WO2013004021A1 - 混凝土输送管道及其制造方法 - Google Patents

混凝土输送管道及其制造方法 Download PDF

Info

Publication number
WO2013004021A1
WO2013004021A1 PCT/CN2011/076963 CN2011076963W WO2013004021A1 WO 2013004021 A1 WO2013004021 A1 WO 2013004021A1 CN 2011076963 W CN2011076963 W CN 2011076963W WO 2013004021 A1 WO2013004021 A1 WO 2013004021A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer layer
conveying pipe
layer
concrete conveying
manufacturing
Prior art date
Application number
PCT/CN2011/076963
Other languages
English (en)
French (fr)
Inventor
曾利成
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Priority to PCT/CN2011/076963 priority Critical patent/WO2013004021A1/zh
Publication of WO2013004021A1 publication Critical patent/WO2013004021A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • F16L57/06Protection of pipes or objects of similar shape against external or internal damage or wear against wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/08Rigid pipes of concrete, cement, or asbestos cement, with or without reinforcement

Definitions

  • the present invention relates to the field of construction engineering machines, and more particularly to a mixed soil transportation pipe and a method of manufacturing the same.
  • Concrete pipelines include concrete pipelines, concrete conveyors and other pipelines. Taking the concrete conveying pipe as an example, the first requirement is that the wear resistance of the concrete conveying pipe is getting higher and higher. From the initial 10,000 square meters to 30,000 square meters to the current 50,000-70,000 square meters, this requires not only the mixed soil.
  • the conveying pipe is made of a better wear-resistant material, and at the same time, it is required to be mixed; the circulating pressure of the suspected earth pipe is required.
  • wear resistance (hardness) and pressure resistance are contradictory. If a single wear-resistant material is used, increasing the hardness to enhance the wear resistance will inevitably lead to a sharp drop in the strength of the concrete pipe.
  • the prior art uses a double-layer composite concrete conveying pipe whose inner layer is a wear-resistant material and the outer layer is a material for ensuring strength.
  • due to the high production cost of the double-layer composite conveying pipe it has been difficult to completely replace the original single-layer pipe.
  • the existing double-layer pipe or composite pipe is made of two layers of materials separately. For assembly, there must be a gap between the two-layer steel pipes.
  • the inner tube 20 has a relatively large deformation and a non-uniform gap between the inner and outer layers. This phenomenon is particularly common in long tubes.
  • the gap between the inner and outer layers can be improved by filling a filler such as concrete, but if the inner and outer tube gaps are not uniform, there may be a case where local interference between the double tubes causes the filler to fail.
  • the opening or the digging of the inner wall or the outer wall can improve the filling of the filler between the double tubes, it is not completely ensured that the gap between the double tubes is completely eliminated.
  • the inner layer material in the double pipe will have uneven force, and there may be local stress concentration, which will greatly reduce the service life of the pipe.
  • the inner and outer materials are combined by the filler, and the safety hazard is mainly that the inner layer material is bent and worn, and the filling layer material is detached and mixed in the concrete, and the hardness of the wear-resistant material is high, which inevitably causes the strength to be very high.
  • the inner wear layer may cause a large block to fall under the impact of the pumping pressure and the concrete slurry, causing a serious accident of blockage of the concrete pipe.
  • the flanges 10, 60 are welded to the inner pipe 20 and the outer pipe 30 by welding and form welds 20, 50, so that it is difficult to avoid the welding pair The impact of material organization.
  • the first wear and tear failure part of the conveying pipe produced by the traditional process is generally near the weld of the welded flange, because the grain structure near the weld is roughened during the welding process, and the welding after quenching
  • the microstructure and grain size of the slit and the flange are definitely different, and the composition of the weld and its heat-affected zone has changed, resulting in aggravation of chemical corrosion caused by the potential of the inner wall. Therefore, welding is also an important factor affecting the failure of the duct.
  • a concrete conveying pipe comprising an outer layer as a base of a conveying pipe, an inner layer provided on an inner surface of the outer layer, and a flange portion, the flange portion being integrally formed with the outer layer, and the inner layer is A casting layer formed on the inner surface of the outer layer is cast from a wear resistant corrosion resistant material.
  • the concrete conveying pipe is a concrete conveying pipe.
  • the flange portion is integrally cast with the outer layer.
  • the wear resistant anticorrosive material is high chromium cast iron.
  • the mass percentage of the following components in the composition of the high chromium cast iron is: C is 2.2% - 3.3%, Cr is 11% - 30%, Si is 0.5% - 1.2%, and Mn is 0.5% - 1.7% , Mo is from 0.6% to 2.8%, and Cu is from 0.3% to 0.8%.
  • the material of the outer layer is carbon cast steel.
  • the mass percentage of the following components in the composition of the carbon cast steel is: C is 0.35%-0.4%, Si is 0.4%-0.50%, Mn is 0.7%-0.90%, Cr ⁇ 0.35%, Ni ⁇ 0.30%, Mo ⁇ 0.20%, Cu ⁇ 0.30%, V ⁇ 0.05%; wherein Cr+Ni+Mo+Cu+V ⁇ 1.00%.
