WO2013004533A1 - Composition consistant en un oxyde mixte de cerium et de zirconium a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse - Google Patents

Composition consistant en un oxyde mixte de cerium et de zirconium a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse Download PDF

Info

Publication number
WO2013004533A1
WO2013004533A1 PCT/EP2012/062222 EP2012062222W WO2013004533A1 WO 2013004533 A1 WO2013004533 A1 WO 2013004533A1 EP 2012062222 W EP2012062222 W EP 2012062222W WO 2013004533 A1 WO2013004533 A1 WO 2013004533A1
Authority
WO
WIPO (PCT)
Prior art keywords
precipitate
composition according
reactor
cerium
calcination
Prior art date
Application number
PCT/EP2012/062222
Other languages
English (en)
Inventor
Simon Ifrah
Lama ITANI
Julien Hernandez
Dominique Horbez
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations filed Critical Rhodia Operations
Priority to CN201280032907.5A priority Critical patent/CN103635430A/zh
Priority to RU2014103634/05A priority patent/RU2014103634A/ru
Priority to EP12729614.3A priority patent/EP2729415A1/fr
Priority to KR1020137034924A priority patent/KR20140031954A/ko
Priority to CA2838454A priority patent/CA2838454A1/fr
Priority to JP2014517630A priority patent/JP2014523844A/ja
Priority to US14/130,814 priority patent/US20140140910A1/en
Publication of WO2013004533A1 publication Critical patent/WO2013004533A1/fr
Priority to ZA2013/09410A priority patent/ZA201309410B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the maximum reducibility temperature results in a peak on the curve obtained by the programmed temperature reduction method which has been described. It should be noted, however, that in some cases such a curve may have two peaks.
  • the compositions of the invention may also contain one or more additional elements which may be chosen from the group comprising iron, cobalt, strontium, copper and manganese. This or these additional elements are present generally in oxide form.
  • the compositions of the invention then consist essentially of a mixed oxide or a mixture of cerium and zirconium oxides and one or more additional elements mentioned above. The amount of additional element is generally at most 10%, it may be more particularly between 2% and 8%.
  • compositions of the invention can be in the form of disagglomerate particles.
  • these particles may have, after such a treatment and regardless of the size of the particles at the start, a mean diameter (dso) of at most 10 ⁇ , more particularly at most 8 ⁇ . and even more particularly at most 6 ⁇ .
  • the method of the invention is characterized in that it comprises the following steps:
  • aqueous solutions of cerium salts and zirconyl salts may have some initial free acidity which can be adjusted by the addition of a base or an acid.
  • This neutralization can be done by adding a basic compound to the aforementioned mixture so as to limit this acidity.
  • This basic compound may be for example a solution of ammonia or alkali hydroxides (sodium, potassium, etc.), but preferably an ammonia solution.
  • the mixture can be indifferently obtained either from compounds initially in the solid state which will subsequently be introduced into a water tank for example, or even directly from solutions of these compounds and then mixed in any order of said solutions.
  • the reaction between the starting mixture and the basic compound is carried out continuously in a reactor. This reaction is done by continuously introducing the reagents and continuously withdrawing also the product of the reaction.
  • the reaction must be carried out under conditions such that the residence time of the reaction medium in the reactor mixing zone is at most 100 milliseconds.
  • the term "reactor mixing zone” is understood to mean the part of the reactor in which the abovementioned starting mixture and the basic compound are brought together for the reaction to take place.
  • This residence time may be more particularly at most 50 milliseconds, preferably it may be at most 20 milliseconds. This residence time may for example be between 10 and 20 milliseconds.
  • the reaction is preferably carried out with vigorous stirring, for example under conditions such that the reaction medium is in a turbulent regime.
  • T or symmetrical Y are usually made of two opposite tubes (T-tubes) or forming an angle less than 180 ° (Y-tubes), of the same diameter, discharging into a central tube whose diameter is identical to or greater than that of the two previous tubes. They are said to be "symmetrical" because the two reagent injection tubes have the same diameter and the same angle with respect to the central tube, the device being characterized by an axis of symmetry.
  • the central tube has a diameter about twice as large as the diameter of the opposed tubes; similarly the fluid velocity in the central tube is preferably half that in the opposite tubes.
  • reactors examples of this type of reactor are rotor-stator mixers or reactors, sliding surface reactors, in which the reactants are injected under high shear in a confined space between the bottom of the reactor and a reactor. rotating disc at high speed, or the reactors in which the centrifugal force allows liquids to mix intimately thin films.
  • SDR Spinning Disc Reactor
  • RPB Rotating Packed Bed Reactor
  • the reactor described in this patent application comprises a porous structure or lining, made of ceramic, metal foam or plastic, of cylindrical shape and which rotates at a high speed around a longitudinal axis.
  • the reactants are injected into this structure and mix under the effect of strong shear forces due to centrifugal forces of up to several hundred grams created by the rotational movement of the structure.
  • the mixing of liquids in veins or very thin films makes it possible to reach nanometric sizes in this way.
  • the method according to the second variant of the invention can therefore be implemented by introducing into the aforementioned porous structure the mixture formed in step (a ').
  • these reactors can be used with residence times of the reaction medium in their mixing zone (in the same sense as given above for the first variant) higher than for the first process variant, it is that is, up to several seconds and usually not more than 10 s.
  • this residence time can be at most 1 s, more particularly at most 20 ms and even more particularly at most 10 ms.
  • step (b ') the precipitate obtained is removed from the reactor and recovered for the implementation of the next step.
  • This heating can be carried out directly on the reaction medium obtained after reaction with the basic compound or on a suspension obtained after separation of the precipitate from the reaction medium, optional washing and return to water of the precipitate.
  • the temperature at which the medium is heated is at least 90 ° C and even more preferably at least 100 ° C. It can be between 100 ° C and 200 ° C.
  • the heating operation can be conducted by introducing the liquid medium into a closed chamber (autoclave type closed reactor). Under the conditions of the temperatures given above, and in aqueous medium, it may be specified, by way of illustration, that the pressure in the closed reactor can vary between a value greater than 1 Bar (10 5 Pa) and 165 Bar (1, 65. 10 7 Pa), preferably between 5 bar ( 5 ⁇ 10 5 Pa) and 165 bar (1.65 ⁇ 10 7 Pa). It is also possible to carry out heating in an open reactor for temperatures close to 100 ° C.
  • the duration of the heating can vary within wide limits, for example between 1 minute and 2 hours, these values being given as entirely indicative.
  • the next step of the process can be carried out according to two variants.
  • surfactants of the anionic type especially those of the mark ALKAMULS ®, sarcosinates of formula R-C (O) N (CH 3) CH 2 COO "betaines of formula RR'NH-CH 3 -COO " , R and R 'being alkyl or alkylaryl groups, phosphate esters, in particular those of the brand RHODAFAC ® , sulphates such as alcohol sulphates, sulphates of alcohol ether and Sulfated alkanolamide ethoxylates, sulfonates such as sulfosuccinates, alkyl benzene or alkyl naphthalene sulfonates.
  • nonionic acetylenic surfactants there may be mentioned, ethoxylated or propoxylated fatty alcohols, for example those of Rhodasurf ® trademarks or Antarox ®, alkanolamides, amine oxides, ethoxylated alkanolamides, ethoxylated amines or propoxylated long-chain, for example those of the mark RHODAMEEN ®, copolymers of ethylene oxide / propylene oxide, sorbitan derivatives, ethylene glycol, propylene glycol, glycerol, polyglyceryl esters and their ethoxylated derivatives, alkylamines, alkylimidazolines, ethoxylated oils and alkylphenols ethoxylated or propoxylated, in particular those of the brand IGEPAL ® . Also there may be mentioned in particular the products mentioned in WO-98/45212 under the IGEPAL ®, DOWANOL ®, ® and
  • the mixture obtained is preferably stirred for a period of time which may be about one hour.
  • the precipitate is then optionally separated from the liquid medium by any known means.
  • the calcination temperature is generally limited to a range of values of between 300 and 900 ° C. over a period of time which may be, for example, between 1 hour and 10 hours.
  • the product obtained is then heated at 700 ° C. for 4 hours in steps and then deagglomerated in a mortar.
  • Examples 1 and 2 are in the form of a solid solution after calcination for 4 hours at 900 ° C. or at 1000 ° C. or at 1100 ° C.
  • Figure 2 gives the curves obtained by implementing the measure of reducibility described above.
  • the temperature is on the abscissa and the value of the measured signal is given on the ordinate.
  • the maximum temperature of reducibility is that which corresponds to the maximum height of the peak of the curve.
  • the figure gives the curves obtained for the compositions of Examples 1 (curve with the leftmost peak of the figure) and 2 comparatives (curve with the rightmost peak).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

