CA2841847A1 - Aluminerie comprenant des conducteurs electriques en materiau supraconducteur - Google Patents

Aluminerie comprenant des conducteurs electriques en materiau supraconducteur Download PDF

Info

Publication number
CA2841847A1
CA2841847A1 CA2841847A CA2841847A CA2841847A1 CA 2841847 A1 CA2841847 A1 CA 2841847A1 CA 2841847 A CA2841847 A CA 2841847A CA 2841847 A CA2841847 A CA 2841847A CA 2841847 A1 CA2841847 A1 CA 2841847A1
Authority
CA
Canada
Prior art keywords
electrical
superconducting material
electrolysis
smelter
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2841847A
Other languages
English (en)
Inventor
Christian Duval
Steeve RENAUDIER
Benoit BARDET
Olivier Martin
Stephane Wan Tang Kuan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Rio Tinto Alcan International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1102199A external-priority patent/FR2977898A1/fr
Priority claimed from FR1102198A external-priority patent/FR2977899A1/fr
Application filed by Rio Tinto Alcan International Ltd filed Critical Rio Tinto Alcan International Ltd
Publication of CA2841847A1 publication Critical patent/CA2841847A1/fr
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Aluminerie (1) comprenant : (i) une série de cuves (2) d'électrolyse, destinées à la production d'aluminium, formant une ou plusieurs files (F), (ii) une station (12) d'alimentation destinée à alimenter la série de cuves (2) d'électrolyse en courant d'électrolyse (11), ladite station (12) d'alimentation électrique comprenant deux pôles, (iii) un circuit électrique principal (15), destiné à être parcouru par le courant d'électrolyse (11 ), présentant deux extrémités reliées chacune à l'un des pôles de la station d'alimentation (12), (iv) au moins un conducteur électrique en matériau supraconducteur, caractérisée en ce que le conducteur électrique en matériau supraconducteur est placé en tout ou partie à l'intérieur d'une enceinte (20) formant bouclier magnétique.

Description

Aluminerie comprenant des conducteurs électriques en matériau supraconducteur La présente invention concerne une aluminerie, et plus particulièrement le système de conducteur électrique d'une aluminerie.
Il est connu de produire l'aluminium industriellement à partir d'alumine par électrolyse selon le procédé de Hall-Héroult. A cet effet, on prévoit une cuve d'électrolyse composée notamment d'un caisson en acier, d'un revêtement intérieur réfractaire, et d'une cathode en matériau carboné, reliée à des conducteurs servant à
l'acheminement du courant d'électrolyse. La cuve d'électrolyse contient également un bain électrolytique constitué notamment de cryolithe dans lequel est dissout de l'alumine. Le procédé de Hall-Héroult consiste à plonger partiellement un bloc carboné constituant l'anode dans ce bain électrolytique, l'anode étant consommée au fur et à mesure de l'état d'avancement de la réaction. Au fond de la cuve d'électrolyse se forme une nappe d'aluminium liquide.
Généralement, les usines de production d'aluminium comprennent plusieurs centaines de cuves d'électrolyse. Ces cuves d'électrolyse sont parcourues par un courant d'électrolyse élevé de l'ordre de plusieurs centaines de milliers d'ampères.
Certaines problématiques sont courantes dans une aluminerie ; elles consistent notamment en la réduction des coûts en matière d'énergie consommée, de matériau utilisé pour réaliser les conducteurs électriques et en la diminution de l'encombrement afin d'augmenter la production sur une même surface.
Une autre problématique résulte de l'existence d'un champ magnétique important généré par le courant d'électrolyse. Ce champ magnétique perturbe le fonctionnement des cuves dont il diminue le rendement. La composante verticale de ce champ magnétique, en particulier, provoque l'instabilité de la nappe d'aluminium liquide. Ce problème est particulièrement important au niveau des extrémités des files de cuves d'électrolyse et nécessite un alongement important des conducteurs électriques reliant deux files voisines ou une extrémité de file à la station d'alimentation. Un tel allongement des conducteurs électriques génère un fort encombrement et un surdimensionnement des batiments.
Il est connu de diminuer la composante verticale du champ magnétique en compensant le champ magnétique à l'échelle d'une cuve d'électrolyse. Cette solution est mise en oeuvre grâce à une disposition particulière des conducteurs acheminant le courant d'électrolyse d'une cuve N à une cuve N+1. Ces conducteurs, généralement des barres en aluminium, contournent les extrémités de la cuve N. La figure 1 illustre
2 schématiquement, vue de dessus, une cuve 100 d'électrolyse dans laquelle le champ magnétique est auto-compensé grâce à la disposition des conducteurs 101 reliant cette cuve 100 à la cuve suivante 102 placée en aval. A cet effet, on remarque que les conducteurs 101 sont excentrés par rapport à la cuve 100 qu'ils contournent.
Un exemple de cuve auto-compensée magnétiquement est connu notamment du document de brevet FR2469475.
Cette solution impose beaucoup de contraintes de conception en raison de l'encombrement important dû à la disposition particulière des conducteurs. De plus, la longueur importante des conducteurs, généralement en aluminium, pour la mise en oeuvre de cette solution implique des coûts en matériau élevés et d'importantes pertes d'énergie par effet résistif des conducteurs.
Une autre solution pour diminuer la composante verticale du champ magnétique consiste à utiliser un circuit électrique secondaire formé par un ou plusieurs conducteurs électriques métalliques. Ce circuit électrique secondaire longe classiquement l'axe ou les axes d'alignement des cuves d'électrolyse de l'aluminerie. Il est parcouru par un courant dont l'intensité est égale à un certain pourcentage de l'intensité du courant d'électrolyse, et génère de ce fait un champ magnétique compensant les effets du champ magnétique créé par le courant d'électrolyse.
Il est notamment connu du document de brevet FR2425482 l'utilisation d'un circuit secondaire pour réduire l'effet du champ magnétique créé par la file de cuves voisine au moyen d'une boucle intérieure et/ou extérieure transportant un courant d'intensité de l'ordre de 5% à 20% de l'intensité du courant d'électrolyse. Il est par ailleurs connu de l'article Application of High-Tc Superconductors in Aluminum Electrolysis Plants de Magne Runde dans IEEE Transactions on applied superconductivity, vol 5, N 2, June 1995 que l'emploi de matériau supraconducteur pour réaliser un tel circuit secondaire ou des parties du circuit principale n'est pas viable économiquement.
Il est également connu du document de brevet EP0204647 l'utilisation d'un circuit secondaire pour réduire l'effet du champ magnétique généré par les conducteurs de cuve à cuve au moyen de boucles transportant un courant d'intensité de l'ordre de 20% à 70%
de l'intensité du courant d'électrolyse et dans le même sens que le courant d'électrolyse.
Néanmoins, cette solution est coûteuse dans la mesure où elle nécessite une grande quantité de matériau, classiquement de l'aluminium, afin de réaliser ce ou ces circuits électriques secondaires. Elle est également coûteuse en énergie puisqu'il est nécessaire d'alimenter en courant le ou les circuit(s) électrique(s) secondaire(s). Enfin,
3 elle nécessite l'installation de stations d'alimentation (ou générateurs) de puissance et de dimensions importantes.
Aussi la présente invention a pour but de remédier à tout ou partie des inconvénients cités ci-dessus et d'apporter une solution aux problématiques rencontrées dans une usine de production d'aluminium en proposant une aluminerie dont les coûts de fabrication et d'exploitation sont sensiblement réduits et offrant un encombrement moindre.
A cet effet, la présente invention a pour objet une aluminerie comprenant :
(i) une série de cuves d'électrolyse, destinées à la production d'aluminium, formant une ou plusieurs files, (ii) une station d'alimentation destinée à alimenter la série de cuves d'électrolyse en courant d'électrolyse 11, ladite station d'alimentation électrique comprenant deux pôles, (iii) un circuit électrique principal, destiné à être parcouru par le courant d'électrolyse 11, présentant deux extrémités reliées chacune à l'un des pôles de la station d'alimentation, (iv) au moins un conducteur électrique, destiné à être parcouru par un courant électrique, en matériau supraconducteur, caractérisée en ce que le conducteur électrique en matériau supraconducteur est placé en tout ou partie à l'intérieur d'une enceinte formant bouclier magnétique.
L'utilisation d'au moins un conducteur électrique en matériau supraconducteur permet notamment de réduire la consommation d'énergie globale de l'aluminerie, donc les coûts d'exploitation de l'aluminerie. De plus, du fait de leur encombrement moindre, les conducteurs électriques en matériau supraconducteur permettent une meilleure gestion de la place disponible à l'intérieur de l'aluminerie. En raison de leur masse plus faible que celle des conducteurs équivalents en aluminium, cuivre ou acier, les conducteurs électriques en matériau supraconducteur nécessitent des structures de support moins importantes donc moins coûteuses. La disposition du conducteur électrique en matériau supraconducteur du circuit électrique, en tout ou partie, à l'intérieur d'une enceinte formant bouclier magnétique présente l'avantage d'éviter que le conducteur électrique en matériau supraconducteur ne génère un champ magnétique alentour. En particulier, cela permet de créer des zones de passage pour des engins ou véhicules dont le
4 PCT/FR2012/000283 fonctionnement serait perturbé par l'intensité du champ magnétique au niveau de ces zones de passage en l'absence de bouclier magnétique. Cela permet aussi d'éviter de recourir à des engins coûteux possédant un blindage les protégeant de forts champs magnétiques. Cela permet également une stabilisation des cuves d'électrolyse en controlant et ajustant localement les champs magnétiques. Il résulte de l'utilisation de telles enceintes formant bouclier magnétique la possibilité de diminuer la longueur des conducteurs et leur encombrement.
L'enceinte formant bouclier magnétique peut également être formée en matériau supraconducteur. Les matériaux supraconducteurs forment des écrans magnétiques très performants lorsque maintenus en dessous de leur température critique.
Selon une autre caractéristique de l'aluminerie selon l'invention, le conducteur électrique en matériau supraconducteur est formé par un câble comprenant une âme centrale en cuivre ou en aluminium, au moins une fibre en matériau supraconducteur et une enveloppe cryogénique.
Selon une autre caractéristique de l'aluminerie selon l'invention, l'enveloppe cryogénique est parcourue par un fluide de refroidissement.
De manière avantageuse, le fluide de refroidissement est de l'azote liquide et/ou de l'hélium.
Avantageusement, l'enceinte formant bouclier magnétique est en matériau supraconducteur et est disposée à l'intérieur de l'enveloppe cryogénique du cable formant le conducteur électrique en matériau supraconducteur. Cette enceinte est ainsi au plus près des conducteurs électriques en matériau supraconducteur, de sorte que la masse de matériau supraconducteur de l'enceinte est minimisée et le matériau supraconducteur de l'enceinte est maintenu en dessous de sa température critique sans qu'il soit nécessaire de disposer d'un autre système de refroidissement spécifique.
Préférentiellement, ledit conducteur électrique en matériau supraconducteur s'étend sur une longueur égale ou supérieure à dix mètres.
Du fait de l'existence de pertes énergétiques au niveau des jonctions entre un conducteur électrique en matériau supraconducteur et un conducteur électrique classique, un conducteur électrique en matériau supraconducteur est particulièrement avantageux lorsqu'il présente une certaine longueur, notamment supérieure ou égale à dix mètres.