  • a method of manufacturing a concrete conveying pipe comprising providing an outer layer as a conveying pipe base of a concrete conveying pipe, the outer layer being integrally formed with a flange portion of the concrete conveying pipe; manufacturing the inner layer: The molten wear-resistant anticorrosive material is cast onto the inner surface of the outer layer to form a cast layer as an inner layer; annealing: annealing the inner layer material. Further, the manufacturing method is used to make a concrete conveying pipe. Further, in the step of providing the outer layer, the outer layer and the flange portion are formed by centrifugal casting.
  • the material of the outer layer is cast steel by carbon
  • the step of casting the outer layer comprises: preheating the metal mold to 300 ° C; pouring the molten outer layer material onto the metal mold, and the speed of the metal mold is 650 r / Min-800r/min, pouring temperature is 1500 ° C - 1550 ° C.
  • the inner layer is cooled by cooling for 25 s to 40 s.
  • the melted inner layer material is poured onto the outer layer by centrifugal casting, and the pouring temperature is 1400. °C - 1450 °C
  • metal mold speed is 850r/min-960r/min.
  • the flange portion and the outer layer are integrally formed, the process is simple, and there is no welding process in the manufacturing process of the conveying pipe, thereby eliminating the wear resistance of the welding pipe wearable material.
  • the adverse effects greatly increase the service life of the pipe. Since there is no welding process, there is no impurity generated by welding in the concrete conveying pipeline, so the scrapped conveying pipe can be recycled and reused in the furnace, and new wear-resistant materials are added for re-casting production, thereby greatly reducing the waste of steel.
  • Fig. 1 is a schematic structural view of a conventional concrete conveying pipe
  • Fig. 2 is a structural schematic view of a concrete conveying pipe according to the present invention.
  • the concrete conveying pipe according to the present invention comprises an outer layer 30 as a base of the conveying pipe, an inner layer 20 provided on the inner surface of the outer layer 30, and a flange portion 10 characterized by a flange
  • the portion 10 is integrally formed with the outer layer 30, and the inner layer 20 is a casting layer formed on the inner surface of the outer layer 30 by a wear resistant anticorrosive material.
  • the mixed soil pipe is taken as an example. Since the flange portion 10 and the outer layer 30 are integrally formed, and the inner layer 20 is cast on the inner surface of the outer layer, there is no welding process in the manufacturing process of the conveying tube, which eliminates the wear resistance of the wear-resistant material of the conveying tube during the welding process.
  • the concrete conveying pipe of the invention has a simple process, and in the case where the precision of the concrete conveying pipe is not very strict, the subsequent machining process can be omitted.
  • the flange portion 10 is integrally cast with the outer layer 30.
  • the flange portion 10 and the outer layer 30 are integrally cast, eliminating the welding process necessary for the connection between the original flange portion 10 and the outer layer 30.
  • the flange portion 10 can be machined to obtain the precision required for assembly.
  • the inner layer 20 has a thickness of 1.5 mm to 3 mm. In such a thin wall thickness, the welding becomes more difficult, so that the advantages of the body casting of the flange portion 10 and the outer layer 30 are more prominent.
  • the wear resistant corrosion resistant material is a high chromium cast iron.
  • the mass percentage of the following components in the composition of the high chromium cast iron is: C is 2.2% - 3.3%, Cr is 11% - 30%, Si is 0.5% - 1.2%, Mn is 0.5% - 1.7%, Mo is 0.6% - 2.8%, Cu is 0.3% - 0.8%.
  • High-chromium cast iron has a hardness of HV1300-1900 (Cr, Fe) 7 C 3 type carbide for bone thousand. This carbide is the hardest abrasive quartz encountered under normal crushing and grinding working conditions. It is much harder.
  • the crystallization characteristics of the (Cr, Fe) 7 C 3 type carbide make it not as a continuous network distribution as the carbide in ordinary white iron, but form a rod or a strip of one or two The development of discontinuities, thereby improving the toughness of the material.
  • high chromium cast iron also has excellent hardenability, and a strong martensite matrix can be obtained by simple heat treatment.
  • wear-resistant anti-corrosion materials can also be selected from wear-resistant cast iron, such as Ni-Hard4, Crl5, Cr20 and so on. This is because the wear-resistant cast iron can be heat-treated and has a high hardness, which can be used for corrosion protection and wear resistance.
  • the inner layer material can also be selected from wear-resistant cast steel, bearing steel and stainless steel, which are wear-resistant, anti-corrosive and heat-hardenable, or heat-treated stainless steel.
  • the material of the outer layer 30 is carbon cast steel.
  • the mass percentage of the following components in the composition of the carbon cast steel is: C is 0.35%-0.4%, Si is 0.4%-0.50%, Mn is 0.7%-0.90%, Cr ⁇ 0.35%, Ni ⁇ 0.30% , Mo ⁇ 0.20%, Cu ⁇ 0.30%, V ⁇ 0.05%; wherein Cr+Ni+Mo+Cu+V ⁇ 1.00%.
  • the carbon cast steel selected in this embodiment has good strength, ⁇ edge and processability, and can meet the requirements of strength, toughness and workability of the concrete conveying pipe.
  • the outer layer material may be used with other materials having good strength and toughness and workability, such as cast alloy steel in castable steel.
