WO2013007094A1 - 一种离心组合式曝气增氧机 - Google Patents

一种离心组合式曝气增氧机 Download PDF

Info

Publication number
WO2013007094A1
WO2013007094A1 PCT/CN2012/000278 CN2012000278W WO2013007094A1 WO 2013007094 A1 WO2013007094 A1 WO 2013007094A1 CN 2012000278 W CN2012000278 W CN 2012000278W WO 2013007094 A1 WO2013007094 A1 WO 2013007094A1
Authority
WO
WIPO (PCT)
Prior art keywords
cone
centrifugal
aeration
negative pressure
fan
Prior art date
Application number
PCT/CN2012/000278
Other languages
English (en)
French (fr)
Inventor
邓忠敏
邓磊
尹新
Original Assignee
Deng Zhongmin
Deng Lei
Yin Xin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deng Zhongmin, Deng Lei, Yin Xin filed Critical Deng Zhongmin
Publication of WO2013007094A1 publication Critical patent/WO2013007094A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23121Diffusers having injection means, e.g. nozzles with circumferential outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2333Single stirrer-drive aerating units, e.g. with the stirrer-head pivoting around an horizontal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2335Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the direction of introduction of the gas relative to the stirrer
    • B01F23/23353Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the direction of introduction of the gas relative to the stirrer the gas being sucked towards the rotating stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2336Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer
    • B01F23/23361Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer the gas being introduced in a guide tube surrounding at least partially the axis of the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2336Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer
    • B01F23/23366Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer the gas being introduced in front of the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/25Mixers with both stirrer and drive unit submerged in the material being mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/81Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow
    • B01F27/813Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow the stirrers co-operating with stationary guiding elements

