WO2013004869A1 - Receptor para una instalación termosolar e instalación termosolar que comprende dicho receptor - Google Patents

Receptor para una instalación termosolar e instalación termosolar que comprende dicho receptor Download PDF

Info

Publication number
WO2013004869A1
WO2013004869A1 PCT/ES2012/070479 ES2012070479W WO2013004869A1 WO 2013004869 A1 WO2013004869 A1 WO 2013004869A1 ES 2012070479 W ES2012070479 W ES 2012070479W WO 2013004869 A1 WO2013004869 A1 WO 2013004869A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
absorber tubes
tubes
absorber
radiation
Prior art date
Application number
PCT/ES2012/070479
Other languages
English (en)
French (fr)
Inventor
Juan Pablo NUÑEZ BOOTELLO
Manuel GALLAS TORREIRA
Original Assignee
Abengoa Solar New Technologies, S. A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S. A. filed Critical Abengoa Solar New Technologies, S. A.
Priority to EP12806992.9A priority Critical patent/EP2730855A4/en
Priority to US14/130,551 priority patent/US20140238018A1/en
Priority to MX2014000147A priority patent/MX2014000147A/es
Priority to CN201280033306.6A priority patent/CN103703325A/zh
Publication of WO2013004869A1 publication Critical patent/WO2013004869A1/es
Priority to ZA2014/00261A priority patent/ZA201400261B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/068Devices for producing mechanical power from solar energy with solar energy concentrating means having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/72Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention can be included within the technical field of solar thermal technology, in particular, in the field of solar thermal plants, whether direct steam production plants for Rankine cycle, as well as air or gas heating plants according to a cycle Brayton, or Stirling, or even plants that use a heat transfer fluid to produce steam in a subsequent exchange.
  • the object of the present invention relates to a receiver for a solar thermal installation, as well as to a solar thermal installation comprising said receiver.
  • the general principle of solar thermal technology is based on the concept of the concentration of solar radiation to heat a heat transfer fluid and generate electricity.
  • the collection of solar energy and its concentration is one of the biggest challenges in the development of solar thermal plants.
  • the linear concentration is easier to install, since it implies a lower number of degrees of freedom, but allows a smaller concentration factor and, therefore, it can reach lower temperatures than spot concentration technology.
  • CCP Parabolic Cylinder Concentrator
  • Tower central receiver technology is a less mature technology than that of parabolic trough collectors, but with a very high production and cost reduction potential. This technology has been installed at the prototype level since the 1980s. The first commercial plant was the PS10, which has been operating for 5 years with exceptional behavior. Currently, significant improvements are being made in terms of costs and performance that will allow this technology to be extremely competitive in the medium term.
  • the central tower receiver technology bases its operation on the use of a plurality of two-axis follow-up mirrors or heliostats that capture direct solar radiation and concentrate it on a receiver located on top of a tower. Inside this receiver circulates a fluid that is heated and used in a Brayton, Rankine or Stirling cycle to generate electricity. Eventually it is possible to store thermal energy to produce electricity even at daylight hours when there is no solar radiation (at night or during transients on cloudy days).
  • Patent documents ES85031 14, ES8506393 and WO2008012390 describe some examples of such central tower solar thermal receiver installations.
  • the central tower receiver plants have a number of drawbacks, some of which are mentioned below:
  • tower receivers configured based on tubes filled with a heat transfer fluid that is heated by the incidence of sunlight.
  • the object of the present invention is to overcome the aforementioned drawbacks and provide receivers for solar thermal plants that provide improved performance and behavior.
  • the present invention has as its first object a receiver for a thermosolar installation, wherein said receiver comprises a plurality of absorber tubes that incorporate in its interior a heat transfer fluid that can be circulated inside said absorber tubes.
  • the absorber tubes are adapted to receive radiation substantially perpendicular to their longitudinal axes.
  • the absorber tubes are arranged according to one or several modules comprising a plurality of absorber tubes arranged consecutively in an adjacent position in a direction transverse to the longitudinal axis, where the longitudinal axes of the absorber tubes of each module are contained in at least two planes, of so that the longitudinal axis of a given absorber tube is not contained in the same plane as the longitudinal axis of the immediately adjacent absorber tubes. What has just been described is equivalent to arranging the absorber tubes in at least two rows alternately, and partially superimposed in a normal direction to the planes defined by the longitudinal axes, to ensure that substantially all of the incident radiation strikes a tube.
  • the absorber tubes which are preferably cylindrical of circular section, are preferably arranged vertically, to avoid bending deformations due to the proper weight and weight of the heat transfer fluid.
  • the receiver can comprise collecting pipes, to which all the absorber tubes are connected, either in its upper part or in its lower part, in order to collect the heated heat transfer fluid in all the absorber tubes, to direct said fluid heat transfer to the heat exchanger, or directly to a turbine.
  • each of the absorber tubes is fixed to each adjacent absorber tube to prevent them from separating and the incident radiation can escape between the absorber tubes without affecting any of the said absorber tubes.
  • fasteners are clamps or welding.
  • the absorber tubes are preferably made of steel or a material of suitable conductivity and resistance.
  • the absorber tubes are preferably enclosed in transparent containers (preferably glass) subjected to vacuum, to eliminate convection losses.
  • a vacuum suitable for the purposes of the invention is a vacuum of less than 10 "7 torr.
  • at least a plurality of the absorber tubes are housed in at least one such container. In this case, it is preferred a number of rows of absorber tubes equal to two. According to another embodiment, there is a plurality of such containers adapted to each accommodate an absorber tube.
  • the containers are coaxial tubes to the absorber tubes, as well as the number of rows in which the absorber tubes are arranged, as well as the diameter of the absorber tubes and the diameter of the containers are in such a relationship that it is still ensured that, both for incidence perpendicular to the surface of the tube as in the case of a certain angular deviation from said perpendicular, the incident radiation affects an absorber tube, that is, it does not cross into the opposite half-space with respect to the absorber tubes without affecting any absorber tube.
  • the number of rows of absorber tubes is three.
  • the absorber tubes are coated with absorbent coatings capable of withstanding temperatures above 550 ° C.
  • the tubes subjected to vacuum may be coated with absorbent coatings of the TSSS type ("thickness sensitive spectrally selective coatings") of high absorptivity (95%) and low emissivity (8%), while the tubes not subjected to vacuum can be coated with coatings of type paint or of type TISS (from English "thickness insensitive spectrally selective coatings").
  • the receiver can additionally incorporate dichroic reflectors substantially more transparent to the solar spectrum than to the emission spectrum of the absorber tubes (surface temperature up to 700 ° C) such that solar radiation can pass through the reflector to a greater extent and influence the tubes absorbers to heat them, for example at about 700 ° C, as well as the radiation emitted by the tubes at 700 ° C can be further reflected by the dichroic reflector towards the tubes, increasing the absorption efficiency.
