WO2013004073A1 - 运载火箭推力装置 - Google Patents
运载火箭推力装置 Download PDFInfo
- Publication number
- WO2013004073A1 WO2013004073A1 PCT/CN2012/000911 CN2012000911W WO2013004073A1 WO 2013004073 A1 WO2013004073 A1 WO 2013004073A1 CN 2012000911 W CN2012000911 W CN 2012000911W WO 2013004073 A1 WO2013004073 A1 WO 2013004073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flight
- carrier rocket
- rocket
- launch vehicle
- spacecraft
- Prior art date
Links
- 238000005265 energy consumption Methods 0.000 claims 1
- 239000000446 fuel Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 235000015842 Hesperis Nutrition 0.000 description 2
- 235000012633 Iberis amara Nutrition 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 241000234282 Allium Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 101000606504 Drosophila melanogaster Tyrosine-protein kinase-like otk Proteins 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/28—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
- B64G1/281—Spin-stabilised spacecraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/26—Guiding or controlling apparatus, e.g. for attitude control using jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/40—Arrangements or adaptations of propulsion systems
- B64G1/401—Liquid propellant rocket engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/80—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control
- F02K9/84—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control using movable nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/97—Rocket nozzles
Definitions
- the improved scheme of the patented launch vehicle thrust device of the present invention relates to a launching mode of a launch vehicle and a control method when navigating in air and in space. Background technique
- the methods used by the world's major powers to develop and launch launch vehicles are all slightly offset from the axis.
- the increase in propulsion, to control the direction of the rocket's navigation, allows the rocket to correct its heading when it encounters a strong wind, or other factors that cause the rocket to deviate from the intended orbit. (commonly known as "navigation")
- ⁇ F is the incremental thrust increase for correcting the rocket's off-track
- AF' reaches the rocket's body
- OP vertical distance
- the quantity ⁇ ' is the moment ⁇ of the force ⁇ F at the time, and the correction of the rocket to the clockwise direction. Because the angling angle is 10. Too small, so there will be a lot of fuel needed, otherwise the torque it produces will not be enough to return the rocket to the intended sailing orbit.
- ⁇ F is the force of the SPE sparkle required to reverse the launch vehicle.
- the AF increment also decomposes a vertical component ⁇ FV',
- d is about 1 m (R is the radius of the rocket launcher)
- the solution is to install the small injection pipe E around the wall of the rocket launcher and let it "radial fire", that is to say, after such improvement, it can reduce the 87% of the fuel corrected by the correction! (See Figure 3) and it is also possible to install such small jets E at the first, second and third levels and even at the bottom of the spacecraft.