Definitions

  • the present invention relates to the field of aerators, and in particular to a centrifugal combined aeration aerator.
  • aerators for aquaculture or sewage purification mainly including jet-injection, impeller, waterwheel and aeration.
  • impeller type and the jet-type water aerator are used to spray water out to make it contact with air to achieve oxygenation.
  • the waterwheel aerator uses the blades to tap in the shallow water layer, causing waves, increasing the contact area between the water surface and the air to achieve oxygenation.
  • the existing aerators can only increase the surface water surface, and the harmful gases in the bottom water can not be effectively eliminated, and the oxygenation effect is not good.
  • the existing aeration aerator uses a motor to drive air into the water to dissolve oxygen. Although the effect is improved, the current aeration aerator has an unreasonable structural design, and the air enters the water body vertically downward. The buoyancy is large, the dissolved oxygen time of the water body is short, and the propeller blades that drive the water circulation in order to achieve a wider range of air and water body, the direction of the driving water flow is radial or axial direction, and cannot achieve a wide range. convection.
  • the present invention provides a centrifugal combined aeration aerator to form a wide range of aeration convection, which solves the disadvantages of high energy consumption and small aeration range of the existing aeration aerator.
  • the present invention provides the following technical solutions:
  • a centrifugal combined aeration aerator comprises:
  • the negative pressure oxygen supply tube has a negative pressure oxygen inlet port at the upper end and a concave sealing ring at the lower end and a convex seal ring on the cone centrifugal slurry upper cone;
  • pressurized draft tube assembly disposed above the driving device, having a plurality of pressurized draft tubes radially distributed, the cone centrifugal blades extending into the pressurized draft tube assembly;
  • the fan is connected to a plurality of aeration heads disposed on the outer side of the outer side of the pressurized draft tube assembly through a fan oxygen supply passage.
  • the cone centrifugal paddle comprises: a connecting portion connected to the driving device;
  • An upper cone disposed on an outer peripheral surface of the connecting portion; having a clearance fit with a bottom of the negative pressure oxygen supply tube;
  • a negative pressure oxygen passage communicating between the upper cone and the intermediate cone is disposed, and a centrifugal water passage is formed between the intermediate cone and the lower cone.
  • a lower cone connected to the upper cone and the intermediate cone through the blade, the lower cone having a water inlet hole communicating with the water inlet passage;
  • centrifugal blade disposed between the upper cone, the intermediate cone and the lower cone and connected to each of the three.
  • the water inlet channel is provided below the pressurized draft tube assembly, and the water inlet channel is surrounded by the outer tube that is sleeved on the outer side of the driving device. Formed between.
  • the outer tube of the negative pressure inlet tube is further included, the inner cavity of the outer tube forms a fan oxygen supply passage with the fan, and the fan mounting plate is arranged at the top thereof. The bottom is connected to the head of the pressurized draft tube assembly.
  • the fan is disposed on the fan mounting plate, and the driving device is disposed at a bottom of the pressurized draft tube assembly by a bracket connection.
  • the negative pressure oxygen supply tube has a negative pressure oxygen inlet at the upper end, and a concave seal ring and a cone centrifugal cone on the lower end.
  • the ring is in a clearance fit.
  • the fan oxygen supply passage is connected to the upper end of the outer tube, and branches at a bottom portion of the outer tube, and branches into the respective A plurality of branches connected by a plurality of aeration heads.
  • the aeration head is radially disposed in front of and below the outer side of the pressurized draft tube assembly, and each of the branch oxygen supply channels is provided with a one-way Valve to prevent sewage from returning to the fan.
  • the fan oxygen supply passages are respectively connected to the respective aeration heads.
  • the pressurized draft tube assembly comprises: an upper end connected to the driving device by a bracket;
  • the pressurized draft tube is spirally distributed around the head of the pressurized draft tube assembly, and the pressurized draft tube is The number of aeration heads is the same and is directed to each of the aeration head devices.
  • the driving device is a submersible motor.
  • the centrifugal combined aeration aerator provided by the present invention drives the cone centrifugal paddle to rotate by driving equipment, and the water enters through the water inlet channel below the cone centrifugal paddle, and the cone centrifugal paddle
  • the negative pressure oxygen supply pipe has a negative pressure oxygen inlet port at the upper end, and a negative pressure oxygen supply pipe automatically forms a negative pressure, so that the water with oxygen passes through the pressurized draft tube assembly to form a high pressure throwing around.
  • the fan supplies the high-pressure oxygen of the fan to the aeration head through the oxygen supply passage, and the aeration sprayed from the aeration head is thrown by the high pressure formed by the pressurized draft tube assembly, and the oxygen emitted from the aeration head is larger toward the surrounding. The area is thrown.
  • the invention separately inhales outside air by negative pressure, and aeration is generated by means of wind mechanism oxygen, and the aeration ability thereof is greatly improved. Since the fan oxygen supply channel is connected to the aeration head, the oxygen obtained by the wind mechanism can be thrown to a larger range, and the high pressure oxygen of the fan is sprayed out by the pressurized draft tube assembly during the aeration head discharge process. Push to throw a larger area around. A part of the oxygen of the invention is generated by the negative pressure, so the energy consumption is low, and the negative pressure is automatically formed during the process of centrifuging the pulp water, and the external oxygen is introduced into the water to form a small oxygen bubble, and the pressurized oxygen flow is introduced. The tube assembly is thrown to a larger area around it.
  • FIG. 1 is a schematic structural view of a centrifugal combined aeration aerator according to an embodiment of the present invention
  • FIG. 2 is a schematic top plan view of a centrifugal combined aeration aerator according to an embodiment of the present invention
  • the present invention discloses a centrifugal combined aeration aerator to form a wide range of aeration convection, which solves the disadvantages of high energy consumption and small aeration range of the existing aeration aerator.
  • FIG. 1 is a schematic structural view of a centrifugal combined aeration aerator according to an embodiment of the present invention
  • FIG. 2 is a schematic top view of a centrifugal combined aeration aerator according to an embodiment of the present invention
  • FIG. 3 is a partial schematic structural view of a centrifugal combined aeration aerator according to an embodiment of the present invention.
