JP2009031023A - Production method of substrate for surface enhanced raman spectroscopic analysis, manufacturing method of micro-tas, and the micro-tas - Google Patents

Production method of substrate for surface enhanced raman spectroscopic analysis, manufacturing method of micro-tas, and the micro-tas Download PDF

Info

Publication number
JP2009031023A
JP2009031023A JP2007192921A JP2007192921A JP2009031023A JP 2009031023 A JP2009031023 A JP 2009031023A JP 2007192921 A JP2007192921 A JP 2007192921A JP 2007192921 A JP2007192921 A JP 2007192921A JP 2009031023 A JP2009031023 A JP 2009031023A
Authority
JP
Japan
Prior art keywords
substrate
micro
sers
tas
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007192921A
Other languages
Japanese (ja)
Inventor
Norinao Miki
則尚 三木
Katsuto Kurooka
克仁 黒岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2007192921A priority Critical patent/JP2009031023A/en
Publication of JP2009031023A publication Critical patent/JP2009031023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To create a micro-TAS (total analysis system) by making silver nanoparticles deposit locally on a substrate. <P>SOLUTION: A self-organizing monomolecular film (SAM) 12 is patterned on a glass substrate 14 by a micro-contact printing method, and then, silver nanoparticles 24 are deposited locally on a pattern substrate 16 by a silver mirror reaction, wherein a dispersant is added to a solution containing silver complex ions, to thereby produce a SERS substrate 18. After producing SERS activation sites 31-33 of the silver nanoparticles 24 on the substrate 18 by this method, the self-assembled monolayer (SAM) 12 is removed from the SERS substrate 18 by oxygen plasma, and the surface of the SERS substrate 18 is cleaned. Thereafter, a cover 40, having recessed parts formed on parts corresponding to the SERS activation sites 31-33 and a channel 34, is subjected to surface activation by oxygen plasma and is then fixed, to thereby manufacture the micro-TAS 30. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、表面増強ラマン分光分析に用いるのに好適な表面増強ラマン分光分析用基板の作成方法、この方法を利用したマイクロTAS(Total Analysis System)の製造方法、及び、この製造方法により製造されたマイクロTASに関する。   The present invention relates to a method for producing a substrate for surface-enhanced Raman spectroscopy suitable for use in surface-enhanced Raman spectroscopy, a method for producing a micro TAS (Total Analysis System) using this method, and a method produced by this method. It relates to micro TAS.

ラマン分光分析は、試料にレーザを照射することにより発生するラマン散乱光を検出する分析法で、ウイルス、蛋白質等の生化学物質や環境化学物質の同定、バイオセンサ等に極めて有効な分析技術である。しかし問題点として、ラマン散乱光がレーザの反射光(レイリー散乱)と比較し、極めて微弱なことが挙げられる。これを解決するのが、金属ナノ粒子表面における電場増強効果を利用した表面増強ラマン分光法(SERS)である。このSERSは、金、銀等の金属ナノ粒子表面に生じる電場増強効果を利用して、超高感度な生化学物質の同定を行なうことができる極めて有効な分析技術である。   Raman spectroscopic analysis is an analysis method that detects Raman scattered light generated by irradiating a sample with a laser. It is an extremely effective analytical technique for identification of biochemical substances such as viruses and proteins, environmental chemical substances, biosensors, etc. is there. However, the problem is that the Raman scattered light is extremely weak compared to the reflected light of the laser (Rayleigh scattering). This is solved by surface enhanced Raman spectroscopy (SERS) using the electric field enhancement effect on the surface of the metal nanoparticles. This SERS is an extremely effective analytical technique capable of identifying biochemical substances with extremely high sensitivity by utilizing the electric field enhancement effect generated on the surface of metal nanoparticles such as gold and silver.

このSERSでは、金属ナノ粒子を持つ基板の作成が鍵となる。従来技術として、(1)銀コロイドを溶液中に分散させるもの(特許文献1、2、非特許文献1、2、3)、(2)銀ナノ粒子をガラス基板上に吸着させるもの(特許文献3)、(3)銀を電子ビームリソグラフィによりパターニングする等の方法が挙げられる。   In SERS, the creation of a substrate having metal nanoparticles is a key. As conventional techniques, (1) one in which silver colloid is dispersed in a solution (patent documents 1, 2, non-patent documents 1, 2, 3), (2) silver nanoparticles are adsorbed on a glass substrate (patent documents) 3), (3) A method such as patterning silver by electron beam lithography may be used.

