WO2013004426A1 - Aktivieren einer steuerungsvorrichtung zur abschaltung des hochvoltsystems - Google Patents

Aktivieren einer steuerungsvorrichtung zur abschaltung des hochvoltsystems Download PDF

Info

Publication number
WO2013004426A1
WO2013004426A1 PCT/EP2012/059115 EP2012059115W WO2013004426A1 WO 2013004426 A1 WO2013004426 A1 WO 2013004426A1 EP 2012059115 W EP2012059115 W EP 2012059115W WO 2013004426 A1 WO2013004426 A1 WO 2013004426A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
voltage
vehicle
crash
battery
Prior art date
Application number
PCT/EP2012/059115
Other languages
English (en)
French (fr)
Inventor
Michael Hofsaess
Robert Kornhaas
Cord ELSNER
Armin Koehler
Johannes Schier
Olaf MONZ
Walter Reichert
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2013004426A1 publication Critical patent/WO2013004426A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/28Door position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • High-voltage on-board network or HV high-voltage on-board network
  • HV high-voltage on-board network
  • Traction battery which is connected to the high-voltage system and supplies it with voltage.
  • High-voltage systems in hybrid and electric vehicles operate with operating voltages in the range of 100 to 400 V. Is the
  • AI HV cut-off sensors consisting of a HV sensor and a HV control unit
  • a HV sensor and a HV control unit are independent of a built-in airbag control unit in the vehicle and in response to a sensor signal be used to shut down the high-voltage system in the vehicle. If a crash or a vehicle rollover is detected with the HV sensor system, the high-voltage system is switched off as a function of a sensor signal of the HV sensor system, which is evaluated in the HV control unit.
  • a disadvantage of this HV cut-off sensor is that regardless of the commonly used devices for
  • the HV shutdown sensor next to the airbag control unit is another, independent component that must be installed in the vehicle, claimed further space and also drives the vehicle costs in the air. It only fulfills functions that are as far as possible from the airbag control unit
  • the inventive method with the characterizing part of claim 1 has the advantage that it represents a strategy to turn off the high-voltage vehicle electrical system when the vehicle is loaded at a standstill and a crash is detected.
  • a control device is activated as soon as the high-voltage battery is charged.
  • Control devices that are installed in hybrid or electric vehicles and that can detect a crash are not active when the ignition is switched off and the vehicle is parked for charging. If a crash occurs during charging of the high-voltage battery of the vehicle, the control device can thus neither detect the crash, nor make a decision on the shutdown of the high-voltage system or signal other control devices such as the battery management system that the high-voltage system must be turned off.
  • the control device is first activated as soon as the high-voltage battery of the vehicle is charged.
  • the vehicle's high-voltage battery can be charged both from the smart grid and feed into the grid. Done in Charging state of the vehicle crash, the active control device can advantageously turn off the high-voltage system, so by crash-related
  • control device is an airbag control unit or a
  • the advantage is that the already existing in the vehicle components, which for the crash detection in normal driving
  • control device by a
  • Vehicle state coordinator and / or the battery management system connected.
  • the vehicle condition coordinator determines depending on
  • Vehicle sizes (such as ignition key position, door switch, wheel speed, diagnosis, etc.) the vehicle state (ignition on / off, vehicle charging mode, vehicle at a standstill or while driving, factory seated mode, etc.) and initiates the respective actions.
  • battery management registers that the vehicle is entering the charging mode and that the high-voltage battery is being charged. By a signal or a message, the vehicle state coordinator or the
  • control device Battery management of the control device with, whether they are in the active state should go.
  • the activation of the control device is thus advantageously carried out by devices whose task is to control the charging of the high-voltage battery or to register whether the vehicle is in the charging mode.
  • the control device is operatively operated in a limited functionality mode by the activation. In the mode with limited functionality, only the parts of the
  • Control device energized for the shutdown of the
  • control device is the airbag control unit
  • the supply, monitoring and communication functions for the sensors and the required microcontrollers ( ⁇ iC) are activated in the limited functionality mode.
  • the final stages as well as the energy reserves for controlling the restraining means are not activated.
  • the control device is operated optimally in the mode with limited functionality, reduces its energy consumption to the necessary minimum and thus limits the operation to the necessary control device functions involved.
  • the control device switches on in the event of a crash
  • High-voltage battery from the high-voltage vehicle electrical system or high-voltage system.
  • the high-voltage system to turn off the power supply or the
  • Control device included It advantageously eliminates the transmission of a signal to another control unit, which after receiving the signal
  • High-voltage system shuts off and / or the high-voltage battery of the