- the spacecraft can also adjust its own course.
- the bottom of the rocket's jet pipe PS can be installed vertically in the tail of the rocket (see Figure 3). It will be used to promote the launch of the rocket. Of course, there will be no waste of 1.53% of the fuel. After that. (This loss cannot be underestimated.) After such improvements, incidentally, it also brings a very important advantage: that is, a series of procedures and mechanisms for controlling the launch of the launch vehicle can be greatly simplified, which will reduce the size and weight of the control system and Controlling the complexity of the equipment, which will also reduce the load of the rocket lift, and increase the accuracy and sensitivity and reliability of the control system, as well as shorten the reaction time, the indirect consequences will be: Reduce some of the considerable fuel. DRAWINGS
- FIG. 1 Schematic diagram of the original launcher of the launch vehicle
- ⁇ F ⁇ is the force applied to the rocket by the correction
- Figure 2 Side view of a launch vehicle
- a small (three or more) small jet tubes 6 that can be radially fired are also installed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Toys (AREA)
Abstract
一种运载火箭推力装置,是在运载火箭(HJ)和飞船(FC)的外壁上,加装了几组喷火管(E),它们可在任意方向上转动,它喷射出的火流,随着喷射角度的改变,既可改变飞行的方向,同时还可以使运载火箭围绕自身主轴的方向旋转,以产生转动惯量,保持准直的飞行状态,以减少飞行轨迹的偏离程度。另一方面,还可以节省运载火箭在发射之后调整航向所需的能源消耗,并可控制飞船在脱离了运载火箭(HJ)之后的飞行状态。
Description
说 明 书 运载火箭推力装置
技术领域
本发明专利运载火箭推力装置的改进方案, 涉及到一种运载火箭的发射方式, 以及在空 气和在太空中航行时的操控方法。 背景技术
全世界航天界的科学家们, 在发射运载火箭的历史过程中, 连续了半个多世纪, 均犯下 了一个 "不可饶恕的 "低级的技术性的错误!遗憾的是, 这几十年以来, 中外师徒代代相传, 至今竟然无一人察觉; 而科技界机械领域里的工程技术人员和学者们, 对此冷漠、 也听之任 之, 没有任何人理会这个问题。
以下仅用一个简单的示意图, 便可清楚地说明此问题: (见图 1和图 2)
目前, 世界各大国在研制、 和发射运载火箭时所采用的方法, 全都是用一个稍稍偏离轴 向 10。的推进力的增量、 来控制火箭航行方向的方式, 使火箭在升空之后, 在当遇到大风的 千扰、 或其它因素而使火箭偏离预定的轨道时, 来纠正其航向。 (俗称 "导航")假设厶 F为 纠正火箭偏离轨道所增加的推力增量,那它的反作用力 AF'到达火箭本体后,其延伸线与火 箭重心的垂直距离(OP), 乘以此增量 ΔΡ' , 即为当时此力厶 F 、 施予火箭往顒时针方向纠 偏的力矩 Ν。 因为偏角角度 10。太小, 因而所需要的燃料会很多, 否則它所产生的力矩, 就 不足以使火箭转回到预定的航行轨道方向来。
以下, 可用图解作进一步的说明:
假设:厶 F为扭转运载火箭所需的喷射管 PS喷火增量的力, 所给予火箭的反推力为 AF', △F = AF' ; 飞行物升空之前重心 0的的离度为 H = 25 m
则, 此 力使火箭扭转之力矩 N = AF' X 0P
因喷火管《1的«斜角 ZACB仅 10 ° , 很小, 因而 N也就较小,
还可以简单地看出, 厶 F的水平分力为 厶 FH,
△FH, =Δ F x sin 10 ° = 0. 1736 x厶 F,
此厶 F力使火箭扭转之力矩 N,
Nl = 0. 1736 x AF x 25 m
再者, AF增量还分解出一个垂直分量厶 FV',
此厶 FV, 会给火箭产生一个逆时针方向的扭矩 Ν ,
此 Ν =厶 FV, X cos 10 ° X d = 0.9848 x AFV x d
d约为 1 m ( R为火箭筒之半径)
因而总的顺吋针扭矩为 N ,
N = Nl- N1' = 0. 173 & χ ΔΡΗ' χ 25 m - 0.9848 xAFV
= (0. 1736 x 25 -0.9848) x AF' = (4.34 - 0.9848) x厶 F, = 3. 3552 x AFf 又由于火箭下方的四个喷射管 PS, (见图 2)全都是往外偏斜一个相等的 10 斜角, 因 而平时各个喷射管 PS所产生的水平方向的分力,就会相互抵消;而垂直方向推力的分力, 就 会无谓地损失掉 1. 53 % , 因而也就意味着多损失了 1. 53 %的升空燃料 1
很明显, 我国于 1995年 2月 15日发射的长三乙火箭, 刚离开发射架、 尚未升空时, 便 来了个 "倒栽葱",这不能不归罪于"方向失控"这方面的责任,而它的控制方式的"不科学" , 肯定是难辞其咎的! 更为严重的后果是, 世界上这几十年来多次的发射失敗, 致使燃料、 材 料、 设备、 火箭、 飞船、 卫星、" 遭到彻底毁坏, 有些还使居民的生命財产遭受损失, 甚至 还遭致一些宇航员的牺牲, 给人类造成了多少惨剧, 究其根本原因, 这控制系统设计得 "不 科学", 可能应该算作很重要的一条。勿庸讳言,这是航天人们没有掌握好经典力学的基本原 理所致!
发明内容 令 sin 90。 = 1 时, 那么, 它所产生纠偏的扭力 N - 25 X AF, 与前者相比,
N' / N = 25 / 3. 3552 = 7. 45
将是它的 7. 5倍左右。 (将近大出八倍来!)