  • a solar installation equipped with a receiver like the one described above constitutes a second object of the invention.
  • the receiver of the invention is adapted to operate within said installation, comprising concentration solar collectors provided with spotlights and two-axis tracking devices, said collectors can be of many different types: in particular, they can be collectors of both type traditional (paraboloid or Fresnel lens collectors) such as advanced type, which use anidolic optics and are adapted to follow the sun directly without cosine effect.
  • concentration solar collectors provided with spotlights and two-axis tracking devices
  • said collectors can be of many different types: in particular, they can be collectors of both type traditional (paraboloid or Fresnel lens collectors) such as advanced type, which use anidolic optics and are adapted to follow the sun directly without cosine effect.
  • the solar installation may additionally comprise flexible light guides adapted to collect radiation at each of the foci at the first end and transport said radiation with the least possible loss of energy to the receiver, preferably causing the radiation to influence in a substantially normal direction. to the surface of the absorber tubes.
  • the light guides influence the radiation on the absorber tubes from opposite positions with respect to the longitudinal axes of the tubes, to avoid thermoelastic stresses on the absorber tubes.
  • the alternate arrangement of the tubes in at least two rows has the additional advantage that the radiation that falls from one side of the tubes does not cross to the opposite side, where it could damage the light guides.
  • the light guides used are guides with high numerical aperture.
  • the numerical aperture is greater than 0.48.
  • the device may preferably incorporate lenses to combine the radiation of at least one set of light guides into at least one combined light guide.
  • the installation of the invention additionally incorporates a receiver ship, which houses the receiver, where the light guides arrive.
  • a receiver ship which houses the receiver, where the light guides arrive.
  • this configuration has the particularity that the receivers are located in a construction that is arranged substantially at ground level, and not at the top of the tower, with cost savings and in simplicity that entails.
  • the solar thermal installation of the invention can operate in accordance with any of the known technologies.
  • the heat transfer fluid of the receiver tubes can be so much air, the installation being adapted to operate according to a Brayton cycle; as water, the installation being adapted to operate according to a Rankine cycle; as helium or hydrogen, the installation being adapted to operate according to a cycle Stirling, like a salt, the installation being equipped with an exchanger to exchange heat of the salt with water and operate according to a Rankine cycle.
  • the installation of the invention may additionally incorporate storage means for temporarily storing heat transfer fluid energy not yet transformed into electricity.
  • the storage media can be: hot air (in the case of the Brayton cycle), saturated compressed steam (in the case of the Rankine cycle with water), or high temperature salts (in the case of the cycle Rankine with salt).
  • Figure 1 Shows a schematic representation of a solar thermal installation according to the invention.
  • Figure 2. Shows a schematic plan view of a second embodiment of the receiver, which includes first containers subjected to vacuum to each house a plurality of absorber tubes.
  • Figure 3. Shows a schematic plan view of the embodiment of Figure 3, which additionally includes dichroic reflectors.
  • Figure 4.- Shows a schematic plan view of a third embodiment of the receiver, which includes vessels subjected to vacuum to each house an absorber tube.
  • Figure 5. Shows a schematic plan view of the embodiment of Figure 5, which additionally includes dichroic reflectors.
  • the solar thermal installation according to the invention is shown in Figure 1 and comprises concentration solar collectors (1 1) equipped with spotlights (not shown) and tracking devices (not shown) on two axes.
  • the installation additionally comprises a receiver (1) which in turn incorporates a plurality of absorber tubes (2) (see figures 2 to 6) that incorporate in its interior a heat transfer fluid that can be circulated inside said absorber tubes ( 2).
  • the absorber tubes (2) are cylindrical of circular section and are arranged vertically according to one or more modules comprising a plurality of absorber tubes (2) arranged consecutively in an adjacent position according to a direction transverse to the axis longitudinal, where the longitudinal axes of the absorber tubes (2) of each module are contained in at least two planes, so that the longitudinal axis of a particular absorber tube (2) is not contained in the same plane as the longitudinal axis of the absorber tubes (2) immediately adjacent.
  • What has just been described is equivalent to arranging the absorber tubes (2) in at least two rows (3, 6) alternately, and partially superimposed in the normal direction to the planes defined by the longitudinal axes, to ensure that substantially all the incident radiation falls on some absorber tube (2).
  • the absorber tubes (2) are made of steel or a material of suitable conductivity and resistance, as well as are waxed in glass containers (4, 5) subjected to a vacuum of 10 ⁇ 7 torr type. According to a first embodiment, one or several such first containers (4) each house a plurality of absorber tubes (2), where the absorber tubes (2) are arranged in two first rows (3). According to a second embodiment, the containers (5) are second tubular and coaxial containers (5) with the absorber tubes (2), where each absorber tube (2) is housed in a second container (5). The absorber tubes (2) are arranged in three second rows (6).
  • the receiver (1) additionally incorporates dichroic reflectors (7), such that solar radiation can pass through said dichroic reflectors (7) to a greater extent and influence the absorber tubes (2) to heat them, as well as the radiation emitted by the Absorber tubes (2) can be further reflected by the dichroic reflectors (7) towards said absorber tubes (2), increasing the absorption performance.
  • the solar installation additionally incorporates two flexible light guides (8) adapted to collect radiation from each of the concentrator elements at the first end (not shown) and transport said radiation with the least possible loss of energy to the receiver. (1), by causing said radiation through a second end (12) opposite the first end on the absorber tubes (2) in a substantially normal direction to the surface of said absorber tubes (2).
  • the light guides (8) influence the radiation on the absorber tubes (2) from opposite positions with respect to the longitudinal axes of the tubes absorbers (8).
  • the light guides (8) used are of high numerical aperture, in particular of the PCF type.
  • the installation incorporates lenses (14) to combine the radiation of at least one set of light guides (8) into at least one combined guide (15).
  • combined guides (15), etc. can be combined in the same way.
  • the installation of the invention additionally comprises a vessel (not shown) of receivers, which houses the receiver (1), where the light guides (8) and / or where appropriate, the combined guides (15), where the receivers (1) are located substantially at ground level.
  • the installation additionally incorporates storage means (16) to temporarily store heat transfer fluid energy not yet transformed into electricity.
  • Part of the guides (8, 15) can be directed to the storage means (16), for the heating of the working fluid, or part of said fluid coming from the receiver (1) can be stored for later use.
  • the storage media (16) can be:
  • the heat transfer fluid of the absorber tubes (2) is air or gas that feeds a gas turbine (not shown) according to a Brayton or Stirling cycle;
  • the heat transfer fluid of the absorber tubes is water that transformed into steam feeds a steam turbine (not shown) according to a cycle Rankine, or so that the heat transfer fluid is a liquid salt that heats, through an exchanger (not shown), water for the same purpose;