Selon une autre caractéristique de l'aluminerie selon l'invention, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire est flexible et présente au moins une partie courbe.
Ainsi, le circuit électrique secondaire peut comporter une ou plusieurs portions non
5 rectiligne(s). La flexibilité du conducteur électrique en matériau supraconducteur permet d'éviter des obstacles (donc de s'adapter aux contraintes spatiales de l'aluminerie), mais aussi d'affiner localement la compensation du champ magnétique.
Préférentiellement, l'enceinte formant bouclier magnétique est localisée à au moins une des extrémités de la ou des files de cuves d'électrolyse.
Selon une autre caractéristique de l'aluminerie selon l'invention, celle-ci comprend en outre au moins un circuit électrique secondaire, destiné à être parcouru par un courant, longeant la ou les files de cuves d'électrolyse, ledit conducteur électrique en matériau supraconducteur faisant partie du circuit électrique secondaire et étant placé
en partie à
l'intérieur de l'enceinte formant bouclier magnétique.
Ainsi, l'aluminerie selon l'invention permet de réduire les effets néfastes du champ magnétique généré par le courant d'électrolyse sur les liquides contenus dans les cuves, en réalisant des économies d'énergie du fait de la résistivité quasi-nulle des conducteurs électriques en matériau supraconducteur maintenus en-dessous de leur température critique. Il peut paraître paradoxal de réaliser un tel circuit électrique secondaire spécifiquement pour l'avantage procuré par le champs magnétique qu'il génère et de masquer sur certaines portions ce champs magnétique généré en le plaçant en partie dans une enceinte formant bouclier magnétique. Selon la configuration de l'aluminerie, le champs magnétique généré par le circuit électrique secondaire n'est pas bénéfique sur toute sa longueur et il peut être particulièrement avantageux d'en aténuer ou annuler les effets sur certaines portions. C'est notamment le cas au niveau des extrémités de la ou des files de cuves d'électrolyse, pour améliorer la stabilité des cuves d'extrémité de file, pour permettre le passage de véhicules dont le fonctionnement serait perturbé
par l'intensité du champ magnétique ou pour limiter l'éloignement classiquement nécessaire, et donc la longueur, des conducteurs électriques disposés en extrémités de files.
Selon une autre caractéristique de l'aluminerie selon l'invention, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire longe au moins deux fois la ou les files de cuves d'électrolyse, de manière à réaliser plusieurs tours en série.
6 La boucle formée par le circuit électrique secondaire longe ainsi à plusieurs reprises la ou les files de cuves, et comprend plusieurs tours en série. Cela permet de diviser par le nombre de tours la valeur de l'intensité du courant parcourant le conducteur électrique en matériau supraconducteur, et par conséquent de réduire le coût de la station d'alimentation électrique destinée à délivrer ce courant au circuit électrique secondaire et le coût des jonctions entre les pôles de la station d'alimentation et le conducteur électrique en matériau supraconducteur.
Avantageusement, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire comporte une enveloppe cryogénique unique, à l'intérieur de laquelle passent côte à côte les tours réalisés par ledit conducteur électrique en matériau supraconducteur. Un tel mode de réalisation permet de diminuer la longueur de l'enveloppe cryogénique et la puissance du système de refroidissement.
Selon une autre caractéristique de l'aluminerie selon l'invention, le circuit électrique secondaire comprend deux extrémités, chaque extrémité dudit circuit électrique secondaire étant reliée à un pôle électrique d'une station d'alimentation distincte de la station d'alimentation du circuit principal.
Avantageusement, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire longe la ou les files de cuves d'électrolyse un nombre de fois prédéterminé afin de permettre l'utilisation d'une station d'alimentation du circuit électrique secondaire délivrant un courant d'intensité comprise entre 5 kA et 40 kA.
Le conducteur électrique en matériau supraconducteur réalise ainsi autant de tours en série que nécessaire pour permettre d'utiliser une station d'alimentation pouvant être aisément trouvée dans le commerce et économiquement intéressante.
Au moins une partie du conducteur électrique en matériau supraconducteur du circuit électrique secondaire est disposée sous ou longe le côté droit et/ou le côté gauche des cuves d'électrolyse de la ou des files.
Selon une autre caractéristique de l'aluminerie selon l'invention, le circuit électrique principal comprend au moins un conducteur électrique en matériau supraconducteur placé en tout ou partie à l'intérieur de l'enceinte formant bouclier magnétique.
Avantageusement, la série de cuves d'électrolyse comprend au moins deux files de cuves d'électrolyse et le conducteur électrique en matériau supraconducteur du circuit électrique principal placé en tout ou partie à l'intérieur de l'enceinte formant bouclier magnétique relie deux files de cuves d'électrolyse.
7 Selon une autre caractéristique de l'aluminerie selon l'invention, le circuit électrique principal comprend deux conducteurs électriques reliant chacun un pôle de la station d'alimentation dudit circuit électrique principal à une extrémité de la série de cuves d'électrolyse et au moins un des deux conducteurs électriques reliant un pôle de la station d'alimentation à une extrémité de la série de cuves d'électrolyse est en matériau supraconducteur et placé en tout ou partie à l'intérieur de l'enceinte formant bouclier magnétique.
Selon encore une autre caractéristique de l'aluminerie selon l'invention, la série de cuves d'électrolyse comprend une unique file et le conducteur électrique en matériau supraconducteur du circuit électrique principal placé en tout ou partie à
l'intérieur de l'enceinte formant bouclier magnétique relie une extrémité de la file à un pôle de la station d'alimentation dudit circuit électrique principal.
L'invention sera mieux comprise à l'aide de la description détaillée qui est exposée ci-dessous en regard des figures annexées dans lesquelles :
- La figure 1 est une vue schématique de dessus d'une cuve d'électrolyse appartenant à l'état de la technique, - La figure 2 est une vue de côté d'une cuve d'électrolyse de l'état de la technique, - Les figures 3, 4, 5, 6 et 7 sont des vues schématiques de dessus d'une aluminerie, dans lesquels au moins un conducteur électrique en matériau supraconducteur est utilisé dans un circuit électrique secondaire, - Les figures 8 et 9 sont des vues schématiques de dessus d'une aluminerie, dans lesquels un conducteur électrique en matériau supraconducteur est utilisé dans le circuit électrique principal, - La figure 10 est une vue schématique partielle et de dessus d'une aluminerie, dans laquelle celle-ci comprend un circuit électrique secondaire munie d'une partie courbe, - La figure 11 est une vue en coupe d'une cuve d'électrolyse d'une aluminerie, présentant un positionnement particulier des conducteurs électriques en matériau supraconducteur de deux circuits électriques secondaires, et présentant également le positionnement qu'il aurait fallu utiliser avec des conducteurs électriques classiques en aluminium ou en cuivre,
8 - La figure 12 est une vue schématique de dessus d'une aluminerie avec une seule file de cuves, - La figure 13 est une vue schématique de dessus d'une aluminerie avec une seule file de cuves.
La figure 2 montre un exemple classique de cuve 2 d'électrolyse. La cuve 2 d'électrolyse comprend notamment un caisson 3 métallique, par exemple en acier. Le caisson 3 métallique est garni intérieurement par des matériaux réfractaires et/ou isolants, par exemple des briques. La cuve 2 d'électrolyse comporte également une cathode 6 en matériau carboné et une pluralité d'anodes 7, destinées à être consommées au fur et à
mesure de la réaction d'électrolyse dans un bain 8 électrolytique comportant notamment de la cryolithe et de l'alumine. Une couverture d'alumine et de bain broyé
recouvre généralement le bain 8 électrolytique et au moins partiellement les anodes 7.
Au cours de la réaction d'électrolyse, une nappe 10 d'aluminium liquide se forme. La cathode 6 est reliée électriquement à des sorties cathodiques 9 sous forme de barres métalliques traversant le caisson 3, les sorties cathodiques 9 étant elles-mêmes reliées à
des conducteurs 11 électriques de cuve à cuve. Les conducteurs 11 électriques de cuve à
cuve permettent l'acheminement du courant d'électrolyse 11 d'une cuve 2 d'électrolyse à
