WO2013005945A2 - Method for manufacturing substrate for surface-enhanced raman scattering spectroscopy and substrate manufactured using the method - Google Patents
Method for manufacturing substrate for surface-enhanced raman scattering spectroscopy and substrate manufactured using the method Download PDFInfo
- Publication number
- WO2013005945A2 WO2013005945A2 PCT/KR2012/005124 KR2012005124W WO2013005945A2 WO 2013005945 A2 WO2013005945 A2 WO 2013005945A2 KR 2012005124 W KR2012005124 W KR 2012005124W WO 2013005945 A2 WO2013005945 A2 WO 2013005945A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- raman scattering
- enhanced raman
- manufacturing
- scattering spectroscopy
- Prior art date
Links
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 title claims abstract description 58
- 238000004611 spectroscopical analysis Methods 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 54
- 239000000758 substrate Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims description 42
- 229920000307 polymer substrate Polymers 0.000 claims abstract description 74
- 229910052751 metal Inorganic materials 0.000 claims abstract description 44
- 239000002184 metal Substances 0.000 claims abstract description 44
- 239000002082 metal nanoparticle Substances 0.000 claims description 38
- 239000010409 thin film Substances 0.000 claims description 36
- 229910052737 gold Inorganic materials 0.000 claims description 12
- 229910052709 silver Inorganic materials 0.000 claims description 12
- 239000004642 Polyimide Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 10
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 10
- 229910052697 platinum Inorganic materials 0.000 claims description 10
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 10
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 10
- -1 polyethylene terephthalate Polymers 0.000 claims description 10
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 10
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 10
- 229920001721 polyimide Polymers 0.000 claims description 10
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 10
- 230000008021 deposition Effects 0.000 claims description 7
- 238000001020 plasma etching Methods 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 20
- 238000001514 detection method Methods 0.000 abstract description 19
- 239000000126 substance Substances 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 18
- 239000000956 alloy Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 10
- 238000001069 Raman spectroscopy Methods 0.000 description 9
- 239000010931 gold Substances 0.000 description 9
- 238000005530 etching Methods 0.000 description 8
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001845 vibrational spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/44—Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the present invention relates to a method for producing a substrate for surface enhanced Raman scattering spectroscopy and a substrate produced by the method. More specifically, the present invention relates to a substrate for surface-enhanced Raman scattering spectroscopy and a method of manufacturing the same, which has a high reproducibility and low manufacturing cost, and induces hot spots efficiently to improve detection sensitivity of a substance. will be.
- Raman spectroscopy is a method of performing qualitative and quantitative analysis of each substance by measuring the intrinsic vibration spectrum of the substance and finding the inherent spectrum of the substance.
- the concentration of the sample is mandatory, and there is a problem that there is a risk that the sample may be lost or denatured, as well as additional costs.
- SERS surface-enhanced Raman scattering
- Silver or gold nanoparticles or nanostructures are widely used as effective substrates for surface enhanced Raman scattering.
- Surface-enhanced Raman scattering spectroscopy using metal nanoparticles has shown the possibility of overcoming the sensitivity problem of conventional mobile Raman spectroscopy, in which case the detection sensitivity of the nanoparticle population can be enhanced by orders of magnitude. It turns out that.
- the present invention provides a substrate for surface-enhanced Raman scattering spectroscopy and a method of manufacturing the same.
- the present invention facilitates large area by forming a nano-pattern on the surface of a polymer substrate by using an etching rate difference between an amorphous region and a semi-crystalline region of the polymer substrate. It is a technical object of the present invention to provide a substrate for surface enhanced Raman scattering spectroscopy with a low reproducibility and a method of manufacturing the same.
- Another object of the present invention is to provide a substrate for surface enhanced Raman scattering spectroscopy and a method of manufacturing the same, which can efficiently induce hot spots to improve detection sensitivity of a substance.
- a method of manufacturing a substrate for surface-enhanced Raman scattering spectroscopy which forms a nanopattern on a surface of the polymer substrate by plasma treating a surface of the polymer substrate and the polymer. It comprises a metal thin film forming step of forming a metal thin film on the nano pattern of the substrate.
- a nanopattern forming step of forming a nanopattern on the surface of the polymer substrate by plasma treating the surface of the polymer substrate, wherein the nanopattern is formed A polymer substrate arrangement step of arranging the substrate in a support holder in an inclined direction with respect to the deposition direction, and a metal thin film formation step of forming a metal thin film by obliquely depositing a metal material on a portion of the nanopattern formed on the polymer substrate; do.
- the nano-pattern forming step an amorphous region and a semi-crystalline region of the polymer substrate
- the nano pattern is formed on the surface of the polymer substrate by using the difference in the etching rate.
- adjusting the shape of the nano-pattern by adjusting at least one of plasma etching time and plasma pressure It is characterized by.
- the polymer substrate is made of one of polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS) and polyimide (PI). It is characterized by.
- the method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to the first and second aspects of the present invention further includes a metal nanoparticle coating step of applying metal nanoparticles onto a metal thin film formed on the nanopattern of the polymer substrate. Characterized in that.
- the metal thin film is characterized in that it comprises at least one or more from the group consisting of Au, Ag, Al, Pt.
- the metal nanoparticles are characterized in that it comprises at least one or more from the group consisting of Au, Ag, Al, Pt.
- Surface-enhanced Raman scattering spectroscopy substrate according to the present invention is characterized in that it is produced by one of the manufacturing method of the surface-enhanced Raman scattering spectroscopy substrate manufacturing method according to the first to third aspects of the present invention.
- the nanopattern is formed on the surface of the polymer substrate by using the etching rate difference between the amorphous region and the semi-crystalline region of the polymer substrate, a large area is easy and high repetition is achieved.
- the surface enhanced Raman scattering spectroscopy substrate with low reproducibility and a manufacturing method have the effect of providing the same.
- the induction of hot spots during spectroscopic analysis is efficiently performed, thereby increasing the detection sensitivity of the material to be analyzed.
- the hot spots are easily induced, thereby increasing the detection sensitivity of the material to be analyzed.
- FIG. 1 is a process flowchart of a method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a first embodiment of the present invention.
- FIGS. 2 to 10 are cross-sectional views illustrating a method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a first embodiment of the present invention.
- FIG. 11 is a process flowchart of a method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a second embodiment of the present invention.
- FIGS. 12 to 15 are cross-sectional views illustrating a method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a second embodiment of the present invention.
- 16 is a process flowchart of a method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a third embodiment of the present invention.
- 17 to 18 are cross-sectional views illustrating a method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a third embodiment of the present invention.
- FIGS. 2 to 10 are process cross-sectional views thereof.
- the method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy includes a nano pattern forming step (S11), a metal thin film forming step (S12), and a metal nano particle applying step ( S13) is configured.
- a process of forming a nano-pattern on the surface of the polymer substrate 10 is performed by performing plasma treatment on the surface of the polymer substrate 10.
- the polymer substrate 10 generally has a structure in which amorphous regions and semi-crystalline regions are mixed, and these regions have different etching rates even under the same etching conditions.
- the first embodiment of the present invention provides the difference in the etch rate between the amorphous region and the semi-crystalline region of the polymer substrate 10 in the nanopattern forming step S11.
- the nano pattern may be formed on the surface of the polymer substrate 10 by using the plasma pattern 10, and the shape of the nano pattern may be variously controlled by controlling at least one of plasma etching time and plasma pressure.
- the shape of the nanopattern may be variously adjusted in size, shape, spacing and density according to a sample to be detected through surface enhanced Raman scattering spectroscopy.
- the nano-pattern formed on the surface of the polymer substrate 10 acts as hot spots during surface enhancement Raman scattering to strengthen the electromagnetic field of the surrounding material, so the material to be analyzed in Raman spectroscopy. Can increase the detection sensitivity.
- the polymer substrate 10 may be made of one of polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and polyimide (PI).
- PET polyethylene terephthalate
- PMMA polymethylmethacrylate
- PDMS polydimethylsiloxane
- PI polyimide
- a process of forming the metal thin film 20 on the nanopattern of the polymer substrate 10 is performed.
- the metal thin film 20 may include one or more from the group consisting of Au, Ag, Al, and Pt, and may be an alloy thereof. In the case of an alloy, the metal is preferably contained at least 70% by atomic%.
- the metal thin film 20 enhances the surface plasmon resonance to increase the detection sensitivity of the material to be analyzed.
- the metal nanoparticles 30 are formed on the metal thin film 20 formed on the nanopattern of the polymer substrate 10. The process of applying is performed.