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Photovoltaic Devices (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Proporciona un receptor solar con mayor rendimiento que un receptor central de torre. Comprende una pluralidad de tubos absorbedores (2), para absorber energía incidente desde unas guías de luz (8), adaptadas para captar radiación solar en unos focos de colectores solares (11) de concentración, dispuestos los tubos absorbedores (2) consecutivamente y en paralelo en posición adyacente respecto de una dirección transversal al eje longitudinal de los tubos absorbedores (2), que incorporan en su interior un fluido caloportador circulante, donde los ejes longitudinales están contenidos en al menos dos planos, definiéndose al menos dos filas (3, 6) de tubos absorbedores (2) dispuestas de manera alternada, y parcialmente superpuestas. Adicionalmente comprende unos recipientes (4, 5) sometidos a vacío para encerrar los tubos absorbedores (2) y reducir las pérdidas por convección.

Description

RECEPTOR PARA UNA INSTALACIÓN TERMOSOLAR E INSTALACIÓN TERMOSOLAR QUE COMPRENDE DICHO RECEPTOR
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se puede incluir dentro del campo técnico de la tecnología termosolar, en concreto, en el campo de las plantas termosolares, ya sean plantas de producción directa de vapor para ciclo Rankine, así como plantas de calentamiento de aire o gas según un ciclo Brayton, o Stirling, o incluso plantas que emplean un fluido caloportador para producir vapor en un intercambio posterior.
El objeto de la presente invención se refiere a un receptor para una instalación termosolar, así como a una instalación termosolar que comprende dicho receptor.
ANTECEDENTES DE LA INVENCIÓN
El principio general de la tecnología termosolar está basado en el concepto de la concentración de la radiación solar para calentar un fluido caloportador y generar electricidad.
La captación de energía solar y su concentración es uno de los mayores retos en el desarrollo de plantas termosolares. Existen principalmente dos tipos de tecnologías de concentradores: la concentración puntual y la concentración lineal. La concentración lineal es más fácil de instalar, ya que implica un menor número de grados de libertad, pero permite un factor de concentración menor y, por tanto, puede alcanzar menores temperaturas que la tecnología de concentración puntual.
Dentro de los concentradores puntuales se distinguen los Concentradores de Disco Parabólicos y las Centrales de Torre, así como dentro de la tecnología lineal, el Concentrador Cilindro Parabólico (CCP) es el sistema de concentración más maduro y ahora empiezan a surgir los nuevos Colectores Lineales tipo Fresnel (CLF).
La tecnología de receptor central de torre es una tecnología menos madura que la de los colectores cilindro parabólicos, pero con un potencial de producción y de reducción de costes muy alto. Esta tecnología lleva siendo instalada a nivel de prototipo desde los años 80. La primera planta comercial fue la PS10, que lleva operando 5 años con un comportamiento excepcional. Actualmente se están desarrollando importantes mejoras a nivel de costes y rendimientos que permitirán que esta tecnología sea extremadamente competitiva a medio plazo.
La tecnología de receptor central de torre basa su funcionamiento en el uso de una pluralidad de espejos seguidores de dos ejes o heliostatos que captan la radiación solar directa y la concentran en un receptor situado en lo alto de una torre. Por el interior de este receptor circula un fluido que es calentado y utilizado en un ciclo Brayton, Rankine o Stirling para generar electricidad. Eventualmente es posible almacenar la energía térmica para producir electricidad incluso en las horas del día en las que no hay radiación solar (por la noche o durante transitorios en días nublados).
Los documentos de patente ES85031 14, ES8506393 y WO2008012390 describen algunos ejemplos de dichas instalaciones termosolares de tipo receptor central de torre. Las plantas de receptor central de torre presentan una serie de inconvenientes, algunos de los cuales se mencionan seguidamente:
- el elevado coste de la instalación debido a la necesidad de disponer el receptor en lo alto de la torre;
- rendimiento reducido debido a una serie de efectos ópticos y geométricos relacionados con el hecho de que los rayos solares no inciden paralelos a los ejes ópticos de los heliostatos, de manera que la eficiencia de la planta queda penalizada por el denominado efecto coseno, que se puede mitigar aumentando la altura de la torre, lo cual produce un encarecimiento de la instalación, tal como se ha comentado anteriormente;
- dificultades en proporcionar en el receptor una distribución de irradiancia sustancialmente uniforme; y
- el número de heliostatos de un campo se ve reducido porque dichos heliostatos no se pueden disponer a grandes distancias de la torre, debido a que se generan pérdidas por transmisividad atmosférica y desbordamiento del receptor, en este último caso, debido a que un helióstato muy alejado de la torre genera en el receptor una mancha demasiando amplia, con lo cual la concentración de energía disminuye sensiblemente.
Adicionalmente, en los documentos mencionados se describen receptores de torre configurados a base de tubos rellenos de un fluido caloportador que se calienta por incidencia de la luz solar.
El objeto de la presente invención consiste en salvar los inconvenientes mencionados y proporcionar receptores para plantas termosolares que proporcionen rendimiento y comportamiento mejorados.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención tiene como primer objeto un receptor para una instalación termosolar, donde dicho receptor comprende una pluralidad de tubos absorbedores que incorporan en su interior un fluido caloportador que se puede hacer circular por el interior de dichos tubos absorbedores. Los tubos absorbedores están adaptados para recibir la radiación de manera sustancialmente perpendicular a sus ejes longitudinales. Los tubos absorbedores están dispuestos según uno o varios módulos que comprenden una pluralidad de tubos absorbedores dispuestos consecutivamente en posición adyacente según una dirección transversal al eje longitudinal, donde los ejes longitudinales de los tubos absorbedores de cada módulo están contenidos en al menos dos planos, de modo que el eje longitudinal de un tubo absorbedor determinado no está contenido en el mismo plano que el eje longitudinal de los tubos absorbedores inmediatamente contiguos. Lo que se acaba de describir es equivalente a disponer los tubos absorbedores en al menos dos filas de manera alternada, y parcialmente superpuestas en dirección normal a los planos definidos por los ejes longitudinales, para asegurarse de que sustancialmente toda la radiación incidente incide sobre algún tubo absorbedor.
