WO2013007233A1 - Zahnringpumpe - Google Patents

Zahnringpumpe Download PDF

Info

Publication number
WO2013007233A1
WO2013007233A1 PCT/DE2012/000650 DE2012000650W WO2013007233A1 WO 2013007233 A1 WO2013007233 A1 WO 2013007233A1 DE 2012000650 W DE2012000650 W DE 2012000650W WO 2013007233 A1 WO2013007233 A1 WO 2013007233A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
port
pump housing
port carrier
wheelset
Prior art date
Application number
PCT/DE2012/000650
Other languages
English (en)
French (fr)
Other versions
WO2013007233A4 (de
Inventor
Andreas Blechschmidt
Original Assignee
Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt filed Critical Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt
Priority to ES12746262.0T priority Critical patent/ES2553790T3/es
Priority to EP12746262.0A priority patent/EP2732164B1/de
Priority to US14/232,007 priority patent/US9309885B2/en
Publication of WO2013007233A1 publication Critical patent/WO2013007233A1/de
Publication of WO2013007233A4 publication Critical patent/WO2013007233A4/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • F04C15/0026Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance

Definitions

  • the invention relates to a gerotor pump, in particular for use in small pump units, which are preferably produced by electric motor operated as a modular pump and used in vehicle and engine.
  • Toothed ring pumps for example in the design of gerotor pumps are used in automotive and engine construction, inter alia, in internal combustion engines as fuel pumps or oil pumps.
  • the wheelset used in gerotor pumps consists of an externally toothed inner rotor and an internally toothed outer rotor, wherein the inner rotor is rotatably connected to the drive shaft and having fewer teeth than the outer rotor, and the outer rotor is rotatably mounted in a cylindrical chamber of the pump housing so that the teeth of the eccentric to the outer rotor mounted inner rotor partially mesh with the teeth of the outer rotor.
  • pressure and suction area of the wheelset kidney-shaped pump chambers are arranged in the pump housing, which are connected via connection channels directly to the pump housing arranged pressure and suction connection lines and ensure that the liquid to be pumped from the suction line via the Wheelset is pressed into pressure connection line.
  • US Pat. No. 7,614,227 B2 describes a hydrostatic drive unit of a lawn tractor based on a gerotor pump and a gerotor motor, in which the oil volume flow from the pump to the hydraulic motor is regulated by means of a rotary control valve in the embodiment of a rotary plate.
  • a stationary bearing plate is disposed between the rotary plate and the gerotor motor, in the center of a bearing bore, for rotatably supporting the motor shaft, is arranged.
  • kidney-shaped passage openings are arranged in this bearing plate, in the region of the pump chambers of the gerotor motor, so that the bearing plate at the same time takes over the task of a guide body and in connection with the bearing plate adjacent assemblies, according to the solution presented in US 7,614,227 B2, a Regulation of the traction drive of the lawn tractor, ie a regulation of its speed and its direction of travel, can be guaranteed.
  • gerotor pumps used as oil pumps in the internal combustion engines are used there for engine lubrication, which is known e.g. in motor vehicles over a temperature range of minus 40 ° C to the range of hot idling operation of about 160 ° C must be guaranteed.
  • the pump housings are often die-cast aluminum and the gear sets are made of sintered steel, varying over the wide operating range / temperature range of minus 40 ° C to about 160X, due to the different thermal expansion coefficients of aluminum and steel inevitably also the axial play between the gear set and the pump housing as a function of the current operating temperature. In this case occur at low operating temperatures, due to narrow gaps, usually friction losses and high operating temperatures due to large gaps, losses in volumetric efficiency, which can be up to 50% to 60% of the best for each gerotor pump assembly volumetric efficiency.
  • the volumetric efficiency decreases approximately linearly with increasing temperatures.
  • DE 103 31 979 A1 discloses a toothed ring pump used as an oil pump whose axial clearance is optimized by means of spacer elements arranged in the region of the screw connections between the pump cover and the pump flange in that these spacer elements have a lower thermal expansion coefficient than the pump cover, the pump flange and / or the gear set.
  • a design of a gerotor pump with a smaller outer diameter is known from DE 10 2008 054 758 A1.
  • the invention is therefore based on the object to develop a gerotor pump, which eliminates the aforementioned disadvantages of the prior art, and in particular at small, ie also in the outer diameter of the Housing small pumping units, which are preferably operated by electric motor and manufactured as a modular pump that largely the same Ge Reifenohwel be used in geometry, can be used, wherein the to be developed ring gear pump also according to the customer's request in the timing of the pump manufacturing technology should be easily modifiable , so that always a fluidically optimal behavior of the pump according to the invention is ensured, it should be very inexpensive to produce the ring gear pump to be developed even in very small pump sizes, and also with the use of very cost-effective components, such as pump housings made of aluminum and pump steel, even under extreme operating conditions, such as an oil pump in conjunction with an internal combustion engine, ie over the temperature working range of such oil pump, from about - 40 ° C to about + 160 ° C away, always e ensure optimum axial gap (and thereby minimal losses),
  • Figure 1 an exploded view of an inventive
  • Toothed ring pump in the design of a gerotor pump in a perspective view from above, in the longitudinal direction of the drive shaft 7 from the direction of the housing cover 5;
  • Figure 2 is an exploded view of the ring gear pump according to the invention in the design of a gerotor pump in a perspective view from above and from the direction of the pump housing 1;
  • Figure 3 is an exploded view of the ring gear pump according to the invention in the design of a gerotor pump in a perspective view from the front, from the direction of the drive shaft 7 and the housing cover 5;
  • Figure 4 an assembly drawing of the invention
  • Figure 5 an assembly drawing of the invention
  • Toothed ring pump in the form of a gerotor pump, in the side view, in partial section with the cutting guide according to Figure 4.
  • the invention ring gear pump with a pump housing 1, one arranged in the pump housing 1 Working space 2 with arranged in the end wall 3 of the working space 2 in the pump housing 1 inlet and Ausström Schemeen, arranged on the pump housing 1, sealed by a seal 4 housing cover 5, arranged with a rotatably mounted in the pump housing 1, mounted in a pump bearing 6 drive shaft 7 at a wheelset 8 is arranged, which consists of a rotatably connected to the drive shaft 7 externally toothed inner rotor 9 and an internally toothed outer rotor 10 which is rotatably mounted in a rotor bearing 1 1 in the cylindrical working space 2 of the pump housing 1 such that the teeth of the eccentrically to the outer rotor 10 mounted inner rotor 9 in regions with the teeth of the outer rotor 10 mesh with one or both sides in the suction region of the wheelset 8 arranged / arranged Saugniere / n 12 and one or both sides in the pressure range of the wheelset 8 arranged
  • slidably mounted port carrier 18 is arranged, in which both a suction kidney 12 and a pressure kidney 13 is arranged and both each separated from one another, the port carrier 18 over the entire thickness of the port carrier 18, this in the form of an inlet chamber 19 connected to the suction kidney 12, as well as on the other hand connected to the pressure kidney 13 Ausströmströmhunt 20th penetrate, wherein the thickness of the port carrier 18 corresponds approximately to the thickness of the wheelset 8 and this can also exceed by up to 20%, and the coefficient of thermal expansion of the port carrier 18 is about 70% to 120% higher than the thermal expansion coefficient of the pump housing 1, and that the drive shaft 7, which is non-rotatably connected to the inner rotor 9, by no means protrudes into (or is supported in) the port carrier 18.
  • the port carrier 18 is wear-resistant on the end face adjacent to the wheelset 8 or is wear-resistant coated, or that a sliding plate 25 rotatably connected to the port carrier 18 is arranged between the wheelset 8 and the port carrier 18, whereby between the wheelset 8 and the port carrier 18 in addition to the friction losses and the wear is minimized, so that by means of the solution according to the invention a long service life can be ensured with high efficiency.
  • FIG 1 is shown as one of the possible designs of this feature, arranged between the wheelset 8 and the port carrier 18 sliding plate 25, wherein on the sliding plate 25, a latching nose 26 is arranged, which engages positively with a arranged on the port carrier 18 locking groove 27 in operative connection , And thereby the sliding plate 25 rotatably connected to the port carrier 18.
  • the sliding plate 25 is reduced in its flexural rigidity, thereby better applying and adapting to the wheelset 8 and the port support 18 is possible. simultaneously can be achieved with the shaft guide bore 28, a slight projection of the drive shaft 7.
  • the housing cover 5 via arranged in the pump housing 1 positioning pins 21 and the housing cover 5 associated Positionierkerben 22 against rotation on the pump housing 1, and the port carrier 18 by means of eccentrically arranged in the port carrier 18 pin guide bore 24 and one in the end wall 3 of the working space 2 of Pin guide bore 24 associated arranged guide pin 23 is axially displaceably mounted in the pump housing 1.
  • This arrangement of the invention allows in connection with the inventive arrangement of the port support 18 in the axial direction next to the wheelset 8 of the ring gear pump according to the invention, since the port carrier 18 the inflow and outflow of the pump in its functional geometry maps that in conjunction with the invention, outer cylindrical geometry of the port carrier 18 this easily rotated within certain limits in the pump housing 1, and exactly, eg by guide pins 23 in the pump housing 1, can be positioned securely.
  • the timing of the pump to the particular application of the pump can be optimized fluidically.
  • the port carrier 18 according to the invention also serves to simultaneously ensure optimization of the axial gap.
  • the port carrier 18 whose coefficient of thermal expansion preferably has twice the value of the thermal expansion coefficient of the housing material.
  • the thickness of the port carrier 18 corresponds approximately to the thickness of the wheelset. 8 However, in order to effect an overcompensation of the axial gap with correspondingly desired axial basic play between the wheelset 8 and the port carrier 8, the thickness of the port carrier 18 can be increased, for example, to approximately 120% of the thickness of the wheelset 8.
  • thermoset materials which are e.g. by targeted admixture of friction reducing substances significantly improve the running behavior of the adjacent arranged wheelset.
  • the port carrier 18 is made of sintered and resin-bound sodium chlorides.
  • a predetermined axial thermal expansion of an aluminum pump housing 1 may with a coefficient of thermal expansion for aluminum of about 23 x 10 "6 K" through a port support of sintered and resin-bound sodium chlorides, wherein a thermal expansion coefficient for sodium chloride of about 40 ... 44 x 10 "6 K " 1 , effectively, ie, compensated for with a relatively small thickness dimension of a port carrier 18 made of sintered and resin-bound sodium chloride.
  • the axial gaps depending on the respective operating temperature are always optimized in the entire temperature working range of the pump, i. it is cost effective to ensure optimal dynamic axial gap compensation.
  • the axial gaps are larger at low temperatures and at higher temperatures by significantly greater length expansion of the port carrier 18 to reduce the axial play.
  • Another advantage of the solution according to the invention consists in the fact that in the Axialspaltkompensation invention presented here, the wheelset 8 remains free of axial loads, so that the resulting friction moments are avoided, which inevitably always lead to efficiency losses.
  • the inventively desired temperature-compensating effect of the inventively placed in the axial direction next to the wheelset 8 invention port carrier 18 causes temperature increase and consequent axial growth of the working space 2 in the pump housing 1, in which the wheelset 8 and the port support 18 are housed, that by a clear higher thermal expansion of the port support 18 according to the invention, the axial growth of the working space 2 is balanced with simultaneous attention to the growth of the wheelset 8.