又、銀微粒子の析出方法として、銀薄膜の製作のために、分散剤を加えた上で銀鏡反応を行なった例が報告されている(非特許文献4)。   In addition, as a method for depositing silver fine particles, an example in which a silver mirror reaction is performed after adding a dispersant for the production of a silver thin film has been reported (Non-patent Document 4).

又、発明者は、非特許文献5で、高感度、高再現性、作成が容易で安価なSERS用銀ナノ粒子基板の作成方法を確立している。   Further, the inventor has established a method for producing a silver nanoparticle substrate for SERS that is highly sensitive, highly reproducible, easy to produce and inexpensive in Non-Patent Document 5.

一方、自己組織化単分子膜(SAM)は、シラン等の反応性感応基を親水基として持つ化合物が、固体基板上に吸着することで形成された単分子の膜であり、基板表面の性質を変化させるために有効な手段である。従来技術として、SAMをマスクとして利用し、選択的な皮膜の析出や、エッチングを行なう方法がある(非特許文献6、7)。又、SAMのパターニング方法として、UV照射による方法や、微細なパターンを持つスタンプ表面にSAMを成膜し、基板に転写するマイクロコンタクトプリント法がある(非特許文献8)。   On the other hand, a self-assembled monomolecular film (SAM) is a monomolecular film formed by adsorption of a compound having a reactive sensitive group such as silane as a hydrophilic group onto a solid substrate. It is an effective means for changing. As a conventional technique, there is a method of selectively depositing a film or etching using a SAM as a mask (Non-Patent Documents 6 and 7). As a SAM patterning method, there are a UV irradiation method and a microcontact printing method in which a SAM is formed on a stamp surface having a fine pattern and transferred to a substrate (Non-patent Document 8).

又、非特許文献9には、ポリジメチルシロキサン(PDMS)をSERS基板の作成に用いることが記載されている。   Non-Patent Document 9 describes the use of polydimethylsiloxane (PDMS) for producing a SERS substrate.

特開平7−146295号公報Japanese Patent Laid-Open No. 7-146295 特開平11−61209号公報JP 11-61209 A 特許第3714671号公報Japanese Patent No. 3714671 S.Nie and S.R.Emory,Science.275,1102(1997)S. Nie and S. R. Emory, Science. 275, 1102 (1997) K.C.Grabar,P.C.Smith,M.D.Musick,J.A.Davis,D.G.Walter,M.A.Jackson,A.P.Guthrie and M.J.Natan,J.Am.Chem,Soc.,118,1148(1996)K. C. Grabar, P.A. C. Smith, M.M. D. Musick, J.M. A. Davis, D.D. G. Walter, M.M. A. Jackson, A.M. P. Guthrie and M.M. J. et al. Natan, J .; Am. Chem, Soc. , 118, 1148 (1996) R.M.Bright,M.D.Musick and M.H.Natan,Langmuir,14,5695(1998)R. M.M. Bright, M.C. D. Musick and M.M. H. Natan, Langmuir, 14, 5695 (1998) 赤沢力、菅沼進「銀超微粒子皮膜作製技術の開発」埼玉県産業技術総合センター研究報告第2巻(2004)194−196頁Tsutomu Akazawa, Susumu Kakinuma “Development of silver ultrafine particle film production technology” Saitama Industrial Technology Center Research Report Vol. 2 (2004) pp. 194-196 K.Kurooka and N.Miki,Proceedings of μTAS2006,2,1268(2006).K. Kurokaka and N.K. Miki, Proceedings of μTAS 2006, 2, 1268 (2006). H.Sugimura et al.,Electrochimica Acta,47,103(2001).H. Sugimura et al. , Electrochimica Acta, 47, 103 (2001). Y.Masuda et al.,Journal of Ceramic Society of Japan,112,S1495(2004).Y. Masuda et al. , Journal of Ceramic Society of Japan, 112, S1495 (2004). A.Kumar,H.A.Biebuyck,and G.M.Whitesides,Langmuir,10,1498(1994).A. Kumar, H .; A. Biebuyck, and G.B. M.M. Whiteides, Langmuir, 10, 1498 (1994). G.L.Liu and L.P.Lee,Applied Physics Letters 87,074101(2005).G. L. Liu and L. P. Lee, Applied Physics Letters 87, 074101 (2005).