La composition de l'invention consiste essentiellement en un oxyde mixte de cérium et de zirconium, avec une teneur en oxyde de cérium d'au moins 60% en masse et elle présente après calcination à 1000°C, 4 heures une surface spécifique d'au moins 15 m2/g et une quantité d'oxygène mobile entre 200°C et 400°C d'au moins 0,7 ml 02/g. Elle est préparée par un procédé dans lequel on fait réagir en continu dans un réacteur un mélange de composés du cérium et du zirconium avec un composé basique avec un temps de séjour du milieu réactionnel dans la zone de mélange du réacteur d'au plus 100 millisecondes; le précipité est chauffé puis mis en contact avec un tensioactif avant d'être calciné.

Description

COMPOSITION CONSISTANT EN UN OXYDE MIXTE DE CERIUM ET DE ZIRCONIUM A REDUCTIBILITE ELEVEE, PROCEDE DE PREPARATION ET
UTILISATION DANS LE DOMAINE DE LA CATALYSE La présente invention concerne une composition consistant en un oxyde mixte de cérium et de zirconium, à réductibilité élevée, son procédé de préparation et son utilisation dans le domaine de la catalyse.
On utilise à l'heure actuelle pour le traitement des gaz d'échappement des moteurs à combustion interne (catalyse postcombustion automobile) des catalyseurs dits multifonctionnels. Par multifonctionnels, on entend les catalyseurs capables d'opérer non seulement l'oxydation en particulier du monoxyde de carbone et des hydrocarbures présents dans les gaz d'échappement mais également la réduction notamment des oxydes d'azote également présents dans ces gaz (catalyseurs "trois voies"). Les produits à base d'oxyde de cérium, d'oxyde de zirconium et éventuellement d'un ou plusieurs oxydes d'autres terres rares apparaissent aujourd'hui comme des constituants particulièrement importants et intéressants rentrant dans la composition de ce type de catalyseurs. Pour être efficaces, ces constituants doivent présenter une surface spécifique importante même après avoir été soumis à des températures élevées, par exemple d'au moins 900°C.
Une autre qualité requise pour ces constituants de catalyseurs est la réductibilité. On entend par réductibilité, ici et pour le reste de la description, la capacité du catalyseur à se réduire en atmosphère réductrice et à se réoxyder en atmosphère oxydante. La réductibilité peut se mesurer notamment par la quantité d'oxygène mobile ou d'oxygène labile par unité de masse du matériau et pour une gamme de température donnée. Cette réductibilité et, par conséquent, l'efficacité du catalyseur, sont maximales à une température qui est actuellement assez élevée pour les catalyseurs à base des produits précités. Or, il existe un besoin en catalyseurs dont les performances soient suffisantes dans des gammes de température plus faibles.
Dans l'état actuel de la technique, il apparaît que les deux caractéristiques mentionnées plus haut sont souvent difficiles à concilier, c'est à dire qu'une réductibilité élevée à plus basse température a pour contrepartie une surface spécifique plutôt faible.
L'objet de l'invention est de fournir une composition de ce type qui présente en combinaison une surface spécifique qui reste importante et une bonne réductibilité à température plus basse.
Dans ce but, la composition de l'invention consiste essentiellement en un oxyde mixte de cérium et de zirconium, ayant une teneur en oxyde de cérium d'au moins 60% en masse, et elle est caractérisée en ce qu'elle présente après calcination à 1000°C, 4 heures une surface spécifique d'au moins 15 m2/g et une quantité d'oxygène mobile entre 200°C et 400°C d'au moins 0,7 ml O2/g.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre faite en référence aux dessins annexés et dans lesquels :
- la figure 1 est un schéma d'un réacteur utilisé pour la mise en œuvre du procédé de préparation de la composition de l'invention;
- la figure 2 représente les courbes obtenues par une mesure de réductibilité par réduction programmée en température d'une composition selon l'invention et d'un produit comparatif.
Pour la suite de la description, on entend par surface spécifique, la surface spécifique B.E.T. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER - EMMETT- TELLER décrite dans le périodique "The Journal of the American Chemical Society, 60, 309 (1938)".
En outre, les calcinations et notamment les calcinations à l'issue desquelles sont données les valeurs de surface sont des calcinations sous air à un palier de température sur la durée indiquée sauf indication contraire .
Les teneurs ou quantités sont données en masse d'oxyde par rapport à l'ensemble de la composition sauf indication contraire. L'oxyde de cérium est sous forme d'oxyde cérique.
On précise pour la suite de la description que, sauf indication contraire, dans les fourchettes de valeurs qui sont données, les valeurs aux bornes sont incluses.
La quantité d'oxygène mobile ou labile correspond à la moitié de la quantité en mole d'hydrogène consommée par réduction de l'oxygène de la composition pour former de l'eau et mesurée entre différentes bornes de température, entre 200°C et 450°C ou bien entre 200 et 400°C. Cette mesure est faite par réduction programmée en température sur un appareil AUTOCHEM II 2920 avec un réacteur en silice. On utilise l'hydrogène comme gaz réducteur à 10% en volume dans l'argon avec un débit de 30 mL/mn. Le protocole expérimental consiste à peser 200 mg de l'échantillon dans un récipient préalablement taré. L'échantillon est ensuite introduit dans une cellule en quartz contenant dans le fond de la laine de quartz. L'échantillon est enfin recouvert de laine de quartz, positionné dans le four de l'appareil de mesure et un thermocouple est placé au cœur de l'échantillon. On détecte un signal avec un détecteur de conductivité thermique. La consommation de l'hydrogène est calculée à partir de la surface manquante du signal d'hydrogène entre 200°C et 450°C ou encore entre 200°C et 400°C.
La température maximale de réductibilité (température à laquelle le captage de l'hydrogène est maximal et où, en d'autres termes, la réduction du cérium IV en cérium III est aussi maximale et qui correspond à une labilité maximale en O2 de la composition) est mesurée en effectuant une réduction en température programmée, telle que décrite ci-dessus. Cette méthode permet de mesurer la consommation d'hydrogène d'une composition selon l'invention en fonction de la température et d'en déduire la température à laquelle le taux de réduction du cérium est maximum.
La mesure de réductibilité est faite par réduction programmée en température sur un échantillon qui a été préalablement calciné 4 heures à 1000°C sous air. La montée en température se fait de 50°C à 900°C à raison de 10°C/mn. Le captage de l'hydrogène est calculé à partir de la surface manquante du signal d'hydrogène de la ligne de base à la température ambiante à la ligne de base à 900°C.
La température maximale de réductibilité se traduit par un pic sur la courbe obtenue par la méthode de réduction en température programmée qui a été décrite. Il faut noter toutefois que dans certains cas une telle courbe peut comporter deux pics.
Les compositions selon l'invention se caractérisent tout d'abord par la nature de leurs constituants.
Ces compositions consistent essentiellement en un oxyde mixte ou un mélange d'oxydes de cérium et de zirconium.
La teneur en oxyde de cérium est d'au moins 60%. Elle peut être d'au moins 70% et encore plus particulièrement d'au moins 75%. La teneur en oxyde de cérium peut être plus particulièrement d'au plus 95%.
Selon une variante de l'invention les compositions de l'invention peuvent peuvent contenir en outre un ou plusieurs éléments additionnels qui peuvent être choisis dans le groupe comprenant le fer, le cobalt, le strontium, le cuivre et le manganèse. Ce ou ces éléments additionnels sont présents généralement sous forme d'oxyde. Dans le cas de cette variante les compositions de l'invention consistent alors essentiellement en un oxyde mixte ou un mélange d'oxydes de cérium et de zirconium et d'un ou plusieurs éléments additionnels précités. La quantité d'élément additionnel est généralement d'au plus 10%, elle peut être plus particulièrement comprise entre 2% et 8%.