Abstract

Die Erfindung betrifft eine Zahnringpumpe, insbesondere für den Einsatz in kleinen Pumpenaggregaten, die vorzugsweise elektromotorisch betrieben, als Baukastenpumpen hergestellt, und im Fahrzeug- und Motorenbau eingesetzt werden. Der Erfindung liegt die Aufgabe zugrunde eine Zahnringpumpe zu entwickeln, die bei im Außendurchmesser des Gehäuses klein bauenden Pumpenaggregaten eingesetzt werden kann, und die entsprechend des jeweiligen Kundenwunsches in den Steuerzeiten der Pumpe fertigungstechnisch einfach modifizierbar ist, und die auch bei Verwendung von sehr kostengünstigen Baugruppen, wie Pumpengehäusen aus Aluminium und Pumpenrädern aus Stahl, selbst unter den extremen Einsatzbedingungen einer Ölpumpe in Verbindung mit einem Verbrennungsmotor stets einen optimalen Axialspalt gewährleistet. Die erfindungsgemäße Zahnringpumpe zeichnet sich insbesondere dadurch aus, dass das Pumpenlager (6) im Gehäusedeckel (5) angeordnet ist, und dass im Pumpengehäuse (1) zwischen dem Laufradsatz (8) und der Stirnwand (3) des Arbeitsraumes (2) verdrehsicher ein in Richtung der Antriebswelle (7) verschiebbar gelagerter Portträger (18) angeordnet ist, in dem sowohl eine Saugniere (12), wie auch eine Druckniere (13) angeordnet sind, welche beide jeweils voneinander getrennt den Portträger (18) über die gesamte Breite des Portträgers (18) durchdringen, wobei die Dicke des Portträgers (18) in etwa der Dicke des Laufradsatzes (8) entspricht, diese aber auch um bis zu 20% überragen kann, und der Wärmeausdehnungskoeffizient des Portträgers (18) etwa um 70% bis 120% über dem Wärmeausdehnungskoeffizienten des Pumpengehäuses (1) liegt, und dass die drehfest mit dem Innenrotor (9) verbundene Antriebswelle (7) keinesfalls in den Portträger (18) hineinragt, und dass der Portträger (18) an der dem Laufradsatz (8) benachbarten Stirnseite verschleißfest ausgebildet, bzw. beschichtet ist, und/oder dass zwischen dem Laufradsatz (8) und dem Portträger (18) ein drehfest mit dem Portträger verbundenes Gleitblech (25) angeordnet ist.

