EP2732075B1 - Aluminerie comprenant des conducteurs electriques en materiau supraconducteur - Google Patents

Aluminerie comprenant des conducteurs electriques en materiau supraconducteur Download PDF

Info

Publication number
EP2732075B1
EP2732075B1 EP12748726.2A EP12748726A EP2732075B1 EP 2732075 B1 EP2732075 B1 EP 2732075B1 EP 12748726 A EP12748726 A EP 12748726A EP 2732075 B1 EP2732075 B1 EP 2732075B1
Authority
EP
European Patent Office
Prior art keywords
superconducting material
aluminum
electrical
electrical circuit
aluminum smelter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12748726.2A
Other languages
German (de)
English (en)
Other versions
EP2732075A2 (fr
Inventor
Christian Duval
Steeve RENAUDIER
Benoit BARDET
Olivier MARTIN
Stéphane WAN TANG KUAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Rio Tinto Alcan International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1102199A external-priority patent/FR2977898A1/fr
Priority claimed from FR1102198A external-priority patent/FR2977899A1/fr
Application filed by Rio Tinto Alcan International Ltd filed Critical Rio Tinto Alcan International Ltd
Priority to SI201231308T priority Critical patent/SI2732075T1/en
Publication of EP2732075A2 publication Critical patent/EP2732075A2/fr
Application granted granted Critical
Publication of EP2732075B1 publication Critical patent/EP2732075B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells

Definitions

  • the present invention relates to an aluminum smelter, and more particularly to the electrical conductor system of an aluminum smelter.
  • an electrolytic cell composed in particular of a steel box, a refractory lining, and a cathode made of carbon material, connected to conductors used to carry the electrolysis current.
  • the electrolytic cell also contains an electrolytic bath consisting in particular of cryolite in which is dissolved alumina.
  • the Hall-Héroult process consists in partially immersing a carbon block constituting the anode in this electrolytic bath, the anode being consumed as and when the reaction progresses. At the bottom of the electrolytic cell is formed a sheet of liquid aluminum.
  • aluminum production plants include several hundred electrolysis tanks. These electrolysis tanks are traversed by a high electrolysis current of the order of several hundreds of thousands of amperes.
  • Some problems are common in an aluminum smelter; they consist in particular in the reduction of the costs in terms of energy consumed, of the material used to make the electrical conductors and the reduction of the bulk in order to increase the production on the same surface.
  • FIG. 1 schematically illustrates, seen from above, an electrolytic tank 100 in which the magnetic field is self-compensating thanks to the arrangement of the conductors 101 connecting this tank 100 to the next tank 102 placed downstream.
  • the conductors 101 are eccentric with respect to the tank 100 which they bypass.
  • An example of a magnetically self-compensated tank is known in particular from the patent document FR2469475 .
  • Another solution for decreasing the vertical component of the magnetic field is to use a secondary electrical circuit formed by one or more metallic electrical conductors.
  • This secondary electrical circuit conventionally follows the axis or axes of alignment of the electrolysis cells of the aluminum smelter. It is traversed by a current whose intensity is equal to a certain percentage of the intensity of the electrolysis current, and thereby generates a magnetic field compensating for the effects of the magnetic field created by the electrolysis current.
  • the present invention aims to remedy all or part of the disadvantages mentioned above and to provide a solution to the problems encountered in an aluminum production plant by proposing an aluminum smelter whose manufacturing and operating costs are significantly reduced and with less space.
  • At least one electrical conductor of superconducting material makes it possible in particular to reduce the overall energy consumption of the aluminum smelter, and therefore the operating costs of the smelter.
  • electrical conductors of superconducting material allow better management of the available space inside the aluminum smelter. Because of their lower mass than equivalent conductors made of aluminum, copper or steel, electrical conductors of superconducting material require less important support structures and therefore less expensive.
  • an electrical conductor of superconducting material is particularly advantageous when it has a significant length.
  • the loop formed by the secondary electrical circuit runs along the row or rows of tanks, and includes several rounds in series. This makes it possible to divide by the number of turns the value of the intensity of the current flowing through the electrical conductor in superconductive material, and consequently to reduce the cost of the power supply station intended to deliver this current to the secondary electrical circuit and the cost of the junctions between the poles of the power station and the electrical conductor of superconducting material.
  • the electrical conductor of superconducting material of the secondary electrical circuit comprises a single cryogenic envelope, inside which pass side by side the turns made by said electrical conductor of superconducting material.
  • a single cryogenic envelope inside which pass side by side the turns made by said electrical conductor of superconducting material.
  • the electrical conductor of superconducting material of the secondary electrical circuit is flexible and has at least one curved portion.
  • the secondary electrical circuit may comprise one or more non-rectilinear portions (s).
  • the flexibility of the electrical conductor in superconducting material makes it possible to avoid obstacles (thus to adapt to the spatial constraints of the aluminum smelter), but also to refine the compensation of the magnetic field locally.
  • the electrical conductor of superconducting material of the secondary electrical circuit is placed, in part, inside a magnetic shield enclosure.
  • This characteristic has the advantage of preventing the electrical conductor of superconducting material from generating a surrounding magnetic field.
  • this makes it possible to create passage zones for vehicles or vehicles the operation of which would be disturbed by the intensity of the magnetic field at these passage zones in the absence of a magnetic shield. It also avoids the use of expensive gear with shielding protecting them from strong magnetic fields.
  • the magnetic shield enclosure is located at at least one end of the electrolysis cell line (s).
  • the secondary electric circuit comprises two ends, each end of said electric circuit. secondary being connected to an electrical pole of a feed station separate from the feed station of the main circuit.
  • the electrical conductor made of superconducting material of the secondary electrical circuit runs along the electrolysis cell line or queues a predetermined number of times in order to allow the use of a feed station of the secondary electrical circuit delivering a current of intensity. between 5 kA and 40 kA.
  • the electrical conductor superconducting material thus performs as many rounds in series as necessary to allow the use of a power station that can be easily found in the trade and economically interesting.
  • At least a portion of the electrical conductor of superconducting material of the secondary electrical circuit is disposed in at least one electrolytic cell of the or queues.
  • At least a portion of the electrical conductor made of superconducting material of the secondary electrical circuit runs along the right side and / or the left side of the electrolytic cells of the line or queues.
  • each electrical conductor of superconducting material is formed by a cable comprising a central core of copper or aluminum, at least one fiber of superconducting material and a cryogenic envelope.
  • the cryogenic envelope is traversed by a cooling fluid.
  • the cooling fluid is liquid nitrogen and / or helium.
  • the figure 2 shows a classic example of electrolysis tank 2.
  • the electrolysis tank 2 comprises in particular a metal box 3, for example made of steel.
  • the metal casing 3 is lined internally with refractory and / or insulating materials, for example bricks.
  • the electrolysis cell 2 also comprises a cathode 6 made of carbonaceous material and a plurality of anodes 7, intended to be consumed as the electrolysis reaction takes place in an electrolytic bath including cryolite and electrolysis. alumina.
  • a blanket of alumina and milled bath generally covers the electrolytic bath and at least partially the anodes 7.
  • a sheet of liquid aluminum is formed.
  • the cathode 6 is electrically connected to cathode outlets 9 in the form of metal bars passing through the caisson 3, the cathode outlets 9 being themselves connected to electrical conductors 11 of tank to tank.
  • the electric tank 11 conductors allow the flow of the electrolysis current I1 from one electrolysis tank 2 to another.
  • the electrolysis current I1 passes through the conductive elements of each electrolysis cell 2: firstly an anode 7, then the electrolytic bath 8, the liquid aluminum ply 10, the cathode 6 and finally the electric tank conductors 11. with a tank connected to the cathode outlets 9, for then feeding the electrolysis current I1 to an anode 7 of the following electrolysis tank 2.
  • the electrolysis tanks 2 of an aluminum plant 1 are conventionally arranged and electrically connected in series.
  • a series may comprise one or more rows F of electrolysis tanks 2.
  • the series comprises several files F, these are generally rectilinear and parallel to each other, and are preferably even in number.
  • the aluminum smelter 1 comprises a main electrical circuit 15 traversed by an electrolysis current I1.
  • the intensity of the electrolysis current I1 can reach values of the order of several hundreds of thousands of amperes, for example of the order of 300 kA to 600 kA.
  • a feed station 12 feeds the series of electrolysis tanks 2 electrolysis current I1.
  • the ends of the series of electrolysis tanks 2 are each connected to an electrical pole of the supply station 12.
  • Electrical connecting conductors 13 connect the electrical poles of the feed station 12 to the ends of the series.
  • the rows F of a series are connected electrically in series.
  • One or more electrical connecting conductors 14 allow the electrolysis current I1 of the last electrolytic cell 2 of a line F to be conveyed to the first electrolysis cell 2 of the following line F.
  • the main electrical circuit 15 consists of the electrical connecting conductors 13 connecting the ends of the series of electrolysis tanks 2 to the supply station 12, electrical connecting conductors 14 connecting the rows F of the electrolysis tanks 2. to each other, electrical conductors 11 of the bottom of the tank connecting two electrolytic cells 2 of the same file F, and conductive elements of each electrolysis tank 2.
  • 50 to 500 electrolysis cells 2 are connected in series and extend over two rows F of more than 1 km in length each.
  • the aluminum smelter 1 also comprises one or more secondary electrical circuits 16, 17, visible for example on the figure 3 .
  • These secondary electrical circuits 16, 17 typically follow the lines F of electrolysis tanks 2. They make it possible to compensate for the magnetic field generated by the high value of the intensity of the electrolysis current I1, causing the instability of the electrolytic bath 8 and thus affecting the efficiency of the electrolysis tanks 2.
  • Each secondary electrical circuit 16, 17 is traversed respectively by a current I2, I3, delivered by a feed station 18.
  • the feed station 18 of each secondary circuit 16, 17 is distinct from the feed station 12 of the main circuit 15.
  • the aluminum smelter 1 comprises at least one secondary electrical circuit 16, 17 provided with an electrical conductor of superconducting material.
  • These superconducting materials may for example comprise BiSrCaCuO, YaBaCuO, MgB2, materials known from patent applications. WO2008011184 , US20090247412 or other materials known for their superconducting properties.
  • Superconducting materials are used to carry current with little or no Joule heat generation loss because their resistivity is zero when held below their critical temperature. Due to this absence of energy loss, it is possible to dedicate a maximum of the energy received by the aluminum smelter (for example 600kA and 2kV) to the main electrical circuit 15 which produces aluminum, and in particular increase the number of vats 2.
  • a superconducting cable used to implement the present invention comprises a central core made of copper or aluminum, ribbons or fibers of superconducting material, and a cryogenic envelope.
  • the cryogenic envelope may be formed by a sheath containing a cooling fluid, for example liquid nitrogen.
  • the cooling fluid makes it possible to maintain the temperature of the superconducting materials at a temperature below their critical temperature, for example less than 100 K (Kelvin), or between 4 K and 80 K.
  • the electrical conductors of superconducting material are particularly advantageous when they have a certain length, and more particularly a length equal to or greater than 10 m. .