Los tubos absorbedores, que son preferentemente cilindricos de sección circular, están dispuestos de manera preferente en vertical, para evitar deformaciones de flexión debido al peso propio y al peso del fluido caloportador. Asimismo, el receptor puede comprender tuberías colectoras, a las cuales están conectados todos los tubos absorbedores, ya sea en su parte superior o en su parte inferior, con el fin de recolectar el fluido caloportador calentado en todos los tubos absorbedores, para dirigir dicho fluido caloportador al intercambiador de calor, o bien directamente a una turbina.
De manera preferente, cada uno de los tubos absorbedores está fijado a cada tubo absorbedor adyacente para evitar que se separen y la radiación incidente pueda escapar entre los tubos absorbedores sin incidir en ninguno de dichos tubos absorbedores. Ejemplos de fijaciones son abrazaderas o soldadura.
Los tubos absorbedores están preferentemente fabricados en acero o en un material de conductividad y resistencia adecuadas.
Los tubos absorbedores están preferentemente encerrados en unos recipientes transparentes (preferentemente de vidrio) sometidos a vacío, para eliminar pérdidas por convección. Un vacío adecuado para los propósitos de la invención es un vacío inferior a 10 "7 torr. De acuerdo con una primera realización, al menos una pluralidad de los tubos absorbedores están alojados en al menos uno de tales recipientes. En este caso, se prefiere un número de filas de tubos absorbedores igual a dos. De acuerdo con otra realización, existe una pluralidad de tales recipientes adaptados para alojar cada uno a un tubo absorbedor. De acuerdo con dicha segunda realización, los recipientes son tubos coaxiales a los tubos absorbedores, así como el número de filas en que se disponen los tubos absorbedores, al igual que el diámetro de los tubos absorbedores y el diámetro de los recipientes están en una relación tal que se sigue asegurando que, tanto para incidencia perpendicular a la superficie del tubo como para el caso de cierta desviación angular respecto de dicha perpendicular la radiación incidente incide sobre algún tubo absorbedor, es decir, no atraviesa hacia el semiespacio opuesto respecto de los tubos absorbedores sin incidir en algún tubo absorbedor. De manera preferente, el número de filas de tubos absorbedores es tres.
De manera preferente, los tubos absorbedores están recubiertos con recubrimientos absorbentes capaces de soportar temperaturas superiores a 550 °C. A modo de ejemplo, los tubos sometidos a vacío pueden estar recubiertos con recubrimientos absorbentes de tipo TSSS (del inglés "thickness sensitive spectrally selective coatings") de alta absortividad (95%) y baja emisividad (8%), mientras que los tubos no sometidos a vacío pueden estar recubiertos con recubrimientos de tipo pintura o de tipo TISS (del inglés "thickness insensitive spectrally selective coatings").
El receptor puede incorporar adicionalmente reflectores dicroicos sustancialmente más transparentes al espectro solar que al espectro de emisión de los tubos absorbedores (temperatura superficial de hasta 700 °C) de tal manera que la radiación solar puede atravesar en mayor medida el reflector e incidir sobre los tubos absorbedores para calentarlos, por ejemplo a unos 700 °C, así como la radiación emitida por los tubos a 700°C puede ser en mayor medida reflejada por el reflector dicroico hacia los tubos, aumentando el rendimiento de la absorción.
Una instalación solar dotada de un receptor como el anteriormente descrito constituye un segundo objeto de la invención.
El receptor de la invención está adaptado para funcionar dentro de dicha instalación, que comprende colectores solares de concentración dotados de focos y de dispositivos de seguimiento en dos ejes, dichos colectores pueden ser de muy diversos tipos: en particular, pueden ser colectores tanto de tipo tradicional (colectores paraboloides o de lente de Fresnel) como de los de tipo avanzado, que emplean óptica anidólica y que están adaptados para seguir el sol directamente sin efecto coseno.
La instalación solar puede comprender adicionalmente sendas guías de luz flexibles adaptadas para recoger por un primer extremo la radiación en cada uno de los focos y transportar dicha radiación con la menor pérdida de energía posible hacia el receptor, preferentemente haciendo incidir la radiación en dirección sustancialmente normal a la superficie de los tubos absorbedores. De manera preferente, las guías de luz hacen incidir la radiación sobre los tubos absorbedores desde posiciones opuestas respecto de los ejes longitudinales de los tubos, para evitar esfuerzos termoelásticos sobre los tubos absorbedores. En este caso, la disposición alternada de los tubos en al menos dos filas presenta la ventaja adicional de que la radiación que incide desde un lado de los tubos no atraviesa hacia el lado opuesto, donde podría dañar las guías de luz.
De manera preferente, las guías de luz empleadas son guías de alta apertura numérica. En particular, de modo preferente, la apertura numérica es superior a 0.48. Especialmente preferentes son las guías de luz de tipo
PCF.
Con el fin de obtener mayor irradiancia, el dispositivo puede incorporar de manera preferente lentes para combinar la radiación de al menos un conjunto de guías de luz en al menos una guía de luz combinada.
Así mismo, se pueden combinar de igual modo guías combinadas, etc.
Preferentemente, la instalación de la invención incorpora adicionalmente una nave de receptores, que aloja el receptor, a donde llegan las guías de luz. De manera ventajosa respecto de las plantas con receptor central de torre, esta configuración tiene la particularidad de que los receptores están ubicados en una construcción que está dispuesta sustancialmente a ras de suelo, y no en lo alto de la torre, con el ahorro en costes y en simplicidad que ello conlleva. La instalación termosolar de la invención puede funcionar de acuerdo con cualquiera de las tecnologías conocidas. De este modo, el fluido caloportador de los tubos del receptor puede ser tanto aire, estando la instalación adaptada para funcionar según un ciclo Brayton; como agua, estando la instalación adaptada para funcionar según un ciclo Rankine; como helio o hidrógeno estando la instalación adaptada para funcionar según un ciclo Stirling, como una sal, estando la instalación dotada de un intercambiador para intercambiar calor de la sal con agua y funcionar según un ciclo Rankine.