Description

Zahnringpumpe
Die Erfindung betrifft eine Zahnringpumpe, insbesondere für den Einsatz in kleinen Pumpenaggregaten, die vorzugsweise elektromotorisch betrieben als Baukastenpumpen hergestellt und im Fahrzeug- und Motorenbau eingesetzt werden.
Zahnringpumpen, beispielsweise in der Bauform von Gerotorpumpen werden im Fahrzeug- und Motorenbau unter anderem bei Verbrennungsmotoren als Kraftstoffpumpen oder als Ölpumpen eingesetzt.
Der in Gerotorpumpen eingesetzte Laufradsatz, besteht aus einem außenverzahnten Innenrotor und einem innenverzahnten Außenrotor, wobei der Innenrotor drehfest mit der Antriebswelle verbunden ist und weniger Zähne als der Außenrotor aufweist, und der Außenrotor drehbar in einer zylindrischen Kammer des Pumpengehäuses so gelagert ist, dass die Zähne des exzentrisch zum Außenrotor gelagerten Innenrotors bereichsweise mit den Zähnen des Außenrotors kämmen. Im Druck- und Saugbereich des Laufradsatzes sind im Pumpengehäuse nierenförmige Pumpenkammern (Druck- und Saugniere/n) angeordnet, welche über Anschlusskanäle direkt mit am Pumpengehäuse angeordneten Druck- und Sauganschlussleitungen in Verbindung stehen und gewährleisten, dass die zu pumpende Flüssigkeit von der Sauganschlussleitung über den Laufradsatz in Druckanschlussleitung gepresst wird.
In der US 7,614,227 B2 wird eine hydrostatische Antriebseinheit eines Rasentraktors, basierend auf einer Gerotorpumpe und einem Gerotormotor vorbeschrieben, bei der der Ölvolumenstrom von der Pumpe zum Hydromotor mittels eines Drehsteuerventils in der Ausführungsform einer Drehplatte geregelt wird. Bei dieser in der US 7,614,227 B2 offenbarten Bauform ist zwischen der Drehplatte und dem Gerotormotor eine stationäre Lagerplatte angeordnet, in der mittig eine Lagerbohrung, zur drehbaren Lagerung der Motorwelle, angeordnet ist. Zudem sind in dieser Lagerplatte, im Bereich der Pumpenkammern des Gerotormotors, zwei nierenförmige Durchlassöffnungen angeordnet, so dass die Lagerplatte gleichzeitig die die Aufgabe eines Leitkörper übernimmt und in Verbindung mit den der Lagerplatte benachbarten Baugruppen, gemäß der in der US 7,614,227 B2 vorgestellten Lösung, eine Regelung des Fahrantriebes des Rasentraktors, d.h. eine Regelung seiner Geschwindigkeit und seiner Fahrtrichtung, gewährleistet werden kann.
Die in den Verbrennungsmotoren als Ölpumpen eingesetzten Gerotorpumpen dienen dort der Motorschmierung, welche z.B. bei Kraftfahrzeugen über einen Temperaturbereich von minus 40°C bis in den Bereich des Heißleerlaufbetriebs von ca. 160°C gewährleistet sein muss.
Da fast alle Pumpengehäuse aus Gründen der Kosten- und Gewichtsersparnis aus anderen Materialien gefertigt werden, wie die im jeweiligen Pumpengehäuse angeordnete Zahnradsätze, beispielsweise werden die Pumpengehäuse oftmals aus Aluminium-Druckguss und die Zahnradsätze aus Sinterstahl hergestellt, verändert sich über den großen Arbeitsbereich/Temperaturbereich von minus 40°C bis ca. 160X, aufgrund der unterschiedlichen Wärmeausdehnungskoeffizienten von Aluminium und Stahl zwangsläufig auch das Axialspiel zwischen dem Zahnradsatz und dem Pumpengehäuse in Abhängigkeit von der jeweils aktuellen Betriebstemperatur. Dabei treten bei niedrigen Betriebstemperaturen, infolge enger Spaltmaße, zumeist Reibungsverluste und bei hohen Betriebstemperaturen, infolge zu großer Spaltmaße, Verluste im volumetrischen Wirkungsgrad auf, die bis zu 50% bis 60 % des für die jeweilige Zahnringpumpenanordnung günstigsten volumetrischen Wirkungsgrades betragen können.
Dabei sinkt der volumetrische Wirkungsgrad mit steigenden Temperaturen etwa linear ab.
Im Stand der Technik wurden daher die unterschiedlichsten Lösungen zur Optimierung des Axialspaltes/Axialspieles vorgeschlagen.
So ist aus der DE 103 31 979 A1 eine als Ölpumpe eingesetzte Zahnringpumpe bekannt, deren Axialspiel mit Hilfe von im Bereich der Schraubverbindungen zwischen dem Pumpendeckel und dem Pumpenflansch angeordneten Distanzelementen dadurch optimiert wird, dass diese Distanzelement einen geringeren Wärmeausdehnungskoeffizienten aufweisen als der Pumpendeckel, der Pumpenflansch und/oder der Zahnradsatz.
Durch den Einbau derartiger Distanzelemente, beispielsweise aus Nickelstahl, verkleinert sich das Axialspiel bei hohen Temperaturen und vergrößert sich bei niedrigen Temperaturen.
Der Einbau derartiger Distanzelemente führt zu einer Erhöhung des volumetrischen Wirkungsgrades gegenüber herkömmlichen Pumpen aus Aluminium-Druckguss mit Zahnradsätzen aus Stahl von bis zu 40 bis 50%, hat dabei jedoch den Nachteil, da die Distanzelemente zwangsläufig außerhalb des Pumpenrotor-Durchmessers und innerhalb des Pumpengehäuses angeordnet werden müssen, dass diese Lösung eine wesentliche radiale Vergrößerung des Bauraumes der jeweiligen Pumpe erfordert.
Eine im Außendurchmesser kleiner bauende Bauform einer Zahnringpumpe ist aus der DE 10 2008 054 758 A1 bekannt. Bei dieser Bauform werden zur Axialspaltminimierung zwei miteinander verbundene, den Gerotor umgebende Gehäuseteile zusätzlich zur Verbindungskraft mittels geeigneter Federelemente gegeneinander verspannt.
Diese Lösung hat jedoch den Nachteil, dass aufgrund der unter Federvorspannung am Rotor anliegenden Bauteile zwangsläufig stirnseitig am Rotor Reibmomente auftreten, die hohe Wirkungsgradverluste zur Folge haben.
Gleichzeitig erhöht sich aufgrund der in den Pumpengehäuse integrierten Bau- und Funktionselemente, wie den Lagerstellen für die Antriebswelle, den im Pumpengehäuse anzuordnenden Saug- und Drucknieren und den zugehörigen Anschlusskanälen zwangsläufig mit kleiner werdender Baugröße der Fertigungs- und Montageaufwand.