  • High-voltage system separates.
  • the shutdown can thus be done advantageously faster.
  • the control device sends a signal to the battery management system during charging in the event of a crash. Since the charging process is controlled by the battery management system, this is in the Crash case also informed about the crash and additional security-related steps can be initiated.
  • the control device advantageously has a CAN interface (CAN bus) via which the signal is sent to the battery management system in the event of a crash.
  • CAN interface CAN bus
  • the battery management system disconnects the high-voltage system or high-voltage on-board electrical system and / or disconnects the high-voltage battery from the high-voltage onboard system or the high-voltage system after it has received the signal from the control device. Disconnecting or switching off the
  • High-voltage system is commonly used by the battery management system
  • FIG. 1 shows a first scheme of the method according to the invention.
  • FIG. 2 shows a second scheme of the method according to the invention.
  • FIG. 3 shows a representation of a vehicle and a vehicle
  • FIG. 1 shows a scheme of the method as an embodiment of the invention.
  • the control device 10 is activated.
  • the control device may optionally be the airbag control unit 13, a device for controlling personal protection means 14 or a device for actuating retaining means 15 or a device for controlling safety means 16.
  • the activation can optionally take place via the battery management system 17 or the vehicle state coordinator 18 or another control device which determines the charging process. In this case, the control device 10 by activating either full
  • the sensors are conventionally used for airbag systems crash sensors via a frontal, rear or
  • control device 10 detects a crash and switches the
  • High-voltage system 24 de-energized and / or disconnects the high-voltage battery 12 from the high-voltage system 24th
  • FIG. 2 shows another scheme of the method next
  • the control device 10 is activated.
  • the control device 10 may optionally include the airbag control unit 13, a device for controlling personal protection means 14 or a device for controlling
  • Retaining means 15 or a device for controlling safety means 16 be.
  • the activation can optionally via the battery management system 17 or the vehicle state coordinator 18 or another controller that detects the charge.
  • the control device can be activated by the activation either fully functional, or after
  • Activation only in a mode with limited functionality 22 are operated.
  • the limited functionality mode 22 only all the supply, monitoring and communication functions are activated for the sensors and the required microcontrollers ( ⁇ iC) needed to detect a crash.
  • the sensors are
  • Crash sensors commonly used for airbag systems, via which a frontal, rear or side impact can be detected, and sensors (e.g., yaw rate sensor) over which a vehicle rollover can be detected.
  • the control device 10 detects a crash and sends a signal 20 to the battery management system 17.
  • the signal 20 is sent via a CAN interface from the control device to the
  • Battery management system 17 transmitted.
  • the battery management system 17 disconnects the high-voltage system 24 from the high-voltage system 24 and / or disconnects the high-voltage battery 12.
  • FIG. 3 shows a further embodiment of the invention, a vehicle 11, which is preferably a hybrid or electric vehicle.
  • vehicle 11 is a control device 10.
  • the control device 10 may optionally be the airbag control unit 13, a device for controlling personal protection means 14 or a device for controlling
  • Retaining means 15 or a device for controlling safety means 16 be.
  • the control device 10 is connected to a battery management system 17 and / or to a vehicle state coordinator 18.
  • Control device 10 has a CAN interface 21, via which the control device 10 communicates with the battery management system 17. Furthermore, there is a high-voltage system 24 and a high-voltage battery 12 in the vehicle 11, wherein the high-voltage system 24 is connected to the high-voltage battery 12.
  • the control device 10 is connected to at least one sensor 19, which is used as a crash sensor (acceleration sensor, yaw rate sensor, inertial sensor, structure-borne sound sensor, pressure sensor, etc.) or pre-crash sensor (ie Sensors that detect an impending crash) is executed.
  • the vehicle 11 is connected to the power grid 25 and is located in
  • Charging operation in which the high-voltage battery 12 is charged.
  • the control device 10 is activated. The activation is carried out by the battery management system 17 or a
  • Vehicle condition coordinator 18. Activation activates the
  • Control device fully operational commissioned or operated depending on the energy reserve only in a mode with limited functionality 22.
  • the limited functionality mode 22 only all the supply, monitoring and communication functions are activated for the sensors and the required microcontrollers ( ⁇ iC) needed for the detection of the crash.
  • the control device either switches the high-voltage system 24 de-energized and / or disconnects the high-voltage battery 12 from the high-voltage system 24 or the control device 10 sends a signal 20 optionally via a CAN interface 21 to the battery management system 17. Thereafter, the Battery management system 17, the high-voltage system 24 without voltage and / or disconnects the high-voltage battery 12 from the high-voltage system 24th