La instalación de la invención puede incorporar adicionalmente unos medios de almacenamiento para almacenar temporalmente energía del fluido caloportador aún no transformada en electricidad. En función del tipo de instalación, los medios de almacenamiento pueden ser: aire caliente (para el caso de ciclo Brayton), vapor saturado comprimido (para el caso de ciclo Rankine con agua), o sales a alta temperatura (para el caso de ciclo Rankine con sal).
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 .- Muestra una representación esquemática de una instalación termosolar de acuerdo con la invención.
Figura 2.- Muestra una vista esquemática en planta de una segunda realización del receptor, que incluye unos primeros recipientes sometidos a vacío para alojar cada uno una pluralidad de tubos absorbedores.
Figura 3.- Muestra una vista esquemática en planta de la realización de la figura 3, que incluye adicionalmente reflectores dicroicos.
Figura 4.- Muestra una vista esquemática en planta de una tercera realización del receptor, que incluye recipientes sometidos a vacío para alojar cada uno un tubo absorbedor.
Figura 5.- Muestra una vista esquemática en planta de la realización de la figura 5, que incluye adicionalmente reflectores dicroicos.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Seguidamente se realiza una descripción de una realización preferente de la invención con ayuda de las figuras 1 a 5 adjuntas.
La instalación termosolar de acuerdo con la invención se muestra en la figura 1 y comprende colectores (1 1 ) solares de concentración dotados de focos (no representados) y de dispositivos de seguimiento (no representados) en dos ejes. La instalación comprende adicionalmente un receptor (1 ) que a su vez incorpora una pluralidad de tubos absorbedores (2) (ver figuras 2 a 6) que incorporan en su interior un fluido caloportador que se puede hacer circular por el interior de dichos tubos absorbedores (2).
Siguiendo con las figuras 2 a 5, los tubos absorbedores (2) son cilindricos de sección circular y están dispuestos en vertical según uno o varios módulos que comprenden una pluralidad de tubos absorbedores (2) dispuestos consecutivamente en posición adyacente según una dirección transversal al eje longitudinal, donde los ejes longitudinales de los tubos absorbedores (2) de cada módulo están contenidos en al menos dos planos, de modo que el eje longitudinal de un tubo absorbedor (2) determinado no está contenido en el mismo plano que el eje longitudinal de los tubos absorbedores (2) inmediatamente contiguos. Lo que se acaba de describir es equivalente a disponer los tubos absorbedores (2) en al menos dos filas (3, 6) de manera alternada, y parcialmente superpuestas en dirección normal a los planos definidos por los ejes longitudinales, para asegurarse de que sustancialmente toda la radiación incidente incide sobre algún tubo absorbedor (2).
Los tubos absorbedores (2) están fabricados en acero o en un material de conductividad y resistencia adecuadas, así como están encerados en unos recipientes (4, 5) de vidrio sometidos a un vacío de tipo 10~7 torr. De acuerdo con una primera realización, uno o varios de tales primeros recipientes (4) alojan cada uno una pluralidad de tubos absorbedores (2), donde los tubos absorbedores (2) están dispuestos en dos primeras filas (3). De acuerdo con una segunda realización, los recipientes (5) son segundos recipientes (5) tubulares y coaxiales con los tubos absorbedores (2), donde cada tubo absorbedor (2) está alojado en un segundo recipiente (5). Los tubos absorbedores (2) se disponen en tres segundas filas (6).
El receptor (1 ) incorpora adicionalmente reflectores dicroicos (7), de tal manera que la radiación solar puede atravesar en mayor medida dichos reflectores dicroicos (7) e incidir sobre los tubos absorbedores (2) para calentarlos, así como la radiación emitida por los tubos absorbedores (2) puede ser en mayor medida reflejada por los reflectores dicroicos (7) hacia dichos tubos absorbedores (2), aumentando el rendimiento de la absorción.
La instalación solar incorpora adicionalmente sendas guías de luz (8) flexibles adaptadas para recoger por un primer extremo (no representado) la radiación en cada uno de los focos de los elementos concentradores y transportar dicha radiación con la menor pérdida de energía posible hacia el receptor (1 ), haciendo incidir dicha radiación a través de un segundo extremo (12) opuesto al primer extremo sobre los tubos absorbedores (2) en dirección sustancialmente normal a la superficie de dichos tubos absorbedores (2). Las guías de luz (8) hacen incidir la radiación sobre los tubos absorbedores (2) desde posiciones opuestas respecto de los ejes longitudinales de los tubos absorbedores (8).
Las guías de luz (8) empleadas son de alta apertura numérica, en particular de tipo PCF.
Con el fin de obtener mayor irradiancia, la instalación incorpora lentes (14) para combinar la radiación de al menos un conjunto de guías de luz (8) en al menos una guía combinada (15). Asimismo, se pueden combinar de igual modo guías combinadas (15), etc.
La instalación de la invención comprende adicionalmente una nave (no mostrada) de receptores, que aloja el receptor (1 ), a donde llegan las guías de luz (8) y/o en su caso, las guías combinadas (15), donde los receptores (1 ) están ubicados sustancialmente a ras de suelo.
La instalación incorpora adicionalmente unos medios de almacenamiento (16) para almacenar temporalmente energía del fluido caloportador aún no transformada en electricidad. Parte de las guías (8, 15) pueden ser dirigidas a los medios de almacenamiento (16), para el calentamiento del fluido de trabajo, o bien parte del dicho fluido proveniente del receptor (1 ) puede ser almacenado para su posterior uso.
En función del tipo de instalación, los medios de almacenamiento (16) pueden ser:
- tanques de aire/gas caliente, para el caso de que el fluido caloportador de los tubos absorbedores (2) sea aire o gas que alimenta una turbina de gas (no mostrada) según un ciclo Brayton o Stirling;
- tanques de vapor de agua saturado comprimido, para el caso de que el fluido caloportador de los tubos absorbedores sea agua que transformada en vapor alimenta una turbina de vapor (no mostrada) según un ciclo Rankine, o para que el fluido caloportador sea una sal líquida que calienta, a través de un intercambiador (no mostrado), agua con el mismo fin;
- sales a alta temperatura (para el caso de que el fluido caloportador sea una sal para un ciclo Rankine).