  • FIGS. 3, 4 and 5 illustrate, by way of non-exhaustive examples, various possible embodiments of an aluminum smelter 1.
  • the electrical conductors of superconducting material are represented by dashed lines in the various figures.
  • FIG. 3 shows an aluminum smelter 1 comprising two secondary electrical circuits 16 and 17, respectively traversed by currents of intensity I2 and I3 and each supplied by a feed station 18.
  • the currents I2 and I3 travel through the respective secondary electrical circuits 16 and 17 in the same direction as the electrolysis current I1.
  • the secondary electrical circuits 16 and 17 compensate for the magnetic field generated by the conductors 11. electric tank to tank.
  • the intensity of each of the electric currents I2, I3 is important, for example between 20% and 100% of the intensity of the electrolysis current I1 and preferably from 40% to 70%.
  • the compensation of the magnetic field of the neighboring queue F can be obtained with the example of the figure 4 .
  • the aluminum smelter 1 illustrated in figure 4 comprises a secondary electrical circuit 17 forming an inner loop, traversed by an electric current I3.
  • the use of electrical conductors of superconducting material to form the secondary circuit or circuits 16, 17 is interesting because of the length, of the order of two kilometers, of the secondary electrical circuits 16, 17.
  • the use of electrical conductors in superconducting material requires less voltage compared to that required by electrical conductors made of aluminum or copper.
  • the cost of the feed station 18 of the secondary electrical circuit or circuits is reduced accordingly.
  • the lighting 1 comprises a secondary electrical circuit 16, 17 provided with an electrical conductor of superconducting material and running substantially in the same place. advantageously at least twice the same file F electrolysis tanks 2, as is particularly visible on the Figures 6 and 7 .
  • the use of one or more turns in series to form the secondary electrical circuits 16, 17 of superconducting material has the advantage of reducing the magnetic fields in the path between the feed station 18 and the first and the second. last tank 2 electrolysis because it has a low intensity on this path (a single passage of the electrical conductor).
  • the small size of the electrical conductors of superconducting material relative to electrical conductors made of aluminum or copper facilitates several series turns in the loops formed by the secondary electrical circuits 16, 17.
  • the aluminum smelter 1 according to the embodiment illustrated in FIG. figure 6 comprises a secondary electrical circuit 16 whose electrical conductors run in series twice the rows F of the series.
  • the aluminum smelter 1 comprises a secondary electrical circuit 16 running along both the left and the right side of the electrolysis vessels 2 of the series (left side and right side being defined with respect to an observer placed at the level of the electric circuit main 15 and directing his eyes in the direction of global circulation of the electrolysis current I1).
  • the electrical conductors (made of superconducting material) of the secondary electrical circuit 16 of the aluminum smelter 1 shown in FIG. figure 7 perform several rounds in series, including two laps along the left sides of tanks 2 of the series and three laps along the right sides.
  • the number of turns could be twenty and thirty respectively.
  • the difference between the number of turns to be made on each side is determined according to the distance between the queues in order to obtain an optimal magnetic balance.
  • This cryogenic envelope may comprise a thermally insulated sheath in which a cooling fluid circulates. At a given location, the cryogenic envelope can therefore contain side by side several passages of the same electrical conductor of superconducting material.
  • the aluminum smelter 1 may thus comprise one or more secondary electrical circuits 16, 17 comprising an electrical conductor of superconducting material having at least one curved portion. This makes it possible to circumvent the obstacles 19 present inside the aluminum smelter 1, for example a pillar, as is visible on the figure 10 .
  • This also makes it possible to locally adjust the compensation of the magnetic field in the smelter 1 by locally adjusting the position of the electrical conductor in superconducting material of the secondary electrical circuit or circuits 16, 17, as allowed by the curved portion 16a of the secondary electrical circuit 16 of the aluminum smelter 1 visible on the figure 10 .
  • This flexibility makes it possible to move the electrical conductor in superconducting material relative to its initial position, to correct the magnetic field by adapting to the evolution of the aluminum smelter 1 (for example the increase in the intensity of the current of I1 electrolysis, or to use the results of the most recent magnetic correction calculations that are enabled by the new computer powers and general knowledge on the subject).
  • the electrical conductors of superconducting material or secondary electrical circuits 16, 17 may be arranged under the electrolysis tanks 2. In particular, they can be buried. This arrangement is made possible by the small size of the electrical conductors of material superconducting on the one hand, and by the fact that they do not heat on the other hand. This provision would be difficult to achieve with electrical conductors made of aluminum or copper, because their size is greater at equal intensity, and because they heat and therefore need to be cooled (commonly in contact with the air and / or with specific cooling means).
  • the figure 11 shows, for the same implantation of aluminum smelter 1, the possible locations of secondary electrical circuits 16, 17 with electrical conductors of superconducting material and secondary electrical circuits 16 ', 17' using aluminum electrical conductors.
  • the secondary electrical circuits 16 ', 17' are placed on either side of an electrolysis cell 2.
  • the secondary electrical circuits 16 ', 17' prevent access to the electrolytic cells 2, for example for maintenance operations.
  • they can not be placed under the electrolysis tanks 2, such as the secondary electrical circuits 16, 17 with electrical conductors of superconducting material, because they have a larger footprint and need to be cooled.
  • the secondary electrical circuits 16, 17 using electrical conductors of superconducting material may, however, be placed under the electrolysis tanks 2. Access to the electrolysis tanks 2 is thus not limited.
  • the electrical conductors of superconducting material may be contained partly inside a magnetic shield enclosure 20.
  • This enclosure 20 may be a metal tube, for example steel. It can significantly reduce the magnetic field outside of this magnetic shield. This thus makes it possible to create, in the places where this chamber 20 has been placed, passage zones, in particular of vehicles the operation of which would have been disturbed by the magnetic field emanating from the electrical conductors made of superconducting material. This makes it possible to reduce the cost of these vehicles (which must otherwise be equipped with protection).
  • This enclosure 20 may advantageously be placed around the electrical conductors of superconducting material located at the end of the line F, as illustrated on FIG. figure 6 .
  • the magnetic shield enclosure 20 may also be formed of superconducting material maintained below its critical temperature.
  • this enclosure of superconducting material forming a magnetic shield can be disposed as close as possible to the electrical conductors of superconducting material, inside the cryogenic envelope. The mass of superconducting material of the enclosure is minimized and the superconducting material of the enclosure is kept below its critical temperature without the need for another specific cooling system.
  • a protective enclosure 20 is not possible with conventional electrical conductors of the prior art made of aluminum, or even copper. These aluminum electrical conductors actually have a section of significant dimensions, of the order of 1 m by 1 m, against 25 cm in diameter for an electrical conductor of superconducting material. Above all, aluminum electrical conductors heat up in operation. The use of such a magnetic shield enclosure 20 would not allow a proper evacuation of the heat generated.
  • the electrical conductors of superconducting material have a mass per meter which can be twenty times lower than that of an aluminum electrical conductor for an equivalent intensity.
  • the cost of the supports of the electrical conductors in superconducting material is therefore lower and their installation is facilitated.
  • the main electrical circuit 15 of the aluminum smelter 1 may also comprise one or more electrical conductors of superconducting material.
  • the electrical connecting conductors 14 electrically connecting the rows F of the series to each other may be of superconducting material, as shown in FIG. figure 8 .
  • the electrical connecting conductors 13, connecting the ends of the series of electrolysis cells 2 to the poles of the feed station 12 of the main circuit 15, may also be of superconducting material, as shown in FIG. figure 9 .
  • the electrical connecting conductors 14 connecting two rows F measure from 30m to 150m depending on whether the two lines F they connect are in the same building or in two separate buildings for reasons of magnetic interaction between these two lines.
  • the electrical connecting leads 13 connecting the ends of the series to the poles of the power station 12 generally measure from 20m to 1 km depending on the positioning of this station 12 supply. Because of these lengths, it will be readily understood that the use of electrical conductors of superconducting material at these locations can achieve energy savings.
  • the use of electrical conductors of superconducting material in an aluminum smelter 1 may be advantageous for sufficiently high conductor lengths.
  • the use of conductive material electrical conductors is particularly advantageous for secondary electrical circuits 16, 17 intended to reduce the effect of the tank-to-cell magnetic field by means of loops of the type described in the patent document.
  • EP0204647 when the intensity of the current flowing in the main electrical circuit 15 is particularly high, greater than 350 kA, and when the sum of the intensities flowing in the secondary electrical circuit, in the same direction as the current flowing in the main circuit, is between 20% and 100% of the main circuit current, and preferably 40% to 70%.
  • a main electrical circuit 15 comprising both electrical conductors 14 of one-to-one file in superconducting material and electrical connecting conductors 13 connecting the ends of a series to the poles of the station 12.
  • supply of superconducting material also, and one or more secondary electrical circuits 16, 17 also comprising electrical conductors of superconducting material performing several turns in series.
  • a single secondary electrical circuit 16 comprising electrical conductors made of superconducting material may also be provided, with conductors performing several turns in series, between the rows F of tanks 2 or outside thereof.
  • the invention is not limited to the embodiments described above, these embodiments having been given only as examples. Modifications are possible, particularly from the point of view of the constitution of the various elements or by the substitution of technical equivalents, without departing from the scope of protection of the invention defined by the claims.
  • the invention can be extended to aluminum smelters with electrolysis with inert anodes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

