WO2013005962A2 - 단일화된 참조가능성 확인 과정을 통해 인트라 예측을 수반하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치 - Google Patents

단일화된 참조가능성 확인 과정을 통해 인트라 예측을 수반하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치 Download PDF

Info

Publication number
WO2013005962A2
WO2013005962A2 PCT/KR2012/005246 KR2012005246W WO2013005962A2 WO 2013005962 A2 WO2013005962 A2 WO 2013005962A2 KR 2012005246 W KR2012005246 W KR 2012005246W WO 2013005962 A2 WO2013005962 A2 WO 2013005962A2
Authority
WO
WIPO (PCT)
Prior art keywords
block
mode
intra
unit
prediction
Prior art date
Application number
PCT/KR2012/005246
Other languages
English (en)
French (fr)
Other versions
WO2013005962A3 (ko
Inventor
양희철
곽영진
최광표
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to CN201280042780.5A priority Critical patent/CN103782595A/zh
Priority to JP2014518818A priority patent/JP5824148B2/ja
Priority to EP12807831.8A priority patent/EP2728872A4/en
Priority to US14/130,595 priority patent/US9578329B2/en
Priority to MX2014000157A priority patent/MX2014000157A/es
Priority to SG11201400753WA priority patent/SG11201400753WA/en
Priority to BR112013033697A priority patent/BR112013033697A2/pt
Priority to AU2012278478A priority patent/AU2012278478B2/en
Publication of WO2013005962A2 publication Critical patent/WO2013005962A2/ko
Publication of WO2013005962A3 publication Critical patent/WO2013005962A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding

Definitions

  • the present invention relates to video encoding and decoding involving intra prediction.
  • video codec for efficiently encoding or decoding high resolution or high definition video content.
  • video is encoded according to a limited encoding method based on a macroblock of a predetermined size.
  • Image data in the spatial domain is transformed into coefficients in the frequency domain using frequency transformation.
  • the video codec divides an image into blocks having a predetermined size for fast operation of frequency conversion, performs DCT conversion for each block, and encodes frequency coefficients in units of blocks. Compared to the image data of the spatial domain, the coefficients of the frequency domain are easily compressed. In particular, since the image pixel value of the spatial domain is expressed as a prediction error through inter prediction or intra prediction of the video codec, when frequency conversion is performed on the prediction error, much data may be converted to zero.
  • the video codec reduces data volume by substituting data repeatedly generated continuously with small size data.
  • the present invention proposes a video encoding method and apparatus therefor, and a video decoding method and apparatus for predictive encoding intra mode with intra prediction.
  • An intra prediction method includes: searching for a neighboring block reconstructed before a current block among blocks of an image; Determining whether the searched neighboring block is a block restored to an intra mode and the intra mode of the current block is a CIP mode referring only to a block previously restored to an intra mode; Determining whether the searched neighboring block is a reference block that can be referred to for intra prediction of the current block based on the verification result; And performing intra prediction on the current block by using sample values of the reference block determined as the referenceable block.
  • the process of searching for an intra reference block among neighboring blocks does not need to be separated depending on whether the current block is in CIP mode or not.
  • the CIP mode and the non-CIP mode it is possible to unify the referencing of the neighbor blocks and the search operation of the intra reference block.
  • the reference area outside the image boundary is padded with the sample values of the referenceable pixels adjacent to the boundary. The intra prediction result when the block is in the CIP mode and when not in the CIP mode may be kept the same.
  • FIG. 1 is a block diagram of an intra prediction apparatus, according to an exemplary embodiment.
  • FIGS. 2A and 2B illustrate intra prediction operation according to the CIP mode.
  • FIG. 3 shows a flowchart of an operation of confirming referenceability according to a conventional CIP mode.
  • FIG. 4 illustrates a flowchart of an operation of confirming referenceability regardless of a CIP mode according to an embodiment.
  • FIG. 5 is a flowchart of an intra prediction method, according to an embodiment.
  • FIG. 6A illustrates a flowchart of a video encoding method involving intra prediction, according to an embodiment.
  • 6B illustrates a flowchart of a video decoding method involving intra prediction, according to an embodiment.
  • FIG. 7 is a block diagram of a video encoding apparatus based on coding units according to a tree structure, according to an embodiment.
  • FIG. 8 is a block diagram of a video decoding apparatus based on coding units according to a tree structure, according to an embodiment.
  • FIG 9 illustrates a concept of coding units, according to an embodiment of the present invention.
  • FIG. 10 is a block diagram of an image encoder based on coding units, according to an embodiment of the present invention.
  • FIG. 11 is a block diagram of an image decoder based on coding units, according to an embodiment of the present invention.
  • FIG. 12 is a diagram of deeper coding units according to depths, and partitions, according to an embodiment of the present invention.
  • FIG. 13 illustrates a relationship between a coding unit and transformation units, according to an embodiment of the present invention.
  • FIG. 14 illustrates encoding information according to depths, according to an embodiment of the present invention.
  • 15 is a diagram of deeper coding units according to depths, according to an embodiment of the present invention.
  • 16, 17, and 18 illustrate a relationship between coding units, prediction units, and transformation units, according to an embodiment of the present invention.
  • FIG. 19 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • An intra prediction method includes: searching for a neighboring block reconstructed before a current block among blocks of an image; Determining whether the searched neighboring block is a block restored to an intra mode and the intra mode of the current block is a CIP mode referring only to a block previously restored to an intra mode; Determining whether the searched neighboring block is a reference block that can be referred to for intra prediction of the current block based on the verification result; And performing intra prediction on the current block by using sample values of the reference block determined as the referenceable block.
  • the searching of the neighboring block may include searching for neighboring blocks reconstructed before the current block before determining whether the prediction mode of the current block is an intra mode of the CIP mode.
  • the checking of the CIP mode may include, for each of the searched neighboring blocks, each block being restored to an intra mode, and checking whether an intra mode of the current block is the CIP mode.
  • the performing of the intra prediction may include: when the reference block is out of the boundary of the image, an area that is out of the boundary of the image by a sample value of a pixel adjacent to the inside of the boundary among pixels of the reference block. Padding.
  • the performing of the intra prediction may include: when the reference block deviates from the boundary of the image, regardless of whether the intra mode of the current block is the CIP mode, the pixel among the pixels of the reference block. And padding an area outside the boundary of the image with a sample value of a pixel adjacent to the inside of the boundary surface.
  • An intra prediction apparatus searches for a neighboring block reconstructed earlier than a current block among blocks of an image, and the searched neighboring block is a block reconstructed in an intra mode and is an intra mode of the current block.
  • An intra reference block determination unit determining whether the searched neighboring block is a reference block referenceable for intra prediction of the current block, based on a result of checking whether the CIP mode refers only to a block previously reconstructed into an intra mode;
  • an intra prediction unit configured to perform intra prediction on the current block by using sample values of the reference block.
  • a video decoding apparatus includes: a parser configured to reconstruct samples by performing entropy decoding on a bit string parsed from a received bitstream; An inverse transform unit configured to reconstruct samples by performing inverse quantization and inverse transformation on the quantized transform coefficients of the reconstructed samples; Among the samples, for intra prediction, the neighboring block reconstructed earlier than the current block is searched for intra prediction, and the intra mode of the current block is intra while the searched neighboring block is reconstructed into the intra mode.
  • the searched neighboring block is a reference block referenceable for intra prediction of the current block, and uses the sample values of the reference block.
  • An intra predictor for performing intra prediction on the current block A motion compensator for performing motion compensation on blocks in the inter prediction mode among the live samples; And a reconstruction unit which reconstructs an image by using blocks reconstructed through the inter prediction or the intra prediction.
  • a video encoding apparatus may search for a neighboring block reconstructed before the current block for intra prediction from a current block that is an intra mode among blocks of video, and the searched neighboring block is intra Whether the searched neighboring block is a reference block that can be referred to for intra prediction of the current block based on a result of checking whether the intra mode of the current block is a CIP mode that refers only to a neighboring block restored to the intra mode while being reconstructed to a mode; An intra prediction unit configured to determine and perform intra prediction on the current block by using sample values of the reference block; An inter prediction unit configured to perform inter prediction on blocks among inter-prediction modes of the blocks; A transform quantization unit configured to perform transform and quantization on the result of performing the intra prediction or the inter prediction; And an output unit for outputting a bitstream generated by performing entropy encoding on samples including the quantized transform coefficients generated as a result of the transform and quantization.
  • the present invention includes a computer-readable recording medium having recorded thereon a program for implementing the intra prediction method according to an embodiment.
  • an intra prediction method and an intra prediction apparatus for integrally checking referability according to an intra mode according to an embodiment are disclosed.
  • a video encoding technique and a video decoding technique involving intra prediction according to an embodiment are disclosed.
  • 7 to 19 a video encoding method and a video decoding method based on coding units having a tree structure and involving intra prediction according to an embodiment are disclosed.
  • the 'image' may be a still image of the video or a video, that is, the video itself.
  • an intra prediction method and an intra prediction apparatus for confirming referenceability in a unified manner according to an intra mode according to an embodiment are disclosed.
  • a video encoding technique and a video decoding technique involving intra prediction are disclosed.
  • FIG. 1 is a block diagram of an intra prediction apparatus 10 according to an embodiment.
  • the intra prediction apparatus 10 includes an intra reference block determiner 12 and an intra predictor 14.
  • the intra prediction apparatus 10 encodes each block of each image of the video.
  • the type of block may be square or rectangular, and may be any geometric shape. It is not limited to data units of a certain size.
  • a block according to an embodiment may be a maximum coding unit, a coding unit, a prediction unit, a transformation unit, and the like among coding units having a tree structure. Video encoding and decoding methods based on coding units having a tree structure will be described later with reference to FIGS. 7 to 19.
  • the intra reference block determiner 12 searches for a neighboring block reconstructed before the current block among neighboring blocks adjacent to the current block. For intra prediction on the current block, neighboring blocks reconstructed before the current block may be referenced.
  • Intra prediction according to the CIP mode may refer only to a block previously reconstructed in the intra mode.
  • the intra reference block determiner 12 checks whether a neighbor block previously restored is an intra mode restored block, and at the same time, the intra mode of the current block is a CIP mode. That is, the intra reference block determiner 12 according to an embodiment may search for neighbor blocks reconstructed before the current block before determining whether the intra mode of the current block is the CIP mode.
  • the intra reference block determiner 12 may search for neighbor blocks reconstructed before the current block, and then check whether the current block is a CIP mode block while the neighbor blocks are reconstructed in the intra mode.
  • the intra reference block determiner 12 determines whether the neighboring block is a reference block for intra prediction of the current block based on a result of checking whether the searched neighboring block is a block reconstructed in the intra mode and the current block is the CIP mode. You can decide.
  • the intra reference block determiner 12 may determine that the neighbor block is a reference block referenceable for intra prediction of the current block. have.
  • the intra reference block determiner 12 may determine that the neighboring block is a reference block for intra prediction of the current block. You can decide not.
  • the intra prediction unit 14 may perform intra prediction on the current block by using sample values of the reference block.
  • the intra predictor 14 may pad an area beyond the boundary of the image with a sample value of a pixel adjacent to the inside of the boundary among pixels of the reference block. That is, an area beyond the boundary of the image may be filled with sample values of pixels adjacent to the inside of the boundary surface.
  • the intra prediction unit 14 may determine whether the intrablock of the current block is the CIP mode, and if the reference block is out of the boundary of the image, the boundary of the image is the sample value of the pixel adjacent to the inside of the boundary among the pixels of the reference block. You can pad the area outside of.
  • the intra prediction unit 14 may perform intra prediction for the current block with reference to the padded region.
  • the intra prediction apparatus 10 may include a central processor (not shown) that collectively controls the intra reference block determiner 12 and the intra predictor 14.
  • the intra reference block determiner 12 and the intra predictor 14 are operated by their own processors (not shown), and the intra prediction apparatus 10 is operated as the processors (not shown) operate organically with each other. It may work as a whole.
  • the intra reference block determiner 12 and the intra predictor 14 may be controlled by the control of an external processor (not shown) of the intra prediction apparatus 10 according to an exemplary embodiment.
  • the intra prediction apparatus 10 may include one or more data storage units (not shown) in which input / output data of the intra reference block determiner 12 and the intra predictor 14 are stored.
  • the intra prediction apparatus 10 may include a memory controller (not shown) that controls data input / output of the data storage unit (not shown).
  • the intra prediction apparatus 10 regardless of whether the current block is the CIP mode, whether the neighboring blocks are reconstructed before the current block may be checked, and thus (i) when the current block is the CIP mode. Since the process of searching for an intra reference block and (ii) the current block does not need to be separated from the process of searching for an intra reference block in CIP mode, the process of searching for an intra reference block of the current block can be unified. Can be lowered.
  • the intra prediction result when the block is in the CIP mode and the intra prediction result when not in the CIP mode may be kept the same.
  • FIGS. 2A and 2B illustrate intra prediction operation according to the CIP mode.
  • An example of the current block 20 is a prediction unit (PU), which is a data unit for prediction of a coding unit having a tree structure. Coding units and prediction units having a tree structure will be described later with reference to FIGS. 7 and 19.
  • PU prediction unit
  • the samples 28 and 23 of the left, top, bottom left and top right adjacent to the current block 20 may be referred to.
  • samples 28 and 23 that are already reconstructed and referable among samples adjacent to the current block 20 may be searched.
  • the current block 20 When the current block 20 is intra predicted in the CIP mode, it is checked whether the samples of the minimum PU size unit 22 which is the minimum block are referable for intra prediction. If the current block 20 is intra predicted in a state other than the CIP mode, it is checked whether the samples of the PU size unit 21 that is the current block can be referred to for intra prediction.
  • the referenceability of the upper right samples 23 located at the upper right of the current block 20 may vary depending on whether the current block 20 is intra predicted to be in the CIP mode or not the CIP mode.
  • referenceability may be determined for each region corresponding to the minimum block size 22, that is, for each of the inner region 24 and the outer region 26.
  • the outer area 26 outside the image boundary 25 is an area that cannot be referred to, the inner area 24 may be determined as referenceable samples.
  • the outer region 26 may be replaced with the sample 29 that is closest to the outer region 26 of the inner region 24.
  • the size unit 21, 22 of the neighbor samples 22, 24, 26, 28 that determine the referability for intra prediction of the current block 20 The padding scheme for the outer region 26 outside the image boundary 25 is also different. Therefore, the intra prediction scheme may vary and the intra prediction result may vary depending on whether the current block 20 is in the CIP mode.
  • FIG. 3 shows a flowchart of an operation 30 for checking referability in accordance with a conventional CIP mode.
  • step 31 it is determined whether the intra mode of the current block is the CIP mode.
  • 'Constrained_intra_pred' information may be parsed from the image header, and it may be determined whether the intra mode of the blocks included in the current image is the CIP mode based on the Constrained_intra_pred 'information.
  • 'Constrained_intra_pred' information on the current picture may be parsed from a picture parameter set (PPS).
  • PPS picture parameter set
  • 'Constrained_intra_pred' information may be recorded in the PPS and transmitted. Based on the 'Constrained_intra_pred' information, it may be determined whether intra blocks of the picture are predicted in the CIP mode.
  • the operation 30 may be referred to as 'Available_check_for_cip ()' 35 for the CIP mode. If it is determined that it is not in the CIP mode, it proceeds to the reference availability checking operation 'Available_check_intra ()' 37 for the non-CIP mode.
  • index i represents an index of a neighboring block
  • 'Is_intra (i)' indicates an operation of determining whether a neighboring block having an index i is an intra mode
  • 'available (i)' represents an index i. This operation determines whether the neighboring block is a block restored before the current block.
  • 'avail_intra_pred [i]' is a variable indicating whether a neighbor block having index i is an intra reference block for the current block.
  • 'max_cand_block_cip' and 'max_cand_block' indicate the maximum number of candidate reference blocks for intra prediction according to the CIP mode and intra prediction when the CIP mode is not.
  • the referenceability checking operation (Available_check_for_cip ()) 35 for the CIP mode it is determined whether neighboring blocks are intra reference blocks according to the order of the index i.
  • step 355 the block index i is increased to confirm the referability of neighboring blocks in the next order. If the block index i does not reach the maximum number of candidate reference blocks (max_cand_block_cip) for intra prediction according to the CIP mode in step 356, the block index i returns to step 352 to check the referability of the neighboring blocks in the next order. When the maximum number of candidate reference blocks (max_cand_block_cip) is reached, the reference availability checking operation 35 is completed.
  • step 371 Similar to the referenceability check operation 35 according to the CIP mode is performed in the referenceability checking operation (Available_check_intra (), 37) for the intra prediction that is not the CIP mode.
  • step 372 it is not checked whether the neighbor block i is restored to the intra mode.
  • steps 373 and 374 it is determined whether the neighbor block i is an intra reference block for the current block.
  • step 375 the block index i is increased, and in step 376, the reference index is checked again or the referenceability is confirmed for the next neighboring block according to whether the block index i reaches the maximum number of candidate reference blocks for intra prediction (max_cand_block). Complete operation 37.
  • the referenceability confirmation operation 35 according to the CIP mode and the referenceability confirmation operation 37 when not in the CIP mode are actually similar operations, the similar operation is performed after determining whether the current block is in the CIP mode or not. Since the operations are performed separately, the efficiency of the intra prediction operation may be reduced.
  • padding processing for the non-reference area is performed.
  • the padding scheme for the external region of the image boundary among the reference blocks varies depending on the CIP mode and the non-CIP mode. That is, in step 38, for intra prediction according to the CIP mode, the boundary outer region may be padded with the sample closest to the boundary among the boundary inner regions of the reference block. On the other hand, in step 39, samples of the first reference block that are out of the image boundary even in some areas may be padded with samples of the second reference block that are closest to the first reference block and to which all samples can be referenced.
  • the intra prediction result may also vary.
  • the intra prediction apparatus 10 may determine the referability of the neighbor blocks and the intra reference block regardless of the CIP mode.
  • 4 shows a flow diagram of an operation 40 of verifying referenceability regardless of the CIP mode according to one embodiment.
  • an intra reference block for the current block may be started regardless of the CIP mode.
  • step 43 it may be determined whether the neighboring block i is not a block restored to the intra mode and at the same time the intra mode of the current block is the CIP mode (! (Is_intra (i)) && Constrained_intra_pred?).
  • step 46 the block index i is increased to confirm the referability of neighboring blocks in the next order. If the block index i does not reach the maximum number of candidate reference blocks (max_cand_block_cip) for intra prediction according to the CIP mode in step 47, the block index i is returned to step 42 to check the referability of the neighboring blocks in the next order. When the maximum number of candidate reference blocks (max_cand_block_cip) is reached, the reference availability checking operation 40 is completed.
  • padding processing for the non-reference area is performed.
  • the boundary outer region may be padded with the sample closest to the boundary among the boundary inner regions of the reference block.
  • the intra prediction apparatus 10 when comparing the conventional referibility check operation with the reference readability check operation according to an embodiment with reference to FIGS. 3 and 4, the intra prediction apparatus 10 according to an embodiment may be used regardless of whether the current block is in the CIP mode. As a result of determining whether the neighboring blocks are recovered before the current block, there is no need to separate the process of searching for an intra reference block among neighboring blocks according to whether the current block is in CIP mode or not. Therefore, even if the intra prediction apparatus 10 selectively performs intra prediction according to the CIP mode, the intra prediction apparatus 10 may unify the reference operation of neighboring blocks and the search operation of the intra reference block in the CIP mode and the non-CIP mode. .
  • the intra prediction result when the block is in the CIP mode and when not in the CIP mode may be kept the same.
  • FIG. 5 is a flowchart of an intra prediction method, according to an embodiment.
  • step 51 for intra prediction of the current block, the neighbor block reconstructed earlier than the current block is searched.
  • step 53 it is checked whether the searched neighbor block is the block restored to the intra mode and the current block is the CIP mode.
  • step 51 before determining whether the intra mode of the current block is the CIP mode, neighbor blocks previously restored before the current block are searched.
  • step 53 for each neighbor block found in step 51, whether each neighboring block is an intra block and the current block is an intra block of the CIP mode may be checked.
  • step 55 it is determined whether the neighboring block retrieved in step 51 is a reference block for intra prediction of the current block, based on the result of checking in step 52.
  • step 57 intra prediction on the current block is performed using the sample values of the reference block determined as the block referenceable in step 55.
  • an area beyond the boundary of the image may be padded with a sample value of a pixel adjacent to the inside of the boundary among the pixels of the reference block.
  • an area beyond the boundary of the image may be padded with a sample value of a pixel adjacent to the inside of the boundary among the pixels of the reference block.
  • FIG. 6A illustrates a flowchart of a video encoding method involving intra prediction, according to an embodiment.
  • a neighboring block reconstructed before the current block is searched for intra prediction of a current block that is an intra mode among blocks of video according to an intra prediction scheme.
  • step 62 inter prediction is performed on blocks among the blocks that are in the inter prediction mode, so that residual information is generated.
  • step 63 transform and quantization are performed on the result of performing the intra prediction or the inter prediction to generate a quantized transform coefficient.
  • step 65 a bitstream generated by performing entropy encoding on the samples including the quantized transform coefficient of step 63 is output.
  • neighboring blocks reconstructed before the current block may be searched. For each neighboring block reconstructed before the current block, it may be checked whether the current block is the CIP mode while being an intra block.
  • the sample value of the pixel adjacent to the inside of the boundary among the pixels of the reference block may be padded and used as a reference sample.
  • the video encoding apparatus for performing the video encoding method according to FIG. 6A may include an intra prediction apparatus 10 according to an embodiment.
  • the video encoding apparatus including the intra prediction apparatus 10 according to an embodiment may generate samples by performing intra prediction, inter prediction, transformation, and quantization for each image block, and performs bitstream by performing entropy encoding on the samples. It can be output in the form of.
  • the video encoding apparatus including the intra prediction apparatus 10 according to an embodiment may connect the intra prediction apparatus 10 to a video encoding processor or an external video encoding processor mounted inside the video encoding apparatus. By operating the video encoding operation including the transform.
  • the internal video encoding processor of the video encoding apparatus may not only be a separate processor, but also a video encoding apparatus, a central processing unit, and a graphic processing unit may include a video encoding processing module to implement a basic video encoding operation. It may also include.
  • 6B illustrates a flowchart of a video decoding method involving intra prediction, according to an embodiment.
  • step 65 entropy decoding is performed on the parsed bitstream from the received bitstream to recover the samples.
  • step 66 inverse quantization and inverse transformation are performed on the quantized transform coefficients of the samples to recover the samples.
  • step 67 intra prediction is performed on samples of intra mode, and motion compensation is performed on samples of inter mode in step 68.
  • step 69 an image is reconstructed using blocks reconstructed through inter prediction of step 68 or intra prediction of step 69.
  • step 67 among intrasamples, a neighboring block reconstructed before the current block is searched for intra prediction of the current block that is in intra mode.
  • neighboring blocks reconstructed before the current block may be searched. For each neighboring block reconstructed before the current block, it may be checked whether the current block is the CIP mode while being an intra block.
  • the sample value of the pixel adjacent to the inside of the boundary among the pixels of the reference block may be padded.
  • the video decoding apparatus for performing the video decoding method according to FIG. 6B may include the intra prediction apparatus 10 according to an embodiment.
  • the video decoding apparatus including the intra prediction apparatus 10 according to an embodiment may parse the samples encoded from the bitstream, and may reconstruct the samples by performing inverse quantization, inverse transformation, intra prediction, and motion compensation for each image block. have.
  • the intra prediction apparatus 10 operates in conjunction with a video decoding processor or an external video decoding processor mounted inside the video decoding apparatus, thereby performing inverse transform, prediction / compensation.
  • the video decoding operation may be performed.
  • the internal video decoding processor of the video decoding apparatus includes not only a separate processor but also a case in which the video decoding apparatus, the central processing unit, or the graphics processing unit implements the basic video decoding operation by including the video decoding processing module. You may.
  • blocks in which video data is divided may be divided into coding units having a tree structure, and prediction units for intra prediction with respect to coding units may be used as described above. same.
  • a video encoding method and apparatus therefor, a video decoding method, and an apparatus based on coding units and transformation units of a tree structure according to an embodiment will be described with reference to FIGS. 7 to 19.
  • FIG. 7 is a block diagram of a video encoding apparatus 100 based on coding units having a tree structure, according to an embodiment of the present invention.
  • the video encoding apparatus 100 including video prediction based on coding units having a tree structure may include a maximum coding unit splitter 110, a coding unit determiner 120, and an outputter 130.
  • the video encoding apparatus 100 that includes video prediction based on coding units having a tree structure is abbreviated as “video encoding apparatus 100”.
  • the maximum coding unit splitter 110 may partition the current picture based on the maximum coding unit that is a coding unit of the maximum size for the current picture of the image. If the current picture is larger than the maximum coding unit, image data of the current picture may be split into at least one maximum coding unit.
  • the maximum coding unit may be a data unit having a size of 32x32, 64x64, 128x128, 256x256, or the like, and may be a square data unit having a square of two horizontal and vertical sizes.
  • the image data may be output to the coding unit determiner 120 for at least one maximum coding unit.
  • the coding unit according to an embodiment may be characterized by a maximum size and depth.
  • the depth indicates the number of times the coding unit is spatially divided from the maximum coding unit, and as the depth increases, the coding unit for each depth may be split from the maximum coding unit to the minimum coding unit.
  • the depth of the largest coding unit is the highest depth and the minimum coding unit may be defined as the lowest coding unit.
  • the maximum coding unit decreases as the depth increases, the size of the coding unit for each depth decreases, and thus, the coding unit of the higher depth may include coding units of a plurality of lower depths.
  • the image data of the current picture may be divided into maximum coding units according to the maximum size of the coding unit, and each maximum coding unit may include coding units divided by depths. Since the maximum coding unit is divided according to depths, image data of a spatial domain included in the maximum coding unit may be hierarchically classified according to depths.
  • the maximum depth and the maximum size of the coding unit that limit the total number of times of hierarchically dividing the height and the width of the maximum coding unit may be preset.
  • the coding unit determiner 120 encodes at least one divided region obtained by dividing the region of the largest coding unit for each depth, and determines a depth at which the final encoding result is output for each of the at least one divided region. That is, the coding unit determiner 120 encodes the image data in coding units according to depths for each maximum coding unit of the current picture, and selects a depth at which the smallest coding error occurs to determine the coding depth. The determined coded depth and the image data for each maximum coding unit are output to the outputter 130.
  • Image data in the largest coding unit is encoded based on coding units according to depths according to at least one depth less than or equal to the maximum depth, and encoding results based on the coding units for each depth are compared. As a result of comparing the encoding error of the coding units according to depths, a depth having the smallest encoding error may be selected. At least one coding depth may be determined for each maximum coding unit.
  • the coding unit is divided into hierarchically and the number of coding units increases.
  • a coding error of each data is measured, and whether or not division into a lower depth is determined. Therefore, even in the data included in one largest coding unit, since the encoding error for each depth is different according to the position, the coding depth may be differently determined according to the position. Accordingly, one or more coding depths may be set for one maximum coding unit, and data of the maximum coding unit may be partitioned according to coding units of one or more coding depths.
  • the coding unit determiner 120 may determine coding units having a tree structure included in the current maximum coding unit.
  • the coding units having a tree structure according to an embodiment include coding units having a depth determined as a coding depth among all deeper coding units included in the maximum coding unit.
  • the coding unit of the coding depth may be hierarchically determined according to the depth in the same region within the maximum coding unit, and may be independently determined for the other regions.
  • the coded depth for the current region may be determined independently of the coded depth for the other region.
  • the maximum depth according to an embodiment is an index related to the number of divisions from the maximum coding unit to the minimum coding unit.
  • the first maximum depth according to an embodiment may represent the total number of divisions from the maximum coding unit to the minimum coding unit.
  • the second maximum depth according to an embodiment may represent the total number of depth levels from the maximum coding unit to the minimum coding unit. For example, when the depth of the largest coding unit is 0, the depth of the coding unit obtained by dividing the largest coding unit once may be set to 1, and the depth of the coding unit divided twice may be set to 2. In this case, if the coding unit divided four times from the maximum coding unit is the minimum coding unit, since depth levels of 0, 1, 2, 3, and 4 exist, the first maximum depth is set to 4 and the second maximum depth is set to 5. Can be.
  • Predictive encoding and transformation of the largest coding unit may be performed. Similarly, prediction encoding and transformation are performed based on depth-wise coding units for each maximum coding unit and for each depth less than or equal to the maximum depth.
  • encoding including prediction encoding and transformation should be performed on all the coding units for each depth generated as the depth deepens.
  • the prediction encoding and the transformation will be described based on the coding unit of the current depth among at least one maximum coding unit.
  • the video encoding apparatus 100 may variously select a size or shape of a data unit for encoding image data.
  • the encoding of the image data is performed through prediction encoding, transforming, entropy encoding, and the like.
  • the same data unit may be used in every step, or the data unit may be changed in steps.
  • the video encoding apparatus 100 may select not only a coding unit for encoding the image data, but also a data unit different from the coding unit in order to perform predictive encoding of the image data in the coding unit.
  • prediction encoding may be performed based on a coding unit of a coding depth, that is, a more strange undivided coding unit, according to an embodiment.
  • a more strange undivided coding unit that is the basis of prediction coding is referred to as a 'prediction unit'.
  • the partition in which the prediction unit is divided may include a data unit in which at least one of the prediction unit and the height and the width of the prediction unit are divided.
  • the partition may be a data unit in which the prediction unit of the coding unit is split, and the prediction unit may be a partition having the same size as the coding unit.
  • the partition type includes not only symmetric partitions in which the height or width of the prediction unit is divided by a symmetrical ratio, but also partitions divided in an asymmetrical ratio, such as 1: n or n: 1, by a geometric form. It may optionally include partitioned partitions, arbitrary types of partitions, and the like.
  • the prediction mode of the prediction unit may be at least one of an intra mode, an inter mode, and a skip mode.
  • the intra mode and the inter mode may be performed on partitions having sizes of 2N ⁇ 2N, 2N ⁇ N, N ⁇ 2N, and N ⁇ N.
  • the skip mode may be performed only for partitions having a size of 2N ⁇ 2N.
  • the encoding may be performed independently for each prediction unit within the coding unit to select a prediction mode having the smallest encoding error.
  • the video encoding apparatus 100 may perform conversion of image data of a coding unit based on not only a coding unit for encoding image data, but also a data unit different from the coding unit.
  • the transformation may be performed based on a transformation unit having a size smaller than or equal to the coding unit.
  • the transformation unit may include a data unit for intra mode and a transformation unit for inter mode.
  • the transformation unit in the coding unit is also recursively divided into smaller transformation units, so that the residual data of the coding unit is determined according to the tree structure according to the transformation depth. Can be partitioned according to the conversion unit.
  • a transform depth indicating a number of divisions between the height and the width of the coding unit divided to the transform unit may be set. For example, if the size of the transform unit of the current coding unit of size 2Nx2N is 2Nx2N, the transform depth is 0, the transform depth 1 if the size of the transform unit is NxN, and the transform depth 2 if the size of the transform unit is N / 2xN / 2. Can be. That is, the transformation unit having a tree structure may also be set for the transformation unit according to the transformation depth.
  • the encoded information for each coded depth requires not only the coded depth but also prediction related information and transformation related information. Accordingly, the coding unit determiner 120 may determine not only the coded depth that generated the minimum coding error, but also a partition type obtained by dividing a prediction unit into partitions, a prediction mode for each prediction unit, and a size of a transformation unit for transformation.
  • a method of determining a coding unit, a prediction unit / partition, and a transformation unit according to a tree structure of a maximum coding unit according to an embodiment will be described later in detail with reference to FIGS. 7 to 19.
  • the coding unit determiner 120 may measure a coding error of coding units according to depths using a Lagrangian Multiplier-based rate-distortion optimization technique.
  • the output unit 130 outputs the image data of the maximum coding unit encoded based on the at least one coded depth determined by the coding unit determiner 120 and the information about the encoding modes according to depths in the form of a bit stream.
  • the encoded image data may be a result of encoding residual data of the image.
  • the information about the encoding modes according to depths may include encoding depth information, partition type information of a prediction unit, prediction mode information, size information of a transformation unit, and the like.
  • the coded depth information may be defined using depth-specific segmentation information indicating whether to encode to a coding unit of a lower depth without encoding to the current depth. If the current depth of the current coding unit is a coding depth, since the current coding unit is encoded in a coding unit of the current depth, split information of the current depth may be defined so that it is no longer divided into lower depths. On the contrary, if the current depth of the current coding unit is not the coding depth, encoding should be attempted using the coding unit of the lower depth, and thus split information of the current depth may be defined to be divided into coding units of the lower depth.
  • encoding is performed on the coding unit divided into the coding units of the lower depth. Since at least one coding unit of a lower depth exists in the coding unit of the current depth, encoding may be repeatedly performed for each coding unit of each lower depth, and recursive coding may be performed for each coding unit of the same depth.
  • coding units having a tree structure are determined in one largest coding unit and information about at least one coding mode should be determined for each coding unit of a coding depth, information about at least one coding mode may be determined for one maximum coding unit. Can be.
  • the coding depth may be different for each location, and thus information about the coded depth and the coding mode may be set for the data.
  • the output unit 130 may allocate encoding information about a corresponding coding depth and an encoding mode to at least one of a coding unit, a prediction unit, and a minimum unit included in the maximum coding unit. .