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air Bags (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb einer Steuerungsvorrichtung (10), die in einem Fahrzeug (11), insbesondere einem Hybridoder Elektrofahrzeug, angeordnet oder mit diesem verbunden ist, wobei das Fahrzeug (11) eine Hochvoltbatterie (12) aufweist, wobei die Steuerungsvorrichtung (10) aktiviert wird, sobald die Hochvoltbatterie (12) geladen wird.

Description

Beschreibung Titel
Aktivieren einer Steuerungsvorrichtung zur Abschaltung des Hochvoltsystems
Stand der Technik Die Erfindung geht aus von einem Verfahren nach dem Oberbegriff des
unabhängigen Anspruchs.
Verschiedenartige Verfahren zur Abschaltung des Hochvoltsystems (auch als Hochvoltbordnetz bzw. HV bezeichnet) in Hybrid- und Elektrofahrzeugen sind bekannt. Ein derartiges Verfahren zeigt beispielsweise die DE 10 2009 039 913 AI. Ein Hybrid- oder Elektrofahrzeug weist eine Hochvoltbatterie (auch als
Traktionsbatterie bezeichnet) auf, die mit dem Hochvoltsystem verbunden ist und dieses mit Spannung versorgt. Hochvoltsysteme in Hybrid- und Elektrofahrzeugen arbeiten mit Betriebsspannungen im Bereich von 100 bis 400 V. Wird das
Hochvoltsystem durch einen Crash beschädigt, sodass die Karosserie durch die Beschädigung unter Spannung steht oder spannungsführende Zuleitungen der Berührung durch Personen zugänglich sind, bestehen für diese höchste
Gefährdungen. Um nach einem Unfall bzw. Crash die Gefährdung für Personen durch die
Hochspannungen zu minimieren, sind beispielsweise aus der DE 10 2009 039 913 AI eine HV-Abschaltsensorik (bestehend aus einer HV-Sensorik und einem HV- Steuergerät) bekannt, die unabhängig von einem im Fahrzeug verbauten Airbag- Steuergerät sind und in Abhängigkeit von einem Sensorsignal zum Abschalten des Hochvoltsystems im Fahrzeug eingesetzt werden. Wird mit der HV-Sensorik ein Crash oder ein Fahrzeugüberschlag detektiert, wird in Abhängigkeit von einem Sensorsignal der HV-Sensorik, das im HV-Steuergerät ausgewertet wird, das Hochvoltsystem abgeschaltet. Nachteilig an dieser HV-Abschaltsensorik ist, dass sie unabhängig von den üblicherweise verwendeten Vorrichtungen zur
Ansteuerung von Personenschutzmitteln, Rückhaltemitteln oder Sicherheitsmitteln (z.B. Airbag-System, Airbag-Steuergerät, etc.) ist. Somit stellt die HV- Abschaltsensorik neben dem Airbag-Steuergerät eine weitere, eigenständige Komponente dar, die im Fahrzeug verbaut werden muss, weiteren Bauraum beansprucht und zusätzlich die Fahrzeugkosten in die Höhe treibt. Sie erfüllt dabei lediglich Funktionen, die bereits vom Airbag-Steuergerät weitestgehend
ausgeführt werden, da das Airbag-Steuergerät bereits so ausgelegt ist, dass es einen Crash detektieren kann.
Es ist die Aufgabe der Erfindung, ein verbessertes Verfahren zum Abschalten des Hochvoltsystems anzugeben.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren mit dem Kennzeichen des Anspruchs 1 hat den Vorteil, dass es eine Strategie darstellt, um das Hochvoltbordnetz abzuschalten, wenn das Fahrzeug im Stillstand geladen und ein Crash detektiert wird.
Erfindungsgemäß ist vorgesehen, dass eine Steuerungsvorrichtung aktiviert wird, sobald die Hochvoltbatterie geladen wird. Steuerungsvorrichtungen, die in Hybridoder Elektrofahrzeugen verbaut sind und die einen Crash detektieren können, sind nicht aktiv, wenn die Zündung ausgeschaltet und das Fahrzeug zum Laden abgestellt ist. Erfolgt während des Ladens der Hochvoltbatterie des Fahrzeugs ein Crash, kann die Steuerungsvorrichtung somit weder den Crash detektieren, noch eine Entscheidung über die Abschaltung des Hochvoltsystems treffen oder anderen Steuergeräten wie z.B. dem Batteriemanagementsystem signalisieren, dass das Hochvoltsystem abgeschaltet werden muss. Erfindungsgemäß wird daher die Steuerungsvorrichtung zunächst aktiviert, sobald die Hochvoltbatterie des Fahrzeugs geladen wird. Während des Ladevorgangs bzw. Ladebetriebs kann die Hochvoltbatterie des Fahrzeugs sowohl aus dem intelligenten Stromnetz beladen werden, als auch Ladung in das Stromnetz einspeisen. Erfolgt im Ladezustand des Fahrzeugs ein Crash, kann die aktive Steuerungsvorrichtung vorteilhaft das Hochvoltsystem abschalten, sodass durch crashbedingte