  • a method of manufacturing a concrete conveying pipe according to the present invention comprising providing an outer layer as a conveying pipe base of a concrete conveying pipe, the outer layer being integrally formed with a flange portion of the concrete conveying pipe; manufacturing the inner layer: pouring the molten wear-resistant anticorrosive material On the inner surface of the outer layer, a casting layer is formed as an inner layer; annealing: annealing the inner layer material.
  • a highly wear-resistant material is selected, and the inner layer material is cast on the inner surface of the outer layer by centrifugal casting, which not only simplifies the production process of the composite conveying pipe, but also reduces the production cost. Moreover, the gap between the inner layer and the outer layer is eliminated, and the wear resistance of the concrete pipe is improved. With the concrete conveying pipe of the embodiment, the concrete main pumping amount can be further improved. In addition, since the outer layer and the flange portion are integrally formed, there is no welding process in the manufacturing process of the conveying pipe, thereby eliminating the adverse effect that the welding process may have on the wear resistance of the wear-resistant material of the conveying pipe, and greatly improving the use of the concrete conveying pipe. life.
  • the waste concrete pipe can be recycled and reused in the furnace, and new wear-resistant materials are added to recast and produce, thereby greatly reducing the waste of steel. From the above, it can be seen that the high quality concrete pipe can be obtained by the production process of the invention and considerable economic benefits.
  • the outer layer and the flange portion are formed by centrifugal casting.
  • the outer layer is also centrifugally cast, which can further increase the density of the combination of the inner layer and the outer layer, and improve the wear resistance of the concrete pipe.
  • the method further shortens the production process of the conveying pipe, saves production costs, and improves labor productivity.
  • the material of the outer layer is cast steel by carbon
  • the step of casting the outer layer comprises: preheating the metal mold to 300 V; pouring the molten outer layer material onto the metal mold, and the speed of the metal mold is 650 r/min. -800r/min, pouring temperature is 1500 °C - 1550 °C.
  • the outer layer material is poured, it is cooled for 25s-40s, and then the inner layer is fabricated.
  • the melted inner layer material is uniformly poured onto the outer layer by centrifugal casting, and the pouring temperature is 1400 °C. - 1450 °C, the speed of the metal mold is 850r/min-960r/min.
  • the two materials of the inner layer and the outer layer are cast together by bimetal centrifugal casting.
  • the mold is preheated to about 300 °C, and then the carbon steel is cast in the outer layer.
  • the speed of the mold is controlled at 650r/min -800r/min, and the casting temperature is 1500°C -1550°C.
  • the pouring temperature is 1400°C -1450°C, and the casting speed is 850 ⁇ 960r/min. No pores or pinholes are allowed during the pouring process. Casting defects such as segregation and slag inclusion, after the pouring is completed, let it stop naturally and then cool.
  • the line shrinkage rate of high chromium cast iron and carbon cast steel is basically the same. It does not cause cracks, poor bonding and other defects in the cooling range of the casting. It can be seen that the two kinds of metal liquids have Injecting into the mold, the two melts are bonded to each other at the interface, and the interface is combined into metallurgical bonding. Finally, the cast concrete pipe is machined at both ends and the port is rounded to meet the assembly precision requirements of the design. It is necessary to further improve the hardness of the inner wall.
  • the inner wall can be quenched.
  • the quenching temperature is 960 °C - 1040 °C.
  • the quenching depth can be controlled as needed, but it should not exceed the thickness of the inner layer of wear-resistant material.
  • the inner wall is subjected to other methods of quenching treatment, or tempering at 500 ° C or lower after quenching, thereby further improving the hardness of the inner layer of the wear resistant material, enhancing the wear resistance, and prolonging the service life of the conveying pipe.
  • the thickness of the wear layer or the outer layer material saves material and reduces the weight of the conveying pipe, so that the pumping of the concrete can be more favorable.
  • the structure and manufacturing method of the above concrete conveying pipe can be equally adapted to various concrete conveying pipes, including concrete. Conveying rainbow, the difference is: the inner thickness of the concrete conveying pipe Generally, it is larger than the thickness of the concrete conveying cylinder.
  • the inner layer thickness of the mixed soil conveying pipe is generally 2mm-4mm.
  • the cooling time after centrifugally pouring the outer layer in the two-liquid centrifugal casting method is generally 20 Seconds - 40 seconds.
  • the concrete conveying pipe and the manufacturing method thereof according to the present invention have a simple process, and there is no welding process in the manufacturing process of the conveying pipe, eliminating welding
  • the process may have an adverse effect on the wear resistance of the wear-resistant material of the pipe, which greatly improves the service life of the pipe. Since there is no welding process, there is no impurity generated by welding in the concrete conveying pipe, so the scrapped conveying pipe can be recycled and reused in the furnace, thereby greatly reducing the waste of the steel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