Par « consistent essentiellement » on entend que les compositions peuvent comporter d'autres éléments sous forme de traces ou d'impuretés, comme l'hafnium notamment, mais qu'elles ne comportent pas d'autres éléments susceptibles notamment d'avoir une influence sur leur surface spécifique et/ou leurs propriétés de réductibilité. En particulier, les compositions de l'invention ne contiennent pas de terres rares autres que le cérium.
Les compositions de l'invention ont pour caractéristique de présenter une quantité d'oxygène mobile importante dans une gamme de température relativement basse. Cette quantité exprimée en ml d'oxygène par gramme de composition est d'au moins 0,7 ml 02 g entre 200°C et 400°C. Cette quantité peut être notamment d'au moins 0,9 ml 02 g, plus particulièrement d'au moins 1 ml 02 g. Des quantités jusqu'à environ au moins 2 ml 02/g peuvent être atteintes. Dans une gamme de température un peu plus large, c'est-à-dire entre 200°C et 450°C, les compositions de l'invention présentent une quantité d'oxygène mobile d'au moins 1 ,4 ml 02 g. Cette quantité peut être notamment d'au moins 1 ,7 ml 02 g, plus particulièrement d'au moins 2 ml 02 g. Des quantités jusqu'à environ au moins 3 ml 02 g peuvent être atteintes.
Les compositions de l'invention ont pour autre caractéristique le fait de présenter après calcination à 1000°C pendant 4 heures une température maximale de réductibilité d'au plus 550°C, plus particulièrement d'au plus 530°C. Cette température maximale de réductibilité peut être notamment d'au moins 500°C.
Les compositions de l'invention présentent aussi des caractéristiques particulières de surface spécifique. En effet, tout en présentant de bonnes propriétés de réductibilité à basse température, elles offrent en outre des surfaces spécifiques qui restent importantes même à hautes températures.
Ainsi, elles présentent après calcination à 1000°C, 4 heures une surface spécifique d'au moins 15 m2/g, plus particulièrement d'au moins 18 m2/g. Dans ces mêmes conditions de calcination des surfaces spécifiques jusqu'à une valeur d'environ 30 m2/g peuvent être obtenues.
Par ailleurs, après calcination à 1 100°C, 4 heures, ces compositions présentent une surface spécifique d'au moins 5 m2/g, plus particulièrement d'au moins 7 m2/g. Dans ces mêmes conditions de calcination des surfaces spécifiques jusqu'à une valeur d'environ 15 m2/g peuvent être obtenues.
Une autre caractéristique intéressante des compositions de l'invention est qu'elles peuvent se présenter sous forme de particules désagglomérables. Ainsi, par un simple traitement par ultrasons, ces particules peuvent présenter, après un tel traitement et quelle que soit la taille des particules au départ, un diamètre moyen (dso) d'au plus 10 μιτι, plus particulièrement d'au plus 8 μιτι et encore plus particulièrement d'au plus 6 μιτι.
Les valeurs de granulométrie données ici et pour le reste de la description sont mesurées au moyen d'un granulométre laser de type Malvern Mastersizer 2000 (module HydroG) sur un échantillon de particules dispersées dans une solution à 1 g/l d'hexaméthylphosphate (HMP) et soumis aux ultrasons (120 W) pendant 5 minutes.
Les compositions de l'invention peuvent se présenter sous la forme d'une solution solide pure de l'oxyde de cérium et de l'oxyde de zirconium. On entend par là que dans ce cas le zirconium est présent totalement en solution solide dans l'oxyde de cérium. Les diagrammes en diffraction RX de ces compositions révèlent en particulier, au sein de ces dernières, l'existence d'une phase unique clairement identifiable et correspondant à celle d'un oxyde de cérium cristallisé dans le système cubique, traduisant ainsi l'incorporation du zirconium dans le réseau cristallin de l'oxyde de cérium, et donc l'obtention d'une solution solide vraie. Il est à noter que les compositions de l'invention peuvent présenter cette caractéristique de solution solide même après calcination à température élevée, par exemple au moins 1000°C, 4 heures et même encore après calcination à une température de 1 100°C pendant 4 heures.
Le procédé de préparation des compositions de l'invention va maintenant être décrit. Ce procédé peut être mis en œuvre selon deux variantes en fonction du type de réacteur utilisé.
Selon une première variante, le procédé est caractérisé en ce qu'il comprend les étapes suivantes :
- (a) on forme un mélange liquide comprenant des composés du cérium, du zirconium et, éventuellement, de l'élément additionnel;
- (b) on fait réagir en continu dans un réacteur ledit mélange avec un composé basique, le temps de séjour du milieu réactionnel dans la zone de mélange du réacteur étant d'au plus 100 millisecondes ce par quoi on obtient un précipité à la sortie du réacteur;
- (c) on chauffe en milieu aqueux ledit précipité, le milieu étant maintenu à un pH d'au moins 5;
- (d) on ajoute au précipité obtenu à l'étape précédente un additif, choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés;
- (e) on calcine le précipité ainsi obtenu.
Selon une seconde variante, le procédé de l'invention est caractérisé en ce qu'il comprend les étapes suivantes :
- (a') on forme un mélange liquide comprenant des composés du cérium, du zirconium et, éventuellement, de l'élément additionnel;
- (b') on fait réagir en continu dans un réacteur centrifuge ledit mélange avec un composé basique, le temps de séjour du milieu réactionnel dans la zone de mélange du réacteur étant d'au plus 10 secondes ce par quoi on obtient un précipité à la sortie du réacteur;
- (c') on chauffe en milieu aqueux ledit précipité, le milieu étant maintenu à un pH d'au moins 5;
- (d') on ajoute au précipité obtenu à l'étape précédente un additif, choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés;
- (e') on calcine le précipité ainsi obtenu.
La différence entre les deux variantes de procédé se situe aux étapes (b) et (b'). Les autres étapes de procédé sont identiques pour les deux variantes. De ce fait, la description qui va être faite ci-dessous pour les étapes (a), (c), (d) et (e) de la première variante s'applique de même aux étapes (a'), (c'), (d') et (e') de la seconde variante.
La première étape (a) du procédé consiste donc à préparer un mélange en milieu liquide des composés des éléments constitutifs de la composition, c'est à dire du cérium, du zirconium et, éventuellement, de l'élément additionnel.
Le mélange se fait généralement dans un milieu liquide qui est l'eau de préférence.
Les composés sont de préférence des composés solubles. Ce peut être notamment des sels de zirconium et de cérium. Dans le cas de la préparation de compositions comprenant un ou plusieurs éléments additionnels du type mentionné plus haut, le mélange de départ comprendra en outre un composé de cet ou ces éléments additionnels.
Ces composés peuvent être choisis parmi les nitrates, les sulfates, les acétates, les chlorures, le nitrate céri-ammoniacal.
A titre d'exemples, on peut ainsi citer le sulfate de zirconium, le nitrate de zirconyle ou le chlorure de zirconyle. Le nitrate de zirconyle est utilisé le plus généralement. On peut citer aussi notamment les sels de cérium IV tels que nitrates ou le nitrate céri-ammoniacal par exemple, qui conviennent ici particulièrement bien. De préférence, on utilise du nitrate cérique. Il est avantageux d'utiliser des sels de pureté d'au moins 99,5% et plus particulièrement d'au moins 99,9%. Une solution aqueuse de nitrate cérique peut par exemple être obtenue par réaction de l'acide nitrique sur un oxyde cérique hydraté préparé d'une manière classique par réaction d'une solution d'un sel céreux, par exemple le nitrate céreux, et d'une solution d'ammoniaque en présence d'eau oxygénée. On peut également, de préférence, utiliser une solution de nitrate cérique obtenue selon le procédé d'oxydation électrolytique d'une solution de nitrate céreux tel que décrit dans le document FR-A- 2 570 087, et qui constitue ici une matière première intéressante.
