WO2013002281A1 - Neutral salt for use in polishing liquid, electronic material polishing liquid, polishing method, and method of manufacturing electronic materials - Google Patents

Neutral salt for use in polishing liquid, electronic material polishing liquid, polishing method, and method of manufacturing electronic materials Download PDF

Info

Publication number
WO2013002281A1
WO2013002281A1 PCT/JP2012/066424 JP2012066424W WO2013002281A1 WO 2013002281 A1 WO2013002281 A1 WO 2013002281A1 JP 2012066424 W JP2012066424 W JP 2012066424W WO 2013002281 A1 WO2013002281 A1 WO 2013002281A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
acid
salt
polishing liquid
group
Prior art date
Application number
PCT/JP2012/066424
Other languages
French (fr)
Japanese (ja)
Inventor
山口 俊一郎
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to CN201280031168.8A priority Critical patent/CN103619982B/en
Publication of WO2013002281A1 publication Critical patent/WO2013002281A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Definitions

  • the present invention relates to a neutralized salt used in a polishing step, a polishing liquid for electronic materials containing the neutralized salt, a polishing method for polishing an electronic material intermediate using the polishing liquid for electronic materials, and an electron in this polishing method.
  • the present invention relates to a method for manufacturing an electronic material including a step of polishing a material intermediate.
  • a neutralized salt that is used in a polishing process during the manufacturing process of an electronic material has a better polishing rate than conventional methods, and improves the surface quality of the electronic material, and an electronic material containing the neutralized salt
  • the present invention relates to a polishing liquid for polishing, a polishing method for polishing an electronic material intermediate using the polishing liquid for electronic material, and a method for manufacturing an electronic material including a step of polishing the electronic material intermediate by the polishing method.
  • the magnetic disk manufacturing process includes a lapping process that is a process for chamfering a substrate plate, a substrate manufacturing process that is a process for creating a flattened substrate, and a medium that is a process for forming a magnetic layer on the substrate.
  • a lapping process that is a process for chamfering a substrate plate
  • a substrate manufacturing process that is a process for creating a flattened substrate
  • a medium that is a process for forming a magnetic layer on the substrate.
  • the lapping process the main surface and end face of the substrate are polished using a polishing pad and a polishing liquid in which a grindstone such as diamond is fixed with a resin in order to roughly chamfer the substrate, and then the substrate is cleaned in a subsequent cleaning process. After removing the polishing scraps on the main surface and end face of the substrate, the processed substrate is transported to the substrate manufacturing process through a drying process.
  • polishing with a polishing pad and polishing liquid containing polishing particles such as colloidal silica and cerium oxide was performed to flatten the substrate, and polishing particles generated on the substrate surface were generated in the subsequent cleaning process.
  • polishing particles generated on the substrate surface were generated in the subsequent cleaning process.
  • the processed substrate is packed in a predetermined container through a drying process and transported to a media process.
  • Abrasive particles and generated polishing debris in the polishing liquid are very fine and easily aggregate. These aggregates may affect the surface quality of the substrate in the step of polishing the substrate. For example, resistance may be generated between these aggregates and the substrate, and scratches may be generated on the substrate. Scratches generated on the substrate may cause, for example, a poor adhesion between the magnetic film and the substrate in a later media process, and may be a factor that hinders the increase in the capacity of the magnetic disk. Therefore, in order to suppress the above-described reduction in scratch generation and reduction in the polishing rate, polishing liquids containing azoles such as benzotriazole, maleic acid, and the like have been proposed (for example, Patent Documents 1 and 2).
  • Patent Document 3 a polishing liquid containing an aromatic sulfonate has been proposed for the purpose of improving the durability of the polishing rate.
  • Patent Document 4 a polishing liquid containing hydroxyethyl cellulose has been proposed.
  • Patent Documents 1 to 4 are not sufficient in suppressing the generation of scratches and adhesion of particles during polishing, and the substrate quality allowed to achieve high capacity is achieved. It could not be supported. Further, the polishing liquid of Patent Document 2 is not sufficient, although it has a slight effect on the sustainability of the polishing rate, and the substrate quality after polishing is not satisfactory. Therefore, there are fewer defects in the substrate such as scratches in the polishing process during the electronic material manufacturing process than in conventional polishing liquids, and polishing debris generated by polishing can be easily removed in the subsequent cleaning process.
  • a material capable of sustaining the polishing rate in the process a polishing liquid for electronic material containing the material, a polishing method for polishing an electronic material intermediate using the polishing liquid for electronic material, and an electronic material intermediate by this polishing method It is an object of the present invention to provide a method for manufacturing an electronic material including a polishing step.