発明者が提案した従来のSERS用基板作成方法では、ガラス基板全体に銀ナノ粒子を析出させることが可能であるが、局所的な析出は困難であった。   In the conventional SERS substrate preparation method proposed by the inventors, silver nanoparticles can be deposited on the entire glass substrate, but local deposition is difficult.

SERS用基板にマイクロ流路等を組み合わせ、高感度分析チップとして実用化するためには、局所的に銀ナノ粒子を析出させる技術が不可欠である。しかしながら、自己析出型基板にSAMを用いたものは無かった。   In order to combine a microchannel or the like with a SERS substrate and put it to practical use as a highly sensitive analysis chip, a technique for locally depositing silver nanoparticles is indispensable. However, there is no self-deposition type substrate using SAM.

一方、銀ナノ粒子を、光によりパターニング可能な感光性レジストをマスクとして、エッチングすると、エッチングした後に、レジストを剥がすと、レジストと共に銀の微粒子も剥がれてしまう。また基板上にもレジストやレジスト剥離用の有機溶媒が残留し、基板が汚れてしまうという問題点が有った。   On the other hand, when silver nanoparticles are etched using a photosensitive resist that can be patterned by light as a mask, if the resist is peeled off after etching, silver fine particles are also peeled off together with the resist. Further, there is a problem that the resist and the organic solvent for removing the resist remain on the substrate, and the substrate becomes dirty.

本発明は、前記従来の問題点を解消するべくなされたもので、局所的に銀ナノ粒子を析出可能とすることを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to enable silver nanoparticles to be deposited locally.

本発明は、自己析出型基板にSAMで基板表面修飾を施せば、銀ナノ粒子での析出を制御でき、銀ナノ粒子にダメージを与えることなく基板上に残せることに着目してなされたものである。   The present invention has been made by paying attention to the fact that the deposition on the silver nanoparticles can be controlled by applying the substrate surface modification with SAM to the self-deposition type substrate and can be left on the substrate without damaging the silver nanoparticles. is there.

本発明は、表面増強ラマン分光分析用基板の作成に際して、マイクロコンタクトプリント法により自己組織化単分子膜を基板上にパターニングした後、銀の錯イオンを含む溶液に分散剤を加えた銀鏡反応により基板上に銀ナノ粒子を局所的に析出させるようにして、前記課題を解決したものである。   In the production of a substrate for surface-enhanced Raman spectroscopic analysis, the present invention comprises a silver mirror reaction in which a self-assembled monolayer is patterned on a substrate by a microcontact printing method, and then a dispersant is added to a solution containing silver complex ions. The present invention solves the above problem by locally depositing silver nanoparticles on a substrate.

前記自己組織化単分子膜はシラン系とすることができる。   The self-assembled monolayer can be silane-based.

本発明は、又、前記の方法で基板上に銀ナノ粒子の活性サイトを生成した後、該活性サイト及び流路に対応する部分に凹所を形成したカバーを固着することを特徴とするマイクロTASの製造方法を提供するものである。   According to another aspect of the present invention, an active site of silver nanoparticles is generated on a substrate by the above-described method, and then a cover having a recess formed in a portion corresponding to the active site and the channel is fixed. A method for producing TAS is provided.

前記固着前に、酸素プラズマにより、基板表面から自己組織単分子膜を除去し、かつ基板表面を洗浄することができる。   Prior to the fixing, the self-assembled monolayer can be removed from the substrate surface and the substrate surface can be cleaned by oxygen plasma.

本発明は、又、前記の方法で製造されたことを特徴とするマイクロTASを提供するものである。   The present invention also provides a micro TAS manufactured by the above method.

本発明によれば、基板上に銀ナノ粒子を局所的に析出させることができ、例えば局所的なSERS活性サイトを有するマイクロチップの製作が可能となる。又、高精度な銀ナノ粒子パターンを持つ基板を、簡易な操作で大量に生産でき、安価で大量生産性に優れている。更に、本発明によって得られる、どの局所サイトからも、高いラマン信号感度、再現性が得られる。   According to the present invention, silver nanoparticles can be locally deposited on a substrate, and for example, a microchip having a local SERS active site can be manufactured. In addition, a substrate having a highly accurate silver nanoparticle pattern can be produced in a large amount by a simple operation, and is inexpensive and excellent in mass productivity. Furthermore, high Raman signal sensitivity and reproducibility can be obtained from any local site obtained by the present invention.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態は、マイクロコンタクトプリント法を用いた、シラン系SAMのガラス基板上へのパターニングによって、局所的にSERS活性サイトを持つ基板製作を実現したものである。   In the present embodiment, a substrate having a SERS active site locally is realized by patterning a silane-based SAM on a glass substrate using a microcontact printing method.