Beschädigungen keine Risiken wie beispielsweise durch Funkenbildung,
Brandgefahr oder Stromschlag bestehen.
Durch die in den abhängigen Ansprüchen genannten Maßnahmen sind vorteilhafte Weiterbildungen des in dem unabhängigen Anspruch angegebenen Verfahrens möglich. Vorteilhaft ist die Steuerungsvorrichtung ein Airbag-Steuergerät oder eine
Vorrichtung zur Ansteuerung von Personenschutzmitteln oder eine Vorrichtung zur Ansteuerung von Rückhaltemitteln oder eine Vorrichtung zur Ansteuerung von Sicherheitsmitteln. Der Vorteil ist, dass die schon im Fahrzeug vorhandenen Komponenten, welche für die Crasherkennung im normalen Fahrbetrieb
verwendet werden, auch für die Abschaltung des Hochvoltsystems während des Ladebetriebs bzw. für die Initiierung der Abschaltung des Hochvoltsystems während des Ladebetriebs verwendet werden können, wenn sich das Fahrzeug im Stillstand befindet. Somit entstehen keine größeren Zusatzkosten und es muss auch kein weiterer Bauraum für zusätzliche Komponenten eingeplant werden.
Weiterhin ist vorteilhaft, dass die Steuerungsvorrichtung durch ein
Batteriemanagementsystem oder einen Fahrzeugzustandskoordinator aktiviert wird. Zu diesem Zweck ist die Steuerungsvorrichtung vorteilhaft mit dem
Fahrzeugzustandskoordinator und/oder dem Batteriemanagementsystem verbunden. Der Fahrzeugzustandskoordinator bestimmt abhängig von
Fahrzeuggrößen (wie z.B. Zündschlüsselstellung, Türschalter, Raddrehzahl, Diagnose, etc.) den Fahrzeugzustand (Zündung an/aus, Fahrzeug Ladebetrieb, Fahrzeug im Stillstand oder im Fahrbetrieb, Werksattmodus, etc.) und leitet dafür die jeweiligen Aktionen ein. Fahrzeugzustandskoordinator oder
Batteriemanagement registrieren unter anderem, dass das Fahrzeug in den Ladebetrieb übergeht und dass die Hochvoltbatterie geladen wird. Durch ein Signal bzw. eine Botschaft teilt der Fahrzeugzustandskoordinator bzw. das
Batteriemanagement der Steuerungsvorrichtung mit, ob sie in den aktiven Zustand gehen soll. Die Aktivierung der Steuerungsvorrichtung wird somit vorteilhaft von Geräten vorgenommen, deren Aufgabe es ist, das Laden der Hochvoltbatterie zu steuern bzw. zu registrieren, ob sich das Fahrzeug im Ladebetrieb befindet. Vorteilhaft wird die Steuerungsvorrichtung durch die Aktivierung eingeschränkt funktionsfähig in einem Modus mit eingeschränkter Funktionalität betrieben. In dem Modus mit eingeschränkter Funktionalität werden nur die Teile der
Steuerungsvorrichtung mit Energie versorgt, die für die Abschaltung des
Hochvoltsystems bzw. für die Initiierung der Abschaltung des Hochvoltsystems benötigt werden. Handelt es sich bei der Steuerungsvorrichtung beispielsweise um das Airbag-Steuergerät, werden im Modus mit eingeschränkter Funktionalität lediglich alle Versorgungs-, Überwachungs- und Kommunikationsfunktionen für die Sensoren und die benötigten Mikrokontroller (\iC) aktiviert. Die Endstufen sowie die Energiereserven zur Ansteuerung der Rückhaltemittel (z.B. Airbag, Gurt, etc.) werden nicht aktiviert. Vorteilhaft wird die Steuerungsvorrichtung im Modus mit eingeschränkter Funktionalität optimiert betrieben, ihr Energieverbrauch auf das nötige Minimum reduziert und der Betrieb somit auf die notwendigen beteiligten Steuervorrichtungsfunktionen beschränkt. Vorteilhaft schaltet die Steuerungsvorrichtung bei einem Crash ein
Hochvoltbordnetz bzw. Hochvoltsystem spannungsfrei und/oder trennt die
Hochvoltbatterie von dem Hochvoltbordnetz bzw. Hochvoltsystem. Hierbei ist die Funktionalität, das Hochvoltsystem spannungsfrei zu schalten bzw. die