  • the centrifugal combined aeration aerator comprises a driving device 11, a negative pressure oxygen supply pipe 8, a pressurized draft tube assembly 6 and a fan 1.
  • the output end of the driving device 11 is connected with a cone centrifugal propeller 9, the driving device 1 1 is used to drive the cone centrifugal paddle 9 to rotate, and the cone centrifugal paddle 9 has a water inlet channel below it, with the cone centrifugal paddle 9 The rotation causes the water flow under the cone centrifugal blade 9 to enter through the water inlet passage below it and is discharged at a high speed. Since the driving device 11 is disposed in the water, the present invention can employ the submersible motor as the driving device 11.
  • the negative pressure oxygen supply pipe 8 has a negative pressure oxygen inlet port 2 at its upper end and a concave seal ring at the lower end and a convex seal ring on the cone centrifugal slurry 9 on the cone.
  • the water is drawn out by the water passage 5, so that the negative pressure inlet passage 4 of the cone centrifugal paddle 9 automatically forms a negative pressure.
  • the water and oxygen are stirred and pulverized together, and then the water is thrown with oxygen to a larger area.
  • the pressurized draft tube assembly 6 is disposed above the drive unit 11 and has a plurality of pressurized draft tubes that are radially distributed and into which the cone centrifugal blades 9 extend. As the cone centrifugal paddle 9 rotates, under the centrifugal action, the water below it and the air sucked in by the negative pressure oxygen supply pipe 8 are taken out together, and each pressurization of the pressurized draft tube assembly 6 is performed.
  • the draft tube is discharged at a high speed. Since the pressurized draft tube is radially distributed, the introduced water is thrown outward in a radial direction. Since the pressurized draft tube is inclined, the present invention allows air and water to enter obliquely.
  • the effective mixing of the water body eliminates the defect of poor oxygenation effect of the water body below it, and can fully aerate the whole water body, and significantly increase the oxygenation effect under the condition of low energy consumption.
  • the fan 1 is connected to the aeration head 13 disposed at the front and the lower side of the outside of the pressurized draft tube assembly 6 through the fan oxygen supply passage 3.
  • the air generated by the driving fan 1 passes through the fan oxygen supply passage 3 into the aeration head 13, and is diffused and escaped by the aeration head 13 in the form of bubbles, and oxygen is dissolved into the water at the gas-liquid interface.
  • the centrifugal combined aeration aerator drives the cone centrifugal paddle 9 to rotate by the driving device 11, and the water enters through the water inlet channel below the cone centrifugal paddle 9, under the centrifugal action of the cone centrifugal paddle 9,
  • the negative pressure oxygen supply pipe 8 automatically forms a negative pressure, so that the water with oxygen passes through the pressurized draft tube assembly 6 to form a high pressure throwing around.
  • the present invention inhales external air by negative pressure, and aeration by means of oxygen generation by the fan 1, and the aeration capability thereof is greatly improved. Since the fan oxygen supply passage 3 is connected to the aeration head 13, the oxygen produced by the fan 1 can be thrown to a larger range, and the bubbles generated by the oxygen are ejected by the pressurized draft tube assembly during the ejection process. The water is pushed to throw a larger area around.
  • the oxygen of the invention is generated by the negative pressure, so the energy consumption is low, and the negative pressure is automatically formed during the drainage process, and the external oxygen is introduced into the water to form a small oxygen bubble, and the pressurized draft tube assembly is passed through the pressurized draft tube assembly. Pull out to a larger area around.
  • the cone centrifugal paddle 9 includes a connecting portion, an upper cone, a middle cone, a lower cone, and a centrifugal blade.
  • the connecting portion is connected to the driving device 11
  • the upper cone is disposed on the outer peripheral surface of the connecting portion
  • the intermediate cone is disposed in the middle of the cone centrifugal blade 9
  • the lower cone is disposed below the upper cone and the intermediate cone.
  • the lower cone has i into i3 ⁇ 4 if 7 , - palpitations
  • the sheet is disposed between the upper cone, the intermediate cone and the lower cone, and is respectively connected to the three.
  • the centrifugal blade sucks the water below the cone centrifugal blade 9 upward, and enters the lower cone and the intermediate cone through the water inlet port 7 and the water inlet on the lower cone.
  • the water flow is finally injected into the pressurized draft tube of the pressurized draft tube assembly 6 by the centrifugal force of the centrifugal blade, and is ejected at a high speed by the pressurized draft tube.
  • a water inlet passage 7 which is formed by the outer tube that is sleeved outside the drive device 1 .
  • An independent water inlet channel can be formed in the water inlet passage 7 to separate the water inlet passage 7 from the water outlet passage around the pressurized draft tube assembly 6, thereby avoiding the inflow of water and the effluent, thereby affecting the oxygenation effect.
  • the invention may further comprise an outer tube, the inner chamber of which forms a fan oxygen supply passage 3 with the fan 1, and a fan mounting plate at the top and a bottom portion connected to the head of the pressurized draft tube assembly 6.
  • the fan 1 is disposed on the wind turbine mounting plate, and the driving device 11 is connected to the bottom of the pressurized draft tube assembly 6 by the bracket 10.
  • the fan oxygen supply passage 3 is connected to the upper end of the outer tube, and branches out at the bottom of the outer tube, and branches into a plurality of branches respectively connected to the plurality of aeration heads 13.
  • the aeration head 13 is radially disposed on the outer side of the outer side of the pressurized draft tube assembly 6, and a check valve is installed in each of the oxygen supply passages to prevent the sewage from returning to the fan.
  • the fan oxygen supply passages 3 are respectively connected to the respective aeration heads 13.
  • the pressurized draft tube assembly 6 includes a plurality of pressurized draft tubes that are coupled to the upper end of the drive unit 11 and are connected by the brackets 10 and are radially distributed.
  • the pressurized draft tube is spirally distributed around the head of the pressurized draft tube assembly 6, and the number of the pressurized draft tube is the same as that of the aeration head 13, and is directed to each of the aeration heads 13, respectively.
  • the water jet ejected from each of the pressurized draft tubes ejects the oxygen bubbles ejected by the aeration head 13 in a further direction.
  • the pressurized draft tube assembly 6 Since the pressurized draft tube is spirally distributed around the head of the pressurized draft tube assembly 6, when the water is ejected from the pressurized draft tube, the pressurized draft tube assembly 6 can be formed. The swirling of the center, thereby agitating the water body with a larger area, enhances the oxygenation effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