Claims

R E I V I N D I C A C I O N E S
1 . - Receptor (1 ) para una instalación termosolar, que comprende una pluralidad de tubos absorbedores (2), para absorber energía incidente sobre dichos tubos absorbedores (2) proveniente de radiación solar, dispuestos según uno o varios módulos que incluyen una pluralidad de dichos tubos absorbedores (2) dispuestos consecutivamente y en paralelo en posición adyacente respecto de una dirección transversal al eje longitudinal de los tubos absorbedores (2), que incorporan en su interior un fluido caloportador que se puede hacer circular por el interior de dichos tubos absorbedores (2), donde los ejes longitudinales de los tubos absorbedores (2) de cada módulo están contenidos en al menos dos planos, de modo que el eje longitudinal de un tubo absorbedor (2) determinado no está contenido en el mismo plano que el eje longitudinal de los tubos absorbedores (2) inmediatamente contiguos, definiéndose al menos dos filas (3, 6) de tubos absorbedores (2) dispuestas de manera alternada, y parcialmente superpuestas en dirección normal a dichos planos definidos por los ejes longitudinales de los tubos absorbedores (2), de manera que sustancialmente toda la radiación incidente incide sobre alguno de los tubos absorbedores (2), caracterizado porque los tubos absorbedores (2) están incluidos en recipientes (4, 5) transparentes sometidos a vacío.
2. - Receptor (1 ) para una instalación termosolar, de acuerdo con la reivindicación 1 , caracterizada porque comprende al menos un primer recipiente (4) sometido a vacío adaptado para alojar al menos una pluralidad de tubos absorbedores (2).
3. - Receptor (1 ) para una instalación termosolar, de acuerdo con una cualquiera de las reivindicaciones 1 o 2, caracterizada porque comprende dos primeras filas (3) de tubos absorbedores (2).
4. - Receptor (1 ) para una instalación termosolar, de acuerdo con una cualquiera de las reivindicaciones 1 o 2, caracterizada porque al menos un tubo absorbedor (2) está encerrado en un segundo recipiente (5) individual sometido a vacío.
5. - Receptor (1 ) para una instalación termosolar, de acuerdo con la reivindicación 4, caracterizado porque el segundo recipiente (5) es tubular, fabricado en vidrio, de sección circular, coaxial respecto de su tubo absorbedor (2) correspondiente.
6. - Receptor (1 ) para una instalación termosolar, de acuerdo con una cualquiera de las reivindicaciones 4 o 5, caracterizado porque el diámetro de los tubos absorbedores (2), las dimensiones de la sección de los recipientes (4, 5) y el número de filas (3, 6) de tubos absorbedores (2) están relacionados de tal manera que sustancialmente la totalidad de la radiación incidente incide en alguno de los tubos absorbedores (2), no atravesando dicha radiación hacia el semiespacio opuesto respecto de los tubos absorbedores sin incidir en algún tubo absorbedor.
7.- Receptor (1 ) para una instalación termosolar, de acuerdo con una cualquiera de las reivindicaciones 4 a 6, caracterizado porque el número de filas (3, 6) de tubos absorbedores (2) es tres.
8.- Receptor (1 ) para una instalación termosolar, de acuerdo con la reivindicación 1 , caracterizado porque incorpora adicionalmente al menos un reflector dicroico (7) sustancialmente más transparentes al espectro solar que al espectro de emisión de los tubos absorbedores (2), de tal manera que la radiación solar puede atravesar en mayor medida el reflector dicroico (7) e incidir sobre los tubos absorbedores (2) para calentarlos, así como la radiación emitida por los tubos absorbedores (2) puede ser en mayor medida reflejada por el reflector dicroico (7) de vuelta hacia los tubos absorbedores (2), aumentando el rendimiento de la absorción.
9. - Instalación termosolar que comprende al menos un colector solar de concentración, dotados de sendos focos, para concentrar la radiación solar en dicho foco, caracterizada porque comprende adicionalmente el receptor (1 ) descrito en una cualquiera de las reivindicaciones 1 a 8.
10. - Instalación termosolar de acuerdo con la reivindicación 9, caracterizada porque comprende adicionalmente sendas guías de luz (8) flexibles adaptadas para recoger por un primer extremo la radiación en cada uno de los focos y transportar dicha radiación hacia el receptor (1 ), haciendo incidir dicha radiación sobre el receptor (1 ).