une autre. Le courant d'électrolyse 11 traverse les éléments conducteurs de chaque cuve 2 d'électrolyse : d'abord une anode 7, ensuite le bain 8 électrolytique, la nappe 10 d'aluminium liquide, la cathode 6 et enfin les conducteurs 11 électriques de cuve à cuve reliés aux sorties cathodiques 9, permettant d'acheminer ensuite le courant d'électrolyse 11 à une anode 7 de la cuve 2 d'électrolyse suivante.
Les cuves 2 d'électrolyse d'une aluminerie 1 sont classiquement disposées et connectées électriquement en série. Une série peut comprendre une ou plusieurs files F
de cuves 2 d'électrolyse. Lorsque la série comporte plusieurs files F, celles-ci sont généralement rectilignes et parallèles les unes aux autres, et sont avantageusement en nombre pair.
L'aluminerie 1, dont un exemple est visible sur la figure 3, comprend un circuit électrique principal 15 parcouru par un courant d'électrolyse 11. L'intensité
du courant d'électrolyse 11 peut atteindre des valeurs de l'ordre de plusieurs centaines de milliers d'Ampères, par exemple de l'ordre de 300 kA à 600 kA.
Une station 12 d'alimentation alimente la série de cuves 2 d'électrolyse en courant d'électrolyse 11. Les extrémités de la série de cuves 2 d'électrolyse sont reliées chacune à
un pôle électrique de la station d'alimentation 12. Des conducteurs 13 électriques de
9 liaison relient les pôles électriques de la station 12 d'alimentation aux extrémités de la série.
Les files F d'une série sont reliées électriquement en série. Un ou plusieurs conducteurs 14 électriques de liaison permettent l'acheminement du courant d'électrolyse 11 de la dernière cuve 2 d'électrolyse d'une file F à la première cuve 2 d'électrolyse de la file F suivante.
Le circuit électrique principal 15 est constitué des conducteurs 13 électriques de liaison reliant les extrémités de la série de cuves 2 d'électrolyse à la station 12 d'alimentation, des conducteurs 14 électriques de liaison reliant les files F
de cuves 2 d'électrolyse les unes aux autres, des conducteurs 11 électriques de cuve à
cuve reliant deux cuves 2 d'électrolyse d'une même file F, et des éléments conducteurs de chaque cuve 2 d'électrolyse.
De façon classique, 50 à 500 cuves 2 d'électrolyse sont reliées en série et s'étendent sur deux files F de plus de 1km de longueur chacune.
L'aluminerie 1 selon un mode de réalisation de la présente invention comprend également un ou plusieurs circuits électriques secondaires 16, 17, visibles par exemple sur la figure 3. Ces circuits électriques secondaires 16, 17 longent classiquement les files F de cuves 2 d'électrolyse. Ils permettent de compenser le champ magnétique généré par la valeur élevée de l'intensité du courant d'électrolyse 11, causant l'instabilité du bain 8 électrolytique et affectant donc le rendement des cuves 2 d'électrolyse.
Chaque circuit électrique secondaire 16, 17 est parcouru respectivement par un courant 12, 13, délivré par une station 18 d'alimentation. La station 18 d'alimentation de chaque circuit secondaire 16, 17 est distincte de la station 12 d'alimentation du circuit principal 15.
De manière tout à fait avantageuse, l'aluminerie 1 comprend un ou plusieurs conducteurs électriques en matériau supraconducteur.
Ces matériaux supraconducteurs peuvent par exemple comporter du BiSrCaCuO, du YaBaCuO, du MgB2, des matériaux connus des demandes de brevet W02008011184, US20090247412 ou encore d'autres matériaux connus pour leurs propriétés supraconductrices.
Les matériaux supraconducteurs sont utilisés pour transporter du courant avec peu ou pas de perte par génération de chaleur par effet Joule, car leur résistivité est nulle lorsqu'ils sont maintenus en-dessous de leur température critique. En raison de cette absence de perte d'énergie, il est possible de consacrer un maximum de l'énergie reçu par l'aluminerie (par exemple 600kA et 2kV) au circuit électrique principal 15 qui produit de l'aluminium, et notamment d'augmenter le nombre de cuves 2.
A titre d'exemple, un câble supraconducteur utilisé pour mettre en oeuvre la présente invention comprend une âme centrale en cuivre ou en aluminium, des rubans ou des fibres en matériau supraconducteur, et une enveloppe cryogénique.
L'enveloppe cryogénique peut être formée par une gaine contenant un fluide de refroidissement, par exemple de l'azote liquide. Le fluide de refroidissement permet de maintenir la température des matériaux supraconducteurs à une température inférieure à leur
10 température critique, par exemple inférieure à 100 K (Kelvin), ou comprise entre 4 K et 80 K.
Du fait que les pertes en énergie se situent aux jonctions du conducteur électrique en matériau supraconducteur avec les autres conducteurs électriques, les conducteurs électriques en matériau supraconducteur sont particulièrement avantageux lorsqu'ils présentent une certaine longueur, et plus particulièrement une longueur égale ou supérieure à 10m.
Les figures 3, 4 et 5 illustrent, à titre d'exemples non exhaustifs, différents modes de réalisation possible d'une aluminerie 1. Les conducteurs électriques en matériau supraconducteur sont représentés par des traits pointillés sur les différentes figures.
L'exemple de la figure 3 montre une aluminerie 1 comprenant deux circuits électriques secondaires 16 et 17, respectivement parcourus par des courants d'intensité
12 et 13 et alimentés chacun par une station 18 d'alimentation. Les courants 12 et 13 parcourent les circuits électriques secondaires 16 et 17 respectifs dans le même sens que le courant d'électrolyse 11. Les circuits électriques secondaires 16 et 17 réalisent dans ce cas de figure une compensation du champ magnétique généré par les conducteurs
11 électriques de cuve à cuve. L'intensité de chacun des courants électriques 12, 13 est importante par exemple comprise entre 20 `)/0 et 100 `)/0 de l'intensité du courant d'électrolyse 11 et préférentiellement de 40% à 70%.
La compensation du champ magnétique de la file F voisine peut être obtenue avec l'exemple de la figure 4. L'aluminerie 1 illustrée à la figure 4 comprend un circuit électrique secondaire 17 formant une boucle interne, parcouru par un courant électrique 13.
Il est également possible de compenser le champ magnétique de la file F
voisine en prévoyant un unique circuit secondaire 16 formant une boucle externe, parcouru par un courant 12 cheminant dans le sens contraire du courant d'électrolyse 11, comme cela est illustré sur la figure 5.
L'utilisation de conducteurs électriques en matériau supraconducteur pour former le ou les circuits secondaires 16, 17 est intéressante du fait de la longueur, de l'ordre de deux kilomètres, des circuits électriques secondaires 16, 17. L'utilisation de conducteurs électriques en matériau supraconducteur nécessite une tension moindre par rapport à
celle nécessitée par des conducteurs électriques en aluminium ou en cuivre.
Ainsi, il est possible de diminuer la tension de 30 V à 1 V lorsque le ou les circuits électriques secondaires 16, 17 comprennent des conducteurs électriques en matériau supraconducteur. Cela représente une réduction de la consommation d'énergie de l'ordre de 75 `)/0 à 99 % par rapport à des conducteurs électriques en aluminium de type classique. De plus, le coût de la station 18 d'alimentation du ou des circuits électriques secondaires est réduit en conséquence.
L'aluminerie 1 peut comprendre un circuit électrique secondaire 16, 17 muni d'un conducteur électrique en matériau supraconducteur et longeant sensiblement au même endroit avantageusement au moins deux fois une même file F de cuves 2 d'électrolyse de manière à réaliser plusieurs tours en série, comme cela est notamment visible sur les figures 6 et 7.
Le fait que la boucle formée par un circuit électrique secondaire 16, 17 comprenne plusieurs tours en série permet pour un même effet magnétique de diviser l'intensité du courant 12, 13 traversant le circuit électrique secondaire 16, 17 autant de fois que le nombre de tours réalisés. La réduction de la valeur de cette intensité permet par ailleurs de diminuer les pertes d'énergie par effet Joule au niveau des jonctions et le cout des jonctions entre les conducteurs électriques en matériau supraconducteur et les conducteurs électriques d'entrée ou de sortie du circuit électrique secondaire 16, 17. La diminution de l'intensité globale parcourant chaque circuit électrique secondaire 16, 17 avec des conducteurs électriques en matériau supraconducteur permet de diminuer la taille de la station 18 d'alimentation qui leur est associée. Par exemple, pour une boucle devant délivrer un courant de 200 kA, vingt tours de conducteur électrique en matériau supraconducteur permettent d'utiliser une station 18 d'alimentation délivrant 10kA. De même, quarante tours de conducteur électrique en matériau supraconducteur permettraient d'utiliser une station d'alimentation délivrant un courant d'intensité égale à 5 kA. Cela permet ainsi d'utiliser des équipements couramment vendus dans le commerce et donc peu onéreux.