公开了一种离心组合式曝气增氧机,包括:驱动设备(11),负压供氧管(8),套设在负压供氧管(8)外侧的外管,其内外管之间形成风机供氧通道(3),设置在外管底部的增压导流管总成(6);与驱动设备(11)相连的锥体离心桨(9),其嵌入增压导流管总成(6)内,锥体离心桨(9)的上锥体和中间锥体之间具有与负压供氧管(8)相通的负压进氧通道(4),锥体离心桨(9)的中间锥体与下锥体之间形成离心甩水通道(5),风机(1)通过风机供氧通道(3)与设置于增压导流管总成(6)外侧前下方的若干曝气头(13)相连。该曝气增氧机能自动形成负压,将外部的氧气导入并充分与水混合形成微小氧泡,并向周围更大面积的抛出。

Description

一种离心组合式曝气增氧机 技术领域 本发明涉及增氧机技术领域, 特别涉及一种离心组合式曝气增氧机。
背景技术
目前用于水产养殖或污水净化的增氧机的类型多种多样, 主要有射流喷 水式、 叶轮式、 水车式和曝气式等类型的增氧机。 其中, 叶轮式和射流喷水 式增氧机均采用将水喷射出去, 使其与空气接触达到增氧目的。 水车式增氧 机是利用叶片在浅水层中进行拍打, 引起波澜, 增大水面与空气的接触面积 实现增氧。
目前, 现有的增氧机均只能对表层水面进行增氧, 底层水中的有害气体 不能被有效消除, 增氧效果不佳。 现有的曝气增氧机利用电机将空气打入水 中, 以溶解氧气, 虽然效果有所提高, 但是, 目前的曝气增氧机的结构设计 不合理, 空气进入水体时呈垂直向下方向, 受到的浮力较大, 水体的溶氧时 间短, 另外驱动水体循环的螺旋桨叶为了实现空气和水体向更广范围进入, 其驱动水流的方向为径向或轴向方向, 无法实现大范围的对流。
如何形成大范围曝气对流, 解决现有曝气增氧机能耗高、 曝气范围小的 弊端, 是本领域技术人员亟待解决的问题。
发明内容
有鉴于此, 本发明提供了一种离心组合式曝气增氧机, 以形成大范围曝 气对流, 解决现有曝气增氧机能耗高、 曝气范围小的弊端。
为实现上述目的, 本发明提供如下技术方案:
一种离心组合式曝气增氧机, 包括:
驱动设备, 其输出端连接有锥体离心桨, 该锥体离心桨的下方具有进水 负压供氧管, 其上端设有负压进氧口, 下端设有凹形密封环与锥体离心 浆上锥体凸形密封环呈间隙配合;
设置在所述驱动设备上方的增压导流管总成, 其具有成辐射状倾斜分布 的若干增压导流管, 所述锥体离心桨伸入所述增压导流管总成内;
风机, 其通过风机供氧通道与设置于所述增压导流管总成外侧前下方的 若干曝气头相连。
优选的, 在上述离心组合式曝气增氧机中, 所述锥体离心桨包括: 与所述驱动设备相连的连接部;
设置在所述连接部外周面上的上锥体; 具有与负压供氧管底部呈间隙配 合;
设置在所述上锥体和所述中间锥体之间相通的负压进氧通道, 所述中间 锥体与其下锥体之间形成离心甩水通道。 且与所述上锥体、 中间锥体通过叶 片相连的下锥体, 该下锥体具有与所述进水通道相通的进水孔;
设置在所述上锥体、 中间锥体和所述下锥体之间, 且分别与三者相连的 离心叶片。
优选的, 在上述离心组合式曝气增氧机中, 所述增压导流管总成的下方 设有进水通道, 所述进水通道由所述套设在驱动设备外侧的外管之间形成。
优选的, 在上述离心组合式曝气增氧机中, 还包括负压进氧管外侧的外 管, 该外管的内腔与风机形成风机供氧通道, 且其顶部设有风机安装板, 底 部与增压导流管总成头部连接。 所述风机设置在所述风机安装板上, 所述驱 动设备由支架连接设置于所述增压导流管总成的底部。
优选的, 在上述离心组合式曝气增氧机中, 所述负压供氧管的上端设有 负压进氧口, 下端设有凹形密封环与锥体离心浆上锥体凸形密封环呈间隙配 合。
优选的, 在上述离心组合式曝气增氧机中, 所述风机供氧通道在所述外 管的上端与其连接, 并在所述外管的底部分支伸出, 并分支成分别与所述若 干曝气头相连的多个支路。 优选的, 在上述离心组合式曝气增氧机中, 所述曝气头由辐射状分布设 置于增压导流管总成外侧前下方, 所述每组分支供氧通道中装有单向阀, 以 防污水返回风机中。 所述风机供氧通道分别与各个所述曝气头相连。