1 1 . - Instalación termosolar de acuerdo con la reivindicación 10, caracterizada porque las guías de luz (8) están adaptadas para hacer incidir la radiación sobre los tubos absorbedores (2) del receptor (1 ) de manera sustancialmente perpendicular a la superficie exterior de los tubos absorbedores (2).
12. - Instalación termosolar de acuerdo con una cualquiera de las reivindicaciones 10 y 1 1 , caracterizada porque las guías de luz (8) están adaptadas para hacer incidir la radiación sobre los tubos absorbedores (2) desde posiciones opuestas respecto de los ejes longitudinales de los tubos absorbedores (2), para evitar esfuerzos termoelásticos en los tubos absorbedores (2).
13.- Instalación termosolar de acuerdo con la reivindicación 10, caracterizada porque las guías de luz (8) están dotadas de una apertura numérica superior a 0.48.
14. - Instalación termosolar de acuerdo con una cualquiera de las reivindicaciones 10 a 13, caracterizada porque incorpora adicionalmente lentes (14) para combinar la radiación de al menos un conjunto de guías de luz (8) en al menos una guía combinada (15).
15. - Instalación termosolar de acuerdo con la reivindicación 9, caracterizada porque el receptor (1 ) está adaptado para transformar en energía eléctrica la energía del fluido caloportador según al menos un ciclo seleccionado de una lista que consiste en:
- Ciclo Brayton,
- Ciclo Rankine, y
- Ciclo Stirling.
16. - Instalación termosolar de acuerdo con la reivindicación 9 caracterizada porque comprende adicionalmente unos medios de almacenamiento (16) para almacenar temporalmente energía del fluido caloportador aún no transformada en electricidad.
17. - Instalación termosolar de acuerdo con la reivindicación 16, caracterizada porque los medios de almacenamiento (16) se seleccionan entre al menos uno de una lista que consiste en:
- tanques de aire/gas caliente, para almacenar fluido caloportador en forma de aire o gas que alimenta una turbina de gas según un ciclo Brayton o Stirling;
- tanques de vapor de agua saturado comprimido, para el caso de que el fluido caloportador de los tubos absorbedores sea agua para, transformada en vapor, alimentar una turbina de vapor según un ciclo Rankine, o para el caso de que el fluido caloportador sea una sal líquida para calentar, a través de un intercambiador, agua con el mismo fin;
- sales a alta temperatura, para el caso de que el fluido caloportador sea una sal empleada en un ciclo Rankine.
18.- Instalación termosolar de acuerdo con una cualquiera de las reivindicaciones 16 o 17, caracterizada porque al menos una parte de las guías de luz (8) están adaptadas para calentar el fluido caloportador almacenado en los medios de almacenamiento.
19.- Instalación termosolar de acuerdo con una cualquiera de las reivindicaciones 10 o 14, caracterizada porque comprende adicionalmente una nave de receptores, para alojar el receptor (1 ), donde a dicha nave llegan las guías (8, 15), así como los receptores (1 ) están ubicados sustancialmente a ras de suelo en el interior de la nave.
PCT/ES2012/070479 2011-07-05 2012-06-28 Receptor para una instalación termosolar e instalación termosolar que comprende dicho receptor WO2013004869A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12806992.9A EP2730855A4 (en) 2011-07-05 2012-06-28 RECIPIENT FOR A THERMOSOLAR SYSTEM AND THERMOSOLAR SYSTEM WITH SUCH A RECEIVER
US14/130,551 US20140238018A1 (en) 2011-07-05 2012-06-28 Receiver for a solar thermal installation and solar thermal installation that includes said receiver
MX2014000147A MX2014000147A (es) 2011-07-05 2012-06-28 Receptor para una instalacion termosolar e instalacion termosolar que comprende dicho receptor.
CN201280033306.6A CN103703325A (zh) 2011-07-05 2012-06-28 用于太阳热能设备的接收器和包括所述接收器的太阳热能设备
ZA2014/00261A ZA201400261B (en) 2011-07-05 2014-01-13 Receiver for a thermosolar installation and thermosolar installation comprising said receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201131141A ES2400647B1 (es) 2011-07-05 2011-07-05 Receptor para una instalación termosolar e instalación termosolar que comprende dicho receptor
ESP201131141 2011-07-05

Publications (1)

Publication Number Publication Date
WO2013004869A1 true WO2013004869A1 (es) 2013-01-10

Family

ID=47436564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070479 WO2013004869A1 (es) 2011-07-05 2012-06-28 Receptor para una instalación termosolar e instalación termosolar que comprende dicho receptor

Country Status (8)