  • the present invention relates to a specific neutralized salt (AB) used in the step of polishing an electronic material intermediate using a polishing pad, a polishing liquid for electronic material containing the neutralized salt (AB), and the electronic material
  • the neutralized salt (AB) includes an acidic compound (A) having at least one acid group (X) in the molecule, and nitrogen having a heat generation change (Q2) in the proton addition reaction of 10 to 152 kcal / mol.
  • the neutralized salt of the present invention used in the polishing step has an effect of significantly reducing surface defects generated on the surface of the object to be polished in the polishing step. Further, it has an effect of reducing adhesion of particles during polishing and facilitating removal of the particles from the substrate in the subsequent cleaning step. Moreover, the polishing liquid for electronic materials containing this neutralized salt is excellent in sustainability of the polishing rate, in addition to the above-described effects, as compared with the conventional polishing liquid. Therefore, an electronic material with few surface defects such as scratches or pits and / or residual particles can be stably produced.
  • the neutralized salt of the present invention is a specific neutralized salt (AB) used in the step of polishing an electronic material intermediate using a polishing pad.
  • the neutralized salt (AB) includes an acidic compound (A) having at least one acid group (X) in the molecule, and nitrogen having a heat generation change (Q2) in the proton addition reaction of 10 to 152 kcal / mol.
  • the electronic material in the present invention is not particularly limited as long as it is an electronic material manufactured by a process including a process of polishing using a polishing pad during the manufacturing process.
  • a magnetic disk substrate such as a hard disk glass substrate or a hard disk aluminum substrate whose surface is plated with nickel-phosphorus (Ni-P)
  • a semiconductor substrate such as a semiconductor element or a silicon wafer
  • Examples thereof include compound semiconductor substrates such as SiC substrates, GaAs substrates, GaN substrates, and AlGaAs substrates, and (4) sapphire substrates for LEDs.
  • a magnetic disk substrate is preferable from the viewpoint of improving production efficiency, and specifically, a glass substrate for hard disk or an aluminum substrate for hard disk plated with nickel-phosphorus (Ni-P).
  • the electronic material intermediate refers to an object to be polished before becoming an electronic material.
  • the glass substrate before lapping, or before rough polishing with cerium oxide or the like refers to a glass substrate, a glass substrate before being precisely polished with colloidal silica or the like, and all electronic materials before polishing processing mean an electronic material intermediate.
  • the polishing step in the present invention refers to a step of processing a material flat using a grindstone or abrasive particles, for example, a lapping step of rough chamfering using a polishing pad to which a grindstone is fixed, or using abrasive particles It includes a polishing process for precise planarization.
  • the polishing pad in the present invention is a pad made of polyurethane resin or polyester resin, and includes a pad on which a grindstone such as diamond is fixed. Further, it may be a foam type or a suede type, and various hardnesses can be used. These polishing pads are not particularly limited, and commercially available polishing pads can be used.
  • the polishing pad is used by being affixed to a surface plate of a polishing apparatus in the lapping step for rough chamfering described above or the polishing step for precise flattening using abrasive particles.
  • the neutralized salt (AB) in the present invention is a neutralized salt (AB1) of an acidic compound (A1) and a compound (B) and / or a neutralized salt of a polymer (A2) which is an acidic compound and a compound (B).
  • the neutralized salt (AB1) comprises at least an acid group (X1) of an acid having a heat of formation (Q1) in an acid dissociation reaction of 3 to 200 kcal / mol and a hydrophobic group (Y) having 1 to 36 carbon atoms, respectively.
  • a neutral salt of one acidic compound (A1) and a compound (B) having a heat of formation (Q2) of 10 to 152 kcal / mol in a proton addition reaction wherein (X1) is a sulfonic acid group, sulfuric acid
  • a neutralized salt which is at least one selected from the group consisting of a group, a carboxyl group, a carboxymethyloxy group, a carboxyethyloxy group, a (di) carboxymethylamino group and a (di) carboxyethylamino group
  • (AB2) includes a polymer (A2) that is an acidic compound having at least one acid group (X2) in the molecule, and a change in heat of formation (Q2) in the proton addition reaction. Is 0 ⁇ 152kcal / mol, compound (B) and neutralization salts.
  • the acidic compound (A1) includes at least one acid group (X1) of an acid having a heat of formation (Q1) in an acid dissociation reaction of 3 to 200 kcal / mol and a hydrophobic group (Y) having 1 to 36 carbon atoms.
  • the polymer (A2) has at least one acid group (X2) in the molecule.
  • the acid group (X2) also has a heat generation change (Q1) in the acid dissociation reaction of 3 to 200 kcal / mol.
  • the heat of formation (Q1) in the acid dissociation reaction of the acid groups (X1) and (X2) is the heat of formation of HX and the heat of formation of X ⁇ in the acid dissociation reaction of the acid (HX) represented by the following formula (1). Means the difference.
