WO2013004870A1 - Planta solar - Google Patents

Planta solar Download PDF

Info

Publication number
WO2013004870A1
WO2013004870A1 PCT/ES2012/070480 ES2012070480W WO2013004870A1 WO 2013004870 A1 WO2013004870 A1 WO 2013004870A1 ES 2012070480 W ES2012070480 W ES 2012070480W WO 2013004870 A1 WO2013004870 A1 WO 2013004870A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
plant according
radiation
receiver
light guides
Prior art date
Application number
PCT/ES2012/070480
Other languages
English (en)
French (fr)
Inventor
Juan Pablo NUÑEZ BOOTELLO
Manuel GALLAS TORREIRA
Original Assignee
Abengoa Solar New Technologies, S. A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S. A. filed Critical Abengoa Solar New Technologies, S. A.
Priority to EP12808194.0A priority Critical patent/EP2731210A4/en
Priority to US14/130,591 priority patent/US20140202522A1/en
Priority to MX2014000175A priority patent/MX2014000175A/es
Priority to CN201280033246.8A priority patent/CN103703636A/zh
Publication of WO2013004870A1 publication Critical patent/WO2013004870A1/es
Priority to ZA2014/00154A priority patent/ZA201400154B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06741Photonic crystal fibre, i.e. the fibre having a photonic bandgap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention can be included within the field of solar technology.
  • the object of the invention relates to a solar plant that enables the transformation into electrical or thermal energy of a major part of the received solar spectrum radiation.
  • Photovoltaic technology involves converting electromagnetic radiation of the solar spectrum directly through electricity through semiconductor materials using photovoltaic cells. It is a technology that is in continuous development, and has sufficient improvement potential to be able to overcome the solar thermal power plants in efficiency, thanks to the future use of advanced materials. However, it has the disadvantage that it is not manageable and that there is a wavelength range above which the photovoltaic cells are not able to convert all the energy of the photons into electrical energy and below which the excess of energy carried by the photon is lost in the form of heat.
  • Thermosolar technology involves heating a heat transfer fluid and generating electricity in a turbine through a Rankine, Brayton, motor cycle
  • the tower-type central receiver plants will allow, in the medium term, to improve both efficiency and cost to the rest of commercial technologies in the market of large electricity production plants of the order of tens or few hundred MW .
  • the central receptor plants suffer from the so-called cosine effect (effect of diminishing the effective reflective area of the mirror, due to the angle formed by the rays incident with the normal one to said reflective surface), from overflows in the receiver, from losses due to transmissivity and others phenomena that limit its efficiency if we compare it with the potential of photovoltaic technology.
  • the solar thermal technology has in its favor, compared to photovoltaic technology, thermal inertia, the possibility of hybridizing and the possibility of storing heat.
  • Examples of light guides are traditional optical fibers, liquid light guides and photonic glass fibers (PCFs).
  • the intrinsic absorption mechanism due to the material of the fiber itself progress is being made in the development of new materials to manufacture the fibers that increase this window.
  • An example is the crystals of ZBLAN and GaLaS.
  • the ZBLAN crystal formed by zirconium, barium, lanthanum, aluminum and sodium fluorides
  • the GaLaS type crystal also called GLS, which comprises Ga 2 S3 and / or La 2 S3 has a transparency region of wavelengths of 500 nm to 10,000 nm and losses of 0.5 dB / km around 3500 nm.
  • Photonic Crystal fibers (PCFs onwards) are being developed since the early 1990s.
  • Photonic crystal fibers are silica fibers that have a central (sometimes hollow) core surrounded by a periodic structure of air-filled holes.
  • Photonic crystals have a periodic modulation of the refractive index, their period being of the order of the wavelength of the electromagnetic field in the optical range.
  • PCFs of the IGF type from the English “Index Guiding Fibers", guided index fibers
  • PBF type from the English “Bandgap Guiding Fibers” forbidden band guided fibers
  • PCFs are revolutionizing the world of photonics and data transmission in telecommunications.
  • the unusual mechanism of light guidance in PCFs gives them a whole series of unique properties that differentiate them from conventional fibers.
  • the chromatic dispersion of These fibers can be adjusted flexibly by the proper design of their geometry, and unattainable values can be obtained with conventional fiber optic technology.
  • PCFs can also be used to guide sunlight.
  • the material composition not only the material composition but the geometry of the air nanotubes and the width of the bridges between them allow to control the modal properties as well as increase the numerical aperture and absorb more sunlight for the same diameter and the same fiber length .
  • the specifications are very specific: high numerical apertures (0.9), maximization of the diameter of the fiber and the power to be transmitted and minimization of losses in dB / km.
  • multi-junction photovoltaic cells are currently in continuous development, which are capable of absorbing a part of the spectrum with great efficiency, the more the more layers it contains.
  • triple junction cells composed of semiconductors InGaAs, Ge and
  • InGaP have current efficiencies in the order of 39%, but there are wavelength ranges in which it is not able to convert photons into electrical energy.
  • the photovoltaic technology has its high efficiency in its favor.
  • the advanced light guides currently being developed allow numerical apertures of the order of 0.9 to be achieved.
  • they have the disadvantage that they are manufactured from materials unable to transmit all the spectral width of the sun with losses - in dB / km - that make this technology viable.
  • the window of the solar spectrum that can be guided with satisfactory losses ranges from 1000nm - 1250 nm to an upper limit of 1650 nm, presenting losses of 0.2 dB / km around 1550 nm.
  • wavelength converters are used; specifically low wavelength converters (the so-called “down converters”) and high wavelengths (the so-called “up converters”), which allow to transform the radiation of the ultraviolet and / or visible ranges into infrared radiation the first ones, and the infrared in visible and / or ultraviolet radiation the seconds.
  • down converters the so-called “down converters”
  • up converters the so-called "up converters”
  • Solar laser devices which transform a part of the spectrum of sunlight into a laser beam.
  • Solar laser devices have the following elements:
  • a doped active medium which can be solid, liquid or gas and whose function is to amplify a specific wavelength range as the photons undergo multiple reflections within the cavity and go through it;
  • a source of sunlight capable of generating investment of the population in the active environment. That is, light capable of achieving that in said medium there are more atoms in an excited state (atom in a higher mechanical-quantum energy level) than in the lowest energy state, which will allow a large part of the atoms of the system emit light under conditions called stimulated.
  • both the resonator and the active medium of the solar laser are cylindrical and reflective mirrors are placed at their ends.
  • the solar laser devices found in the literature are illuminated laterally by concentrated sunlight using CPC concentrators (Compound Parabolic Concentrator).
  • the first reflective mirror of the cavity is adapted to be highly reflective in the oscillation wavelength of the laser and its surroundings. Only in this area this mirror has high reflectivity.
  • This transmitted light is, in itself, the laser light that leaves the device.
  • the photons are trapped in the resonator, moving from one mirror to another and being amplified by the active medium. From the laser device the fraction of the laser light that lets out the output mirror depends on its transmissivity in the oscillation wavelength of the laser.
  • the solar laser therefore, has a cavity between both mirrors that It favors the reflection of photons that are reflected alternately in each of the mirrors and that are amplified each time they pass through the active medium. If the amplification is high enough to overcome the losses, what is commonly called a threshold condition, a single photon can be amplified several orders of magnitude to produce a very high number of coherent photons trapped inside the resonator. If the photons come and go between the mirrors for a sufficiently long period of time, the laser will reach a permanent regime.
  • the pumping of solar energy to the laser can be produced both by the lateral side of the laser and longitudinally thereto, that is, by one of the ends, so that the light is injected in the direction of the generated laser beam.
  • the solar laser can transform a part of the incoming solar spectrum into an outgoing laser beam at a given wavelength.
  • the laser beam can power a PCF transported by the laser itself.
  • the substance of the active medium has an absorption spectrum that does not have to match its emission spectrum.
  • the laser can, therefore, be pumped by light of a wavelength range different from the wavelength range in which it is emitting.
  • Double-coated PCF laser devices are also known in the state of the art, in which the active medium is made by doping the core of the PCF fiber.
  • the first coating has a slightly lower refractive index than the core and is designed to guide in single mode the laser radiation generated inside the core and the second coating contains the microstructure formed by air tubes separated a typical distance by way of classical PCF and with section in the form of D or another.
  • This type of PCF allows very high numerical openings. From all of the above it follows that the efficiency of transforming solar energy into electricity as well as the manageability with the current means is manifestly improvable and that, in addition, it is possible to make more efficient use of the width of the solar spectrum (ultraviolet, visible and near infrared) .
  • the invention object of this patent proposes to develop hybrid photovoltaic - solar thermal plants with a series of characteristics that allow to use, on the one hand, the photovoltaic technology to transform with high efficiency a part of the solar spectrum into electrical energy and, on the other, the solar thermal, under the principle of light guidance to take advantage of the rest of the spectrum.
  • the present invention solves the technical problem posed, by means of a solar plant that makes the most of solar radiation.
  • the solar plant of the invention comprises the following elements:
  • At least one solar collector with a focus said solar collector adapted to collect solar radiation and concentrate said solar radiation in the focus;
  • At least one solar laser device as a solar converter, where the laser device is adapted to receive (directly or indirectly) concentrated radiation from the foci of the collectors and transform said concentrated radiation into laser radiation;
  • a receiver adapted to receive radiation from the laser and transform it into thermal energy (by heating a heat transfer fluid) or directly into electrical energy taking advantage of the photoelectric effect; and / or a solar reactor adapted to obtain solar fuel, such as: hydrogen directly from water at temperatures up to 2000 ° C by using third substances (Zinc or others) or alternative processes (lS lodine sulfure); ammonia from nitrogen and hydrogen; or any other solar fuel.
  • solar fuel such as: hydrogen directly from water at temperatures up to 2000 ° C by using third substances (Zinc or others) or alternative processes (lS lodine sulfure); ammonia from nitrogen and hydrogen; or any other solar fuel.
  • the laser device can receive radiation directly from the collector foci, or the installation can incorporate a photovoltaic cell that receives the concentrated radiation from the collector foci, so that it transforms into electrical energy a part of said radiation and is transparent to the part that does not transform, allowing that part that does not transform to pass to the laser device.
  • the solar plant of the invention stands out because by inserting a laser device between the collectors and the receiver, the transformation of almost all the radiation captured by the collectors is guaranteed. Additionally, as is known, a beam of light always presents a divergence, due to the diffraction phenomenon.
  • a beam emitted by a laser device (a laser beam) of diameter D has the characteristic that it reaches the theoretical minimum semidivergence imposed by diffraction (diffraction limited beam), which is of the order of ⁇ / D where ⁇ is the wavelength of operation of the laser device.
  • the solar collectors can be of any known type, both of the traditional type (paraboloid-type disk collectors, Fresnel lens type collectors), and of the type of advanced collectors, made based on anidolic optics (non-imager).
  • the collectors are preferably associated with two-axis solar trackers pointing to the sun without cosine effect, so that each solar collector can either have its individual solar tracking device or, at least one tracking device may exist, associated with its corresponding heliostat, on which a plurality of collectors are mounted.
  • the invention additionally incorporates flexible light guides that receive the laser beams and transmit them to the receiver.
  • the light guides used can be of any of the many different types and technologies available.