12 De plus, l'utilisation d'un ou plusieurs tours en série pour former reecircuits électriques secondaires 16, 17 en matériau supraconducteur présente l'avantage de diminuer les champs magnétiques sur le trajet entre la station 18 d'alimentation et la première et la dernière cuve 2 d'électrolyse car on a une intensité faible sur ce trajet (un seul passage du conducteur électrique).
Le faible encombrement des conducteurs électriques en matériau supraconducteur par rapport à des conducteurs électriques en aluminium ou en cuivre (section jusqu'à 150 fois plus faible que la section d'un conducteur en cuivre pour une intensité
égale, et davantage encore par rapport à un conducteur en aluminium) facilite la réalisation de plusieurs tours en série dans les boucles formées par les circuits électriques secondaires 16, 17.
L'aluminerie 1 selon le mode de réalisation illustré à la figure 6 comprend un circuit électrique secondaire 16 dont les conducteurs électriques longent en série à
deux reprises les files F de la série. Sur l'exemple de réalisation de la figure 7, l'aluminerie 1 comprend un circuit électrique secondaire 16 longeant à la fois le côté gauche et le côté
droit des cuves 2 d'électrolyse de la série (côté gauche et côté droit étant définis par rapport à un observateur placé au niveau du circuit électrique principal 15 et orientant son regard dans le sens de circulation global du courant d'électrolyse 11). De plus, les conducteurs électriques (en matériau supraconducteur) du circuit électrique secondaire 16 de l'aluminerie 1 représentée sur la figure 7 réalisent plusieurs tours en série, dont deux tours en longeant les côtés gauches des cuves 2 de la série et trois tours en en longeant les côtés droits. Le nombre de tours pourrait respectivement être égal à vingt et trente.
Du fait de la faible différence de potentiel entre deux tours de conducteur électrique en matériau supraconducteur, il est aisé d'isoler électriquement les différents tours du conducteur électrique. Un isolant électrique de faible épaisseur placé entre chaque tour de conducteur électrique en matériau supraconducteur suffit.
Pour cette raison, et grâce au faible encombrement du conducteur électrique en matériau supraconducteur, il est possible de contenir le conducteur électrique en matériau supraconducteur d'un circuit à l'intérieur d'une unique enveloppe cryogénique, et ce quelque soit le nombre de tours réalisés par ce conducteur. Cette enveloppe cryogénique peut comprendre une gaine thermiquement isolée dans laquelle circule un fluide de refroidissement. A un endroit donné, l'enveloppe cryogénique peut donc contenir côte à
côte plusieurs passages du même conducteur électrique en matériau supraconducteur.
13 Cela serait plus contraignant avec des conducteurs électriques en aluminium ou en cuivre réalisant plusieurs fois le tour de la série de cuves d'électrolyse.
Les conducteurs électriques en aluminium ou en cuivre sont en effet plus encombrants que les conducteurs électriques en matériau supraconducteur. De plus, en raison de la chute de potentiel importante qui existerait entre chaque tour, il serait nécessaire d'ajouter des isolants couteux à mettre en place et à maintenir. Les conducteurs électriques classiques, en aluminium ou en cuivre, chauffant en fonctionnement, la mise en place d'un isolant entre les différents tours de conducteurs poserait des problèmes d'évacuation de chaleur.
Les conducteurs électriques en matériau supraconducteur peuvent présenter également l'avantage par rapport aux conducteurs électriques en aluminium ou en cuivre d'être flexibles. L'aluminerie 1 peut ainsi comprendre un ou plusieurs circuits électriques secondaires 16, 17 comportant un conducteur électrique en matériau supraconducteur présentant au moins une partie courbe. Cela permet de contourner les obstacles présents à l'intérieur de l'aluminerie 1, par exemple un pilier, comme cela est visible sur la figure 10.
Cela permet également d'ajuster localement la compensation du champ magnétique dans l'aluminerie 1 en ajustant localement la position du conducteur électrique en matériau supraconducteur du ou des circuits électriques secondaires 16, 17, comme le permet la partie courbe 16a du circuit électrique secondaire 16 de l'aluminerie 1 visible sur la figure 10. Cette flexibilité permet de déplacer le conducteur électrique en matériau supraconducteur par rapport à sa position initiale, pour corriger le champ magnétique en s'adaptant à l'évolution de l'aluminerie 1 (par exemple l'augmentation de l'intensité du courant d'électrolyse 11, ou pour utiliser les résultats des plus récents calculs de correction magnétique qui sont permis par les nouvelles puissances des ordinateurs et les connaissances générales sur le sujet).
11 est à noter que les conducteurs électriques en matériau supraconducteur du ou des circuits électriques secondaires 16, 17 peuvent être disposés sous les cuves 2 d'électrolyse. En particulier, ils peuvent être enterrés. Cette disposition est rendue possible par le faible encombrement des conducteurs électriques en matériau supraconducteur d'une part, et par le fait qu'ils ne chauffent pas d'autre part. Cette disposition serait difficilement réalisable avec des conducteurs électriques en aluminium ou en cuivre, car leur taille est plus importante à intensité égale, et parce qu'ils chauffent et nécessitent en conséquence d'être refroidis (couramment au contact de l'air et /ou avec des moyens de refroidissements spécifiques). La figure 11 montre, pour une même implantation d'aluminerie 1, les emplacements possibles de circuits électriques secondaires 16, 17 avec des conducteurs électriques en matériau supraconducteur et de
14 circuits électriques secondaires 16', 17' utilisant des conducteurs électriques en aluminium. Les circuits électriques secondaires 16', 17' sont placés de part et d'autre d'une cuve 2 d'électrolyse. Comme cela est illustré à la figure 11, les circuits électriques secondaires 16', 17' empêchent l'accès aux cuves 2 d'électrolyse, par exemple pour des opérations de maintenance. Ils ne peuvent cependant être placés sous les cuves d'électrolyse, comme les circuits électriques secondaires 16, 17 avec des conducteurs électriques en matériau supraconducteur, car ils présentent un encombrement plus important et nécessitent d'être refroidis. Les circuits électriques secondaires 16, 17 utilisant des conducteurs électriques en matériau supraconducteur peuvent en revanche être disposés sous les cuves 2 d'électrolyse. L'accès aux cuves 2 d'électrolyse n'est ainsi pas limité.
Selon un mode particulier de réalisation de l'aluminerie 1 selon l'invention, dont un exemple est représenté sur la figure 6, les conducteurs électriques en matériau supraconducteur peuvent être contenus en partie à l'intérieur d'une enceinte 20 formant bouclier magnétique. Cette enceinte 20 peut être un tube métallique, par exemple en acier. Elle permet de réduire sensiblement le champ magnétique à l'extérieur de ce bouclier magnétique. Cela permet ainsi de créer, aux endroits où a été placée cette enceinte 20, des zones de passage, notamment de véhicules dont le fonctionnement aurait été perturbé par le champ magnétique émanant des conducteurs électriques en matériau supraconducteur. Cela permet ainsi de diminuer le coût de ces véhicules (qui doivent sinon être équipés de protection). Cette enceinte 20 peut être avantageusement placée autour des conducteurs électriques en matériau supraconducteur situés en bout de file F, comme cela est illustré sur la figure 6.
L'utilisation d'une enceinte 20 protectrice, n'est pas possible avec les conducteurs électriques classiques de l'art antérieur en aluminium ou même en cuivre. Ces conducteurs électriques en aluminium présentent effectivement une section de dimensions importantes, de l'ordre de 1m par 1 m, contre 25 cm de diamètre pour un conducteur électrique en matériau supraconducteur. Surtout, les conducteurs électriques en aluminium chauffent en fonctionnement. L'utilisation d'une telle enceinte 20 formant bouclier magnétique ne permettrait pas une évacuation correcte de la chaleur générée.
L'enceinte 20 formant bouclier magnétique peut également être formée de matériau supraconducteur maintenu en dessous de sa température critique. Les matériaux supraconducteurs forment des écrans magnétiques très performants lorsque maintenus en dessous de leur température critique.