优选的, 在上述离心组合式曝气增氧机中, 所述增压导流管总成包括: 与所述驱动设备的上端由支架相连;
与所述由支架相连, 且成辐射状倾斜分布的若干增压导流管。
优选的, 在上述离心组合式曝气增氧机中, 所述增压导流管螺旋状的分 布在所述增压导流管总成的头部周围, 且所述增压导流管与所述曝气头的数 量相同, 且分别指向各个所述曝气头装置。
优选的, 在上述离心组合式曝气增氧机中, 所述驱动设备为.潜水电机。 从上述的技术方案可以看出, 本发明提供的离心组合式曝气增氧机, 通 过驱动设备带动锥体离心桨旋转, 水由锥体离心桨下方的进水通道进入, 在 锥体离心桨的离心作用下, 负压供氧管, 其上端设有负压进氧口, 负压供氧 管自动形成负压, 从而连水带氧经过增压导流管总成向周围形成高压抛出。 风机通过供氧通道, 将风机高压氧供给曝气头, 曝气头喷出的曝气又通过增 压导流管总成形成的高压抛出, 将曝气头喷出的氧向周围更大面积抛出。
本发明分别通过负压将外部空气吸入, 以及风机制氧的方式产生曝气, 其曝气能力得到了极大的提高。 由于风机供氧通道与曝气头相连, 所以能够 使得风机制得的氧气向更大范围抛出, 风机高压氧在曝气头喷出过程中, 被 增压导流管总成喷出的水推送至向周围更大面积抛出。 本发明一部分氧气是 通过负压产生的, 因此其耗能较低, 离心浆甩水的过程中, 自动形成负压, 将外部的氧气导入充分与水混合形成微小氧泡, 通过增压导流管总成向周围 更大面积的抛出。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的离心组合式曝气增氧机的结构示意图; 图 2为本发明实施例提供的离心组合式曝气增氧机的俯视结构示意图; 图 3为本发明实施例提供的离心组合式曝气增氧机的局部结构示意图。
具体实施方式 本发明公开了一种离心组合式曝气增氧机, 以形成大范围曝气对流, 解 决现有曝气增氧机能耗高、 曝气范围小的弊端。
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
请参阅图 1-图 3 ,图 1为本发明实施例提供的离心组合式曝气增氧机的结 构示意图; 图 2 为本发明实施例提供的离心组合式曝气增氧机的俯视结构示 意图; 图 3为本发明实施例提供的离心组合式曝气增氧机的局部结构示意图。
本发明提供的离心组合式曝气增氧机, 包括驱动设备 11、 负压供氧管 8、 增压导流管总成 6和风机 1。 其中, 驱动设备 11的输出端连接有锥体离心桨 9, 驱动设备 1 1用于驱动该锥体离心桨 9转动, 锥体离心桨 9的下方具有进 水通道, 随着锥体离心桨 9的转动, 使得锥体离心桨 9下方的水流通过其下 方的进水通道进入并被高速排出。 由于将驱动设备 11设置在水中, 因此本发 明可采用潜水电机作为驱动设备 11。
负压供氧管 8, 其上端设有负压进氧口 2, 下端设有凹形密封环与锥体离 心浆 9上锥体凸形密封环呈间隙配合。 在锥体离心桨 9转动过程中, 水由甩 水通道 5进入后被甩出, 因此锥体离心桨 9的负压进氧通道 4自动形成负压。 随着锥体离心桨 9的转动, 水氧一同被搅拌粉碎后即连水带氧向周围更大面 积的抛出。 增压导流管总成 6设置在驱动设备 11的上方, 其具有成辐射状倾斜分布 的若干增压导流管, 锥体离心桨 9伸入所述增压导流管总成 6内。 随着锥体 离心桨 9的转动, 在其离心作用下, 将其下方的水和由负压供氧管 8吸入的 空气一同甩出, 并由增压导流管总成 6 的各个增压导流管高速排出, 由于增 压导流管成辐射状分布, 将被导入的水沿辐射状向外抛出, 由于增压导流管 倾斜设置, 所以本发明可使空气和水斜向进入水体进行有效的混合, 消除了 其下方水体增氧效果差的缺陷, 能够对整个水体进行充分对流增氧, 在能耗 较低的条件下显著提高了增氧效果。
风机 1通过风机供氧通道 3与设置于增压导流管总成 6外侧前下方的曝 气头 13相连。驱动风机 1产生的空气经过风机供氧通道 3进入曝气头 13, 并 通过曝气头 13以气泡形式弥散逸出, 在气液界面把氧气溶入水中。