On notera ici que les solutions aqueuses de sels de cérium et de sels de zirconyle peuvent présenter une certaine acidité libre initiale qui peut être ajustée par l'addition d'une base ou d'un acide. Il est cependant autant possible de mettre en œuvre une solution initiale de sels de cérium et de zirconium présentant effectivement une certaine acidité libre comme mentionné ci-dessus, que des solutions qui auront été préalablement neutralisées de façon plus ou moins poussée. Cette neutralisation peut se faire par addition d'un composé basique au mélange précité de manière à limiter cette acidité. Ce composé basique peut être par exemple une solution d'ammoniaque ou encore d'hydroxydes d'alcalins (sodium, potassium,...), mais de préférence une solution d'ammoniaque.
On notera enfin que lorsque le mélange de départ contient du cérium sous forme III, il est préférable de faire intervenir dans le cours du procédé un agent oxydant, par exemple de l'eau oxygénée. Cet agent oxydant peut être utilisé en étant ajouté au milieu réactionnel lors de l'étape (a), lors de l'étape (b) ou encore au début de l'étape (c).
Le mélange peut être indifféremment obtenu soit à partir de composés initialement à l'état solide que l'on introduira par la suite dans un pied de cuve d'eau par exemple, soit encore directement à partir de solutions de ces composés puis mélange, dans un ordre quelconque, desdites solutions.
Dans la deuxième étape (b) du procédé, on met en présence ledit mélange avec un composé basique pour les faire réagir. On peut utiliser comme base ou composé basique les produits du type hydroxyde. On peut citer les hydroxydes d'alcalins ou d'alcalino-terreux. On peut aussi utiliser les aminés secondaires, tertiaires ou quaternaires. Toutefois, les aminés et l'ammoniaque peuvent être préférés dans la mesure où ils diminuent les risques de pollution par les cations alcalins ou alcalino terreux. On peut aussi mentionner l'urée. Le composé basique peut être plus particulièrement utilisé sous forme d'une solution.
La réaction entre le mélange de départ et le composé basique se fait en continu dans un réacteur. Cette réaction se fait donc en introduisant en continu les réactifs et en soutirant en continu aussi le produit de la réaction.
La réaction doit se faire dans des conditions telles que le temps de séjour du milieu réactionnel dans la zone de mélange du réacteur est d'au plus 100 millisecondes. On entend par « zone de mélange du réacteur » la partie du réacteur dans laquelle sont mis en présence le mélange de départ précité et le composé basique pour que la réaction ait lieu. Ce temps de séjour peut être plus particulièrement d'au plus 50 millisecondes, de préférence il peut être d'au plus 20 millisecondes. Ce temps de séjour peut être par exemple compris entre 10 et 20 millisecondes.
On réalise de préférence l'étape (b) en utilisant un excès stœchiométrique de composé basique pour s'assurer d'un rendement maximal de précipitation.
La réaction se fait de préférence sous forte agitation, par exemple dans des conditions telles que le milieu réactionnel est en régime turbulent.
La réaction se fait généralement à température ambiante.
On peut utiliser un réacteur de type mélangeur rapide.
Le mélangeur rapide peut être en particulier choisi parmi les mélangeurs (ou tubes) en T ou en Y symétriques, les mélangeurs (ou tubes) en T ou en Y asymétriques, les mélangeurs à jets tangentiels, les mélangeurs Hartridge-Roughton, les mélangeurs vortex.
Les mélangeurs (ou tubes) en T ou en Y symétriques sont généralement constitués de deux tubes opposés (tubes en T) ou formant un angle inférieur à 180° (tubes en Y), de même diamètre, déchargeant dans un tube central dont le diamètre est identique ou supérieur à celui des deux tubes précédents. Ils sont dits « symétriques » car les deux tubes d'injection des réactifs présentent le même diamètre et le même angle par rapport au tube central, le dispositif étant caractérisé par un axe de symétrie. De préférence, le tube central présente un diamètre deux fois plus élevés environ que le diamètre des tubes opposés ; de même la vitesse de fluide dans le tube central est de préférence égale à la moitié de celle dans les tubes opposés.
On préfère cependant employer, en particulier lorsque les deux fluides à introduire ne présentent pas le même débit, un mélangeur (ou tube) en T ou en Y asymétriques plutôt qu'un mélangeur (ou tube) en T ou en Y symétrique. Dans les dispositifs asymétriques, un des fluides (le fluide de plus faible débit en général) est injecté dans le tube central au moyen d'un tube latéral de diamètre plus faible. Ce dernier forme avec le tube central un angle de 90° en général (tube en T) ; cet angle peut être différent de 90° (tube en Y), donnant des systèmes à co-courant (par exemple angle de 45°) ou à contre-courant (par exemple angle de 135°) par rapport à l'autre courant.
De manière avantageuse, on utilise dans le procédé selon la présente invention un mélangeur à jets tangentiels, par exemple un mélangeur Hartridge-Roughton.
La figure 1 est un schéma qui représente un mélangeur de ce type. Ce mélangeur 1 comprend une chambre 2 ayant au moins deux admissions tangentielles 3 et 4 par lesquelles entrent séparément (mais en même temps) les réactifs, c'est-à- dire ici le mélange formé à l'étape (a) et le composé basique, ainsi qu'une sortie axiale 5 par laquelle sort le milieu réactionnel et ce, de préférence, vers un(e) réacteur (cuve) disposé(e) en série après ledit mélangeur. Les deux admissions tangentielles sont de préférence situées symétriquement et de manière opposée par rapport à l'axe central de la chambre 2.
La chambre 2 du mélangeur à jets tangentiels, Hartridge-Roughton utilisé présente généralement une section circulaire et est de préférence de forme cylindrique.
Chaque tube d'admission tangentielle peut présenter une hauteur interne (a) en section de 0,5 à 80 mm.
Cette hauteur interne (a) peut être comprise entre 0,5 et 10 mm, en particulier entre 1 et 9 mm, par exemple entre 2 et 7 mm. Cependant, notamment à l'échelle industrielle, elle est de préférence comprise entre 10 et 80 mm, en particulier entre 20 et 60 mm, par exemple entre 30 et 50 mm.
Le diamètre interne de la chambre 2 du mélangeur à jets tangentiels, Hartridge- Roughton employé peut être compris entre 3a et 6a, en particulier entre 3a et 5a, par exemple égal à 4a; le diamètre interne du tube de sortie axiale 5 peut être compris entre 1 a et 3a, en particulier entre 1 ,5a et 2,5a, par exemple égal à 2a.
La hauteur de la chambre 2 du mélangeur peut être comprise entre 1 a et 3a en particulier entre 1 ,5 et 2,5a, par exemple égal à 2a. La réaction conduite à l'étape (b) du procédé conduit à la formation d'un précipité qui est évacué du réacteur et récupéré pour la mise en œuvre de l'étape (c).
Dans le cas de la seconde variante, l'étape (b') est mise en œuvre dans un réacteur de type centrifuge. Par réacteur de ce type on entend les réacteurs rotatifs utilisant la force centrifuge.
On peut citer comme exemples de ce type de réacteurs, les mélangeurs ou réacteurs rotor-stators, les réacteurs à disque tournant (sliding surface reactor), dans lesquels les réactifs sont injectés sous cisaillement élevé dans un espace confiné entre le fond du réacteur et un disque tournant à vitesse élevée, ou encore les réacteurs dans lesquels la force centrifuge permet aux liquides de se mélanger intimement en films minces. Dans cette catégorie figurent le Spinning Disc Reactor (SDR) ou le Rotating Packed Bed reactor (RPB), décrit dans la demande de brevet US 2010/0028236 A1 . Le réacteur décrit dans cette demande de brevet comporte une structure poreuse ou garnissage, en céramique, en mousse métallique ou en matière plastique, de forme cylindrique et qui tourne à vitesse élevée autour d'un axe longitudinal. Les réactifs sont injectés dans cette structure et se mélangent sous l'effet de fortes forces de cisaillement du fait des forces centrifuges pouvant atteindre plusieurs centaines de g créées par le mouvement de rotation de la structure. Le mélange des liquides dans des veines ou des films très fins permet d'atteindre ainsi des tailles nanométriques.