  • the change in the heat of formation in the acid dissociation reaction of the acid group (X1) is a value assuming that the hydrophobic group (Y) is a hydrogen atom.
  • the change in heat of formation in the acid dissociation reaction of the acid group (X2) is a value assuming that the polymer chain to which the acid group (X2) is bonded is a hydrogen atom.
  • the generated heat change (Q1) is expressed by the following formula (2).
  • Q1 ⁇ f H o HX ⁇ f H o X ⁇ (2)
  • ⁇ f H o HX and ⁇ f H o X ⁇ represent the heat of formation in vacuum for HX and X ⁇ in order, respectively.
  • the value of the heat of formation ( ⁇ f H o ) Chem. Soc. Perkin Trans. 2, p. 923 (1995), and can be calculated using the semiempirical molecular orbital method (MOPAC PM3 method).
  • the value of the generated heat can be calculated as generated heat (25 ° C.) in a vacuum using, for example, “CAChe Worksystem 6.01” manufactured by Fujitsu Limited. That is, the value of this heat of formation is calculated by writing the molecular structure to be calculated on “Work Space”, optimizing the structure with the molecular force field method “MM2 geometry”, and then “PM3 geometry” which is a semi-empirical molecular orbital method. Is obtained by calculation.
  • the heat of formation (Q1) (kcal / mol, 25 ° C.) in the acid dissociation reaction of the acid group (X1) or (X2) is 3 to 200, and is preferably 10 from the viewpoint of lowering the zeta potential.
  • To 150 then preferably 15 to 100, then preferably 20 to 80, particularly preferably 20 to 65.
  • carboxymethyloxy group —OCH 2 COOH
  • Q1 19 kcal / mol
  • (di) carboxymethylamino group —NRCH 2 COOH or —N (CH 2 COOH) 2 )
  • Q1 26 kcal / mol
  • sulfonic acid groups are preferable from the viewpoint of preventing re-adhesion of particles and easy industrial production, and the viewpoint of preventing hydrolysis of the neutralized salt (AB2). More preferably a sulfonic acid group or a carboxyl group.
  • a sulfonic acid group As the acid group (X1), among the acid groups (X2) exemplified above, a sulfonic acid group, a sulfuric acid group, a carboxyl group, a carboxymethyloxy group, a carboxyethyloxy group, a (di) carboxymethylamino group, ) Carboxyethylamino group and the like.
  • these acid groups sulfonic acid groups, sulfuric acid groups, carboxymethyloxy groups, or carboxyethyloxy groups are preferable from the viewpoint of preventing re-adhesion of particles and industrially easy production, and the neutral salt (AB1). From the viewpoint of preventing hydrolysis and the like, a sulfonic acid group, a carboxymethyloxy group or a carboxyethyloxy group is more preferable, and a sulfonic acid group is particularly preferable.
  • Examples of the hydrophobic group (Y) in the acidic compound (A1) include an aliphatic hydrocarbon group and an aromatic ring-containing hydrocarbon group.
  • Examples of the aliphatic hydrocarbon group include an alkyl group having 1 to 36 carbon atoms, an alkenyl group having 2 to 36 carbon atoms, a cycloalkyl group having 3 to 36 carbon atoms, and the like (which may be linear or branched) ).
  • Examples of the alkyl group include methyl, ethyl, n- or i-propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and the like.
  • Alkenyl groups include n- or i-propenyl, hexenyl, heptenyl, octenyl, decenyl, undecenyl, dodecenyl and
  • Examples of the cycloalkyl group having 3 to 36 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • aromatic ring-containing hydrocarbon group examples include aromatic hydrocarbons having 7 to 36 carbon atoms, such as methylphenyl, ethylphenyl, n- or i-propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, Examples include octylphenyl, nonylphenyl, decylphenyl, undecylphenyl, dodecylphenyl, octylnaphthyl, nonylnaphthyl, dodecylnaphthyl and the like.
  • an aliphatic hydrocarbon group or an aromatic ring-containing hydrocarbon group is preferable, and more preferable is octyl, nonyl, decyl, undecyl, dodecyl, octylphenyl, nonylphenyl, dodecylphenyl, octylnaphthyl, nonyl. Naphthyl and dodecylnaphthyl, particularly preferably octyl, nonyl, dodecyl, octylphenyl, dodecylphenyl and octylnaphthyl.
  • the number of carbon atoms of the hydrophobic group (Y) is 1 to 36, more preferably 4 to 24, and particularly preferably 8 to 24.
  • some or all of the hydrogen atoms are other atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.) or functional groups (hydroxyl group, amino group, mercapto group, perfluoroalkyl group, carboxyl group) Or an organic group including an ether bond, an amide bond, or an ester bond), and the functional group may include one or more oxyalkylene groups.
  • Examples of the acidic compound (A1) include the following compounds.