  • the following types of light guides can be used:
  • the numerical opening of the guides is preferably compatible, at least partially, with the opening of the photovoltaic cell, the laser and the solar collectors.
  • the invention can additionally incorporate lenses to multiplex the radiation contained in the guides, or reconcentrate the laser beams if they are transmitted directly through the atmosphere in order to optimize the irradiance incident on the receiver.
  • the light guides can be divided into several groups and each of said groups can be multiplexed into a combined guide.
  • the invention may additionally incorporate reconcentrators just before the receiver for the same purpose of optimizing the irradiance incident therein.
  • the light guides can, advantageously, be directed towards the receiver so that the light guides whose first ends are arranged in adjacent locations do not impact on adjacent locations of the receiver.
  • the incident radiation on a certain area of the receiver does not come from the same area of collectors, so the effects of some collectors are eventually shadowed and a more uniform incidence is obtained over the receiver tubes.
  • What has just been explained can be implemented both in the case that the light guides are directed directly towards the receiver, as well as in the case that lenses are available to multiplex the light guides in combined guides, according to the minus one of the options selected from the following non-exhaustive list:
  • the combined guides include light guides from different collector areas.
  • the present invention is applicable to whatever type of receiver is compatible with the use of concentration collectors and, where appropriate, light guides.
  • tube receivers arranged vertically, through which a heat transfer fluid circulates are preferred.
  • the receiver tubes can be arranged in one or several rows, the arrangement in more than one row being overlapped with the overlapping tubes so that the radiation necessarily falls on a tube.
  • the tubes may or may not be enclosed in housings subjected to vacuum, the individual or common housings being for a plurality of tubes.
  • the tubes may be provided with anti-reflective coatings.
  • the guides make the radiation influence the tubes in a normal manner to the surface of said tubes, preferably from the two opposite directions, to avoid thermal stresses in the tubes.
  • the plant of the invention can additionally incorporate at least one photovoltaic cell (preferably, a plurality), arranged in the foci of the collectors, and interspersed between the collectors and the laser devices, to transform part of the solar spectrum into electrical energy, where said photovoltaic cells are transparent to the solar radiation that they do not transform, allowing said radiation to pass The laser device.
  • the photovoltaic cells preferably, a plurality
  • electrical energy can be obtained with greater efficiency to supply some devices of the installation, such as laser devices or, where appropriate, other consumptions of the installation or even for sale to the net.
  • the invention allows the use of photovoltaic cells of different technologies, although, for each particular plant, the performance is optimal if the different components (collectors, guides, photovoltaic cells, laser device / s) are selected in a rational manner depending on the conditioning factors of the plant and the optical characteristics of the elements.
  • HCPV cells from the "High Concentration Photovoltaic Cells” high concentration photovoltaic cells
  • multi-junction the so-called multi-junction.
  • the laser device is adapted to concentrate, in a laser beam of wavelength compatible with the optimum operating range of the light guides, the concentrated radiation that, directly or through the photovoltaic cell, comes from the collector foci.
  • a part of the solar radiation is transformed into electrical energy by the photovoltaic cell, another part transformed by the laser device to be guided by the light guide to a receiver of a solar thermal or photovoltaic nature, to achieve an advantage Optimum of the solar spectrum.
  • the invention is adapted for any type of laser, although the installation needs will advise the use of a specific laser for each case, also depending, among other things, on the optical characteristics of the rest of the elements (collectors, guides, cells photovoltaic)
  • a laser device usually comprises a resonator, an amplifier with a doped active medium; and a light source capable of generating population investment in the active environment.
  • laser devices with liquid, gaseous or solid doped active medium can be used, as well as laser devices with both lateral and longitudinal pumping can be used, the latter being preferred because, among other things, it ensures :
  • the plant of the invention may additionally include storage means for accumulating energy.
  • the storage means are related to the other elements of the installation: thus, for example, the storage means may comprise at least one selected from:
  • the heat transfer fluid of the receiver tubes is water that feeds a steam turbine according to a Rankine cycle, or so that the heat transfer fluid is a liquid salt that heats, through of an exchanger, water for the same purpose;
  • the plant of the invention may include a steam turbine, a gas turbine, a Stirling engine, a micro turbine, an AMTEC element (from Alkali-metal thermal to electric converter) , alkali-metal type thermal to electrical converter), or photovoltaic cells of the multi-union, single-union, organic, inorganic type.
  • an AMTEC element from Alkali-metal thermal to electric converter
  • alkali-metal type thermal to electrical converter alkali-metal type thermal to electrical converter
  • the solar plant of the invention allows transforming solar energy into electricity with yields higher than those of current solar energy utilization plants in a manageable way and efficiently taking advantage of the width of the solar spectrum (ultraviolet, visible and near infrared).
  • Figure 2.- Shows an operating scheme of the first embodiment of the invention.
  • FIG. 3 Shows an operating scheme of the second embodiment of the invention.
  • FIG. 4 Shows an operating scheme of the third embodiment of the invention.
  • Figure 5. Shows a top view of the plant of the invention, according to the third embodiment.
  • Figure 6 Shows a top detail view of a part of the plant of the invention according to the first embodiment.
  • the invention refers to a solar plant for obtaining energy (20) (see figure 5) from solar radiation, with optimum use of the solar spectrum.
  • the resulting light beam of a first lens-type concentrating device (31) has a certain divergence.
  • the divergence associated with said first concentrating devices (31) is linked to the concentration they reach.
  • the Etendue conservation theorem explains this phenomenon.
  • n 1 ⁇ A - sin 1 ⁇ / ⁇ cte, where n is the refractive index of the medium, A the area of the element, belonging to the first concentrating device (31), on which it is concentrated, and ⁇ the angle of divergence of the rays at the exit of the lens.
  • the solar plant in a first preferred embodiment of the invention, It comprises the following elements, as seen in Figures 2 and 6:
  • a receiver (1) adapted to receive radiation from the light guides (8) through a few second ends (not shown), opposite the first ends, and using said radiation to heat a heat transfer fluid (not shown) or transmit it to a photoelectric sensor (not shown); and / or a solar reactor (21) adapted to obtain a solar fuel.
  • the invention additionally incorporates flexible light guides (8) that transmit the light from the laser devices to the receiver, as shown in Figure 3.
  • a third preferred embodiment of the invention which is shown schematically in Figures 4 and 5, at the centers of the collectors (1 1) concentrators, at least one photovoltaic cell (18) will be placed to transform into electrical energy (I) the radiation concentrated in the foci, said photovoltaic cell (18) is transparent to those wavelengths of the solar spectrum that it is not capable of transforming into electrical energy (I).
  • multi-junction HCPV photovoltaic cells (18) are used, but single-junction, organic or inorganic photovoltaic cells (18) can also be used.
  • the photovoltaic cells (18) are interspersed between the collectors (1 1) and the laser device (10), such that the radiation coming from the foci that is not transformed by the photovoltaic cell (18) will reach the laser device (10 ) after crossing said photovoltaic cell (18).
  • the laser device (10) will transform said wavelengths into one or several suitable wavelengths so that it can be transmitted by light guides (8) over long distances to a receiver (1), which can be a solar thermal or photovoltaic receiver (another photovoltaic cell, not represented, for example).
  • photovoltaic cells (18) are compatible with any of the two embodiments explained above.
  • light guides (8) of high numerical aperture are selected, even more preferably, of a numerical aperture close to 0.9, where said numerical aperture is as compatible as possible with the opening of the photovoltaic cell of the solar laser and the collectors solar.
  • the plant incorporates lenses (14) to combine (multiplex) the radiation of at least one set of light guides (8) into at least one combined guide (15).
  • combined guides (15) can be combined with each other, etc.
  • the light guides (8) are directed directly towards the solar thermal receiver (1) so that the light guides (8) of the same block (17) do not all go to the same area of the receiver (1), but instead in each zone of the receiver (1), the light guides (8) adjacent to those coming from the same block (17) come from remote blocks (17);
  • the light guides (8) of the same block (17) are multiplexed into combined guides (15), and said combined guides (15) corresponding to adjacent blocks (17) are in turn affected on non-contiguous areas of the receiver (one ); Y
  • the present invention is applicable for whatever type of receiver (1) compatible with the use of collectors (1 1) of concentration and, where appropriate, light guides (8), in the case of solar thermal receivers, receptors (1) of absorber tubes (not shown) arranged vertically, through which a heat transfer fluid circulates, are preferred.
  • the receiver absorber tubes (1) can be arranged in one or several rows, the arrangement in more than one row with the overlapping tubes being preferred so that the radiation necessarily falls on a tube.
  • the tubes may or may not be enclosed in transparent containers subjected to vacuum, the containers may be either individually for each absorber tube, or there may be one or more containers that are common for a plurality of absorber tubes.
  • the tubes may be provided with anti-reflective coatings.
  • the light guides (8) preferably make the radiation influence the absorber tubes in a normal manner to the surface of said absorber tubes, from two opposite directions, to avoid thermal stresses in said absorber tubes.
  • the invention can work with any type of laser device (10), although a longitudinal pumping laser device (10) is preferred.
  • the plant of the invention also includes storage means (16) for accumulating energy, for example, in the event that the solar irradiance exceeds the nominal value, or to be able to use energy stored in periods of low (or zero) radiation, such as cloudy, nights, etc.
  • the plant of the invention may additionally include transformation means (not shown) to transform the thermal energy of the receiver into electrical energy, such as a steam turbine, a gas turbine, a Stirling engine, a micro turbine, or an AMTEC element .
  • transformation means (not shown) to transform the thermal energy of the receiver into electrical energy, such as a steam turbine, a gas turbine, a Stirling engine, a micro turbine, or an AMTEC element .
  • the storage means (16) are related to the transformation means, so that the storage means can be selected from:
  • the receiver is a solar thermal receiver adapted to heat a heat transfer fluid and the transformation means are gas turbines;
  • thermosolar type adapted to heat a heat transfer fluid which is a salt to be used in a steam turbine according to a Rankine cycle.
  • the storage means (16) can store energy from the guides (8, 15) or the receiver (1), just as the solar reactor (21) can receive energy from the guides ( 8, 15). Additionally, pipes (25) are arranged to transport heat transfer fluid from the receiver (1) to the transformation means or to some place of use (not shown). Pipes (25) are also arranged to transport heat transfer fluid from the receiver (1) to the storage means (16) and also from said storage means (16) to the receiver (1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Permite transformar energía solar aprovechando la mayor parte del espectro solar con rendimiento muy eficiente. Comprende: al menos un colector (11) solar dotado de un foco, y adaptado para recolectar la radiación solar y concentrarla en el foco; un dispositivo láser (10) solar para transformar la radiación recibida desde los focos en radiación láser; y un receptor (1) y / o un reactor solar (21) adaptados para recibir la radiación proveniente del dispositivo láser (10) y transformarla en otro tipo de energía. Puede comprender guías de luz (8) flexibles o espejos (26) planos para transportar hacia el reactor solar (21) y / o el receptor (1) la radiación recibida desde el dispositivo láser; Puede comprender células fotovoltaicas (18) intercaladas entre los colectores y los dispositivos láser para transformar la radiación concentrada de los focos en electricidad y dejar pasar hacia los dispositivos láser la radicación que no transforman.