  • La présente invention concerne une aluminerie, et plus particulièrement le système de conducteur électrique d'une aluminerie.
  • Il est connu de produire l'aluminium industriellement à partir d'alumine par électrolyse selon le procédé de Hall-Héroult. A cet effet, on prévoit une cuve d'électrolyse composée notamment d'un caisson en acier, d'un revêtement intérieur réfractaire, et d'une cathode en matériau carboné, reliée à des conducteurs servant à l'acheminement du courant d'électrolyse. La cuve d'électrolyse contient également un bain électrolytique constitué notamment de cryolithe dans lequel est dissout de l'alumine. Le procédé de Hall-Héroult consiste à plonger partiellement un bloc carboné constituant l'anode dans ce bain électrolytique, l'anode étant consommée au fur et à mesure de l'état d'avancement de la réaction. Au fond de la cuve d'électrolyse se forme une nappe d'aluminium liquide.
  • Généralement, les usines de production d'aluminium comprennent plusieurs centaines de cuves d'électrolyse. Ces cuves d'électrolyse sont parcourues par un courant d'électrolyse élevé de l'ordre de plusieurs centaines de milliers d'ampères.
  • Certaines problématiques sont courantes dans une aluminerie ; elles consistent notamment en la réduction des coûts en matière d'énergie consommée, de matériau utilisé pour réaliser les conducteurs électriques et en la diminution de l'encombrement afin d'augmenter la production sur une même surface.
  • Une autre problématique résulte de l'existence d'un champ magnétique important généré par le courant d'électrolyse. Ce champ magnétique perturbe le fonctionnement des cuves dont il diminue le rendement. La composante verticale de ce champ magnétique, en particulier, provoque l'instabilité de la nappe d'aluminium liquide.
  • Il est connu de diminuer la composante verticale du champ magnétique en compensant le champ magnétique à l'échelle d'une cuve d'électrolyse. Cette solution est mise en oeuvre grâce à une disposition particulière des conducteurs acheminant le courant d'électrolyse d'une cuve N à une cuve N+1. Ces conducteurs, généralement des barres en aluminium, contournent les extrémités de la cuve N. La figure 1 illustre schématiquement, vue de dessus, une cuve 100 d'électrolyse dans laquelle le champ magnétique est auto-compensé grâce à la disposition des conducteurs 101 reliant cette cuve 100 à la cuve suivante 102 placée en aval. A cet effet, on remarque que les conducteurs 101 sont excentrés par rapport à la cuve 100 qu'ils contournent. Un exemple de cuve auto-compensée magnétiquement est connu notamment du document de brevet FR2469475 .
  • Cette solution impose beaucoup de contraintes de conception en raison de l'encombrement important dû à la disposition particulière des conducteurs. De plus, la longueur importante des conducteurs, généralement en aluminium, pour la mise en oeuvre de cette solution implique des coûts en matériau élevés et d'importantes pertes d'énergie par effet résistif des conducteurs.
  • Une autre solution pour diminuer la composante verticale du champ magnétique consiste à utiliser un circuit électrique secondaire formé par un ou plusieurs conducteurs électriques métalliques. Ce circuit électrique secondaire longe classiquement l'axe ou les axes d'alignement des cuves d'électrolyse de l'aluminerie. Il est parcouru par un courant dont l'intensité est égale à un certain pourcentage de l'intensité du courant d'électrolyse, et génère de ce fait un champ magnétique compensant les effets du champ magnétique créé par le courant d'électrolyse.
  • Il est notamment connu du document de brevet FR2425482 l'utilisation d'un circuit secondaire pour réduire l'effet du champ magnétique créé par la file de cuves voisine au moyen d'une boucle intérieure et/ou extérieure transportant un courant d'intensité de l'ordre de 5% à 20% de l'intensité du courant d'électrolyse. Il est par ailleurs connu de l'article « Application of High-Tc Superconductors in Aluminum Electrolysis Plants » de Magne Runde dans IEEE Transactions on applied superconductivity, vol 5, N°2, June 1995 que l'emploi de matériau supraconducteur pour réaliser un tel circuit secondaire n'est pas viable économiquement.
  • Il est également connu du document de brevet EP0204647 l'utilisation d'un circuit secondaire pour réduire l'effet du champ magnétique généré par les conducteurs de cuve à cuve au moyen de boucles transportant un courant d'intensité de l'ordre de 20% à 70% de l'intensité du courant d'électrolyse et dans le même sens que le courant d'électrolyse.
  • Néanmoins, cette solution est coûteuse dans la mesure où elle nécessite une grande quantité de matériau, classiquement de l'aluminium, afin de réaliser ce ou ces circuits électriques secondaires. Elle est également coûteuse en énergie puisqu'il est nécessaire d'alimenter en courant le ou les circuit(s) électrique(s) secondaire(s). Enfin, elle nécessite l'installation de stations d'alimentation (ou générateurs) de puissance et de dimensions importantes.
  • Aussi la présente invention a pour but de remédier à tout ou partie des inconvénients cités ci-dessus et d'apporter une solution aux problématiques rencontrées dans une usine de production d'aluminium en proposant une aluminerie dont les coûts de fabrication et d'exploitation sont sensiblement réduits et offrant un encombrement moindre.
  • A cet effet, la présente invention a pour objet une aluminerie comprenant :
    1. (i) une série de cuves d'électrolyse, destinées à la production d'aluminium, formant une ou plusieurs files,
    2. (ii) une station d'alimentation destinée à alimenter la série de cuves d'électrolyse en courant d'électrolyse I1,
    ladite station d'alimentation électrique comprenant deux pôles,
    • (iii) un circuit électrique principal, destiné à être parcouru par le courant d'électrolyse I1, présentant deux extrémités reliées chacune à l'un des pôles de la station d'alimentation,
    • (iv) au moins un circuit électrique secondaire comprenant un conducteur électrique en matériau supraconducteur, destiné à être parcouru par un courant (12, 13), longeant la ou les files de cuves d'électrolyse,
    caractérisée en ce que le conducteur électrique en matériau supraconducteur du circuit électrique secondaire longe au moins deux fois la ou les files de cuve d'électrolyse, de manière à réaliser plusieurs tours en série.
  • L'utilisation d'au moins un conducteur électrique en matériau supraconducteur permet notamment de réduire la consommation d'énergie globale de l'aluminerie, donc les coûts d'exploitation de l'aluminerie. De plus, du fait de leur encombrement moindre, les conducteurs électriques en matériau supraconducteur permettent une meilleure gestion de la place disponible à l'intérieur de l'aluminerie. En raison de leur masse plus faible que celle des conducteurs équivalents en aluminium, cuivre ou acier, les conducteurs électriques en matériau supraconducteur nécessitent des structures de support moins importantes donc moins coûteuses.
  • Du fait de l'existence de pertes énergétiques au niveau des jonctions entre un conducteur électrique en matériau supraconducteur et un conducteur électrique classique, un conducteur électrique en matériau supraconducteur est particulièrement avantageux lorsqu'il présente une longueur importante.
  • L'utilisation d'un circuit secondaire en matériau supraconducteur permet de réduire les effets néfastes du champ magnétique généré par le courant d'électrolyse sur les liquides contenus dans les cuves, en réalisant des économies d'énergie du fait de la résistivité quasi-nulle des conducteurs électriques en matériau supraconducteur maintenus en-dessous de leur température critique.
  • En outre, la boucle formée par le circuit électrique secondaire longe à plusieurs reprises la ou les files de cuves, et comprend plusieurs tours en série. Cela permet de diviser par le nombre de tours la valeur de l'intensité du courant parcourant le conducteur électrique en matériau supraconducteur, et par conséquent de réduire le coût de la station d'alimentation électrique destinée à délivrer ce courant au circuit électrique secondaire et le coût des jonctions entre les pôles de la station d'alimentation et le conducteur électrique en matériau supraconducteur.
  • Avantageusement, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire comporte une enveloppe cryogénique unique, à l'intérieure de laquelle passent côte à côte les tours réalisés par ledit conducteur électrique en matériau supraconducteur. Un tel mode de réalisation permet de diminuer la longueur de l'enveloppe cryogénique et la puissance du système de refroidissement.
  • Selon une autre caractéristique de l'aluminerie selon l'invention, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire est flexible et présente au moins une partie courbe.
  • Ainsi, le circuit électrique secondaire peut comporter une ou plusieurs portions non rectiligne(s). La flexibilité du conducteur électrique en matériau supraconducteur permet d'éviter des obstacles (donc de s'adapter aux contraintes spatiales de l'aluminerie), mais aussi d'affiner localement la compensation du champ magnétique.
  • De manière avantageuse, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire est placé, en partie, à l'intérieur d'une enceinte formant bouclier magnétique.
  • Cette caractéristique présente l'avantage d'éviter que le conducteur électrique en matériau supraconducteur ne génère un champ magnétique alentour. En particulier, cela permet de créer des zones de passage pour des engins ou véhicules dont le fonctionnement serait perturbé par l'intensité du champ magnétique au niveau de ces zones de passage en l'absence de bouclier magnétique. Cela permet aussi d'éviter de recourir à des engins coûteux possédant un blindage les protégeant de forts champs magnétiques.
  • Préférentiellement, l'enceinte formant bouclier magnétique est localisée à au moins une des extrémités de la ou des files de cuves d'électrolyse.
  • Selon une autre caractéristique de l'aluminerie selon l'invention, le circuit électrique secondaire comprend deux extrémités, chaque extrémité dudit circuit électrique secondaire étant reliée à un pôle électrique d'une station d'alimentation distincte de la station d'alimentation du circuit principal.
  • Avantageusement, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire longe la ou les files de cuves d'électrolyse un nombre de fois prédéterminé afin de permettre l'utilisation d'une station d'alimentation du circuit électrique secondaire délivrant un courant d'intensité comprise entre 5 kA et 40 kA.
  • Le conducteur électrique en matériau supraconducteur réalise ainsi autant de tours en série que nécessaire pour permettre d'utiliser une station d'alimentation pouvant être aisément trouvée dans le commerce et économiquement intéressante.
  • Selon une autre caractéristique de l'aluminerie selon l'invention, au moins une partie du conducteur électrique en matériau supraconducteur du circuit électrique secondaire est disposée sous au moins une cuve d'électrolyse de la ou des files.
  • Selon encore une autre caractéristique de l'aluminerie selon l'invention, une partie au moins du conducteur électrique en matériau supraconducteur du circuit électrique secondaire longe le côté droit et/ou le côté gauche des cuves d'électrolyse de la ou des files.
  • Selon une autre caractéristique de l'aluminerie selon l'invention, chaque conducteur électrique en matériau supraconducteur est formé par un câble comprenant une âme centrale en cuivre ou en aluminium, au moins une fibre en matériau supraconducteur et une enveloppe cryogénique.
  • Selon une autre caractéristique de l'aluminerie selon l'invention, l'enveloppe cryogénique est parcourue par un fluide de refroidissement.
  • De manière avantageuse, le fluide de refroidissement est de l'azote liquide et/ou de l'hélium.
  • L'invention sera mieux comprise à l'aide de la description détaillée qui est exposée ci-dessous en regard des figures annexées dans lesquelles :
    • La figure 1 est une vue schématique de dessus d'une cuve d'électrolyse appartenant à l'état de la technique,
    • La figure 2 est une vue de côté d'une cuve d'électrolyse de l'état de la technique,