一种混凝土输送管道及其制造方法。该管道包括作为输送管道基体的外层(30)、设置在外层(30)内表面上的内层(20)以及法兰部(10),法兰部(10)与外层(30)一体成型,内层(20)为由耐磨防腐材料浇注在外层(30)内表面上形成的浇注层。其制造方法包括:1、提供外层(30),其与混凝土输送管道的法兰部(10)一体成型;2、制造内层(20):将熔化的耐磨防腐材料浇注到外层(30)的内表面上;3、对内层(20)进行退火处理。该管道内层(20)和外层(30)结合紧密,且制作过程中没有焊接工序,因而具有较好的整体强度和耐磨性。

Description

混凝土输送管 其制造方法 技术领域 本发明涉及建筑工程机戈领域, 更具体地, 涉及一种混疑土输送管道及其 制造方法。 背景技术 随着混凝土机械的泵送朝着大方量、 高压力的方向发展, 对混凝土输送管 道的要求越来越高。 混凝土输送管道包括混凝土输送管、 混凝土输送虹等多种 管路。 以混凝土输送管为例, 首先是对混凝土输送管的耐磨能力的要求越来越 高, 从起初的 1万方到 3万方再到现在的 5-7万方, 这不但要求混疑土输送管 釆用更好的耐磨材料, 同时又对混;疑土输送管的耐循环压力冲击有要求。 然而 耐磨 (硬度) 和耐压是互相矛盾的。 如果釆用单一耐磨材料, 用提高硬度来增 强耐磨能力, 必将导致混凝土输送管的强度急剧下降。 为了达到越来越高的耐磨能力和耐压能力, 现有技术中釆用内层为耐磨材 料、 外层为保证强度的材料生产的双层复式混凝土输送管。 然而由于双层复合 输送管生产成本较高, 一直难以实现完全替代原来的单层管。 如图 1所示的现有的混凝土输送管, 包括连接法兰 10,和 60,、 外层管 30, 和内层管 40,, 其中, 20,、 50,为连接焊缝。 现有的双层管或者复合管两层材料 分开制作, 为了装配, 两层钢管之间必然要存在间隙。 实践中, 发现内层管 20, 变形比较大, 内外层间间隙不均匀的现象, 这种现象在长管中尤其常见。 可以通过填充混凝土等填充物等方法来改善内外层之间的空隙, 但是如果 内外层管间隙不均勾, 可能存在双层管间局部过盈导致填充物无法通过的情 况。 虽然在内壁或者外壁上开孔或者挖槽能够对填充物在双层管间的填充情况 有所改善, 但不能完全保证双层管间的间隙全部消除。 只要有间隙存在, 双层 管中的内层材料就会存在受力情况不均, 而且可能存在局部应力集中, 会大大 降低输送管的使用寿命。 另外, 通过填充物将内、 外层材料结合起来, 存在的 安全隐患主要是内层材料弯曲磨穿之后填充层材料会脱落混杂在混凝土中, 而 且耐磨材料的硬度很高必然造成其强度很差, 一旦耐磨材料磨穿, 内层耐磨层 在泵送压力冲击与混凝土浆摩擦下可能造成大块掉落, 造成混凝土输送管堵塞 的严重事故。 此外, 在双层管的制作过程中, 法兰 10,和 60,通过焊接与内层管 20,和外 层管 30,相焊接并形成焊缝 20,、 50,, 因此难以避开焊接对材料组织的影响。 在实际使用中, 通过传统流程生产的输送管的最先磨损失效部位一般为焊接法 兰的焊缝附近, 这是因为焊接的过程中让焊缝附近的晶粒组织粗化, 淬火后的 焊缝与直管、 法兰的显微组织及晶粒大小肯定不一样, 而且焊缝及其热影响区 元素成分发生了变化, 导致内壁的电势不一样引起的化学腐蚀加剧。 因此, 焊 接也是影响输送管失效的一个重要的因素。 发明内容 本发明目的在于提供一种工艺简单、 提高输送管道的使用寿命的混凝土输 送管道及其制造方法。 根据本发明的一个方面, 提供了一种混凝土输送管道, 包括作为输送管道 基体的外层、设置在外层内表面上的内层以及法兰部,法兰部与外层一体成形, 内层为由耐磨防腐材料浇注在外层内表面上形成的浇注层。 进一步地, 混凝土输送管道为混凝土输送管。 进一步地, 法兰部与外层一体铸造。 进一步地, 耐磨防腐材料为高铬铸铁。 进一步地, 高铬铸铁的组成成分中的以下各成分的质量百分比为: C 为 2.2%-3.3%, Cr 为 11%-30%, Si 为 0.5%-1.2%, Mn 为 0.5%-1.7%, Mo 为 0.6%-2.8%, Cu为 0.3%-0.8%。 进一步地, 外层的材料为碳素铸钢。 进一步地, 碳素铸钢的组成成分中的以下各成分的质量百分比为: C 为 0.35%-0.4%, Si为 0.4%-0.50%, Mn为 0.7%-0.90%, Cr<0.35%, Ni<0.30%, Mo<0.20%, Cu<0.30%, V<0.05%; 其中 Cr+Ni+Mo+Cu+V≤1.00%。 根据本发明的另一个方面, 提供了一种混凝土输送管道的制造方法, 包括 提供外层, 作为混凝土输送管道的输送管基体, 外层与混凝土输送管道的法兰 部一体成形; 制造内层: 将熔化的耐磨防腐材料浇注到外层的内表面上, 形成 浇注层作为内层; 退火: 对内层材料进行退火处理。 进一步地, 制造方法用于制作混凝土输送管。 