Description

PLANTA SOLAR
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se puede incluir dentro del campo de la tecnología solar. El objeto de la invención se refiere a una planta solar que posibilita la transformación en energía eléctrica o térmica de una mayor parte de la radiación del espectro solar recibida.
ANTECEDENTES DE LA INVENCIÓN El aprovechamiento de la energía solar plantea una serie de retos. Uno de ellos es la captación de dicha energía solar y su concentración, lo cual es una cuestión ampliamente investigada, desarrollada y aplicada en la actualidad. En este sentido el desafío de las plantas solares es: maximizar el ratio C/Cmax de los colectores concentradores (donde C es la concentración y Cmax = 1/seno (semiaceptancia) es la concentración máxima teórica); minimizar las pérdidas geométricas - efecto coseno, sombras y bloqueos entre seguidores -, pérdidas ópticas y térmicas; y bajar los costes de las instalaciones a niveles que hagan competitiva la tecnología en relación a otras fuentes de energía. Es importante indicar que maximizar la concentración nos permite reducir las pérdidas térmicas en la planta, reducir el coste de los dispositivos receptores
(típicamente termosolares o fotovoltaicos) y/o aumentar las temperaturas típicas de trabajo de los fluidos caloportadores o de los reactores para la obtención de combustibles solares.
Otro gran reto es la transformación de la energía solar en energía eléctrica. Actualmente existen dos caminos comerciales principales:
1 - La tecnología fotovoltaica: implica convertir directamente en electricidad la radiación electromagnética del espectro solar a través de materiales semiconductores empleando células fotovoltaicas. Se trata de una tecnología que está en continuo desarrollo, y cuenta con potencial de mejora suficiente como para poder superar en eficiencia a las plantas solares termoeléctricas, gracias al futuro uso de materiales avanzados. Sin embargo tiene la desventaja de que no es gestionable y de que existe un rango de longitud de onda por encima de la cual las células fotovoltaicas no son capaces de convertir toda la energía de los fotones en energía eléctrica y por debajo de la cual el exceso de energía transportada por el fotón se pierde en forma de calor.
2 - La tecnología termosolar: implica calentar un fluido caloportador y generar electricidad en una turbina mediante un ciclo Rankine, Brayton, motor
Stirling u otros, o bien provocar una reacción que permita obtener: hidrógeno directamente a partir de agua a temperaturas de hasta 2000 °C mediante la utilización de terceras sustancias (Zinc u otros) o de procesos alternativos (l-S lodine sulfure); amonia a partir de nitrógeno e hidrógeno; cualquier otro combustible solar. Es una tecnología que también está en continuo desarrollo.
No presenta el inconveniente anteriormente comentado en relación a la tecnología fotovoltaica, pero tiene otros problemas más adelante expuestos. Actualmente se prevé que las plantas de receptor central tipo torre permitan, en el medio plazo, mejorar tanto en eficiencia como en coste al resto de tecnologías comerciales en el mercado de grandes plantas de producción de electricidad del orden de las decenas o pocas centenas de MW. Sin embargo, las plantas de receptor central adolecen del denominado efecto coseno (efecto de disminución del área efectiva reflectante del espejo, debido al ángulo que forma los rayos incidentes con la normal a dicha superficie reflectante), de desbordamientos en el receptor, de pérdidas por transmisividad y de otros fenómenos que limitan su eficiencia si la comparamos con el potencial de la tecnología fotovoltaica.
En lo que se refiere a generación distribuida o mercado de las decenas de kW, los discos Stirling son una solución en desarrollo todavía cara pero prometedora. Una de las cuestiones que encarecen esta tecnología es el hecho de tener que soportar un motor pesado en voladizo en el foco del concentrador.
La tecnología termosolar tiene a su favor, frente a la tecnología fotovoltaica, la inercia térmica, la posibilidad de hibridar y la posibilidad de almacenar el calor.
Las limitaciones de las plantas de receptor termosolar pueden salvarse utilizando guías de luz para transportar la luz concentrada. El guiado de la luz solar concentrada con pérdidas mínimas desde la zona de captación hasta la zona de transformación es otro gran reto. El desafío, además, es doble; por un lado desarrollar guías de luz con materiales capaces de transmitir todo el ancho espectral de la luz solar y por otro utilizar guías de luz compatibles con colectores avanzados (óptica anidólica no formadora de imagen) que permitan altas concentraciones; es decir, guías de luz de alta apertura numérica.
Ejemplos de guías de luz son las fibras ópticas tradicionales, las guías de luz líquidas y las fibras de cristal fotónico (PCFs).
La guías de luz de fibra óptica tradicional (ver documento "Solar fiber- optic mini-dish concentrators: First experimental results and field experience
(D. Feuermann, J. M. Gordon, M Huleihil) - April 2002") presentan una apertura numérica limitada (como máximo 0.48) lo cual limita la potencia de luz absorbida, así como los niveles de concentración de los colectores solares. Por otro lado, dichas guías no permiten guiar el espectro solar de manera eficiente a distancias superiores a las decenas de metros. Las pérdidas en las guías de luz de fibras ópticas están causadas por tres mecanismos: dispersión tipo Rayleigh; absorción debida a impurezas metálicas y al agua dentro de la fibra; y absorción intrínseca por la propia molécula del material de la fibra óptica, la sílice. La confluencia de estos tres mecanismos limitan la ventana del espectro solar que se puede guiar a través de las fibras sin pérdidas desde los 1000 - 1250 nm hasta un límite superior de 1650 nm, presentando unas perdidas de 0.2 dB/km en torno a 1550 nm. La conclusión es que, en el mejor de los casos, estas fibras no transmiten eficientemente una parte importante del espectro solar (UV, visible y parte del IR cercano) que representa más del 40% de la energía acumulada presente en el espectro solar.
En lo que se refiere al mecanismo de dispersión de Rayleigh: este se produce como resultado de colisiones elásticas entre la onda electromagnética y las moléculas de silicio dentro de la fibra. Si la luz dispersada se mantiene dentro de la apertura numérica de la fibra, continúa su viaje por reflexión interna total dentro de la fibra y no ocurre atenuación. Aumentar pues la apertura numérica de la fibra ayuda a reducir las pérdidas de dispersión de Rayleigh y a aumentar la ventana del espectro.
En cuanto a las pérdidas debido a la absorción por las impurezas: en la actualidad existen métodos de fabricación tipo MCVD (del inglés "modified chemical vapour deposition", deposición química modificada de vapor") u OVD (del inglés "outside vapour deposition", deposición exterior de vapor), que permiten fabricar fibras sin impurezas o con una concentración de impurezas extremadamente pequeñas. Estos procedimientos de fabricación permiten mantener niveles de pérdidas en dB/km suficientemente bajos en todas las longitudes de onda de la ventana referida anteriormente.
En cuanto al mecanismo de absorción intrínseca debido al material de la propia fibra: se está avanzando en el desarrollo de nuevos materiales para fabricar las fibras que aumenten esta ventana. Un ejemplo son los cristales de ZBLAN y GaLaS. El cristal de ZBLAN (formado por circonio, bario, lantano, aluminio y fluoruros de sodio) presenta rendimientos aceptables para longitudes de onda entre 250 y 4000 nm, con unas pérdidas de 0.05 dB/km a 2550 nm. El cristal de tipo GaLaS, también denominado GLS, que comprende Ga2S3 y/o La2S3 presenta una región de transparencia de longitudes de onda de 500 nm a 10000 nm y unas pérdidas de 0.5 dB/km en torno a 3500 nm.
Desde principios de los años 90 se están desarrollando las fibras de cristal fotónico (Photonic Cristal fibers PCFs en adelante). Las fibras de cristal fotónico son fibras de sílice que tienen un núcleo central (a veces hueco) rodeado de una estructura periódica de agujeros rellenos de aire. Los cristales fotónicos poseen una modulación periódica del índice de refracción, siendo su periodo del orden de la longitud de onda del campo electromagnético en el rango óptico.
Existen, entre otros, dos tipos de PCFs: las PCFs de tipo IGF (del inglés "Index Guiding Fibers", fibras de índice de guiado) y las de tipo PBF (del inglés "Bandgap Guiding Fibers" fibras de guiado de banda prohibida).
Es importante señalar que las PCFs están revolucionando el mundo de la fotónica y de la transmisión de datos en telecomunicaciones. El inusual mecanismo de guiado de la luz en las PCFs les confiere toda una serie de propiedades únicas que las diferencian de las fibras convencionales. Entre otros, es posible construirlas con núcleos de tamaño muy pequeño (diámetros de hasta 1 micrómetro) para acrecentar los efectos no lineales, construirlas con aperturas numéricas muy altas, o con bandas de propagación monomodo muy extensas. Además, la dispersión cromática de estas fibras puede ajustarse de forma flexible mediante el diseño adecuado de su geometría, pudiendo obtenerse valores inalcanzables con la tecnología de fibra óptica convencional. En este sentido, algunas instituciones han conseguido desarrollar PCFs de sílice dopado con P2O5 con pérdidas de hasta 0.095 dB/km a 1550 nm. Además se han conseguido alcanzar con éxito velocidades de transmisión de 640 Gbit/s.
Las PCFs pueden ser utilizadas también para guiar la luz solar. En este caso no sólo la composición material sino la geometría de los nanotubos de aire y el ancho de los puentes entre ellos permiten controlar las propiedades modales así como aumentar la apertura numérica y absorber más luz solar para el mismo diámetro y la misma longitud de fibra. Para la aplicación de guiado de la luz solar las especificaciones son muy específicas: altas aperturas numéricas (0.9), maximización del diámetro de la fibra y de la potencia a transmitir y minimización de pérdidas en dB/km.