  • Compound having sulfonic acid group (A1-1) Alkylsulfonic acid (octylsulfonic acid, decylsulfonic acid, dodecylsulfonic acid, myristylsulfonic acid, cetylsulfonic acid, stearylsulfonic acid, etc.), benzenesulfonic acid, alkylbenzenesulfonic acid (toluenesulfonic acid, xylenesulfonic acid, dodecylbenzenesulfonic acid) , Eicosylbenzenesulfonic acid, etc.), naphthalenesulfonic acid, sulfosuccinic acid, alkylnaphthalenesulfonic acid (methylnaphthalenesulfonic acid, dodecylnaphthalenesulfonic acid, eicosylnaphthalene
  • Alkyl sulfate (octyl sulfate, decyl sulfate, dodecyl sulfate, myristyl sulfate, cetyl sulfate, stearyl sulfate, etc.), polyoxyalkylene alkyl ether sulfate (polyoxyethylene octyl ether sulfate, polyoxyethylene lauryl) Ether sulfates, etc.), polyoxyalkylene alkyl aryl ether sulfates (polyoxyethylene octyl phenyl ether sulfates, polyoxyethylene nonyl phenyl ether sulfates, etc.), acylamide alkyl sulfates, and the like.
  • Alkylene alkyl ether sulfonic acid polyoxyalkylene alkyl aryl ether sulfonic acid, ⁇ -o Refin sulfonic acid, alkyloylaminoethyl sulfonic acid.
  • the HLB value of the acidic compound (A1) is preferably 5 to 30, more preferably 7 to 17, more preferably 9 to 16, particularly preferably 10 to 15, and most preferably 10.5 to 14.5.
  • the HLB value is a value calculated using the following formula (3) by the Oda method (Takehiko Fujimoto, Introduction to Surfactant (Sanyo Chemical Industry Co., Ltd.), p212 (2007)). .
  • HLB 10 ⁇ (inorganic / organic) (3)
  • organic property and inorganic property in a formula are the total value of the numerical value defined for every atom and functional group which comprise a molecule
  • the pKa of the acidic compound (A1) is preferably 8.0 or less, more preferably 7.0 or less, particularly preferably 5.5 or less, and most preferably 3.0 or less from the viewpoint of lowering the zeta potential. . Moreover, Preferably it is 0.5 or more.
  • pKa means the acid dissociation constant at the first stage.
  • pKa is a known method ⁇ for example, J.P. Am. Chem. Soc. , 1673 (1967) ⁇ and the like.
  • Examples of the polymer (A2) having at least one acid group (X2) include a polymer having a sulfonic acid group (A2-1) and a polymer having a sulfate group (A2-2) from the viewpoint of preventing reattachment of particles.
  • a polymer (A2-3) having a carboxyl group is preferable, and a polymer (A2-1) having a sulfonic acid group or a polymer (A2-3) having a carboxyl group is more preferable.
  • Examples of the polymer (A2-1) having a sulfonic acid group include a polymer (A2-1-1) obtained by radical polymerization using an unsaturated monomer (aX-1) having a sulfonic acid group, and a sulfonic acid group in the molecule. And a polymer (A2-1-2) obtained by a polycondensation reaction with formaldehyde using an aromatic compound (aY-1) having
  • Examples of the polymer (A2-2) having a sulfate group include a polymer (A2-2-1) obtained by radical polymerization using an unsaturated monomer (aX-2) having a sulfate group.
  • Examples of the polymer (A2-3) having a carboxyl group include a polymer (A2-3-1) obtained by radical polymerization using an unsaturated monomer (aX-3) having a carboxyl group.
  • polymers (A2) from the viewpoint of preventing particle reattachment, a polymer (A2-3) having a carboxyl group and a polymer (A2-1) having a sulfonic acid group are preferable, and (A2-3) is more preferable. -1), (A2-1-1) or (A2-1-2).
  • the polymer (A2) used for this invention may be used independently, it can also be used as a 2 or more types of mixture.
  • Examples of the unsaturated monomer (aX-1) having a sulfonic acid group include aliphatic unsaturated sulfonic acids having 2 to 20 carbon atoms (such as vinyl sulfonic acid and (meth) allyl sulfonic acid), and aromatics having 6 to 24 carbon atoms.