  • the minimum unit according to an embodiment is a square data unit having a size obtained by dividing a minimum coding unit, which is a lowest coding depth, into four divisions.
  • the minimum unit according to an embodiment may be a square data unit having a maximum size that may be included in all coding units, prediction units, partition units, and transformation units included in the maximum coding unit.
  • the encoding information output through the output unit 130 may be classified into encoding information according to depth coding units and encoding information according to prediction units.
  • the encoding information for each coding unit according to depth may include prediction mode information and partition size information.
  • the encoding information transmitted for each prediction unit includes information about an estimation direction of the inter mode, information about a reference image index of the inter mode, information about a motion vector, information about a chroma component of an intra mode, and information about an inter mode of an intra mode. And the like.
  • Information about the maximum size and information about the maximum depth of the coding unit defined for each picture, slice, or GOP may be inserted into a header, a sequence parameter set, or a picture parameter set of the bitstream.
  • the information on the maximum size of the transform unit and the minimum size of the transform unit allowed for the current video may also be output through a header, a sequence parameter set, a picture parameter set, or the like of the bitstream.
  • the output unit 130 may encode and output reference information, prediction information, unidirectional prediction information, slice type information including a fourth slice type, etc. related to the prediction described above with reference to FIGS. 1 to 6.
  • a coding unit according to depths is a coding unit having a size in which a height and a width of a coding unit of one layer higher depth are divided by half. That is, if the size of the coding unit of the current depth is 2Nx2N, the size of the coding unit of the lower depth is NxN.
  • the current coding unit having a size of 2N ⁇ 2N may include up to four lower depth coding units having a size of N ⁇ N.
  • the video encoding apparatus 100 determines a coding unit having an optimal shape and size for each maximum coding unit based on the size and the maximum depth of the maximum coding unit determined in consideration of the characteristics of the current picture. Coding units may be configured. In addition, since each of the maximum coding units may be encoded in various prediction modes and transformation methods, an optimal coding mode may be determined in consideration of image characteristics of coding units having various image sizes.
  • the video encoding apparatus may adjust the coding unit in consideration of the image characteristics while increasing the maximum size of the coding unit in consideration of the size of the image, thereby increasing image compression efficiency.
  • the video encoding apparatus 100 of FIG. 7 may perform an operation of the intra prediction apparatus 10 described above with reference to FIG. 1.
  • the coding unit determiner 120 may perform an operation of the intra prediction apparatus 10. For each largest coding unit, a prediction unit for intra prediction may be determined for each coding unit having a tree structure, and intra prediction may be performed for each prediction unit.
  • neighboring data units minimum unit, prediction unit, coding unit, etc.
  • the neighboring data unit of the intra mode and the current block may be identified as the CIP mode.
  • intra prediction irrespective of whether the current prediction unit is the CIP mode or not, if the reference data unit is out of the image boundary, the sample value of the pixel adjacent to the inside of the boundary among the pixels of the reference data unit is outside the boundary of the picture.
  • the area may be padded. Intra prediction of the current prediction unit may be performed with reference to the padded region.
  • the output unit 130 may output the generated samples in the form of a bitstream by encoding the difference data generated as a result of the intra prediction. For example, samples such as quantized transform coefficients and intra mode information of differential data may be output.
  • the output unit 130 may insert CIP information indicating whether the picture is in the CIP mode for each picture and insert the same into the PPS.
  • FIG. 8 is a block diagram of a video decoding apparatus 200 based on coding units having a tree structure, according to an embodiment of the present invention.
  • a video decoding apparatus 200 including video prediction based on coding units having a tree structure includes a receiver 210, image data and encoding information extractor 220, and image data decoder 230. do.
  • the video decoding apparatus 200 that includes video prediction based on coding units having a tree structure is abbreviated as “video decoding apparatus 200”.
  • Definition of various terms such as a coding unit, a depth, a prediction unit, a transformation unit, and information about various encoding modes for a decoding operation of the video decoding apparatus 200 according to an embodiment may be described with reference to FIG. 7 and the video encoding apparatus 100. Same as described above with reference.
  • the receiver 210 receives and parses a bitstream of an encoded video.
  • the image data and encoding information extractor 220 extracts image data encoded for each coding unit from the parsed bitstream according to coding units having a tree structure for each maximum coding unit, and outputs the encoded image data to the image data decoder 230.
  • the image data and encoding information extractor 220 may extract information about a maximum size of a coding unit of the current picture from a header, a sequence parameter set, or a picture parameter set for the current picture.
  • the image data and encoding information extractor 220 extracts information about a coded depth and an encoding mode for the coding units having a tree structure for each maximum coding unit, from the parsed bitstream.
  • the extracted information about the coded depth and the coding mode is output to the image data decoder 230. That is, the image data of the bit string may be divided into maximum coding units so that the image data decoder 230 may decode the image data for each maximum coding unit.
  • the information about the coded depth and the encoding mode for each largest coding unit may be set with respect to one or more coded depth information, and the information about the coding mode according to the coded depths may include partition type information, prediction mode information, and transformation unit of the corresponding coding unit. May include size information and the like.
  • split information for each depth may be extracted as the coded depth information.
  • the information about the coded depth and the encoding mode according to the maximum coding units extracted by the image data and the encoding information extractor 220 may be encoded according to the depth according to the maximum coding unit, as in the video encoding apparatus 100 according to an embodiment.
  • the image data and the encoding information extractor 220 may determine the predetermined data.
  • Information about a coded depth and an encoding mode may be extracted for each unit. If the information about the coded depth and the coding mode of the maximum coding unit is recorded for each of the predetermined data units, the predetermined data units having the information about the same coded depth and the coding mode are inferred as data units included in the same maximum coding unit. Can be.
  • the image data decoder 230 reconstructs the current picture by decoding image data of each maximum coding unit based on the information about the coded depth and the encoding mode for each maximum coding unit. That is, the image data decoder 230 may decode the encoded image data based on the read partition type, the prediction mode, and the transformation unit for each coding unit among the coding units having the tree structure included in the maximum coding unit. Can be.
  • the decoding process may include a prediction process including intra prediction and motion compensation, and an inverse transform process.
  • the image data decoder 230 may perform intra prediction or motion compensation according to each partition and prediction mode for each coding unit based on partition type information and prediction mode information of the prediction unit of the coding unit for each coding depth. .
  • the image data decoder 230 may read transform unit information having a tree structure for each coding unit, and perform inverse transform based on the transformation unit for each coding unit, for inverse transformation for each largest coding unit. Through inverse transformation, the pixel value of the spatial region of the coding unit may be restored.
  • the image data decoder 230 may determine the coded depth of the current maximum coding unit by using the split information for each depth. If the split information indicates that the split information is no longer split at the current depth, the current depth is the coded depth. Therefore, the image data decoder 230 may decode the coding unit of the current depth using the partition type, the prediction mode, and the transformation unit size information of the prediction unit with respect to the image data of the current maximum coding unit.
  • the image data decoder 230 It may be regarded as one data unit to be decoded in the same encoding mode.
  • the decoding of the current coding unit may be performed by obtaining information about an encoding mode for each coding unit determined in this way.
  • the video decoding apparatus 200 of FIG. 8 may perform the operation of the intra prediction apparatus 10 described above with reference to FIG. 1.
  • the extractor 220 may reconstruct samples generated as a result of encoding from the bitstream. For example, samples such as quantized transform coefficients and intra mode information of differential data generated by prediction may be reconstructed. Also, the extractor 220 may restore the CIP mode for each picture based on the CIP information parsed from the PPS.
  • the image data decoder 230 may perform an operation of the intra prediction apparatus 10. For each largest coding unit, a prediction unit for intra prediction may be determined for each coding unit having a tree structure, and intra prediction may be performed for each prediction unit.
  • neighboring data units minimum unit, prediction unit, coding unit, etc.
  • the neighboring data unit of the intra mode and the current block may be identified as the CIP mode.
  • intra prediction irrespective of whether the current prediction unit is the CIP mode or not, if the reference data unit is out of the image boundary, the sample value of the pixel adjacent to the inside of the boundary among the pixels of the reference data unit is outside the boundary of the picture.
  • the area may be padded. Intra prediction of the current prediction unit may be performed with reference to the padded region.
  • the video decoding apparatus 200 may obtain information about a coding unit that generates a minimum coding error by recursively encoding each maximum coding unit in the encoding process, and use the same to decode the current picture. That is, decoding of encoded image data of coding units having a tree structure determined as an optimal coding unit for each maximum coding unit can be performed.
  • the image data can be efficiently used according to the coding unit size and the encoding mode that are adaptively determined according to the characteristics of the image by using the information about the optimum encoding mode transmitted from the encoding end. Can be decoded and restored.
  • FIG 9 illustrates a concept of coding units, according to an embodiment of the present invention.
  • a size of a coding unit may be expressed by a width x height, and may include 32x32, 16x16, and 8x8 from a coding unit having a size of 64x64.
  • Coding units of size 64x64 may be partitioned into partitions of size 64x64, 64x32, 32x64, and 32x32, coding units of size 32x32 are partitions of size 32x32, 32x16, 16x32, and 16x16, and coding units of size 16x16 are 16x16.
  • Coding units of size 8x8 may be divided into partitions of size 8x8, 8x4, 4x8, and 4x4, into partitions of 16x8, 8x16, and 8x8.
  • the resolution is set to 1920x1080, the maximum size of the coding unit is 64, and the maximum depth is 2.
  • the resolution is set to 1920x1080, the maximum size of the coding unit is 64, and the maximum depth is 3.
  • the resolution is set to 352x288, the maximum size of the coding unit is 16, and the maximum depth is 1.
  • the maximum depth illustrated in FIG. 9 represents the total number of divisions from the maximum coding unit to the minimum coding unit.
  • the maximum size of the coding size is relatively large not only to improve the coding efficiency but also to accurately shape the image characteristics. Accordingly, the video data 310 or 320 having a higher resolution than the video data 330 may be selected to have a maximum size of 64.
  • the coding unit 315 of the video data 310 is divided twice from a maximum coding unit having a long axis size of 64, and the depth is deepened by two layers, so that the long axis size is 32, 16. Up to coding units may be included.
  • the coding unit 335 of the video data 330 is divided once from coding units having a long axis size of 16, and the depth is deepened by one layer to increase the long axis size to 8. Up to coding units may be included.
  • the coding unit 325 of the video data 320 is divided three times from the largest coding unit having a long axis size of 64, and the depth is three layers deep, so that the long axis size is 32, 16. , Up to 8 coding units may be included. As the depth increases, the expressive power of the detailed information may be improved.
  • FIG. 10 is a block diagram of an image encoder 400 based on coding units, according to an embodiment of the present invention.
  • the image encoder 400 includes operations performed by the encoding unit determiner 120 of the video encoding apparatus 100 to encode image data. That is, the intra predictor 410 performs intra prediction on the coding unit of the intra mode among the current frame 405, and the motion estimator 420 and the motion compensator 425 are the current frame 405 of the inter mode. And the inter frame estimation and the motion compensation using the reference frame 495.
  • Data output from the intra predictor 410, the motion estimator 420, and the motion compensator 425 is output as a quantized transform coefficient through the transform unit 430 and the quantization unit 440.
  • the quantized transform coefficients are restored to the data of the spatial domain through the inverse quantizer 460 and the inverse transformer 470, and the recovered data of the spatial domain is passed through the deblocking block 480 and the loop filtering unit 490. Processed and output to the reference frame 495.
  • the quantized transform coefficients may be output to the bitstream 455 via the entropy encoder 450.
  • an intra predictor 410, a motion estimator 420, a motion compensator 425, and a transformer are all maximal per maximum coding unit.
  • the operation based on each coding unit among the coding units having a tree structure should be performed.
  • the intra predictor 410, the motion estimator 420, and the motion compensator 425 partition each coding unit among coding units having a tree structure in consideration of the maximum size and the maximum depth of the current maximum coding unit.
  • a prediction mode, and the transform unit 430 should determine the size of a transform unit in each coding unit among the coding units having a tree structure.
  • the intra prediction unit 410 may search for neighbor data units reconstructed before the current prediction unit before determining whether the prediction mode of the current prediction unit is the intra mode of the CIP mode. For each neighbor data unit reconstructed before the current prediction unit, the neighboring data unit of the intra mode and the current block may be identified as the CIP mode.
  • the outer area of the boundary of the picture is padded with the sample value of the pixel adjacent to the inside of the boundary among the pixels of the reference data unit. The padded samples may be referenced for intra prediction on the current prediction unit.
  • FIG. 11 is a block diagram of an image decoder 500 based on coding units, according to an embodiment of the present invention.
  • the bitstream 505 is parsed through the parsing unit 510, and the encoded image data to be decoded and information about encoding necessary for decoding are parsed.
  • the encoded image data is output as inverse quantized data through the entropy decoding unit 520 and the inverse quantization unit 530, and the image data of the spatial domain is restored through the inverse transformation unit 540.
  • the intra prediction unit 550 performs intra prediction on the coding unit of the intra mode, and the motion compensator 560 uses the reference frame 585 together to apply the coding unit of the inter mode. Perform motion compensation for the
  • Data in the spatial domain that has passed through the intra predictor 550 and the motion compensator 560 may be post-processed through the deblocking unit 570 and the loop filtering unit 580 to be output to the reconstructed frame 595.
  • the post-processed data through the deblocking unit 570 and the loop filtering unit 580 may be output as the reference frame 585.
  • step-by-step operations after the parser 510 of the image decoder 500 may be performed.
  • the parser 510, the entropy decoder 520, the inverse quantizer 530, and the inverse transform unit 540 which are components of the image decoder 500, may be used.
  • the intra predictor 550, the motion compensator 560, the deblocking unit 570, and the loop filtering unit 580 must all perform operations based on coding units having a tree structure for each maximum coding unit. do.
  • the intra predictor 550 and the motion compensator 560 determine partitions and prediction modes for each coding unit having a tree structure, and the inverse transform unit 540 must determine the size of the transform unit for each coding unit. .
  • the intra prediction unit 550 may search for neighbor data units reconstructed before the current prediction unit before determining whether the prediction mode of the current prediction unit is the intra mode of the CIP mode. For each neighbor data unit reconstructed before the current prediction unit, the neighboring data unit of the intra mode and the current block may be identified as the CIP mode.
  • the outer area of the boundary of the picture is padded with the sample value of the pixel adjacent to the inside of the boundary among the pixels of the reference data unit. The padded samples may be referenced for intra prediction on the current prediction unit.
  • FIG. 12 is a diagram of deeper coding units according to depths, and partitions, according to an embodiment of the present invention.
  • the video encoding apparatus 100 according to an embodiment and the video decoding apparatus 200 according to an embodiment use hierarchical coding units to consider image characteristics.
  • the maximum height, width, and maximum depth of the coding unit may be adaptively determined according to the characteristics of the image, and may be variously set according to a user's request. According to the maximum size of the preset coding unit, the size of the coding unit for each depth may be determined.
  • the hierarchical structure 600 of a coding unit illustrates a case in which a maximum height and a width of a coding unit are 64 and a maximum depth is four.
  • the maximum depth indicates the total number of divisions from the maximum coding unit to the minimum coding unit. Since the depth deepens along the vertical axis of the hierarchical structure 600 of the coding unit according to an embodiment, the height and the width of the coding unit for each depth are divided.
  • a prediction unit and a partition on which the prediction encoding of each depth-based coding unit is shown along the horizontal axis of the hierarchical structure 600 of the coding unit are illustrated.
  • the coding unit 610 has a depth of 0 as the largest coding unit of the hierarchical structure 600 of the coding unit, and the size, ie, the height and width, of the coding unit is 64x64.
  • the depth is deeper along the vertical axis, the coding unit 620 of depth 1 having a size of 32x32, the coding unit 630 of depth 2 having a size of 16x16, the coding unit 640 of depth 3 having a size of 8x8, and the depth 4 of depth 4x4.
  • the coding unit 650 exists.
  • a coding unit 650 having a depth of 4 having a size of 4 ⁇ 4 is a minimum coding unit.
  • Prediction units and partitions of the coding unit are arranged along the horizontal axis for each depth. That is, if the coding unit 610 of size 64x64 having a depth of zero is a prediction unit, the prediction unit may include a partition 610 of size 64x64, partitions 612 of size 64x32, and size included in the coding unit 610 of size 64x64. 32x64 partitions 614, 32x32 partitions 616.
  • the prediction unit of the coding unit 620 having a size of 32x32 having a depth of 1 includes a partition 620 of size 32x32, partitions 622 of size 32x16 and a partition of size 16x32 included in the coding unit 620 of size 32x32. 624, partitions 626 of size 16x16.
  • the prediction unit of the coding unit 630 of size 16x16 having a depth of 2 includes a partition 630 of size 16x16, partitions 632 of size 16x8, and a partition of size 8x16 included in the coding unit 630 of size 16x16. 634, partitions 636 of size 8x8.
  • the prediction unit of the coding unit 640 of size 8x8 having a depth of 3 includes a partition 640 of size 8x8, partitions 642 of size 8x4 and a partition of size 4x8 included in the coding unit 640 of size 8x8. 644, partitions 646 of size 4x4.
  • the coding unit 650 of size 4x4 having a depth of 4 is the minimum coding unit and the coding unit of the lowest depth, and the corresponding prediction unit may also be set only as the partition 650 having a size of 4x4.
  • the coding unit determiner 120 of the video encoding apparatus 100 may determine a coding depth of the maximum coding unit 610.
  • the number of deeper coding units according to depths for including data having the same range and size increases as the depth increases. For example, four coding units of depth 2 are required for data included in one coding unit of depth 1. Therefore, in order to compare the encoding results of the same data for each depth, each of the coding units having one depth 1 and four coding units having four depths 2 should be encoded.
  • encoding may be performed for each prediction unit of a coding unit according to depths along a horizontal axis of the hierarchical structure 600 of the coding unit, and a representative coding error, which is the smallest coding error at a corresponding depth, may be selected. .
  • a depth deeper along the vertical axis of the hierarchical structure 600 of the coding unit the encoding may be performed for each depth, and the minimum coding error may be searched by comparing the representative coding error for each depth.
  • the depth and the partition in which the minimum coding error occurs in the maximum coding unit 610 may be selected as the coding depth and the partition type of the maximum coding unit 610.
  • FIG. 13 illustrates a relationship between a coding unit and transformation units, according to an embodiment of the present invention.
  • the video encoding apparatus 100 encodes or decodes an image in coding units having a size smaller than or equal to the maximum coding unit for each maximum coding unit.
  • the size of a transformation unit for transformation in the encoding process may be selected based on a data unit that is not larger than each coding unit.
  • the 32x32 size conversion unit 720 is The conversion can be performed.
  • the data of the 64x64 coding unit 710 is transformed into 32x32, 16x16, 8x8, and 4x4 transform units of 64x64 size or less, and then encoded, and the transform unit having the least error with the original is selected. Can be.
  • FIG. 14 illustrates encoding information according to depths, according to an embodiment of the present invention.
  • the output unit 130 of the video encoding apparatus 100 is information about an encoding mode, and information about a partition type 800 and information 810 about a prediction mode for each coding unit of each coded depth.
  • the information 820 about the size of the transformation unit may be encoded and transmitted.
  • the information about the partition type 800 is a data unit for predictive encoding of the current coding unit and indicates information about a partition type in which the prediction unit of the current coding unit is divided.
  • the current coding unit CU_0 of size 2Nx2N may be any one of a partition 802 of size 2Nx2N, a partition 804 of size 2NxN, a partition 806 of size Nx2N, and a partition 808 of size NxN. It can be divided and used.
  • the information 800 about the partition type of the current coding unit represents one of a partition 802 of size 2Nx2N, a partition 804 of size 2NxN, a partition 806 of size Nx2N, and a partition 808 of size NxN. It is set to.
  • Information 810 relating to the prediction mode indicates the prediction mode of each partition. For example, through the information 810 about the prediction mode, whether the partition indicated by the information 800 about the partition type is performed in one of the intra mode 812, the inter mode 814, and the skip mode 816 is performed. Whether or not can be set.
  • the information about the transform unit size 820 indicates whether to transform the current coding unit based on the transform unit.
  • the transform unit may be one of a first intra transform unit size 822, a second intra transform unit size 824, a first inter transform unit size 826, and a second intra transform unit size 828. have.
  • the image data and encoding information extractor 210 of the video decoding apparatus 200 may include information about a partition type 800, information 810 about a prediction mode, and transformation for each depth-based coding unit. Information 820 about the unit size may be extracted and used for decoding.
  • 15 is a diagram of deeper coding units according to depths, according to an embodiment of the present invention.
  • Segmentation information may be used to indicate a change in depth.
  • the split information indicates whether a coding unit of a current depth is split into coding units of a lower depth.
  • the prediction unit 910 for predictive encoding of the coding unit 900 having depth 0 and 2N_0x2N_0 size includes a partition type 912 having a size of 2N_0x2N_0, a partition type 914 having a size of 2N_0xN_0, a partition type 916 having a size of N_0x2N_0, and a N_0xN_0 It may include a partition type 918 of size. Although only partitions 912, 914, 916, and 918 in which the prediction unit is divided by a symmetrical ratio are illustrated, as described above, the partition type is not limited thereto, and asymmetric partitions, arbitrary partitions, geometric partitions, and the like. It may include.
  • prediction coding For each partition type, prediction coding must be performed repeatedly for one 2N_0x2N_0 partition, two 2N_0xN_0 partitions, two N_0x2N_0 partitions, and four N_0xN_0 partitions.
  • prediction encoding For partitions having a size 2N_0x2N_0, a size N_0x2N_0, a size 2N_0xN_0, and a size N_0xN_0, prediction encoding may be performed in an intra mode and an inter mode. The skip mode may be performed only for prediction encoding on partitions having a size of 2N_0x2N_0.
  • the depth 0 is changed to 1 and split (920), and the encoding is repeatedly performed on the depth 2 and the coding units 930 of the partition type having the size N_0xN_0.
  • the depth 1 is changed to the depth 2 and divided (950), and repeatedly for the depth 2 and the coding units 960 of the size N_2xN_2.
  • the encoding may be performed to search for a minimum encoding error.
  • depth-based coding units may be set until depth d-1, and split information may be set up to depth d-2. That is, when encoding is performed from the depth d-2 to the depth d-1 to the depth d-1, the prediction encoding of the coding unit 980 of the depth d-1 and the size 2N_ (d-1) x2N_ (d-1)
  • the prediction unit for 990 is a partition type 992 of size 2N_ (d-1) x2N_ (d-1), partition type 994 of size 2N_ (d-1) xN_ (d-1), size A partition type 996 of N_ (d-1) x2N_ (d-1) and a partition type 998 of size N_ (d-1) xN_ (d-1) may be included.
  • one partition 2N_ (d-1) x2N_ (d-1), two partitions 2N_ (d-1) xN_ (d-1), two sizes N_ (d-1) x2N_ Prediction encoding is repeatedly performed for each partition of (d-1) and four partitions of size N_ (d-1) xN_ (d-1), so that a partition type having a minimum encoding error may be searched. .
  • the coding unit CU_ (d-1) of the depth d-1 is no longer
  • the encoding depth of the current maximum coding unit 900 may be determined as the depth d-1, and the partition type may be determined as N_ (d-1) xN_ (d-1) without going through a division process into lower depths.
  • split information is not set for the coding unit 952 having the depth d-1.
  • the data unit 999 may be referred to as a 'minimum unit' for the current maximum coding unit.
  • the minimum unit may be a square data unit having a size obtained by dividing the minimum coding unit, which is the lowest coding depth, into four divisions.
  • the video encoding apparatus 100 compares the encoding errors for each depth of the coding unit 900, selects a depth at which the smallest encoding error occurs, and determines a coding depth.
  • the partition type and the prediction mode may be set to the encoding mode of the coded depth.
  • the depth with the smallest error can be determined by comparing the minimum coding errors for all depths of depths 0, 1, ..., d-1, d, and can be determined as the coding depth.
  • the coded depth, the partition type of the prediction unit, and the prediction mode may be encoded and transmitted as information about an encoding mode.
  • the coding unit since the coding unit must be split from the depth 0 to the coded depth, only the split information of the coded depth is set to '0', and the split information for each depth except the coded depth should be set to '1'.
  • the image data and encoding information extractor 220 of the video decoding apparatus 200 may extract information about a coding depth and a prediction unit for the coding unit 900 and use the same to decode the coding unit 912. Can be.
  • the video decoding apparatus 200 may identify a depth having split information of '0' as a coding depth using split information according to depths, and may use it for decoding by using information about an encoding mode for a corresponding depth. have.
  • 16, 17, and 18 illustrate a relationship between coding units, prediction units, and transformation units, according to an embodiment of the present invention.
  • the coding units 1010 are coding units according to coding depths determined by the video encoding apparatus 100 according to an embodiment with respect to the maximum coding unit.
  • the prediction unit 1060 is partitions of prediction units of each coding depth of each coding depth among the coding units 1010, and the transformation unit 1070 is transformation units of each coding depth for each coding depth.
  • the depth-based coding units 1010 have a depth of 0
  • the coding units 1012 and 1054 have a depth of 1
  • the coding units 1014, 1016, 1018, 1028, 1050, and 1052 have depths.
  • coding units 1020, 1022, 1024, 1026, 1030, 1032, and 1048 have a depth of three
  • coding units 1040, 1042, 1044, and 1046 have a depth of four.
  • partitions 1014, 1016, 1022, 1032, 1048, 1050, 1052, and 1054 of the prediction units 1060 are obtained by splitting coding units. That is, partitions 1014, 1022, 1050, and 1054 are partition types of 2NxN, partitions 1016, 1048, and 1052 are partition types of Nx2N, and partitions 1032 are partition types of NxN. Prediction units and partitions of the coding units 1010 according to depths are smaller than or equal to each coding unit.
  • the image data of the part 1052 of the transformation units 1070 is transformed or inversely transformed into a data unit having a smaller size than the coding unit.
  • the transformation units 1014, 1016, 1022, 1032, 1048, 1050, 1052, and 1054 are data units having different sizes or shapes when compared to corresponding prediction units and partitions among the prediction units 1060. That is, the video encoding apparatus 100 according to an embodiment and the video decoding apparatus 200 according to an embodiment may be intra prediction / motion estimation / motion compensation operations and transform / inverse transform operations for the same coding unit. Each can be performed on a separate data unit.
  • coding is performed recursively for each coding unit having a hierarchical structure for each largest coding unit to determine an optimal coding unit.
  • coding units having a recursive tree structure may be configured.
  • the encoding information may include split information about a coding unit, partition type information, prediction mode information, and transformation unit size information. Table 1 below shows an example that can be set in the video encoding apparatus 100 and the video decoding apparatus 200 according to an embodiment.
  • the output unit 130 of the video encoding apparatus 100 outputs encoding information about coding units having a tree structure
  • the encoding information extraction unit of the video decoding apparatus 200 according to an embodiment 220 may extract encoding information about coding units having a tree structure from the received bitstream.
  • the split information indicates whether the current coding unit is split into coding units of a lower depth. If the split information of the current depth d is 0, partition type information, prediction mode, and transform unit size information are defined for the coded depth because the depth in which the current coding unit is no longer divided into the lower coding units is a coded depth. Can be. If it is to be further split by the split information, encoding should be performed independently for each coding unit of the divided four lower depths.
  • the prediction mode may be represented by one of an intra mode, an inter mode, and a skip mode.
  • Intra mode and inter mode can be defined in all partition types, and skip mode can be defined only in partition type 2Nx2N.
  • the partition type information indicates the symmetric partition types 2Nx2N, 2NxN, Nx2N, and NxN, in which the height or width of the prediction unit is divided by the symmetric ratio, and the asymmetric partition types 2NxnU, 2NxnD, nLx2N, nRx2N, which are divided by the asymmetric ratio.
  • the asymmetric partition types 2NxnU and 2NxnD are divided into heights 1: 3 and 3: 1, respectively, and the asymmetric partition types nLx2N and nRx2N are divided into 1: 3 and 3: 1 widths, respectively.
  • the conversion unit size may be set to two kinds of sizes in the intra mode and two kinds of sizes in the inter mode. That is, if the transformation unit split information is 0, the size of the transformation unit is set to the size 2Nx2N of the current coding unit. If the transform unit split information is 1, a transform unit having a size obtained by dividing the current coding unit may be set. In addition, if the partition type for the current coding unit having a size of 2Nx2N is a symmetric partition type, the size of the transform unit may be set to NxN, and if the asymmetric partition type is N / 2xN / 2.
  • Encoding information of coding units having a tree structure may be allocated to at least one of a coding unit, a prediction unit, and a minimum unit unit of a coding depth.
  • the coding unit of the coding depth may include at least one prediction unit and at least one minimum unit having the same encoding information.
  • the encoding information held by each adjacent data unit is checked, it may be determined whether the adjacent data units are included in the coding unit having the same coding depth.
  • the coding unit of the corresponding coding depth may be identified by using the encoding information held by the data unit, the distribution of the coded depths within the maximum coding unit may be inferred.
  • the encoding information of the data unit in the depth-specific coding unit adjacent to the current coding unit may be directly referred to and used.
  • the prediction coding when the prediction coding is performed by referring to the neighboring coding unit, the data adjacent to the current coding unit in the coding unit according to depths is encoded by using the encoding information of the adjacent coding units according to depths.
  • the neighboring coding unit may be referred to by searching.
  • FIG. 19 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • the maximum coding unit 1300 includes coding units 1302, 1304, 1306, 1312, 1314, 1316, and 1318 of a coded depth. Since one coding unit 1318 is a coding unit of a coded depth, split information may be set to zero.
  • the partition type information of the coding unit 1318 having a size of 2Nx2N is partition type 2Nx2N 1322, 2NxN 1324, Nx2N 1326, NxN 1328, 2NxnU 1332, 2NxnD 1334, nLx2N (1336). And nRx2N 1338.
  • the transform unit split information (TU size flag) is a type of transform index, and a size of a transform unit corresponding to the transform index may be changed according to a prediction unit type or a partition type of a coding unit.
  • the partition type information is set to one of the symmetric partition types 2Nx2N 1322, 2NxN 1324, Nx2N 1326, and NxN 1328
  • the conversion unit partition information is 0, a conversion unit of size 2Nx2N ( 1342 is set, and if the transform unit split information is 1, a transform unit 1344 of size NxN may be set.
  • the partition type information is set to one of the asymmetric partition types 2NxnU (1332), 2NxnD (1334), nLx2N (1336), and nRx2N (1338), if the conversion unit partition information (TU size flag) is 0, a conversion unit of size 2Nx2N ( 1352 is set, and if the transform unit split information is 1, a transform unit 1354 of size N / 2 ⁇ N / 2 may be set.
  • the conversion unit splitting information (TU size flag) described above with reference to FIG. 21 is a flag having a value of 0 or 1, but the conversion unit splitting information according to an embodiment is not limited to a 1-bit flag and is set to 0 according to a setting. , 1, 2, 3., etc., and may be divided hierarchically.
  • the transformation unit partition information may be used as an embodiment of the transformation index.
  • the size of the transformation unit actually used may be expressed.
  • the video encoding apparatus 100 may encode maximum transform unit size information, minimum transform unit size information, and maximum transform unit split information.
  • the encoded maximum transform unit size information, minimum transform unit size information, and maximum transform unit split information may be inserted into the SPS.
  • the video decoding apparatus 200 may use the maximum transform unit size information, the minimum transform unit size information, and the maximum transform unit split information to use for video decoding.
  • the maximum transform unit split information is defined as 'MaxTransformSizeIndex'
  • the minimum transform unit size is 'MinTransformSize'
  • the transform unit split information is 0,
  • the minimum transform unit possible in the current coding unit is defined as 'RootTuSize'.
  • the size 'CurrMinTuSize' can be defined as in relation (1) below.
  • 'RootTuSize' which is a transform unit size when the transform unit split information is 0, may indicate a maximum transform unit size that can be adopted in the system. That is, according to relation (1), 'RootTuSize / (2 ⁇ MaxTransformSizeIndex)' is a transformation obtained by dividing 'RootTuSize', which is the size of the transformation unit when the transformation unit division information is 0, by the number of times corresponding to the maximum transformation unit division information. Since the unit size is 'MinTransformSize' is the minimum transform unit size, a smaller value among them may be the minimum transform unit size 'CurrMinTuSize' possible in the current coding unit.
  • the maximum transform unit size RootTuSize may vary depending on a prediction mode.
  • RootTuSize may be determined according to the following relation (2).
  • 'MaxTransformSize' represents the maximum transform unit size
  • 'PUSize' represents the current prediction unit size.
  • RootTuSize min (MaxTransformSize, PUSize) ......... (2)
  • 'RootTuSize' which is a transform unit size when the transform unit split information is 0, may be set to a smaller value among the maximum transform unit size and the current prediction unit size.
  • 'RootTuSize' may be determined according to Equation (3) below.
  • 'PartitionSize' represents the size of the current partition unit.
  • RootTuSize min (MaxTransformSize, PartitionSize) ........... (3)
  • the conversion unit size 'RootTuSize' when the conversion unit split information is 0 may be set to a smaller value among the maximum conversion unit size and the current partition unit size.
  • the current maximum conversion unit size 'RootTuSize' according to an embodiment that changes according to the prediction mode of the partition unit is only an embodiment, and a factor determining the current maximum conversion unit size is not limited thereto.
  • the image data of the spatial domain is encoded for each coding unit of the tree structure, and the video decoding method based on the coding units of the tree structure.
  • decoding is performed for each largest coding unit, and image data of a spatial region may be reconstructed to reconstruct a picture and a video that is a picture sequence.
  • the reconstructed video can be played back by a playback device, stored in a storage medium, or transmitted over a network.
  • the above-described embodiments of the present invention can be written as a program that can be executed in a computer, and can be implemented in a general-purpose digital computer that operates the program using a computer-readable recording medium.
  • the computer-readable recording medium may include a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.) and an optical reading medium (eg, a CD-ROM, a DVD, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명을 통해, 영상의 블록들 중 현재블록보다 이전에 복원된 이웃블록을 검색하고, 검색된 이웃블록이 인트라 모드로 복원된 블록이면서 현재블록이 인트라 모드로 복원된 이웃블록만 참조하는지 여부를 확인하고, 확인 결과에 기초하여 이웃블록이 현재블록의 인트라 예측을 위해 참조가능한 참조블록인지 결정하는 인트라 예측 방법이 개시된다.