Avantageusement, cette enceinte en matériau supraconducteur formant bouclier magnétique peut être disposée à l'intérieur de l'enveloppe cryogénique du cable formant le conducteur électrique en matériau supraconducteur. L'enceinte 20 est ainsi au plus près des conducteurs électriques en matériau supraconducteur et la masse de matériau 5 supraconducteur de l'enceinte est minimisée et le matériau supraconducteur de l'enceinte est maintenu en dessous de sa température critique sans qu'il soit nécessaire de disposer d'un autre système de refroidissement spécifique.
Selon une variante, l'enceinte formant bouclier magnétique en matériau supraconducteur peut être réalisé indépendemment du cable formant le conducteur 10 électrique en matériau supraconducteur, autour de ce cable. C'est notamment le cas lorsqu'une telle enceinte doit être installée autour d'un conducteur électrique en matériau supraconducteur déjà installé. L'enceinte formant bouclier magnétique en matériau supraconducteur comporte alors son système de refroidissement propre.
Il est aussi à noter que les conducteurs électriques en matériau supraconducteur
15 présentent une masse par mètre qui peut être vingt fois inférieure à
celle d'un conducteur électrique en aluminium pour une intensité équivalente. Le coût des supports des conducteurs électriques en matériau supraconducteur est donc moindre et leur installation est facilitée.
Le circuit électrique principal 15 de l'aluminerie 1 peut également comprendre un ou plusieurs conducteurs électriques en matériau supraconducteur. Ainsi, les conducteurs 14 électriques de liaison reliant électriquement les files F de la série entre elles peuvent être en matériau supraconducteur, comme cela est représenté sur la figure 8. Les conducteurs 13 électriques de liaison, reliant les extrémités de la série de cuves 2 d'électrolyse aux pôles de la station 12 d'alimentation du circuit principal 15, peuvent également être en matériau supraconducteur, comme cela est représenté sur la figure 9.
Dans une aluminerie classique, les conducteurs 14 électriques de liaison reliant deux files F mesurent de 30m à 150m selon si les deux files F qu'ils relient se trouvent dans le même batiment ou dans deux batiments séparés pour des raisons d'interaction magnétique entre ces deux files F. Les conducteurs 13 électriques de liaison reliant les extrémités de la série aux pôles de la station 12 d'alimentation mesurent généralement de 20m à 1km selon le positionnement de cette station 12 d'alimentation. En raison de ces longueurs et de l'intensité du courant électrique parcourant ces conducteurs, on comprendra que l'utilisation de conducteurs électriques en matériau supraconducteur à
ces emplacements peut permettre de réaliser des économies d'énergie. Le faible
16 encombrement de tels conducteurs en matériau supraconducteur est par ailleurs apprécié.
Comme représenté sur les figures 8 et 9, l'utilisation de conducteurs électriques de liaison 14 et/ou 13 en matériau supraconducteur permet surtout selon un mode de réalisation de l'invention de les placer à l'intérieur d'une enceinte 20 formant bouclier magnétique. Cela permet de créer des zones de passage pour des engins ou véhicules en extrémités de file. Cela permet surtout une stabilisation des cuves d'électrolyse en annulant, controlant et/ou ajustant localement les champs magnétiques générés par ces conducteurs électriques de liaison.
11 résulte de l'utilisation de telles enceintes 20 formant bouclier magnétique autour des conducteurs électriques de liaison en extrémité de file la possibilité de diminuer la longueur des conducteurs et leur encombrement.
De façon classique, les conducteurs électriques de liaison reliant les extrémités de deux files, présentent une forme de U avec les deux branches allongées, de plusieurs dizaines de mètres, de sorte à ce que le champs magnétique généré par l'assise du U
n'impacte pas de façon trop importante la stabilité magnétique et le fonctionnement des cuves disposées en extrémité de file. Un tel éloignement de cette assise du U
engendre un cout important du conducteur, un cout important du batiment et une perte de productivité pour une surface donnée. Le fait de pouvoir placer de tels conducteurs électriques de liaison à l'intérieur d'enceintes formant bouclier magnétique permet de diminuer la longueur de ces branches du U car le champs magnétique généré par l'assise du U n'est alors plus préjudiciable au fonctionnement des cuves d'extrémité de file.
En revanche, du fait de la longueur moins importante des conducteurs 11 électriques de cuve à cuve, et des pertes énergétiques aux jonctions, l'utilisation d'un conducteur électrique en matériau supraconducteur pour conduire le courant d'électrolyse d'une cuve 2 à une autre n'est pas économiquement intéressant.
L'aluminerie 1 peut également comporter une unique file F de cuves 2 d'électrolyse, comme cela est représenté sur la figure 12 et sur la figure 13. C'est le cas par exemple d'une aluminerie 1 en cours de construction avec une production démarrée alors que la moitié des cuves 2 d'électrolyse a été construite. Cela peut également être le cas lorsque la place disponible n'offre pas la possibilité de mettre en place plusieurs files F de cuves 2 d'électrolyse.
Dans l'exemple de la figure 12, l'extrémité de la file F de cuves 2 d'électrolyse est reliée électriquement à la station 12 d'alimentation en courant d'électrolyse 11 par le
17 conducteur 13 électrique qui est en matériau supraconducteur. Avantageusement, une enceinte 20 formant bouclier magnétique enveloppe le conducteur 13 électrique afin de protéger l'unique file F des effets du champ magnétique généré par le passage du courant d'électrolyse 11 dans le conducteur 13 électrique.
Dans l'exemple de la figure 13, l'aluminerie 1 comprend une unique file F de cuves 2 d'électrolyse. Cette file F de cuves 2 d'électrolyse est parcourue par un courant d'électrolyse 11 de haute intensité. A l'extrémité de la file F de cuves 2 opposée à
l'extrémité de la file F reliée à la station 12 d'alimentation, le circuit électrique principal 15 présente un noeud et le circuit électrique se sépare en deux circuits avec chacun son intensité. De manière avantageuse, les conducteurs électriques acheminant le courant (d'intensité égale à la moitié de celle du courant d'électrolyse 11) depuis le noeud vers la station 12 d'alimentation sont en matériau supraconducteur. Ces conducteurs électriques en matériau supraconducteur peuvent longer à plusieurs reprises un des côtés de la file F
de cuves 2 d'électrolyse (trois fois dans l'exemple de la figure 13). Lors de leur premier et de leur troisième passage le long de la file F de cuves 2 d'électrolyse, ces conducteurs électriques en matériau supraconducteur sont contenus dans une enceinte 20 formant bouclier magnétique. Lors de leur deuxième passage le long de la file de cuves d'électrolyse, ces conducteurs électriques en matériau supraconducteur ne sont pas contenus dans une enceinte 20 formant bouclier magnétique. Ils permettent ainsi de générer un champ magnétique compensant les effets indésirables du champ magnétique généré par la circulation du courant d'électrolyse 11 dans la file F de cuves 2 d'électrolyse sur les liquides contenus dans les cuves 2 d'électrolyse.
Ainsi, l'utilisation de conducteurs électriques en matériau supraconducteur dans une aluminerie 1 peut s'avérer avantageux pour des longueurs de conducteurs suffisamment élevées. L'utilisation des conducteurs électriques en matériau conducteur est particulièrement avantageuse pour des circuits électriques secondaires 16, 17 destinés à
réduire l'effet du champ magnétique cuve à cuve au moyen de boucles du type décrit dans le document de brevet EP0204647 ; lorsque l'intensité du courant circulant dans le circuit électrique principal 15 est particulièrement élevée, supérieure à
350kA, et lorsque la somme des intensités circulant dans le circuit électrique secondaire, dans le même sens que le courant circulant dans le circuit principal, est compris entre 20%
et 100% du courant du circuit principal, et de préférence de 40% à 70%.
Les modes de réalisation décrits ne sont bien entendu pas exclusifs les uns des autres et peuvent être combinés afin de renforcer par synergie l'effet technique obtenu.
Ainsi, il est possible de prévoir un circuit électrique principal 15 comprenant à la fois un conducteur 14 électrique de liaison de file à file en matériau supraconducteur disposé à
18 l'intérieur d'une enceinte formant bouclier magnétique, des conducteurs 13 électriques de liaison reliant les extrémités d'une série aux pôles de la station 12 d'alimentation en matériau supraconducteur disposés à l'intérieur d'enceintes formant bouclier magnétique, et un ou plusieurs circuits électriques secondaires 16, 17 comprenant également des conducteurs électriques en matériau supraconducteur réalisant plusieurs tours en série disposés en partie à l'intérieur d'enceintes formant bouclier magnétique.
Enfin, l'invention n'est nullement limitée aux modes de réalisation décrits ci-dessus, ces modes de réalisation n'ayant été donnés qu'à titre d'exemples. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par la substitution d'équivalents techniques, sans pour autant sortir du domaine de protection de l'invention.
En particulier, l'invention peut s'étendre à des alumineries avec électrolyse avec des anodes inertes.
Elle est aussi généralisable à tout autre type de boucles, par exemple à un type de boucles décrit dans les documents de brevet CA2585218, FR2868436, et EP1812626.