- the metal nanoparticles 30 may include one or more from the group consisting of Au, Ag, Al, and Pt, or may be an alloy thereof. In the case of an alloy, the metal is preferably contained at least 70% by atomic%.
- the metal nanoparticles 30 also function to enhance surface plasmon resonance to increase the detection sensitivity of a material to be analyzed.
- the metal thin film 20 and the metal nanoparticles 30 may be applied together, or different types of metal nanoparticles 31 and 32 may be used together.
- FIGS. 12 to 15 are cross-sectional views thereof.
- the method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy may include a nano pattern forming step (S21), a polymer substrate placing step (S22), and a metal thin film forming step (S23). And a metal nanoparticle coating step (S24).
- a characteristic of the second embodiment is that the metal thin film 21 is formed only on a portion of the polymer substrate 10 through gradient deposition.
- the second embodiment will be described focusing on the difference.
- a process of forming a nanopattern on the surface of the polymer substrate 10 is performed by performing plasma treatment on the surface of the polymer substrate 10.
- the polymer substrate 10 may be formed by using an etching rate difference between an amorphous region and a semi-crystalline region of the polymer substrate 10.
- the nano-pattern may be formed on the surface of the substrate, and the shape of the nano-pattern may be variously controlled by adjusting at least one of plasma etching time and plasma pressure.
- the shape of the nanopattern may be variously adjusted in size, shape, spacing and density according to a sample to be detected through surface enhanced Raman scattering spectroscopy.
- the nano-pattern formed on the surface of the polymer substrate 10 acts as hot spots during surface enhancement Raman scattering to strengthen the electromagnetic field of the surrounding material, so the material to be analyzed in Raman spectroscopy. Can increase the detection sensitivity.
- the polymer substrate 10 may be made of one of polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and polyimide (PI).
- PET polyethylene terephthalate
- PMMA polymethylmethacrylate
- PDMS polydimethylsiloxane
- PI polyimide
- the area where the metal material is deposited on the nanopatterns of the polymer substrate 10 is determined by the angle of the nanopatterns formed on the polymer substrate 10 with respect to the deposition direction.
- the metal thin film 21 is formed by obliquely depositing a metal material on a portion of the nanopattern formed on the polymer substrate 10. The process is carried out.
- the metal thin film 21 may include at least one from the group consisting of Au, Ag, Al, and Pt, and may be an alloy thereof. In the case of an alloy, the metal is preferably contained at least 70% by atomic%.
- the metal thin film 21 when the metal thin film 21 is inclined to the polymer substrate 10, the metal thin film 21 is deposited only on a portion of the surface of the nanopattern. Due to the difference in thermal conductivity between the thin film 21 and the polymer substrate 10, hot spots are easily induced, and thus the detection sensitivity of the material to be analyzed can be further increased.
- the metal nanoparticles 30 are formed on the metal thin film 21 formed on the nanopattern of the polymer substrate 10. The process of applying is performed.
- the metal nanoparticles 30 may include one or more from the group consisting of Au, Ag, Al, and Pt, or may be an alloy thereof. In the case of an alloy, the metal is preferably contained at least 70% by atomic%.
- the metal nanoparticles 30 also function to enhance surface plasmon resonance to increase the detection sensitivity of a material to be analyzed.
- the metal thin film 21 and the metal nanoparticles 30 may be applied together, or different types of metal nanoparticles 31 and 32 may be used together.
- FIGS. 17 to 18 are process cross-sectional views of the method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy.
- the method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy includes a nano pattern forming step S31 and a metal nanoparticle applying step S32.
- the third embodiment has a feature that only the metal nanoparticles 30 are coated without forming the metal thin film 20 on the nanopattern of the polymer substrate 10.
- the third embodiment will be described focusing on the difference.
- a process of forming a nanopattern on the surface of the polymer substrate 10 is performed by performing plasma treatment on the surface of the polymer substrate 10.
- the polymer substrate 10 may be formed by using an etching rate difference between an amorphous region and a semi-crystalline region of the polymer substrate 10.
- the nano-pattern may be formed on the surface of the substrate, and the shape of the nano-pattern may be variously controlled by adjusting at least one of plasma etching time and plasma pressure.
- the shape of the nanopattern may be variously adjusted in size, shape, spacing and density according to a sample to be detected through surface enhanced Raman scattering spectroscopy.
- the nano-pattern formed on the surface of the polymer substrate 10 acts as hot spots during surface enhancement Raman scattering to strengthen the electromagnetic field of the surrounding material, so the material to be analyzed in Raman spectroscopy. Can increase the detection sensitivity.
- the polymer substrate 10 may be made of one of polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and polyimide (PI).
- PET polyethylene terephthalate
- PMMA polymethylmethacrylate
- PDMS polydimethylsiloxane
- PI polyimide
- a process of applying the metal nanoparticles 30 onto the nanopattern of the polymer substrate 10 is performed.
- the metal nanoparticles 30 may include one or more from the group consisting of Au, Ag, Al, and Pt, or may be an alloy thereof. In the case of an alloy, the metal is preferably contained at least 70% by atomic%.
- the metal nanoparticles 30 function to enhance surface plasmon resonance and increase detection sensitivity of a material to be analyzed.
- metal nanoparticles 31 and 32 may be used together.
- the nanopattern is formed on the surface of the polymer substrate by using the difference in the etching rate between the amorphous region and the semi-crystalline region of the polymer substrate.
- the surface-enhanced Raman scattering spectroscopy substrate and the method of manufacturing the same have an effect of easy surface area and high reproducibility and low manufacturing cost.
- the induction of hot spots during spectroscopic analysis is efficiently performed, thereby increasing the detection sensitivity of the material to be analyzed.
- the hot spots are easily induced, thereby increasing the detection sensitivity of the material to be analyzed.
- the present invention can be used for a substrate for surface enhanced Raman scattering spectroscopy and a method of manufacturing the same, which has a high reproducibility and a low manufacturing cost and can efficiently induce hot spots to improve detection sensitivity of materials.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
The present invention relates to a substrate for surface-enhanced Raman scattering spectroscopy and a manufacturing method thereof. The manufacturing method for a substrate for surface-enhanced Raman scattering spectroscopy, according to the present invention, comprises: a nano-pattern formation step for plasma-treating the surface of a polymer substrate and then forming a nano-pattern on the surface thereof; and a metal film formation step for forming a metal film on the nano-pattern of the polymer substrate. Thus, the present invention can provide a substrate for surface-enhanced Raman scattering spectroscopy and a manufacturing method thereof, which exhibit high reproducibility as well as low manufacturing costs, and effectively induce hot spots, thereby improving the detection sensitivity of the substance.
Description
본 발명은 표면증강라만산란 분광용 기판 제조방법 및 그 방법에 의해 제조된 기판에 관한 것이다. 보다 구체적으로, 본 발명은 높은 반복 재현성과 더불어 제조비용이 낮고, 핫스팟(hot spots)의 유도가 효율적으로 이루어져 물질의 검출 감도를 향상시킬 수 있는 표면증강라만산란 분광용 기판 및 그 제조방법에 관한 것이다.The present invention relates to a method for producing a substrate for surface enhanced Raman scattering spectroscopy and a substrate produced by the method. More specifically, the present invention relates to a substrate for surface-enhanced Raman scattering spectroscopy and a method of manufacturing the same, which has a high reproducibility and low manufacturing cost, and induces hot spots efficiently to improve detection sensitivity of a substance. will be.
오늘날 환경오염 문제가 심각해지면서 각종 중금속이나 유기인계 화합물과 같은 위험한 환경오염 물질을 조기에 정확하게 검출하여 그 확산을 차단할 필요성이 증대되고 있으며, 각종 화학물질의 극미량 분석 기술의 개발은 의학, 환경 모니터링, 법의학 및 국토방위 분야에서 매우 중요한 문제로 대두되고 있다.As the environmental pollution problem becomes serious, the necessity of early detection of dangerous environmental pollutants such as various heavy metals or organophosphorus compounds is accurately detected and blocking the spread thereof. The development of trace amount analysis technology of various chemical substances includes medical, environmental monitoring, It is a very important issue in forensic and homeland defense.
라만(Raman) 분광법은 물질의 고유한 진동 스펙트럼을 측정하여 물질의 고유한 스펙트럼을 찾아냄으로써 각 물질의 정성, 정량 분석을 수행하는 방법이다.Raman spectroscopy is a method of performing qualitative and quantitative analysis of each substance by measuring the intrinsic vibration spectrum of the substance and finding the inherent spectrum of the substance.