Hochvoltbatterie von dem Hochvoltsystem zu trennen, in der
Steuerungsvorrichtung enthalten. Es entfällt vorteilhaft die Übermittelung eines Signals an ein weiteres Steuergerät, was nach Erhalt des Signals das
Hochvoltsystem abschaltet und/oder die Hochvoltbatterie von dem
Hochvoltsystem trennt. Die Abschaltung kann somit vorteilhaft schneller erfolgen. Weiterhin ist vorteilhaft, dass die Steuerungsvorrichtung während des Ladens im Fall eines Crashs ein Signal an das Batteriemanagementsystem schickt. Da der Ladevorgang über das Batteriemanagementsystem gesteuert wird, wird dieses im Crashfall ebenfalls über den Crash informiert und es können zusätzliche sicherheitsrelevante Schritte eingeleitet werden.
Die Steuerungsvorrichtung verfügt vorteilhaft über eine CAN-Schnittstelle (CAN- Bus), über die das Signal an das Batteriemanagementsystem im Crashfall gesendet wird. Dies ist vorteilhaft, da CAN-Schnittstellen standardmäßig zur Vernetzung von Steuergeräten eingesetzt werden.
Vorteilhaft schaltet das Batteriemanagementsystem das Hochvoltsystem bzw. Hochvoltbordnetz spannungsfrei und/oder trennt die Hochvoltbatterie von dem Hochvoltbordnetz bzw. dem Hochvoltsystem, nachdem es das Signal von der Steuerungsvorrichtung erhalten hat. Das Trennen bzw. Abschalten des
Hochvoltsystems wird üblicherweise vom Batteriemanagementsystem
vorgenommen. Dementsprechend ist es vorteilhaft, diese Funktion vom
Batteriemanagementsystem erledigen zu lassen, ohne diese Funktionalität ebenfalls in die Steuerungsvorrichtung zu integrieren.
Zeichnung Die Erfindung wird nachfolgend in mehreren Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert.
Figur 1 zeigt ein erstes Schema des erfindungsgemäßen Verfahrens. Figur 2 zeigt ein zweites Schema des erfindungsgemäßen Verfahrens.
Figur 3 zeigt eine Darstellung eines Fahrzeugs und einer
Steuerungsvorrichtung. Ausführungsformen der Erfindung
Figur 1 zeigt ein Schema des Verfahrens als Ausführungsbeispiel der Erfindung. Im ersten Schritt 30 wird die Hochvoltbatterie 12 eines Fahrzeugs 11 über das Stromnetz 25 geladen. In einem zweiten Schritt 31 wird die Steuerungsvorrichtung 10 aktiviert. Die Steuerungsvorrichtung kann wahlweise das Airbag-Steuergerät 13, eine Vorrichtung zur Ansteuerung von Personenschutzmitteln 14 oder eine Vorrichtung zur Ansteuerung von Rückhaltemitteln 15 oder eine Vorrichtung zur Ansteuerung von Sicherheitsmitteln 16 sein. Die Aktivierung kann wahlweise über das Batteriemanagementsystem 17 oder den Fahrzeugzustandskoordinator 18 oder ein anderes Steuergerät erfolgen, welches den Ladevorgang feststellt. Dabei kann die Steuerungsvorrichtung 10 durch die Aktivierung entweder voll
funktionsfähig aktiviert werden, oder nach Aktivierung lediglich in einem Modus mit eingeschränkter Funktionalität 22 betrieben werden. Im Modus mit
eingeschränkter Funktionalität 22 werden lediglich alle Versorgungs-,
Überwachungs- und Kommunikationsfunktionen für die Sensoren und die benötigten Mikrokontroller (\iC) aktiviert, die für die Detektion eines Crashs benötigt werden. Bei den Sensoren handelt es sich um üblicherweise für Airbag- Systeme eingesetzte Crashsensoren, über die ein Frontal-, Heck- oder
Seitenaufprall detektiert werden kann und um Sensoren (z.B. Drehratensensor), über die ein Fahrzeugüberschlag festgestellt werden kann. Im dritten Schritt 32 detektiert die Steuerungsvorrichtung 10 einen Crash und schaltet das
Hochvoltsystem 24 spannungsfrei und/oder trennt die Hochvoltbatterie 12 vom Hochvoltsystem 24.
Figur 2 zeigt ein weiteres Schema des Verfahrens als nächstes
Ausführungsbeispiel der Erfindung. Im ersten Schritt 40 wird die Hochvoltbatterie 12 eines Fahrzeugs 11 über das Stromnetz 25 geladen. In einem zweiten Schritt 41 wird die Steuerungsvorrichtung 10 aktiviert. Die Steuerungsvorrichtung 10 kann wahlweise das Airbag-Steuergerät 13, eine Vorrichtung zur Ansteuerung von Personenschutzmitteln 14 oder eine Vorrichtung zur Ansteuerung von