Claims (17)

1. Aluminerie (1) comprenant :
(i) une série de cuves (2) d'électrolyse, destinées à la production d'aluminium, formant une ou plusieurs files (F), (ii) une station (12) d'alimentation destinée à alimenter la série de cuves (2) d'électrolyse en courant d'électrolyse (11), ladite station (12) d'alimentation électrique comprenant deux pôles, (iii) un circuit électrique principal (15), destiné à être parcouru par le courant d'électrolyse (11), présentant deux extrémités reliées chacune à l'un des pôles de la station d'alimentation (12), (iv) au moins un conducteur électrique, destiné à être parcouru par un courant électrique, en matériau supraconducteur, caractérisée en ce que le conducteur électrique en matériau supraconducteur est placé en tout ou partie à l'intérieur d'une enceinte (20) formant bouclier magnétique.
2. Aluminerie selon la revendication 1, caractérisée en ce que l'enceinte (20) est formée en matériau supraconducteur.
3. Aluminerie (1) selon l'une des revendications 1 à 2, caractérisée en ce que le conducteur électrique en matériau supraconducteur est formé par un câble comprenant une âme centrale en cuivre ou en aluminium, au moins une fibre en matériau supraconducteur et une enveloppe cryogénique.
4. Aluminerie (1) selon la revendication 3, caractérisée en ce que l'enveloppe cryogénique est parcourue par un fluide de refroidissement.
5. Aluminerie (1) selon la revendication 4, caractérisée en ce que le fluide de refroidissement est de l'azote liquide et/ou de l'hélium.
6. Aluminerie selon l'une des revendications 3 à 5, caractérisée en ce que l'enceinte (20) est formée en matériau supraconduteur et est disposée à l'intérieur de l'enveloppe cryogénique du cable formant le conducteur électrique en matériau supraconducteur.
7. Aluminerie (1) selon l'une des revendications 1 à 6, caractérisée en ce que ledit conducteur électrique en matériau supraconducteur s'étend sur une longueur égale ou supérieure à dix mètres.
8. Aluminerie (1) selon l'une des revendications 1 à 7, caractérisée en ce que le conducteur électrique en matériau supraconducteur est flexible et présente au moins une partie courbe.
9. Aluminerie (1) selon l'une des revendications 1 à 8, caractérisée en ce qu'elle comprend en outre :
(iv) au moins un circuit électrique secondaire (16, 17), destiné à être parcouru par un courant (I2, I3), longeant la ou les files (F) de cuves (2) d'électrolyse, et en ce que ledit conducteur électrique en matériau supraconducteur fait partie du circuit électrique secondaire (16, 17) et est placé en partie à l'intérieur de l'enceinte (20) formant bouclier magnétique.
10. Aluminerie (1) selon la revendication 9, caractérisée en ce que le conducteur électrique en matériau supraconducteur du circuit électrique secondaire (16, 17) longe au moins deux fois la ou les files (F) de cuves (2) d'électrolyse, de manière à
réaliser plusieurs tours en série.
11. Aluminerie (1) selon la revendication 10, caractérisée en ce que le conducteur électrique en matériau supraconducteur du circuit électrique secondaire (16, 17) comporte une enveloppe cryogénique unique, à l'intérieur de laquelle passent côte à
côte les tours réalisés par ledit conducteur électrique en matériau supraconducteur.
12. Aluminerie (1) selon l'une des revendications 9 à 11, caractérisée en ce que le circuit électrique secondaire (16, 17) comprend deux extrémités, chaque extrémité dudit circuit électrique secondaire (16, 17) étant reliée à un pôle électrique d'une station (18) d'alimentation distincte de la station (12) d'alimentation du circuit électrique principal (15).
13. Aluminerie (1) selon l'une des revendications 1 à 12, caractérisée en ce que le circuit électrique principal (15) comprend au moins un conducteur électrique en matériau supraconducteur placé en tout ou partie à l'intérieur de l'enceinte (20) formant bouclier magnétique.
14. Aluminerie (1) selon la revendication 13, caractérisée en ce que la série de cuves (2) d'électrolyse comprend au moins deux files (F) de cuves (2) d'électrolyse et en ce que le conducteur électrique en matériau supraconducteur du circuit électrique principal (15) placé en tout ou partie à l'intérieur de l'enceinte (20) formant bouclier magnétique relie deux files (F) de cuves (2) d'électrolyse.
15. Aluminerie (1) selon la revendication 13 ou 14, caractérisée en ce que le circuit électrique principal (15) comprend deux conducteurs électriques de liaison reliant chacun un pôle de la station (12) d'alimentation dudit circuit électrique principal (15) à une extrémité de la série de cuves (2) d'électrolyse et en ce qu'au moins un des deux conducteurs électriques reliant un pôle de la station (12) d'alimentation à
une extrémité de la série de cuves (2) d'électrolyse est en matériau supraconducteur et placé
en tout ou partie à l'intérieur de l'enceinte (20) formant bouclier magnétique.
16. Aluminerie (1) selon la revendication 13, caractérisée en ce que la série de cuves (2) d'électrolyse comprend une unique file (F) et en ce que le conducteur électrique en matériau supraconducteur du circuit électrique principal (15) placé en tout ou partie à
l'intérieur de l'enceinte (20) formant bouclier magnétique relie une extrémité
de la file (F) à
un pôle de la station (12) d'alimentation dudit circuit électrique principal (15).
17. Aluminerie (1) selon l'une des revendications 1 à 16, caractérisée en ce que l'enceinte (20) formant bouclier magnétique est localisée à au moins une des extrémités de la ou des files (F) de cuves (2) d'électrolyse.
CA2841847A 2011-07-12 2012-07-10 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur Abandoned CA2841847A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR1102199 2011-07-12
FR1102198 2011-07-12
FR1102199A FR2977898A1 (fr) 2011-07-12 2011-07-12 Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
FR1102198A FR2977899A1 (fr) 2011-07-12 2011-07-12 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
PCT/FR2012/000283 WO2013007894A2 (fr) 2011-07-12 2012-07-10 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur

Publications (1)

Publication Number Publication Date
CA2841847A1 true CA2841847A1 (fr) 2013-01-17

Family

ID=46717874

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2841847A Abandoned CA2841847A1 (fr) 2011-07-12 2012-07-10 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
CA2841300A Active CA2841300C (fr) 2011-07-12 2012-07-10 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA2841300A Active CA2841300C (fr) 2011-07-12 2012-07-10 Aluminerie comprenant des conducteurs electriques en materiau supraconducteur

Country Status (16)

Country Link
US (2) US9598783B2 (fr)
EP (2) EP2732076A2 (fr)
CN (2) CN103687982B (fr)
AR (2) AR087124A1 (fr)
AU (2) AU2012282374A1 (fr)
BR (2) BR112014000760A2 (fr)
CA (2) CA2841847A1 (fr)
DK (1) DK179966B1 (fr)
EA (1) EA201490256A1 (fr)
IN (1) IN2014CN00886A (fr)
MY (1) MY166183A (fr)
NO (1) NO2732075T3 (fr)
RU (2) RU2014104795A (fr)
SI (1) SI2732075T1 (fr)
TR (1) TR201807790T4 (fr)
WO (2) WO2013007893A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009564A1 (fr) * 2013-08-09 2015-02-13 Rio Tinto Alcan Int Ltd Aluminerie comprenant un circuit electrique de compensation
MY183698A (en) * 2015-02-09 2021-03-08 Rio Tinto Alcan Int Ltd Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter
FR3042509B1 (fr) * 2015-10-15 2017-11-03 Rio Tinto Alcan Int Ltd Serie de cellules d'electrolyse pour la production d'aluminium comportant des moyens pour equilibrer les champs magnetiques en extremite de file
FR3115942A1 (fr) 2020-11-05 2022-05-06 Nexans Boîtier cryostat pour circuit câblé supraconducteur, et circuits câblés supraconducteurs associés
FR3116147B1 (fr) 2020-11-10 2023-04-07 Nexans Dispositif de connexion électrique pour fils supraconducteurs