그런데, 종래의 라만 분광법에서는 수득 가능한 신호 강도가 매우 낮고 감도가 떨어진다. 이에 따라 시료의 농축조작이 필수인데, 이 과정에 의해 추가적인 비용이 많이 소요될 뿐만 아니라 시료가 소실되거나 변성될 위험이 있다는 문제점이 있다.By the way, in the conventional Raman spectroscopy, the signal strength obtainable is very low and the sensitivity is inferior. Accordingly, the concentration of the sample is mandatory, and there is a problem that there is a risk that the sample may be lost or denatured, as well as additional costs.
이러한 문제점을 해결하기 위해 제안된 표면증강라만산란(SERS: surface-enhanced Raman scattering)은 고감도의 계면분광도구로서 나노 구조체의 표면에서 분자 이미징을 할 수 있는 생물학적 센서로 사용된다.The surface-enhanced Raman scattering (SERS) proposed to solve this problem is used as a biological sensor capable of molecular imaging on the surface of nanostructures as a highly sensitive interfacial spectroscopic tool.
은 또는 금 나노입자 또는 나노 구조체는 표면증강라만산란에 효과적인 기질로 널리 사용된다. 금속 나노입자를 이용한 표면증강라만산란 분광기는 일반적인 이동형 라만 분광기의 감도 문제를 극복할 수 있는 가능성을 보여주었으며, 이 경우 나노입자 집단의 검출 감도는 6 내지 10 차수(orders of magnitude)까지 증강될 수 있음이 밝혀졌다.Silver or gold nanoparticles or nanostructures are widely used as effective substrates for surface enhanced Raman scattering. Surface-enhanced Raman scattering spectroscopy using metal nanoparticles has shown the possibility of overcoming the sensitivity problem of conventional mobile Raman spectroscopy, in which case the detection sensitivity of the nanoparticle population can be enhanced by orders of magnitude. It turns out that.
그러나 은 또는 금 나노입자를 이용한 표면증강라만산란 분광기의 경우 응집의 정도, 금속 콜로이드의 입자 크기 및 금속 표면상 분자의 불균일 분포와 같은 실험 조건들을 제어하는 것이 곤란한 문제점이 있다. 이러한 문제점을 해결하고 높은 검출 감도를 얻기 위해 수 나노 내지는 수십 나노 수준의 표면 요철을 형성해야 하는데, 이를 위한 패터닝 공정은 대면적화가 어려우며, 제조비용이 높을 뿐만 아니라 반복 재현성이 낮다는 문제점이 있다.However, in the case of surface-enhanced Raman scattering spectroscopy using silver or gold nanoparticles, it is difficult to control experimental conditions such as the degree of aggregation, particle size of metal colloid and nonuniform distribution of molecules on metal surface. In order to solve this problem and obtain high detection sensitivity, surface irregularities of several nanometers to several tens of nanometers should be formed, and the patterning process for this is difficult in large area, high manufacturing cost, and low reproducibility.
본 발명은 대면적화가 용이하여 높은 반복 재현성과 더불어 제조비용이 낮은 표면증강라만산란 분광용 기판 및 그 제조방법을 제공하는 것을 기술적 과제로 한다.The present invention provides a substrate for surface-enhanced Raman scattering spectroscopy and a method of manufacturing the same.
보다 구체적으로, 본 발명은 고분자 기판의 비정질 영역(amorphous region)과 반결정질 영역(semi-crystalline region)의 식각율 차이를 이용하여 고분자 기판의 표면에 나노 패턴을 형성함으로써, 대면적화가 용이하고 높은 반복 재현성과 더불어 제조비용이 낮은 표면증강라만산란 분광용 기판 및 그 제조방법을 제공하는 것을 기술적 과제로 한다.More specifically, the present invention facilitates large area by forming a nano-pattern on the surface of a polymer substrate by using an etching rate difference between an amorphous region and a semi-crystalline region of the polymer substrate. It is a technical object of the present invention to provide a substrate for surface enhanced Raman scattering spectroscopy with a low reproducibility and a method of manufacturing the same.
또한, 본 발명은 핫스팟(hot spots)의 유도가 효율적으로 이루어져 물질의 검출 감도를 향상시킬 수 있는 표면증강라만산란 분광용 기판 및 그 제조방법을 제공하는 것을 기술적 과제로 한다.Another object of the present invention is to provide a substrate for surface enhanced Raman scattering spectroscopy and a method of manufacturing the same, which can efficiently induce hot spots to improve detection sensitivity of a substance.
이러한 과제를 해결하기 위한 본 발명의 제1 측면에 따른 표면증강라만산란 분광용 기판 제조방법은 고분자 기판의 표면을 플라즈마 처리하여 상기 고분자 기판의 표면에 나노 패턴을 형성하는 나노 패턴 형성단계 및 상기 고분자 기판의 나노 패턴 상에 금속 박막을 형성하는 금속 박막 형성단계를 포함하여 구성된다.According to a first aspect of the present invention, there is provided a method of manufacturing a substrate for surface-enhanced Raman scattering spectroscopy, which forms a nanopattern on a surface of the polymer substrate by plasma treating a surface of the polymer substrate and the polymer. It comprises a metal thin film forming step of forming a metal thin film on the nano pattern of the substrate.
본 발명의 제1 측면에 따른 표면증강라만산란 분광용 기판 제조방법은 고분자 기판의 표면을 플라즈마 처리하여 상기 고분자 기판의 표면에 나노 패턴을 형성하는 나노 패턴 형성단계, 상기 나노 패턴이 형성되어 있는 고분자 기판을 지지 홀더에 증착 방향에 대하여 경사지게 배치하는 고분자 기판 배치단계 및 상기 고분자 기판에 형성되어 있는 나노 패턴의 일부 영역 상에 금속 물질을 경사 증착하여 금속 박막을 형성하는 금속 박막 형성단계를 포함하여 구성된다.In the method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to the first aspect of the present invention, a nanopattern forming step of forming a nanopattern on the surface of the polymer substrate by plasma treating the surface of the polymer substrate, wherein the nanopattern is formed A polymer substrate arrangement step of arranging the substrate in a support holder in an inclined direction with respect to the deposition direction, and a metal thin film formation step of forming a metal thin film by obliquely depositing a metal material on a portion of the nanopattern formed on the polymer substrate; do.
본 발명의 제1 측면에 따른 표면증강라만산란 분광용 기판 제조방법은 고분자 기판의 표면을 플라즈마 처리하여 상기 고분자 기판의 표면에 나노 패턴을 형성하는 나노 패턴 형성단계 및 상기 고분자 기판의 나노 패턴 상에 금속 나노 입자를 도포하는 금속 나노 입자 도포단계를 포함하여 구성된다.In the method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to the first aspect of the present invention, a nanopattern forming step of forming a nanopattern on the surface of the polymer substrate by plasma treating the surface of the polymer substrate and on the nanopattern of the polymer substrate It comprises a metal nanoparticle coating step of applying the metal nanoparticles.
본 발명의 제1 내지 제3 측면에 따른 표면증강라만산란 분광용 기판 제조방법에 있어서, 상기 나노 패턴 형성단계에서, 상기 고분자 기판의 비정질 영역(amorphous region)과 반결정질 영역(semi-crystalline region)의 식각율 차이를 이용하여 상기 고분자 기판의 표면에 상기 나노 패턴을 형성하는 것을 특징으로 한다.In the method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to the first to third aspects of the present invention, in the nano-pattern forming step, an amorphous region and a semi-crystalline region of the polymer substrate The nano pattern is formed on the surface of the polymer substrate by using the difference in the etching rate.
본 발명의 제1 내지 제3 측면에 따른 표면증강라만산란 분광용 기판 제조방법에 있어서, 상기 나노 패턴 형성단계에서, 플라즈마 식각 시간과 플라즈마 압력 중 적어도 하나를 조절하여 상기 나노 패턴의 형상을 조절하는 것을 특징으로 한다.In the method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to the first to third aspects of the present invention, in the nano-pattern forming step, adjusting the shape of the nano-pattern by adjusting at least one of plasma etching time and plasma pressure It is characterized by.
본 발명의 제1 내지 제3 측면에 따른 표면증강라만산란 분광용 기판 제조방법에 있어서, 상기 고분자 기판은 PET(polyethylene terephthalate), PMMA(polymethylmethacrylate), PDMS(polydimethylsiloxane) 및 PI(polyimide) 중 하나로 이루어지는 것을 특징으로 한다.In the method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to the first to third aspects of the present invention, the polymer substrate is made of one of polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS) and polyimide (PI). It is characterized by.