Zudem beeinträchtigen mit kleiner werdender Baugröße die Spaltgeometrien überproportional den Wirkungsgrad.
Um nun, insbesondere mit kleiner werdender Baugröße, die Fertigungsgenauigkeit und damit den Fertigungsaufwand zu reduzieren, wurde im Stand der Technik vorgeschlagen diese Gehäuse insbesondere von kleinen Zahnringpumpen modular aufzubauen, d.h. aus mehreren Bauteilen zusammenzufügen.
Bei diesen Bauformen werden zwischen den benachbarten Bauteilen
Elastdomerdichtungen zum Toleranzausgleich angeordnet.
Bei diesen Lösungen mit elastischem Toleranzausgleich treten beim
Verspannen der benachbarten Bauteile zwangsläufig „Restspannungen" auf, welche an den Stirnseiten des Laufradsatzes wiederum zu Reibmomenten führen.
Werden die benachbarten Bauteilen jedoch „gerade" so verspannt, dass zwischen Ihnen noch toleranzbedingte Spalte verbleiben, dann treten mit zunehmender Betriebstemperatur am Laufradsatz stirnseitig Leckageverluste auf, die, wie bereits erläutert, den Wirkungsgrad bei den sehr klein bauenden Zahnringpumpen überproportional stark beeinträchtigen.
Um nun diese, entweder aus Leckageverlusten resultierenden, oder aus der „Verspannung" der Elastdomerdichtungen gegen den Laufradsatz resultierenden Wirkungsgradverluste zu reduzieren, muss zur Axialspaltkompensation, insbesondere bei sehr klein bauenden Zahnringpumpen, zwangsläufig die Fertigungsgenauigkeit und damit der Herstellungsaufwand überproportional erhöht werden.
Zur Axialspaltkompensation werden im Stand der Technik auch beidseitig dem Pumpenlaufradsatz benachbarte, axial verschiebbare Dichtplatten eingesetzt, auf deren dem Pumpenlaufradsatz abgewanden Seite von Elastdomerdichtungen umschlossene Hohlräume angeordnet sind, die dann im Betriebszustand der Pumpe druckbeaufschlagt werden.
Doch bei klein bauenden Zahnringpumpen ist gerade diese Lösung mit beidseitig des Pumpenlaufradsatzes benachbart angeordneten, axial verschiebbaren Dichtplatten nicht geeignet, um mit vertretbaren Fertigungskosten einen optimalen Wirkungsgrad zu' erzielen.
Der Einsatz dieser axial verschiebbaren Dichtplatten mit Druckbeaufschlagung eines von Elastdomerdichtungen umschlossenen, zwischen den benachbarten Bauteilen angeordneten Hohlraumes bewirkt jedoch auch gleichzeitig, dass zudem der Hohlrauminnendruck auch randseitig auf die Elastdomerdichtung einwirkt, so dass mit kleiner werdender Pumpenbaugröße der axiale Toleranzausgleich mit druckbeaufschlagten Elastdomerdichtungen bewirkt, dass das Verhältnis der„Elastdomerdichtungskraft" zur hydraulisch generierten Kraft immer ungünstiger wird, und dass mit kleiner werdender Baugröße der Zahnringpumpen (z.B. bei Gerotorpumpen mit einem Fördervolumenstrom von ca. 8 l/min und Außenabmessungen von ca. 40 mm x 40 mm x 40 mm) die nicht kalkulierbaren „Störkräfte" überwiegen und dann den Gesamtwirkungsgrad Pumpe dominierend beeinflussen.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Zahnringpumpe zu entwickeln, die die vorgenannten Nachteile des Standes der Technik beseitigt, und die insbesondere bei kleinen, d.h. auch bei im Außendurchmesser des Gehäuses klein bauenden Pumpenaggregaten, welche vorzugsweise elektromotorisch betrieben und als Baukastenpumpen derart gefertigt werden, dass weitestgehend in der Geometrie gleiche Gehäuserohteile verwendet werden, eingesetzt werden kann, wobei die zu entwickelnde Zahnringpumpe zudem entsprechend des jeweiligen Kundenwunsches in den Steuerzeiten der Pumpe fertigungstechnisch einfach modifizierbar sei soll, so dass stets ein strömungstechnisch optimales Verhalten der erfindungsgemäßen Pumpe gewährleistet ist, dabei soll die zu entwickelnde Zahnringpumpe auch in sehr kleinen Pumpenbaugrößen sehr kostengünstig herstellbar sein, und zudem auch bei Verwendung von sehr kostengünstigen Baugruppen, wie Pumpengehäusen aus Aluminium und Pumpenrädern aus Stahl, selbst unter extremen Einsatzbedingungen, wie beispielsweise als Ölpumpe in Verbindung mit einem Verbrennungsmotor, d.h. über den Temperaturarbeitsbereich derartiger Ölpumpe, von ca. - 40 °C bis ca. + 160 °C hinweg, stets einen optimalen Axialspalt (und dadurch minimale Verluste) gewährleisten, so dass über den gesamten Drehzahl- und Temperaturbereich derartiger Pumpe hinweg stets ein hoher Gesamtwirkungsgrad gewährleistet ist, wobei die zu entwickelnde Zahnringpumpe selbstverständlich im gesamten Drehzahl- und Temperaturbereich stets zuverlässig, robust und störunanfällig arbeiten soll.
Erfindungsgemäß wird diese Aufgabe durch eine Zahnringpumpe mit den Merkmalen des Hauptanspruches der Erfindung gelöst.
Vorteilhafte Ausführungen, Einzelheiten wie auch weitere Merkmale der Erfindung ergeben sich aus den Unteransprüchen sowie der nachfolgenden Beschreibung des erfindungsgemäßen Ausführungsbeispieles in Verbindung mit den Zeichnungen zur erfindungsgemäßen Lösung. Nachfolgend soll nun die Erfindung an Hand eines Ausführungsbeispieles in Verbindung mit fünf Darstellungen näher erläutert werden.
Es zeigen dabei die
Figur 1 : eine Explosivdarstellung einer erfindungsgemäßen
Zahnringpumpe in der Bauform einer Gerotorpumpe in einer perspektivischen Ansicht von oben, in Längsrichtung der Antriebswelle 7 aus der Richtung des Gehäusedeckels 5;
Figur 2 : eine Explosivdarstellung der erfindungsgemäßen Zahnringpumpe in der Bauform einer Gerotorpumpe in einer perspektivischen Ansicht von oben und aus der Richtung des Pumpengehäuses 1 ;
Figur 3 : eine Explosivdarstellung der erfindungsgemäßen Zahnringpumpe in der Bauform einer Gerotorpumpe in einer perspektivischen Ansicht von vorn, aus Richtung der Antriebswelle 7 und des Gehäusedeckels 5;