Le procédé selon la seconde variante de l'invention peut donc être mis en œuvre en introduisant dans la structure poreuse précitée le mélange formé à l'étape (a').
Les réactifs ainsi introduits peuvent être soumis à une accélération d'au moins 10 g, plus particulièrement d'au moins 100 g et qui peut être comprise par exemple entre 100 g et 300 g.
Compte tenu de leur conception, ces réacteurs peuvent être utilisés avec des temps de séjour du milieu réactionnel dans leur zone de mélange (au même sens que donné plus haut pour la première variante) plus élevés que pour la première variante de procédé, c'est-à-dire jusqu'à plusieurs secondes et en général d'au plus 10 s. De préférence, ce temps de séjour peut être d'au plus 1 s, plus particulièrement d'au plus 20 ms et encore plus particulièrement d'au plus 10 ms.
Comme pour la variante précédente on réalise de préférence l'étape (b') en utilisant un excès stœchiométrique de composé basique et cette étape se fait généralement à température ambiante.
A l'issue de l'étape (b') le précipité obtenu est évacué du réacteur et récupéré pour la mise en œuvre de l'étape suivante.
L'étape (c) ou (c') est une étape de chauffage du précipité en milieu aqueux.
Ce chauffage peut être réalisé directement sur le milieu réactionnel obtenu après réaction avec le composé basique ou sur une suspension obtenue après séparation du précipité du milieu réactionnel, lavage éventuel et remise dans l'eau du précipité. La température à laquelle est chauffé le milieu est d'au moins 90°C et encore plus particulièrement d'au moins 100°C. Elle peut être comprise entre 100°C et 200°C. L'opération de chauffage peut être conduite en introduisant le milieu liquide dans une enceinte close (réacteur fermé du type autoclave). Dans les conditions de températures données ci-dessus, et en milieu aqueux, on peut préciser, à titre illustratif, que la pression dans le réacteur fermé peut varier entre une valeur supérieure à 1 Bar (105 Pa) et 165 Bar (1 ,65. 107 Pa), de préférence entre 5 Bar (5. 105 Pa) et 165 Bar (1 ,65. 107 Pa). On peut aussi effectuer le chauffage dans un réacteur ouvert pour les températures voisines de 100°C.
Le chauffage peut être conduit soit sous air, soit sous atmosphère de gaz inerte, de préférence l'azote.
La durée du chauffage peut varier dans de larges limites, par exemple entre 1 minute et 2 heures, ces valeurs étant données à titre tout à fait indicatif.
Le milieu soumis au chauffage présente un pH d'au moins 5. De préférence, ce pH est basique, c'est à dire qu'il est supérieur à 7 et, plus particulièrement, d'au moins 8.
Il est possible de faire plusieurs chauffages. Ainsi, on peut remettre en suspension dans l'eau, le précipité obtenu après l'étape de chauffage et éventuellement un lavage puis effectuer un autre chauffage du milieu ainsi obtenu. Cet autre chauffage se fait dans les mêmes conditions que celles qui ont été décrites pour le premier.
L'étape suivante du procédé peut se faire selon deux variantes.
Selon une première variante, on ajoute au milieu réactionnel issu de l'étape précédente un additif qui est choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés.
En ce qui concerne cet additif on pourra se référer à l'enseignement de la demande WO-98/45212 et utiliser les tensioactifs décrits dans ce document.
On peut mentionner comme tensioactifs du type anionique les éthoxycarboxylates, les acides gras éthoxylés ou propoxylés, notamment ceux de la marque ALKAMULS®, les sarcosinates de formule R- C(O)N(CH3)CH2COO", les bétaïnes de formule RR'NH-CH3-COO", R et R' étant des groupes alkyles ou alkylaryles, les esters phosphates, notamment ceux de la marque RHODAFAC®, les sulfates comme les sulfates d'alcool, les sulfates d'éther alcool et les éthoxylats d'alcanolamide sulfatés, les sulfonates comme les sulfosuccinates, les alkyl benzène ou alkyl naphtalène sulfonates.
Comme tensioactif non ionique on peut mentionner les tensioactifs acétyléniques, les alcools gras éthoxylés ou propoxylés, par exemple ceux des marques RHODASURF® ou ANTAROX®, les alcanolamides, les oxydes d'amine, les alcanolamides éthoxylés, les aminés éthoxylées ou propoxylées à longues chaînes, par exemple ceux de la marque RHODAMEEN®, les copolymères oxyde d'éthylène/oxide de propylène, les dérivés du sorbitan, l'éthylène glycol, le propylène glycol, le glycérol, les esters polyglyceryle et leurs dérivés éthoxylés, les alkylamines, les alkylimidazolines, les huiles éthoxylées et les alkylphénols éthoxylés ou propoxylés, notamment ceux de la marque IGEPAL®. On peut citer aussi en particulier les produits cités dans WO-98/45212 sous les marques IGEPAL®, DOWANOL®, RHODAMOX® et ALKAMIDE®.
En ce qui concerne les acides carboxyliques, on peut utiliser notamment les acides mono- ou dicarboxyliques aliphatiques et parmi ceux-ci plus particulièrement les acides saturés. On peut utiliser aussi des acides gras et plus particulièrement les acides gras saturés. On peut citer ainsi notamment les acides formique, acétique, proprionique, butyrique, isobutyrique, valérique, caproïque, caprylique, caprique, laurique, myristique, palmitique, stéarique, hydroxystéarique, éthyl-2-hexanoïque et béhénique. Comme acides dicarboxyliques, on peut mentionner les acides oxalique, malonique, succinique, glutarique, adipique, pimélique, subérique, azélaïque et sébacique.
Les sels des acides carboxyliques peuvent aussi être utilisés, notamment les sels ammoniacaux.
A titre d'exemple, on peut citer plus particulièrement l'acide laurique et le laurate d'ammonium.
Enfin, il est possible d'utiliser un tensioactif qui est choisi parmi ceux du type éthoxylats d'alcools gras carboxyméthylés.
Par produit du type éthoxylats d'alcool gras carboxyméthylés on entend les produits constitués d'alcools gras éthoxylés ou propoxylés comportant en bout de chaîne un groupement CH2-COOH.
Ces produits peuvent répondre à la formule :
Ri-O-(CR2R3-CR4R5-O)n-CH2-COOH
dans laquelle Ri désigne une chaîne carbonée, saturée ou insaturée, dont la longueur est généralement d'au plus 22 atomes de carbone, de préférence d'au moins 12 atomes de carbone; R2, R3, R4 et R5 peuvent être identiques et représenter l'hydrogène ou encore R2 peut représenter un groupe CH3 et R3, R4 et R5 représentent l'hydrogène; n est un nombre entier non nul pouvant aller jusqu'à 50 et plus particulièrement compris entre 5 et 15, ces valeurs étant incluses. On notera qu'un tensio-actif peut être constitué d'un mélange de produits de la formule ci-dessus pour lesquels Ri peut être saturé et insaturé respectivement ou encore des produits comportant à la fois des groupements -CH2-CH2-O- et -C(CH3)-CH2-O-.
Une autre variante consiste à séparer d'abord le précipité issu de l'étape (c) puis à ajouter l'additif tensioactif à ce précipité. La quantité de tensio-actif utilisée, exprimée en pourcentage en poids d'additif par rapport au poids de la composition calculé en oxyde, est généralement comprise entre 5% et 100% plus particulièrement entre 15% et 60%.
Après l'addition du tensio-actif, on maintient le mélange obtenu de préférence sous agitation pendant une durée qui peut être d'environ une heure. On sépare ensuite éventuellement le précipité du milieu liquide par tout moyen connu.
Le précipité séparé peut éventuellement être lavé, notamment par de l'eau ammoniaquée.
Dans une dernière étape du procédé selon l'invention, le précipité récupéré, éventuellement séché, est ensuite calciné. Cette calcination permet de développer la cristallinité du produit formé et elle peut être également ajustée et/ou choisie en fonction de la température d'utilisation ultérieure réservée à la composition selon l'invention, et ceci en tenant compte du fait que la surface spécifique du produit est d'autant plus faible que la température de calcination mise en œuvre est plus élevée. Une telle calcination est généralement opérée sous air, mais une calcination menée par exemple sous gaz inerte ou sous atmosphère contrôlée (oxydante ou réductrice) n'est bien évidemment pas exclue.