본 발명의 제1 및 제2 측면에 따른 표면증강라만산란 분광용 기판 제조방법은 상기 고분자 기판의 나노 패턴 상에 형성되어 있는 금속 박막 상에 금속 나노 입자를 도포하는 금속 나노 입자 도포단계를 더 포함하는 것을 특징으로 한다.The method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to the first and second aspects of the present invention further includes a metal nanoparticle coating step of applying metal nanoparticles onto a metal thin film formed on the nanopattern of the polymer substrate. Characterized in that.
본 발명의 제1 및 제2 측면에 따른 표면증강라만산란 분광용 기판 제조방법에 있어서, 상기 금속 박막은 Au, Ag, Al, Pt로 이루어진 군에서 적어도 하나 이상을 포함하는 것을 특징으로 한다.In the method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to the first and second aspects of the present invention, the metal thin film is characterized in that it comprises at least one or more from the group consisting of Au, Ag, Al, Pt.
본 발명의 제1 내지 제3 측면에 따른 표면증강라만산란 분광용 기판 제조방법에 있어서, 상기 금속 나노 입자는 Au, Ag, Al, Pt로 이루어진 군에서 적어도 하나 이상을 포함하는 것을 특징으로 한다.In the method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to the first to third aspects of the invention, the metal nanoparticles are characterized in that it comprises at least one or more from the group consisting of Au, Ag, Al, Pt.
본 발명에 따른 표면증강라만산란 분광용 기판은 본 발명의 제1 내지 제3 측면에 따른 표면증강라만산란 분광용 기판 제조방법 중 하나의 제조방법에 의해 제조된 것을 특징으로 한다.Surface-enhanced Raman scattering spectroscopy substrate according to the present invention is characterized in that it is produced by one of the manufacturing method of the surface-enhanced Raman scattering spectroscopy substrate manufacturing method according to the first to third aspects of the present invention.
본 발명에 따르면, 고분자 기판의 비정질 영역(amorphous region)과 반결정질 영역(semi-crystalline region)의 식각율 차이를 이용하여 고분자 기판의 표면에 나노 패턴을 형성하기 때문에, 대면적화가 용이하고 높은 반복 재현성과 더불어 제조비용이 낮은 표면증강라만산란 분광용 기판 및 그 제조방법이 제공되는 효과가 있다.According to the present invention, since the nanopattern is formed on the surface of the polymer substrate by using the etching rate difference between the amorphous region and the semi-crystalline region of the polymer substrate, a large area is easy and high repetition is achieved. The surface enhanced Raman scattering spectroscopy substrate with low reproducibility and a manufacturing method have the effect of providing the same.
또한, 고분자 기판에 형성된 나노 패턴, 금속 박막, 금속 나노 입자에 의해, 분광 분석 시 핫스팟(hot spots)의 유도가 효율적으로 이루어지기 때문에 분석 대상이 되는 물질의 검출 감도를 높일 수 있는 효과가 있다.In addition, since the nano-pattern formed on the polymer substrate, the metal thin film, and the metal nanoparticles, the induction of hot spots during spectroscopic analysis is efficiently performed, thereby increasing the detection sensitivity of the material to be analyzed.
또한, 경사 증착을 통하여 고분자 기판의 일부분에만 금속 박막을 형성할 경우 핫스팟의 유도가 용이하여 분석 대상이 되는 물질의 검출 감도를 더욱 높일 수 있는 효과가 있다.In addition, when the metal thin film is formed only on a part of the polymer substrate through the gradient deposition, the hot spots are easily induced, thereby increasing the detection sensitivity of the material to be analyzed.
또한, 분석 대상 물질을 종래에 비해 보다 쉽고 빠르게 분석할 수 있는 효과가 있다.In addition, there is an effect that can be analyzed more easily and quickly than the analysis material.
도 1은 본 발명의 제1 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법의 공정 순서도이다.1 is a process flowchart of a method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a first embodiment of the present invention.
도 2 내지 도 10은 본 발명의 제1 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법의 공정 단면도들이다.2 to 10 are cross-sectional views illustrating a method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a first embodiment of the present invention.
도 11은 본 발명의 제2 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법의 공정 순서도이다.11 is a process flowchart of a method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a second embodiment of the present invention.
도 12 내지 도 15는 본 발명의 제2 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법의 공정 단면도들이다.12 to 15 are cross-sectional views illustrating a method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a second embodiment of the present invention.
도 16은 본 발명의 제3 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법의 공정 순서도이다.16 is a process flowchart of a method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a third embodiment of the present invention.
도 17 내지 도 18은 본 발명의 제3 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법의 공정 단면도들이다.17 to 18 are cross-sectional views illustrating a method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a third embodiment of the present invention.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention;
도 1은 본 발명의 제1 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법의 공정 순서도이고, 도 2 내지 도 10은 그 공정 단면도들이다.1 is a process flowchart of a method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a first embodiment of the present invention, and FIGS. 2 to 10 are process cross-sectional views thereof.
도 1 내지 도 10을 참조하면, 본 발명의 제1 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법은 나노 패턴 형성단계(S11), 금속 박막 형성단계(S12) 및 금속 나노 입자 도포단계(S13)를 포함하여 구성된다.1 to 10, the method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to the first embodiment of the present invention includes a nano pattern forming step (S11), a metal thin film forming step (S12), and a metal nano particle applying step ( S13) is configured.
<나노 패턴 형성단계(S11)><Nano pattern forming step (S11)>
먼저 도 1 내지 도 7을 참조하면, 나노 패턴 형성단계(S11)에서는, 고분자 기판(10)의 표면을 플라즈마 처리하여 고분자 기판(10)의 표면에 나노 패턴을 형성하는 과정이 수행된다.First, referring to FIGS. 1 to 7, in the nano-pattern forming step S11, a process of forming a nano-pattern on the surface of the polymer substrate 10 is performed by performing plasma treatment on the surface of the polymer substrate 10.
고분자 기판(10)은 일반적으로 비정질 영역(amorphous region)과 반결정질 영역(semi-crystalline region)이 혼재되어 있는 구조를 갖으며, 이들 영역은 동일한 식각 조건하에서도 서로 다른 식각율을 갖는다.The polymer substrate 10 generally has a structure in which amorphous regions and semi-crystalline regions are mixed, and these regions have different etching rates even under the same etching conditions.
이러한 점에 착안하여, 본 발명의 제1 실시 예는 나노 패턴 형성단계(S11)에서, 고분자 기판(10)의 비정질 영역(amorphous region)과 반결정질 영역(semi-crystalline region)의 식각율 차이를 이용하여 고분자 기판(10)의 표면에 나노 패턴을 형성하며, 플라즈마 식각 시간과 플라즈마 압력 중 적어도 하나를 조절하여 나노 패턴의 형상을 다양하게 조절할 수 있다. 나노 패턴의 형상은 표면증강라만산란 분광을 통하여 검출하고자 하는 시료에 따라 그 크기, 형상, 간격 및 밀도 등이 다양하게 조절될 수 있다.In view of the above, the first embodiment of the present invention provides the difference in the etch rate between the amorphous region and the semi-crystalline region of the polymer substrate 10 in the nanopattern forming step S11. The nano pattern may be formed on the surface of the polymer substrate 10 by using the plasma pattern 10, and the shape of the nano pattern may be variously controlled by controlling at least one of plasma etching time and plasma pressure. The shape of the nanopattern may be variously adjusted in size, shape, spacing and density according to a sample to be detected through surface enhanced Raman scattering spectroscopy.
도 4 내지 도 7은 본 발명의 제1 실시 예에 따라 플라즈마 처리를 통해 나노 패턴이 형성된 고분자 기판(10)을 주사전자현미경으로 촬영한 사진으로 플라즈만 조건에 따라 서로 다른 나노 패턴을 나타내고 있음을 알 수 있다.4 to 7 are photographs taken with a scanning electron microscope of the polymer substrate 10 on which the nanopatterns are formed by plasma treatment according to the first embodiment of the present invention. Able to know.
이와 같은 고분자 기판(10)의 표면에 형성된 나노 패턴은 표면증강라만산란시 핫스팟(hot spots)으로 작용하여 주변의 전자기장(electromagnetic field)을 강화시키는 역할을 하기 때문에 라만 분광에 있어서 분석 대상이 되는 물질의 검출 감도를 높일 수 있다.The nano-pattern formed on the surface of the polymer substrate 10 acts as hot spots during surface enhancement Raman scattering to strengthen the electromagnetic field of the surrounding material, so the material to be analyzed in Raman spectroscopy. Can increase the detection sensitivity.
이러한 고분자 기판(10)은 PET(polyethylene terephthalate), PMMA(polymethylmethacrylate), PDMS(polydimethylsiloxane) 및 PI(polyimide) 중 하나로 이루어질 수 있다The polymer substrate 10 may be made of one of polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and polyimide (PI).