Rückhaltemitteln 15 oder eine Vorrichtung zur Ansteuerung von Sicherheitsmitteln 16 sein. Die Aktivierung kann wahlweise über das Batteriemanagementsystem 17 oder den Fahrzeugzustandskoordinator 18 oder ein anderes Steuergerät erfolgen, welches den Ladevorgang feststellt. Dabei kann die Steuerungsvorrichtung durch die Aktivierung entweder voll funktionsfähig aktiviert werden, oder nach
Aktivierung lediglich in einem Modus mit eingeschränkter Funktionalität 22 betrieben werden. Im Modus mit eingeschränkter Funktionalität 22 werden lediglich alle Versorgungs-, Überwachungs- und Kommunikationsfunktionen für die Sensoren und die benötigten Mikrokontroller (\iC) aktiviert, die für die Detektion eines Crashs benötigt werden. Bei den Sensoren handelt es sich um
üblicherweise für Airbag-Systeme eingesetzte Crashsensoren, über die ein Frontal-, Heck- oder Seitenaufprall detektiert werden kann und um Sensoren (z.B. Drehratensensor), über die ein Fahrzeugüberschlag festgestellt werden kann. Im dritten Schritt 42 detektiert die Steuerungsvorrichtung 10 einen Crash und sendet ein Signal 20 an das Batteriemanagementsystem 17. Das Signal 20 wird über eine CAN-Schnittstelle von der Steuerungsvorrichtung an das
Batteriemanagementsystem 17 übermittelt. In einem vierten Schritt 43 schaltet das Batteriemanagementsystem 17 das Hochvoltsystem 24 spannungsfrei und/oder trennt die Hochvoltbatterie 12 vom Hochvoltsystem 24.
Figur 3 zeigt als weiteres Ausführungsbeispiel der Erfindung ein Fahrzeug 11, das vorzugsweise ein Hybrid- oder Elektrofahrzeug ist. In dem Fahrzeug 11 befindet sich eine Steuerungsvorrichtung 10. Die Steuerungsvorrichtung 10 kann wahlweise das Airbag-Steuergerät 13, eine Vorrichtung zur Ansteuerung von Personenschutzmitteln 14 oder eine Vorrichtung zur Ansteuerung von
Rückhaltemitteln 15 oder eine Vorrichtung zur Ansteuerung von Sicherheitsmitteln 16 sein. Die Steuerungsvorrichtung 10 ist mit einem Batteriemanagementsystem 17 und / oder mit einem Fahrzeugzustandskoordinator 18 verbunden. Die
Steuerungsvorrichtung 10 verfügt über eine CAN-Schnittstelle 21, über die die Steuerungsvorrichtung 10 mit dem Batteriemanagementsystem 17 kommuniziert. Weiterhin befindet sich in dem Fahrzeug 11 ein Hochvoltsystem 24 und eine Hochvoltbatterie 12, wobei das Hochvoltsystem 24 mit der Hochvoltbatterie 12 verbunden ist. Die Steuerungsvorrichtung 10 ist mit mindestens einem Sensor 19 verbunden, der als Crashsensor (Beschleunigungssensor, Drehratensensor, Inertialsensor, Körperschallsensor, Drucksensor, etc.) oder Pre-Crashsensor (d.h. Sensoren, die einen bevorstehenden Crash detektieren) ausgeführt ist. Das Fahrzeug 11 ist mit dem Stromnetz 25 verbunden und befindet sich im
Ladebetrieb, in dem die Hochvoltbatterie 12 geladen wird. Wird der Ladebetrieb begonnen, wird die Steuerungsvorrichtung 10 aktiviert. Die Aktivierung erfolgt durch das Batteriemanagementsystem 17 oder einen
Fahrzeugzustandskoordinator 18. Durch die Aktivierung wird die
Steuerungsvorrichtung voll funktionsfähig in Betrieb genommen oder je nach Energiereserve nur in einem Modus mit eingeschränkter Funktionalität 22 betrieben. Im Modus mit eingeschränkter Funktionalität 22 werden lediglich alle Versorgungs-, Überwachungs- und Kommunikationsfunktionen für die Sensoren und die benötigten Mikrokontroller (\iC) aktiviert, die für die Detektion des Crashs benötigt werden. Wird während des Ladevorgangs ein Crash detektiert, schaltet die Steuerungsvorrichtung entweder das Hochvoltsystem 24 spannungsfrei und/oder trennt die Hochvoltbatterie 12 von dem Hochvoltsystem 24 oder die Steuerungsvorrichtung 10 schickt ein Signal 20 wahlweise über eine CAN- Schnittstelle 21 an das Batteriemanagementsystem 17. Anschließend schaltet das Batteriemanagementsystem 17 das Hochvoltsystem 24 spannungsfrei und/oder trennt die Hochvoltbatterie 12 von dem Hochvoltsystem 24.