Figur 4 : eine Zusammenstellungszeichnung der erfindungsgemäßen
Zahnringpumpe in der Bauform einer Gerotorpumpe in der Vorderansicht (mit Blick auf den Deckel) mit der Darstellung der Schnittführung für Figur 5;
Figur 5 : eine Zusammenstellungszeichnung der erfindungsgemäßen
Zahnringpumpe in der Bauform einer Gerotorpumpe, in der Seitenansicht, im Teilschnitt mit der Schnittführung gemäß Figur 4.
Die in den Figuren 1 bis 5 dargestellte, erfindungsgemäße Zahnringpumpe mit einem Pumpengehäuse 1 , einem im Pumpengehäuse 1 angeordneten Arbeitsraum 2 mit in der Stirnwand 3 des Arbeitsraumes 2 im Pumpengehäuse 1 angeordneten Ein- und oder Ausströmbereichen, einem am Pumpengehäuse 1 angeordneten, mittels einer Dichtung 4 abgedichteten Gehäusedeckels 5, mit einem drehbar im Pumpengehäuse 1 angeordneten, von einer in einem Pumpenlager 6 gelagerten Antriebswelle 7 an der ein Laufradsatz 8 angeordnet ist, der aus einem drehfest mit der Antriebswelle 7 verbunden außenverzahnten Innenrotor 9 und einem innenverzahnten Außenrotor 10 besteht, welcher drehbar in einer Rotorlagerung 1 1 im zylindrischen Arbeitsraum 2 des Pumpengehäuses 1 derart gelagert ist, dass die Zähne des exzentrisch zum Außenrotor 10 gelagerten Innenrotors 9 bereichsweise mit den Zähnen des Außenrotors 10 kämmen, mit ein- oder beidseitig im Saugbereich des Laufradsatzes 8 angeordneter/angeordneten Saugniere/n 12 und ein- oder beidseitig im Druckbereich des Laufradsatz 8 angeordneter/angeordneten Druckniere/n 13, wobei die Saugniere/n 12 über einen/mehreren im Pumpengehäuse 1 angeordneten Saugkanal 14 / angeordnete Saugkanäle 14 mit mindestens einem am Pumpengehäuse 1 angeordneten Sauganschluss 15 verbunden ist/sind und die Druckniere/n 13 über einen/mehrere im Pumpengehäuse 1 angeordneten Druckkanal 16 / angeordnete Druckkanäle 16 mit mindestens einem am Pumpengehäuse 1 angeordneten Druckanschluss 17 verbunden ist/sind, und die zu pumpende Flüssigkeit vom Sauganschluss 15 über den im Pumpengehäuse 1 angeordneten Laufradsatz 8 in den Druckanschluss 17 gepresst wird, zeichnet sich unter anderem dadurch aus, dass das Pumpenlager 6 im Gehäusedeckel 5 angeordnet ist
Erfindungswesentlich ist in diesem Zusammenhang, dass im Pumpengehäuse 1 zwischen dem Laufradsatz 8 und der Stirnwand 3 des Arbeitsraumes 2 verdrehsicher ein in Richtung der Antriebswelle 7 verschiebbar gelagerter Portträger 18 angeordnet ist, in dem sowohl eine Saugniere 12 wie auch eine Druckniere 13 angeordnet ist und beide jeweils voneinander getrennt den Portträger 18 über die gesamte Dicke des Portträgers 18, diesen in Form einer mit der Saugniere 12 verbundenen Einströmkammer 19, wie auch andererseits einer mit der Druckniere 13 verbundenen Ausströmströmkammer 20 durchdringen, wobei die Dicke des Portträgers 18 in etwa der Dicke des Laufradsatzes 8 entspricht und diese aber auch um bis zu 20% überragen kann, und der Wärmeausdehnungskoeffizient des Portträgers 18 etwa um 70% bis 120% über dem Wärmeausdehnungskoeffizienten des Pumpengehäuses 1 liegt, und dass die drehfest mit dem Innenrotor 9 verbundene Antriebswelle 7 keinesfalls in den Portträger 18 hineinragt, (bzw. in diesem gelagert ist).
Kennzeichnend ist weiterhin, dass der Portträger 18 an der dem Laufradsatz 8 benachbarten Stirnseite verschleißfest ausgebildet, bzw. verschleißfest beschichtet ist, oder dass zwischen dem Laufradsatz 8 und dem Portträger 18 ein drehfest mit dem Portträger 18 verbundenes Gleitblech 25 angeordnet ist, wodurch zwischen dem Laufradsatz 8 und dem Portträger 18 neben den Reibungsverlusten auch der Verschleiß minimiert wird, so dass mittels der erfindungsgemäßen Lösung eine lange Lebensdauer bei hohem Wirkungsgrad gewährleistet werden kann.
In der Figur 1 ist als eine der möglichen Bauformen dieses Merkmals, ein zwischen dem Laufradsatz 8 und dem Portträger 18 angeordnetes Gleitblech 25 dargestellt, wobei am Gleitblech 25 eine Rastnase 26 angeordnet ist, die mit einer am Portträger 18 angeordneten Rastnut 27 formschlüssig in Wirkverbindung tritt, und dadurch das Gleitblech 25 drehfest mit dem Portträger 18 verbindet.
Wesentlich ist dabei auch, dass im Gleitblech 25 ebenfalls eine der Saugniere
12 des Portträger 18 zugeordnete Saugniere 12 und auch eine der Druckniere
13 des Portträger 18 zugeordnete Druckniere 13 angeordnet sind, so dass ein ungehinderter Durchtritt des Fördermediums„durch das Gleitblech hindurch" gegeben ist.
Vorteilhaft ist in diesem Zusammenhang auch, wenn im Gleitblech 25 eine Wellenführungsbohrung 28 angeordnet ist.
Durch die Einbringung der Wellenführungsbohrung 28 wird das Gleitblech 25 in seiner Biegesteifigkeit reduziert, dadurch ist ein besseres Anlegen und Anpassen an den Laufradsatz 8 und den Portträger 18 möglich. Gleichzeitig kann mit der Wellenführungsbohrung 28 ein geringfügiger Überstand der Antriebswelle 7 erreicht werden.
Erfindungsgemäß ist auch, dass der Gehäusedeckel 5 über im Pumpengehäuse 1 angeordnete Positionierstifte 21 und am Gehäusedeckel 5 zugeordnete Positionierkerben 22 verdrehsicher am Pumpengehäuse 1 , und der Portträger 18 mittels einer exzentrisch im Portträger 18 angeordneten Stiftführungsbohrung 24 und einem in der Stirnwand 3 des Arbeitsraumes 2 der Stiftführungsbohrung 24 zugeordnet angeordneten Führungsstift 23 axial verschiebbar im Pumpengehäuse 1 gelagert ist.