以下、図1を参照して具体的な手順を説明する。   Hereinafter, a specific procedure will be described with reference to FIG.

まず、例えばフォトリソグラフィでパターニングしたレジストを鋳型に、ポリマーを製作するソフトリソグラフィ技術を用いて、図1(A)に示すような、微細なパターンを持つPDMSスタンプ10を作成する。次いで、シラン系SAMであるオクタデシルトリクロロシラン(OTS)を無水トルエンに溶解させ、1%OTS−SAM溶液を作成し、溶液中にPDMSスタンプ10を例えば5分間浸漬させ、ソフトコンタクトさせる。次いで、SAM12が塗布されたPDMSスタンプ10を取出し、図1(A)に示す如く、ガラス基板14にコンタクトプリントする。   First, a PDMS stamp 10 having a fine pattern as shown in FIG. 1A is created by using a soft lithography technique for producing a polymer using a resist patterned by photolithography as a mold, for example. Next, octadecyltrichlorosilane (OTS), which is a silane-based SAM, is dissolved in anhydrous toluene to prepare a 1% OTS-SAM solution, and the PDMS stamp 10 is immersed in the solution for 5 minutes, for example, to make soft contact. Next, the PDMS stamp 10 coated with the SAM 12 is taken out and contact printed on the glass substrate 14 as shown in FIG.

その後、直ちに、例えばヒータ上で加熱処理を施すことにより、図1(B)に示す如く、ガラス基板14上にSAMパターンが形成されたパターン基板16を得る。   Immediately thereafter, for example, a heat treatment is performed on a heater to obtain a pattern substrate 16 having a SAM pattern formed on the glass substrate 14 as shown in FIG.

このパターン基板16に対して、銀鏡反応により銀ナノ粒子24を析出させる。具体的には、図1(C)に示す如く、銀の錯イオンを含む溶液(例えば硝酸銀水溶液にアンモニア水を加えたもの)に分散剤を加えて攪拌した銀微粒子液20に、還元剤22を加えると同時に、パターン基板16を浸す。これにより、SAM12以外の場所にのみ銀ナノ粒子24が析出するため、図1(D)に示す如く、局所的に銀ナノ粒子24が析出したSERS活性サイトを持つSERS基板18を作成することができる。   Silver nanoparticles 24 are deposited on the pattern substrate 16 by a silver mirror reaction. Specifically, as shown in FIG. 1C, a reducing agent 22 is added to a silver fine particle liquid 20 in which a dispersing agent is added and stirred in a solution containing silver complex ions (for example, an aqueous solution of silver nitrate added with aqueous ammonia). At the same time, the pattern substrate 16 is immersed. As a result, since the silver nanoparticles 24 are deposited only at locations other than the SAM 12, as shown in FIG. 1D, the SERS substrate 18 having the SERS active site where the silver nanoparticles 24 are locally deposited can be formed. it can.

前記分散剤としては、例えば酸性基を有するコポリマー、前記還元剤22としては、例えばヒドラジンを用いることができる。   As the dispersant, for example, a copolymer having an acidic group can be used, and as the reducing agent 22, for example, hydrazine can be used.

OTS−SAM溶液へのPDMSの浸漬時間及びソフトコンタクト後の加熱処理時間を変えた時の銀ナノ粒子を有するガラス基板のSEM像を図2に示す。図中の白色部分が析出した銀ナノ粒子である。(a)は浸漬時間30秒で非加熱、(b)は浸漬時間5分で非加熱、(c)は浸漬時間30秒で5分加熱、(d)は浸漬時間5分で加熱時間5分の例である。このように、コンタクトプリント時の条件(SAM溶液への浸漬時間や基板の加熱処理時間)を制御することで、良好な銀ナノ粒子パターンを得ることができる。   The SEM image of the glass substrate which has a silver nanoparticle when the immersion time of PDMS in an OTS-SAM solution and the heat processing time after soft contact are changed is shown in FIG. It is the silver nanoparticle which the white part in the figure deposited. (A) No heating at immersion time of 30 seconds, (b) No heating at immersion time of 5 minutes, (c) Heating at immersion time of 30 seconds for 5 minutes, (d) Heating time of 5 minutes at immersion time of 5 minutes It is an example. Thus, a favorable silver nanoparticle pattern can be obtained by controlling the conditions at the time of contact printing (immersion time in the SAM solution and heat treatment time of the substrate).