本发明提供的离心组合式曝气增氧机, 通过驱动设备 11带动锥体离心桨 9旋转, 水由锥体离心桨 9下方的进水通道进入, 在锥体离心桨 9的离心作用 下, 负压供氧管 8 自动形成负压, 从而连水带氧经过增压导流管总成 6向周 围形成高压抛出。 风机:1通过风机供氧通道 3 , 将风机 1 高压氧供给曝气头 13, 曝气头 13喷出的氧气又通过增压导流管总成形成的高压抛出, 将曝气头 13喷出的氧向周围更大面积抛出。
本发明分别通过负压将外部空气吸入, 以及风机 1制氧的方式产生曝气, 其曝气能力得到了极大的提高。 由于风机供氧通道 3与曝气头 13 相连, 所以 能够使得风机 1 制得的氧气能够向更大范围抛出, 氧气产生的气泡在喷出过 程中, 被增压导流管总成喷出的水推送至向周围更大面积抛出。 本发明一部 分氧气是通过负压产生的, 因此其耗能较低, 排水的过程中, 自动形成负压, 将外部的氧气导入充分与水混合形成微小氧泡, 通过增压导流管总成向周围 更大面积也拉出。
锥体离心桨 9 包括连接部、 上锥体、 中间锥体、 下锥体和离心叶片。 其 中, 连接部与驱动设备 11相连, 上锥体设置在连接部的外周面上, 中间锥体 设置在锥体离心桨 9 的中间, 下锥体设置在上锥体和中间锥体的下方, 且与 上锥体和中间锥体相连, 该下锥休具有 i进 i¾ if 7 ,— 心卄 片设置在上锥体、 中间锥体和下锥体之间, 且分别与三者相连。 在驱动 ^务
11驱动下锥体离心桨 9转动的过程中, 离心叶片将锥体离心桨 9下方的水吸 入至上方, 并通过进水通道 7及下锥体上的进水口进入下锥体和中间锥体之 间的甩水通道 5 内, 最后通过离心叶片离心力的作用将水流喷入至增压导流 管总成 6 的增压导流管内, 由增压导流管高速喷出。
增压导流管总成 6的下方设有进水通道 7,所述进水通道 7由所述套设在 驱动设备 1 1外侧的外管之间形成。并可在进水通道 7内形成独立的进水通道, 使进水通道 7与增压导流管总成 6周围的出水通道隔开, 避免进水和出水形 成扰流, 而影响增氧效果。
本发明还可包括外管, 该外管的内腔与风机 1形成风机供氧通道 3 , 且其 顶部设有风机安装板, 底部与增压导流管总成 6头部连接。 风机 1设置在风 机安装板上, 驱动设备 11由支架 10连接设置于增压导流管总成 6的底部。 风机供氧通道 3在外管的上端与其连接, 并在外管的底部分支伸出, 并分支 成分别与所述若干曝气头 13相连的多个支路。
曝气头 13由辐射状分布设置于增压导流管总成 6的外侧前下方, 每组分 支供氧通道中装有单向阀, 以防污水返回风机中。 所述风机供氧通道 3 分别 与各个所述曝气头 13相连。
增压导流管总成 6包括与驱动设备 11的上端, 由支架 10连接, 且成辐 射状倾斜分布的若干增压导流管。 优选的, 增压导流管螺旋状的分布在增压 导流管总成 6的头部周围, 且增压导流管与曝气头 13的数量相同, 且分别指 向各个曝气头 13 ,每个增压导流管喷出的水流可将由曝气头 13喷出的氧泡向 更远的方向喷出。 由于增压导流管螺旋状的分布在增压导流管总成 6 的头部 周围, 在水由该增压导流管喷出时, 可形成以该增压导流管总成 6 为中心的 旋流, 从而更大面积的搅动水体, 提高增氧效果。
本说明书中各个实施例釆用递进的方式描述, 每个实施例重点说明的都 是与其他实施例的不同之处, 各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明, 使本领域专业技术人员能够实现或使用 H明„ 对这 匕 ^>λ¼ ^\ % i 太 ^去、l 古犬人 * ^ S ^ & 见的, 本文中所定义的一^^理可以在不脱离本发明的精神或范围的情况下, 在其它实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而是要符合与本文所公开的原埋和新颖特点相一致的最宽的范围。
+