Diese erfindungsgemäße Anordnung ermöglicht in Verbindung mit der erfindungsgemäßen Anordnung des erfindungsgemäßen Portträgers 18 in axialer Richtung neben dem Laufradsatz 8 der erfindungsgemäßen Zahnringpumpe, da der Portträger 18 den Zu- und Abströmbereich der Pumpe in seiner funktionellen Geometrie abbildet, dass in Verbindung mit der erfindungsgemäßen, äußeren zylindrischen Geometrie des Portträgers 18 dieser in gewissen Grenzen problemlos im Pumpengehäuse 1 verdreht, und exakt, z.B. durch Führungsstifte 23 im Pumpengehäuse 1 , lagesicher positioniert werden kann.
Somit können mittels des erfindungsgemäßen Einsatzes des erfindungsgemäßen Portträgers 18, durch die oben beschriebene drehwinkelbedingte Anpassung erstmals problemlos, einfach und zudem sehr kostengünstig die Steuerzeiten der Pumpe auf den jeweiligen Einsatzfall der Pumpe strömungstechnisch optimiert werden.
Zudem dient der erfindungsgemäße Portträger 18 aber auch dazu gleichzeitig eine Optimierung des Axialspaltes zu gewährleisten.
Hierzu werden für den Portträger 18 erfindungsgemäß Werkstoffe eingesetzt, deren Wärmeausdehnungskoeffizient möglichst den doppelten Wert des Wärmeausdehnungskoeffizienten des Gehäusewerkstoffes aufweist.
Die Dicke des Portträgers 18 entspricht dabei in etwa der Dicke des Laufradsatzes 8. Um jedoch bei entsprechend gewünschtem axialem Grundspiel zwischen dem Laufradsatz 8 und dem Portträger 8 eine Überkompensation des Axialspaltes zu bewirken, kann die Dicke des Portträgers 18 beispielsweise auch auf ca. 120 % der Dicke des Laufradsatzes 8 erhöht werden.
Im vorliegenden Ausführungsbeispiel, mit einem Pumpengehäuse 1 aus Aluminium, wurden als Werkstoffe für den Portträger 18 modifizierte Duroplaste eingesetzt, wobei die Dicke des Portträgers selbstverständlich in Abhängigkeit von dem jeweils für den Portträger 18 eingesetzten Grundmaterial variiert.
Für den Portträger 18 können aber auch speziell modifizierte Duroplastwerkstoffe eingesetzt werden, die z.B. durch gezielte Beimengung von reibungsreduzierenden Stoffen das Laufverhalten des benachbart angeordneten Laufradsatzes deutlich verbessern.
Erfindungsgemäß ist es auch, wenn der Portträger 18 aus gesinterten und harzgebundenen Natriumchloriden gefertigt wird.
Durch die Verwendung von gesinterten und harzgebundenen Natriumchloriden zur Herstellung der Portträger 18 kann eine vorgegebene axiale Wärmeausdehnung eines Aluminiumpumpengehäuses mit einem Wärmeausdehnungskoeffizienten für Aluminium von etwa 23 x 10"6 K"1 durch einen Portträgers aus gesinterten und harzgebundenen Natriumchloriden, bei einem Wärmeausdehnungskoeffizienten für Natriumchlorid von etwa 40 ... 44 x 10"6 K"1, effektiv, d.h. mit relativ geringer Dickenabmessung eines aus gesinterten und harzgebundenen Natriumchloriden gefertigten Portträgers 18 kompensiert werden.
Mittels der erfindungsgemäßen Lösung werden somit bei Einsatz unterschiedlicher Werkstoffe für Gehäuse und Rotor stets die von der jeweiligen Betriebstemperatur abhängenden Axialspalte im gesamten Temperaturarbeitsbereich der Pumpe optimiert, d.h. es wird kostengünstig eine optimale, dynamische Axialspaltkompensation gewährleistet.
In Abhängigkeit von der Wahl des Werkstoffes für den Portträger 18 in Verbindung mit der Dimensionierung der Dicke des Portträger 18 wird es auch möglich, die Axialspalte bei niedrigen Temperaturen größer zu gestalten und bei höheren Temperaturen durch deutlich größere Längenausdehnung des Portträgers 18 das Axialspiel zu verkleinern.
Eine derartige Tendenz„unterstützt" das natürliche Viskositätsverhalten von diversen Ölsorten und führt somit zu einer insgesamt wesentlich effizienter arbeitenden Pumpe.
Ein weiterer Vorteil der erfindungsgemäßen Lösung besteht auch darin, dass bei der hier vorgestellten erfindungsgemäßen Axialspaltkompensation der Laufradsatz 8 frei von axialen Belastungen bleibt, so dass die dadurch auftretenden Reibmomente vermieden werden, die zwangsläufig stets zu Wirkungsgradverlusten führen.
Der erfindungsgemäß gewollte temperaturkompensierende Effekt des erfindungsgemäß in axialer Richtung neben dem Laufradsatz 8 platzierten erfindungsgemäßen Portträgers 18 bewirkt bei Temperaturerhöhung und einem daraus resultierenden axialen Wachstum des Arbeitsraumes 2 im Pumpengehäuse 1 , in dem der Laufradsatz 8 und der Portträgers 18 untergebracht sind, dass durch eine deutlich höhere Wärmeausdehnung des erfindungsgemäßen Portträgers 18, das axiale Wachstum des Arbeitsraumes 2 unter gleichzeitiger Beachtung des Wachstums des Laufradsatzes 8 ausgeglichen wird.
Bei überkompensiertem Längenausgleich besteht erfindungsgemäß die Möglichkeit, das axiale Grundspiel bei tiefen Temperaturen relativ hoch zu legen, und dadurch dem Viskositätsverhalten des zu fördernden Mediums entgegenzukommen, um so die Antriebsleistung im niedrigen Temperaturbereich der erfindungsgemäßen Zahnringpumpe zu reduzieren, und so den Wirkungsgrad auch in diesem Betriebspunkt deutlich zu erhöhen.
Dabei ermöglicht die erfindungsgemäße Lösung infolge der erfindungsgemäßen Anordnung des erfindungsgemäßen Portträgers 18 in Verbindung mit all den bereits beschriebenen Wirkungen zudem gleichzeitig auch die Herstellung von im Außendurchmesser des Gehäuses klein bauenden Pumpenaggregaten. Bezugszeichenzusammenstellung
1 Pumpengehäuse
2 Arbeitsraum
3 Stirnwand
4 Dichtung
5 Gehäusedeckel
6 Pumpenlager
7 Antriebswelle
8 Laufradsatz
9 Innenrotor
10 Außenrotor
1 1 Rotorlagerung
12 Saugniere
13 Druckniere
14 Saugkanal
15 Sauganschluss
16 Druckkanal
17 Druckanschluss
18 Portträger
19 Einströmkammer
20 Ausströmkammer
21 Positionierstift
22 Positionierkerbe
23 Führungsstift
24 Stiftführungsbohrung
25 Gleitblech
26 Rastnase
27 Rastnut
28 Wellenführungsbohrung