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB797428A (en) * 1954-03-10 1958-07-02 Vaw Ver Aluminium Werke Ag Plant for carrying out fusion electrolysis
FR2425482A1 (fr) * 1978-05-11 1979-12-07 Pechiney Aluminium Procede de compensation du champ magnetique induit par la file voisine dans les series de cuves d'electrolyse a haute intensite
US4222830A (en) * 1978-12-26 1980-09-16 Aluminum Company Of America Production of extreme purity aluminum
FR2469475A1 (fr) 1979-11-07 1981-05-22 Pechiney Aluminium Procede et dispositif pour la suppression des perturbations magnetiques dans les cuves d'electrolyse a tres haute intensite placees en travers
FR2583069B1 (fr) 1985-06-05 1987-07-31 Pechiney Aluminium Dispositif de connexion entre cuves d'electrolyse a tres haute intensite, pour la production d'aluminium, comportant un circuit d'alimentation et un circuit independant de correction du champ magnetique
DE69532052T2 (de) 1994-09-08 2004-08-19 Moltech Invent S.A. Mit versenkten Nuten drainierte horizontale Kathodenoberfläche für die Aluminium Elektrogewinnung
US5831489A (en) * 1996-09-19 1998-11-03 Trw Inc. Compact magnetic shielding enclosure with high frequency feeds for cryogenic high frequency electronic apparatus
US6358393B1 (en) 1997-05-23 2002-03-19 Moltech Invent S.A. Aluminum production cell and cathode
FR2868436B1 (fr) 2004-04-02 2006-05-26 Aluminium Pechiney Soc Par Act Serie de cellules d'electrolyse pour la production d'aluminium comportant des moyens pour equilibrer les champs magnetiques en extremite de file
NO322258B1 (no) 2004-09-23 2006-09-04 Norsk Hydro As En fremgangsmate for elektrisk kobling og magnetisk kompensasjon av reduksjonsceller for aluminium, og et system for dette
WO2006098068A1 (fr) * 2005-03-14 2006-09-21 Sumitomo Electric Industries, Ltd. Cable supraconducteur
CN101228595B (zh) * 2006-04-10 2014-04-16 住友电气工业株式会社 超导电缆
RU2316619C1 (ru) 2006-04-18 2008-02-10 Общество с ограниченной ответственностью "Русская инжиниринговая компания" Устройство для компенсации магнитного поля, наведенного соседним рядом последовательно соединенных электролизеров большой мощности
EP2050104B1 (fr) 2006-07-21 2013-01-02 American Superconductor Corporation Conducteurs de fort courant, compacts, souples, contenant des bandes supraconductrices à haute température
NO332480B1 (no) 2006-09-14 2012-09-24 Norsk Hydro As Elektrolysecelle samt fremgangsmate for drift av samme
CN101255567B (zh) * 2007-12-17 2010-08-25 中国铝业股份有限公司 一种优化铝电解槽磁场的方法
US8478374B2 (en) 2008-03-28 2013-07-02 American Superconductor Corporation Superconducting cable assembly and method of assembly
US9431864B2 (en) * 2011-03-15 2016-08-30 Siemens Energy, Inc. Apparatus to support superconducting windings in a rotor of an electromotive machine

Also Published As

Publication number Publication date
RU2014104795A (ru) 2015-08-20
EP2732076A2 (fr) 2014-05-21
CA2841300C (fr) 2019-04-09
EA201490256A1 (ru) 2014-04-30
WO2013007894A2 (fr) 2013-01-17
AR087122A1 (es) 2014-02-12
CN103687982B (zh) 2016-05-11
US9598783B2 (en) 2017-03-21
TR201807790T4 (tr) 2018-06-21
BR112014000760A2 (pt) 2017-02-14
BR112014000573A2 (pt) 2017-02-14
RU2764623C2 (ru) 2022-01-18
AU2012282373A1 (en) 2014-01-30
BR112014000573B1 (pt) 2020-09-24
CA2841300A1 (fr) 2013-01-17
AR087124A1 (es) 2014-02-12
IN2014CN00886A (fr) 2015-04-03
MY166183A (en) 2018-06-07
SI2732075T1 (en) 2018-06-29
WO2013007894A3 (fr) 2013-03-28
WO2013007893A2 (fr) 2013-01-17
DK179966B1 (en) 2019-11-11
DK201370794A (en) 2013-12-19
NO2732075T3 (fr) 2018-08-11
CN103649375A (zh) 2014-03-19
US20140209457A1 (en) 2014-07-31
NZ619717A (en) 2015-10-30
EP2732075B1 (fr) 2018-03-14
CN103687982A (zh) 2014-03-26
RU2018140052A (ru) 2020-04-30
AU2012282373B2 (en) 2016-09-29
EP2732075A2 (fr) 2014-05-21
WO2013007893A3 (fr) 2013-05-30
US20140138241A1 (en) 2014-05-22
AU2012282374A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
CA2841300C (fr) Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
EP2732074B1 (fr) Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
EP0204647B1 (fr) Dispositif de connexion entre cuves d'électrolyse à tres haute intensité pour la production d'aluminium, comportant un circuit d'alimentation et un circuit indépendant de correction du champ magnétique
EP2104197A1 (fr) Structure de connexion électrique pour élement supraconducteur
EP0167461B1 (fr) Anode carbonée à rondins partiellement rétrécis destinée aux cuves pour la production d'aluminium par électrolyse
CH619006A5 (fr)
CH628188A5 (fr) Machine dynamoelectrique.
KR102155112B1 (ko) 초전도성 케이블의 냉각 방법
EP3030695B1 (fr) Aluminerie comprenant un circuit électrique de compensation
FR2977899A1 (fr) Aluminerie comprenant des conducteurs electriques en materiau supraconducteur
CH641210A5 (fr) Installation de production industrielle d'aluminium comprenant une pluralite de series de cuves d'electrolyse a haute intensite et procede de mise en action de cette installation.
EP3030694B1 (fr) Cuve d'electrolyse destinee a la production d'aluminium et usine d'electrolyse comprenant cette cuve
OA16843A (fr) Aluminerie comprenant des conducteurs électriques en matériau supraconducteur
FR2701157A1 (fr) Liaison d'alimentation pour bobine supraconductrice.
EP3256623B1 (fr) Aluminerie et procédé de compensation d'un champ magnétique créé par la circulation du courant d'électrolyse de cette aluminerie
WO2004006345A3 (fr) Structure de bande conductrice bifilaire d'un supraconducteur haute temperature pour limiter le courant
CH643601A5 (fr) Installation pour la production d'aluminium, comportant des cuves d'electrolyse a haute intensite connectees en serie avec leur champ magnetique vertical symetrique.
OA16842A (fr) Aluminerie comprenant des cuves à sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
EP1155167A1 (fr) Arrangement de cuves d'electrolyse pour la production d'aluminium
OA17793A (fr) Aluminerie comprenant un circuit électrique de compensation
KR101835268B1 (ko) 통전전류 가변형 전력케이블
FR3132603A1 (fr) Installation de production d’hydrogène comprenant des panneaux photovoltaïques
EP0723278A1 (fr) Amenée de courant haute tension entre une application supraconductrice à basse température critique et une extrémité de connexion à température ambiante d'un câble d'énergie haute tension

Legal Events

Date Code Title Description
FZDE Discontinued

Effective date: 20170711