En pratique, on limite généralement la température de calcination à un intervalle de valeurs comprises entre 300 et 900°C sur une durée qui peut être par exemple comprise entre 1 heure et 10 heures.
Selon une autre variante du procédé de l'invention, les éléments additionnels fer, cobalt, strontium, cuivre et manganèse peuvent ne pas être ajoutés lors de la préparation de la composition telle qu'elle a été décrite plus haut mais ils peuvent être apportés en utilisant la méthode d'imprégnation. Dans ce cas la composition issue de la calcination d'oxyde mixte de cérium et de zirconium est imprégnée par une solution d'un sel d'élément additionnel puis soumise à une autre calcination dans les mêmes conditions que celles données plus haut.
Le produit issu de la calcination se présente sous la forme d'une poudre et, si nécessaire, il peut être désaggloméré ou broyé en fonction de la taille souhaitée pour les particules constituant cette poudre.
Les compositions de l'invention peuvent aussi éventuellement être mises en forme pour se présenter sous forme de granulés, billes, cylindres ou nids d'abeille de dimensions variables.
Les compositions de l'invention peuvent être utilisées comme catalyseurs ou supports de catalyseur. Ainsi, l'invention concerne aussi des systèmes catalytiques comprenant les compositions de l'invention. Pour de tels systèmes, ces compositions peuvent ainsi être appliquées sur tout support utilisé habituellement dans le domaine de la catalyse, c'est à dire notamment des matériaux inertes thermiquement. Ce support peut être choisi parmi l'alumine, l'oxyde de titane, l'oxyde de cérium, l'oxyde de zirconium, la silice, les spinelles, les zéolites, les silicates, les phosphates de silicoaluminium cristallins, les phosphates d'aluminium cristallins.
Les compositions peuvent aussi être utilisées dans des systèmes catalytiques comprenant un revêtement (wash coat) à propriétés catalytiques et à base de ces compositions, sur un substrat du type par exemple monolithe métallique par exemple FerCralloy, ou en céramique, par exemple en cordiérite, en carbure de silicium, en titanate d'alumine ou en mullite. Le revêtement peut comporter lui aussi un matériau inerte thermiquement du type de ceux mentionnés plus haut. Ce revêtement est obtenu par mélange de la composition avec ce matériau de manière à former une suspension qui peut être ensuite déposée sur le substrat.
Ces systèmes catalytiques et plus particulièrement les compositions de l'invention peuvent trouver de très nombreuses applications. Ils sont ainsi particulièrement bien adaptés à, et donc utilisable dans la catalyse de diverses réactions telles que, par exemple, la déshydratation, l'hydrosulfuration, l'hydrodénitrification, la désulfuration, l'hydrodésulfuration, la déshydrohalogénation, le reformage, le reformage à la vapeur, le craquage, l'hydrocraquage, l'hydrogénation, la déshydrogénation, l'isomérisation, la dismutation, l'oxychloration, la déshydrocyclisation d'hydrocarbures ou autres composés organiques, les réactions d'oxydation et/ou de réduction, la réaction de Claus, l'oxydation de gaz issus de sources stationnaires ainsi que le traitement des gaz d'échappement des moteurs à combustion interne, la démétallation, la méthanation, la shift conversion, l'oxydation catalytique des suies émises par les moteurs à combustion interne comme les moteurs diesel ou essence fonctionnant en régime pauvre.
Les systèmes catalytiques et les compositions de l'invention peuvent être utilisés comme pièges à NOx ou encore dans un procédé SCR, c'est-à-dire un procédé de réduction des NOx dans lequel cette réduction est effectuée par de l'ammoniac ou un précurseur de l'ammoniac comme l'urée.
Dans le cas de ces utilisations en catalyse, les compositions de l'invention sont employées généralement en combinaison avec des métaux précieux, elles jouent ainsi le rôle de support pour ces métaux. La nature de ces métaux et les techniques d'incorporation de ceux-ci dans les compositions supports sont bien connues de l'homme du métier. Par exemple, les métaux peuvent être le platine, le rhodium, le palladium ou l'iridium, ils peuvent notamment être incorporés aux compositions par imprégnation.
Parmi les utilisations citées, le traitement des gaz d'échappement des moteurs à combustion interne (catalyse post combustion automobile) constitue une application particulièrement intéressante. De ce fait, l'invention concerne aussi un procédé de traitement des gaz d'échappement des moteurs à combustion interne qui est caractérisé en ce qu'on utilise à titre de catalyseur un système catalytique tel que décrit ci-dessus ou une composition selon l'invention et telle que décrite précédemment.
Des exemples vont maintenant être donnés. EXEMPLE 1
Cet exemple concerne une composition à 80% de cérium et 20% de zirconium, ces proportions étant exprimées en pourcentages massiques des oxydes CeÛ2 et ZrO2.
Dans un bêcher agité, on introduit la quantité nécessaire de nitrate de cérium et de nitrate de zirconium. On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre d'une solution de nitrates à 120 g/l (exprimé ici et pour l'ensemble des exemples en équivalent d'oxyde).
Dans un autre bêcher agité, on introduit une solution d'ammoniaque (10 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre et un excès stœchiométrique en ammoniaque de 40% par rapport aux cations à précipiter.
On maintient sous agitation constante les deux solutions préparées précédemment et on les introduit en continu dans un mélangeur rapide Hartridge- Roughton du type de celui de la figure 1 et de hauteur d'entrée (a) de 2 mm. Le pH en sortie du mélangeur est de 9,3. Le débit de chacun des réactifs est de 30 l/h et le temps de séjour de 12 ms.
La suspension de précipité ainsi obtenue est placée dans un autoclave en acier inoxydable équipé d'un mobile d'agitation. La température du milieu est portée à 100°C pendant 30 minutes sous agitation.
On ajoute à la suspension ainsi obtenue 33 grammes d'acide laurique. La suspension est maintenue sous agitation pendant 1 heure.
La suspension est alors filtrée sur Buchner et le précipité filtré est ensuite lavé à l'eau ammoniaquée.
Le produit obtenu est ensuite porté à 700°C pendant 4 heures en palier puis désaggloméré dans un mortier.
EXEMPLE 2 COMPARATIF
Cet exemple concerne la même composition que celle de l'exemple 1 .
On part des mêmes réactifs et on prépare 1 litre d'une solution de nitrates de cérium et de zirconium.
Dans un réacteur agité, on introduit une solution d'ammoniaque (10 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre et un excès stœchiométrique en ammoniaque de 40% par rapport aux nitrates à précipiter. La solution de nitrates est introduite dans le réacteur sous agitation constante en 1 heure. On procède ensuite après la précipitation de la même manière que dans l'exemple 1 . On donne dans les tableaux 1 et 2 ci-dessous, les caractéristiques des produits obtenus dans les exemples.
Tableau 1
Figure imgf000017_0001
Tableau 2
Figure imgf000017_0002
(1 ) Cette température est celle à laquelle a été préalablement soumise, pendant 4h, la composition avant la mesure de réductibilité.
Il est à noter que les produits des exemples 1 et 2 se présentent sous la forme d'une solution solide après calcination 4 heures à 900°C ou à 1000°C ou à 1 100 °C.
La composition selon l'invention, tout en présentant une surface spécifique similaire à celle du produit comparatif, possède une quantité d'oxygène mobile nettement augmentée.
La figure 2 donne les courbes obtenues en mettant en œuvre la mesure de réductibilité décrite plus haut. La température figure en abscisse et la valeur du signal mesuré est donnée en ordonnée. La température maximale de réductibilité est celle qui correspond à la hauteur maximale du pic de la courbe. La figure donne les courbes obtenues pour les compositions des exemples 1 (courbe avec le pic le plus à gauche de la figure) et 2 comparatif (courbe avec le pic le plus à droite).