Actualmente están en continuo desarrollo las denominadas células fotovoltaicas multiunión, que son capaces de absorber una parte del espectro con una gran eficiencia, tanto más cuantas más capas contenga. Así las células de triple unión compuestas de semiconductores InGaAs, Ge y
InGaP tienen eficiencias actuales en el orden del 39%, pero existen rangos de longitud de onda en los cuales no es capaz de convertir los fotones en energía eléctrica.
La tecnología fotovoltaica tiene a su favor frente a la termosolar su elevada eficiencia.
De lo anteriormente expuesto, se deduce que las guías de luz avanzadas que se están desarrollando en la actualidad permiten alcanzar aperturas numéricas del orden de 0.9. Sin embargo, presentan el inconveniente de que están fabricadas a partir de materiales incapaces de transmitir todo el ancho espectral del sol con pérdidas - en dB/km - que hagan viable esta tecnología. La ventana del espectro solar que se puede guiar con pérdidas satisfactorias va desde los 1000nm - 1250 nm hasta un límite superior de 1650 nm, presentando unas perdidas de 0.2 dB/km en torno a 1550 nm.
En la actualidad también se avanza en la investigación de elementos capaces de transformar (en electricidad o en energía térmica) con rendimientos maximizados la radiación solar a lo largo de su ancho espectral (ultravioleta, visible e infrarrojo cercano). En particular, se está avanzando, en conceptos basados en la "gestión de los fotones" por los cuales se intenta separar o modificar el espectro solar antes de que los fotones sean absorbidos por células solares fotovoltaicas.
En estos casos se utilizan convertidores de longitudes de onda; concretamente convertidores a baja longitud de onda (los denominados "down converters") y a alta longitud de onda (los denominados "up converters"), que permiten transformar la radiación de los rangos ultravioleta y/o visible en radiación infrarroja los primeros, y la infrarroja en radiación visible y/o ultravioleta los segundos. Existen en el estado del arte algunos ejemplos de dichos convertidores pero éstos no permiten obtener ni eficiencias suficientemente elevadas ni mantener concentraciones ópticas elevadas, debido sobre todo a que la dirección de la luz emitida después de la conversión no tiene una dirección o direcciones preferentes.
Son conocidos, por otra parte, los dispositivos láser solares, que transforman en un rayo láser una parte del espectro de la luz solar. Los dispositivos láser solares poseen los siguientes elementos:
- Una cavidad óptica, resonador u oscilador óptico constituido por dos espejos en el que la luz láser queda atrapada rebotando entre ambos. De forma muy simplificada se puede decir que el resonador únicamente permite las frecuencias de resonancia proporcionales a c/2L (donde c es la velocidad de la luz y L es el camino óptico del rayo de luz), así como sus modos asociados;
- Un medio activo dopado, que puede ser sólido, líquido o gaseoso y cuya función es la de amplificar un rango de longitudes de onda específico conforme los fotones van sufriendo las múltiples reflexiones dentro de la cavidad y van pasando por él; y
- una fuente de luz solar, capaz de generar inversión de la población en el medio activo. Es decir, luz capaz de conseguir que en dicho medio se tengan más átomos en un estado excitado (átomo en un nivel de energía mecánico- cuántico más alto) que en el estado más bajo de energía, lo que permitirá que gran parte de los átomos del sistema emitan luz en condiciones denominadas estimuladas.
Preferentemente tanto el resonador como el medio activo del láser solar son cilindricos y en sus extremos se sitúan sendos espejos reflectantes. Los dispositivos láser solares encontrados en la bibliografía están iluminados lateralmente por la luz solar concentrada mediante concentradores tipo CPC (Compound Parabolic Concentrador). El primer espejo reflectante de la cavidad está adaptado para ser altamente reflectivo en la longitud de onda de oscilación del láser y sus alrededores. Únicamente en esta zona este espejo tiene alta reflectividad. El otro espejo, el de salida del láser, refleja (R2) parcialmente la luz incidente y transmite (T2) la fracción que no refleja: 72 = 1 - R2. Esta luz transmitida es, en sí, la luz láser que sale del dispositivo. Así, los fotones quedan atrapados en el resonador, moviéndose de un espejo a otro y siendo amplificados por el medio activo. Del dispositivo láser sale la fracción de la luz láser que deja escapar el espejo de salida en función de su transmisividad en la longitud de onda de oscilación del láser.
El láser solar, por lo tanto, posee una cavidad entre ambos espejos que favorece la reflexión de los fotones que se reflejan alternativamente en cada uno de los espejos y que son amplificados cada vez que pasan por el medio activo. Si la amplificación es lo suficientemente elevada como para superar las pérdidas, lo que se denomina comúnmente condición umbral, un único fotón puede ser amplificado varios ordenes de magnitud para producir un número muy elevado de fotones coherentes atrapados dentro del resonador. Si los fotones van y vienen entre los espejos durante un periodo de tiempo suficientemente largo, el láser alcanzará un régimen permanente.
El bombeo de energía solar al láser puede producirse tanto por la cara lateral del mismo como longitudinalmente al mismo, es decir, por uno de los extremos, de modo que, la luz es inyectada en la dirección del rayo láser generado.
El láser solar puede transformar una parte del espectro solar entrante en un rayo láser saliente a una longitud de onda determinada. El rayo láser puede alimentar una PCF transportada por el propio láser. La sustancia del medio activo tiene un espectro de absorción que no tiene porqué coincidir con su espectro de emisión. El láser puede, por tanto, ser bombeado por luz de un intervalo de longitudes de onda diferente del intervalo de longitudes de onda en el que está emitiendo.
Son también conocidos en el estado de la técnica, los dispositivos láser PCF de doble revestimiento, en los que el medio activo se realiza dopando el núcleo de la fibra PCF. El primer revestimiento tiene índice de refracción ligeramente inferior al del núcleo y está diseñado para guiar en single mode la radiación láser generada por dentro del núcleo y el segundo revestimiento contiene la microestructura conformada por tubos de aire separados una distancia típica a modo de PCF clásica y con sección en forma de D u otra. Este tipo de PCF, permiten muy altas aperturas numéricas. De todo lo anterior se deduce que la eficiencia de transformación de energía solar a electricidad así como la gestionabilidad con los medios actuales es manifiestamente mejorable y que, además, es posible aprovechar más eficientemente el ancho del espectro solar (ultravioleta, visible e infrarrojo cercano).
La invención objeto de esta patente plantea desarrollar plantas híbridas fotovoltaicas - termosolares con una serie de características que permiten utilizar, por un lado, la tecnología fotovoltaica para transformar con alta eficiencia una parte del espectro solar en energía eléctrica y, por otro, la termosolar, bajo el principio del guiado de luz para aprovechar el resto del espectro.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención resuelve el problema técnico planteado, mediante una planta solar que permite aprovechar al máximo la radiación solar. La planta solar de la invención comprende los siguientes elementos:
- al menos un colector solar dotado de un foco, dicho colector solar adaptado para recolectar la radiación solar y concentrar dicha radiación solar en el foco;
- al menos un dispositivo láser solar, a modo de convertidor solar, donde el dispositivo láser está adaptado para recibir (directa o indirectamente) radiación concentrada procedente de los focos de los colectores y transformar dicha radiación concentrada en radiación láser; y
- un receptor adaptado para recibir la radiación proveniente del láser y transformarla en energía térmica (calentando un fluido caloportador) o directamente en energía eléctrica aprovechando el efecto fotoeléctrico; y / o un reactor solar adaptado para obtener combustible solar, como por ejemplo: hidrógeno directamente a partir de agua a temperaturas de hasta 2000 °C mediante la utilización de terceras sustancias (Zinc u otros) o de procesos alternativos (l-S lodine sulfure); amonia a partir de nitrógeno e hidrógeno; o cualquier otro combustible solar.
Tal como se explicará más adelante, el dispositivo láser puede recibir radiación directamente desde los focos de los colectores, o bien la instalación puede incorporar una célula fotovoltaica que recibe la radiación concentrada de los focos de los colectores, de tal manera que transforma en energía eléctrica una parte de dicha radiación y es transparente a la parte que no transforma, dejando pasar hacia el dispositivo láser dicha parte que no transforma.
La planta solar de la invención destaca porque intercalando un dispositivo láser entre los colectores y el receptor se garantiza la transformación de la práctica totalidad de la radiación captada por los colectores. Adicionalmente, como es conocido, un haz de luz presenta siempre una divergencia, debida al fenómeno de difracción. Un haz emitido por un dispositivo láser (un rayo láser) de diámetro D posee la característica de que alcanza la semidivergencia mínima teórica impuesta por la difracción (difraction limited beam), que es del orden de λ/D donde λ es la longitud de onda de funcionamiento del dispositivo láser.
Esto quiere decir que los dispositivos láser alcanzan el límite teórico de colimación. Esto es de por sí una ventaja para el aprovechamiento de la energía de dispositivos láser bombeados por luz solar por cuanto el rayo láser puede ser conducido hacia un receptor, tanto por el interior de guías de luz (como se explicará más adelante) así como directamente a través de la atmósfera mediante el uso de espejos planos. De esta manera, cuando la distancia entre el dispositivo láser y el receptor lo permite, las reducidísimas pérdidas por divergencia del rayo láser permiten dirigir el rayo láser hacia el receptor mediante simple reflexión en espejos planos.