Country Link
US (1) US20140238018A1 (es)
EP (1) EP2730855A4 (es)
CN (1) CN103703325A (es)
CL (1) CL2013003718A1 (es)
ES (1) ES2400647B1 (es)
MX (1) MX2014000147A (es)
WO (1) WO2013004869A1 (es)
ZA (1) ZA201400261B (es)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116225A (en) * 1977-07-07 1978-09-26 Corning Glass Works Solar energy collector
JPS5694159A (en) * 1979-12-27 1981-07-30 Agency Of Ind Science & Technol Flat vacuum solar heat collector
ES8503114A1 (es) 1982-10-14 1985-02-01 Babcock & Wilcox Co Un dispositivo de panel de tubos, particularmente para generacion de vapor por energia solar
ES8506393A1 (es) 1982-10-14 1985-07-01 Babcock & Wilcox Co Un receptor solar para recibir energia de radiacion solar
DE202006012734U1 (de) * 2006-08-17 2006-12-28 Söhn, Stefan Röhrenkollektoranordnung
WO2008012390A1 (es) 2006-07-28 2008-01-31 Universidad Politécnica de Madrid Caldera de energía solar
JP2010181045A (ja) * 2009-02-03 2010-08-19 Mitaka Koki Co Ltd 太陽集光装置用の受光管
US20110067687A1 (en) * 2009-09-24 2011-03-24 Genie Lens Technologies, Llc Tracking Fiber Optic Wafer Concentrator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233957A (en) * 1978-02-16 1980-11-18 Corning Glass Works Solar energy collector
US4210126A (en) * 1978-03-09 1980-07-01 Corning Glass Works Solar energy collector
US4416264A (en) * 1980-10-29 1983-11-22 General Electric Company Solar heat collector
DE4442502C2 (de) * 1994-11-30 1996-11-21 Schubert Frank Werner Vakuum- Flachkollektor
CN1330252A (zh) * 2001-07-17 2002-01-09 高洪仁 多用太阳能空调器
ES2327991B1 (es) * 2006-08-04 2010-07-15 Abengoa Solar New Technologies, S.A. Planta de concentracion solar.
DE102006038560A1 (de) * 2006-08-17 2008-02-21 Söhn, Stefan Röhrenkollektoranordnung
US20090084374A1 (en) * 2007-06-13 2009-04-02 Mills David R Solar energy receiver having optically inclined aperture
RU2010118461A (ru) * 2007-10-09 2011-11-20 Актма Холдинг Б.В. (Nl) Световодная система

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116225A (en) * 1977-07-07 1978-09-26 Corning Glass Works Solar energy collector
JPS5694159A (en) * 1979-12-27 1981-07-30 Agency Of Ind Science & Technol Flat vacuum solar heat collector
ES8503114A1 (es) 1982-10-14 1985-02-01 Babcock & Wilcox Co Un dispositivo de panel de tubos, particularmente para generacion de vapor por energia solar
ES8506393A1 (es) 1982-10-14 1985-07-01 Babcock & Wilcox Co Un receptor solar para recibir energia de radiacion solar
WO2008012390A1 (es) 2006-07-28 2008-01-31 Universidad Politécnica de Madrid Caldera de energía solar
DE202006012734U1 (de) * 2006-08-17 2006-12-28 Söhn, Stefan Röhrenkollektoranordnung
JP2010181045A (ja) * 2009-02-03 2010-08-19 Mitaka Koki Co Ltd 太陽集光装置用の受光管
US20110067687A1 (en) * 2009-09-24 2011-03-24 Genie Lens Technologies, Llc Tracking Fiber Optic Wafer Concentrator

Also Published As

Publication number Publication date
US20140238018A1 (en) 2014-08-28
ES2400647A1 (es) 2013-04-11
EP2730855A1 (en) 2014-05-14
CN103703325A (zh) 2014-04-02
CL2013003718A1 (es) 2014-08-08
MX2014000147A (es) 2014-04-25
ES2400647B1 (es) 2014-04-30
ZA201400261B (en) 2014-10-29
EP2730855A4 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
ES2745116T3 (es) Sistema colector de energía solar
ES2646926T3 (es) Colector solar para caldera de calor solar, y caldera de calor solar de tipo torre equipada con el mismo
ES2734191T3 (es) Concentrador parabólico de doble etapa
ES2375389B1 (es) Planta de concentración solar tipo fresnel con reconcentrador secundario optimizado.
ES2274693B1 (es) Central energetica de energia alternativa.
WO2013004870A1 (es) Planta solar
US20110265783A1 (en) solar energy collecting system
US20110220094A1 (en) Secondary reflector for linear fresnel reflector system
ES2715612T3 (es) Elemento de captación y concentración de la radiación solar directa
Sen et al. Linear Fresnel mirror solar concentrator with tracking
US20140332054A1 (en) Solar collector having a pivotable concentrator arrangement
ES2401755T3 (es) Colector de canaleta parabólica de foco fijo
WO2008012390A1 (es) Caldera de energía solar
CN206626824U (zh) 太阳能聚光器
ES2525196A1 (es) Receptor solar de torre tubular aislado a las pérdidas energéticas por radiación
ES2400647B1 (es) Receptor para una instalación termosolar e instalación termosolar que comprende dicho receptor
ES2966702T3 (es) Receptor de calor para energía solar concentrada urbana
ES2381698B1 (es) Colector solar con receptor multitubular, plantas termosolares que contienen dicho colector y método de operación de dichas plantas.
ES2411282B1 (es) Configuración de los receptores en plantas de concentración solar de torre.
ES2636800B1 (es) Planta de generación de energía por aprovechamiento de energía solar
ES2950333T3 (es) Central solar
KR101847632B1 (ko) 원추형 반사판을 이용한 태양광열 복합 시스템
ES2770726T3 (es) Sistemas y métodos de generación de energía a partir de radiación solar
ES2320402A1 (es) Colector de calor solar con concentrador directo por lente fresnel y proteccion por tubo de doble pared con vacio interior.
KR20120007684A (ko) 고정식반사태양열집열장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12806992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013003718

Country of ref document: CL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/000147

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012806992

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14130551

Country of ref document: US