Description

단일화된 참조가능성 확인 과정을 통해 인트라 예측을 수반하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
본 발명은 인트라 예측을 수반하는 비디오 부호화 및 복호화에 관한 것이다.
고해상도 또는 고화질 비디오 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 비디오 컨텐트를 효과적으로 부호화하거나 복호화하는 비디오 코덱의 필요성이 증대하고 있다. 기존의 비디오 코덱에 따르면, 비디오는 소정 크기의 매크로블록에 기반하여 제한된 부호화 방식에 따라 부호화되고 있다.
주파수 변환을 이용하여 공간 영역의 영상 데이터는 주파수 영역의 계수들로 변환된다. 비디오 코덱은, 주파수 변환의 빠른 연산을 위해 영상을 소정 크기의 블록들로 분할하고, 블록마다 DCT 변환을 수행하여, 블록 단위의 주파수 계수들을 부호화한다. 공간 영역의 영상 데이터에 비해 주파수 영역의 계수들이, 압축하기 쉬운 형태를 가진다. 특히 비디오 코덱의 인터 예측 또는 인트라 예측을 통해 공간 영역의 영상 화소값은 예측 오차로 표현되므로, 예측 오차에 대해 주파수 변환이 수행되면 많은 데이터가 0으로 변환될 수 있다. 비디오 코덱은 연속적으로 반복적으로 발생하는 데이터를 작은 크기의 데이터로 치환함으로써, 데이터량을 절감하고 있다.
본 발명은, 인트라 예측을 수반하며 인트라 모드를 예측 부호화하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치를 제안한다.
본 발명의 일 실시예에 따른 인트라 예측 방법은, 영상의 블록들 중 현재블록보다 이전에 복원된 이웃블록을 검색하는 단계; 상기 검색된 이웃블록이 인트라 모드로 복원된 블록이고, 상기 현재블록의 인트라 모드가, 이전에 인트라 모드로 복원된 블록만 참조하는 CIP모드인지 확인하는 단계; 상기 확인 결과에 기초하여 상기 검색된 이웃블록이 상기 현재블록의 인트라 예측을 위해 참조가능한 참조블록인지 결정하는 단계; 및 상기 참조가능한 블록으로 결정된 참조블록의 샘플값들을 이용하여 상기 현재블록에 대한 인트라 예측을 수행하는 단계를 포함한다.
현재블록의 인트라 예측을 위해, 이웃블록들 중에서 인트라 참조블록을 검색하는 프로세스를 현재블록이 CIP모드인지 아닌지 여부에 따라 분리할 필요없이, 다. CIP모드인 경우와 CIP모드가 아닌 경우의 이웃블록들의 참조가능성 확인 및 인트라 참조블록의 검색 동작을 단일화할 수 있다. 또한, 인트라 참조블록의 일부 영역이 영상 경계를 벗어나더라도, 현재블록이 CIP모드인지 아닌지 여부와 무관하게, 영상 경계를 벗어나는 참조영역을 경계면에 인접해 있는 참조가능한 픽셀의 샘플값으로 패딩하므로, 현재블록이 CIP모드인 경우와 CIP모드가 아닌 경우의 인트라 예측 결과가 동일하게 유지될 수 있다.
도 1 은 일 실시예에 따른 인트라 예측 장치의 블록도를 도시한다.
도 2a 및 2b 는 CIP 모드에 따른 인트라 예측 동작을 도시한다.
도 3 는 종래 CIP 모드에 따라 참조가능성을 확인하는 동작의 흐름도를 도시한다.
도 4 는 일 실시예에 따라 CIP 모드와 무관하게 참조가능성을 확인하는 동작의 흐름도를 도시한다.
도 5 는 일 실시예에 따른 인트라 예측 방법의 흐름도를 도시한다.
도 6a 은 일 실시예에 따른 인트라 예측을 수반하는 비디오 부호화 방법을 흐름도를 도시한다.
도 6b 는 일 실시예에 따른 인트라 예측을 수반하는 비디오 복호화 방법을 흐름도를 도시한다.
도 7 는 일 실시예에 따른 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 장치의 블록도를 도시한다.
도 8 은 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치의 블록도를 도시한다.
도 9 은 본 발명의 일 실시예에 따른 부호화 단위의 개념을 도시한다.
도 10 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부의 블록도를 도시한다.
도 11 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부의 블록도를 도시한다.
도 12 는 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
도 13 은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
도 14 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
도 15 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
도 16, 17 및 18는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
도 19 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
본 발명의 일 실시예에 따른 인트라 예측 방법은, 영상의 블록들 중 현재블록보다 이전에 복원된 이웃블록을 검색하는 단계; 상기 검색된 이웃블록이 인트라 모드로 복원된 블록이고, 상기 현재블록의 인트라 모드가, 이전에 인트라 모드로 복원된 블록만 참조하는 CIP모드인지 확인하는 단계; 상기 확인 결과에 기초하여 상기 검색된 이웃블록이 상기 현재블록의 인트라 예측을 위해 참조가능한 참조블록인지 결정하는 단계; 및 상기 참조가능한 블록으로 결정된 참조블록의 샘플값들을 이용하여 상기 현재블록에 대한 인트라 예측을 수행하는 단계를 포함한다.
일 실시예에 따라 상기 이웃블록을 검색하는 단계는, 상기 현재블록의 예측 모드가 상기 CIP 모드의 인트라 모드인지 판단하기 전에, 상기 현재블록보다 이전에 복원된 이웃블록들을 검색하는 단계를 포함하고, 상기 CIP모드인지 확인하는 단계는, 상기 검색된 이웃블록들마다, 각각의 블록이 인트라 모드로 복원되고, 상기 현재블록의 인트라 모드가 상기 CIP모드인지 확인하는 단계를 포함한다.
일 실시예에 따라 상기 인트라 예측을 수행하는 단계는, 상기 참조블록이 상기 영상의 경계를 벗어나는 경우, 상기 참조블록의 픽셀들 중 상기 경계면 내부에 인접한 픽셀의 샘플값으로 상기 영상의 경계를 벗어나는 영역을 패딩하는 단계를 포함한다.
일 실시예에 따라 상기 인트라 예측을 수행하는 단계는, 상기 현재블록의 인트라 모드가 상기 CIP모드인지 여부와 무관하게, 상기 참조블록이 상기 영상의 경계를 벗어나는 경우, 상기 참조블록의 픽셀들 중 상기 경계면 내부에 인접한 픽셀의 샘플값으로 상기 영상의 경계를 벗어나는 영역을 패딩하는 단계를 포함한다.
본 발명의 일 실시예에 따른 인트라 예측 장치는, 영상의 블록들 중 현재블록보다 이전에 복원된 이웃블록을 검색하고, 상기 검색된 이웃블록이 인트라 모드로 복원된 블록이면서, 상기 현재블록의 인트라 모드가, 인트라 모드로 미리 복원된 블록만 참조하는 CIP모드인지 확인한 결과에 기초하여, 상기 검색된 이웃블록이 상기 현재블록의 인트라 예측을 위해 참조가능한 참조블록인지 결정하는 인트라 참조블록 결정부; 및 상기 참조블록의 샘플값들을 이용하여 상기 현재블록에 대한 인트라 예측을 수행하는 인트라 예측부를 포함한다.
본 발명의 일 실시예에 따른 비디오 복호화 장치는, 수신된 비트스트림으로부터 파싱된 비트열에 대해 엔트로피 복호화를 수행하여 샘플들을 복원하는 파싱부; 상기 복원된 샘플들 중 양자화된 변환계수에 대해 역양자화 및 역변환을 수행하여 샘플들을 복원하는 역변환부; 상기 샘플들 중, 인트라 모드인 현재블록을 인트라 예측을 위해, 상기 현재블록보다 이전에 복원된 이웃블록을 검색하고, 상기 검색된 이웃블록이 인트라 모드로 복원된 블록이면서 현재블록의 인트라 모드가, 인트라 모드로 이전에 복원된 이웃블록만 참조하는 CIP모드인지 여부를 확인한 결과에 기초하여, 상기 검색된 이웃블록이 현재블록의 인트라 예측을 위해 참조가능한 참조블록인지 결정하고, 상기 참조블록의 샘플값들을 이용하여 상기 현재블록에 대한 인트라 예측을 수행하는 인트라 예측부; 생기 샘플들 중 인터 예측 모드의 블록들에 대해 움직임 보상을 수행하는 움직임 보상부; 및 상기 인터 예측 또는 상기 인트라 예측을 통해 복원된 블록들을 이용하여 영상을 복원하는 복원부를 포함한다.
본 발명의 일 실시예에 따른 비디오 부호화 장치는, 비디오의 블록들 중에서, 인트라 모드인 현재블록을 인트라 예측을 위해, 상기 현재블록보다 이전에 복원된 이웃블록을 검색하고, 상기 검색된 이웃블록이 인트라 모드로 복원된 블록이면서, 현재블록의 인트라 모드가 인트라 모드로 복원된 이웃블록만 참조하는 CIP모드인지 여부를 확인한 결과에 기초하여 상기 검색된 이웃블록이 현재블록의 인트라 예측을 위해 참조가능한 참조블록인지 결정하고, 상기 참조블록의 샘플값들을 이용하여 상기 현재블록에 대한 인트라 예측을 수행하는 인트라 예측부; 상기 블록들 중 인터 예측 모드인 블록들에 대해 인터 예측을 수행하는 인터 예측부; 상기 인트라 예측 또는 상기 인터 예측의 수행 결과에 대해 변환 및 양자화를 수행하는 변환양자화부; 및 상기 변환 및 양자화 결과 생성된 양자화된 변환계수를 포함하는 샘플들에 대해 엔트로피 부호화를 수행하여 생성된 비트스트림을 출력하는 출력부를 포함한다.
본 발명은, 일 실시예에 따른 인트라 예측 방법을 전산적으로 구현하는 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체를 포함한다.
이하 도 1 내지 도 5을 참조하여, 일 실시예에 따라 인트라 모드에 따라 참조가능성을 통합적으로 확인하는 인트라 예측 방법 및 인트라 예측 장치가 개시된다. 또한, 도 6a 내지 도 6b을 참조하여,일 실시예에 따른 인트라 예측을 수반하는 비디오 부호화 기법 및 비디오 복호화 기법이 개시된다. 또한, 도 7 내지 도 19을 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위에 기초하며 일 실시예에 따른 인트라 예측을 수반하는 비디오 부호화 기법 및 비디오 복호화 기법이 개시된다. 이하, '영상'은 비디오의 정지영상이거나 동영상, 즉 비디오 그 자체를 나타낼 수 있다.
먼저, 도 1 내지 도 5를 참조하여, 일 실시예에 따라 인트라 모드에 따라 단일화된 방식에 따라 참조가능성을 확인하는 인트라 예측 방법 및 인트라 예측 장치가 개시된다. 또한, 일 실시예에 따른 인트라 예측을 수반하는 비디오 부호화 기법 및 비디오 복호화 기법이 개시된다.
도 1 은 일 실시예에 따른 인트라 예측 장치(10)의 블록도를 도시한다.
일 실시예에 따른 인트라 예측 장치(10)는 인트라 참조블록 결정부(12) 및 인트라 예측부(14)를 포함한다.
일 실시예에 따른 인트라 예측 장치(10)는 비디오의 각각의 영상의 블록별로 부호화한다. 블록의 타입은 정사각형 또는 직사각형일 수 있으며, 임의의 기하학적 형태일 수도 있다. 일정한 크기의 데이터 단위로 제한되는 것은 아니다. 일 실시예에 따른 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등일 수 있다. 트리구조에 따른 부호화단위들에 기초한 비디오 부복호화 방식은, 도 7 내지 도 19을 참조하여 후술한다.
일 실시예에 따른 인트라 참조블록 결정부(12)는, 현재블록에 인접하는 이웃블록들 중에서, 현재블록보다 이전에 복원된 이웃블록을 검색한다. 현재블록에 대한 인트라 예측을 위해서는, 현재블록보다 이전에 복원된 이웃블록들이 참조될 수 있다.
CIP모드에 따른 인트라 예측은, 인트라 모드로 이전에 복원된 블록만 참조할 수 있다. 인트라 참조블록 결정부(12)는, 이전에 복원된 이웃블록이 인트라 모드로 복원된 블록이고, 그와 동시에 현재블록의 인트라 모드가 CIP모드인지 확인한다. 즉 일 실시예에 따른 인트라 참조블록 결정부(12)는, 현재블록의 인트라 모드가 CIP 모드인지 판단하기 전에, 현재블록보다 이전에 복원된 이웃블록들을 검색할 수 있다. 인트라 참조블록 결정부(12)는, 현재블록보다 먼저 복원된 이웃블록들을 검색한 후, 이웃블록들마다 인트라 모드로 복원된 블록이면서 현재블록이 CIP모드의 블록인지 확인할 수 있다.
인트라 참조블록 결정부(12)는, 검색된 이웃블록이 인트라 모드로 복원된 블록이고, 현재블록이 CIP모드인지 확인한 결과에 기초하여, 해당 이웃블록이 현재블록의 인트라 예측을 위해 참조가능한 참조블록인지 결정할 수 있다.
예를 들어, 검색된 이웃블록이 인트라 모드로 복원된 블록이고 동시에 현재블록이 CIP모드이라면, 인트라 참조블록 결정부(12)는 해당 이웃블록이 현재블록의 인트라 예측을 위해 참조가능한 참조블록이라고 결정할 수 있다.
또한, 검색된 이웃블록이 인트라 모드로 복원된 블록이 아니거나, 또는 현재블록이 CIP모드가 아니라면, 인트라 참조블록 결정부(12)는 해당 이웃블록이 현재블록의 인트라 예측을 위해 참조가능한 참조블록이 아니라고 결정할 수 있다.
인트라 예측부(14)는, 참조블록의 샘플값들을 이용하여 현재블록에 대한 인트라 예측을 수행할 수 있다. 인트라 예측부(14)는, 참조블록이 영상의 경계를 벗어나는 경우, 참조블록의 픽셀들 중에서 경계면 내부에 인접한 픽셀의 샘플값으로 영상의 경계를 벗어나는 영역을 패딩할 수 있다. 즉, 영상의 경계를 벗어나는 영역을 경계면 내부에 인접한 픽셀의 샘플값으로 채울 수 있다.
인트라 예측부(14)는, 현재블록의 인트라 모드가 CIP모드인지 여부와 무관하게, 참조블록이 영상의 경계를 벗어난다면, 참조블록의 픽셀들 중에서 경계면 내부에 인접한 픽셀의 샘플값으로 영상의 경계를 벗어나는 영역을 패딩할 수 있다.
인트라 예측부(14)는, 패딩된 영역을 참조하여 현재블록을 위한 인트라 예측을 수행할 수 있다.
일 실시예에 따른 인트라 예측 장치(10)는, 인트라 참조블록 결정부(12) 및 인트라 예측부(14)를 총괄적으로 제어하는 중앙 프로세서(미도시)를 포함할 수 있다. 또는, 인트라 참조블록 결정부(12) 및 인트라 예측부(14)가 각각의 자체 프로세서(미도시)에 의해 작동되며, 프로세서(미도시)들이 상호 유기적으로 작동함에 따라 인트라 예측 장치(10)가 전체적으로 작동될 수도 있다. 또는, 일 실시예에 따른 인트라 예측 장치(10)의 외부 프로세서(미도시)의 제어에 따라, 인트라 참조블록 결정부(12) 및 인트라 예측부(14)가 제어될 수도 있다.
일 실시예에 따른 인트라 예측 장치(10)는, 인트라 참조블록 결정부(12) 및 인트라 예측부(14)의 입출력 데이터가 저장되는 하나 이상의 데이터 저장부(미도시)를 포함할 수 있다. 인트라 예측 장치(10)는, 데이터 저장부(미도시)의 데이터 입출력을 관할하는 메모리 제어부(미도시)를 포함할 수도 있다.
일 실시예에 따른 인트라 예측 장치(10)에 따르면, 현재블록이 CIP모드인지 여부와 무관하게 이웃블록들이 현재블록보다 먼저 복원된 블록인지 확인할 수 있으므로, (i) 현재블록이 CIP모드인 경우에 인트라 참조블록을 검색하는 프로세스와 (ii) 현재블록이 CIP모드에 인트라 참조블록을 검색하는 프로세스를 분리할 필요가 없으므로, 현재블록의 인트라 참조블록을 검색하는 프로세스를 단일화할 수 있으므로, 프로세스의 복잡도가 낮아질 수 있다.
또한, 인트라 참조블록의 일부 영역이 영상 경계를 벗어나더라도, 현재블록이 CIP모드인지 아닌지 여부와 무관하게, 영상 경계를 벗어나는 참조영역을 경계면에 인접해 있는 참조가능한 픽셀의 샘플값으로 패딩하므로, 현재블록이 CIP모드인 경우의 인트라 예측 결과와 CIP모드가 아닌 경우의 인트라 예측 결과가 동일하게 유지될 수 있다.
도 2a 및 2b 는 CIP 모드에 따른 인트라 예측 동작을 도시한다.
현재블록(20)의 일례는, 트리 구조에 따른 부호화단위의 예측을 위한 데이터단위 인 예측단위(Prediction Unit, PU)이다. 트리 구조에 따른 부호화단위 및 예측단위는 도 7 및 19를 참조하여 후술할 것이다. 이하 PU의 인트라 예측이개시되더라도 다른 형태의 블록을 이용한 인트라 예측도 가능하다. 현재블록(20)의 인트라 예측을 위해서는, 현재블록(20)에 인접한 좌측, 상단, 좌측하단 및 우측상단의 샘플들(28, 23)을 참조할 수 있다. 따라서 현재블록(20)의 인트라 예측을 위한 참조샘플을 결정하기 위해, 현재블록(20)에 인접한 샘플들 중에서 이미 복원되고 참조가능한 샘플들(28, 23)이 검색될 수 있다.
현재블록(20)이 CIP모드로 인트라 예측되는 경우에는, 최소블록인 최소 PU 사이즈 단위(22)의 샘플들마다 인트라 예측을 위해 참조가능한지 확인된다. 현재블록(20)이 CIP모드가 아닌 상태로 인트라 예측되는 경우에는, 현재블록인 PU 사이즈 단위(21)의 샘플들마다 인트라 예측을 위해 참조가능한지 확인된다.
따라서, 현재블록(20)이 CIP모드 또는 CIP모드가 아닌 상태로 인트라 예측되는지에 따라, 현재블록(20)의 우측상단에 위치한 우측상단 샘플들(23)에 대한 참조가능성은 달라질 수 있다.
현재블록(20)이 CIP모드가 아닌 경우에는, 우측상단 샘플들(23)이 인트라 모드로 복원된 샘플들이라 하더라도, 영상 경계(25)를 벗어나는 외부영역(26)을 참조한 인트라 예측이 불가능하다.
CIP모드가 아닌 경우, 현재블록 사이즈(21)에 해당하는 우측상단 샘플들(25) 전체에 대해 참조가능성이 판단되므로, 영상 경계(25)의 내부에 위치하는 내부영역(24)은 이미 복원된 샘플들이라 하더라도, 영상 경계(25)를 벗어나는 외부영역(26)은 참조될 수 없는 영역이므로, 우측상단 샘플들(23)이 모두 참조될 수 없는 샘플들이라 판단된다. 이러한 경우에는 참조가능한 샘플들(28) 중에서 우측상단 샘플들(23)에 가장 인접한 샘플(27)로 우측상단 샘플들(25) 모두가 치환된다.
CIP모드의 경우에는, 우측상단 샘플들(23) 중에서, 최소블록 사이즈(22)에 해당하는 영역별로, 즉 내부영역(24) 및 외부영역(26)별로 참조가능성이 판단될 수 있다. 영상 경계(25)를 벗어나는 외부영역(26)은 참조될 수 없는 영역이더라도, 내부영역(24)은 참조가능한 샘플들로 판단될 수 있다. 이러한 경우에는 내부영역(24) 중 외부영역(26)에 가장 인접한 샘플(29)로 외부영역(26)이 치환될 수 있다.
따라서, 현재블록(20)이 CIP모드인지 여부에 따라, 현재블록(20)의 인트라 예측을 위한 참조가능성을 판단하는 이웃샘플들(22, 24, 26, 28)의 사이즈 단위(21, 22)도 달라지고, 영상 경계(25)를 벗어나는 외부영역(26)에 대한 패딩 방식도 달라진다. 따라서, 현재블록(20)이 CIP모드인지 여부에 따라 인트라 예측 방식이 달라지고 인트라 예측 결과가 달라질 수 있다.
도 3 는 종래 CIP 모드에 따라 참조가능성을 확인하는 동작(30)의 흐름도를 도시한다.
단계 31에서 현재 블록의 인트라 모드가 CIP모드인지 결정된다. 비디오 복호화 과정에서는 'Constrained_intra_pred' 정보를 영상 헤더로부터 파싱하고, Constrained_intra_pred' 정보에 기초하여 현재 영상에 포함된 블록들의 인트라 모드가 CIP모드인지를 결정될 수 있다. 예를 들어, 현재 픽처에 대한 'Constrained_intra_pred' 정보는 PPS(Picture Parameter Set)로부터 파싱될 수 있다. 비디오 부호화 과정에서는 'Constrained_intra_pred' 정보를 PPS에 기록하여 전송할 수 있다. 'Constrained_intra_pred' 정보에 기초하여 해당 픽처의 인트라 블록들이 CIP모드로 예측되는지 결정될 수 있다.
종래 CIP 모드에 따라 참조가능성을 확인하는 동작(30)은, 단계 31에서 현재블록이 CIP모드라고 결정되면 CIP모드를 위한 참조가능성 확인 동작 'Available_check_for_cip()'(35)로 진행하고, 현재블록이 CIP모드가 아니라고 결정되면 CIP모드가 아닌 경우를 위한 참조가능성 확인 동작 'Available_check_intra()'(37)로 진행한다.
이하 도 3 및 4의 흐름도에서, 인덱스 i는 이웃블록의 인덱스를 나타내며, 'Is_intra(i)'는 인덱스 i인 이웃블록이 인트라 모드인지 판단하는 동작을 나타내며, 'available(i)'는 인덱스 i인 이웃블록이 현재블록보다 먼저 복원된 블록인지 판단하는 동작을 나타낸다. 'avail_intra_pred[i]'은 인덱스 i인 이웃블록이 현재블록을 위한 인트라 참조블록인지 여부를 나타내는 변수이다. 'max_cand_block_cip' 및 'max_cand_block'는 각각 CIP모드에 따른 인트라 예측 및 CIP모드가 아닌 경우의 인트라 예측을 위한 후보참조블록들의 최대개수를 나타낸다.
다시 도 3의 흐름도(30)에 따른 참조가능성 동작이 상술된다. CIP모드를 위한 참조가능성 확인 동작(Available_check_for_cip(), 35)에서 인덱스 i의 순서에 따라 이웃블록들이 인트라 참조블록인지 판단된다. 단계 351에서 이웃블록 인덱스가 초기화되고(i=0), 단계 352에서 이웃블록 i가 현재블록보다 먼저 복원된 인트라 블록인지 판단된다 (Is_intra(i) && available(i)?).
단계 352에서 이웃블록 i가 현재블록보다 먼저 복원된 인트라 블록이라고 결정되면, 단계 353에서 이웃블록 i는 현재 블록을 위한 인트라 참조블록으로 결정된다(avail_intra_pred[i]=TRUE). 단계 352에서 이웃블록 i가 현재블록보다 먼저 복원된 인트라 블록이 아니라고 결정되면, 단계 354에서 이웃블록 i는 현재 블록을 위한 인트라 참조블록이 아니라고 결정된다(avail_intra_pred[i]=FALSE).
단계 355에서 다음 순서의 이웃블록의 참조가능성을 확인하기 위해 블록 인덱스 i가 증가한다. 단계 356에서 블록 인덱스 i가 CIP모드에 따른 인트라 예측을 위한 후보참조블록들의 최대개수(max_cand_block_cip)에 도달하지 않으면 다음 순서의 이웃블록의 참조가능성을 확인하기 위해 단계 352로 회귀하고, 블록 인덱스 i가 후보참조블록들의 최대개수(max_cand_block_cip)에 도달하면 참조가능성 확인 동작(35)를 완료한다.
CIP모드가 아닌 인트라 예측을 위한 참조가능성 확인 동작(Available_check_intra(), 37)에서도 CIP모드에 따른 참조가능성 확인 동작(35)과 유사한 과정이 진행된다. 단계 371에서 이웃블록 인덱스가 초기화되고(i=0), 단계 372에서 이웃블록 i가 현재블록보다 먼저 복원된 블록인지 판단된다(available(i)?). 다만 단계 352와는 달리 단계 372에서는 이웃블록 i가 인트라 모드로 복원됐는지 여부는 확인하지 않는다. 단계 372의 결과에 기초하여, 단계 373 및 374에서 이웃블록 i는 현재 블록을 위한 인트라 참조블록인지 아닌지 결정된다.
단계 375에서 블록 인덱스 i가 증가하여, 단계 376에서 블록 인덱스 i가 인트라 예측을 위한 후보참조블록들의 최대개수(max_cand_block)에 도달하는지 여부에 따라 다음 이웃블록에 대해 다시 참조가능성을 확인하거나 참조가능성 확인 동작(37)을 완료한다.
따라서, CIP모드에 따른 참조가능성 확인 동작(35)과 CIP모드가 아닌 경우의 참조가능성 확인 동작(37)은 실제로 거의 유사한 동작들임에도 불구하고, 현재블록이 CIP모드인지 아닌지 여부를 판단한 후 유사한 동작을 개별적으로 수행하므로 인트라 예측 동작의 효율성이 저하될 수 있다.
또한, 각각의 이웃블록들의 참조가능성 확인 동작(35, 37)가 완료된 후 참조불가 영역에 대한 패딩처리(단계 38, 39)가 수행된다.
앞서 설명한 바와 같이, 참조블록의 일부 영역이 영상 경계를 벗어나는 경우, CIP모드와 CIP모드가 아닌 경우에 따라, 참조블록 중에서 영상 경계의 외부영역에 대한 패딩 방식이 달라진다. 즉, 단계 38에서 CIP모드에 따른 인트라 예측을 위해서는 참조블록의 경계 내부영역 중에서 경계에 가장 인접한 샘플로 경계 외부영역이 패딩될 수 있다. 반면에, 단계 39에서는 일부 영역이라도 영상경계를 벗어나는 제1참조블록의 샘플들은, 제1참조블록에 가장 인접하면서 모든 샘플들이 참조가능한 제2참조블록의 샘플들로 패딩될 수 있다.
따라서, 현재블록이 CIP모드 블록인지 아닌지 여부에 따라 영상 경계 근처의 참조블록들에 대한 패딩 방식이 달라지므로 인트라 예측 결과도 달라질 수 있다.
이에 반해, 일 실시예에 따른 인트라 예측 장치(10)는 CIP 모드와 무관하게 이웃블록들의 참조가능성 및 인트라 참조블록을 결정할 수 있다. 도 4 는 일 실시예에 따라 CIP 모드와 무관하게 참조가능성을 확인하는 동작(40)의 흐름도를 도시한다.
일 실시예에 따른 참조가능성 확인 동작(Available_check_intra(), 40)에 따르면, CIP 모드와 무관하게 현재블록을 위한 인트라 참조블록이 시작될 수 있다.
단계 41에서 이웃블록 인덱스가 초기화되고(i=0), 단계 42에서 이웃블록 i가 먼저 복원된 블록인지 판단될 수 있다 (available(i)?).
단계 42에서 이웃블록 i가 아직 복원되지 않은 블록으로 결정되면, 단계 45에서 이웃블록 i는 현재 블록을 위한 인트라 참조블록이 아니라고 결정될 수 있다 (avail_intra_pred[i]=FALSE).
단계 42에서 이웃블록 i가 현재블록보다 먼저 복원된 블록으로 결정되면, 단계 43에서 이웃블록 i는 인트라 모드로 복원된 블록이 아니면서 동시에 현재블록의 인트라 모드는 CIP모드인지 판단될 수 있다 (!(Is_intra(i)) && Constrained_intra_pred ?).
단계 43에서 이웃블록 i가 인트라 블록이 아니면서 현재블록이 CIP모드라고 결정되면, 단계 45에서 이웃블록 i는 현재 블록을 위한 인트라 참조블록이 아닌 것으로 결정된다(avail_intra_pred[i]=FALSE). 나머지 경우, 단계 43에서 이웃블록 i가 인트라 블록이거나 현재블록이 CIP모드가 아닌 것으로 결정되는 경우에는 단계 44에서 이웃블록 i는 현재 블록을 위한 인트라 참조블록으로 결정된다(avail_intra_pred[i]=TRUE). 즉, 이웃블록 i이 인트라 블록 여부에 관계없이 현재블록이 CIP모드가 아닌 경우에는 이웃블록 i이 현재 블록을 위한 인트라 참조블록이 될 수 있다다. 또한 현재블록이 CIP모드가 아니지만 이웃블록 i이 인트라 블록인 경우에도, 이웃블록 i는 현재 블록을 위한 인트라 참조블록으로 결정될 수 있다.
단계 46에서 다음 순서의 이웃블록의 참조가능성을 확인하기 위해 블록 인덱스 i가 증가한다. 단계 47에서 블록 인덱스 i가 CIP모드에 따른 인트라 예측을 위한 후보참조블록들의 최대개수(max_cand_block_cip)에 도달하지 않으면 다음 순서의 이웃블록의 참조가능성을 확인하기 위해 단계 42로 회귀하고, 블록 인덱스 i가 후보참조블록들의 최대개수(max_cand_block_cip)에 도달하면 참조가능성 확인 동작(40)을 완료한다.
또한, 각각의 이웃블록들의 참조가능성 확인 동작(40)가 완료된 후 참조불가 영역에 대한 패딩처리(단계 49)가 수행된다. 앞서 설명한 바와 같이, 참조블록의 일부 영역이 영상 경계를 벗어나는 경우, 참조블록의 경계 내부영역 중에서 경계에 가장 인접한 샘플로 경계 외부영역이 패딩될 수 있다.
따라서, 도 3과 4를 참조하여 종래 참조가능성 확인 동작과 일 실시예에 따른 참조가능성 확인 동작을 비교하면, 일 실시예에 따른 인트라 예측 장치(10)는, 현재블록이 CIP모드인지 여부와 무관하게 이웃블록들이 현재블록보다 먼저 복원된 블록인지 확인함에 따라, 이웃블록들 중에서 인트라 참조블록을 검색하는 프로세스를 현재블록이 CIP모드인지 아닌지 여부에 따라 분리할 필요가 없다. 따라서, 인트라 예측 장치(10)는 CIP모드에 따른 인트라 예측을 선택적으로 수행하더라도, CIP모드인 경우와 CIP모드가 아닌 경우의 이웃블록들의 참조가능성 확인 및 인트라 참조블록의 검색 동작을 단일화할 수 있다.
또한, 인트라 참조블록의 일부 영역이 영상 경계를 벗어나더라도, 현재블록이 CIP모드인지 아닌지 여부와 무관하게, 영상 경계를 벗어나는 참조영역을 경계면에 인접해 있는 참조가능한 픽셀의 샘플값으로 패딩하므로, 현재블록이 CIP모드인 경우와 CIP모드가 아닌 경우의 인트라 예측 결과가 동일하게 유지될 수 있다.
도 5 는 일 실시예에 따른 인트라 예측 방법의 흐름도를 도시한다.
단계 51에서, 현재 블록의 인트라 예측을 위해, 현재블록보다 이전에 복원된 이웃블록이 검색된다. 단계 53에서, 검색된 이웃블록이 인트라 모드로 복원된 블록이면서 현재블록이 CIP모드인지 여부가 확인된다.
단계 51에서, 현재블록의 인트라 모드가 CIP 모드인지 판단하기 전에 먼저, 현재블록보다 이전에 복원된 이웃블록들이 검색된다. 단계 53에서는, 단계 51에서 검색된 이웃블록들마다, 각각의 이웃블록이 인트라 블록이면서 현재블록이 CIP모드의 인트라 블록인지 여부가 확인될 수 있다.
단계 55에서, 단계 52의 확인 결과에 기초하여, 단계 51에서 검색된 이웃블록이 현재블록의 인트라 예측을 위한 참조블록인지 여부가 결정된다.
단계 57에서, 단계 55에서 참조가능한 블록으로 결정된 참조블록의 샘플값들을 이용하여 현재블록에 대한 인트라 예측이 수행된다.
참조블록이 영상의 경계를 벗어나는 경우에는, 참조블록의 픽셀들 중 경계면 내부에 인접한 픽셀의 샘플값으로 영상의 경계를 벗어나는 영역이 패딩될 수 있다. 특히, 현재블록이 CIP모드인지 여부와 무관하게, 참조블록의 픽셀들 중 경계면 내부에 인접한 픽셀의 샘플값으로 영상의 경계를 벗어나는 영역이 패딩될 수 있다.
도 6a 은 일 실시예에 따른 인트라 예측을 수반하는 비디오 부호화 방법을 흐름도를 도시한다.
단계 61에서는, 일 실시예에 따른 인트라 예측 방식에 따라, 비디오의 블록들 중에서, 인트라 모드인 현재블록을 인트라 예측을 위해, 현재블록보다 이전에 복원된 이웃블록이 검색된다.
검색된 이웃블록이 인트라 모드로 복원된 인트라 블록이면서, 현재블록이 CIP모드인지 여부가 확인된다. 이웃블록이 현재블록보다 먼저 복원된 인트라 블록이면서 현재블록이 CIP모드인지 여부에 기초하여, 이웃블록이 현재블록을 위한 인트라 참조블록인지 결정된다. 인트라 참조블록의 샘플값들을 이용하여 현재블록에 대한 인트라 예측이 수행된다.