Claims

Ansprüche
1. Verfahren zum Betrieb einer Steuerungsvorrichtung (10), die in einem
Fahrzeug (11), insbesondere einem Hybrid- oder Elektrofahrzeug,
angeordnet oder mit diesem verbunden ist, wobei das Fahrzeug (11) eine
Hochvoltbatterie (12) aufweist, dadurch gekennzeichnet, dass
die Steuerungsvorrichtung (10) aktiviert wird, sobald die Hochvoltbatterie (12) geladen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die
Steuerungsvorrichtung (10) ein Airbag-Steuergerät (13) oder eine
Vorrichtung zur Ansteuerung von Personenschutzmitteln (14) oder eine Vorrichtung zur Ansteuerung von Rückhaltemitteln (15) oder eine Vorrichtung zur Ansteuerung von Sicherheitsmitteln (16) ist.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Steuerungsvorrichtung (10) durch ein
Batteriemanagementsystem (17) oder einen Fahrzeugzustandskoordinator (18) aktiviert wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Steuerungsvorrichtung (10) durch die Aktivierung in einem Modus (22) mit eingeschränkter Funktionalität betrieben wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass ein Hochvoltsystem vorgesehen ist, das mit der Hochvoltbatterie verbunden ist, und dass die Steuerungsvorrichtung (10) bei einem Crash das Hochvoltsystem (24) spannungsfrei schaltet und/oder die Hochvoltbatterie (12) von dem Hochvoltsystem (26) trennt.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Steuerungsvorrichtung (10) während des Ladens bei einem Crash ein Signal (20) an das Batteriemanagementsystem (17) schickt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die
Steuerungsvorrichtung (10) das Signal (20) über eine CAN-Schnittstelle (21) sendet.
Verfahren nach einem der Ansprüche 1 bis 4 und 6 bis 8, dadurch gekennzeichnet, dass das Batteriemanagementsystem (17) das
Hochvoltsystem (24) spannungsfrei schaltet und/oder die Hochvoltbatterie (12) von dem Hochvoltsystem (24) trennt, nachdem es das Signal (20) erhalten hat.
Steuerungsvorrichtung zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 8.
PCT/EP2012/059115 2011-07-05 2012-05-16 Aktivieren einer steuerungsvorrichtung zur abschaltung des hochvoltsystems WO2013004426A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011078687.2 2011-07-05
DE201110078687 DE102011078687A1 (de) 2011-07-05 2011-07-05 Aktivieren einer Steuerungsvorrichtung zur Abschaltung des Hochvoltsystems

Publications (1)

Publication Number Publication Date
WO2013004426A1 true WO2013004426A1 (de) 2013-01-10

Family

ID=46298369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/059115 WO2013004426A1 (de) 2011-07-05 2012-05-16 Aktivieren einer steuerungsvorrichtung zur abschaltung des hochvoltsystems

Country Status (2)

Country Link
DE (1) DE102011078687A1 (de)
WO (1) WO2013004426A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147914A1 (zh) * 2020-01-20 2021-07-29 北京嘀嘀无限科技发展有限公司 一种车载设备低压保护方法和系统
CN113815420A (zh) * 2020-06-19 2021-12-21 北京新能源汽车股份有限公司 一种电动汽车的碰撞检测控制方法、系统及电动汽车

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480649B1 (ko) * 2013-11-26 2015-01-09 현대자동차주식회사 차량 제어시스템 및 그 운용방법
DE102018218449A1 (de) 2018-10-29 2020-04-30 Robert Bosch Gmbh Berührungssicherheit für funkentstörte Spannungswandler in einem potentialfreien Gleichspannungsnetz
DE102018221286B4 (de) 2018-12-10 2021-05-20 Volkswagen Aktiengesellschaft Kraftfahrzeug mit einer Stand-Aufprall-Detektionseinrichtung und Verfahren zum Detektieren eines Aufpralls