    • Les figures 3, 4, 5, 6 et 7 sont des vues schématiques de dessus d'une aluminerie, dans lesquels au moins un conducteur électrique en matériau supraconducteur est utilisé dans un circuit électrique secondaire,
    • Les figures 8 et 9 sont des vues schématiques de dessus d'une aluminerie, dans lesquels un conducteur électrique en matériau supraconducteur est utilisé dans le circuit électrique principal,
    • La figure 10 est une vue schématique partielle et de dessus d'une aluminerie comprenant un circuit électrique secondaire munie d'une partie courbe,
    • La figure 11 est une vue en coupe d'une cuve d'électrolyse d'une aluminerie présentant un positionnement particulier des conducteurs électriques en matériau supraconducteur de deux circuits électriques secondaires, et présentant également le positionnement qu'il aurait fallu utiliser avec des conducteurs électriques classiques en aluminium ou en cuivre,
  • La figure 2 montre un exemple classique de cuve 2 d'électrolyse. La cuve 2 d'électrolyse comprend notamment un caisson 3 métallique, par exemple en acier. Le caisson 3 métallique est garni intérieurement par des matériaux réfractaires et/ou isolants, par exemple des briques. La cuve 2 d'électrolyse comporte également une cathode 6 en matériau carboné et une pluralité d'anodes 7, destinées à être consommées au fur et à mesure de la réaction d'électrolyse dans un bain 8 électrolytique comportant notamment de la cryolithe et de l'alumine. Une couverture d'alumine et de bain broyé recouvre généralement le bain 8 électrolytique et au moins partiellement les anodes 7. Au cours de la réaction d'électrolyse, une nappe 10 d'aluminium liquide se forme. La cathode 6 est reliée électriquement à des sorties cathodiques 9 sous forme de barres métalliques traversant le caisson 3, les sorties cathodiques 9 étant elles-mêmes reliées à des conducteurs 11 électriques de cuve à cuve. Les conducteurs 11 électriques de cuve à cuve permettent l'acheminement du courant d'électrolyse I1 d'une cuve 2 d'électrolyse à une autre. Le courant d'électrolyse I1 traverse les éléments conducteurs de chaque cuve 2 d'électrolyse : d'abord une anode 7, ensuite le bain 8 électrolytique, la nappe 10 d'aluminium liquide, la cathode 6 et enfin les conducteurs 11 électriques de cuve à cuve reliés aux sorties cathodiques 9, permettant d'acheminer ensuite le courant d'électrolyse I1 à une anode 7 de la cuve 2 d'électrolyse suivante.
  • Les cuves 2 d'électrolyse d'une aluminerie 1 sont classiquement disposées et connectées électriquement en série. Une série peut comprendre une ou plusieurs files F de cuves 2 d'électrolyse. Lorsque la série comporte plusieurs files F, celles-ci sont généralement rectilignes et parallèles les unes aux autres, et sont avantageusement en nombre pair.
  • L'aluminerie 1, dont un exemple est visible sur la figure 3, comprend un circuit électrique principal 15 parcouru par un courant d'électrolyse I1. L'intensité du courant d'électrolyse I1 peut atteindre des valeurs de l'ordre de plusieurs centaines de milliers d'Ampères, par exemple de l'ordre de 300 kA à 600 kA.
  • Une station 12 d'alimentation alimente la série de cuves 2 d'électrolyse en courant d'électrolyse I1. Les extrémités de la série de cuves 2 d'électrolyse sont reliées chacune à un pôle électrique de la station d'alimentation 12. Des conducteurs 13 électriques de liaison relient les pôles électriques de la station 12 d'alimentation aux extrémités de la série.
  • Les files F d'une série sont reliées électriquement en série. Un ou plusieurs conducteurs 14 électriques de liaison permettent l'acheminement du courant d'électrolyse I1 de la dernière cuve 2 d'électrolyse d'une file F à la première cuve 2 d'électrolyse de la file F suivante.
  • Le circuit électrique principal 15 est constitué des conducteurs 13 électriques de liaison reliant les extrémités de la série de cuves 2 d'électrolyse à la station 12 d'alimentation, des conducteurs 14 électriques de liaison reliant les files F de cuves 2 d'électrolyse les unes aux autres, des conducteurs 11 électriques de cuve à cuve reliant deux cuves 2 d'électrolyse d'une même file F, et des éléments conducteurs de chaque cuve 2 d'électrolyse.
  • De façon classique, 50 à 500 cuves 2 d'électrolyse sont reliées en série et s'étendent sur deux files F de plus de 1 km de longueur chacune.
  • L'aluminerie 1 selon un mode de réalisation de la présente invention comprend également un ou plusieurs circuits électriques secondaires 16, 17, visibles par exemple sur la figure 3. Ces circuits électriques secondaires 16, 17 longent classiquement les files F de cuves 2 d'électrolyse. Ils permettent de compenser le champ magnétique généré par la valeur élevée de l'intensité du courant d'électrolyse I1, causant l'instabilité du bain 8 électrolytique et affectant donc le rendement des cuves 2 d'électrolyse.
  • Chaque circuit électrique secondaire 16, 17 est parcouru respectivement par un courant I2, I3, délivré par une station 18 d'alimentation. La station 18 d'alimentation de chaque circuit secondaire 16, 17 est distincte de la station 12 d'alimentation du circuit principal 15.
  • L'aluminerie 1 comprend au moins un circuit électrique secondaire 16, 17 muni d'un conducteur électrique en matériau supraconducteur.
  • Ces matériaux supraconducteurs peuvent par exemple comporter du BiSrCaCuO, du YaBaCuO, du MgB2, des matériaux connus des demandes de brevet WO2008011184 , US20090247412 ou encore d'autres matériaux connus pour leurs propriétés supraconductrices.
  • Les matériaux supraconducteurs sont utilisés pour transporter du courant avec peu ou pas de perte par génération de chaleur par effet Joule, car leur résistivité est nulle lorsqu'ils sont maintenus en-dessous de leur température critique. En raison de cette absence de perte d'énergie, il est possible de consacrer un maximum de l'énergie reçu par l'aluminerie (par exemple 600kA et 2kV) au circuit électrique principal 15 qui produit de l'aluminium, et notamment d'augmenter le nombre de cuves 2.
  • A titre d'exemple, un câble supraconducteur utilisé pour mettre en oeuvre la présente invention comprend une âme centrale en cuivre ou en aluminium, des rubans ou des fibres en matériau supraconducteur, et une enveloppe cryogénique. L'enveloppe cryogénique peut être formée par une gaine contenant un fluide de refroidissement, par exemple de l'azote liquide. Le fluide de refroidissement permet de maintenir la température des matériaux supraconducteurs à une température inférieure à leur température critique, par exemple inférieure à 100 K (Kelvin), ou comprise entre 4 K et 80 K.
  • Du fait que les pertes en énergie se situent aux jonctions du conducteur électrique en matériau supraconducteur avec les autres conducteurs électriques, les conducteurs électriques en matériau supraconducteur sont particulièrement avantageux lorsqu'ils présentent une certaine longueur, et plus particulièrement une longueur égale ou supérieure à 10m.
  • Les figures 3, 4 et 5 illustrent, à titre d'exemples non exhaustifs, différents modes de réalisation possible d'une aluminerie 1. Les conducteurs électriques en matériau supraconducteur sont représentés par des traits pointillés sur les différentes figures.
  • L'exemple de la figure 3 montre une aluminerie 1 comprenant deux circuits électriques secondaires 16 et 17, respectivement parcourus par des courants d'intensité I2 et I3 et alimentés chacun par une station 18 d'alimentation. Les courants I2 et I3 parcourent les circuits électriques secondaires 16 et 17 respectifs dans le même sens que le courant d'électrolyse I1. Les circuits électriques secondaires 16 et 17 réalisent dans ce cas de figure une compensation du champ magnétique généré par les conducteurs 11 électriques de cuve à cuve. L'intensité de chacun des courants électriques I2, I3 est importante par exemple comprise entre 20 % et 100 % de l'intensité du courant d'électrolyse I1 et préférentiellement de 40% à 70%.
  • La compensation du champ magnétique de la file F voisine peut être obtenue avec l'exemple de la figure 4. L'aluminerie 1 illustrée à la figure 4 comprend un circuit électrique secondaire 17 formant une boucle interne, parcouru par un courant électrique I3.
  • Il est également possible de compenser le champ magnétique de la file F voisine en prévoyant un unique circuit secondaire 16 formant une boucle externe, parcouru par un courant I2 cheminant dans le sens contraire du courant d'électrolyse I1, comme cela est illustré sur la figure 5.
  • L'utilisation de conducteurs électriques en matériau supraconducteur pour former le ou les circuits secondaires 16, 17 est intéressante du fait de la longueur, de l'ordre de deux kilomètres, des circuits électriques secondaires 16, 17. L'utilisation de conducteurs électriques en matériau supraconducteur nécessite une tension moindre par rapport à celle nécessitée par des conducteurs électriques en aluminium ou en cuivre. Ainsi, il est possible de diminuer la tension de 30 V à 1 V lorsque le ou les circuits électriques secondaires 16, 17 comprennent des conducteurs électriques en matériau supraconducteur. Cela représente une réduction de la consommation d'énergie de l'ordre de 75 % à 99 % par rapport à des conducteurs électriques en aluminium de type classique. De plus, le coût de la station 18 d'alimentation du ou des circuits électriques secondaires est réduit en conséquence.L'aluminerie 1 comprend un circuit électrique secondaire 16, 17 muni d'un conducteur électrique en matériau supraconducteur et longeant sensiblement au même endroit avantageusement au moins deux fois une même file F de cuves 2 d'électrolyse, comme cela est notamment visible sur les figures 6 et 7.
  • Le fait que la boucle formée par un circuit électrique secondaire 16, 17 comprenne plusieurs tours en série permet pour un même effet magnétique de diviser l'intensité du courant I2, I3 traversant le circuit électrique secondaire 16, 17 autant de fois que le nombre de tours réalisés. La réduction de la valeur de cette intensité permet par ailleurs de diminuer les pertes d'énergie par effet Joule au niveau des jonctions et le cout des jonctions entre les conducteurs électriques en matériau supraconducteur et les conducteurs électriques d'entrée ou de sortie du circuit électrique secondaire 16, 17. La diminution de l'intensité globale parcourant chaque circuit électrique secondaire 16, 17 avec des conducteurs électriques en matériau supraconducteur permet de diminuer la taille de la station 18 d'alimentation qui leur est associée. Par exemple, pour une boucle devant délivrer un courant de 200 kA, vingt tours de conducteur électrique en matériau supraconducteur permettent d'utiliser une station 18 d'alimentation délivrant 10kA. De même, quarante tours de conducteur électrique en matériau supraconducteur permettraient d'utiliser une station d'alimentation délivrant un courant d'intensité égale à 5 kA. Cela permet ainsi d'utiliser des équipements couramment vendus dans le commerce et donc peu onéreux.
  • De plus, l'utilisation d'un ou plusieurs tours en série pour former les circuits électriques secondaires 16, 17 en matériau supraconducteur présente l'avantage de diminuer les champs magnétiques sur le trajet entre la station 18 d'alimentation et la première et la dernière cuve 2 d'électrolyse car on a une intensité faible sur ce trajet (un seul passage du conducteur électrique).
  • Le faible encombrement des conducteurs électriques en matériau supraconducteur par rapport à des conducteurs électriques en aluminium ou en cuivre (section jusqu'à 150 fois plus faible que la section d'un conducteur en cuivre pour une intensité égale, et davantage encore par rapport à un conducteur en aluminium) facilite la réalisation de plusieurs tours en série dans les boucles formées par les circuits électriques secondaires 16, 17.