Claims

1、 一种离心组合式曝气增氧机, 其特征在于, 包括:
驱动设备(11 ) , 其输出端连接有锥体离心桨(9) , 该锥体离 心桨(9) 的下方具有进水通道(7) ;
负压供氧管(8) , 其上端设有负压进氧口 (2) , 下端设有凹形 密封环与锥体离心浆(9)上锥体凸形密封环呈间隙配合;
设置在所述驱动设备(11 )上方的增压导流管总成(6) , 其具 有成辐射状倾斜分布的若干增压导流管, 所述锥体离心桨(9)伸入 所述增压导流管总成(6) 内;
风机( 1 ), 其通过风机供氧通道( 3 )与设置于所述增压导流管 总成(6)外侧前下方的若干曝气头 (13)相连。
2、 如权利要求 1所述的离心组合式曝气增氧机, 其特征在于, 所述锥体离心桨(9) 包括:
与所述驱动设备( 11 )相连的连接部;
设置在所述连接部外周面上的上锥体, 具有与负压供氧管 (8) 底部密封环呈间隙配合;
设置在所述上锥体和所述中间锥体之间相通的负压进氧通道 (4) , 所述中间锥体与其下锥体之间形成离心甩水通道( 5 ),且与所 述上锥体、 中间锥体通过叶片相连的下锥体, 该下锥体具有与所述进 水通道(7)相通的进水孔;
设置在所述上锥体、 中间锥体和所述下锥体之间, 且分别与三者 相连的离心叶片。
3、 如权利要求 2所述的离心组合式曝气增氧机, 其特征在于, 所述增压导流管总成(6)的下方设有进水通道(7), 所述进水通道
(7) 由所述套设在驱动设备(11 )外侧的外管之间形成。
4、 如权利要求 1或 2或 3所述的离心组合式曝气增氧机, 其特 征在于, 还包括负压进氧管 (8)外侧的外管, 该外管的内腔与风机
( 1 )形成风机供氧通道(3) , 且其顶部设有风机安装板, 底部与增 上, 所述驱动设备( 11 ) 由支架( 10)连接设置于所述增压导流管总 成(6) 的底部。
5、 如权利要求 4所述的离心组合式曝气增氧机, 其特征在于, 所述负压供氧管(8)的上端设有负压进氧口 (2), 下端设有凹形密 封环与锥体离心浆(9)上锥体凸形密封环呈间隙配合。
6、 如权利要求 4所述的离心组合式曝气增氧机, 其特征在于, 所述风机供氧通道(3)在所述外管的上端与其连接, 并在所述外管 的底部分支伸出, 并分支成分别与所述若干曝气头(13)相连的多个 支路。
7、 如权利要求 6所述的离心组合式曝气增氧机, 其特征在于, 所述曝气头 (13) 由辐射状分布设置于增压导流管总成外侧前下方, 所述每组分支供氧通道中装有单向阀, 以防污水返回风机中,所述风 机供氧通道(3)分别与各个所述曝气头 (13)相连。
8、 如权利要求 7所述的离心组合式曝气增氧机, 其特征在于, 所述增压导流管总成(6) 包括:
与所述驱动设备(11 ) 的上端由支架(10)相连;
与所述由支架( 10)相连, 且成辐射状倾斜分布的若干增压导流 管。
9、 如权利要求 8所述的离心组合式曝气增氧机, 其特征在于, 所述增压导流管螺旋状的分布在所述增压导流管总成(6) 的头部周 围, 且所述增压导流管与所述曝气头(13)的数量相同, 且分别指向 各个所述曝气头装置。
10、 如权利要求 5-9任一项所述的离心组合式曝气增氧机, 其特 征在于, 所述驱动设备(11 ) 为潜水电机。
PCT/CN2012/000278 2011-07-12 2012-03-05 一种离心组合式曝气增氧机 WO2013007094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011202522135U CN202181237U (zh) 2011-07-12 2011-07-12 一种离心组合式曝气增氧机
CN201120252213.5 2011-07-12

Publications (1)

Publication Number Publication Date
WO2013007094A1 true WO2013007094A1 (zh) 2013-01-17

Family

ID=46174283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000278 WO2013007094A1 (zh) 2011-07-12 2012-03-05 一种离心组合式曝气增氧机

Country Status (2)

Country Link
CN (1) CN202181237U (zh)
WO (1) WO2013007094A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106396090A (zh) * 2016-10-16 2017-02-15 李根生 一种悬挂式水下推流曝气机
CN106477715A (zh) * 2016-12-30 2017-03-08 中冶华天工程技术有限公司 曝气构件、包括曝气构件的底层动态曝气系统及曝气方法
CN108684603A (zh) * 2018-07-20 2018-10-23 南充市营渔水产科技有限公司 一种水产养殖推水增氧设备
CN110259705A (zh) * 2019-07-19 2019-09-20 中科聚信洁能热锻装备研发股份有限公司 一种防外泄离心风机
CN117886459A (zh) * 2024-03-18 2024-04-16 日照市海洋与渔业研究院(日照市海域使用动态监视监测中心、日照市水生野生动物救护站) 一种海水养殖尾水处理装置
CN117886459B (zh) * 2024-03-18 2024-05-31 日照市海洋与渔业研究院(日照市海域使用动态监视监测中心、日照市水生野生动物救护站) 一种海水养殖尾水处理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204592B (zh) * 2013-04-19 2014-07-09 郏松筠 一种低功耗高效的水体曝气增氧装置
CN103190375B (zh) * 2013-04-19 2015-07-01 中国水产科学研究院淡水渔业研究中心 池塘增氧装置
CN105130025A (zh) * 2015-08-19 2015-12-09 重庆晨鸣水处理设备有限公司 自吸式推流潜水曝气机
CN105900917A (zh) * 2016-05-18 2016-08-31 张素平 一种池塘专用微管增氧机
DE102018119039A1 (de) * 2018-08-06 2020-02-06 Invent Umwelt-Und Verfahrenstechnik Ag Tauchrührvorrichtung zum Umwälzen von Trinkwasser
CN109364517A (zh) * 2018-12-27 2019-02-22 昆山恒诚荣机械设备有限公司 集中供料系统用结晶机的搅拌桨