단계 62에서, 블록들 중 인터 예측 모드인 블록들에 대해 인터 예측이 수행되어, 레지듀얼 정보가 생성된다. 단계 63에서, 인트라 예측 또는 인터 예측의 수행 결과에 대해 변환 및 양자화가 수행되어 양자화된 변환계수가 생성된다. 단계 65에서, 단계 63의 양자화된 변환계수를 포함하는 샘플들에 대해 엔트로피 부호화를 수행하여 생성된 비트스트림이 출력된다.
특히, 단계 61의 인트라 예측시, 현재블록의 예측 모드가 CIP 모드의 인트라 모드인지 판단하기 전에, 현재블록보다 이전에 복원된 이웃블록들이 검색될 수 있다. 현재블록보다 먼저 복원된 이웃블록들마다 인트라 블록이면서 현재블록이 CIP모드인지 확인될 수 있다.
또한 단계 61의 인트라 예측시, 현재블록의 인트라 모드가 CIP모드인지 여부와 무관하게, 참조블록이 영상의 경계를 벗어나는 경우에는, 참조블록의 픽셀들 중 경계면 내부에 인접한 픽셀의 샘플값으로 영상의 경계의 외부영역이 패딩되어 참조샘플로써 이용될 수 있다.
도 6a 에 따른 비디오 부호화 방법을 수행하는 비디오 부호화 장치는 일 실시예에 따른 인트라 예측 장치(10)를 포함할 수 있다. 일 실시예에 따른 인트라 예측 장치(10)를 포함하는 비디오 부호화 장치는, 영상 블록별로 인트라 예측, 인터 예측, 변환, 양자화를 수행하여 샘플들을 생성하고, 샘플들에 대해 엔트로피 부호화를 수행하여 비트스트림의 형태로 출력할 수 있다. 일 실시예에 따른 인트라 예측 장치(10)를 포함하는 비디오 부호화 장치는 비디오 부호화 결과를 출력하기 위해, 인트라 예측 장치(10)는 비디오 부호화 장치 내부에 탑재된 비디오 인코딩 프로세서 또는 외부 비디오 인코딩 프로세서와 연계하여 작동함으로써, 변환을 포함한 비디오 부호화 동작을 수행할 수 있다. 일 실시예에 따른 상기 비디오 부호화 장치의 내부 비디오 인코딩 프로세서는, 별개의 프로세서 뿐만 아니라, 비디오 부호화 장치 또는 중앙 연산 장치, 그래픽 연산 장치가 비디오 인코딩 프로세싱 모듈을 포함함으로써 기본적인 비디오 부호화 동작을 구현하는 경우도 포함할 수도 있다.
도 6b 는 일 실시예에 따른 인트라 예측을 수반하는 비디오 복호화 방법을 흐름도를 도시한다.
단계 65에서, 수신된 비트스트림으로부터 파싱된 비트열에 대해 엔트로피 복호화가 수행되어 샘플들이 복원된다. 단계 66에서, 샘플들 중 양자화된 변환계수에 대해 역양자화 및 역변환이 수행되어 샘플들이 복원된다. 단계 67에서 인트라 모드의 샘플들에 대해 인트라 예측을 수행하고, 단계 68에서 인터 모드의 샘플들에 대해 움직임 보상이 수행된다. 단계 69에서, 단계 68의 인터 예측 또는 단계 69의 인트라 예측을 통해 복원된 블록들을 이용하여 영상이 복원된다.
단계 67에서, 샘플들 중, 인트라 모드인 현재블록을 인트라 예측을 위해, 현재블록보다 이전에 복원된 이웃블록이 검색된다.
검색된 이웃블록이 인트라 모드로 복원된 인트라 블록이면서, 현재블록이 CIP모드인지 여부가 확인된다. 이웃블록이 현재블록보다 먼저 복원된 인트라 블록이면서 현재블록이 CIP모드인지 여부에 기초하여, 이웃블록이 현재블록을 위한 인트라 참조블록인지 결정된다. 인트라 참조블록의 샘플값들을 이용하여 현재블록에 대한 인트라 예측이 수행된다.
단계 67에서는, 단계 65에서 비트스트림으로부터 파싱된 현재영상의 CIP모드 정보에 기초하여, 현재블록의 예측 모드가 CIP 모드의 인트라 모드인지 여부가 판단될 수 있다. 현재블록의 예측 모드가 CIP 모드의 인트라 모드인지 판단하기 전에, 현재블록보다 이전에 복원된 이웃블록들이 검색될 수 있다. 현재블록보다 먼저 복원된 이웃블록들마다 인트라 블록이면서 현재블록이 CIP모드인지 확인될 수 있다.
또한 단계 67의 인트라 예측시, 현재블록의 인트라 모드가 CIP모드인지 여부와 무관하게, 참조블록이 영상의 경계를 벗어나는 경우에는, 참조블록의 픽셀들 중 경계면 내부에 인접한 픽셀의 샘플값으로 영상의 경계의 외부영역이 패딩될 수 있다.
도 6b 에 따른 비디오 복호화 방법을 수행하는 비디오 복호화 장치는 일 실시예에 따른 인트라 예측 장치(10)를 포함할 수 있다. 일 실시예에 따른 인트라 예측 장치(10)를 포함하는 비디오 복호화 장치는, 비트스트림으로부터 부호화된 샘플들을 파싱하여, 영상 블록별로 역양자화, 역변환, 인트라 예측, 움직임 보상을 수행하여 샘플들을 복원할 수 있다. 일 실시예에 따른 비디오 복호화 장치는 비디오 복호화 결과를 출력하기 위해, 인트라 예측 장치(10)는 비디오 복호화 장치 내부에 탑재된 비디오 디코딩 프로세서 또는 외부 비디오 디코딩 프로세서와 연계하여 작동함으로써, 역변환, 예측/보상을 포함한 비디오 복호화 동작을 수행할 수 있다. 일 실시예에 따른 비디오 복호화 장치의 내부 비디오 디코딩 프로세서는, 별개의 프로세서 뿐만 아니라, 비디오 복호화 장치 또는 중앙 연산 장치, 그래픽 연산 장치가 비디오 디코딩 프로세싱 모듈을 포함함으로써 기본적인 비디오 복호화 동작을 구현하는 경우도 포함할 수도 있다.
일 실시예에 따른 인트라 예측 장치(10)에서, 비디오 데이터가 분할되는 블록들이 트리 구조의 부호화 단위들로 분할되고, 부호화 단위에 대한 인트라 예측을 위한 예측 단위들이 이용되는 경우가 있음은 전술한 바와 같다. 이하 도 7 내지 19을 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위 및 변환 단위에 기초한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치가 개시된다.
도 7 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 장치(100)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 최대 부호화 단위 분할부(110), 부호화 단위 결정부(120) 및 출력부(130)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 '비디오 부호화 장치(100)'로 축약하여 지칭한다.
최대 부호화 단위 분할부(110)는 영상의 현재 픽처를 위한 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽처를 구획할 수 있다. 현재 픽처가 최대 부호화 단위보다 크다면, 현재 픽처의 영상 데이터는 적어도 하나의 최대 부호화 단위로 분할될 수 있다. 일 실시예에 따른 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 2의 자승인 정사각형의 데이터 단위일 수 있다. 영상 데이터는 적어도 하나의 최대 부호화 단위별로 부호화 단위 결정부(120)로 출력될 수 있다.
일 실시예에 따른 부호화 단위는 최대 크기 및 심도로 특징지어질 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할한 횟수를 나타내며, 심도가 깊어질수록 심도별 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 부호화 단위로 정의될 수 있다. 최대 부호화 단위는 심도가 깊어짐에 따라 심도별 부호화 단위의 크기는 감소하므로, 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽처의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 일 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 단위 결정부(120)는, 현재 픽처의 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 부호화 심도로 결정한다. 결정된 부호화 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 부호화 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 분할되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 부호화 심도가 달리 결정될 수 있다. 따라서, 하나의 최대 부호화 단위에 대해 부호화 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 부호화 심도의 부호화 단위에 따라 구획될 수 있다.
따라서, 일 실시예에 따른 부호화 단위 결정부(120)는, 현재 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들이 결정될 수 있다. 일 실시예에 따른 '트리 구조에 따른 부호화 단위들'은, 현재 최대 부호화 단위에 포함되는 모든 심도별 부호화 단위들 중, 부호화 심도로 결정된 심도의 부호화 단위들을 포함한다. 부호화 심도의 부호화 단위는, 최대 부호화 단위 내에서 동일 영역에서는 심도에 따라 계층적으로 결정되고, 다른 영역들에 대해서는 독립적으로 결정될 수 있다. 마찬가지로, 현재 영역에 대한 부호화 심도는, 다른 영역에 대한 부호화 심도와 독립적으로 결정될 수 있다.
일 실시예에 따른 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 분할 횟수와 관련된 지표이다. 일 실시예에 따른 제 1 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낼 수 있다. 일 실시예에 따른 제 2 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 심도 레벨의 총 개수를 나타낼 수 있다. 예를 들어, 최대 부호화 단위의 심도가 0이라고 할 때, 최대 부호화 단위가 1회 분할된 부호화 단위의 심도는 1로 설정되고, 2회 분할된 부호화 단위의 심도가 2로 설정될 수 있다. 이 경우, 최대 부호화 단위로부터 4회 분할된 부호화 단위가 최소 부호화 단위라면, 심도 0, 1, 2, 3 및 4의 심도 레벨이 존재하므로 제 1 최대 심도는 4, 제 2 최대 심도는 5로 설정될 수 있다.
최대 부호화 단위의 예측 부호화 및 변환이 수행될 수 있다. 예측 부호화 및 변환도 마찬가지로, 최대 부호화 단위마다, 최대 심도 이하의 심도마다 심도별 부호화 단위를 기반으로 수행된다.
최대 부호화 단위가 심도별로 분할될 때마다 심도별 부호화 단위의 개수가 증가하므로, 심도가 깊어짐에 따라 생성되는 모든 심도별 부호화 단위에 대해 예측 부호화 및 변환을 포함한 부호화가 수행되어야 한다. 이하 설명의 편의를 위해 적어도 하나의 최대 부호화 단위 중 현재 심도의 부호화 단위를 기반으로 예측 부호화 및 변환을 설명하겠다.
일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 데이터 단위의 크기 또는 형태를 다양하게 선택할 수 있다. 영상 데이터의 부호화를 위해서는 예측 부호화, 변환, 엔트로피 부호화 등의 단계를 거치는데, 모든 단계에 걸쳐서 동일한 데이터 단위가 사용될 수도 있으며, 단계별로 데이터 단위가 변경될 수도 있다.
예를 들어 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위의 영상 데이터의 예측 부호화를 수행하기 위해, 부호화 단위와 다른 데이터 단위를 선택할 수 있다.
최대 부호화 단위의 예측 부호화를 위해서는, 일 실시예에 따른 부호화 심도의 부호화 단위, 즉 더 이상한 분할되지 않는 부호화 단위를 기반으로 예측 부호화가 수행될 수 있다. 이하, 예측 부호화의 기반이 되는 더 이상한 분할되지 않는 부호화 단위를 '예측 단위'라고 지칭한다. 예측 단위가 분할된 파티션은, 예측 단위 및 예측 단위의 높이 및 너비 중 적어도 하나가 분할된 데이터 단위를 포함할 수 있다. 파티션은 부호화 단위의 예측 단위가 분할된 형태의 데이터 단위이고, 예측 단위는 부호화 단위와 동일한 크기의 파티션일 수 있다.
예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 더 이상 분할되지 않는 경우, 크기 2Nx2N의 예측 단위가 되며, 파티션의 크기는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 일 실시예에 따른 파티션 타입은 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 파티션들, 기하학적인 형태로 분할된 파티션들, 임의적 형태의 파티션들 등을 선택적으로 포함할 수도 있다.
예측 단위의 예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 예를 들어 인트라 모드 및 인터 모드는, 2Nx2N, 2NxN, Nx2N, NxN 크기의 파티션에 대해서 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 파티션에 대해서만 수행될 수 있다. 부호화 단위 이내의 하나의 예측 단위마다 독립적으로 부호화가 수행되어 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위와 다른 데이터 단위를 기반으로 부호화 단위의 영상 데이터의 변환을 수행할 수 있다. 부호화 단위의 변환을 위해서는, 부호화 단위보다 작거나 같은 크기의 변환 단위를 기반으로 변환이 수행될 수 있다. 예를 들어 변환 단위는, 인트라 모드를 위한 데이터 단위 및 인터 모드를 위한 변환 단위를 포함할 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 레지듀얼 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다.
일 실시예에 따른 변환 단위에 대해서도, 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 단위에 대해서도 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
부호화 심도별 부호화 정보는, 부호화 심도 뿐만 아니라 예측 관련 정보 및 변환 관련 정보가 필요하다. 따라서, 부호화 단위 결정부(120)는 최소 부호화 오차를 발생시킨 부호화 심도 뿐만 아니라, 예측 단위를 파티션으로 분할한 파티션 타입, 예측 단위별 예측 모드, 변환을 위한 변환 단위의 크기 등을 결정할 수 있다.
일 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위 및 예측단위/파티션, 및 변환 단위의 결정 방식에 대해서는, 도 7 내지 19을 참조하여 상세히 후술한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 오차를 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
출력부(130)는, 부호화 단위 결정부(120)에서 결정된 적어도 하나의 부호화 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 부호화 모드에 관한 정보를 비트스트림 형태로 출력한다.
부호화된 영상 데이터는 영상의 레지듀얼 데이터의 부호화 결과일 수 있다.
심도별 부호화 모드에 관한 정보는, 부호화 심도 정보, 예측 단위의 파티션 타입 정보, 예측 모드 정보, 변환 단위의 크기 정보 등을 포함할 수 있다.
부호화 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 부호화 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 부호화 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 부호화 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 트리 구조의 부호화 단위들이 결정되며 부호화 심도의 부호화 단위마다 적어도 하나의 부호화 모드에 관한 정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 부호화 모드에 관한 정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 구획되어 위치 별로 부호화 심도가 다를 수 있으므로, 데이터에 대해 부호화 심도 및 부호화 모드에 관한 정보가 설정될 수 있다.
따라서, 일 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 부호화 단위, 예측 단위 및 최소 단위 중 적어도 하나에 대해, 해당 부호화 심도 및 부호화 모드에 대한 부호화 정보를 할당될 수 있다.
일 실시예에 따른 최소 단위는, 최하위 부호화 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위이다. 일 실시예에 따른 최소 단위는, 최대 부호화 단위에 포함되는 모든 부호화 단위, 예측 단위, 파티션 단위 및 변환 단위 내에 포함될 수 있는 최대 크기의 정사각 데이터 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호화 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 움직임 벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다.
픽처, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등에 삽입될 수 있다.
또한 현재 비디오에 대해 허용되는 변환 단위의 최대 크기에 관한 정보 및 변환 단위의 최소 크기에 관한 정보도, 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등을 통해 출력될 수 있다. 출력부(130)는, 도 1 내지 6을 참조하여 전술한 예측과 관련된 참조정보, 예측정보, 단일방향예측 정보, 제4 슬라이스타입을 포함하는 슬라이스 타입 정보 등을 부호화하여 출력할 수 있다.
비디오 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도의 부호화 단위의 크기는 NxN 이다. 또한, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 비디오 부호화 장치(100)는 현재 픽처의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 및 크기의 부호화 단위를 결정하여 트리 구조에 따른 부호화 단위들을 구성할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
따라서, 영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 기존 매크로블록 단위로 부호화한다면, 픽처당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 일 실시예에 따른 비디오 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 7의 비디오 부호화 장치(100)는, 도 1을 참조하여 전술한 인트라 예측 장치(10)의 동작을 수행할 수 있다.
부호화 단위 결정부(120)는, 인트라 예측 장치(10)의 동작을 수행할 수 있다. 최대 부호화 단위마다, 트리 구조에 따른 부호화 단위들별로, 인트라 예측을 위한 예측단위를 결정하고 예측단위마다 인트라 예측을 수행할 수 있다.
특히, 인트라 예측시, 현재 예측단위의 예측 모드가 CIP 모드의 인트라 모드인지 판단하기 전에, 현재 예측단위보다 이전에 복원된 이웃 데이터 단위들(최소단위, 예측단위, 부호화단위 등)이 검색될 수 있다. 현재 예측단위보다 먼저 복원된 이웃 데이터단위들마다 인트라 모드의 이웃데이터단위이면서 현재블록은 CIP모드인지 확인될 수 있다.
또한 인트라 예측시, 현재 예측단위가 CIP모드인지 여부와 무관하게, 참조 데이터단위가 영상의 경계를 벗어나는 경우에는, 참조 데이터단위의 픽셀들 중 경계면 내부에 인접한 픽셀의 샘플값으로 픽처의 경계의 외부영역이 패딩될 수 있다. 이렇게 패딩된 영역을 참조하여 현재 예측단위에 대한 인트라 예측이 수행될 수 있다.
출력부(130)는, 인트라 예측 결과 생성된 차분데이터에 대한 부호화를 수행하여 생성된 샘플들을 비트스트림 형태로 출력할 수 있다. 예를 들어 차분데이터의 양자화된 변환계수, 인트라 모드 정보 등의 샘플들이 출력될 수 있다.
또한, 출력부(130)는, 픽처별로 CIP모드인지 여부를 나타내는 CIP정보를 PPS에 삽입하여 출력할 수 있다.
도 8 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치(200)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 '비디오 복호화 장치(200)'로 축약하여 지칭한다.
일 실시예에 따른 비디오 복호화 장치(200)의 복호화 동작을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 부호화 모드에 관한 정보 등 각종 용어의 정의는, 도 7 및 비디오 부호화 장치(100)를 참조하여 전술한 바와 동일하다.
수신부(210)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 따라 부호화 단위마다 부호화된 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정보 추출부(220)는 현재 픽처에 대한 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트로부터 현재 픽처의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 부호화 심도 및 부호화 모드에 관한 정보를 추출한다. 추출된 부호화 심도 및 부호화 모드에 관한 정보는 영상 데이터 복호화부(230)로 출력된다. 즉, 비트열의 영상 데이터를 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하도록 할 수 있다.
최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보는, 하나 이상의 부호화 심도 정보에 대해 설정될 수 있으며, 부호화 심도별 부호화 모드에 관한 정보는, 해당 부호화 단위의 파티션 타입 정보, 예측 모드 정보 및 변환 단위의 크기 정보 등을 포함할 수 있다. 또한, 부호화 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
영상 데이터 및 부호화 정보 추출부(220)가 추출한 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보는, 일 실시예에 따른 비디오 부호화 장치(100)와 같이 부호화단에서, 최대 부호화 단위별 심도별 부호화 단위마다 반복적으로 부호화를 수행하여 최소 부호화 오차를 발생시키는 것으로 결정된 부호화 심도 및 부호화 모드에 관한 정보이다. 따라서, 비디오 복호화 장치(200)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
일 실시예에 따른 부호화 심도 및 부호화 모드에 대한 부호화 정보는, 해당 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 할당되어 있을 수 있으므로, 영상 데이터 및 부호화 정보 추출부(220)는 소정 데이터 단위별로 부호화 심도 및 부호화 모드에 관한 정보를 추출할 수 있다. 소정 데이터 단위별로, 해당 최대 부호화 단위의 부호화 심도 및 부호화 모드에 관한 정보가 기록되어 있다면, 동일한 부호화 심도 및 부호화 모드에 관한 정보를 갖고 있는 소정 데이터 단위들은 동일한 최대 부호화 단위에 포함되는 데이터 단위로 유추될 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽처를 복원한다. 즉 영상 데이터 복호화부(230)는, 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들 가운데 각각의 부호화 단위마다, 판독된 파티션 타입, 예측 모드, 변환 단위에 기초하여 부호화된 영상 데이터를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정, 및 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 부호화 심도별 부호화 단위의 예측 단위의 파티션 타입 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 파티션 및 예측 모드에 따라 인트라 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 역변환을 위해, 부호화 단위별로 트리 구조에 따른 변환 단위 정보를 판독하여, 부호화 단위마다 변환 단위에 기초한 역변환을 수행할 수 있다. 역변환을 통해, 부호화 단위의 공간 영역의 화소값이 복원할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하여 현재 최대 부호화 단위의 부호화 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도에서 더 이상 분할되지 않음을 나타내고 있다면 현재 심도가 부호화 심도이다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 타입, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화할 수 있다.
즉, 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 데이터 단위가 모여, 영상 데이터 복호화부(230)에 의해 동일한 부호화 모드로 복호화할 하나의 데이터 단위로 간주될 수 있다. 이런 식으로 결정된 부호화 단위마다 부호화 모드에 대한 정보를 획득하여 현재 부호화 단위의 복호화가 수행될 수 있다.
또한, 도 8의 비디오 복호화 장치(200)는, 도 1을 참조하여 전술한 인트라 예측 장치(10)의 동작을 수행할 수 있다.
추출부(220)는, 비트스트림으로부터, 부호화 결과 생성된 샘플들을 복원할 수 있다. 예를 들어 예측에 의해 생성된 차분데이터의 양자화된 변환계수, 인트라 모드 정보 등의 샘플들이 복원될 수 있다. 또한 추출부(220)는, PPS로부터 파싱한 CIP정보에 기초하여 픽처별로 CIP모드를 복원할 수 있다.
영상데이터 복호화부(230)는, 인트라 예측 장치(10)의 동작을 수행할 수 있다. 최대 부호화 단위마다, 트리 구조에 따른 부호화 단위들별로, 인트라 예측을 위한 예측단위를 결정하고 예측단위마다 인트라 예측을 수행할 수 있다.
특히, 인트라 예측시, 현재 예측단위의 예측 모드가 CIP 모드의 인트라 모드인지 판단하기 전에, 현재 예측단위보다 이전에 복원된 이웃 데이터 단위들(최소단위, 예측단위, 부호화단위 등)이 검색될 수 있다. 현재 예측단위보다 먼저 복원된 이웃 데이터단위들마다 인트라 모드의 이웃데이터단위이면서 현재블록은 CIP모드인지 확인될 수 있다.
또한 인트라 예측시, 현재 예측단위가 CIP모드인지 여부와 무관하게, 참조 데이터단위가 영상의 경계를 벗어나는 경우에는, 참조 데이터단위의 픽셀들 중 경계면 내부에 인접한 픽셀의 샘플값으로 픽처의 경계의 외부영역이 패딩될 수 있다. 이렇게 패딩된 영역을 참조하여 현재 예측단위에 대한 인트라 예측이 수행될 수 있다.
결국, 비디오 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽처에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 결정된 트리 구조에 따른 부호화 단위들의 부호화된 영상 데이터의 복호화가 가능해진다.
따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 부호화 모드에 관한 정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
도 9 은 본 발명의 일 실시예에 따른 부호화 단위의 개념을 도시한다.
부호화 단위의 예는, 부호화 단위의 크기는 너비x높이로 표현되며, 크기 64x64인 부호화 단위부터, 32x32, 16x16, 8x8를 포함할 수 있다. 크기 64x64의 부호화 단위는 크기 64x64, 64x32, 32x64, 32x32의 파티션들로 분할될 수 있고, 크기 32x32의 부호화 단위는 크기 32x32, 32x16, 16x32, 16x16의 파티션들로, 크기 16x16의 부호화 단위는 크기 16x16, 16x8, 8x16, 8x8의 파티션들로, 크기 8x8의 부호화 단위는 크기 8x8, 8x4, 4x8, 4x4의 파티션들로 분할될 수 있다.
비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 2로 설정되어 있다. 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 3로 설정되어 있다. 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 1로 설정되어 있다. 도 9에 도시된 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다.
해상도가 높거나 데이터량이 많은 경우 부호화 효율의 향상 뿐만 아니라 영상 특성을 정확히 반형하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 2회 분할하며 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 1이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 1회 분할하며 심도가 한 계층 깊어져서 장축 크기가 8인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 3이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 3회 분할하며 심도가 세 계층 깊어져서 장축 크기가 32, 16, 8인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 세부 정보의 표현능력이 향상될 수 있다.
도 10 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부(400)의 블록도를 도시한다.
일 실시예에 따른 영상 부호화부(400)는, 비디오 부호화 장치(100)의 부호화 단위 결정부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 포함한다. 즉, 인트라 예측부(410)는 현재 프레임(405) 중 인트라 모드의 부호화 단위에 대해 인트라 예측을 수행하고, 움직임 추정부(420) 및 움직임 보상부(425)는 인터 모드의 현재 프레임(405) 및 참조 프레임(495)을 이용하여 인터 추정 및 움직임 보상을 수행한다.