进一步地, 在提供外层的步骤中, 是通过离心浇注的方式形成外层和法兰 部。 进一步地, 外层的材料釆用碳素铸钢, 浇注外层的步骤包括: 预热金属模 具至 300 °C ; 将熔化后的外层材料浇注到金属模具上, 金属模具的转速为 650r/min-800r/min, 浇注温度为 1500°C - 1550°C。 进一步地, 外层材料浇注完成后, 冷却 25s-40s, 再制造内层; 在制造内层 的步骤中, 通过离心浇注的方式将熔化后的内层材料浇注到外层上, 浇注温度 为 1400 °C - 1450 °C , 金属模具的转速为 850r/min-960r/min。 根据本发明的混凝土输送管道及其制造方法, 法兰部与外层一体成形, 工 艺简单, 并且输送管道制作过程中没有焊接工序, 消除了焊接过程可能对输送 管耐磨材料的耐磨性产生的不良影响, 大大提高了输送管的使用寿命。 由于没 有焊接的工序, 混凝土输送管道中不存在焊接产生的杂质, 因此报废的输送管 可以经过熔炉重新回收利用, 并添加新的耐磨材料重新铸造生产, 从而大量减 少了钢材的浪费。 另外, 由于内层通过浇注形成在外层的内表面上, 避免了双 层材料结合过程中的间隙问题, 使输送管在输送混凝土过程中更加稳定。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是现有的混凝土输送管的结构示意图; 以及 图 2是根据本发明的混凝土输送管的结构示意图。 具体实施方式 下面将参考附图并结合实施例来详细说明本发明。 如图 2所示, 根据本发明的混凝土输送管道, 包括作为输送管道基体的外 层 30、 设置在外层 30 内表面上的内层 20 以及法兰部 10, 其特征在于, 法兰 部 10与外层 30—体成形, 内层 20为由耐磨防腐材料浇注在外层 30内表面上 形成的浇注层。 为了描述方便, 以下实施例中均以混;疑土输送管为例。 由于法兰部 10与外层 30—体成形, 而且内层 20浇注在外层内表面上, 因此输送管制作过程中没有焊接工序, 消除了焊接过程可能对输送管耐磨材料 的耐磨性产生的不良影响, 大大提高了混凝土输送管的使用寿命。 由于没有经 过焊接, 混凝土输送管中不存在焊接产生的杂质, 因此报废的混凝土输送管可 以经过熔炉重新回收利用, 并添加新的耐磨材料重新铸造生产, 从而大量减少 了钢材的浪费。 另外, 由于内层通过浇注形成在外层的内表面上, 并且避免了 双层材料结合过程中的间隙问题, 使混凝土输送管在输送混凝土过程中更加稳 定。 本发明的混凝土输送管的工艺简单, 在对混凝土输送管的精度要求不是非 常严格的情形下, 可以省去后续的机械加工工艺。 由于没有了制造传统混凝土 输送管过程中的必须的焊接、 装配、 填充材料等工序, 因此提高了生产率, 节 约了生产成本。 优选地, 法兰部 10与外层 30—体铸造。 将法兰部 10与外层 30—体铸造, 免除了原法兰部 10与外层 30之间连接 时必须的焊接工艺。 在输送管铸造完成之后, 可以对法兰部 10 进行机 ^戈加工 来得到装配所需的精度。 本实施例中, 内层 20的厚度为 1.5mm-3mm。 在如此 薄的壁厚中, 焊接变的更加困难, 因此法兰部 10与外层 30—体铸造的优势更 力口突出。 根据本发明的一个实施例, 耐磨防腐材料为高铬铸铁。 高铬铸铁的组成成 分中的以下各成分的质量百分比为: C为 2.2%-3.3%, Cr为 11%-30%, Si为 0.5%-1.2%, Mn为 0.5%-1.7%, Mo为 0.6%-2.8%, Cu为 0.3%-0.8%。 高铬铸铁有硬度达 HV1300-1900 高硬度的(Cr, Fe)7C3型碳化物作骨千, 这种碳化物比在一般破碎、 研磨工作条件下所遇到的作为最硬磨料的石英要硬 很多。 其次, (Cr, Fe)7C3型碳化物的结晶特性使它不象普通白口铁中的碳化物 那样呈连续的网状分布, 而是形成杆状或板条状的一维或二维发展的不连续 体, 从而改善了材料的韧性。 此外, 高铬铸铁还具有优良的淬透性, 通过简单 的热处理就可获得强韧的马氏体基体。 另夕卜, 耐磨防腐材料也可选用耐磨铸铁, 如 Ni-Hard4, Crl5 , Cr20等等。 这是因为耐磨铸铁可以进行热处理强化, 且硬度较高, 可以防腐, 也耐磨。 内 层材料还可以选用耐磨铸钢、 轴承钢和不锈钢等具有耐磨、 防腐且可以进行热 处理硬化的材料, 或者选用可热处理的不锈钢等材料。 才艮据本发明的另一个实施例, 外层 30 的材料为碳素铸钢。 碳素铸钢的组 成成分中的以下各成分的质量百分比为: C为 0.35%-0.4%, Si为 0.4%-0.50%, Mn为 0.7%-0.90%, Cr<0.35%, Ni<0.30%, Mo<0.20%, Cu<0.30%, V<0.05%; 其中 Cr+Ni+Mo+Cu+V≤ 1.00%。 本实施例中选用的碳素铸钢具有良好的强度、 Φ刃性和加工性, 可以满足混 凝土输送管的强度、 韧性和加工性要求。 