本発明を用いて作成したマイクロTASの一例を図3に示す。図3において、31〜33は、本発明により作成されたSERS活性サイト、34はマイクロ流路、36は流路入口、38は流路出口である。   An example of a micro TAS created using the present invention is shown in FIG. In FIG. 3, 31 to 33 are SERS active sites prepared according to the present invention, 34 is a microchannel, 36 is a channel inlet, and 38 is a channel outlet.

このマイクロTAS30は、図4に示すような手順で作成される。   The micro TAS 30 is created in the procedure as shown in FIG.

まず、図1に示したような方法で、図4(A)に示す如く、SERS活性サイト31〜33(図4は31と32を図示)の部分に銀ナノ粒子24が局所的に析出されたSERS基板18を作成する。   First, as shown in FIG. 4 (A), silver nanoparticles 24 are locally deposited on the SERS active sites 31 to 33 (FIG. 4 shows 31 and 32) by the method shown in FIG. A SERS substrate 18 is prepared.

次いで、図4(B)に示す如く、SERS基板18の表面に、例えば50Wの酸素プラズマを0.5秒照射して、SAM12を除くと共に、表面を洗浄、活性化する。   Next, as shown in FIG. 4B, the surface of the SERS substrate 18 is irradiated with, for example, 50 W of oxygen plasma for 0.5 seconds to remove the SAM 12 and clean and activate the surface.

一方、図4(C)に示す如く、マイクロ流路34部分及びSERS活性サイト31〜33(図4は31と32を図示)部分に凹所を形成し、流路入口36及び流路出口38を例えばポンチで穴開けしたPDMSのカバー40を作成する。   On the other hand, as shown in FIG. 4 (C), recesses are formed in the microchannel 34 portion and the SERS active sites 31 to 33 (31 and 32 are shown in FIG. 4), and the channel inlet 36 and the channel outlet 38 are formed. For example, a PDMS cover 40 having a hole punched with a punch is prepared.

このPDMSカバー40の表面にも、図4(D)に示す如く、例えば50Wの酸素プラズマを0.5秒照射し、活性化する。   As shown in FIG. 4D, the surface of the PDMS cover 40 is activated by irradiation with, for example, 50 W oxygen plasma for 0.5 seconds.

次いで図4(E)に示す如く、SERS基板18の表面にPDMSカバー40を反転して接着することにより、マイクロTAS30が製造される。   Next, as shown in FIG. 4E, the micro TAS 30 is manufactured by reversing and bonding the PDMS cover 40 to the surface of the SERS substrate 18.

図5に、0.5秒間の酸素プラズマ処理を行なった時と行わなかった時のSERS活性サイト、及び、ガラス基板からの10mM/lローダミン6Gのラマン信号を示す。酸素プラズマがSERS活性サイトを傷めていないことが分かる。   FIG. 5 shows the SERS active site when oxygen plasma treatment is performed for 0.5 seconds and the Raman signal of 10 mM / l rhodamine 6G from the glass substrate. It can be seen that the oxygen plasma does not damage the SERS active site.

図6に、図3に示したマイクロTASの各SERS活性サイトからの10mM/lローダミン6Gのラマン信号を示す。本発明により作成された局所的なSERS活性サイトは、それぞれ感度、再現性とも非常に高いことがわかる。   FIG. 6 shows a Raman signal of 10 mM / l rhodamine 6G from each SERS active site of the micro TAS shown in FIG. It can be seen that the local SERS active sites prepared by the present invention are very high in both sensitivity and reproducibility.

本実施形態で用いたPDMSスタンプ10は、繰返し使用することができ、低コストな基板製作が可能である。   The PDMS stamp 10 used in this embodiment can be used repeatedly, and a low-cost substrate can be manufactured.

なお、前記実施形態においては、スタンプやカバーがPDMS製とされ、SAMとしてOTSが用いられていたが、スタンプ、カバー、SAMの種類は、これらに限定されない。   In the embodiment, the stamp and the cover are made of PDMS, and the OTS is used as the SAM. However, the types of the stamp, the cover, and the SAM are not limited to these.