Claims

Patentansprüche
1. Zahnringpumpe mit einem Pumpengehäuse (1 ), einem im Pumpengehäuse (1 ) angeordneten Arbeitsraum (2) mit in der Stirnwand (3) des Arbeitsraumes (2) im Pumpengehäuse (1 ) angeordneten Ein- und/oder Ausströmbereichen, einem am Pumpengehäuse (1) angeordneten, mittels einer Dichtung (4) abgedichteten Gehäusedeckel (5), mit einem drehbar im Pumpengehäuse (1 ) angeordneten, von einer in einem Pumpenlager (6) gelagerten Antriebswelle (7) an der ein Laufradsatz (8) angeordnet ist, der aus einem drehfest mit der Antriebswelle (7) verbunden außenverzahnten Innenrotor (9) und einem innenverzahnten Außenrotor (10) besteht, welcher drehbar in einer Rotorlagerung (1 1 ) im zylindrischen Arbeitsraum (2) des Pumpengehäuses (1 ) derart gelagert ist, dass die Zähne des exzentrisch zum Außenrotor (10) gelagerten Innenrotors (9) bereichsweise mit den Zähnen des Außenrotors (10) kämmen, mit ein- oder beidseitig im Saugbereich des Laufradsatzes (8) angeordneter/angeordneten Saugniere/n (12) und ein- oder beidseitig im Druckbereich des Laufradsatz (8) angeordneter/angeordneten Druckniere/n (13), wobei die Saugniere/n (12) über einen/mehreren im Pumpengehäuse (1 ) angeordneten Saugkanal (14) / angeordnete Saugkanäle (14) mit mindestens einem am Pumpengehäuse (1 ) angeordneten Sauganschluss (15) verbunden ist/sind und die Druckniere/n (13) über einen/mehrere im Pumpengehäuse (1 ) angeordneten Druckkanal (16) / angeordnete Druckkanäle (16) mit mindestens einem am Pumpengehäuse (1 ) angeordneten Druckanschluss (17) verbunden ist/sind, und die zu pumpende Flüssigkeit vom Sauganschluss (15) über den im Pumpengehäuse (1) angeordneten Laufradsatz (8) in den Druckanschluss (17) gepresst wird, dadurch gekennzeichnet, dass das Pumpenlager (6) im Gehäusedeckel (5) angeordnet ist, und dass im Pumpengehäuse (1) zwischen dem Laufradsatz (8) und der Stirnwand (3) des Arbeitsraumes (2) verdrehsicher ein in Richtung der Antriebswelle (7) verschiebbar gelagerter Portträger (18) angeordnet ist, in dem sowohl eine Saugniere (12), wie auch eine Druckniere (13) angeordnet sind und beide jeweils voneinander getrennt den Portträger (18), über die gesamte Dicke des Portträgers (18), in Form einer mit der Saugniere/n (12) verbundenen Einströmkammer (19) und einer mit der Druckniere (13) verbundenen Ausströmströmkammer (20) durchdringen, wobei die Dicke des Portträgers (18) in etwa der Dicke des Laufradsatzes (8) entspricht und diese aber auch um bis zu 20% überragen kann, wobei der Wärmeausdehnungskoeffizient des Portträgers (18) etwa um 70% bis 120% über dem Wärmeausdehnungskoeffizienten des Pumpengehäuses (1) liegt, und dass die drehfest mit dem Innenrotor (9) verbundene Antriebswelle (7) keinesfalls in den Portträger (18) hineinragt, und dass der Portträger (18) an der dem Laufradsatz (8) benachbarten Stirnseite verschleißfest ausgebildet, bzw. beschichtet ist, und/oder dass zwischen dem Laufradsatz (8) und dem Portträger (18) ein drehfest mit dem Portträger verbundenes Gleitblech (25) angeordnet ist.
2. Zahnringpumpe nach Anspruch 1 , dadurch gekennzeichnet, dass der Gehäusedeckel (5) über im Pumpengehäuse (1 ) angeordnete Positionierstifte (21 ) und am Gehäusedeckel (5) zugeordnete Positionierkerben (22) verdrehsicher am Pumpengehäuse (1 ), und der Portträger (18) mittels einer exzentrisch im Portträger (18) angeordneten Stiftführungsbohrung (24) und eines in der Stirnwand (3) des Arbeitsraumes (2) der Stiftführungsbohrung (24) zugeordnet angeordneten Führungsstiftes (23) axial verschiebbar im Pumpengehäuse (1 ) gelagert ist.
3. Zahnringpumpe nach Anspruch 1 , dadurch gekennzeichnet, dass der Portträger (18) aus modifizierten Duroplasten gefertigt ist.
4. Zahnringpumpe nach Anspruch 1 , dadurch gekennzeichnet, dass der Portträger (18) aus gesinterten und harzgebundenen Natriumchloriden gefertigt ist.
5. Zahnringpumpe nach Anspruch 1 , mit einem zwischen dem Laufradsatz (8) und dem Portträger (18) angeordneten Gleitblech (25), dadurch gekennzeichnet, dass im Gleitblech (25) ebenfalls eine der Saugniere (12) des Portträger (18) zugeordnete Saugniere (12) sowie eine der Druckniere (13) des Portträger (18) zugeordnete Druckniere (13) angeordnet sind.
6. Zahnringpumpe nach Anspruch 5, dadurch gekennzeichnet, dass am Gleitblech (25) eine Rastnase (26) angeordnet ist, die mit einer am Portträger (18) angeordneten Rastnut (27) formschlüssig in Wirkverbindung tritt.
7. Zahnringpumpe nach Anspruch 5, dadurch gekennzeichnet, dass im Gleitblech (25) eine Wellenführungsbohrung (28) angeordnet ist.
PCT/DE2012/000650 2011-07-14 2012-06-27 Zahnringpumpe WO2013007233A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES12746262.0T ES2553790T3 (es) 2011-07-14 2012-06-27 Bomba de anillo dentado
EP12746262.0A EP2732164B1 (de) 2011-07-14 2012-06-27 Zahnringpumpe
US14/232,007 US9309885B2 (en) 2011-07-14 2012-06-27 Gear ring pump including housing containing port support therein with the port support formed of a material having a greater heat expansion coefficient than a material of the housing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011107157A DE102011107157B4 (de) 2011-07-14 2011-07-14 Zahnringpumpe
DE102011107157.5 2011-07-14

Publications (2)

Publication Number Publication Date
WO2013007233A1 true WO2013007233A1 (de) 2013-01-17
WO2013007233A4 WO2013007233A4 (de) 2013-03-07

Family

ID=46651294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2012/000650 WO2013007233A1 (de) 2011-07-14 2012-06-27 Zahnringpumpe

Country Status (5)