Los colectores solares pueden ser de cualquier tipo conocido, tanto de tipo tradicional (colectores de disco de tipo paraboloide, colectores de tipo lente de Fresnel), como del tipo de colectores avanzados, elaborados en base a óptica anidólica (no formadora de imagen).
Asimismo, los colectores están preferentemente asociados a unos seguidores solares en dos ejes apuntando al sol sin efecto coseno, de manera que cada colector solar puede bien tener su dispositivo de seguimiento solar individual o bien, puede existir al menos un dispositivo de seguimiento, asociado a su correspondiente helióstato, sobre el que están montados una pluralidad de colectores.
En el caso de que el receptor no esté lo suficientemente cerca de los dispositivos láser como para que resulte ventajoso dirigir el rayo láser hacia el receptor a través de espejos planos, se prevé que la invención incorpore adicionalmente guías de luz flexibles que reciben los rayos láser y los transmiten hacia el receptor.
Las guías de luz empleadas pueden ser de cualquiera de los muy diversos tipos y tecnologías existentes.
En particular, atendiendo a la tecnología de fabricación, a modo de ejemplo, se pueden emplear los siguientes tipos de guías de luz:
- guías de fibra óptica tradicional,
- guías de tipo PCF,
- guías de luz líquidas (LLG, del inglés "liquid lightguides) En particular, atendiendo a los materiales empleados en la elaboración, se pueden emplear a modo de ejemplo, las siguientes guías de luz:
- guías de luz de sílice;
- guías de luz de cristal ZBLAN;
- guías de luz de cristal GaLaS.
La apertura numérica de las guías es preferentemente compatible, al menos parcialmente, con la apertura de la célula fotovoltaica, del láser y de los colectores solares.
La invención puede incorporar adicionalmente unas lentes para multiplexar la radiación contenida en las guías, o reconcentrar los rayos láser si estos se transmiten directamente a través de la atmósfera con el fin de optimizar la irradiancia incidente sobre el receptor. En el primer caso las guías de luz se pueden dividir en varios grupos y cada uno de dichos grupos ser multiplexado en una guía combinada.
La invención puede incorporar adicionalmente reconcentradores justo antes del receptor con el mismo fin de optimizar la irradiancia incidente en el mismo.
De manera opcional, las guías de luz se pueden, ventajosamente, dirigir hacia el receptor de manera que las guías de luz cuyos primeros extremos están dispuestos en ubicaciones contiguas no inciden sobre ubicaciones contiguas del receptor. De esta manera, la radiación incidente sobre una determinada zona del receptor no proviene de una misma zona de colectores, por lo que se compensan los efectos de que algunos colectores estén eventualmente en sombra y se obtiene una incidencia más uniforme sobre los tubos del receptor. Lo que se acaba de explicar se puede implementar tanto en el caso de que las guías de luz se dirijan directamente hacia el receptor, así como en el caso de que se dispongan lentes para multiplexar las guías de luz en guías combinadas, de acuerdo con al menos una de las opciones seleccionadas de la siguiente lista no exhaustiva:
- las guías de luz de una misma zona de colectores se multiplexan en guías combinadas, y dichas guías combinadas correspondientes a zonas contiguas se hacen a su vez incidir sobre distintas zonas del receptor; y
- las guías combinadas comprenden guías de luz provenientes de distintas zonas de colectores.
Por lo que respecta al receptor, la presente invención es de aplicación para cualquiera que sea el tipo de receptor compatible con el empleo de colectores de concentración y, en su caso, guías de luz.
En particular, se prefieren receptores de tubos dispuestos en vertical, por los que circula un fluido caloportador.
Así, los tubos del receptor pueden estar dispuestos en una o en varias filas, siendo preferente la disposición en más de una fila con los tubos solapados para que la radiación incida necesariamente sobre algún tubo. Adicionalmente, los tubos pueden estar o no encerrados en carcasas sometidas a vacío, siendo las carcasas individuales o comunes para una pluralidad de tubos. Además, los tubos pueden estar dotados de recubrimientos antirreflectantes.
De manera preferente, las guías hacen incidir la radiación sobre los tubos de manera normal a la superficie de dichos tubos, de preferencia desde las dos direcciones opuestas, para evitar tensiones térmicas en los tubos. Puesto que la transformación directa de la radiación solar en energía eléctrica a través de células fotovoltaicas presenta un potencial de mayor eficiencia que la transformación a través de un fluido caloportador, la planta de la invención puede incorporar adicionalmente al menos una célula fotovoltaica (preferentemente, una pluralidad), dispuestas en los focos de los colectores, e intercaladas entre los colectores y los dispositivos láser, para transformar parte del espectro solar en energía eléctrica, donde dichas células fotovoltaicas son transparentes a la radiación solar que no transforman, dejando pasar dicha radiación hacia el dispositivo láser. De este modo, a través de las células fotovoltaicas, se puede obtener con mayor eficiencia energía eléctrica para abastecer algunos dispositivos de la instalación, tales como los dispositivos láser o, en su caso, otros consumos de la instalación o incluso para su venta a la red.
La invención permite el empleo de células fotovoltaicas de diferentes tecnologías, si bien, para cada planta particular, el rendimiento es óptimo si se seleccionan los diferentes componentes (colectores, guías, células fotovoltaicas, dispositivo/s láser) de manera racional en función de los condicionantes de la planta y de las características ópticas de los elementos.
En cualquier caso, son preferidas las denominadas células HCPV (del inglés "High Concentration Photovoltaic Cells" células fotovoltaicas de alta concentración), particularmente, dentro de este tipo, las denominadas multiunión.
En el caso de utilizar guías de luz flexibles, el dispositivo láser está adaptado para concentrar, en un rayo láser de longitud de onda compatible con el rango de funcionamiento óptimo de las guías de luz, la radiación concentrada que, de manera directa o a través de la célula fotovoltaica, procede de los focos de los colectores. Según se acaba de explicar, una parte de la radiación solar es transformada en energía eléctrica por la célula fotovoltaica, otra parte transformada por el dispositivo láser para ser guiada por la guía de luz hacia un receptor de naturaleza termosolar o fotovoltaica, para conseguir un aprovechamiento óptimo del espectro solar.
La invención está adaptada para cualquier tipo de láser, si bien las necesidades de la instalación aconsejarán el empleo de un láser concreto para cada caso, en función también, entre otras cosas, de las características ópticas del resto de elementos (colectores, guías, células fotovoltaicas).
Un dispositivo láser comprende usualmente un resonador, un amplificador con un medio activo dopado; y una fuente de luz capaz de generar inversión de la población en el medio activo.
En particular, se pueden emplear dispositivos láser con medio activo dopado líquido, gaseoso o sólido (incluidos semiconductores), así como se pueden emplear dispositivos láser tanto con bombeo lateral, como con bombeo longitudinal, siendo este último preferido porque, entre otras cosas, asegura:
- una eficiencia de conversión luz solar a luz láser más elevada
- una alta calidad del rayo láser que saldría en modo fundamental transversal TEM00 con el máximo grado teórico de colimación (en inglés "diffraction limited beam quality") si el perímetro de la luz solar concentrada se mantiene dentro del volumen del modo fundamental del resonador (al menos dentro del perímetro del cristal del dispositivo láser). El máximo grado de colimación es del orden de la longitud de onda de salida del láser dividido entre el diámetro típico del modo. De manera compatible con todas las realizaciones descritas, la planta de la invención puede incluir adicionalmente unos medios de almacenamiento para acumular energía.
Los medios de almacenamiento están relacionados con los demás elementos de la instalación: así, por ejemplo, los medios de almacenamiento pueden comprender al menos uno seleccionado entre:
- acumuladores eléctricos, para acumular la energía eléctrica aportada por las células fotovoltaicas;
- tanques de aire/gas caliente, para el caso de que el fluido caloportador de los tubos del receptor sea aire o gas que alimenta una turbina de gas según un ciclo Brayton;
- tanques de vapor de agua saturado comprimido, para el caso de que el fluido caloportador de los tubos del receptor sea agua que alimenta una turbina de vapor según un ciclo Rankine, o para que el fluido caloportador sea una sal líquida que calienta, a través de un intercambiador, agua con el mismo fin;
- sales a alta temperatura (para el caso de ciclo Rankine con sal).
De manera compatible con todas las realizaciones descritas que contienen receptor, la planta de la invención puede incluir una turbina de vapor, una turbina de gas, un motor Stirling, una micro turbina, un elemento AMTEC (del inglés Álcali-metal termal to electric converter, convertidor de térmica a eléctrica de tipo álcali-metal), o células fotovoltaicas del tipo multiunión, single-union, orgánicas, inorgánicas.
Tal como se ha explicado, la planta solar de la invención permite transformar la energía solar en electricidad con rendimientos superiores a los de las actuales plantas de aprovechamiento de energía solar de manera gestionable y aprovechando eficientemente el ancho del espectro solar (ultravioleta, el visible y el infrarrojo cercano).
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figuras 1 a y 1 b.- Muestran una comparativa entre, respectivamente, la divergencia de un haz emitido en un dispositivo concentrador de tipo lente y en un haz emitido por un dispositivo concentrador de tipo láser.
Figura 2.- Muestra un esquema de funcionamiento de la primera realización de la invención.
Figura 3.- Muestra un esquema de funcionamiento de la segunda realización de la invención.