  • Unsaturated sulfonic acid (styrene sulfonic acid, p-nonyl styrene sulfonic acid, etc.), sulfonic acid group-containing (meth) acrylate ⁇ 2- (meth) acryloyloxyethanesulfonic acid, 2- (meth) acryloyloxypropanesulfonic acid, 3 -(Meth) acryloyloxypropanesulfonic acid, 2- (meth) acryloyloxybutanesulfonic acid, 4- (meth) acryloyloxybutanesulfonic acid, 2- (meth) acryloyloxy-2,2-dimethylethanesulfonic acid, p -(Meth) acryloyloxymethylbenzenesulfonic acid, etc. ⁇ , including sulfonic acid group (Meth) acrylamide ⁇ 2- (meth) acryloyl-aminoethanesulfonic
  • it contains an aliphatic unsaturated sulfonic acid having 2 to 20 carbon atoms, an aromatic unsaturated sulfonic acid having 6 to 24 carbon atoms or a sulfonic acid group (meta ) Acrylamide is preferred, and vinyl sulfonic acid, styrene sulfonic acid or 2- (meth) acryloylamino-2,2-dimethylethane sulfonic acid is more preferred.
  • Examples of the unsaturated monomer (aX-2) having a sulfate group include sulfate ester of a hydroxyl group-containing monomer. Of these, from the viewpoint of polymerizability and the like, a hydroxyl group-containing (meth) acrylic acid ester sulfate is preferable, and a 2-hydroxyethyl (meth) acrylate or 2-hydroxypropyl (meth) acrylate sulfate is more preferable. .
  • unsaturated monomer (aX-3) having a carboxyl group unsaturated monocarboxylic acid ⁇ (meth) acrylic acid, vinylbenzoic acid, allyl acetic acid, (iso) crotonic acid, cinnamic acid, 2-carboxyethyl acrylate, etc. ⁇ , Unsaturated dicarboxylic acid or anhydride of unsaturated dicarboxylic acid ⁇ (anhydrous) maleic acid, fumaric acid, (anhydrous) itaconic acid, (anhydrous) citraconic acid, mesaconic acid, etc. ⁇ .
  • unsaturated monocarboxylic acid, unsaturated dicarboxylic acid or anhydride of unsaturated dicarboxylic acid is preferable from the viewpoint of polymerizability and hydrolysis resistance in water, and more preferably (meth) acrylic acid, (anhydrous) ) Maleic acid, fumaric acid or (anhydrous) itaconic acid.
  • Polymers (A2-1-1) to (A2-3-1) obtained by radical polymerization using unsaturated monomers include unsaturated monomers having sulfonic acid groups (aX-1) and unsaturated monomers having sulfuric acid groups.
  • a radically polymerizable unsaturated monomer other than the monomer (aX-2) and the unsaturated monomer having a carboxyl group (aX-3) can be copolymerized.
  • Monomers (aX-1) to (aX-3) may be used alone or as a mixture of two or more.
  • the structure may be either a random copolymer or a block copolymer.
  • polystyrene sulfonic acid examples include polystyrene sulfonic acid, styrene / styrene sulfonic acid copolymer, poly ⁇ 2- (meth) acryloylamino-2,2-dimethylethanesulfonic acid ⁇ , 2- ( (Meth) acryloylamino-2,2-dimethylethanesulfonic acid / styrene copolymer, 2- (meth) acryloylamino-2,2-dimethylethanesulfonic acid / acrylamide copolymer, or 2- (meth) acryloylamino -2,2-dimethylethanesulfonic acid / styrene / acrylamide copolymer.
  • polymer (A2-2-1) examples include poly ⁇ 2-hydroxyethyl (meth) acrylate sulfate ⁇ , 2-hydroxyethyl acrylate / 2-hydroxyethyl acrylate sulfate copolymer, 2-hydroxyethyl methacrylate. / 2-hydroxyethyl methacrylate sulfate copolymer and the like.
  • polymer (A2-3-1) examples include poly (meth) acrylic acid, (meth) acrylic acid / vinyl acetate copolymer, 2-hydroxyethyl methacrylate / (meth) acrylic acid copolymer, and the like. It is done.
  • a known radical polymerization method can be used.
  • a monomer comprising monomers (aX-1) to (aX-3) and other radical polymerizable unsaturated monomers as required, and a radical initiator (persulfate, azobisamidinopropane salt, azobisisobutylnitrile, etc.) Is polymerized at a temperature of 30 to 150 ° C. in a solvent such as water or an alcohol solvent using 0.1 to 30% by weight based on the monomer.
  • a chain transfer agent such as mercaptan may be used.
  • Examples of the aromatic compound (aY-1) having a sulfonic acid group used for the synthesis of the polymer (A2-1-2) include aryl sulfonic acid (benzenesulfonic acid, etc.), alkyl (carbon number 1 to 24) aryl sulfone.
  • Acids toluenesulfonic acid, dodecylbenzenesulfonic acid, monobutylbiphenylsulfonic acid, etc.
  • polycyclic aromatic sulfonic acids naphthalenesulfonic acid, anthracenesulfonic acid, hydroxynaphthalenesulfonic acid, hydroxyanthracenesulfonic acid, etc.