Country Link
US (1) US9309885B2 (de)
EP (1) EP2732164B1 (de)
DE (1) DE102011107157B4 (de)
ES (1) ES2553790T3 (de)
WO (1) WO2013007233A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109969259A (zh) * 2017-12-28 2019-07-05 比亚迪股份有限公司 电动油泵总成和具有其的车辆
WO2019215035A1 (de) * 2018-05-08 2019-11-14 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektrische fluidpumpe und kraftfahrzeuggetriebe

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107636310A (zh) * 2015-05-20 2018-01-26 凯斯帕公司 齿轮泵及其实现方法
ITUB20159726A1 (it) * 2015-12-22 2017-06-22 Bosch Gmbh Robert Gruppo di pompaggio per alimentare combustibile, preferibilmente gasolio, ad un motore a combustione interna
MX2020002830A (es) 2018-02-14 2020-08-03 Stackpole Int Engineered Products Ltd Bomba de gerotor con eje.
USD923060S1 (en) * 2018-08-09 2021-06-22 Psg Germany Gmbh Pump
US10247295B1 (en) * 2018-10-22 2019-04-02 GM Global Technology Operations LLC Transfer case oil pump assembly
USD966342S1 (en) * 2020-02-07 2022-10-11 Pedrollo S.P.A. Electric pump
USD960203S1 (en) * 2020-09-28 2022-08-09 Hugo Vogelsang Maschinenbau Gmbh Pump for liquids
US11661938B2 (en) * 2021-08-31 2023-05-30 GM Global Technology Operations LLC Pump system and method for optimized torque requirements and volumetric efficiencies

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB943624A (en) * 1960-10-05 1963-12-04 Doulton & Co Ltd Permeable plastic materials
US3128707A (en) * 1960-03-11 1964-04-14 Robert W Brundage Multiple discharge hydraulic pump
US3805526A (en) * 1972-11-03 1974-04-23 Aplitec Ltd Variable displacement rotary hydraulic machines
JPH07208348A (ja) * 1994-01-27 1995-08-08 Brother Ind Ltd ポンプ
DE19720286A1 (de) * 1997-05-15 1998-11-19 Winter Gmbh Gehäuse mit einem unregelmäßigen Hohlraum und Verfahren zur Herstellung eines derartigen Gehäuses
US6769889B1 (en) * 2003-04-02 2004-08-03 Delphi Technologies, Inc. Balanced pressure gerotor fuel pump
DE10331979A1 (de) 2003-07-14 2005-02-17 Gkn Sinter Metals Gmbh Pumpe mit optimiertem Axialspiel
US7614227B2 (en) 2006-08-04 2009-11-10 Briggs And Stratton Corporation Rotary control valve for a hydrostatic transmission
DE102008054758A1 (de) 2008-12-16 2010-06-17 Robert Bosch Gmbh Förderaggregat

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128707A (en) * 1960-03-11 1964-04-14 Robert W Brundage Multiple discharge hydraulic pump
GB943624A (en) * 1960-10-05 1963-12-04 Doulton & Co Ltd Permeable plastic materials
US3805526A (en) * 1972-11-03 1974-04-23 Aplitec Ltd Variable displacement rotary hydraulic machines
JPH07208348A (ja) * 1994-01-27 1995-08-08 Brother Ind Ltd ポンプ
DE19720286A1 (de) * 1997-05-15 1998-11-19 Winter Gmbh Gehäuse mit einem unregelmäßigen Hohlraum und Verfahren zur Herstellung eines derartigen Gehäuses
US6769889B1 (en) * 2003-04-02 2004-08-03 Delphi Technologies, Inc. Balanced pressure gerotor fuel pump
DE10331979A1 (de) 2003-07-14 2005-02-17 Gkn Sinter Metals Gmbh Pumpe mit optimiertem Axialspiel
US7614227B2 (en) 2006-08-04 2009-11-10 Briggs And Stratton Corporation Rotary control valve for a hydrostatic transmission
DE102008054758A1 (de) 2008-12-16 2010-06-17 Robert Bosch Gmbh Förderaggregat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109969259A (zh) * 2017-12-28 2019-07-05 比亚迪股份有限公司 电动油泵总成和具有其的车辆
WO2019215035A1 (de) * 2018-05-08 2019-11-14 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektrische fluidpumpe und kraftfahrzeuggetriebe

Also Published As

Publication number Publication date
ES2553790T3 (es) 2015-12-11
DE102011107157B4 (de) 2013-02-28
DE102011107157A1 (de) 2013-01-17
EP2732164A1 (de) 2014-05-21
WO2013007233A4 (de) 2013-03-07
US20140154125A1 (en) 2014-06-05
US9309885B2 (en) 2016-04-12
EP2732164B1 (de) 2015-09-09

Similar Documents

Publication Publication Date Title
EP2732164B1 (de) Zahnringpumpe
EP1749145B1 (de) Spaltverluststromsteuerung einer drehkolben- zahnradmaschine
EP3421802B1 (de) Gaspumpe mit druckentlastung zur reduzierung des anfahrdrehmoments
DE102006061326A1 (de) Stelleneinrichtung für eine mengenregelbare Zellenpumpe
EP1141551B1 (de) Pumpenanordnung mit zwei hydropumpen
EP3333381B1 (de) Hydraulikvorrichtung mit dichtelement
DE102016121240A1 (de) Elektrische Gerotorpumpe und Herstellungsverfahren für dieselbe
DE102006016791A1 (de) Vakuumpumpe
DE602004001152T2 (de) Ausgeglichene Innenzahnradpumpe für Kraftstoffe
DE102005041579B4 (de) Innenzahnradpumpe mit Füllstück
EP2147212A1 (de) Pumpeneinheit mit einer hauptpumpe und einer in ihrem fördervolumen verstellbaren ladepumpe
DE102012216254A1 (de) Außenzahnradmaschine
EP1283971A1 (de) Geregelte pumpe
EP2357362A2 (de) Zahnringpumpe
EP2111498A1 (de) Regelbare kühlmittelpumpe
DE102011014591B4 (de) Flügelzellenpumpe mit Pumpensteuerring
WO2013045152A2 (de) Innenzahnradpumpe
EP1644641B1 (de) Zahnradpumpe mit optimiertem axialspiel
DE102012223907B4 (de) Verfahren zur Herstellung wenigstens einer Rotationskolbenpumpe und einHochdruckeinspritzsystem
DE102007051352A1 (de) Hydraulische Zahnradmaschine und Verfahren zur Ansteuerung einer hydraulischen Zahnradmaschine
WO2010100021A2 (de) Flügelzellenpumpe
DE102007018692A1 (de) Regelbare Pumpe, insbesondere Flügelzellenpumpe
DE102009013986A1 (de) Verstellbare Rotorpumpe
DE102011082578A1 (de) Zahnradpumpe
DE102012206520A1 (de) Flügelzellenmaschine mit axialen und radialen Einlass- bzw. Auslassöffnungen

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14232007

Country of ref document: US

Ref document number: 2012746262

Country of ref document: EP