Figura 4.- Muestra un esquema de funcionamiento de la tercera realización de la invención.
Figura 5.- Muestra una vista superior de la planta de la invención, según la tercera realización.
Figura 6: Muestra una vista superior en detalle de una parte de la planta de la invención según la primera realización.
REALIZACIONES PREFERENTES DE LA INVENCIÓN Seguidamente se realiza una descripción de tres realizaciones preferentes de la invención con ayuda de la figuras 1 a 6 adjuntas.
PRIMERA REALIZACIÓN PREFERENTE
La invención, tal como se representa en las figuras adjuntas, se refiere a una planta solar para obtener energía (20) (ver figura 5) a partir de radiación solar, con un óptimo aprovechamiento del espectro solar.
Tal como se aprecia en la figura 1 a, el haz de luz resultante de un primer dispositivo concentrador (31 ) de tipo lente presenta una cierta divergencia. La divergencia asociada a dichos primeros dispositivos concentradores (31 ) va ligada a la concentración que alcanzan. Cuanto mayor se quiere concentrar mayor es la divergencia del rayo de salida. El teorema de conservación de la Etendue explica este fenómeno. En sistemas tridimensionales. n1■ A - sen1 {^/^ = cte , donde n es el índice de refracción del medio, A el área del elemento, perteneciente al primer dispositivo concentrador (31 ), sobre el que se concentra, y β el ángulo de divergencia de los rayos a la salida de la lente.
Para el caso de un segundo dispositivo concentrador (32) de tipo láser, tal como se aprecia en la figura 1 b, el semiángulo de divergencia es Θ = λ/D, donde λ es la longitud de onda del rayo láser emitido por el dispositivo láser (32) y D es el diámetro del rayo láser.
Se comprueba que el valor del semiángulo de divergencia Θ es notablemente menor que β/2.
La planta solar, en una primera realización preferente de la invención, comprende los siguientes elementos, según se aprecia en las figuras 2 y 6:
- una pluralidad de colectores (1 1 ) solares dotados de sendos focos (no mostrados), así como de dispositivos de seguimiento solar (no mostrados) en dos ejes, dichos colectores solares (1 1 ) adaptados para recolectar la radiación solar y concentrar dicha radiación solar en su foco correspondiente;
- al menos un dispositivo láser (10) solar, a modo de convertidor solar, donde el dispositivo láser (10) está adaptado para recibir directamente radiación concentrada procedente de los focos de los colectores (1 1 ) y transformar dicha radiación concentrada en radiación láser; y
- un receptor (1 ) adaptado para recibir la radiación desde las guías de luz (8) a través de unos segundos extremos (no mostrados), opuestos a los primeros extremos, y emplear dicha radiación para calentar un fluido caloportador (no mostrado) o transmitirla a una captador fotoeléctrico (no mostrado); y / o un reactor solar (21 ) adaptado para obtener un combustible solar.
Las características de divergencia explicadas anteriormente para el rayo láser permiten dirigir directamente los rayos láser hacia el receptor, a través de meros espejos (26) planos, (ver figuras 2 y 6) sin pérdida apreciable de potencia.
SEGUNDA REALIZACIÓN PREFERENTE
Para casos en que la distancia entre el receptor y el láser no es tan reducida, la invención incorpora adicionalmente unas guías de luz (8) flexibles que transmiten la luz desde los dispositivos láser hacia el receptor, según se muestra en la figura 3. TERCERA REALIZACIÓN PREFERENTE
En una tercera realización preferente de la invención, que se muestra esquemáticamente en las figuras 4 y 5, en los focos de los colectores (1 1 ) concentradores, se situará al menos una célula (18) fotovoltaica para transformar en energía eléctrica (I) la radiación concentrada en los focos, dicha célula (18) fotovoltaica es transparente a aquellas longitudes de onda del espectro solar que no es capaz de transformar en energía eléctrica (I). De manera aún más preferente, se emplean células (18) fotovoltaicas HCPV multiunión, pero pueden también emplearse células (18) fotovoltaicas del tipo single - unión, orgánicas o inorgánicas.
Las células (18) fotovoltaicas están intercaladas entre los colectores (1 1 ) y el dispositivo láser (10), de tal manera que la radiación procedente de los focos que no sea transformada por la célula (18) fotovoltaica llegará al dispositivo láser (10) tras atravesar dicha célula (18) fotovoltaica. El dispositivo láser (10) transformará dichas longitudes de onda en una o varias longitudes de onda adecuada para que pueda ser transmitida por guías de luz (8) a largas distancias hacia un receptor (1 ), que puede ser un receptor termosolar o bien fotovoltaico (otra célula fotovoltaica, no representada, por ejemplo).
El empleo de células (18) fotovoltaicas es compatible con cualquiera de las dos realizaciones explicadas anteriormente.
De manera compatible con cualquiera de las realizaciones segunda y tercera descritas, preferentemente se seleccionan guías de luz (8) de alta apertura numérica, aún más preferentemente, de una apertura numérica cercana a 0.9, donde dicha apertura numérica es lo más compatible posible con la apertura de la célula fotovoltaica del láser solar y de los colectores solares.
Con el fin de obtener mayor irradiancia, la planta incorpora lentes (14) para combinar (multiplexar) la radiación de al menos un conjunto de guías de luz (8) en al menos una guía combinada (15). Asimismo, se pueden combinar de igual modo guías combinadas (15) entre sí, etc.
Para el caso de emplear receptores (1 ) de tipo termosolar, las guías de luz (8) cuyos primeros extremos están dispuestos en ubicaciones contiguas no inciden sobre ubicaciones contiguas del receptor (1 ) termosolar, para compensar los efectos de que algunos colectores (1 1 ) estén eventualmente en sombra, y así obtener una incidencia más uniforme sobre el receptor. Normalmente, los colectores (1 1 ) solares están agrupados en bloques (17). Por tanto, lo que se acaba de explicar se puede implementar según al menos uno cualquiera de los casos de la siguiente lista no exhaustiva:
- las guías de luz (8) se dirigen directamente hacia el receptor (1 ) termosolar de modo que las guías de luz (8) de un mismo bloque (17) no van todas hacia la misma zona del receptor (1 ), sino que en cada zona del receptor (1 ), las guías de luz (8) contiguas a las que provienen de un mismo bloque (17) provienen de bloques (17) alejados;
- las guías de luz (8) de un mismo bloque (17) se multiplexan en guías combinadas (15), y dichas guías combinadas (15) correspondientes a bloques (17) contiguos se hacen a su vez incidir sobre zonas no contiguas del receptor (1 ); y
- las guías combinadas (15) combinan guías de luz (8) provenientes de distintos bloques (17).
Si bien la presente invención es de aplicación para cualquiera que sea el tipo de receptor (1 ) compatible con el empleo de colectores (1 1 ) de concentración y, en su caso, guías de luz (8), en el caso de receptores termosolares, se prefieren receptores (1 ) de tubos absorbedores (no mostrados) dispuestos en vertical, por los que circula un fluido caloportador. Así, los tubos absorbedores del receptor (1 ) pueden estar dispuestos en una o en varias filas, siendo preferente la disposición en más de una fila con los tubos solapados para que la radiación incida necesariamente sobre algún tubo. Adicionalmente, los tubos pueden estar o no encerrados en recipientes transparentes sometidos a vacío, pudiendo ser los recipientes bien de tipo individual para cada tubo absorbedor, o bien existir uno o varios recipientes que son comunes para una pluralidad de tubos absorbedores. Además, los tubos pueden estar dotados de recubrimientos antirreflectantes.
Las guías de luz (8) preferentemente hacen incidir la radiación sobre los tubos absorbedores de manera normal a la superficie de dichos tubos absorbedores, desde dos direcciones opuestas, para evitar tensiones térmicas en dichos tubos absorbedores.
La invención puede funcionar con cualquier tipo de dispositivo láser (10), si bien se prefiere un dispositivo láser (10) de bombeo longitudinal.
La planta de la invención incluye además unos medios de almacenamiento (16) para acumular energía, por ejemplo, en el caso de que la irradiancia solar exceda del valor nominal, o para poder emplear energía almacenada en períodos de baja (o nula) radiación, tales como nublados, noches, etc.
La planta de la invención puede incluir adicionalmente medios de transformación (no mostrados) para transformar la energía térmica del receptor en energía eléctrica, tales como una turbina de vapor, una turbina de gas, un motor Stirling, una micro turbina, o un elemento AMTEC . Los medios de almacenamiento (16) están relacionados con los medios de transformación, de manera que los medios de almacenamiento se pueden seleccionar entre:
- acumuladores eléctricos adaptados para acumular al menos parte de la energía eléctrica producida en un receptor (1 ) de tipo fotovoltaico;
- tanques de aire/gas caliente, cuando el receptor es un receptor termosolar adaptado para calentar un fluido caloportador y los medios de transformación son turbinas de gas;
- tanques de vapor de agua saturado comprimido; cuando el receptor (1 ) es de tipo termosolar adaptado para calentar un fluido caloportador y los medios de transformación son turbinas de vapor; y
- tanques de sales a alta temperatura, cuando el receptor (1 ) es de tipo termosolar adaptado para calentar un fluido caloportador que es una sal para ser empleada en una turbina de vapor según un ciclo Rankine.
Tal como se aprecia en la figura 5, los medios de almacenamiento (16) pueden almacenar energía proveniente de las guías (8, 15) o del receptor (1 ), así como el reactor solar (21 ) puede recibir energía desde las guías (8, 15). Adicionalmente, se disponen tuberías (25) para transportar fluido caloportador desde el receptor (1 ) hasta los medios de transformación o hacia algún lugar de aprovechamiento (no mostrado). También se disponen tuberías (25) para transportar fluido caloportador desde el receptor (1 ) a los medios de almacenamiento (16) y también desde dichos medios de almacenamiento (16) hacia el receptor (1 ).