인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)로부터 출력된 데이터는 변환부(430) 및 양자화부(440)를 거쳐 양자화된 변환 계수로 출력된다. 양자화된 변환 계수는 역양자화부(460), 역변환부(470)을 통해 공간 영역의 데이터로 복원되고, 복원된 공간 영역의 데이터는 디블로킹부(480) 및 루프 필터링부(490)를 거쳐 후처리되어 참조 프레임(495)으로 출력된다. 양자화된 변환 계수는 엔트로피 부호화부(450)를 거쳐 비트스트림(455)으로 출력될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)에 적용되기 위해서는, 영상 부호화부(400)의 구성 요소들인 인트라 예측부(410), 움직임 추정부(420), 움직임 보상부(425), 변환부(430), 양자화부(440), 엔트로피 부호화부(450), 역양자화부(460), 역변환부(470), 디블로킹부(480) 및 루프 필터링부(490)가 모두, 최대 부호화 단위마다 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반한 작업을 수행하여야 한다.
특히, 인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)는 현재 최대 부호화 단위의 최대 크기 및 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위의 파티션 및 예측 모드를 결정하며, 변환부(430)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위 내의 변환 단위의 크기를 결정하여야 한다.
특히, 인트라 예측부(410)는, 현재 예측단위의 예측 모드가 CIP 모드의 인트라 모드인지 판단하기 전에, 현재 예측단위보다 이전에 복원된 이웃 데이터 단위들을 검색할 수 있다. 현재 예측단위보다 먼저 복원된 이웃 데이터단위들마다 인트라 모드의 이웃데이터단위이면서 현재블록은 CIP모드인지 확인될 수 있다. 또한, 참조 데이터단위가 영상의 경계를 벗어나는 경우에는, 현재 예측단위가 CIP모드인지 여부와 무관하게, 참조 데이터단위의 픽셀들 중 경계면 내부에 인접한 픽셀의 샘플값으로 픽처의 경계의 외부영역이 패딩되고, 패딩된 샘플들이 현재 예측단위에 대한 인트라 예측을 위해 참조될 수 있다.
도 11 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부(500)의 블록도를 도시한다.
비트스트림(505)이 파싱부(510)를 거쳐 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화에 관한 정보가 파싱된다. 부호화된 영상 데이터는 엔트로피 복호화부(520) 및 역양자화부(530)를 거쳐 역양자화된 데이터로 출력되고, 역변환부(540)를 거쳐 공간 영역의 영상 데이터가 복원된다.
공간 영역의 영상 데이터에 대해서, 인트라 예측부(550)는 인트라 모드의 부호화 단위에 대해 인트라 예측을 수행하고, 움직임 보상부(560)는 참조 프레임(585)를 함께 이용하여 인터 모드의 부호화 단위에 대해 움직임 보상을 수행한다.
인트라 예측부(550) 및 움직임 보상부(560)를 거친 공간 영역의 데이터는 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 후처리되어 복원 프레임(595)으로 출력될 수 있다. 또한, 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 후처리된 데이터는 참조 프레임(585)으로서 출력될 수 있다.
비디오 복호화 장치(200)의 영상 데이터 복호화부(230)에서 영상 데이터를 복호화하기 위해, 일 실시예에 따른 영상 복호화부(500)의 파싱부(510) 이후의 단계별 작업들이 수행될 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)에 적용되기 위해서는, 영상 복호화부(500)의 구성 요소들인 파싱부(510), 엔트로피 복호화부(520), 역양자화부(530), 역변환부(540), 인트라 예측부(550), 움직임 보상부(560), 디블로킹부(570) 및 루프 필터링부(580)가 모두, 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들에 기반하여 작업을 수행하여야 한다.
특히, 인트라 예측부(550), 움직임 보상부(560)는 트리 구조에 따른 부호화 단위들 각각마다 파티션 및 예측 모드를 결정하며, 역변환부(540)는 부호화 단위마다 변환 단위의 크기를 결정하여야 한다.
특히, 인트라 예측부(550)는, 현재 예측단위의 예측 모드가 CIP 모드의 인트라 모드인지 판단하기 전에, 현재 예측단위보다 이전에 복원된 이웃 데이터 단위들을 검색할 수 있다. 현재 예측단위보다 먼저 복원된 이웃 데이터단위들마다 인트라 모드의 이웃데이터단위이면서 현재블록은 CIP모드인지 확인될 수 있다. 또한, 참조 데이터단위가 영상의 경계를 벗어나는 경우에는, 현재 예측단위가 CIP모드인지 여부와 무관하게, 참조 데이터단위의 픽셀들 중 경계면 내부에 인접한 픽셀의 샘플값으로 픽처의 경계의 외부영역이 패딩되고, 패딩된 샘플들이 현재 예측단위에 대한 인트라 예측을 위해 참조될 수 있다.
도 12 는 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수 있다.
일 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 4인 경우를 도시하고 있다. 이 때, 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다. 일 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할한다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 부호화의 기반이 되는 예측 단위 및 파티션이 도시되어 있다.
즉, 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630), 크기 8x8인 심도 3의 부호화 단위(640), 크기 4x4인 심도 4의 부호화 단위(650)가 존재한다. 크기 4x4인 심도 4의 부호화 단위(650)는 최소 부호화 단위이다.
각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위 및 파티션들이 배열된다. 즉, 심도 0의 크기 64x64의 부호화 단위(610)가 예측 단위라면, 예측 단위는 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 파티션(610), 크기 64x32의 파티션들(612), 크기 32x64의 파티션들(614), 크기 32x32의 파티션들(616)로 분할될 수 있다.
마찬가지로, 심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 파티션(620), 크기 32x16의 파티션들(622), 크기 16x32의 파티션들(624), 크기 16x16의 파티션들(626)로 분할될 수 있다.
마찬가지로, 심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 파티션(630), 크기 16x8의 파티션들(632), 크기 8x16의 파티션들(634), 크기 8x8의 파티션들(636)로 분할될 수 있다.
마찬가지로, 심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 파티션(640), 크기 8x4의 파티션들(642), 크기 4x8의 파티션들(644), 크기 4x4의 파티션들(646)로 분할될 수 있다.
마지막으로, 심도 4의 크기 4x4의 부호화 단위(650)는 최소 부호화 단위이며 최하위 심도의 부호화 단위이고, 해당 예측 단위도 크기 4x4의 파티션(650)으로만 설정될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)의 부호화 단위 결정부(120)는, 최대 부호화 단위(610)의 부호화 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도 및 파티션이 최대 부호화 단위(610)의 부호화 심도 및 파티션 타입으로 선택될 수 있다.
도 13 은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 부호화하거나 복호화한다. 부호화 과정 중 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다.
예를 들어, 일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)에서, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 변환이 수행될 수 있다.
또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 14 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 부호화 모드에 관한 정보로서, 각각의 부호화 심도의 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 타입에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 데이터 단위로서, 현재 부호화 단위의 예측 단위가 분할된 파티션의 형태에 대한 정보를 나타낸다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806), 크기 NxN의 파티션(808) 중 어느 하나의 타입으로 분할되어 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 타입에 관한 정보(800)는 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806) 및 크기 NxN의 파티션(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 파티션의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 타입에 관한 정보(800)가 가리키는 파티션이 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인트라 변환 단위 크기(828) 중 하나일 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(210)는, 각각의 심도별 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 15 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위(900)의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 타입(912), 2N_0xN_0 크기의 파티션 타입(914), N_0x2N_0 크기의 파티션 타입(916), N_0xN_0 크기의 파티션 타입(918)을 포함할 수 있다. 예측 단위가 대칭적 비율로 분할된 파티션들(912, 914, 916, 918)만이 예시되어 있지만, 전술한 바와 같이 파티션 타입은 이에 한정되지 않고 비대칭적 파티션, 임의적 형태의 파티션, 기하학적 형태의 파티션 등을 포함할 수 있다.
파티션 타입마다, 한 개의 2N_0x2N_0 크기의 파티션, 두 개의 2N_0xN_0 크기의 파티션, 두 개의 N_0x2N_0 크기의 파티션, 네 개의 N_0xN_0 크기의 파티션마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0 및 크기 2N_0xN_0 및 크기 N_0xN_0의 파티션에 대해서는, 인트라 모드 및 인터 모드로 예측 부호화가 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 파티션에 예측 부호화가 대해서만 수행될 수 있다.
크기 2N_0x2N_0, 2N_0xN_0 및 N_0x2N_0의 파티션 타입(912, 914, 916) 중 하나에 의한 부호화 오차가 가장 작다면, 더 이상 하위 심도로 분할할 필요 없다.
크기 N_0xN_0의 파티션 타입(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하며 분할하고(920), 심도 2 및 크기 N_0xN_0의 파티션 타입의 부호화 단위들(930)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위(930)의 예측 부호화를 위한 예측 단위(940)는, 크기 2N_1x2N_1의 파티션 타입(942), 크기 2N_1xN_1의 파티션 타입(944), 크기 N_1x2N_1의 파티션 타입(946), 크기 N_1xN_1의 파티션 타입(948)을 포함할 수 있다.
또한, 크기 N_1xN_1 크기의 파티션 타입(948)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하며 분할하고(950), 심도 2 및 크기 N_2xN_2의 부호화 단위들(960)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 부호화 단위는 심도 d-1일 때까지 설정되고, 분할 정보는 심도 d-2까지 설정될 수 있다. 즉, 심도 d-2로부터 분할(970)되어 심도 d-1까지 부호화가 수행될 경우, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위(980)의 예측 부호화를 위한 예측 단위(990)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 타입(992), 크기 2N_(d-1)xN_(d-1)의 파티션 타입(994), 크기 N_(d-1)x2N_(d-1)의 파티션 타입(996), 크기 N_(d-1)xN_(d-1)의 파티션 타입(998)을 포함할 수 있다.
파티션 타입 가운데, 한 개의 크기 2N_(d-1)x2N_(d-1)의 파티션, 두 개의 크기 2N_(d-1)xN_(d-1)의 파티션, 두 개의 크기 N_(d-1)x2N_(d-1)의 파티션, 네 개의 크기 N_(d-1)xN_(d-1)의 파티션마다 반복적으로 예측 부호화를 통한 부호화가 수행되어, 최소 부호화 오차가 발생하는 파티션 타입이 검색될 수 있다.
크기 N_(d-1)xN_(d-1)의 파티션 타입(998)에 의한 부호화 오차가 가장 작더라도, 최대 심도가 d이므로, 심도 d-1의 부호화 단위 CU_(d-1)는 더 이상 하위 심도로의 분할 과정을 거치지 않으며, 현재 최대 부호화 단위(900)에 대한 부호화 심도가 심도 d-1로 결정되고, 파티션 타입은 N_(d-1)xN_(d-1)로 결정될 수 있다. 또한 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)에 대해 분할 정보는 설정되지 않는다.
데이터 단위(999)은, 현재 최대 부호화 단위에 대한 '최소 단위'라 지칭될 수 있다. 일 실시예에 따른 최소 단위는, 최하위 부호화 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위일 수 있다. 이러한 반복적 부호화 과정을 통해, 일 실시예에 따른 비디오 부호화 장치(100)는 부호화 단위(900)의 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여, 부호화 심도를 결정하고, 해당 파티션 타입 및 예측 모드가 부호화 심도의 부호화 모드로 설정될 수 있다.
이런 식으로 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 부호화 심도로 결정될 수 있다. 부호화 심도, 및 예측 단위의 파티션 타입 및 예측 모드는 부호화 모드에 관한 정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 부호화 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 부호화 심도의 분할 정보만이 '0'으로 설정되고, 부호화 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(220)는 부호화 단위(900)에 대한 부호화 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 부호화 심도로 파악하고, 해당 심도에 대한 부호화 모드에 관한 정보를 이용하여 복호화에 이용할 수 있다.
도 16, 17 및 18는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 일 실시예에 따른 비디오 부호화 장치(100)가 결정한 부호화 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 부호화 심도별 부호화 단위의 예측 단위들의 파티션들이며, 변환 단위(1070)는 각각의 부호화 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부 파티션(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 형태이다. 즉, 파티션(1014, 1022, 1050, 1054)은 2NxN의 파티션 타입이며, 파티션(1016, 1048, 1052)은 Nx2N의 파티션 타입, 파티션(1032)은 NxN의 파티션 타입이다. 심도별 부호화 단위들(1010)의 예측 단위 및 파티션들은 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 변환 또는 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위 및 파티션와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 다른 비디오 복호화 장치(200)는 동일한 부호화 단위에 대한 인트라 예측/움직임 추정/움직임 보상 작업, 및 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
이에 따라, 최대 부호화 단위마다, 영역별로 계층적인 구조의 부호화 단위들마다 재귀적으로 부호화가 수행되어 최적 부호화 단위가 결정됨으로써, 재귀적 트리 구조에 따른 부호화 단위들이 구성될 수 있다. 부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 타입 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 이하 표 1은, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)에서 설정할 수 있는 일례를 나타낸다.
표 1
분할 정보 0 (현재 심도 d의 크기 2Nx2N의 부호화 단위에 대한 부호화) 분할 정보 1
예측 모드 파티션 타입 변환 단위 크기 하위 심도 d+1의 부호화 단위들마다 반복적 부호화
인트라 인터스킵 (2Nx2N만) 대칭형 파티션 타입 비대칭형 파티션 타입 변환 단위 분할 정보 0 변환 단위 분할 정보 1
2Nx2N2NxNNx2NNxN 2NxnU2NxnDnLx2NnRx2N 2Nx2N NxN (대칭형 파티션 타입) N/2xN/2 (비대칭형 파티션 타입)
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 출력하고, 일 실시예에 따른 비디오 복호화 장치(200)의 부호화 정보 추출부(220)는 수신된 비트스트림으로부터 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 추출할 수 있다.
분할 정보는 현재 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타낸다. 현재 심도 d의 분할 정보가 0이라면, 현재 부호화 단위가 현재 부호화 단위가 하위 부호화 단위로 더 이상 분할되지 않는 심도가 부호화 심도이므로, 부호화 심도에 대해서 파티션 타입 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 하위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 모든 파티션 타입에서 정의될 수 있으며, 스킵 모드는 파티션 타입 2Nx2N에서만 정의될 수 있다.
파티션 타입 정보는, 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션 타입 2Nx2N, 2NxN, Nx2N 및 NxN 과, 비대칭적 비율로 분할된 비대칭적 파티션 타입 2NxnU, 2NxnD, nLx2N, nRx2N를 나타낼 수 있다. 비대칭적 파티션 타입 2NxnU 및 2NxnD는 각각 높이가 1:3 및 3:1로 분할된 형태이며, 비대칭적 파티션 타입 nLx2N 및 nRx2N은 각각 너비가 1:3 및 3:1로 분할된 형태를 나타낸다.
변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다. 즉, 변환 단위 분할 정보가 0 이라면, 변환 단위의 크기가 현재 부호화 단위의 크기 2Nx2N로 설정된다. 변환 단위 분할 정보가 1이라면, 현재 부호화 단위가 분할된 크기의 변환 단위가 설정될 수 있다. 또한 크기 2Nx2N인 현재 부호화 단위에 대한 파티션 타입이 대칭형 파티션 타입이라면 변환 단위의 크기는 NxN, 비대칭형 파티션 타입이라면 N/2xN/2로 설정될 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위들의 부호화 정보는, 부호화 심도의 부호화 단위, 예측 단위 및 최소 단위 단위 중 적어도 하나에 대해 할당될 수 있다. 부호화 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 예측 단위 및 최소 단위를 하나 이상 포함할 수 있다.
따라서, 인접한 데이터 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 부호화 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 데이터 단위가 보유하고 있는 부호화 정보를 이용하면 해당 부호화 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 부호화 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 데이터 단위의 부호화 정보가 직접 참조되어 이용될 수 있다.
또 다른 실시예로, 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측 부호화가 수행되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 주변 부호화 단위가 참조될 수도 있다.
도 19 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
최대 부호화 단위(1300)는 부호화 심도의 부호화 단위들(1302, 1304, 1306, 1312, 1314, 1316, 1318)을 포함한다. 이 중 하나의 부호화 단위(1318)는 부호화 심도의 부호화 단위이므로 분할 정보가 0으로 설정될 수 있다. 크기 2Nx2N의 부호화 단위(1318)의 파티션 타입 정보는, 파티션 타입 2Nx2N(1322), 2NxN(1324), Nx2N(1326), NxN(1328), 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정될 수 있다.
변환 단위 분할 정보(TU size flag)는 변환 인덱스의 일종으로서, 변환 인덱스에 대응하는 변환 단위의 크기는 부호화 단위의 예측 단위 타입 또는 파티션 타입에 따라 변경될 수 있다.
예를 들어, 파티션 타입 정보가 대칭형 파티션 타입 2Nx2N(1322), 2NxN(1324), Nx2N(1326) 및 NxN(1328) 중 하나로 설정되어 있는 경우, 변환 단위 분할 정보가 0이면 크기 2Nx2N의 변환 단위(1342)가 설정되고, 변환 단위 분할 정보가 1이면 크기 NxN의 변환 단위(1344)가 설정될 수 있다.
파티션 타입 정보가 비대칭형 파티션 타입 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정된 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1352)가 설정되고, 변환 단위 분할 정보가 1이면 크기 N/2xN/2의 변환 단위(1354)가 설정될 수 있다.
도 21을 참조하여 전술된 변환 단위 분할 정보(TU size flag)는 0 또는 1의 값을 갖는 플래그이지만, 일 실시예에 따른 변환 단위 분할 정보가 1비트의 플래그로 한정되는 것은 아니며 설정에 따라 0, 1, 2, 3.. 등으로 증가하며 변환 단위가 계층적으로 분할될 수도 있다. 변환 단위 분할 정보는 변환 인덱스의 한 실시예로써 이용될 수 있다.
이 경우, 일 실시예에 따른 변환 단위 분할 정보를 변환 단위의 최대 크기, 변환 단위의 최소 크기와 함께 이용하면, 실제로 이용된 변환 단위의 크기가 표현될 수 있다. 일 실시예에 따른 비디오 부호화 장치(100)는, 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 부호화할 수 있다. 부호화된 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보는 SPS에 삽입될 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 이용하여, 비디오 복호화에 이용할 수 있다.
예를 들어, (a) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 크기는 32x32이라면, (a-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32, (a-2) 변환 단위 분할 정보가 1일 때 변환 단위의 크기가 16x16, (a-3) 변환 단위 분할 정보가 2일 때 변환 단위의 크기가 8x8로 설정될 수 있다.
다른 예로, (b) 현재 부호화 단위가 크기 32x32이고, 최소 변환 단위 크기는 32x32이라면, (b-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32로 설정될 수 있으며, 변환 단위의 크기가 32x32보다 작을 수는 없으므로 더 이상의 변환 단위 분할 정보가 설정될 수 없다.
또 다른 예로, (c) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 분할 정보가 1이라면, 변환 단위 분할 정보는 0 또는 1일 수 있으며, 다른 변환 단위 분할 정보가 설정될 수 없다.
따라서, 최대 변환 단위 분할 정보를 'MaxTransformSizeIndex', 최소 변환 단위 크기를 'MinTransformSize', 변환 단위 분할 정보가 0인 경우의 변환 단위 크기를 'RootTuSize'라고 정의할 때, 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'는 아래 관계식 (1) 과 같이 정의될 수 있다.
CurrMinTuSize
= max (MinTransformSize, RootTuSize/(2^MaxTransformSizeIndex)) ... (1)
현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'와 비교하여, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 시스템상 채택 가능한 최대 변환 단위 크기를 나타낼 수 있다. 즉, 관계식 (1)에 따르면, 'RootTuSize/(2^MaxTransformSizeIndex)'는, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'를 최대 변환 단위 분할 정보에 상응하는 횟수만큼 분할한 변환 단위 크기이며, 'MinTransformSize'는 최소 변환 단위 크기이므로, 이들 중 작은 값이 현재 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'일 수 있다.
일 실시예에 따른 최대 변환 단위 크기 RootTuSize는 예측 모드에 따라 달라질 수도 있다.
예를 들어, 현재 예측 모드가 인터 모드라면 RootTuSize는 아래 관계식 (2)에 따라 결정될 수 있다. 관계식 (2)에서 'MaxTransformSize'는 최대 변환 단위 크기, 'PUSize'는 현재 예측 단위 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PUSize) ......... (2)
즉 현재 예측 모드가 인터 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 예측 단위 크기 중 작은 값으로 설정될 수 있다.
현재 파티션 단위의 예측 모드가 예측 모드가 인트라 모드라면 모드라면 'RootTuSize'는 아래 관계식 (3)에 따라 결정될 수 있다. 'PartitionSize'는 현재 파티션 단위의 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PartitionSize) ...........(3)
즉 현재 예측 모드가 인트라 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 파티션 단위 크기 중 작은 값으로 설정될 수 있다.
다만, 파티션 단위의 예측 모드에 따라 변동하는 일 실시예에 따른 현재 최대 변환 단위 크기 'RootTuSize'는 일 실시예일 뿐이며, 현재 최대 변환 단위 크기를 결정하는 요인이 이에 한정되는 것은 아님을 유의하여야 한다.
도 7 내지 19를 참조하여 전술된 트리 구조의 부호화 단위들에 기초한 비디오 부호화 기법에 따라, 트리 구조의 부호화 단위들마다 공간영역의 영상 데이터가 부호화되며, 트리 구조의 부호화 단위들에 기초한 비디오 복호화 기법에 따라 최대 부호화 단위마다 복호화가 수행되면서 공간 영역의 영상 데이터가 복원되어, 픽처 및 픽처 시퀀스인 비디오가 복원될 수 있다. 복원된 비디오는 재생 장치에 의해 재생되거나, 저장 매체에 저장되거나, 네트워크를 통해 전송될 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (15)