  • alkyl (C1-24) arylsulfonic acid, polycyclic aromatic sulfonic acid, and alkyl (C1-24) substituted polycyclic aromatic sulfonic acid are preferable from the viewpoint of preventing redeposition. More preferred are dodecylbenzenesulfonic acid, naphthalenesulfonic acid, and dimethylnaphthalenesulfonic acid.
  • the polymer (A2-1-2) can contain other aromatic compound (aO), urea, or the like as necessary, if necessary.
  • aromatic compounds (aO) include benzene, alkylbenzene (alkyl group having 1 to 20 carbon atoms), naphthalene, alkylnaphthalene (alkyl group having 1 to 20 carbon atoms), phenol, cresol, hydroxynaphthalene, aniline, and the like. Can be mentioned.
  • polymer (A2-1-2) examples include naphthalene sulfonic acid formaldehyde condensate, methyl naphthalene sulfonic acid formaldehyde condensate, dimethyl naphthalene sulfonic acid formaldehyde condensate, octyl naphthalene sulfonic acid formaldehyde condensate, naphthalene sulfonic acid-methyl.
  • the reaction vessel is charged with the aromatic compound (aY-1) having the sulfonic acid group and, if necessary, other compounds (aO), urea, an acid (such as sulfuric acid) or an alkali (such as sodium hydroxide) used as a catalyst.
  • a predetermined amount of an aqueous formaldehyde solution (for example, 37% by weight aqueous solution) is dropped over 1 to 4 hours with stirring at 70 to 90 ° C., and after the dropwise addition, the mixture is stirred for 3 to 30 hours under reflux and cooled. .
  • the compound (aY-1) a polymer (A2-1-2) was synthesized at the same time using a compound in which a part or all of the sulfonic acid groups had been neutralized with the compound (B) in advance, and at the same time a directly neutralized salt ( AB2) may be obtained.
  • the molar ratio ((aY-1) / (aO) ⁇ of (aY-1) to (aO) is preferably 1 to 99/99 to 1, more preferably 10 ⁇ 90 / 90 ⁇ 10, particularly preferably 30 ⁇ 85 / 70 ⁇ 15, most preferably 50 ⁇ 80 / 50 ⁇ 20.
  • the molar ratio of (aY-1) to urea ⁇ (aY-1) / urea ⁇ is preferably 1 to 99/99 to 1, more preferably 10 to 90/90 to 10, particularly preferably. Is from 30 to 85/70 to 15, most preferably from 50 to 80/50 to 20.
  • (aY-1) or (aO) may be used as a mixture of two or more.
  • the pKa of the polymer (A2) is preferably 8.0 or less, more preferably 7.0 or less, particularly preferably 5.5 or less, and most preferably 3.0 or less from the viewpoint of lowering the zeta potential. pKa can be determined by the above method.
  • the weight average molecular weight (hereinafter abbreviated as Mw) of the polymer (A2) is preferably from 300 to 200,000, more preferably from 1,000 to 100, from the viewpoint of improving surface quality such as scratch reduction and low foaming properties. , 000.
  • the weight average molecular weight is a value measured by gel permeation chromatography (hereinafter abbreviated as GPC) at 40 ° C. using polyethylene oxide as a standard substance.
  • apparatus main body HLC-8120 manufactured by Tosoh Corporation
  • column TSKgel G5000 PWXL, G3000 PW XL manufactured by Tosoh Corporation
  • detector differential refractometer detector built in the apparatus main body
  • eluent 0.2 M sulfuric anhydride Sodium, 10% acetonitrile buffer
  • eluent flow rate 0.8 ml / min
  • column temperature 40 ° C.
  • sample 1.0 wt% eluent solution
  • injection volume 100 ⁇ l
  • standard substance TSK manufactured by Tosoh Corporation It can be measured under the conditions of SE-30, SE-15, SE-8, and SE-5.
  • the compound (B) constituting the neutralized salts (AB1) and (AB2) will be described.
  • a compound (B) having a heat generation change (Q2) in the proton addition reaction of 10 to 152 kcal / mol is used.
  • the change in heat of formation (Q2) in the proton addition reaction means the difference between the heat of formation of B and the heat of formation of H + B in the proton addition reaction of the compound (B) represented by the following formula (4). . B + H + ⁇ H + B (4)
  • Q2 is represented by the following formula (5).
  • Q2 ⁇ f H o H + B - ⁇ f H o B (5)
  • ⁇ f H o H + B , ⁇ f H o B are respectively a representing the generated heat in a vacuum for H + B, B.
  • the value of the heat of formation ( ⁇ f H o ) can be calculated using the semiempirical molecular orbital method (MOPAC PM3 method).
  • MOPAC PM3 method semiempirical molecular orbital method
  • the position where H + is added in calculating the heat of formation of H + B is on the nitrogen atom contained in the compound (B).
  • the heat of formation is calculated for each nitrogen atom, and the value when the difference between the heat of formation of B and the heat of formation of H + B is minimized is defined as the change in heat generation (Q2). .