才艮据本发明的再一个实施例, 外层材料可以釆用其他具有良好的强度和韧 性以及可加工性的材料, 如可铸造钢材中的铸造合金钢等。 根据本发明的混凝土输送管的制造方法, 包括提供外层, 作为混凝土输送 管的输送管基体, 外层与混凝土输送管的法兰部一体成形; 制造内层: 将熔化 的耐磨防腐材料浇注到外层的内表面上, 形成浇注层作为内层; 退火: 对内层 材料进行退火处理。 本实施例从制造、 材料的角度, 选择高耐磨的材料, 用离心铸造的方式将 内层材料浇注在外层的内表面上, 这不仅简化了复合输送管的生产工艺, 降低 了生产成本, 而且消除了内层和外层之间的间隙, 提高了混凝土输送管的耐磨 能力。 釆用本实施例的混凝土输送管, 混凝土主机泵送方量可以进一步提高。 另外, 由于外层与法兰部一体成形, 输送管制作过程中没有焊接工序, 从 而消除了焊接过程可能对输送管耐磨材料的耐磨性产生的不良影响, 大大提高 了混凝土输送管的使用寿命。 由于没有经过焊接, 混凝土输送管中不存在焊接 产生的杂质, 因此 4艮废的混凝土输送管可以经过熔炉重新回收利用, 并添加新 的耐磨材料重新铸造生产, 从而大量减少了钢材的浪费。 由上可知, 釆用本发明的生产工艺可以获得高质量的混凝土输送管和可观 的经济效益。 在提供外层的步骤中, 是通过离心浇注的方式形成外层和法兰部。 外层也釆用离心浇注, 能够进一步提高内层和外层的结合的致密度, 提高 混凝土输送管的耐磨能力。 另外,该方法进一步缩短了输送管的生产工艺过程, 节省了生产成本, 提高了劳动生产率。 优选地, 外层的材料釆用碳素铸钢, 浇注外层的步骤包括: 预热金属模具 至 300 V ; 将熔化后的外层材料浇注到金属模具上, 金属模具的转速为 650r/min-800r/min, 浇注温度为 1500 °C - 1550°C。 外层材料浇注完成后, 冷却 25s-40s, 再制造内层; 在制造内层的步骤中, 通过离心浇注的方式将熔化后的 内层材料均匀浇注到外层上, 浇注温度为 1400 °C - 1450 °C , 金属模具的转速为 850r/min-960r/min„ 具体地, 在本实施例中, 釆用双金属离心浇注的办法将内层和外层的两种 材料铸造在一起。 金属模具先预热至 300 °C左右, 然后先浇注外层的碳素铸钢, 铸型的转速控制为在 650r/min -800r/min, 浇注温度为 1500°C -1550°C。 待外层 材料浇注完成后, 冷却 25s-40s, 再浇注内层耐磨材料, 浇注的温度为 1400°C -1450°C , , 铸型转速 850〜960r/min。 浇注过程中不允许出现气孔、 针孔、 偏析、 夹渣等铸造缺陷, 浇注完成后让其自然停止旋转后冷却。 高铬铸铁与碳素铸钢 的线收缩率基本相同. 在铸件冷却量程中不致造成裂紋、 结合不良等缺陷。 由 上可知, 将两种金属液先后浇注于铸型内, 使两种熔体在界面上互相结合, 界 面结合为冶金结合。 最后, 对铸造成型的混凝土输送管进行两端及端口外圓加工, 以满足设计 的装配精度要求。 如有必要进一步提高内壁硬度要求, 可以对内壁进行淬火处 理, 淬火温度为 960 °C - 1040 °C , 淬火深度可以根据需要进行控制, 但不得超过 内层耐磨材料厚度。 此外, 浇注成型后对内壁进行其他方式的淬火处理, 或者淬火之后再进行 500 °C以下回火, 从而进一步提高内层耐磨材料的硬度, 增强耐磨性, 延长输 送管的使用寿命。 本发明中, 可以通过减少耐磨层或外层材料的厚度来节省材料, 减轻输送 管的重量, 从而能够更加有利于混凝土的泵输送。 上述混凝土输送管的结构和制造方法可同样适应于多种混凝土输送管道, 包括混凝土输送虹, 其不同在于: 混凝土输送管的内层厚度一般大于混凝土输 送缸的厚度, 混疑土输送管的内层厚度一般为 2mm-4mm, 这是由于内层厚度 越大, 混凝土输送管的耐磨性越好, 而混凝土输送缸由于需与活塞配合, 其磨 损一定量后就不能艮好地和活塞配合了, 内层厚度过大也无法继续使用; 对于 混凝土输送管而言, 釆用双液离心浇注方法中离心浇注外层后的冷却时间一般 为 20秒 -40秒。 从以上的描述中, 可以看出, 本发明上述的实施例实现了如下技术效果: 根据本发明的混凝土输送管及其制造方法, 工艺简单, 并且输送管制作过 程中没有焊接工序, 消除了焊接过程可能对输送管耐磨材料的耐磨性产生的不 良影响, 大大提高了输送管的使用寿命。 由于没有焊接的工序, 混凝土输送管 中不存在焊接产生的杂质, 因此报废的输送管可以经过熔炉重新回收利用, 从 而大量减少了钢材的浪费。 另外, 由于内层通过浇注形成在外层的内表面上, 避免了双层材料结合过程中的间隙问题, 使输送管在输送混凝土过程中更加稳 定, 耐磨能力进一步提高。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