  1. 인트라 예측 방법에 있어서,
    영상의 블록들 중 현재블록보다 이전에 복원된 이웃블록을 검색하는 단계;
    상기 검색된 이웃블록이 인트라 모드로 복원된 블록이고, 상기 현재블록의 인트라 모드가, 이전에 인트라 모드로 복원된 블록만 참조하는 CIP모드인지 확인하는 단계;
    상기 확인 결과에 기초하여 상기 검색된 이웃블록이 상기 현재블록의 인트라 예측을 위해 참조가능한 참조블록인지 결정하는 단계; 및
    상기 참조가능한 블록으로 결정된 참조블록의 샘플값들을 이용하여 상기 현재블록에 대한 인트라 예측을 수행하는 단계를 포함하는 것을 특징으로 하는 인트라 예측 방법.
  2. 제 1 항에 있어서, 상기 이웃블록을 검색하는 단계는,
    상기 현재블록의 예측 모드가 상기 CIP 모드의 인트라 모드인지 판단하기 전에, 상기 현재블록보다 이전에 복원된 이웃블록들을 검색하는 단계를 포함하고,
    상기 CIP모드인지 확인하는 단계는,
    상기 검색된 이웃블록들마다, 각각의 블록이 인트라 모드로 복원되고, 상기 현재블록의 인트라 모드가 상기 CIP모드인지 확인하는 단계를 포함하는 것을 특징으로 하는 인트라 예측 방법.
  3. 제 1 항에 있어서, 상기 인트라 예측을 수행하는 단계는,
    상기 참조블록이 상기 영상의 경계를 벗어나는 경우, 상기 참조블록의 픽셀들 중 상기 경계면 내부에 인접한 픽셀의 샘플값으로 상기 영상의 경계를 벗어나는 영역을 패딩하는 단계를 포함하는 것을 특징으로 하는 인트라 예측 방법.
  4. 제 3 항에 있어서, 상기 인트라 예측을 수행하는 단계는,
    상기 현재블록의 인트라 모드가 상기 CIP모드인지 여부와 무관하게, 상기 참조블록이 상기 영상의 경계를 벗어나는 경우, 상기 참조블록의 픽셀들 중 상기 경계면 내부에 인접한 픽셀의 샘플값으로 상기 영상의 경계를 벗어나는 영역을 패딩하는 단계를 포함하는 것을 특징으로 하는 인트라 예측 방법.
  5. 인트라 예측 장치에 있어서,
    영상의 블록들 중 현재블록보다 이전에 복원된 이웃블록을 검색하고, 상기 검색된 이웃블록이 인트라 모드로 복원된 블록이면서, 상기 현재블록의 인트라 모드가, 인트라 모드로 미리 복원된 블록만 참조하는 CIP모드인지 확인한 결과에 기초하여, 상기 검색된 이웃블록이 상기 현재블록의 인트라 예측을 위해 참조가능한 참조블록인지 결정하는 인트라 참조블록 결정부; 및
    상기 참조블록의 샘플값들을 이용하여 상기 현재블록에 대한 인트라 예측을 수행하는 인트라 예측부를 포함하는 것을 특징으로 하는 인트라 예측 장치.
  6. 제 5 항에 있어서, 상기 인트라 참조블록 결정부는,
    상기 현재블록의 예측 모드가 상기 CIP 모드의 인트라 모드인지 판단하기 전에, 상기 현재블록보다 이전에 복원된 이웃블록들을 검색하고, 상기 검색된 이웃블록들마다, 각각의 블록이 인트라 모드로 복원되고, 상기 현재블록의 인트라 모드가 상기 CIP모드인지 확인하는 것을 특징으로 하는 인트라 예측 장치.
  7. 제 5 항에 있어서, 상기 인트라 예측부는,
    상기 참조블록이 상기 영상의 경계를 벗어나는 경우, 상기 참조블록의 픽셀들 중 상기 경계면 내부에 인접한 픽셀의 샘플값으로 상기 영상의 경계를 벗어나는 영역을 패딩하는 것을 특징으로 하는 인트라 예측 장치.
  8. 제 7 항에 있어서, 상기 인트라 예측부는,
    상기 현재블록의 인트라 모드가 상기 CIP모드인지 여부와 무관하게, 상기 참조블록이 상기 영상의 경계를 벗어나는 경우, 상기 참조블록의 픽셀들 중 상기 경계면 내부에 인접한 픽셀의 샘플값으로 상기 영상의 경계를 벗어나는 영역을 패딩하는 것을 특징으로 하는 인트라 예측 장치.
  9. 비디오 복호화 장치에 있어서,
    수신된 비트스트림으로부터 파싱된 비트열에 대해 엔트로피 복호화를 수행하여 샘플들을 복원하는 파싱부;
    상기 복원된 샘플들 중 양자화된 변환계수에 대해 역양자화 및 역변환을 수행하여 샘플들을 복원하는 역변환부;
    상기 샘플들 중, 인트라 모드인 현재블록을 인트라 예측을 위해, 상기 현재블록보다 이전에 복원된 이웃블록을 검색하고, 상기 검색된 이웃블록이 인트라 모드로 복원된 블록이면서 현재블록의 인트라 모드가, 인트라 모드로 이전에 복원된 이웃블록만 참조하는 CIP모드인지 여부를 확인한 결과에 기초하여, 상기 검색된 이웃블록이 현재블록의 인트라 예측을 위해 참조가능한 참조블록인지 결정하고, 상기 참조블록의 샘플값들을 이용하여 상기 현재블록에 대한 인트라 예측을 수행하는 인트라 예측부;
    생기 샘플들 중 인터 예측 모드의 블록들에 대해 움직임 보상을 수행하는 움직임 보상부; 및
    상기 인터 예측 또는 상기 인트라 예측을 통해 복원된 블록들을 이용하여 영상을 복원하는 복원부를 포함하는 것을 특징으로 하는 비디오 복호화 장치.
  10. 제 9 항에 있어서, 상기 인트라 예측부는,
    상기 비트스트림으로부터 파싱된 현재영상의 CIP모드 정보에 기초하여, 상기 현재블록의 예측 모드가 상기 CIP 모드의 인트라 모드인지 판단하기 전에, 상기 현재블록보다 이전에 복원된 이웃블록들을 검색하고, 상기 검색된 이웃블록들마다, 각각의 블록이 인트라 모드로 복원되고, 상기 현재블록의 인트라 모드가 상기 CIP모드인지 확인하는 것을 특징으로 하는 비디오 복호화 장치.
  11. 제 9 항에 있어서, 상기 인트라 예측부는,
    상기 현재블록의 인트라 모드가 상기 CIP모드인지 여부와 무관하게, 상기 참조블록이 상기 영상의 경계를 벗어나는 경우, 상기 참조블록의 픽셀들 중 상기 경계면 내부에 인접한 픽셀의 샘플값으로 상기 영상의 경계를 벗어나는 영역을 패딩하는 것을 특징으로 하는 비디오 복호화 장치.
  12. 비디오 부호화 장치에 있어서,
    비디오의 블록들 중에서, 인트라 모드인 현재블록을 인트라 예측을 위해, 상기 현재블록보다 이전에 복원된 이웃블록을 검색하고, 상기 검색된 이웃블록이 인트라 모드로 복원된 블록이면서, 현재블록의 인트라 모드가 인트라 모드로 복원된 이웃블록만 참조하는 CIP모드인지 여부를 확인한 결과에 기초하여 상기 검색된 이웃블록이 현재블록의 인트라 예측을 위해 참조가능한 참조블록인지 결정하고, 상기 참조블록의 샘플값들을 이용하여 상기 현재블록에 대한 인트라 예측을 수행하는 인트라 예측부;
    상기 블록들 중 인터 예측 모드인 블록들에 대해 인터 예측을 수행하는 인터 예측부;
    상기 인트라 예측 또는 상기 인터 예측의 수행 결과에 대해 변환 및 양자화를 수행하는 변환양자화부; 및
    상기 변환 및 양자화 결과 생성된 양자화된 변환계수를 포함하는 샘플들에 대해 엔트로피 부호화를 수행하여 생성된 비트스트림을 출력하는 출력부를 포함하는 것을 특징을 비디오 부호화 장치.
  13. 제 12 항에 있어서, 상기 인트라 예측부는,
    상기 현재블록의 예측 모드가 상기 CIP 모드의 인트라 모드인지 판단하기 전에, 상기 현재블록보다 이전에 복원된 이웃블록들을 검색하고, 상기 검색된 이웃블록들마다, 각각의 블록이 인트라 모드로 복원되고, 상기 현재블록의 인트라 모드가 상기 CIP모드인지 확인하는 것을 특징으로 하는 비디오 부호화 장치.
  14. 제 12 항에 있어서, 상기 인트라 예측부는,
    상기 현재블록의 인트라 모드가 상기 CIP모드인지 여부와 무관하게, 상기 참조블록이 상기 영상의 경계를 벗어나는 경우, 상기 참조블록의 픽셀들 중 상기 경계면 내부에 인접한 픽셀의 샘플값으로 상기 영상의 경계를 벗어나는 영역을 패딩하는 것을 특징으로 하는 비디오 부호화 장치.
  15. 제1항의 인트라 예측 방법을 전산적으로 구현하는 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체.
PCT/KR2012/005246 2011-07-01 2012-07-02 단일화된 참조가능성 확인 과정을 통해 인트라 예측을 수반하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치 WO2013005962A2 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201280042780.5A CN103782595A (zh) 2011-07-01 2012-07-02 通过使用用于统一参考可能性的检查处理的帧内预测的视频编码方法、视频解码方法及其装置
JP2014518818A JP5824148B2 (ja) 2011-07-01 2012-07-02 単一化された参照可能性確認過程を介してイントラ予測を伴うビデオ符号化方法及びその装置、ビデオ復号化方法及びその装置
EP12807831.8A EP2728872A4 (en) 2011-07-01 2012-07-02 VIDEO CODING METHOD WITH INTRAPRADICATION ON THE BASIS OF A TEST PROCESS FOR UNIFORM REFERENCE POSSIBILITY, VIDEO DECODING METHOD AND DEVICE THEREFOR
US14/130,595 US9578329B2 (en) 2011-07-01 2012-07-02 Video encoding method with intra prediction using checking process for unified reference possibility, video decoding method and device thereof
MX2014000157A MX2014000157A (es) 2011-07-01 2012-07-02 Metodo de codificacion de video con intra prediccion utilizando el proceso de verificacion para la posibilidad de referencia unificada, metodo de decodificacion de video y dispositivo del mismo.
SG11201400753WA SG11201400753WA (en) 2011-07-01 2012-07-02 Video encoding method with intra prediction using checking process for unified reference possibility, video decoding method and device thereof
BR112013033697A BR112013033697A2 (pt) 2011-07-01 2012-07-02 método de codificação de vídeo com previsão intra usando processo de verificação para possibilidade de referência unificada, método de decodificação de vídeo e seu dispositivo
AU2012278478A AU2012278478B2 (en) 2011-07-01 2012-07-02 Video encoding method with intra prediction using checking process for unified reference possibility, video decoding method and device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161503857P 2011-07-01 2011-07-01
US61/503,857 2011-07-01