  • the change in heat of formation (Q2) (kcal / mol, 25 ° C.) in the proton addition reaction of compound (B) is 10 to 152, preferably 30 to 148, more preferably 40 from the viewpoint of lowering the zeta potential.
  • the compound (B) is not limited as long as the change in heat of formation (Q2) in the proton addition reaction is in the range of 10 to 152 kcal / mol.
  • a compound (B-2) having at least one amidine skeleton in the molecule are not limited as long as the change in heat of formation (Q2) in the proton addition reaction.
  • the molecular volume (nm 3 ) of the compound (B) is preferably from 0.025 to 0.7, more preferably from 0.050 to 0.5, particularly preferably from 0.12 to 0.5 from the viewpoint of lowering the zeta potential. 0.36.
  • the molecular volume refers to the volume of the space formed on the isoelectronic density surface of the molecule, and is the molecular force field method MM2 (Allinger, NL, J. Am. Chem. Soc., 99, 8127 (1977). )))
  • PM3 Stepwart, J. J. P., J. Am. Chem. Soc., 10, 221 (1989)
  • R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, or an alkyl group having 6 to 30 carbon atoms.
  • R 7 and two R 8 may be the same or different and are bonded to each other (carbon-carbon bond, ether bond, etc.) to form a ring having 4 to 12 carbon atoms. Also good. m and n each independently represent an integer of 1 to 12. ]
  • alkyl group having 1 to 24 carbon atoms or the alkenyl group having 2 to 24 carbon atoms include those having 1 to 24 carbon atoms among the alkyl groups and alkenyl groups exemplified for the hydrophobic group (Y).
  • the alkynyl group having 2 to 30 carbon atoms may be linear or branched, and is ethynyl, 1-propynyl, 2-propynyl, 1- or 2-dodecynyl, 1- or 2-tridecynyl, 1- or 2 -Tetradecynyl, 1- or 2-hexadecynyl, 1- or 2-stearinyl, 1- or 2-nonadecynyl, 1- or 2-eicosinyl, 1- or 2-tetracosinyl and the like.
  • Examples of the aryl group having 6 to 30 carbon atoms include phenyl, tolyl, xylyl, naphthyl, and methylnaphthyl.
  • Examples of the arylalkyl group having 7 to 30 carbon atoms include benzyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, 5-phenylpentyl, 6-phenylhexyl, 7-phenylheptyl, 8-phenyloctyl, 10 -Phenyldecyl, 12-phenyldodecyl, naphthylmethyl, naphthylethyl and the like.
  • two R 7 or two R 8 are divalent organic groups (alkylene having 4 to 12 carbon atoms).
  • alkylene group having 4 to 12 carbon atoms include butylene, pentylene, hexylene, heptylene, octylene, decylene and dodecylene, and these alkylene groups may be bonded by an ether bond or the like.
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • DBN 1,5-diazabicyclo [4.3.0] nonene-5
  • DBN 1,8-diazabicyclo [5.3.0] decene-7
  • compound (B) Preferred from the viewpoint of zeta potential and the like as compound (B) are guanidine, methylguanidine, ethylguanidine, (B-2) of (B-1), DBU and DBN, and more preferably DBU. Or DBN.
  • a compound (B) may be used independently and may be used as a 2 or more types of mixture.
  • the pKa of the compound (B) is preferably 11 to 40, more preferably 11.5 to 30, particularly preferably 12 to 25 from the viewpoint of lowering the zeta potential.
  • pKa of compound (B) is a known method ⁇ for example, Can. J. et al. Chem. 65, 626 (1987) ⁇ and the like.
  • the neutralized salt (AB1) of the acidic compound (A1) and the compound (B) and the neutralized salt (AB2) of the polymer (A2) and the compound (B) are the acid group (X1) or (X2 ) May be partially or completely neutralized with (B).
  • neutralized salt (AB1) include the following compounds. Alkylbenzenesulfonate (toluenesulfonate guanidine salt, toluenesulfonate DBU salt, toluenesulfonate DBN salt, xylenesulfonate guanidine salt, xylenesulfonate DBU salt, xylenesulfonate DBN salt, dodecylbenzenesulfonate guanidine salt, dodecylbenzene Sulfonic acid DBU salt, dodecylbenzene sulfonic acid DBN salt, etc.), naphthalene sulfonic acid salt (naphthalene sulfonic acid guanidine salt, naphthalene sulfonic acid DBU salt, naphthalene sulfonic acid DBN salt etc.), alkyl naphthalene sulfonic acid salt (methyl naphthalene
  • neutralized salt (AB2) include the following compounds.
  • Polyacrylate polyacrylic acid DBU salt, polyacrylic acid DBN salt, etc.