办法是将小喷射管 E、 围着火箭筒壁安装, 让其 "径向喷火" , 即, 也就是说, 经过这 样的改进之后, 可以减少纠偏所霈燃料的 87 % ! (见图 3)并且还可以在一级、 二级和三级 甚至在飞船的底部均可安装此种小喷射管 E, 这样, 当火箭完成了其运载飞船的任务、 纷纷 都彻底脱离了飞船之后, 飞船亦可调整其自身的航向。
今后, 火箭底端的喷射管 PS, 可以一律均垂直地安装在火箭尾部, (见图 3)让它专管推 举火箭升空之职, 当然也就不再会有浪费 1. 53 %升空的燃料之虞了。 (这个损失不可低估) 经过这样的改进之后, 附带地还带来一个极为重要的优点: 即,可以大大简化控制发射运 载火箭的一系列程序和机构, 这将会减少控制系统的体积和重量以及控制设备的复杂程度, 这也就会减轻火箭升空的载荷, 并可增加控制系统的精确度和灵敏度和可靠性, 以及縮短了 反应时间, 其间接的后果将是: 又会给火箭升空减少一部分可观的燃料。 附图说明
图 1: 系运载火箭原来发射方,施力之示意图
0 ~~为火箭尚未升空前整体 重心
△F ~~为纠偏所施给火箭的 ^力
图 2: 系运载火箭之側视图
FC ~~飞船
0——重心
HJ—飞行物之运载火箭部分
PS—— 射管
图 3: 系增加了几组小喷射管本后的側视图
E——小喷射管 具体实施方式
1、 在宇宙飞船的运载火箭 HJ底 的上方, (以及二级和三级火箭)安装上一组(三 个以上)径向喷火的小喷射管 E;
2、在飞船 FC的外壳的尾端上,也^装上一组(三个以上)可径向喷火的小喷射管6。
Claims
、 本发明专利运载火箭推力装置的改进方案, 其特征是节省了运载火箭在发射 之后调整航向所需的能源消耗, 并可控制脱离了运载火箭 HJ之后的飞船 FC 的飞行方向。
、 根据权利要求 1所述, 在运载火箭 HJ和飞船 FC的外壁上, 加装几组小喷火 管£。
、 根据权利要求 2所述,装在运载火箭 HJ和飞船 FC的外壁上的小喷火管 E,可 在任意方向上转动, 它所喷射出的火流, 随着喷射的角度不同, 既可改变飞 行的方向, 同时还可以使宇宙飞船, 围绕自身主轴的方向旋转, 以产生转动 惯量, 保持准直飞行状态, 以减少飞行轨迹的偏离程度。。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110184910.6 | 2011-07-04 | ||
CN2011101849106A CN102466429A (zh) | 2011-07-04 | 2011-07-04 | 宇宙火箭推力装置的改进方案 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013004073A1 true WO2013004073A1 (zh) | 2013-01-10 |
Family
ID=46070352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/000911 WO2013004073A1 (zh) | 2011-07-04 | 2012-07-03 | 运载火箭推力装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102466429A (zh) |
WO (1) | WO2013004073A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2862806A1 (en) * | 2013-10-17 | 2015-04-22 | The Boeing Company | Differential throttling control enhancement |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102466429A (zh) * | 2011-07-04 | 2012-05-23 | 北京科实医学图像技术研究所 | 宇宙火箭推力装置的改进方案 |
CN105730682A (zh) * | 2016-02-02 | 2016-07-06 | 毕国伟 | 多点矢量推力分布的主动式气动布局的飞机 |
CN111653174B (zh) * | 2020-05-26 | 2022-05-03 | 南京航空航天大学 | 一种应用于科普教育的火箭模型稳定控制演示装置 |
CN112158325B (zh) * | 2020-09-30 | 2022-02-18 | 浙江大学 | 一种尾座式垂直起降无人机及其控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3127740A (en) * | 1962-10-17 | 1964-04-07 | United Aircraft Corp | Clustered rocket nozzles |
US3604628A (en) * | 1969-08-01 | 1971-09-14 | United Aircraft Corp | Skewed exit plane nozzle system for optimum thrust |
US6308911B1 (en) * | 1998-10-30 | 2001-10-30 | Lockheed Martin Corp. | Method and apparatus for rapidly turning a vehicle in a fluid medium |
CN101581261A (zh) * | 2008-01-12 | 2009-11-18 | 潘延军 | 推力转向喷口 |
CN102466429A (zh) * | 2011-07-04 | 2012-05-23 | 北京科实医学图像技术研究所 | 宇宙火箭推力装置的改进方案 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126293A (ja) * | 1982-01-20 | 1983-07-27 | 日産自動車株式会社 | ロケツトの姿勢制御方法 |
US4630790A (en) * | 1984-11-19 | 1986-12-23 | Ford Aerospace & Communications Corporation | Velocity and attitude control for exoatmospheric projectile |
JPH0825519B2 (ja) * | 1988-10-25 | 1996-03-13 | 日本電気株式会社 | 人工衛星の軌道制御装置 |
FR2640933B1 (zh) * | 1988-12-23 | 1991-04-12 | Aerospatiale | |
JPH05246397A (ja) * | 1992-03-06 | 1993-09-24 | Nec Corp | 人工衛星 |
JPH06305496A (ja) * | 1993-04-21 | 1994-11-01 | Nec Corp | 人工衛星の軌道制御装置 |
JP2003240500A (ja) * | 2002-02-15 | 2003-08-27 | Ihi Aerospace Co Ltd | 飛しょう体のサイドスラスタ |