<금속 박막 형성단계(S12)><Metal thin film forming step (S12)>
다음으로 도 1과 도 8을 참조하면, 금속 박막 형성단계(S12)에서는, 고분자 기판(10)의 나노 패턴 상에 금속 박막(20)을 형성하는 과정이 수행된다.Next, referring to FIGS. 1 and 8, in the metal thin film forming step S12, a process of forming the metal thin film 20 on the nanopattern of the polymer substrate 10 is performed.
금속 박막(20)은 Au, Ag, Al, Pt로 이루어진 군에서 하나 이상을 포함할 수 있으며, 이들의 합금일 수도 있다. 합금의 경우 상기 금속이 원자%로 적어도 70% 이상 포함된 것이 바람직하다.The metal thin film 20 may include one or more from the group consisting of Au, Ag, Al, and Pt, and may be an alloy thereof. In the case of an alloy, the metal is preferably contained at least 70% by atomic%.
이러한 금속 박막(20)은 표면플라즈몬공명(surface plasmon resonance)을 강화하여 분석 대상이 되는 물질의 검출 감도를 높이는 기능을 수행한다.The metal thin film 20 enhances the surface plasmon resonance to increase the detection sensitivity of the material to be analyzed.
<금속 나노 입자 도포단계(S13)><Metal Nano Particle Coating Step (S13)>
다음으로 도 1, 도 9 및 도 10을 참조하면, 금속 나노 입자 도포단계(S13)에서는, 고분자 기판(10)의 나노 패턴 상에 형성되어 있는 금속 박막(20) 상에 금속 나노 입자(30)를 도포하는 과정이 수행된다.1, 9 and 10, in the metal nanoparticle coating step S13, the metal nanoparticles 30 are formed on the metal thin film 20 formed on the nanopattern of the polymer substrate 10. The process of applying is performed.
금속 나노 입자(30)는 Au, Ag, Al, Pt로 이루어진 군에서 하나 이상을 포함할 수 있으며, 이들의 합금일 수도 있다. 합금의 경우 상기 금속이 원자%로 적어도 70% 이상 포함된 것이 바람직하다.The metal nanoparticles 30 may include one or more from the group consisting of Au, Ag, Al, and Pt, or may be an alloy thereof. In the case of an alloy, the metal is preferably contained at least 70% by atomic%.
이러한 금속 나노 입자(30)도 표면플라즈몬공명(surface plasmon resonance)을 강화하여 분석 대상이 되는 물질의 검출 감도를 높이는 기능을 수행한다.The metal nanoparticles 30 also function to enhance surface plasmon resonance to increase the detection sensitivity of a material to be analyzed.
표면플라즈몬공명을 극대화하기 위해 금속 박막(20)과 금속 나노 입자(30)를 함께 적용하거나, 서로 다른 종류의 금속 나노 입자(31, 32)를 함께 사용할 수도 있다.In order to maximize surface plasmon resonance, the metal thin film 20 and the metal nanoparticles 30 may be applied together, or different types of metal nanoparticles 31 and 32 may be used together.
도 11은 본 발명의 제2 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법의 공정 순서도이고, 도 12 내지 도 15는 그 공정 단면도들이다.11 is a process flowchart of a method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a second embodiment of the present invention, and FIGS. 12 to 15 are cross-sectional views thereof.
도 11 내지 도 15를 참조하면, 본 발명의 제2 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법은 나노 패턴 형성단계(S21), 고분자 기판 배치단계(S22), 금속 박막 형성단계(S23) 및 금속 나노 입자 도포단계(S24)를 포함하여 구성된다.11 to 15, the method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to the second embodiment of the present invention may include a nano pattern forming step (S21), a polymer substrate placing step (S22), and a metal thin film forming step (S23). And a metal nanoparticle coating step (S24).
제1 실시 예와 비교하여 제2 실시 예가 갖는 특징은 경사 증착을 통해 고분자 기판(10)의 일부분에만 금속 박막(21)을 형성한다는 것이다. 이하에서는 이러한 차이점 초점을 맞추어 제2 실시 예를 설명한다.Compared to the first embodiment, a characteristic of the second embodiment is that the metal thin film 21 is formed only on a portion of the polymer substrate 10 through gradient deposition. Hereinafter, the second embodiment will be described focusing on the difference.
<나노 패턴 형성단계(S21)><Nano pattern forming step (S21)>
먼저 도 11을 참조하면, 나노 패턴 형성단계(S21)에서는, 고분자 기판(10)의 표면을 플라즈마 처리하여 고분자 기판(10)의 표면에 나노 패턴을 형성하는 과정이 수행된다.First, referring to FIG. 11, in the nanopattern forming step S21, a process of forming a nanopattern on the surface of the polymer substrate 10 is performed by performing plasma treatment on the surface of the polymer substrate 10.
본 발명의 제2 실시 예는 나노 패턴 형성단계(S21)에서, 고분자 기판(10)의 비정질 영역(amorphous region)과 반결정질 영역(semi-crystalline region)의 식각율 차이를 이용하여 고분자 기판(10)의 표면에 나노 패턴을 형성하며, 플라즈마 식각 시간과 플라즈마 압력 중 적어도 하나를 조절하여 나노 패턴의 형상을 다양하게 조절할 수 있다. 나노 패턴의 형상은 표면증강라만산란 분광을 통하여 검출하고자 하는 시료에 따라 그 크기, 형상, 간격 및 밀도 등이 다양하게 조절될 수 있다.According to the second embodiment of the present invention, in the nano-pattern forming step S21, the polymer substrate 10 may be formed by using an etching rate difference between an amorphous region and a semi-crystalline region of the polymer substrate 10. The nano-pattern may be formed on the surface of the substrate, and the shape of the nano-pattern may be variously controlled by adjusting at least one of plasma etching time and plasma pressure. The shape of the nanopattern may be variously adjusted in size, shape, spacing and density according to a sample to be detected through surface enhanced Raman scattering spectroscopy.
이와 같은 고분자 기판(10)의 표면에 형성된 나노 패턴은 표면증강라만산란시 핫스팟(hot spots)으로 작용하여 주변의 전자기장(electromagnetic field)을 강화시키는 역할을 하기 때문에 라만 분광에 있어서 분석 대상이 되는 물질의 검출 감도를 높일 수 있다.The nano-pattern formed on the surface of the polymer substrate 10 acts as hot spots during surface enhancement Raman scattering to strengthen the electromagnetic field of the surrounding material, so the material to be analyzed in Raman spectroscopy. Can increase the detection sensitivity.
이러한 고분자 기판(10)은 PET(polyethylene terephthalate), PMMA(polymethylmethacrylate), PDMS(polydimethylsiloxane) 및 PI(polyimide) 중 하나로 이루어질 수 있다.The polymer substrate 10 may be made of one of polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and polyimide (PI).
<고분자 기판 배치단계(S22)><Polymer Substrate Placement Step (S22)>
도 11과 도 12를 참조하면, 고분자 기판 배치단계(S24)에서는, 나노 패턴이 형성되어 있는 고분자 기판(10)을 지지 홀더(40)에 증착 방향에 대하여 경사지게 배치하는 과정이 수행된다.11 and 12, in the polymer substrate disposing step S24, a process of disposing the polymer substrate 10 having the nano-pattern formed thereon on the support holder 40 inclined with respect to the deposition direction is performed.
이 단계를 거쳐 고분자 기판(10)에 형성된 나노 패턴들이 증착 방향에 대하여 갖게 되는 각도에 의해 고분자 기판(10)의 나노 패턴들 상에 금속 물질이 증착되는 영역이 결정된다.Through this step, the area where the metal material is deposited on the nanopatterns of the polymer substrate 10 is determined by the angle of the nanopatterns formed on the polymer substrate 10 with respect to the deposition direction.
<금속 박막 형성단계(S23)><Metal thin film forming step (S23)>
다음으로 도 11 내지 도 13을 참조하면, 금속 박막 형성단계(S23)에서는, 고분자 기판(10)에 형성되어 있는 나노 패턴의 일부 영역 상에 금속 물질을 경사 증착하여 금속 박막(21)을 형성하는 과정이 수행된다.Next, referring to FIGS. 11 to 13, in the metal thin film forming step S23, the metal thin film 21 is formed by obliquely depositing a metal material on a portion of the nanopattern formed on the polymer substrate 10. The process is carried out.
금속 박막(21)은 Au, Ag, Al, Pt로 이루어진 군에서 하나 이상을 포함할 수 있으며, 이들의 합금일 수도 있다. 합금의 경우 상기 금속이 원자%로 적어도 70% 이상 포함된 것이 바람직하다.The metal thin film 21 may include at least one from the group consisting of Au, Ag, Al, and Pt, and may be an alloy thereof. In the case of an alloy, the metal is preferably contained at least 70% by atomic%.