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234374A (zh) * 1999-03-22 1999-11-10 关品三 聚氧活化曝气增氧机
CN2364683Y (zh) * 1998-07-13 2000-02-23 诸暨市宏宇机械电器厂 复叶推流式高效瀑气、增氧泵
JP2002273468A (ja) * 2001-03-16 2002-09-24 Tsurumi Mfg Co Ltd 水中エア−ミキサ
KR100751254B1 (ko) * 2007-05-10 2007-08-23 주식회사 유천엔바이로 저속형 수중 에어레이터 및 그 제어방법
CN101322481A (zh) * 2008-08-04 2008-12-17 邓忠敏 离心式双管活化曝气增氧机
CN201208554Y (zh) * 2008-05-08 2009-03-18 中国石油化工集团公司 一种扩散器
CN102249430A (zh) * 2011-05-13 2011-11-23 邓忠敏 一种离心组合式曝气增氧机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2364683Y (zh) * 1998-07-13 2000-02-23 诸暨市宏宇机械电器厂 复叶推流式高效瀑气、增氧泵
CN1234374A (zh) * 1999-03-22 1999-11-10 关品三 聚氧活化曝气增氧机
JP2002273468A (ja) * 2001-03-16 2002-09-24 Tsurumi Mfg Co Ltd 水中エア−ミキサ
KR100751254B1 (ko) * 2007-05-10 2007-08-23 주식회사 유천엔바이로 저속형 수중 에어레이터 및 그 제어방법
CN201208554Y (zh) * 2008-05-08 2009-03-18 中国石油化工集团公司 一种扩散器
CN101322481A (zh) * 2008-08-04 2008-12-17 邓忠敏 离心式双管活化曝气增氧机
CN102249430A (zh) * 2011-05-13 2011-11-23 邓忠敏 一种离心组合式曝气增氧机

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106396090A (zh) * 2016-10-16 2017-02-15 李根生 一种悬挂式水下推流曝气机
CN106396090B (zh) * 2016-10-16 2023-05-26 三门峡丽源环保工程设备有限公司 一种悬挂式水下推流曝气机
CN106477715A (zh) * 2016-12-30 2017-03-08 中冶华天工程技术有限公司 曝气构件、包括曝气构件的底层动态曝气系统及曝气方法
CN108684603A (zh) * 2018-07-20 2018-10-23 南充市营渔水产科技有限公司 一种水产养殖推水增氧设备
CN110259705A (zh) * 2019-07-19 2019-09-20 中科聚信洁能热锻装备研发股份有限公司 一种防外泄离心风机
CN117886459A (zh) * 2024-03-18 2024-04-16 日照市海洋与渔业研究院(日照市海域使用动态监视监测中心、日照市水生野生动物救护站) 一种海水养殖尾水处理装置
CN117886459B (zh) * 2024-03-18 2024-05-31 日照市海洋与渔业研究院(日照市海域使用动态监视监测中心、日照市水生野生动物救护站) 一种海水养殖尾水处理装置

Also Published As

Publication number Publication date
CN202181237U (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2013007094A1 (zh) 一种离心组合式曝气增氧机
CN102267766B (zh) 一种离心式活化曝气增氧机
CN102674574B (zh) 气动增氧装置
CN108503020A (zh) 一种用于生活污水处理的曝气装置
CN114656047B (zh) 一种高效潜水曝气机
CN106430661A (zh) 一种造流式曝气机及曝气系统
CN202492409U (zh) 一种文丘里式辐射状射流曝气器
CN113998791B (zh) 一种潜水式曝气机
CN103055729A (zh) 一种气液混合发生装置
CN203530035U (zh) 一种射流曝气器
RU2593605C1 (ru) Устройство для аэрации воды
CN204039141U (zh) 涡推曝气机
CN208586118U (zh) 一种尾端加强吸气射流曝气装置
CN212222519U (zh) 一种具有多点多方式高效混合装置的臭氧混合设备
CN206828216U (zh) 射流式潜水曝气机
CN201442884U (zh) 超旋磁充氧曝气机
CN209759128U (zh) 一种具有高气泡量的沉水曝气机
CN104719239B (zh) 一种养殖池塘用涌浪式增氧装置
CN102249430B (zh) 一种离心组合式曝气增氧机
CN201048513Y (zh) 离心式外管曝气增氧机
CN203373191U (zh) 水下泵式叶轮曝气机
CN203428973U (zh) 一种离心增压射流曝气机
CN208292731U (zh) 一种用于生活污水处理的曝气装置
CN203128310U (zh) 一种改进结构的水下增氧机
TWM540131U (zh) 深水曝氣機之導撥結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811822

Country of ref document: EP

Kind code of ref document: A1