  • L'aluminerie 1 selon le mode de réalisation illustré à la figure 6 comprend un circuit électrique secondaire 16 dont les conducteurs électriques longent en série à deux reprises les files F de la série. Sur l'exemple de réalisation de la figure 7, l'aluminerie 1 comprend un circuit électrique secondaire 16 longeant à la fois le côté gauche et le côté droit des cuves 2 d'électrolyse de la série (côté gauche et côté droit étant définis par rapport à un observateur placé au niveau du circuit électrique principal 15 et orientant son regard dans le sens de circulation global du courant d'électrolyse I1). De plus, les conducteurs électriques (en matériau supraconducteur) du circuit électrique secondaire 16 de l'aluminerie 1 représentée sur la figure 7 réalisent plusieurs tours en série, dont deux tours en longeant les côtés gauches des cuves 2 de la série et trois tours en en longeant les côtés droits. Le nombre de tours pourrait respectivement être égal à vingt et trente. La différence entre le nombre de tours à réaliser de chaque côté est déterminé en fonction de la distance entre les files afin d'obtenir un équilibre magnétique optimal.
  • Du fait de la faible différence de potentiel entre deux tours de conducteur électrique en matériau supraconducteur, il est aisé d'isoler électriquement les différents tours du conducteur électrique. Un isolant électrique de faible épaisseur placé entre chaque tour de conducteur électrique en matériau supraconducteur suffit.
  • Pour cette raison, et grâce au faible encombrement du conducteur électrique en matériau supraconducteur, il est possible de contenir le conducteur électrique en matériau supraconducteur d'un circuit à l'intérieur d'une unique enveloppe cryogénique, et ce quelque soit le nombre de tours réalisés par ce conducteur. Cette enveloppe cryogénique peut comprendre une gaine thermiquement isolée dans laquelle circule un fluide de refroidissement. A un endroit donné, l'enveloppe cryogénique peut donc contenir côte à côte plusieurs passages du même conducteur électrique en matériau supraconducteur.
  • Cela serait plus contraignant avec des conducteurs électriques en aluminium ou en cuivre réalisant plusieurs fois le tour de la série de cuves d'électrolyse. Les conducteurs électriques en aluminium ou en cuivre sont en effet plus encombrants que les conducteurs électriques en matériau supraconducteur. De plus, en raison de la chute de potentiel importante qui existerait entre chaque tour, il serait nécessaire d'ajouter des isolants couteux à mettre en place et à maintenir. Les conducteurs électriques classiques, en aluminium ou en cuivre, chauffant en fonctionnement, la mise en place d'un isolant entre les différents tours de conducteurs poserait des problèmes d'évacuation de chaleur.
  • Les conducteurs électriques en matériau supraconducteur peuvent présenter également l'avantage par rapport aux conducteurs électriques en aluminium ou en cuivre d'être flexibles. L'aluminerie 1 peut ainsi comprendre un ou plusieurs circuits électriques secondaires 16, 17 comportant un conducteur électrique en matériau supraconducteur présentant au moins une partie courbe. Cela permet de contourner les obstacles 19 présents à l'intérieur de l'aluminerie 1, par exemple un pilier, comme cela est visible sur la figure 10.
  • Cela permet également d'ajuster localement la compensation du champ magnétique dans l'aluminerie 1 en ajustant localement la position du conducteur électrique en matériau supraconducteur du ou des circuits électriques secondaires 16, 17, comme le permet la partie courbe 16a du circuit électrique secondaire 16 de l'aluminerie 1 visible sur la figure 10. Cette flexibilité permet de déplacer le conducteur électrique en matériau supraconducteur par rapport à sa position initiale, pour corriger le champ magnétique en s'adaptant à l'évolution de l'aluminerie 1 (par exemple l'augmentation de l'intensité du courant d'électrolyse I1, ou pour utiliser les résultats des plus récents calculs de correction magnétique qui sont permis par les nouvelles puissances des ordinateurs et les connaissances générales sur le sujet).
  • Il est à noter que les conducteurs électriques en matériau supraconducteur du ou des circuits électriques secondaires 16, 17 peuvent être disposés sous les cuves 2 d'électrolyse. En particulier, ils peuvent être enterrés. Cette disposition est rendue possible par le faible encombrement des conducteurs électriques en matériau supraconducteur d'une part, et par le fait qu'ils ne chauffent pas d'autre part. Cette disposition serait difficilement réalisable avec des conducteurs électriques en aluminium ou en cuivre, car leur taille est plus importante à intensité égale, et parce qu'ils chauffent et nécessitent en conséquence d'être refroidis (couramment au contact de l'air et /ou avec des moyens de refroidissements spécifiques). La figure 11 montre, pour une même implantation d'aluminerie 1, les emplacements possibles de circuits électriques secondaires 16, 17 avec des conducteurs électriques en matériau supraconducteur et de circuits électriques secondaires 16', 17' utilisant des conducteurs électriques en aluminium. Les circuits électriques secondaires 16', 17' sont placés de part et d'autre d'une cuve 2 d'électrolyse. Comme cela est illustré à la figure 11, les circuits électriques secondaires 16', 17' empêchent l'accès aux cuves 2 d'électrolyse, par exemple pour des opérations de maintenance. Ils ne peuvent cependant être placés sous les cuves 2 d'électrolyse, comme les circuits électriques secondaires 16, 17 avec des conducteurs électriques en matériau supraconducteur, car ils présentent un encombrement plus important et nécessitent d'être refroidis. Les circuits électriques secondaires 16, 17 utilisant des conducteurs électriques en matériau supraconducteur peuvent en revanche être disposés sous les cuves 2 d'électrolyse. L'accès aux cuves 2 d'électrolyse n'est ainsi pas limité.
  • Selon un mode particulier de réalisation dont un exemple est représenté sur la figure 6, les conducteurs électriques en matériau supraconducteur peuvent être contenus en partie à l'intérieur d'une enceinte 20 formant bouclier magnétique. Cette enceinte 20 peut être un tube métallique, par exemple en acier. Elle permet de réduire sensiblement le champ magnétique à l'extérieur de ce bouclier magnétique. Cela permet ainsi de créer, aux endroits où a été placée cette enceinte 20, des zones de passage, notamment de véhicules dont le fonctionnement aurait été perturbé par le champ magnétique émanant des conducteurs électriques en matériau supraconducteur. Cela permet ainsi de diminuer le coût de ces véhicules (qui doivent sinon être équipés de protection). Cette enceinte 20 peut être avantageusement placée autour des conducteurs électriques en matériau supraconducteur situés en bout de file F, comme cela est illustré sur la figure 6.
  • L'enceinte 20 formant bouclier magnétique peut également être formée de matériau supraconducteur maintenu en dessous de sa température critique. Avantageusement, cette enceinte en matériau supraconducteur formant bouclier magnétique peut être disposée au plus près des conducteurs électriques en matériau supraconducteur, à l'intérieur de l'enveloppe cryogénique. La masse de matériau supraconducteur de l'enceinte est minimisée et le matériau supraconducteur de l'enceinte est maintenu en dessous de sa température critique sans qu'il soit nécessaire de disposer d'un autre système de refroidissement spécifique.
  • L'utilisation d'une enceinte 20 protectrice, n'est pas possible avec les conducteurs électriques classiques de l'art antérieur en aluminium, ou même en cuivre. Ces conducteurs électriques en aluminium présentent effectivement une section de dimensions importantes, de l'ordre de 1 m par 1 m, contre 25 cm de diamètre pour un conducteur électrique en matériau supraconducteur. Surtout, les conducteurs électriques en aluminium chauffent en fonctionnement. L'utilisation d'une telle enceinte 20 formant bouclier magnétique ne permettrait pas une évacuation correcte de la chaleur générée.
  • Il est aussi à noter que les conducteurs électriques en matériau supraconducteur présentent une masse par mètre qui peut être vingt fois inférieure à celle d'un conducteur électrique en aluminium pour une intensité équivalente. Le coût des supports des conducteurs électriques en matériau supraconducteur est donc moindre et leur installation est facilitée.
  • Le circuit électrique principal 15 de l'aluminerie 1 peut également comprendre un ou plusieurs conducteurs électriques en matériau supraconducteur. Ainsi, les conducteurs 14 électriques de liaison reliant électriquement les files F de la série entre elles peuvent être en matériau supraconducteur, comme cela est représenté sur la figure 8. Les conducteurs 13 électriques de liaison, reliant les extrémités de la série de cuves 2 d'électrolyse aux pôles de la station 12 d'alimentation du circuit principal 15, peuvent également être en matériau supraconducteur, comme cela est représenté sur la figure 9.
  • Dans une aluminerie classique, les conducteurs 14 électriques de liaison reliant deux files F mesurent de 30m à 150m selon si les deux files F qu'ils relient se trouvent dans le même batiment ou dans deux batiments séparés pour des raisons d'interaction magnétique entre ces deux files F. Les conducteurs 13 électriques de liaison reliant les extrémités de la série aux pôles de la station 12 d'alimentation mesurent généralement de 20m à 1 km selon le positionnement de cette station 12 d'alimentation. En raison de ces longueurs, on comprendra aisément que l'utilisation de conducteurs électriques en matériau supraconducteur à ces emplacements peut permettre de réaliser des économies d'énergie. Les autres avantages procurés par l'utilisation de conducteurs en matériaux supraconducteurs décrits précédemment, comme leur faible encombrement, leur flexibilité ou leur capacité à être placés dans une enceinte formant bouclier magnétique, justifient également l'usage potentiel de conducteurs électriques en matériau supraconducteur dans le circuit principal 15 de l'aluminerie 1.
  • En revanche, du fait de la longueur moins importante des conducteurs 11 électriques de cuve à cuve, et des pertes énergétiques aux jonctions, l'utilisation d'un conducteur électrique en matériau supraconducteur pour conduire le courant d'électrolyse d'une cuve 2 à une autre n'est pas économiquement intéressant.
  • Ainsi, l'utilisation de conducteurs électriques en matériau supraconducteur dans une aluminerie 1 peut s'avérer avantageux pour des longueurs de conducteurs suffisamment élevées. L'utilisation des conducteurs électriques en matériau conducteur est particulièrement avantageuse pour des circuits électriques secondaires 16, 17 destinés à réduire l'effet du champ magnétique cuve à cuve au moyen de boucles du type décrit dans le document de brevet EP0204647 ; lorsque l'intensité du courant circulant dans le circuit électrique principal 15 est particulièrement élevée, supérieure à 350kA, et lorsque la somme des intensités circulant dans le circuit électrique secondaire, dans le même sens que le courant circulant dans le circuit principal, est compris entre 20% et 100% du courant du circuit principal, et de préférence de 40% à 70%.
  • Les modes de réalisation décrits ne sont bien entendu pas exclusifs les uns des autres et peuvent être combinés afin de renforcer par synergie l'effet technique obtenu. Ainsi, il est possible de prévoir un circuit électrique principal 15 comprenant à la fois des conducteurs 14 électriques de liaison de file à file en matériau supraconducteur et des conducteurs 13 électriques de liaison reliant les extrémités d'une série aux pôles de la station 12 d'alimentation en matériau supraconducteur également, et un ou plusieurs circuits électriques secondaires 16, 17 comprenant également des conducteurs électriques en matériau supraconducteur réalisant plusieurs tours en série. Un seul circuit électrique secondaire 16 comprenant des conducteurs électriques en matériau supraconducteur peut également être prévu, avec des conducteurs réalisant plusieurs tours en série, entre les files F de cuves 2 ou à l'extérieur de celles-ci.
  • Enfin, l'invention n'est nullement limitée aux modes de réalisation décrits ci-dessus, ces modes de réalisation n'ayant été donnés qu'à titre d'exemples. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par la substitution d'équivalents techniques, sans pour autant sortir du domaine de protection de l'invention défini par les revendications. En particulier, l'invention peut s'étendre à des alumineries avec électrolyse avec des anodes inertes.
  • Elle est aussi généralisable à tout autre type de boucles, par exemple à un type de boucles décrit dans les documents de brevet CA2585218 , FR2868436 , et EP1812626 .