又、前記実施形態においては、分散剤として酸性基を有するコポリマーを用い、還元剤としてヒドラジンを用いたが、分散剤や還元剤の種類はこれに限定されない。銀イオンを含む溶液も硝酸銀溶液に限定されず、基板もガラス基板に限定されない。   Moreover, in the said embodiment, the copolymer which has an acidic group was used as a dispersing agent, and the hydrazine was used as a reducing agent, However, The kind of dispersing agent and a reducing agent is not limited to this. The solution containing silver ions is not limited to the silver nitrate solution, and the substrate is not limited to the glass substrate.

本発明の実施形態を示す工程図Process drawing which shows embodiment of this invention 前記実施形態におけるコンタクトプリント時の条件と得られる銀ナノ粒子パターンの例を示す図The figure which shows the example at the time of the contact printing in the said embodiment, and the silver nanoparticle pattern obtained 本発明により製造されるマイクロTASの実施形態を示す平面図The top view which shows embodiment of the micro TAS manufactured by this invention 前記マイクロTASの製造方法を示す工程図Process drawing showing the manufacturing method of the micro TAS SERSサイトへの酸素プラズマ処理の影響を示す図Diagram showing the effect of oxygen plasma treatment on the SERS site マイクロTASの各サイトにおけるラマン信号を示す図The figure which shows the Raman signal in each site of micro TAS

符号の説明Explanation of symbols

10…PDMSスタンプ
12…SAMパターン
14…ガラス基板
16…パターン基板
18…SERS基板
20…銀微粒子液
22…還元剤
24…銀ナノ粒子
30…マイクロTAS
31〜33…SERS活性サイト
34…マイクロ流路
36…流路入口
38…流路出口
40…PDMSカバー
DESCRIPTION OF SYMBOLS 10 ... PDMS stamp 12 ... SAM pattern 14 ... Glass substrate 16 ... Pattern substrate 18 ... SERS substrate 20 ... Silver fine particle liquid 22 ... Reducing agent 24 ... Silver nanoparticle 30 ... Micro TAS
31-33 ... SERS active site 34 ... micro flow path 36 ... flow path inlet 38 ... flow path outlet 40 ... PDMS cover

Claims (5)

マイクロコンタクトプリント法により自己組織化単分子膜を基板上にパターニングした後、
銀の錯イオンを含む溶液に分散剤を加えた銀鏡反応により基板上に銀ナノ粒子を局所的に析出させることを特徴とする表面増強ラマン分光(SERS)分析用基板の作成方法。
After patterning the self-assembled monolayer on the substrate by micro contact printing method,
A method for producing a substrate for surface enhanced Raman spectroscopy (SERS) analysis, wherein silver nanoparticles are locally deposited on a substrate by a silver mirror reaction in which a dispersant is added to a solution containing silver complex ions.
前記自己組織化単分子膜がシラン系であることを特徴とする請求項1に記載の表面増強ラマン分光分析用基板の作成方法。   The method for producing a substrate for surface enhanced Raman spectroscopic analysis according to claim 1, wherein the self-assembled monolayer is a silane system. 請求項1に記載の方法で基板上に銀ナノ粒子のSERS活性サイトを生成した後、
該SERS活性サイト及び流路に対応する部分に凹所を形成したカバーを固着することを特徴とするマイクロTASの製造方法。
After generating SERS active sites of silver nanoparticles on a substrate by the method of claim 1,
A method for producing a micro TAS, comprising fixing a cover having a recess in a portion corresponding to the SERS active site and the flow path.
前記固着前に、酸素プラズマにより、基板表面から自己組織化単分子膜を除去し、かつ基板表面を洗浄することを特徴とする請求項3に記載のマイクロTASの製造方法。   4. The method for producing a micro TAS according to claim 3, wherein the self-assembled monomolecular film is removed from the substrate surface by oxygen plasma and the substrate surface is cleaned before the fixing. 請求項3又は4に記載の方法で製造されたことを特徴とするマイクロTAS。   A micro TAS manufactured by the method according to claim 3 or 4.
JP2007192921A 2007-07-25 2007-07-25 Production method of substrate for surface enhanced raman spectroscopic analysis, manufacturing method of micro-tas, and the micro-tas Pending JP2009031023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192921A JP2009031023A (en) 2007-07-25 2007-07-25 Production method of substrate for surface enhanced raman spectroscopic analysis, manufacturing method of micro-tas, and the micro-tas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192921A JP2009031023A (en) 2007-07-25 2007-07-25 Production method of substrate for surface enhanced raman spectroscopic analysis, manufacturing method of micro-tas, and the micro-tas

Publications (1)

Publication Number Publication Date
JP2009031023A true JP2009031023A (en) 2009-02-12