US8016240B2 (en) * | 2007-03-29 | 2011-09-13 | The Boeing Company | Satellites and satellite fleet implementation methods and apparatus |
-
2011
- 2011-07-04 CN CN2011101849106A patent/CN102466429A/zh active Pending
-
2012
- 2012-07-03 WO PCT/CN2012/000911 patent/WO2013004073A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3127740A (en) * | 1962-10-17 | 1964-04-07 | United Aircraft Corp | Clustered rocket nozzles |
US3604628A (en) * | 1969-08-01 | 1971-09-14 | United Aircraft Corp | Skewed exit plane nozzle system for optimum thrust |
US6308911B1 (en) * | 1998-10-30 | 2001-10-30 | Lockheed Martin Corp. | Method and apparatus for rapidly turning a vehicle in a fluid medium |
CN101581261A (zh) * | 2008-01-12 | 2009-11-18 | 潘延军 | 推力转向喷口 |
CN102466429A (zh) * | 2011-07-04 | 2012-05-23 | 北京科实医学图像技术研究所 | 宇宙火箭推力装置的改进方案 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2862806A1 (en) * | 2013-10-17 | 2015-04-22 | The Boeing Company | Differential throttling control enhancement |
Also Published As
Publication number | Publication date |
---|---|
CN102466429A (zh) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013004073A1 (zh) | 运载火箭推力装置 | |
RU2566597C2 (ru) | Упрощенный многоразовый модуль для ракеты-носителя | |
JP7383666B2 (ja) | 電気スラスタを備えた地球周回衛星のための操作システム | |
CN105843239A (zh) | 一种用于组合航天器姿态控制推力器布局优化方法 | |
CN113154955B (zh) | 一种自旋稳定的火箭分离体残骸落区精准控制系统及方法 | |
RU2414391C1 (ru) | Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его осуществления | |
CN108516106A (zh) | 一种全电推进卫星变轨过程角动量卸载方法及系统 | |
CN101186236A (zh) | 一种减少航天器重力损失的变轨方法 | |
CN112061424B (zh) | 一种基于融合目标姿态的机动过程能源角动态跟踪方法 | |
CN113439364B (zh) | 一种充气天线 | |
CN113609673B (zh) | 一种东四平台小推力姿轨耦合控制下的姿态补偿方法 | |
Jan et al. | Attitude control system for ROCSAT-3 microsatellite: a conceptual design | |
CN104443358A (zh) | 一种用于航空航天飞行器的动力推进装置及其用途 | |
US20050077425A1 (en) | Thruster for propelling and directing a vehicle without interacting with environment and method for making the same | |
CN111924140B (zh) | 一种用于空间系绳系统旋转运动控制的矢量推进装置 | |
Jiafu et al. | Attitude dynamics modeling and control of large flexible solar sail spacecraft | |
CN204184567U (zh) | 一种用于航空航天飞行器的动力推进装置 | |
US20070029445A1 (en) | Dynamic system for controlling mobile apparatuses | |
RU2795894C1 (ru) | Обслуживающий спутник для обеспечения орбитальных услуг, использующий переменное управление двигателями | |
夏喜旺 et al. | Attitude control of spacecraft during propulsion of swing thruster | |
RU2772500C2 (ru) | Обслуживающий спутник для обеспечения орбитальных услуг, использующий переменное управление двигателями | |
WO2016084000A1 (en) | Safety system for controlling the attitude of aircrafts | |
Tartabini et al. | Flight performance feasibility studies for the max launch abort system | |
Han et al. | Sounding rocket’s attitude control algorithm using higher order sliding modes with differential thrusting technique | |
Miller | Martin X-24A Lifting Body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12807771 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12807771 Country of ref document: EP Kind code of ref document: A1 |