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104160A (en) * 1997-12-10 2000-08-15 Nissan Motor Co., Ltd. Household power supply system using electric vehicle
EP2018994A1 (de) * 2006-05-17 2009-01-28 Toyota Jidosha Kabushiki Kaisha Energieversorgung und fahrzeug
DE102009039913A1 (de) 2009-09-03 2010-06-24 Daimler Ag Kraftfahrzeug mit automatischer Abschaltung des Hochvoltsystems
WO2011024285A1 (ja) * 2009-08-28 2011-03-03 トヨタ自動車株式会社 車両の電源システムおよびそれを備える電動車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104160A (en) * 1997-12-10 2000-08-15 Nissan Motor Co., Ltd. Household power supply system using electric vehicle
EP2018994A1 (de) * 2006-05-17 2009-01-28 Toyota Jidosha Kabushiki Kaisha Energieversorgung und fahrzeug
WO2011024285A1 (ja) * 2009-08-28 2011-03-03 トヨタ自動車株式会社 車両の電源システムおよびそれを備える電動車両
DE102009039913A1 (de) 2009-09-03 2010-06-24 Daimler Ag Kraftfahrzeug mit automatischer Abschaltung des Hochvoltsystems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147914A1 (zh) * 2020-01-20 2021-07-29 北京嘀嘀无限科技发展有限公司 一种车载设备低压保护方法和系统
CN113815420A (zh) * 2020-06-19 2021-12-21 北京新能源汽车股份有限公司 一种电动汽车的碰撞检测控制方法、系统及电动汽车

Also Published As

Publication number Publication date
DE102011078687A1 (de) 2013-01-10

Similar Documents

Publication Publication Date Title
EP2477839B1 (de) Verfahren und vorrichtung zum betreiben eines hybridfahrzeuges beim defekt eines energiesystems
EP1716032B1 (de) Verfahren und vorrichtung zum aktivieren einer elektrischen parkbremse
EP2632761B1 (de) Verfahren zum laden eines hybrid- oder elektrofahrzeugs
EP2670617B1 (de) Verfahren und vorrichtung zur steuerung der stromversorgung in einem stromnetz eines kraftwagens, sowie kraftwagen
DE102012018338A1 (de) Vorrichtung, Fahrzeug, Verfahren und Computerprogramm zur Deaktivierung von Hochvoltkomponenten eines Fahrzeugs
DE102009051293A1 (de) Schaltungsanordnung zum Trennen einer Spannungsquelle von einem elektrischen Energienetz eines Fahrzeugs
DE102009039913A1 (de) Kraftfahrzeug mit automatischer Abschaltung des Hochvoltsystems
DE102012006104B4 (de) Überwachungsvorrichtung zum Berührungsschutz eines mit mindestens einer Elektro-Antriebsmaschine versehenen Fahrzeugs, sowie Verfahren hierzu
WO2013004426A1 (de) Aktivieren einer steuerungsvorrichtung zur abschaltung des hochvoltsystems
DE102012020019A1 (de) Entladevorrichtung zum aktiven Entladen eines Hochvolt-Zwischenkreises in einem Hochvolt-Netz eines Fahrzeugs, Fahrzeug mit einer solchen Entladevorrichtung sowie Verfahren zum aktiven Entladen
DE102015104345A1 (de) System und verfahren zum schliessen eines schaltschützes bei frühem wecken zur verkürzung der fahrzeugstartzeit
EP3544844A1 (de) Betriebsverfahren für eine zweispannungsbatterie
EP2720900B1 (de) Verfahren zur sicheren deaktivierung eines hochspannungsnetzes eines kraftfahrzeugs
EP3637580A1 (de) Energieversorgungssystem für eine verbrauchseinheit und verfahren zur energieversorgung einer verbrauchseinheit
DE102018201221A1 (de) Lenkvorrichtung
DE102012003898A1 (de) Verfahren und Vorrichtung zur Ansteuerung von Insassenschutzmitteln in einem Fahrzeug
EP2983941A2 (de) Überwachungsvorrichtung für ein fahrzeug und verfahren zur überwachung eines fahrzeugs
DE102018221286B4 (de) Kraftfahrzeug mit einer Stand-Aufprall-Detektionseinrichtung und Verfahren zum Detektieren eines Aufpralls
DE102015008005A1 (de) Notlaufbetrieb für ein Kraftfahrzeug mit zwei Bordnetzen
DE102007001573A1 (de) Vorrichtung mit einer Mehrzahl von Sensoren für ein Fahrzeug und Verfahren zur Energieversorgung wenigstens eines Steuergeräts für ein Fahrzeug
DE102014006944B4 (de) Verfahren zum Betrieb einer kraftfahrzeugseitigen elektrischen Bordnetzstruktur, elektrische Bordnetzstruktur für ein Kraftfahrzeug und Kraftfahrzeug
DE102019200608B4 (de) Vorrichtung und Verfahren zum Bereitstellen einer für einen Bremsvorgang einer automatischen Parkbremse benötigten Energiemenge für ein Fahrzeug und Bremssystem
DE102013220948B4 (de) Verfahren und Vorrichtung zum Steuern eines Fahrzeugs
WO2011042182A1 (de) Fahrzeug mit elektrischem antrieb und reversibler sicherheitskomponente
DE102010033558A1 (de) Vorrichtung und Verfahren zur Stabilisierung eines Anhängers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12727609

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12727609

Country of ref document: EP

Kind code of ref document: A1