Family

ID=40401701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192921A Pending JP2009031023A (en) 2007-07-25 2007-07-25 Production method of substrate for surface enhanced raman spectroscopic analysis, manufacturing method of micro-tas, and the micro-tas

Country Status (1)

Country Link
JP (1) JP2009031023A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104520A1 (en) * 2009-03-13 2010-09-16 Hewlett-Packard Development Company, L.P. Broad band structures for surface enhanced raman spectroscopy
CN102408094A (en) * 2011-11-11 2012-04-11 华东理工大学 Preparation method for highly repetitive surface enhanced Raman spectrum (SERS) active substrate
JP2014010154A (en) * 2012-06-29 2014-01-20 National Institute For Materials Science Surface enhanced raman spectroscopic analysis(sers) substrate, method for manufacturing the same and biosensor using the same and micro channel device using the same
US8646180B2 (en) 2009-05-28 2014-02-11 Ricoh Company, Ltd. Method for producing electromechanical transducer, electromechanical transducer produced by the method, liquid-droplet jetting head, and liquid-droplet jetting apparatus
JP5466226B2 (en) * 2009-03-04 2014-04-09 有限会社マイテック Surface-enhanced Raman scattering activity measurement substrate
CN103954605A (en) * 2014-04-30 2014-07-30 中国科学院物理研究所 Micro-flow detector based on SERS (Surface Enhanced Raman Scattering) principle and preparation method thereof
CN104058365A (en) * 2014-06-23 2014-09-24 哈尔滨工业大学 Method for constructing bionic membrane away from base on self-assembled membrane surface patterned by plasma oxidation technology
TWI481858B (en) * 2013-06-05 2015-04-21 Ind Tech Res Inst Surface-enhanced raman scattering substrate
US9518986B2 (en) 2011-11-02 2016-12-13 University Of Cape Town Method of detecting and/or quantifying an analyte in a biological sample
CN107216049A (en) * 2017-06-05 2017-09-29 福建师范大学 A kind of preparation method of plasticiser detection SERS substrates
CN108613959A (en) * 2018-03-22 2018-10-02 苏州天际创新纳米技术有限公司 A kind of SERS chips and preparation method thereof
CN114507846A (en) * 2022-01-25 2022-05-17 中国科学院海洋研究所 Preparation method of SERS substrate with silver nanoparticles loaded on surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003058077A (en) * 2001-08-08 2003-02-28 Fuji Photo Film Co Ltd Substrate for microfabrication, fabrication method therefor and image-like thin-film forming method
JP2005289055A (en) * 2004-03-08 2005-10-20 National Institute Of Advanced Industrial & Technology Technology for precisely arranging substance in space
JP2006145452A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Chamber for liquid inspection, liquid analyzing apparatus using chamber for liquid inspection, and thickness measurement method of chamber for liquid inspection
JP2007051941A (en) * 2005-08-18 2007-03-01 Doshisha Fine particle aggregate arranged board and its manufacturing method, and analysis method of trace amount of substance using the board
JP2007509322A (en) * 2003-10-17 2007-04-12 インテル・コーポレーション Method and apparatus for detecting small numbers of molecules using surface-sensitized coherent anti-Stokes Raman spectroscopy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003058077A (en) * 2001-08-08 2003-02-28 Fuji Photo Film Co Ltd Substrate for microfabrication, fabrication method therefor and image-like thin-film forming method
JP2007509322A (en) * 2003-10-17 2007-04-12 インテル・コーポレーション Method and apparatus for detecting small numbers of molecules using surface-sensitized coherent anti-Stokes Raman spectroscopy
JP2005289055A (en) * 2004-03-08 2005-10-20 National Institute Of Advanced Industrial & Technology Technology for precisely arranging substance in space
JP2006145452A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Chamber for liquid inspection, liquid analyzing apparatus using chamber for liquid inspection, and thickness measurement method of chamber for liquid inspection
JP2007051941A (en) * 2005-08-18 2007-03-01 Doshisha Fine particle aggregate arranged board and its manufacturing method, and analysis method of trace amount of substance using the board