이와 같이, 고분자 기판(10)을 기울여 금속 박막(21)을 증착할 경우 나노 패턴 표면의 일부 영역에만 금속 박막(21)이 증착되는데, 이렇게 표면 일부에만 금속 박막(21)이 증착할 경우, 금속 박막(21)과 고분자 기판(10)의 열전도도 차이로 인해 핫스팟의 유도가 용이해져 분석 대상이 되는 물질의 검출 감도를 더욱 높일 수 있다.As such, when the metal thin film 21 is inclined to the polymer substrate 10, the metal thin film 21 is deposited only on a portion of the surface of the nanopattern. Due to the difference in thermal conductivity between the thin film 21 and the polymer substrate 10, hot spots are easily induced, and thus the detection sensitivity of the material to be analyzed can be further increased.
<금속 나노 입자 도포단계(S24)><Metal Nano Particle Coating Step (S24)>
다음으로 도 11, 도 14 및 도 15를 참조하면, 금속 나노 입자 도포단계(S24)에서는, 고분자 기판(10)의 나노 패턴 상에 형성되어 있는 금속 박막(21) 상에 금속 나노 입자(30)를 도포하는 과정이 수행된다.Next, referring to FIGS. 11, 14, and 15, in the metal nanoparticle coating step S24, the metal nanoparticles 30 are formed on the metal thin film 21 formed on the nanopattern of the polymer substrate 10. The process of applying is performed.
금속 나노 입자(30)는 Au, Ag, Al, Pt로 이루어진 군에서 하나 이상을 포함할 수 있으며, 이들의 합금일 수도 있다. 합금의 경우 상기 금속이 원자%로 적어도 70% 이상 포함된 것이 바람직하다.The metal nanoparticles 30 may include one or more from the group consisting of Au, Ag, Al, and Pt, or may be an alloy thereof. In the case of an alloy, the metal is preferably contained at least 70% by atomic%.
이러한 금속 나노 입자(30)도 표면플라즈몬공명(surface plasmon resonance)을 강화하여 분석 대상이 되는 물질의 검출 감도를 높이는 기능을 수행한다.The metal nanoparticles 30 also function to enhance surface plasmon resonance to increase the detection sensitivity of a material to be analyzed.
표면플라즈몬공명을 극대화하기 위해 금속 박막(21)과 금속 나노 입자(30)를 함께 적용하거나, 서로 다른 종류의 금속 나노 입자(31, 32)를 함께 사용할 수도 있다.In order to maximize surface plasmon resonance, the metal thin film 21 and the metal nanoparticles 30 may be applied together, or different types of metal nanoparticles 31 and 32 may be used together.
도 16은 본 발명의 제3 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법의 공정 순서도이고, 도 17 내지 도 18은 그 표면증강라만산란 분광용 기판 제조방법의 공정 단면도들이다.16 is a process flowchart of a method for manufacturing a surface enhanced Raman scattering spectroscopy substrate according to a third embodiment of the present invention, and FIGS. 17 to 18 are process cross-sectional views of the method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy.
도 16 내지 도 18을 참조하면, 본 발명의 제3 실시 예에 따른 표면증강라만산란 분광용 기판 제조방법은 나노 패턴 형성단계(S31) 및 금속 나노 입자 도포단계(S32)를 포함하여 구성된다.16 to 18, the method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy according to a third embodiment of the present invention includes a nano pattern forming step S31 and a metal nanoparticle applying step S32.
제1 실시 예와 비교하여 제3 실시 예가 갖는 특징은 고분자 기판(10)의 나노 패턴 상에 금속 박막(20)을 형성하지 않고 금속 나노 입자(30)만을 도포한다는 점이다. 이하에서는 이러한 차이점 초점을 맞추어 제3 실시 예를 설명한다.Compared to the first embodiment, the third embodiment has a feature that only the metal nanoparticles 30 are coated without forming the metal thin film 20 on the nanopattern of the polymer substrate 10. Hereinafter, the third embodiment will be described focusing on the difference.
<나노 패턴 형성단계(S31)><Nano pattern forming step (S31)>
먼저 도 16을 참조하면, 나노 패턴 형성단계(S31)에서는, 고분자 기판(10)의 표면을 플라즈마 처리하여 고분자 기판(10)의 표면에 나노 패턴을 형성하는 과정이 수행된다.First, referring to FIG. 16, in the nanopattern forming step S31, a process of forming a nanopattern on the surface of the polymer substrate 10 is performed by performing plasma treatment on the surface of the polymer substrate 10.
본 발명의 제3 실시 예는 나노 패턴 형성단계(S31)에서, 고분자 기판(10)의 비정질 영역(amorphous region)과 반결정질 영역(semi-crystalline region)의 식각율 차이를 이용하여 고분자 기판(10)의 표면에 나노 패턴을 형성하며, 플라즈마 식각 시간과 플라즈마 압력 중 적어도 하나를 조절하여 나노 패턴의 형상을 다양하게 조절할 수 있다. 나노 패턴의 형상은 표면증강라만산란 분광을 통하여 검출하고자 하는 시료에 따라 그 크기, 형상, 간격 및 밀도 등이 다양하게 조절될 수 있다.According to the third embodiment of the present invention, in the nano-pattern forming step S31, the polymer substrate 10 may be formed by using an etching rate difference between an amorphous region and a semi-crystalline region of the polymer substrate 10. The nano-pattern may be formed on the surface of the substrate, and the shape of the nano-pattern may be variously controlled by adjusting at least one of plasma etching time and plasma pressure. The shape of the nanopattern may be variously adjusted in size, shape, spacing and density according to a sample to be detected through surface enhanced Raman scattering spectroscopy.
이와 같은 고분자 기판(10)의 표면에 형성된 나노 패턴은 표면증강라만산란시 핫스팟(hot spots)으로 작용하여 주변의 전자기장(electromagnetic field)을 강화시키는 역할을 하기 때문에 라만 분광에 있어서 분석 대상이 되는 물질의 검출 감도를 높일 수 있다.The nano-pattern formed on the surface of the polymer substrate 10 acts as hot spots during surface enhancement Raman scattering to strengthen the electromagnetic field of the surrounding material, so the material to be analyzed in Raman spectroscopy. Can increase the detection sensitivity.
이러한 고분자 기판(10)은 PET(polyethylene terephthalate), PMMA(polymethylmethacrylate), PDMS(polydimethylsiloxane) 및 PI(polyimide) 중 하나로 이루어질 수 있다.The polymer substrate 10 may be made of one of polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and polyimide (PI).
<금속 나노 입자 도포단계(S32)><Metal Nano Particle Coating Step (S32)>
도 16 내지 도 18을 참조하면, 금속 나노 입자 도포단계(S32)에서는, 고분자 기판(10)의 나노 패턴 상에 금속 나노 입자(30)를 도포하는 과정이 수행된다.16 to 18, in the metal nanoparticle coating step S32, a process of applying the metal nanoparticles 30 onto the nanopattern of the polymer substrate 10 is performed.
금속 나노 입자(30)는 Au, Ag, Al, Pt로 이루어진 군에서 하나 이상을 포함할 수 있으며, 이들의 합금일 수도 있다. 합금의 경우 상기 금속이 원자%로 적어도 70% 이상 포함된 것이 바람직하다.The metal nanoparticles 30 may include one or more from the group consisting of Au, Ag, Al, and Pt, or may be an alloy thereof. In the case of an alloy, the metal is preferably contained at least 70% by atomic%.
이러한 금속 나노 입자(30)는 표면플라즈몬공명(surface plasmon resonance)을 강화하여 분석 대상이 되는 물질의 검출 감도를 높이는 기능을 수행한다.The metal nanoparticles 30 function to enhance surface plasmon resonance and increase detection sensitivity of a material to be analyzed.
표면플라즈몬공명을 극대화하기 위해 서로 다른 종류의 금속 나노 입자(31, 32)를 함께 사용할 수도 있다.In order to maximize surface plasmon resonance, different types of metal nanoparticles 31 and 32 may be used together.
이상에서 상세히 설명한 바와 같이 본 발명에 따르면, 고분자 기판의 비정질 영역(amorphous region)과 반결정질 영역(semi-crystalline region)의 식각율 차이를 이용하여 고분자 기판의 표면에 나노 패턴을 형성하기 때문에, 대면적화가 용이하고 높은 반복 재현성과 더불어 제조비용이 낮은 표면증강라만산란 분광용 기판 및 그 제조방법이 제공되는 효과가 있다.As described in detail above, according to the present invention, since the nanopattern is formed on the surface of the polymer substrate by using the difference in the etching rate between the amorphous region and the semi-crystalline region of the polymer substrate, The surface-enhanced Raman scattering spectroscopy substrate and the method of manufacturing the same have an effect of easy surface area and high reproducibility and low manufacturing cost.
