-26 1977-05-12
FR2333060A1 (fr) * 1975-11-28 1977-06-24 Pechiney Aluminium Procede et dispositif pour la compensation des champs magnetiques des files voisines de cuves d'electrolyse ignee placees en travers
FR2583069B1 (fr) * 1985-06-05 1987-07-31 Pechiney Aluminium Dispositif de connexion entre cuves d'electrolyse a tres haute intensite, pour la production d'aluminium, comportant un circuit d'alimentation et un circuit independant de correction du champ magnetique
NO164787C (no) * 1988-05-11 1990-11-14 Norsk Hydro As Anordning for kompensering av skadelig magnetisk paavirkning fra likeretterfelt og endefelt paa tverrstilte elektrolyseovner i anlegg for smelteelektrolytisk fremstilling av aluminium.
US6358393B1 (en) * 1997-05-23 2002-03-19 Moltech Invent S.A. Aluminum production cell and cathode
FR2868436B1 (fr) * 2004-04-02 2006-05-26 Aluminium Pechiney Soc Par Act Serie de cellules d'electrolyse pour la production d'aluminium comportant des moyens pour equilibrer les champs magnetiques en extremite de file
NO322258B1 (no) * 2004-09-23 2006-09-04 Norsk Hydro As En fremgangsmate for elektrisk kobling og magnetisk kompensasjon av reduksjonsceller for aluminium, og et system for dette
RU2316619C1 (ru) * 2006-04-18 2008-02-10 Общество с ограниченной ответственностью "Русская инжиниринговая компания" Устройство для компенсации магнитного поля, наведенного соседним рядом последовательно соединенных электролизеров большой мощности
NO332480B1 (no) * 2006-09-14 2012-09-24 Norsk Hydro As Elektrolysecelle samt fremgangsmate for drift av samme
EP1927679B1 (fr) * 2006-11-22 2017-01-11 Rio Tinto Alcan International Limited Cellule d'électrolyse destinée à la production d'aluminium avec un moyen pour la diminution de la chute de tension

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2469475A1 (fr) 1979-11-07 1981-05-22 Pechiney Aluminium Procede et dispositif pour la suppression des perturbations magnetiques dans les cuves d'electrolyse a tres haute intensite placees en travers
US5683559A (en) 1994-09-08 1997-11-04 Moltech Invent S.A. Cell for aluminium electrowinning employing a cathode cell bottom made of carbon blocks which have parallel channels therein
WO2008011184A2 (fr) 2006-07-21 2008-01-24 American Superconductor Corporation Conducteurs de fort courant, compacts, souples, contenant des bandes supraconductrices à haute température
US20090247412A1 (en) 2008-03-28 2009-10-01 American Superconductor Corporation Superconducting cable assembly and method of assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009564A1 (fr) * 2013-08-09 2015-02-13 Rio Tinto Alcan Int Ltd Aluminerie comprenant un circuit electrique de compensation
EP3030695A1 (fr) * 2013-08-09 2016-06-15 Rio Tinto Alcan International Limited Aluminerie comprenant un circuit électrique de compensation
EP3030695A4 (fr) * 2013-08-09 2017-03-29 Rio Tinto Alcan International Limited Aluminerie comprenant un circuit électrique de compensation
US20200332427A1 (en) * 2018-03-14 2020-10-22 Norsk Hydro Asa Cathode elements for a hall-héroult cell for aluminium production and a cell of this type having such elements installed

Also Published As

Publication number Publication date
AU2012282372A1 (en) 2014-01-30
NO2732074T3 (fr) 2018-04-28
BR112014000494A2 (pt) 2017-02-21
EP2732074A2 (fr) 2014-05-21
CN103649376B (zh) 2016-05-04
CA2841297A1 (fr) 2013-01-17
AR087123A1 (es) 2014-02-12
US20140138240A1 (en) 2014-05-22
DK201370805A (en) 2013-12-20
WO2013007892A3 (fr) 2013-03-28
FR2977898A1 (fr) 2013-01-18
EA029022B1 (ru) 2018-01-31
EA201490257A1 (ru) 2014-04-30
EP2732074B1 (fr) 2017-11-29
IN2014CN00885A (fr) 2015-04-03
CN103649376A (zh) 2014-03-19
NZ619720A (en) 2014-09-26

Similar Documents

Publication Publication Date Title
EP2732074B1 (fr) Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
CA1271725A (fr) Dispositif et methode de connexion entre cuves d'electrolyse a tres haute intensite, pour la production d'aluminium, comportant un circuit d'alimentation et un circuit independant de correction du champ magnetique
EP2732075B1 (fr) Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
CA2919050C (fr) Aluminerie comprenant un circuit electrique de compensation
CH619006A5 (fr)
EP3256623B1 (fr) Aluminerie et procédé de compensation d'un champ magnétique créé par la circulation du courant d'électrolyse de cette aluminerie
CA1100906A (fr) Procede pour ameliorer l'alimentation en courant de cuves d'electrolyse alignees en long
OA16842A (fr) Aluminerie comprenant des cuves à sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
EP2616571B1 (fr) Dispositif de connexion électrique entre deux cellules successives d'une série de cellules pour la production d'aluminium
CA3000482C (fr) Serie de cellules d'electrolyse pour la production d'aluminium comportant des moyens pour equilibrer les champs magnetiques en extremite de file
OA17793A (fr) Aluminerie comprenant un circuit électrique de compensation
FR2977899A1 (fr) Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
OA18402A (fr) Aluminerie et procédé de compensation d'un champ magnétique crée par la circulation du courant d'électrolyse de cette aluminerie.
EP1155167A1 (fr) Arrangement de cuves d'electrolyse pour la production d'aluminium
OA16843A (fr) Aluminerie comprenant des conducteurs électriques en matériau supraconducteur
WO2016128826A1 (fr) Cuve d'electrolyse
FR2505368A1 (fr) Dispositif pour la production d'aluminium par electrolyse ignee sous tres haute densite
NZ619720B2 (en) Aluminium smelter including cells having a cathode outlet through the base of the casing, and a means for stabilizing the cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280034757.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12748725

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2012748725

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012748725

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2841297

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14232145

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012282372

Country of ref document: AU

Date of ref document: 20120710

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201490257

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014000494

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014000494

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140109