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466226B2 (en) * 2009-03-04 2014-04-09 有限会社マイテック Surface-enhanced Raman scattering activity measurement substrate
WO2010104520A1 (en) * 2009-03-13 2010-09-16 Hewlett-Packard Development Company, L.P. Broad band structures for surface enhanced raman spectroscopy
US8810788B2 (en) 2009-03-13 2014-08-19 Hewlett-Packard Development Company, L.P. Broad band structures for surface enhanced raman spectroscopy
US8646180B2 (en) 2009-05-28 2014-02-11 Ricoh Company, Ltd. Method for producing electromechanical transducer, electromechanical transducer produced by the method, liquid-droplet jetting head, and liquid-droplet jetting apparatus
US9518986B2 (en) 2011-11-02 2016-12-13 University Of Cape Town Method of detecting and/or quantifying an analyte in a biological sample
CN102408094A (en) * 2011-11-11 2012-04-11 华东理工大学 Preparation method for highly repetitive surface enhanced Raman spectrum (SERS) active substrate
JP2014010154A (en) * 2012-06-29 2014-01-20 National Institute For Materials Science Surface enhanced raman spectroscopic analysis(sers) substrate, method for manufacturing the same and biosensor using the same and micro channel device using the same
TWI481858B (en) * 2013-06-05 2015-04-21 Ind Tech Res Inst Surface-enhanced raman scattering substrate
US9500592B2 (en) 2013-06-05 2016-11-22 Industrial Technology Research Institute Surface-enhanced Raman scattering substrate
CN103954605A (en) * 2014-04-30 2014-07-30 中国科学院物理研究所 Micro-flow detector based on SERS (Surface Enhanced Raman Scattering) principle and preparation method thereof
CN104058365A (en) * 2014-06-23 2014-09-24 哈尔滨工业大学 Method for constructing bionic membrane away from base on self-assembled membrane surface patterned by plasma oxidation technology
CN107216049A (en) * 2017-06-05 2017-09-29 福建师范大学 A kind of preparation method of plasticiser detection SERS substrates
CN108613959A (en) * 2018-03-22 2018-10-02 苏州天际创新纳米技术有限公司 A kind of SERS chips and preparation method thereof
CN114507846A (en) * 2022-01-25 2022-05-17 中国科学院海洋研究所 Preparation method of SERS substrate with silver nanoparticles loaded on surface

Similar Documents

Publication Publication Date Title
JP2009031023A (en) Production method of substrate for surface enhanced raman spectroscopic analysis, manufacturing method of micro-tas, and the micro-tas
Suresh et al. Fabrication of large-area flexible SERS substrates by nanoimprint lithography
Lee et al. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials
Zhang et al. Fabrication of Single‐Nanocrystal Arrays
López-Lorente Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications. A review
US8808645B2 (en) Molecular filters
Yu et al. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays
US20090279085A1 (en) Laser-processed substrate for molecular diagnostics
Fan et al. Hotspots on the move: Active molecular enrichment by hierarchically structured micromotors for ultrasensitive SERS sensing
Bhalla et al. Plasma-assisted large-scale nanoassembly of metal–insulator bioplasmonic mushrooms
Barcelo et al. Fabrication of deterministic nanostructure assemblies with sub-nanometer spacing using a nanoimprinting transfer technique
Li et al. Well-designed metal nanostructured arrays for label-free plasmonic biosensing
JP2005191526A (en) Method for patterning organic material or combination of organic and inorganic material
Hao et al. Flexible surface-enhanced Raman scattering chip: A universal platform for real-time interfacial molecular analysis with femtomolar sensitivity
JP2012507849A (en) Magnetic patterning method and system
KR20130003843A (en) A method of manufacturing substrate for surface-enhanced raman scattering spectroscope and the substrate manufactured by the method
Gout et al. Silver localization on polyimide using microcontact printing and electroless metallization
Tsargorodska et al. Fast, simple, combinatorial routes to the fabrication of reusable, plasmonically active gold nanostructures by interferometric lithography of self-assembled monolayers
Domenici et al. Engineering microscale two-dimensional gold nanoparticle cluster arrays for advanced Raman sensing: an AFM study
JP2007198933A (en) Method of preparing substrate for surface-enhanced raman spectroscopy, and substrate for surface-enhanced raman spectroscopy
Aghajani et al. Aerosol direct writing and thermal tuning of copper nanoparticle patterns as surface-enhanced raman scattering sensors
KR20180059739A (en) Manufacturing method of biosensor based on raman scattering
Rasappa et al. A highly efficient sensor platform using simply manufactured nanodot patterned substrates
Rutherford et al. Photochemical growth of highly densely packed gold nanoparticle films for biomedical diagnostics
Liu et al. Large-scale fabrication of polymer/Ag core–shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Effective date: 20120221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626