Claims

R E I V I N D I C A C I O N E S
1 . - Planta solar, caracterizada porque comprende:
- al menos un colector (1 1 ) solar dotado de un foco, dicho colector (1 1 ) solar adaptado para recolectar la radiación solar y concentrar dicha radiación solar en el foco;
- al menos un dispositivo láser (10) solar, a modo de convertidor solar, donde el dispositivo láser (10) está adaptado para recibir, directa o indirectamente, radiación concentrada procedente de los focos de los colectores (1 1 ) y transformar dicha radiación concentrada en radiación láser; y
- un receptor (1 ) y / o un reactor solar (21 ), adaptados para recibir la radiación proveniente de los dispositivos láser (10) y transformar dicha radiación en otro tipo de energía, donde el receptor (1 ) está adaptado para emplear dicha radiación en calentar un fluido caloportador (no mostrado) o transmitir dicha radiación a un captador fotoeléctrico (no mostrado), así como el reactor solar (21 ) está adaptado para obtener un combustible solar.
2. - Planta solar de acuerdo con la reivindicación 1 , caracterizada porque comprende adicionalmente sendos espejos planos (26) adaptados para dirigir por reflexión la luz procedente de los dispositivos láser (10) hacia el reactor solar (21 ) y / o hacia el receptor (1 ).
3. - Planta solar de acuerdo con la reivindicación 1 , caracterizada porque comprende adicionalmente sendas guías de luz (8) flexibles, adaptadas para recoger por un primer extremo la radiación emitida por los dispositivos láser (10) y transportar dicha radiación hacia el receptor (1 ) y / o hacia el reactor solar (21 ).
4.- Planta solar de acuerdo con una cualquiera de las reivindicaciones 1 a 3, caracterizada porque comprende adicionalmente al menos una célula (18) fotovoltaica intercalada entre los colectores (1 1 ) y los dispositivos láser (10), donde la célula (18) fotovoltaica está adaptada para recibir una parte de radiación concentrada en los focos y transformarla en electricidad, así como es transparente a la parte que no puede transformar, permitiendo que dicha parte no transformada llegue a los dispositivos láser (10).
5. - Planta solar de acuerdo con la reivindicación 4, caracterizada porque las células (18) fotovoltaicas son células HCPV.
6. - Planta solar de acuerdo con la reivindicación 5, caracterizada porque, las células (18) fotovoltaicas son células HCPV de tipo multiunión.
7. - Planta solar de acuerdo con una cualquiera de las reivindicaciones 1 a
6, caracterizada porque el receptor (1 ) se selecciona de una lista que consiste en:
- receptor termosolar;
- receptor fotovoltaico.
8. - Planta solar de acuerdo con una cualquiera de las reivindicaciones 1 a
7, caracterizada porque los colectores (1 1 ) solares se seleccionan de entre una lista que consiste en:
- colectores de disco de tipo paraboloide,
- colectores de tipo lente de Fresnel,
- colectores avanzados, elaborados en base a óptica anidólica.
9. - Planta solar de acuerdo con una cualquiera de las reivindicaciones 1 a
8, caracterizada porque comprende adicionalmente al menos un dispositivo de seguimiento según dos ejes para orientar los colectores.
10. - Planta solar de acuerdo con la reivindicación 9, caracterizada porque cada colector solar está asociado a su propio dispositivo de seguimiento individual.
1 1 . - Planta solar de acuerdo con la reivindicación 9, caracterizada porque comprende al menos un dispositivo de seguimiento asociado a una pluralidad de colectores (1 1 ).
12. - Planta solar de acuerdo con una cualquiera de las reivindicaciones 3 a 1 1 , caracterizada porque las guías de luz (8) se seleccionan de entre una lista que consiste en:
- guías de fibra óptica tradicional;
- guías de tipo PCF;
- guías de luz líquidas.
13. - Planta solar de acuerdo con la reivindicación 12, caracterizada porque las guías de luz (8) de fibra óptica tradicional se seleccionan de entre una lista que consiste en:
- guias de tipo MCVD, y
- guías de tipo OVD.
14. - Planta solar de acuerdo con la reivindicación 12, caracterizada porque las guías de luz (8) de tipo PCF se seleccionan de entre una lista que consiste en:
- guías de tipo IGF;
- guías de tipo PBF; y
15. - Planta solar de acuerdo con la reivindicación 12, caracterizada porque las guías de luz (8) de tipo PCF son guías de luz (8) dopadas con P2O5.
16. - Planta solar de acuerdo con una cualquiera de las reivindicaciones 13 a 15, caracterizada porque las guías de luz (8) están elaboradas con materiales seleccionados de una lista que consiste en:
- guías de luz de sílice fundida;
- guías de luz de cristal ZBLAN; y
- guías de luz de cristal GaLaS.
17. - Planta solar de acuerdo con una cualquiera de las reivindicaciones 13 a 15, caracterizada porque incorpora adicionalmente unas lentes (14), cada una de dichas lentes (14) adaptada para multiplexar la radiación de una pluralidad de guías de luz (8) en guías combinadas (15) de mayor irradiancia que las guías de luz (8).
18. - Planta solar de acuerdo con una cualquiera de las reivindicaciones 7 o 17, caracterizada porque el receptor (1 ) es de tipo termosolar, donde la radiación incidente sobre zonas contiguas del receptor (1 ) proviene de guías (8, 15) ubicadas en zonas no contiguas de los colectores (1 ).
19. - Planta solar de acuerdo con la reivindicación 18, caracterizada porque las guías de luz (8) se dirigen directamente hacia el receptor (1 ), de modo que no todas las guías de luz (8) de una misma zona de colectores (1 1 ) inciden en la misma zona del receptor (1 ), sino que en cada zona del receptor (1 ), las guías de luz (8) contiguas a las que provienen de una zona de colectores (1 1 ) provienen de zonas de colectores (1 1 ) alejadas.
20. - Planta solar de acuerdo con las reivindicaciones 18 y 19, caracterizada porque las guías de luz (8) de una misma zona de colectores (1 1 ) se multiplexan de modo que las guías combinadas (15) contiguas en el receptor (1 ) combinan guías de luz (8) que provienen de zonas de colectores (1 1 ) alejadas.
21 . - Planta solar de acuerdo con las reivindicaciones 18 y 19, caracterizada porque las guías combinadas (15) combinan guías de luz (8) provenientes de distintas zonas de colectores (1 1 ).
22. - Planta solar de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizada porque el dispositivo láser (10) es de bombeo longitudinal.
23. - Planta solar de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizada porque incorpora adicionalmente unos medios de almacenamiento (16) para almacenar parte de la radiación solar transformada.
24. - Planta solar de acuerdo con la reivindicación 23, caracterizada porque los medios de almacenamiento (16) comprenden al menos uno seleccionado de la lista que consiste en:
- acumuladores eléctricos;
- tanques de aire/gas caliente;
- tanques de vapor de agua saturado comprimido; y
- tanques de fluido caloportador a alta temperatura de tipo sal.
25. - Planta solar de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizada porque comprende adicionalmente medios de transformación para transformar la energía térmica del receptor en energía eléctrica.
26. - Planta solar de acuerdo con la reivindicación 25, caracterizada porque los medios de transformación se seleccionan entre al menos uno de una lista que consiste en: - turbina de vapor,
- turbina de gas,
- motor Stirling,
- micro turbina, y
- elemento AMTEC.
27. - Planta solar de acuerdo con la reivindicación 1 , caracterizada porque el reactor solar (21 ) está adaptado para obtener al menos un combustible solar seleccionado de una lista que consiste en:
- hidrógeno, directamente a partir de agua a una temperatura no superior a 2000 °C; y
- amonia, a partir de nitrógeno e hidrógeno.
28. - Planta solar de acuerdo con la reivindicación 27, caracterizada porque el reactor solar (21 ) está adaptado para obtener hidrógeno empleando Zinc.
29. - Planta solar de acuerdo con la reivindicación 27, caracterizada porque el reactor solar (21 ) está adaptado para obtener hidrógeno empleando procesos de sulfuro de yodo.
PCT/ES2012/070480 2011-07-05 2012-06-28 Planta solar WO2013004870A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12808194.0A EP2731210A4 (en) 2011-07-05 2012-06-28 SOLAR SYSTEM
US14/130,591 US20140202522A1 (en) 2011-07-05 2012-06-28 Solar plant
MX2014000175A MX2014000175A (es) 2011-07-05 2012-06-28 Planta solar.
CN201280033246.8A CN103703636A (zh) 2011-07-05 2012-06-28 太阳能装置
ZA2014/00154A ZA201400154B (en) 2011-07-05 2014-01-08 Solar plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201131142 2011-07-05
ES201131142A ES2396103B1 (es) 2011-07-05 2011-07-05 Planta solar.