权 利 要 求 书
1. 一种混凝土输送管道, 包括: 作为输送管道基体的外层(30 )、 设置在所 述外层(30 ) 内表面上的内层(20 ) 以及法兰部 ( 10 ), 其特征在于, 所 述法兰部 ( 10 ) 与所述外层 (30 ) —体成形, 所述内层 (20 ) 为由耐磨 防腐材料浇注在所述外层 (30 ) 内表面上形成的浇注层。
2. 根据权利要求 1所述的混凝土输送管道, 其特征在于, 所述混凝土输送 管道为混凝土输送管。
3. 根据权利要求 2所述的混凝土输送管道, 其特征在于, 所述法兰部( 10 ) 与所述外层 (30 ) —体铸造。
4. 根据权利要求 2所述的混凝土输送管道, 其特征在于, 所述耐磨防腐材 料为高铬铸铁。
5. 根据权利要求 4所述的混凝土输送管道, 其特征在于, 所述高铬铸铁的 组成成分中的以下各成分的质量百分比为:
C为 2.2%-3.3%, Cr为 11%-30%, Si为 0.5%- 1.2%, Mn为 0.5%- 1.7%, Mo为 0.6%-2.8%, Cu为 0.3%-0.8%。
6. 根据权利要求 2所述的混凝土输送管道, 其特征在于, 所述外层 (30 ) 的材料为碳素铸钢。
7. 居权利要求 6所述的混凝土输送管道, 其特征在于, 所述碳素铸钢的 组成成分中的以下各成分的质量百分比为:
C为 0.35%-0.4%, Si为 0.4%-0.50%, Mn为 0.7%-0.90%, Cr<0.35%, Ni<0.30%, Mo<0.20%, Cu<0.30%, V<0.05%;
其中 Cr+Ni+Mo+Cu+V≤ 1.00%。
8. —种混凝土输送管道的制造方法, 其特征在于, 包括:
提供外层, 作为所述混凝土输送管道的输送管基体, 所述外层与混 凝土输送管道的法兰部一体成形;
制造内层: 将熔化的耐磨防腐材料浇注到所述外层的内表面上, 形 成浇注层作为内层; 退火: 对内层材料进行退火处理。
9. 根据权利要求 8所述的混凝土输送管道的制造方法, 其特征在于, 所述 制造方法用于制作混凝土输送管。
10. 根据权利要求 9所述的混凝土输送管道的制造方法, 其特征在于, 在提 供外层的步骤中, 是通过离心浇注的方式形成所述外层和所述法兰部。
11. 根据权利要求 10所述的混凝土输送管道的制造方法, 其特征在于, 所述 外层的材料釆用碳素铸钢, 浇注所述外层的步骤包括:
预热金属模具至 300°C ;
将熔化后的外层材料浇注到金属模具上, 所述金属模具的转速为 650r/min-800r/min, 浇注温度为 1500°C - 1550°C。
12. 根据权利要求 11所述的混凝土输送管道的制造方法, 其特征在于: 外层材料浇注完成后, 冷却 25s-40s, 再制造内层;
在制造内层的步骤中, 通过离心浇注的方式将熔化后的内层材料浇 注到所述外层上, 浇注温度为 1400 °C -1450 °C , 金属模具的转速为 850r/min-960r/min„
PCT/CN2011/076963 2011-07-07 2011-07-07 混凝土输送管道及其制造方法 WO2013004021A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076963 WO2013004021A1 (zh) 2011-07-07 2011-07-07 混凝土输送管道及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076963 WO2013004021A1 (zh) 2011-07-07 2011-07-07 混凝土输送管道及其制造方法