Claims

REVENDICATIONS
1 - Composition consistant essentiellement en un oxyde mixte de céhum et de zirconium, ayant une teneur en oxyde de céhum d'au moins 60% en masse, caractérisée en ce qu'elle présente après calcination à 1000°C, 4 heures une surface spécifique d'au moins 15 m2/g et une quantité d'oxygène mobile entre 200°C et 400°C d'au moins 0,7 ml O2/g. 2- Composition selon la revendication 1 , caractérisée en ce qu'elle présente une quantité d'oxygène mobile entre 200°C et 450°C d'au moins 1 ,4 ml 02 g, plus particulièrement d'au moins 1 ,7 ml 02 g.
3- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente une teneur en oxyde de cé um d'au moins 70%, plus particulièrement d'au moins 75%.
4- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente après calcination à 1000°C, 4 heures une quantité d'oxygène mobile entre 200°C et 400°C d'au moins 0,9 ml 02 g, plus particulièrement d'au moins 1 ml O2/g.
5- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente après calcination à 1000°C, 4 heures une surface spécifique d'au moins d'au moins 18 m2/g.
6- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente après calcination à 1 100°C, 4 heures une surface spécifique d'au moins 5 m2/g, plus particulièrement d'au moins 7 m2/g
7- Composition selon l'une des revendications précédentes caractérisée en ce qu'elle comprend en outre un ou plusieurs éléments additionnels choisis dans le groupe comprenant le fer, le cobalt, le strontium, le cuivre et le manganèse. 8- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente une température maximale de réductibilité d'au plus 550°C, plus particulièrement d'au plus 530°C après calcination à 1000°C pendant 4 heures. 9- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle est désagglomérable par un traitement par ultra-sons et en ce qu'elle se présente après ce traitement sous forme de particules dont le diamètre moyen (dso) est d'au plus 10 m.
10- Procédé de préparation d'une composition selon l'une des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes :
- (a) on forme un mélange liquide comprenant des composés du cérium, du zirconium et, éventuellement, de l'élément additionnel;
- (b) on fait réagir en continu dans un réacteur ledit mélange avec un composé basique, le temps de séjour du milieu réactionnel dans la zone de mélange du réacteur étant d'au plus 100 millisecondes ce par quoi on obtient un précipité à la sortie du réacteur;
- (c) on chauffe en milieu aqueux ledit précipité, le milieu étant maintenu à un pH d'au moins 5;
- (d) on ajoute au précipité obtenu à l'étape précédente un additif, choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés;
- (e) on calcine le précipité ainsi obtenu.
1 1 - Procédé de préparation d'une composition selon l'une des revendications 1 à 9, caractérisé en ce qu'il comprend les étapes suivantes :
- (a') on forme un mélange liquide comprenant des composés du cérium, du zirconium et, éventuellement, de l'élément additionnel;
- (b') on fait réagir en continu dans un réacteur centrifuge ledit mélange avec un composé basique, le temps de séjour du milieu réactionnel dans la zone de mélange du réacteur étant d'au plus 10 secondes ce par quoi on obtient un précipité à la sortie du réacteur;
- (c') on chauffe en milieu aqueux ledit précipité, le milieu étant maintenu à un pH d'au moins 5;
- (d') on ajoute au précipité obtenu à l'étape précédente un additif, choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés;
- (e') on calcine le précipité ainsi obtenu. 12- Procédé selon la revendication 10 ou 1 1 , caractérisé en ce qu'on utilise comme composés du cérium, du zirconium et, éventuellement, de l'élément additionnel des composés choisis parmi les nitrates, les sulfates, les acétates, les chlorures, le nitrate céri-ammoniacal.
13- Procédé selon l'une des revendications 10 à 12, caractérisé en ce que le chauffage du précipité de l'étape (c) ou (c') est réalisé à une température d'au moins 100°C. 14- Procédé selon l'une des revendications 10 à 13, caractérisé en ce que le temps de séjour dans le réacteur est d'au plus 20 millisecondes.
15- Système catalytique, caractérisé en ce qu'il comprend une composition selon l'une des revendications 1 à 9.
16- Procédé de traitement des gaz d'échappement des moteurs à combustion interne, caractérisé en ce qu'on utilise à titre de catalyseur un système catalytique selon la revendication 15 ou une composition selon l'une des revendications 1 à 9.
PCT/EP2012/062222 2011-07-04 2012-06-25 Composition consistant en un oxyde mixte de cerium et de zirconium a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse WO2013004533A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201280032907.5A CN103635430A (zh) 2011-07-04 2012-06-25 由氧化铈-氧化锆混合氧化物组成的具有增强的还原性的组合物,生产方法以及在催化领域的用途
RU2014103634/05A RU2014103634A (ru) 2011-07-04 2012-06-25 Композиция, состоящая из смешанного оксида церия и циркония, с повышенной способностью к восстановлению, способ получения и применение в области катализа
EP12729614.3A EP2729415A1 (fr) 2011-07-04 2012-06-25 Composition consistant en un oxyde mixte de cerium et de zirconium a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse
KR1020137034924A KR20140031954A (ko) 2011-07-04 2012-06-25 증가된 환원성을 갖는 세리아-지르코니아 혼합된 옥사이드를 포함하는 조성물, 제조 방법, 및 촉매 작용 분야에서의 용도
CA2838454A CA2838454A1 (fr) 2011-07-04 2012-06-25 Composition consistant en un oxyde mixte de cerium et de zirconium a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse
JP2014517630A JP2014523844A (ja) 2011-07-04 2012-06-25 還元性が増加したセリア−ジルコニア混合酸化物からなる組成物、製造方法および触媒反応の分野での使用
US14/130,814 US20140140910A1 (en) 2011-07-04 2012-06-25 Composition consisting of a ceria-zirconia mixed oxide with increased reducibility, production method and use in the field of catalysis
ZA2013/09410A ZA201309410B (en) 2011-07-04 2013-12-12 Composition consisting of a ceria-zirconia mixed oxide with increased reducibility, production method and use in the field of catalysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11/02088 2011-07-04
FR1102088A FR2977581B1 (fr) 2011-07-04 2011-07-04 Composition consistant en un oxyde mixte de cerium et de zirconium a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse

Publications (1)

Publication Number Publication Date
WO2013004533A1 true WO2013004533A1 (fr) 2013-01-10

Family

ID=46354346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/062222 WO2013004533A1 (fr) 2011-07-04 2012-06-25 Composition consistant en un oxyde mixte de cerium et de zirconium a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse

Country Status (10)

Country Link
US (1) US20140140910A1 (fr)
EP (1) EP2729415A1 (fr)
JP (1) JP2014523844A (fr)
KR (1) KR20140031954A (fr)
CN (1) CN103635430A (fr)
CA (1) CA2838454A1 (fr)
FR (1) FR2977581B1 (fr)
RU (1) RU2014103634A (fr)
WO (1) WO2013004533A1 (fr)
ZA (1) ZA201309410B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3067948A1 (fr) * 2017-06-23 2018-12-28 Rhodia Operations Procede de preparation de nanoparticules d'un compose du fer et/ou du cerium
RU2701863C2 (ru) * 2015-02-23 2019-10-02 ВЕРСАЛИС С.п.А. Способ дегидратации кислородсодержащих соединений