Claims (12)

  1. Aluminerie (1) comprenant :
    (i) une série de cuves (2) d'électrolyse, destinées à la production d'aluminium, formant une ou plusieurs files (F),
    (ii) une station (12) d'alimentation électrique destinée à alimenter la série de cuves (2) d'électrolyse en courant d'électrolyse (I1), ladite station (12) d'alimentation électrique comprenant deux pôles,
    (iii) un circuit électrique principal (15), destiné à être parcouru par le courant d'électrolyse (I1), présentant deux extrémités reliées chacune à l'un des pôles de la station d'alimentation (12),
    (iv) au moins un circuit électrique secondaire (16-17) comprenant un conducteur électrique en matériau supraconducteur, destiné à être parcouru par un courant (I2, I3), longeant la ou les files (F) de cuves (2) d'électrolyse,
    caractérisée en ce que le conducteur électrique en matériau supraconducteur du circuit électrique secondaire (16, 17) longe au moins deux fois la ou les files (F) de cuve (2) d'électrolyse, de manière à réaliser plusieurs tours en série.
  2. Aluminerie (1) selon la revendication 1, caractérisée en ce que le conducteur électrique en matériau supraconducteur du circuit électrique secondaire (16, 17) comporte une enveloppe cryogénique unique, à l'intérieur de laquelle passent côte à côte les tours réalisés par ledit conducteur électrique en matériau supraconducteur.
  3. Aluminerie (1) selon l'une des revendications 1 à 2, caractérisée en ce que le conducteur électrique en matériau supraconducteur du circuit électrique secondaire (16, 17) est flexible et présente au moins une partie courbe.
  4. Aluminerie (1) selon l'une des revendications 1 à 3, caractérisée en ce que le circuit électrique secondaire (16, 17) comprend deux extrémités, chaque extrémité dudit circuit électrique secondaire (16, 17) étant reliée à un pôle électrique d'une station (18) d'alimentation électrique distincte de la station (12) d'alimentation électrique du circuit électrique principal (15).
  5. Aluminerie (1) selon la revendication 4, caractérisée en ce que le conducteur électrique en matériau supraconducteur du circuit électrique secondaire (16, 17) longe un nombre de fois prédéterminé la ou les files de cuves (2) d'électrolyse afin de permettre l'utilisation d'une station (18) d'alimentation du circuit électrique secondaire (16, 17) délivrant un courant d'intensité comprise entre 5 kA et 40 kA.
  6. Aluminerie (1) selon l'une des revendications 1 à 5, caractérisée en ce qu'au moins une partie du conducteur électrique en matériau supraconducteur du circuit électrique secondaire (16, 17) est disposée sous au moins une cuve (2) d'électrolyse de la ou des files (F).
  7. Aluminerie (1) selon l'une des revendications 1 à 6, caractérisée en ce qu'une partie au moins du conducteur électrique en matériau supraconducteur du circuit électrique secondaire (16, 17) longe le côté droit et/ou le côté gauche des cuves (2) d'électrolyse de la ou des files (F).
  8. Aluminerie (1) selon l'une des revendications 1 à 7, caractérisée en ce que chaque conducteur électrique en matériau supraconducteur est formé par un câble comprenant une âme centrale en cuivre ou en aluminium, au moins une fibre en matériau supraconducteur et une enveloppe cryogénique.
  9. Aluminerie (1) selon la revendication 8, caractérisée en ce que l'enveloppe cryogénique est parcourue par un fluide de refroidissement.
  10. Aluminerie (1) selon la revendication 9, caractérisée en ce que le fluide de refroidissement est de l'azote liquide et/ou de l'hélium.
  11. Aluminerie (1) selon l'une des revendications 1 à 10, caractérisée en ce que l'aluminerie comprend une enceinte (20) formant bouclier magnétique et en ce que le conducteur électrique en matériau supraconducteur est placé, en partie, à l'intérieur de l'enceinte (20) formant bouclier magnétique.
  12. Aluminerie (1) selon la revendication 11, caractérisée en ce que l'enceinte (20) formant bouclier magnétique est localisée à au moins une des extrémités de la ou des files (F) de cuves (2) d'électrolyse.
EP12748726.2A 2011-07-12 2012-07-10 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur Active EP2732075B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201231308T SI2732075T1 (en) 2011-07-12 2012-07-10 An aluminum smelter comprising electric conductors of supra-conductive material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1102199A FR2977898A1 (fr) 2011-07-12 2011-07-12 Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
FR1102198A FR2977899A1 (fr) 2011-07-12 2011-07-12 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
PCT/FR2012/000282 WO2013007893A2 (fr) 2011-07-12 2012-07-10 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur

Publications (2)

Publication Number Publication Date
EP2732075A2 EP2732075A2 (fr) 2014-05-21
EP2732075B1 true EP2732075B1 (fr) 2018-03-14

Family

ID=46717874

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12748727.0A Withdrawn EP2732076A2 (fr) 2011-07-12 2012-07-10 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
EP12748726.2A Active EP2732075B1 (fr) 2011-07-12 2012-07-10 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12748727.0A Withdrawn EP2732076A2 (fr) 2011-07-12 2012-07-10 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur

Country Status (16)

Country Link
US (2) US9598783B2 (fr)
EP (2) EP2732076A2 (fr)
CN (2) CN103687982B (fr)
AR (2) AR087124A1 (fr)
AU (2) AU2012282374A1 (fr)
BR (2) BR112014000760A2 (fr)
CA (2) CA2841847A1 (fr)
DK (1) DK179966B1 (fr)
EA (1) EA201490256A1 (fr)
IN (1) IN2014CN00886A (fr)
MY (1) MY166183A (fr)
NO (1) NO2732075T3 (fr)
RU (2) RU2014104795A (fr)
SI (1) SI2732075T1 (fr)
TR (1) TR201807790T4 (fr)
WO (2) WO2013007893A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3115942A1 (fr) 2020-11-05 2022-05-06 Nexans Boîtier cryostat pour circuit câblé supraconducteur, et circuits câblés supraconducteurs associés
EP3996209A1 (fr) 2020-11-10 2022-05-11 Nexans Dispositif de connexion électrique pour fils supraconducteurs

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009564A1 (fr) * 2013-08-09 2015-02-13 Rio Tinto Alcan Int Ltd Aluminerie comprenant un circuit electrique de compensation
MY183698A (en) * 2015-02-09 2021-03-08 Rio Tinto Alcan Int Ltd Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter
FR3042509B1 (fr) * 2015-10-15 2017-11-03 Rio Tinto Alcan Int Ltd Serie de cellules d'electrolyse pour la production d'aluminium comportant des moyens pour equilibrer les champs magnetiques en extremite de file

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB797428A (en) * 1954-03-10 1958-07-02 Vaw Ver Aluminium Werke Ag Plant for carrying out fusion electrolysis
FR2425482A1 (fr) * 1978-05-11 1979-12-07 Pechiney Aluminium Procede de compensation du champ magnetique induit par la file voisine dans les series de cuves d'electrolyse a haute intensite
US4222830A (en) * 1978-12-26 1980-09-16 Aluminum Company Of America Production of extreme purity aluminum
FR2469475A1 (fr) 1979-11-07 1981-05-22 Pechiney Aluminium Procede et dispositif pour la suppression des perturbations magnetiques dans les cuves d'electrolyse a tres haute intensite placees en travers
FR2583069B1 (fr) 1985-06-05 1987-07-31 Pechiney Aluminium Dispositif de connexion entre cuves d'electrolyse a tres haute intensite, pour la production d'aluminium, comportant un circuit d'alimentation et un circuit independant de correction du champ magnetique
DE69532052T2 (de) 1994-09-08 2004-08-19 Moltech Invent S.A. Mit versenkten Nuten drainierte horizontale Kathodenoberfläche für die Aluminium Elektrogewinnung
US5831489A (en) * 1996-09-19 1998-11-03 Trw Inc. Compact magnetic shielding enclosure with high frequency feeds for cryogenic high frequency electronic apparatus
US6358393B1 (en) 1997-05-23 2002-03-19 Moltech Invent S.A. Aluminum production cell and cathode
FR2868436B1 (fr) 2004-04-02 2006-05-26 Aluminium Pechiney Soc Par Act Serie de cellules d'electrolyse pour la production d'aluminium comportant des moyens pour equilibrer les champs magnetiques en extremite de file
NO322258B1 (no) 2004-09-23 2006-09-04 Norsk Hydro As En fremgangsmate for elektrisk kobling og magnetisk kompensasjon av reduksjonsceller for aluminium, og et system for dette
WO2006098068A1 (fr) * 2005-03-14 2006-09-21 Sumitomo Electric Industries, Ltd. Cable supraconducteur
CN101228595B (zh) * 2006-04-10 2014-04-16 住友电气工业株式会社 超导电缆
RU2316619C1 (ru) 2006-04-18 2008-02-10 Общество с ограниченной ответственностью "Русская инжиниринговая компания" Устройство для компенсации магнитного поля, наведенного соседним рядом последовательно соединенных электролизеров большой мощности
EP2050104B1 (fr) 2006-07-21 2013-01-02 American Superconductor Corporation Conducteurs de fort courant, compacts, souples, contenant des bandes supraconductrices à haute température
NO332480B1 (no) 2006-09-14 2012-09-24 Norsk Hydro As Elektrolysecelle samt fremgangsmate for drift av samme
CN101255567B (zh) * 2007-12-17 2010-08-25 中国铝业股份有限公司 一种优化铝电解槽磁场的方法
US8478374B2 (en) 2008-03-28 2013-07-02 American Superconductor Corporation Superconducting cable assembly and method of assembly
US9431864B2 (en) * 2011-03-15 2016-08-30 Siemens Energy, Inc. Apparatus to support superconducting windings in a rotor of an electromotive machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3115942A1 (fr) 2020-11-05 2022-05-06 Nexans Boîtier cryostat pour circuit câblé supraconducteur, et circuits câblés supraconducteurs associés
EP3996223A1 (fr) 2020-11-05 2022-05-11 Nexans Boîtier cryostat pour circuit câblé supraconducteur, et circuits câblés supraconducteurs associés
EP3996209A1 (fr) 2020-11-10 2022-05-11 Nexans Dispositif de connexion électrique pour fils supraconducteurs
FR3116147A1 (fr) 2020-11-10 2022-05-13 Nexans Dispositif de connexion électrique pour fils supraconducteurs

Also Published As

Publication number Publication date
RU2014104795A (ru) 2015-08-20
EP2732076A2 (fr) 2014-05-21
CA2841300C (fr) 2019-04-09
EA201490256A1 (ru) 2014-04-30
WO2013007894A2 (fr) 2013-01-17
AR087122A1 (es) 2014-02-12
CN103687982B (zh) 2016-05-11
US9598783B2 (en) 2017-03-21
TR201807790T4 (tr) 2018-06-21
BR112014000760A2 (pt) 2017-02-14
BR112014000573A2 (pt) 2017-02-14
RU2764623C2 (ru) 2022-01-18
AU2012282373A1 (en) 2014-01-30
BR112014000573B1 (pt) 2020-09-24
CA2841300A1 (fr) 2013-01-17
AR087124A1 (es) 2014-02-12
IN2014CN00886A (fr) 2015-04-03
MY166183A (en) 2018-06-07
SI2732075T1 (en) 2018-06-29
WO2013007894A3 (fr) 2013-03-28
WO2013007893A2 (fr) 2013-01-17
DK179966B1 (en) 2019-11-11
DK201370794A (en) 2013-12-19
NO2732075T3 (fr) 2018-08-11
CN103649375A (zh) 2014-03-19
US20140209457A1 (en) 2014-07-31
NZ619717A (en) 2015-10-30
CN103687982A (zh) 2014-03-26
RU2018140052A (ru) 2020-04-30
AU2012282373B2 (en) 2016-09-29
CA2841847A1 (fr) 2013-01-17
EP2732075A2 (fr) 2014-05-21
WO2013007893A3 (fr) 2013-05-30
US20140138241A1 (en) 2014-05-22
AU2012282374A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
EP2732075B1 (fr) Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
EP2732074B1 (fr) Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
EP0204647B1 (fr) Dispositif de connexion entre cuves d'électrolyse à tres haute intensité pour la production d'aluminium, comportant un circuit d'alimentation et un circuit indépendant de correction du champ magnétique
CH628188A5 (fr) Machine dynamoelectrique.
FR2977899A1 (fr) Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
EP3030695B1 (fr) Aluminerie comprenant un circuit électrique de compensation
OA16843A (fr) Aluminerie comprenant des conducteurs électriques en matériau supraconducteur
EP3256623B1 (fr) Aluminerie et procédé de compensation d'un champ magnétique créé par la circulation du courant d'électrolyse de cette aluminerie
CH668985A5 (fr) Circuit de connexion electrique de series de cuves d'electrolyse pour la production d'aluminium sous tres haute intensite.
OA16842A (fr) Aluminerie comprenant des cuves à sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
EP1155167A1 (fr) Arrangement de cuves d'electrolyse pour la production d'aluminium
KR101835268B1 (ko) 통전전류 가변형 전력케이블
OA17793A (fr) Aluminerie comprenant un circuit électrique de compensation
FR3132603A1 (fr) Installation de production d’hydrogène comprenant des panneaux photovoltaïques
NZ619717B2 (en) Aluminium smelter comprising electrical conductors made from a superconducting material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20131216

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RIO TINTO ALCAN INTERNATIONAL LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 978971

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012043988

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180314

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180314

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 978971

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012043988

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

26N No opposition filed

Effective date: 20181217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180710

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180710

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200709

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20210624

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20210628

Year of fee payment: 10

Ref country code: RO

Payment date: 20210701

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210710

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 27465

Country of ref document: SK

Effective date: 20220710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220710

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20230314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220710

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20230628

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230712

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230613

Year of fee payment: 12