Publications (1)

Publication Number Publication Date
WO2013004021A1 true WO2013004021A1 (zh) 2013-01-10

Family

ID=47436465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076963 WO2013004021A1 (zh) 2011-07-07 2011-07-07 混凝土输送管道及其制造方法

Country Status (1)

Country Link
WO (1) WO2013004021A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034977A (zh) * 2017-04-19 2017-08-11 广州市市政工程设计研究总院 一种排水管道接口防渗反滤结构及其施工方法
CN114311277A (zh) * 2021-12-30 2022-04-12 江苏徐工工程机械研究院有限公司 混凝土输送管的制造方法、混凝土输送管和混凝土泵车
CN114517859A (zh) * 2022-03-02 2022-05-20 山东欧森管道科技有限公司 一种重盐环境下复合材料以及材料涂层、管材及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58689A (ja) * 1981-06-26 1983-01-05 旭化成株式会社 複合パイプ
DE4231344A1 (de) * 1991-09-23 1993-03-25 Dana Corp Achsgehaeuse
CN1072007A (zh) * 1992-09-25 1993-05-12 第十三冶金建设公司新技术开发公司 耐磨耐腐蚀复合钢管及其制造方法
CN1565775A (zh) * 2003-06-10 2005-01-19 傅德生 一种双金属复合管的生产工艺
CN2736626Y (zh) * 2004-08-24 2005-10-26 张俊海 防腐输水管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58689A (ja) * 1981-06-26 1983-01-05 旭化成株式会社 複合パイプ
DE4231344A1 (de) * 1991-09-23 1993-03-25 Dana Corp Achsgehaeuse
CN1072007A (zh) * 1992-09-25 1993-05-12 第十三冶金建设公司新技术开发公司 耐磨耐腐蚀复合钢管及其制造方法
CN1565775A (zh) * 2003-06-10 2005-01-19 傅德生 一种双金属复合管的生产工艺
CN2736626Y (zh) * 2004-08-24 2005-10-26 张俊海 防腐输水管

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034977A (zh) * 2017-04-19 2017-08-11 广州市市政工程设计研究总院 一种排水管道接口防渗反滤结构及其施工方法
CN114311277A (zh) * 2021-12-30 2022-04-12 江苏徐工工程机械研究院有限公司 混凝土输送管的制造方法、混凝土输送管和混凝土泵车
CN114517859A (zh) * 2022-03-02 2022-05-20 山东欧森管道科技有限公司 一种重盐环境下复合材料以及材料涂层、管材及其制备方法
CN114517859B (zh) * 2022-03-02 2024-03-26 山东欧森管道科技有限公司 一种重盐环境下复合材料以及材料涂层、管材及其制备方法

Similar Documents

Publication Publication Date Title
CN102278550B (zh) 混凝土输送管道及其制造方法
JP6948556B2 (ja) 遠心鋳造製熱間圧延用複合ロールの製造方法
KR102219332B1 (ko) 원심 주조제 복합 롤 및 그 제조 방법
JP5477522B1 (ja) 遠心鋳造製複合ロール及びその製造方法
KR930009983B1 (ko) 내마모 복합롤 및 그 제조방법
WO2013004021A1 (zh) 混凝土输送管道及其制造方法
JP6028282B2 (ja) 圧延用複合ロールの外層材及び圧延用複合ロール
JP6191913B2 (ja) 遠心鋳造製複合ロール及びその製造方法
JP7396256B2 (ja) 圧延用ロール外層材及び圧延用複合ロール
JP4123903B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロール
WO2013004018A1 (zh) 混凝土输送管道及其制造方法
JP2012223806A (ja) 耐摩耗鋼の連続鋳造方法
JP6286001B2 (ja) 圧延用複合ロールの外層材の製造方法及び圧延用複合ロールの製造方法
JPS6115938B2 (zh)
JP7158312B2 (ja) 熱間圧延用ロール外層材および熱間圧延用複合ロールならびに熱間圧延用ロール外層材の製造方法
JP3729177B2 (ja) 遠心鋳造製複合中間ロール
JPH0514023B2 (zh)
JPH0775808A (ja) 形鋼圧延用耐摩耗複合ロール
JPS6116333B2 (zh)
JP3030077B2 (ja) 耐クラック性に優れた耐摩耗複合ロール及びその製造方法
JPS599616B2 (ja) スラッジポンプ用シリンダライナ
KR20110070993A (ko) 연속 주조용 롤
JP5900412B2 (ja) 耐摩耗鋼鋳片の製造方法およびその鋳片から得られる耐摩耗鋼材の製造方法
KR20220122842A (ko) 트랙롤러용 플로팅 씰 및 그 제조방법
KR20210082226A (ko) 열간 압연용 롤 외층재 및 열간 압연용 복합 롤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869121

Country of ref document: EP

Kind code of ref document: A1