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859470B1 (fr) 2003-09-04 2006-02-17 Rhodia Elect & Catalysis Composition a base d'oxyde de cerium et d'oxyde de zirconium a reductibilite et surface elevees, procede de preparation et utilisation comme catalyseur
WO2016024495A1 (fr) 2014-08-11 2016-02-18 日本電信電話株式会社 Système de mesure de signal biologique, dispositif de mesure d'informations biologiques et procédé de modification d'algorithme d'extraction d'informations biologiques
KR20170076657A (ko) 2014-09-05 2017-07-04 네오 퍼포먼스 메터리얼즈 (싱가포르) 프라이베이트 리미티드 다공성 세륨 및 지르코늄을 포함하는 산화물
CN105983403B (zh) * 2015-02-09 2019-01-01 有研稀土新材料股份有限公司 一种铈锆复合氧化物、其制备方法及催化剂的应用
WO2018206531A1 (fr) * 2017-05-11 2018-11-15 Rhodia Operations Oxyde mixte ayant une résistance et une capacité de stockage de no x améliorées
CN107321353B (zh) * 2017-06-29 2020-04-10 万华化学集团股份有限公司 一种中低温选择性催化还原脱硝催化剂的制备方法
WO2020061723A1 (fr) * 2018-09-24 2020-04-02 Rhodia Operations Oxyde mixte à réductibilité améliorée

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2570087A1 (fr) 1984-09-13 1986-03-14 Rhone Poulenc Spec Chim Procede d'oxydation electrolytique et ensemble d'electrolyse pour sa mise en oeuvre
EP0834348A2 (fr) * 1996-10-07 1998-04-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Oxyde composite, support d'oxyde composite et catalyseur
WO1998045212A1 (fr) 1997-04-04 1998-10-15 Rhodia Rare Earths Inc. OXYDES DE CERIUM, OXYDES DE ZIRCONIUM, OXYDES MIXTES Ce/Zr ET SOLUTIONS SOLIDES Ce/Zr PRESENTANT UNE STABILITE THERMIQUE ET UNE CAPACITE DE STOCKAGE D'OXYGENE AMELIOREES
US6228799B1 (en) * 1996-05-15 2001-05-08 Rhodia Chimie Composition based on cerium oxide and on zirconium oxide with a high specific surface and a high oxygen storage capacity, process of preparation and use in catalysis
EP1464622A1 (fr) * 2003-03-17 2004-10-06 Umicore AG & Co. KG Matériau pour le stockage d'oxygène comprenant de l'oxyde de cérium et au moins un second oxyde d'un metal, procédé pour la préparation dudit matériaux, et utilisation de celui-ci comme catalysateur
FR2859470A1 (fr) * 2003-09-04 2005-03-11 Rhodia Elect & Catalysis Composition a base d'oxyde de cerium et d'oxyde de zirconium a reductibilite et surface elevees, procede de preparation et utilisation comme catalyseur
US20100028236A1 (en) 2006-10-02 2010-02-04 Nanomaterials Technology Pte Ltd Process For Making Nano-Sized and Micro-Sized Precipitate Particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133194A (en) * 1997-04-21 2000-10-17 Rhodia Rare Earths Inc. Cerium oxides, zirconium oxides, Ce/Zr mixed oxides and Ce/Zr solid solutions having improved thermal stability and oxygen storage capacity
US20030186805A1 (en) * 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
US10435639B2 (en) * 2006-09-05 2019-10-08 Cerion, Llc Fuel additive containing lattice engineered cerium dioxide nanoparticles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2570087A1 (fr) 1984-09-13 1986-03-14 Rhone Poulenc Spec Chim Procede d'oxydation electrolytique et ensemble d'electrolyse pour sa mise en oeuvre
US6228799B1 (en) * 1996-05-15 2001-05-08 Rhodia Chimie Composition based on cerium oxide and on zirconium oxide with a high specific surface and a high oxygen storage capacity, process of preparation and use in catalysis
EP0834348A2 (fr) * 1996-10-07 1998-04-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Oxyde composite, support d'oxyde composite et catalyseur
WO1998045212A1 (fr) 1997-04-04 1998-10-15 Rhodia Rare Earths Inc. OXYDES DE CERIUM, OXYDES DE ZIRCONIUM, OXYDES MIXTES Ce/Zr ET SOLUTIONS SOLIDES Ce/Zr PRESENTANT UNE STABILITE THERMIQUE ET UNE CAPACITE DE STOCKAGE D'OXYGENE AMELIOREES
EP1464622A1 (fr) * 2003-03-17 2004-10-06 Umicore AG & Co. KG Matériau pour le stockage d'oxygène comprenant de l'oxyde de cérium et au moins un second oxyde d'un metal, procédé pour la préparation dudit matériaux, et utilisation de celui-ci comme catalysateur
FR2859470A1 (fr) * 2003-09-04 2005-03-11 Rhodia Elect & Catalysis Composition a base d'oxyde de cerium et d'oxyde de zirconium a reductibilite et surface elevees, procede de preparation et utilisation comme catalyseur
US20100028236A1 (en) 2006-10-02 2010-02-04 Nanomaterials Technology Pte Ltd Process For Making Nano-Sized and Micro-Sized Precipitate Particles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRUNAUER; EMMETT; TELLER, THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, 1938, pages 309

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2701863C2 (ru) * 2015-02-23 2019-10-02 ВЕРСАЛИС С.п.А. Способ дегидратации кислородсодержащих соединений
US10894750B2 (en) 2015-02-23 2021-01-19 Versalis S.P.A. Process for the dehydration of oxygenated compounds
FR3067948A1 (fr) * 2017-06-23 2018-12-28 Rhodia Operations Procede de preparation de nanoparticules d'un compose du fer et/ou du cerium

Also Published As

Publication number Publication date
EP2729415A1 (fr) 2014-05-14
FR2977581B1 (fr) 2013-08-02
ZA201309410B (en) 2014-08-27
US20140140910A1 (en) 2014-05-22
RU2014103634A (ru) 2015-08-10
CN103635430A (zh) 2014-03-12
JP2014523844A (ja) 2014-09-18
CA2838454A1 (fr) 2013-01-10
KR20140031954A (ko) 2014-03-13
FR2977581A1 (fr) 2013-01-11

Similar Documents

Publication Publication Date Title
CA2836005C (fr) Composition a base d'oxydes de cerium, de zirconium et d'une autre terre rare a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse
EP2523907B1 (fr) Composition a base d'oxydes de zirconium, de cerium et d'une autre terre rare a temperature maximale de reductibilite reduite, procede de preparation et utilisation dans le domaine de la catalyse
EP2007682B1 (fr) Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable, procede de preparation et utilisation dans le traitement des gaz d'echappement
EP2566617B1 (fr) Composition a base d'oxydes de zirconium, de cerium et d'au moins une autre terre rare, a porosite specifique, procede de preparation et utilisation en catalyse
EP2729415A1 (fr) Composition consistant en un oxyde mixte de cerium et de zirconium a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse
EP1660406B1 (fr) Composition a base d 'oxyde de cerium et d 'oxyde de zirconium a conductibilite et surface elevees, procedes de preparation et utilisation comme catalyseur
EP1603667B1 (fr) Composition a base d oxyde de zirconium et d oxyde de c erium a temperature maximale de reductibilite reduite, son procede de preparation et son utilisation comme catalyseur
EP2024084B1 (fr) Composition a base d'oxydes de zirconium, de cerium, de lanthane et d'yttrium, de gadolinium ou de samarium, a surface specifique et reductibilite elevees, et utilisation comme catalyseur
EP1991354A1 (fr) Composition a base d'oxydes de zirconium, de cerium, d'yttrium, de lanthane et d'une autre terre rare, procede de preparation et utilisation en catalyse
EP2646370A1 (fr) Composition a base d'oxyde de zirconium et d'au moins un oxyde d'une terre rare autre que le cerium, a porosite specifique, ses procedes de preparation et son utilisation en catalyse
EP2729416A1 (fr) Composition consistant en un oxyde mixte de zirconium et de cerium a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse
FR2867769A1 (fr) Composition a base d'oxydes de zirconium, de cerium et d'etain, preparation et utilisation comme catalyseur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12729614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2838454

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014517630

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137034924

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14130814

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012729614

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012729614

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014103634

Country of ref document: RU

Kind code of ref document: A