Publications (1)

Publication Number Publication Date
WO2013004870A1 true WO2013004870A1 (es) 2013-01-10

Family

ID=47436565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070480 WO2013004870A1 (es) 2011-07-05 2012-06-28 Planta solar

Country Status (8)

Country Link
US (1) US20140202522A1 (es)
EP (1) EP2731210A4 (es)
CN (1) CN103703636A (es)
CL (1) CL2013003719A1 (es)
ES (1) ES2396103B1 (es)
MX (1) MX2014000175A (es)
WO (1) WO2013004870A1 (es)
ZA (1) ZA201400154B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733395B (zh) * 2020-03-30 2021-07-11 國立陽明交通大學 陣列型之太陽激發式固態雷射系統

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979475A (zh) * 2014-08-25 2015-10-14 徐州工程学院 一体化自持复合光电板和其工作方法以及光电板阵列
CN104467629B (zh) * 2014-11-14 2018-01-12 万卫东 一种多功能全天候全波段太阳能发电系统及其应用
US10473923B2 (en) * 2017-09-27 2019-11-12 Apple Inc. Focal region optical elements for high-performance optical scanners
US10578795B1 (en) 2018-10-17 2020-03-03 Orenko Limited Light collection housing
US10393407B1 (en) 2018-10-17 2019-08-27 Orenko Limited Heat transfer and thermal storage apparatus
US10483906B1 (en) 2018-10-17 2019-11-19 Orenko Limited Photovoltaic solar conversion
JP2021197847A (ja) * 2020-06-16 2021-12-27 トヨタ自動車株式会社 多接合型太陽電池を用いた非接触光給電方法とそのための光給電用投光装置
CN112260052B (zh) * 2020-10-19 2024-01-26 江苏师范大学 一种具有高效激光补偿能力的太阳光泵浦固体激光器
DE202022000360U1 (de) * 2022-02-12 2022-04-11 Wolfram G. Baisch Ein Absorber-Energie-Kraftwerksystem zur Erzielung von E- Stromenergie, unter Prämisse essenzieller Nachhaltigkeit und Klimaneutralität.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001704A (en) * 1974-03-25 1977-01-04 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Laser solar cell apparatus
US4281294A (en) * 1979-04-16 1981-07-28 Volkin Howard C Direct solar pumped laser
RU2087062C1 (ru) * 1995-05-16 1997-08-10 Александр Леонидович Голгер Световодный лазер с накачкой солнечным излучением
ES2236499T3 (es) * 2001-01-23 2005-07-16 The University Court Of The University Of Glasgow Mejoras relacionadas con dispositivo laser de semiconductor.
CN201018430Y (zh) * 2007-03-21 2008-02-06 万志强 太阳能聚光激光发电装置
CN101237196A (zh) * 2007-10-10 2008-08-06 万志强 太阳能聚光激光发电装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2755042A1 (de) * 1977-12-09 1979-06-13 Selim Dipl Ing Mourad Einrichtung zur erzeugung von energie
US4168716A (en) * 1977-12-15 1979-09-25 Herbert Fowler Solar-powered thermionic-photoelectric laser
DE4008573A1 (de) * 1990-03-14 1990-09-20 Manfred Bocian Solarenergie-verbundanlage
DE4008574A1 (de) * 1990-03-14 1990-08-02 Manfred Bocian Solarlaseranlage
JP2002521709A (ja) * 1998-07-21 2002-07-16 モセシュヴィリ,アレクサンドレ,エス. 放射エネルギー・コンセントレータ
US6407535B1 (en) * 2000-09-08 2002-06-18 The Regents Of The University Of California System for beaming power from earth to a high altitude platform
JP2003012569A (ja) * 2001-06-28 2003-01-15 Laser Gijutsu Sogo Kenkyusho メタン又はメタノール生成システム
JP2005039162A (ja) * 2003-07-18 2005-02-10 Etsuo Fujiwara レーザーパワー給電装置
US20100218808A1 (en) * 2007-09-17 2010-09-02 Cristian Penciu Concentrated photovoltaic systems and methods with high cooling rates
DE102008016109A1 (de) * 2008-03-19 2009-10-01 Juri Koulechoff Verfahren und Linsenanordnung zur Lichtkonzentration
CN101251641B (zh) * 2008-03-28 2010-08-25 陕西科技大学 透射式太阳能聚光器
JP2011023377A (ja) * 2008-04-17 2011-02-03 Takashi Yabe 太陽光励起のレーザー発振装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001704A (en) * 1974-03-25 1977-01-04 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Laser solar cell apparatus
US4281294A (en) * 1979-04-16 1981-07-28 Volkin Howard C Direct solar pumped laser
RU2087062C1 (ru) * 1995-05-16 1997-08-10 Александр Леонидович Голгер Световодный лазер с накачкой солнечным излучением
ES2236499T3 (es) * 2001-01-23 2005-07-16 The University Court Of The University Of Glasgow Mejoras relacionadas con dispositivo laser de semiconductor.
CN201018430Y (zh) * 2007-03-21 2008-02-06 万志强 太阳能聚光激光发电装置
CN101237196A (zh) * 2007-10-10 2008-08-06 万志强 太阳能聚光激光发电装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Potencial of utilizaçao of fibras opticas no desenvolvimento of concentradores solares", TESE OF EDISON TRIPOLE2004, 10 February 2005 (2005-02-10), pages 8 - 19, 29-39, XP008172987, Retrieved from the Internet <URL:htp://www.ufv.br/dea/ainbiagro/arguivos/ Tese%20de%o20%C3%o89dison%20Tr%C3%ADpole2004.pdf> [retrieved on 20120904] *
D. FEUERMANN; J. M. GORDON; M HULEIHIL, SOLAR FIBRE-OPTIC MINI-DISH CONCENTRATORS: FIRST EXPERIMENTAL RESULTS AND FIELD EXPERIENCE, April 2002 (2002-04-01)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733395B (zh) * 2020-03-30 2021-07-11 國立陽明交通大學 陣列型之太陽激發式固態雷射系統

Also Published As

Publication number Publication date
CL2013003719A1 (es) 2014-08-08
EP2731210A4 (en) 2015-07-22
EP2731210A1 (en) 2014-05-14
ZA201400154B (en) 2015-06-24
MX2014000175A (es) 2014-05-14
US20140202522A1 (en) 2014-07-24
CN103703636A (zh) 2014-04-02
ES2396103B1 (es) 2014-01-30
ES2396103A1 (es) 2013-02-19

Similar Documents

Publication Publication Date Title
ES2396103B1 (es) Planta solar.
EP1952448A2 (en) Solar concentrators
ES2734191T3 (es) Concentrador parabólico de doble etapa
US8569616B2 (en) Method of concetrating solar energy
US20110259319A1 (en) Solar Energy Absorber
CN103429967A (zh) 用于太阳能系统的基于光纤的传输系统及其提供和使用方法
ES2401755T3 (es) Colector de canaleta parabólica de foco fijo
US20140332054A1 (en) Solar collector having a pivotable concentrator arrangement
ES2431463T3 (es) Contenedor y central de energía solar
WO2015101692A1 (es) Sistema híbrido de cilindro paramétrico termosolar y receptor fotovoltaico
WO2012107605A1 (es) Elemento, y panel de captación y concentración de la radiación solar directa
ES2843253T3 (es) Conjunto de unidad solar y procedimiento de construcción de tal conjunto
WO2013004868A1 (es) Dispositivo para la transformación de energía solar concentrada
US20180040794A1 (en) Realizing the Dream of Green Energy and Making the Impossible Possible
KR20110023378A (ko) 태양광 집광장치
ES2806030T3 (es) Dispositivo fotovoltaico con un conjunto de fibras para seguimiento del sol
CN100368831C (zh) 一种采聚太阳能的掩模片及采用掩模片的太阳能装置
ES2636800B1 (es) Planta de generación de energía por aprovechamiento de energía solar
US10753651B1 (en) Solar over fiber and water based waveguides
ES2950333T3 (es) Central solar
CN213513702U (zh) 一种光束自由变向装置
ES2400647B1 (es) Receptor para una instalación termosolar e instalación termosolar que comprende dicho receptor
ES2563645B1 (es) Sistema modular de concentración solar sin seguimiento mediante la combinación de ópticas convencionales y elementos ópticos holográficos (HOE’s)
KR101317361B1 (ko) 곡면 반사경을 이용한 태양열 발전 장치
RU2123158C1 (ru) Концентратор солнечного излучения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12808194

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2013003719

Country of ref document: CL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/000175

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2012808194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012808194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14130591

Country of ref document: US