또한, 고분자 기판에 형성된 나노 패턴, 금속 박막, 금속 나노 입자에 의해, 분광 분석 시 핫스팟(hot spots)의 유도가 효율적으로 이루어지기 때문에 분석 대상이 되는 물질의 검출 감도를 높일 수 있는 효과가 있다.In addition, since the nano-pattern formed on the polymer substrate, the metal thin film, and the metal nanoparticles, the induction of hot spots during spectroscopic analysis is efficiently performed, thereby increasing the detection sensitivity of the material to be analyzed.
또한, 경사 증착을 통하여 고분자 기판의 일부분에만 금속 박막을 형성할 경우 핫스팟의 유도가 용이하여 분석 대상이 되는 물질의 검출 감도를 더욱 높일 수 있는 효과가 있다.In addition, when the metal thin film is formed only on a part of the polymer substrate through the gradient deposition, the hot spots are easily induced, thereby increasing the detection sensitivity of the material to be analyzed.
또한, 분석 대상 물질을 종래에 비해 보다 쉽고 빠르게 분석할 수 있는 효과가 있다.In addition, there is an effect that can be analyzed more easily and quickly than the analysis material.
이상에서 본 발명에 대한 기술 사상을 첨부 도면과 함께 서술하였지만, 이는 본 발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 이 기술 분야의 통상의 지식을 가진 자라면 누구나 본 발명의 기술 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.Although the technical spirit of the present invention has been described above with reference to the accompanying drawings, the present invention has been described by way of example and is not intended to limit the present invention. In addition, it is obvious that any person skilled in the art can make various modifications and imitations without departing from the scope of the technical idea of the present invention.
본 발명은 높은 반복 재현성과 더불어 제조비용이 낮고, 핫스팟(hot spots)의 유도가 효율적으로 이루어져 물질의 검출 감도를 향상시킬 수 있는 표면증강라만산란 분광용 기판 및 그 제조방법에 이용가능하다.The present invention can be used for a substrate for surface enhanced Raman scattering spectroscopy and a method of manufacturing the same, which has a high reproducibility and a low manufacturing cost and can efficiently induce hot spots to improve detection sensitivity of materials.
Claims (11)
- 표면증강라만산란 분광용 기판 제조방법에 있어서,In the method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy,고분자 기판의 표면을 플라즈마 처리하여 상기 고분자 기판의 표면에 나노 패턴을 형성하는 나노 패턴 형성단계; 및Forming a nanopattern on the surface of the polymer substrate by plasma treating a surface of the polymer substrate; And상기 고분자 기판의 나노 패턴 상에 금속 박막을 형성하는 금속 박막 형성단계를 포함하는, 표면증강라만산란 분광용 기판 제조방법.Method of manufacturing a substrate for surface-enhanced Raman scattering spectroscopy comprising a metal thin film forming step of forming a metal thin film on the nano-pattern of the polymer substrate.
- 표면증강라만산란 분광용 기판 제조방법에 있어서,In the method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy,고분자 기판의 표면을 플라즈마 처리하여 상기 고분자 기판의 표면에 나노 패턴을 형성하는 나노 패턴 형성단계;Forming a nanopattern on the surface of the polymer substrate by plasma treating a surface of the polymer substrate;상기 나노 패턴이 형성되어 있는 고분자 기판을 지지 홀더에 증착 방향에 대하여 경사지게 배치하는 고분자 기판 배치단계; 및Disposing a polymer substrate on which the nano-pattern is formed, inclined with respect to a deposition direction on a support holder; And상기 고분자 기판에 형성되어 있는 나노 패턴의 일부 영역 상에 금속 물질을 경사 증착하여 금속 박막을 형성하는 금속 박막 형성단계를 포함하는, 표면증강라만산란 분광용 기판 제조방법.And forming a metal thin film by obliquely depositing a metal material on a portion of the nano-pattern formed on the polymer substrate, to form a metal thin film.
- 표면증강라만산란 분광용 기판 제조방법에 있어서,In the method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy,고분자 기판의 표면을 플라즈마 처리하여 상기 고분자 기판의 표면에 나노 패턴을 형성하는 나노 패턴 형성단계; 및Forming a nanopattern on the surface of the polymer substrate by plasma treating a surface of the polymer substrate; And상기 고분자 기판의 나노 패턴 상에 금속 나노 입자를 도포하는 금속 나노 입자 도포단계를 포함하는, 표면증강라만산란 분광용 기판 제조방법.Method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy comprising a metal nanoparticle coating step of applying a metal nanoparticle on the nanopattern of the polymer substrate.
- 제1 항 내지 제3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,상기 나노 패턴 형성단계에서, 상기 고분자 기판의 비정질 영역(amorphous region)과 반결정질 영역(semi-crystalline region)의 식각율 차이를 이용하여 상기 고분자 기판의 표면에 상기 나노 패턴을 형성하는 것을 특징으로 하는, 표면증강라만산란 분광용 기판 제조방법.In the forming of the nano-pattern, the nano-pattern is formed on the surface of the polymer substrate by using an etch rate difference between an amorphous region and a semi-crystalline region of the polymer substrate. , Method for producing a substrate for surface enhanced Raman scattering spectroscopy.
- 제4 항에 있어서,The method of claim 4, wherein상기 나노 패턴 형성단계에서, 플라즈마 식각 시간과 플라즈마 압력 중 적어도 하나를 조절하여 상기 나노 패턴의 형상을 조절하는 것을 특징으로 하는, 표면증강라만산란 분광용 기판 제조방법.In the nano-pattern forming step, characterized in that to control the shape of the nano-pattern by adjusting at least one of the plasma etching time and the plasma pressure, surface enhanced Raman scattering spectroscopy manufacturing method.
- 제4 항에 있어서,The method of claim 4, wherein상기 고분자 기판은 PET(polyethylene terephthalate), PMMA(polymethylmethacrylate), PDMS(polydimethylsiloxane) 및 PI(polyimide) 중 하나로 이루어지는 것을 특징으로 하는, 표면증강라만산란 분광용 기판 제조방법.The polymer substrate is made of one of polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS) and polyimide (PI), the method for manufacturing a substrate for surface enhanced Raman scattering spectroscopy.
- 제1 항 또는 제2 항에 있어서,The method according to claim 1 or 2,상기 고분자 기판의 나노 패턴 상에 형성되어 있는 금속 박막 상에 금속 나노 입자를 도포하는 금속 나노 입자 도포단계를 더 포함하는 것을 특징으로 하는, 표면증강라만산란 분광용 기판 제조방법.A method of manufacturing a substrate for surface enhanced Raman scattering spectroscopy, further comprising: applying a metal nanoparticle to the metal nanoparticle on the metal thin film formed on the nanopattern of the polymer substrate.
- 제1 항 또는 제2 항에 있어서,The method according to claim 1 or 2,상기 금속 박막은 Au, Ag, Al, Pt로 이루어진 군에서 적어도 하나 이상을 포함하는 것을 특징으로 하는, 표면증강라만산란 분광용 기판 제조방법.The metal thin film comprises at least one or more from the group consisting of Au, Ag, Al, Pt, surface enhanced Raman scattering spectroscopy substrate manufacturing method.
- 제3 항에 있어서,The method of claim 3, wherein상기 금속 나노 입자는 Au, Ag, Al, Pt로 이루어진 군에서 적어도 하나 이상을 포함하는 것을 특징으로 하는, 표면증강라만산란 분광용 기판 제조방법.The metal nanoparticles are Au, Ag, Al, Pt, characterized in that it comprises at least one or more from the group consisting of, surface enhanced Raman scattering spectroscopy manufacturing method.
- 제7 항에 있어서,The method of claim 7, wherein상기 금속 나노 입자는 Au, Ag, Al, Pt로 이루어진 군에서 적어도 하나 이상을 포함하는 것을 특징으로 하는, 표면증강라만산란 분광용 기판 제조방법.The metal nanoparticles are Au, Ag, Al, Pt, characterized in that it comprises at least one or more from the group consisting of, surface enhanced Raman scattering spectroscopy manufacturing method.