Publications (2)

Publication Number Publication Date
WO2013005962A2 true WO2013005962A2 (ko) 2013-01-10
WO2013005962A3 WO2013005962A3 (ko) 2013-03-14

Family

ID=47437541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005246 WO2013005962A2 (ko) 2011-07-01 2012-07-02 단일화된 참조가능성 확인 과정을 통해 인트라 예측을 수반하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치

Country Status (11)

Country Link
US (1) US9578329B2 (ko)
EP (1) EP2728872A4 (ko)
JP (1) JP5824148B2 (ko)
KR (3) KR101547497B1 (ko)
CN (1) CN103782595A (ko)
AU (1) AU2012278478B2 (ko)
BR (1) BR112013033697A2 (ko)
MX (1) MX2014000157A (ko)
SG (1) SG11201400753WA (ko)
TW (1) TWI517679B (ko)
WO (1) WO2013005962A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015000168A1 (en) * 2013-07-05 2015-01-08 Mediatek Singapore Pte. Ltd. A simplified dc prediction method in intra prediction

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093890A1 (ko) * 2013-12-19 2015-06-25 삼성전자 주식회사 인트라 예측을 수반한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR101663668B1 (ko) * 2014-06-27 2016-10-07 삼성전자주식회사 영상 패딩영역의 비디오 복호화 및 부호화 장치 및 방법
CN105392008B (zh) * 2014-08-22 2018-09-25 中兴通讯股份有限公司 一种预测编、解码方法和相应的编、解码器和电子设备
EP3654646A1 (en) * 2015-06-05 2020-05-20 Intellectual Discovery Co., Ltd. Methods for encoding and decoding intra-frame prediction based on block shape
KR20180075558A (ko) 2015-11-24 2018-07-04 삼성전자주식회사 비디오 복호화 방법 및 장치, 그 부호화 방법 및 장치
WO2017090961A1 (ko) * 2015-11-24 2017-06-01 삼성전자 주식회사 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2017099385A1 (ko) * 2015-12-11 2017-06-15 삼성전자 주식회사 인트라 스킵 모드의 예측 방법을 나타내는 정보의 부호화 방법 및 장치, 복호화 방법 및 장치
CN106878752B (zh) 2015-12-11 2022-03-04 北京三星通信技术研究有限公司 一种视频编码模式的编解码方法和装置
KR102410032B1 (ko) * 2016-06-24 2022-06-16 주식회사 케이티 비디오 신호 처리 방법 및 장치
TWI775760B (zh) * 2016-07-08 2022-09-01 美商Vid衡器股份有限公司 使用幾何投影360度視訊編碼
US20190246101A1 (en) * 2016-10-10 2019-08-08 Samsung Electronics Co., Ltd. Method and device for encoding or decoding image by means of block map
CN117615134A (zh) 2016-10-14 2024-02-27 世宗大学校产学协力团 影像编码/解码方法及比特流的传送方法
WO2018101685A1 (ko) * 2016-11-29 2018-06-07 한국전자통신연구원 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2018124850A1 (ko) * 2017-01-02 2018-07-05 한양대학교 산학협력단 예측 블록의 중복성을 고려한 화면 내 예측 방법 및 화면 내 예측을 수행하는 영상 복호화 장치
KR102388172B1 (ko) * 2017-09-06 2022-04-19 광운대학교 산학협력단 제한적 코딩 유닛 그룹 기반 영상 부/복호화 방법 및 장치
KR102520405B1 (ko) * 2018-01-08 2023-04-10 한국항공대학교산학협력단 영상 처리 방법, 그를 이용한 영상 복호화 및 부호화 방법
US10699413B1 (en) 2018-03-23 2020-06-30 Carmax Business Services, Llc Automatic image cropping systems and methods
WO2020125629A1 (en) * 2018-12-17 2020-06-25 Beijing Bytedance Network Technology Co., Ltd. Reference pixels padding for motion compensation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050112445A (ko) 2004-05-25 2005-11-30 경희대학교 산학협력단 예측 부호화/복호화 장치, 예측 부호화/복호화 방법 및 그방법을 수행하는 프로그램이 기록된 컴퓨터 판독가능한기록매체
CN1965585B (zh) 2004-06-11 2010-09-29 Nxp股份有限公司 一种在存储器中存储影像的方法
KR100703200B1 (ko) * 2005-06-29 2007-04-06 한국산업기술대학교산학협력단 인트라 부호화 장치 및 방법
JP2008005197A (ja) * 2006-06-22 2008-01-10 Toshiba Corp デコード装置およびデコード方法
JP4650461B2 (ja) * 2007-07-13 2011-03-16 ソニー株式会社 符号化装置、符号化方法、プログラム、及び記録媒体
BRPI0910477A2 (pt) * 2008-04-11 2015-09-29 Thomson Licensing método e equipamento para predição de equiparação de gabarito (tmp) na codificação e decodificação de vídeo
WO2010041858A2 (en) 2008-10-06 2010-04-15 Lg Electronics Inc. A method and an apparatus for decoding a video signal
JP5238523B2 (ja) * 2009-01-13 2013-07-17 株式会社日立国際電気 動画像符号化装置、動画像復号化装置、および、動画像復号化方法
KR101742992B1 (ko) 2009-05-12 2017-06-02 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
WO2010131903A2 (en) 2009-05-12 2010-11-18 Lg Electronics Inc. Method and apparatus for processing a video signal
KR101510108B1 (ko) 2009-08-17 2015-04-10 삼성전자주식회사 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
EP2388999B1 (en) * 2010-05-17 2021-02-24 Lg Electronics Inc. New intra prediction modes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2728872A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015000168A1 (en) * 2013-07-05 2015-01-08 Mediatek Singapore Pte. Ltd. A simplified dc prediction method in intra prediction

Also Published As

Publication number Publication date
TWI517679B (zh) 2016-01-11
KR20150000851A (ko) 2015-01-05
KR20140093200A (ko) 2014-07-25
BR112013033697A2 (pt) 2017-07-11
EP2728872A4 (en) 2016-05-11
EP2728872A2 (en) 2014-05-07
TW201309041A (zh) 2013-02-16
US20140153646A1 (en) 2014-06-05
WO2013005962A3 (ko) 2013-03-14
CN103782595A (zh) 2014-05-07
MX2014000157A (es) 2014-02-19
KR101687727B1 (ko) 2016-12-19
AU2012278478B2 (en) 2015-09-24
JP5824148B2 (ja) 2015-11-25
AU2012278478A1 (en) 2014-01-30
KR101547497B1 (ko) 2015-08-26
US9578329B2 (en) 2017-02-21
KR20130004548A (ko) 2013-01-11
JP2014523701A (ja) 2014-09-11
SG11201400753WA (en) 2014-05-29

Similar Documents

Publication Publication Date Title
WO2013005962A2 (ko) 단일화된 참조가능성 확인 과정을 통해 인트라 예측을 수반하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
WO2016200100A1 (ko) 적응적 가중치 예측을 위한 신택스 시그널링을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치
WO2013005963A2 (ko) 콜로케이티드 영상을 이용한 인터 예측을 수반하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
WO2016072775A1 (ko) 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2014007524A1 (ko) 비디오의 엔트로피 부호화 방법 및 장치, 비디오의 엔트로피 복호화 방법 및 장치
WO2011087292A2 (en) Method and apparatus for encoding video and method and apparatus for decoding video by considering skip and split order
WO2011071308A2 (en) Method and apparatus for encoding video by motion prediction using arbitrary partition, and method and apparatus for decoding video by motion prediction using arbitrary partition
WO2012093891A2 (ko) 계층적 구조의 데이터 단위를 이용한 비디오의 부호화 방법 및 장치, 그 복호화 방법 및 장치
WO2011049396A2 (en) Method and apparatus for encoding video and method and apparatus for decoding video, based on hierarchical structure of coding unit
WO2011087297A2 (en) Method and apparatus for encoding video by using deblocking filtering, and method and apparatus for decoding video by using deblocking filtering
WO2011129620A2 (ko) 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
WO2013115572A1 (ko) 계층적 데이터 단위의 양자화 파라메터 예측을 포함하는 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2013002555A2 (ko) 산술부호화를 수반한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
WO2011087320A2 (ko) 예측 부호화를 위해 가변적인 파티션을 이용하는 비디오 부호화 방법 및 장치, 예측 부호화를 위해 가변적인 파티션을 이용하는 비디오 복호화 방법 및 장치
WO2011019253A2 (en) Method and apparatus for encoding video in consideration of scanning order of coding units having hierarchical structure, and method and apparatus for decoding video in consideration of scanning order of coding units having hierarchical structure
WO2013066051A1 (ko) 변환 계수 레벨의 엔트로피 부호화 및 복호화를 위한 컨텍스트 모델 결정 방법 및 장치
WO2011053020A2 (en) Method and apparatus for encoding residual block, and method and apparatus for decoding residual block
WO2013005968A2 (ko) 계층적 구조의 데이터 단위를 이용한 엔트로피 부호화 방법 및 장치, 복호화 방법 및 장치
WO2011016702A2 (ko) 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
WO2013002557A2 (ko) 움직임 정보의 부호화 방법 및 장치, 그 복호화 방법 및 장치
WO2011096770A2 (ko) 영상 부호화/복호화 장치 및 방법
WO2011021838A2 (en) Method and apparatus for encoding video, and method and apparatus for decoding video
WO2013157794A1 (ko) 변환 계수 레벨의 엔트로피 부호화 및 복호화를 위한 파라메터 업데이트 방법 및 이를 이용한 변환 계수 레벨의 엔트로피 부호화 장치 및 엔트로피 복호화 장치
WO2013002556A2 (ko) 인트라 예측을 수반한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
WO2011019213A2 (ko) 적응적인 루프 필터링을 이용한 비디오의 부호화 방법 및 장치, 비디오 복호화 방법 및 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014518818

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14130595

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/000157

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2012278478

Country of ref document: AU

Date of ref document: 20120702

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012807831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012807831

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014103488

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013033697

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013033697

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131227