- 제1 항 내지 제3 항 중 어느 한 항에 기재된 표면증강라만산란 분광용 기판 제조방법에 의해 제조된 것을 특징으로 하는, 표면증강라만산란 분광용 기판.The surface enhanced Raman scattering spectroscopy board | substrate manufactured by the manufacturing method of the surface enhanced Raman scattering spectroscopy substrate in any one of Claims 1-3.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0065451 | 2011-07-01 | ||
KR1020110065451A KR101229065B1 (en) | 2011-07-01 | 2011-07-01 | A method of manufacturing substrate for surface-enhanced raman scattering spectroscope and the substrate manufactured by the method |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013005945A2 true WO2013005945A2 (en) | 2013-01-10 |
WO2013005945A3 WO2013005945A3 (en) | 2013-03-14 |
Family
ID=47437532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/005124 WO2013005945A2 (en) | 2011-07-01 | 2012-06-28 | Method for manufacturing substrate for surface-enhanced raman scattering spectroscopy and substrate manufactured using the method |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101229065B1 (en) |
WO (1) | WO2013005945A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114199853A (en) * | 2021-11-23 | 2022-03-18 | 香港城市大学深圳福田研究院 | Biological sample detection method based on surface enhanced Raman spectroscopy |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101448111B1 (en) | 2013-09-17 | 2014-10-13 | 한국기계연구원 | A substrate for surface-enhanced Raman scattering spectroscopy and a preparing method thereof |
US10527494B2 (en) | 2014-09-26 | 2020-01-07 | Korea Intitute of Machinery & Materials | Substrate on which multiple nanogaps are formed, and manufacturing method therefor |
KR101601150B1 (en) * | 2014-09-26 | 2016-03-09 | 한국기계연구원 | substrate having inorganic substance grown thereon and fabricating method for the same |
KR101639684B1 (en) * | 2014-09-29 | 2016-07-15 | 한국기계연구원 | adjusted nano-gap substrate and fabricating method for the same |
KR20160070568A (en) * | 2014-12-10 | 2016-06-20 | 한국과학기술원 | Plasmonic Paper and its Manufacturing Method |
KR101696839B1 (en) | 2015-03-12 | 2017-01-17 | (주)광림정공 | Substrate of Surface Enhanced Raman Scattering and method thereof |
WO2017200295A1 (en) * | 2016-05-17 | 2017-11-23 | 충남대학교산학협력단 | Surface-enhanced raman scattering substrate, element for detecting molecule including same, and method for manufacturing same |
KR102105981B1 (en) | 2018-04-18 | 2020-04-29 | 경희대학교 산학협력단 | A substrate for surface enhanced raman scattering and fabricating method of the same |
KR102169831B1 (en) | 2019-01-18 | 2020-10-27 | 경희대학교 산학협력단 | A substrate for surface enhanced raman scattering and fabricating method of the same |
KR102472451B1 (en) * | 2021-11-29 | 2022-12-01 | 한국표준과학연구원 | Digital surface-enhanced Raman spectroscopy sensing platform |
KR102662281B1 (en) * | 2022-02-08 | 2024-04-30 | 주식회사 젠라이프 | Linear Polarization Measurement Device Using Stencil Lithography-based Inclined Plasmonic Nanostructure |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050013571A (en) * | 2002-06-12 | 2005-02-04 | 인텔 코포레이션 | Metal coated nanocrystalline silicon as an active surface enhanced raman spectroscopy(sers) substrate |
KR20050039023A (en) * | 2003-10-23 | 2005-04-29 | 엘지.필립스 엘시디 주식회사 | Method for crystallizing of si, and methode for fabricating of poly-tft |
JP2005305598A (en) * | 2004-04-22 | 2005-11-04 | National Institute Of Advanced Industrial & Technology | Method for manufacturing fine structure |
KR20090034919A (en) * | 2006-07-20 | 2009-04-08 | 후지필름 가부시키가이샤 | Microstructure and its fabrication method, sensor device, and raman spectroscopy device |
WO2010056258A1 (en) * | 2008-11-17 | 2010-05-20 | Hewlett-Packard Development Company, L.P. | A substrate for surface enhanced raman scattering (sers) |
-
2011
- 2011-07-01 KR KR1020110065451A patent/KR101229065B1/en not_active IP Right Cessation
-
2012
- 2012-06-28 WO PCT/KR2012/005124 patent/WO2013005945A2/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050013571A (en) * | 2002-06-12 | 2005-02-04 | 인텔 코포레이션 | Metal coated nanocrystalline silicon as an active surface enhanced raman spectroscopy(sers) substrate |
KR20050039023A (en) * | 2003-10-23 | 2005-04-29 | 엘지.필립스 엘시디 주식회사 | Method for crystallizing of si, and methode for fabricating of poly-tft |
JP2005305598A (en) * | 2004-04-22 | 2005-11-04 | National Institute Of Advanced Industrial & Technology | Method for manufacturing fine structure |
KR20090034919A (en) * | 2006-07-20 | 2009-04-08 | 후지필름 가부시키가이샤 | Microstructure and its fabrication method, sensor device, and raman spectroscopy device |
WO2010056258A1 (en) * | 2008-11-17 | 2010-05-20 | Hewlett-Packard Development Company, L.P. | A substrate for surface enhanced raman scattering (sers) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114199853A (en) * | 2021-11-23 | 2022-03-18 | 香港城市大学深圳福田研究院 | Biological sample detection method based on surface enhanced Raman spectroscopy |
Also Published As
Publication number | Publication date |
---|---|
KR101229065B1 (en) | 2013-02-04 |
KR20130003843A (en) | 2013-01-09 |
WO2013005945A3 (en) | 2013-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013005945A2 (en) | Method for manufacturing substrate for surface-enhanced raman scattering spectroscopy and substrate manufactured using the method | |
US8808645B2 (en) | Molecular filters | |
Mao et al. | Microfluidic surface‐enhanced Raman scattering sensors based on nanopillar forests realized by an oxygen‐plasma‐stripping‐of‐photoresist technique | |
Liu et al. | Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix | |
KR101097205B1 (en) | Fabrication method of substrate for surface enhanced raman scattering | |
US8568878B2 (en) | Directly fabricated nanoparticles for raman scattering | |
US7292334B1 (en) | Binary arrays of nanoparticles for nano-enhanced Raman scattering molecular sensors | |
Ran et al. | Femtosecond Photon‐Mediated Plasma Enhances Photosynthesis of Plasmonic Nanostructures and Their SERS Applications | |
US9310306B2 (en) | Apparatus for use in sensing applications | |
WO2014171597A1 (en) | Method for manufacturing nanoparticle array, surface plasmon resonance-based sensor and method for analyzing using same | |
WO2011105679A2 (en) | High-sensitivity surface plasmon resonance sensor, surface plasmon resonance sensor chip, and method for manufacturing a surface plasmon resonance sensor device | |
Dhawan et al. | Methodologies for developing surface-enhanced Raman scattering (SERS) substrates for detection of chemical and biological molecules | |
WO2018186554A1 (en) | Angle-sensitive variable optical filter using transmission spectrum modulation by complementary coupling of nanohole arrays and nanodisc arrays, and method for manufacturing same | |
JP2009031023A (en) | Production method of substrate for surface enhanced raman spectroscopic analysis, manufacturing method of micro-tas, and the micro-tas | |
Chen et al. | Highly Ordered Ag/Cu Hybrid Nanostructure Arrays for Ultrasensitive Surface‐Enhanced Raman Spectroscopy | |
Yang et al. | Site-selective assembly and reorganization of gold nanoparticles along aminosilane-covered nanolines prepared on indium–tin oxide | |
Díaz-Núñez et al. | On the large near-field enhancement on nanocolumnar gold substrates | |
KR101243634B1 (en) | A method of manufacturing substrate for surface-enhanced raman scattering spectroscope and the substrate manufactured by the method | |
Kovalets et al. | Toward single-molecule surface-enhanced Raman scattering with novel type of metasurfaces synthesized by crack-stretching of metallized track-etched membranes | |
Gutierrez-Rivera et al. | Application of EBL fabricated nanostructured substrates for surface enhanced Raman spectroscopy detection of protein A in aqueous solution | |
Domenici et al. | Engineering microscale two-dimensional gold nanoparticle cluster arrays for advanced Raman sensing: an AFM study | |
KR101185044B1 (en) | Board for surface enhanced raman scattering with nanochannel and method in using same | |
WO2015183030A1 (en) | Reusable chemical or biological sensor and method for using same | |
Midelet et al. | Brownian Motion and Large Electric Polarizabilities Facilitate Dielectrophoretic Capture of Sub‐200 nm Gold Nanoparticles in Water | |
WO2016093569A1 (en) | Plasmonic paper and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12807337 Country of ref document: EP Kind code of ref document: A2 |