  • polystyrene sulfonate polystyrene sulfonic acid guanidine salt, polystyrene sulfonic acid DBU salt, polystyrene sulfonic acid DBN salt, etc.
  • alkyl naphthalene sulfonic acid formaldehyde condensate salt methyl naphthalene sulfonic acid formaldehyde condensate
  • the neutralized salt (AB1) is preferably such that the ratio ⁇ Q2 / (Q1 ⁇ p) ⁇ of (Q1) and (Q2) satisfies the formula (7) from the viewpoint of reducing the zeta potential, and more preferably It is preferable to satisfy the formula (8), particularly preferably the formula (9), and most preferably the formula (10).
  • the weight average molecular weight (Mw) of the neutralized salt (AB2) is preferably 1,000 to 1,000,000, more preferably 1,000 to 1,000, from the viewpoint of improving surface quality such as scratch reduction and low foaming properties. 200,000, particularly preferably 3,000 to 100,000.
  • Mw of neutralization salt (AB2) is a value obtained by GPC similarly to a polymer (A2).
  • the polishing liquid for electronic material of the present invention may contain at least one of neutralized salts (AB1) and (AB2), but contains neutralized salt (AB2) from the viewpoint of improving surface quality such as scratch reduction. Those are preferred.
  • the neutralized salt (AB1) or (AB2) can be obtained by a neutralization reaction between the acidic compound (A1) or polymer (A2) and the nitrogen-containing basic compound (B).
  • a neutralization reaction between the acidic compound (A1) or polymer (A2) and the nitrogen-containing basic compound (B).
  • an aqueous solution of (A1) and / or (A2) is charged into a reaction vessel capable of temperature control and stirring, and (B) (aqueous solution if necessary) is added at room temperature (about 25 ° C.) with stirring to mix uniformly. can do.
  • it can be obtained by mixing (A1) and / or (A2) and (B) simultaneously or separately into a reaction vessel preliminarily charged with water and mixing them uniformly.
  • the concentration during the neutralization reaction can be appropriately selected depending on the purpose.
  • the polishing liquid for electronic materials of the present invention has a high degree of dissociation of the acid groups (X1) and (X2), the zeta potential of the particles and the substrate can be effectively lowered, and the reattachment of particles can be prevented. it can.
  • the concentration of the neutralized salt (AB) in the polishing slurry for electronic materials is 0.001 to 10% by weight, preferably 0.01 to 5% by weight, based on the weight of the polishing solution.
  • the water that is an essential component of the polishing liquid for electronic materials of the present invention is preferably pure water having an electrical resistivity of 18 M ⁇ ⁇ cm or more from the viewpoint of cleanliness, ultrapure water, ion exchange water, reverse osmosis water (RO water). And distilled water.
  • Another embodiment of the present invention is a polishing liquid for use in a step of polishing an electronic material intermediate using a polishing pad, which is a polishing liquid for an electronic material that requires neutralization salt (AB) and water as essential. .
  • AB neutralization salt
  • the polishing liquid for electronic materials of the present invention may contain abrasive particles (C) in addition to the neutralized salt (AB) and water described above.
  • abrasive particles (C) By containing the abrasive particles (C), an electronic material excellent in flatness can be produced.
  • abrasive particles (C) in the present invention commercially available abrasive particles for polishing electronic materials can be used and are not particularly limited.
  • the material for the abrasive particles (C) include colloidal silica, cerium oxide, alumina, zirconium oxide, diamond, manganese oxide, titanium oxide, silicon carbide, and boron nitride. From the viewpoint of the effect of reducing scratches, colloidal is preferable. Silica, cerium oxide, alumina or diamond.
  • the average particle diameter of the abrasive particles (C) varies depending on the abrasive particles used. In the case of colloidal silica, it is usually 5 nm to 100 nm, and in the case of cerium oxide, it is 0.1 ⁇ m to 3.0 ⁇ m. This is preferable from the viewpoint of substrate productivity.
  • the abrasive particles (C) in the polishing liquid for electronic materials is 0 to 20% by weight, preferably 0.5 to 20% by weight, based on the weight in the polishing liquid.
  • the polishing liquid for electronic materials of the present invention may contain a surfactant (D) other than the neutralized salt (AB) and water described above, in addition to the neutralized salt (AB). By containing the surfactant (D), it can be used in the lapping step.
  • a surfactant (D) other than the neutralized salt (AB) and water described above, in addition to the neutralized salt (AB).
  • surfactant (D) in the present invention examples include nonionic surfactants (D1) and anionic surfactants (D2) other than neutralized salts (AB).
  • Nonionic surfactant (D1) includes higher alcohol alkylene having 8 to 18 carbon atoms (2 to 4 carbon atoms) oxide adduct (D11), polyoxyethylene polyoxypropylene copolymer (D12), 8 carbon atoms.
  • Examples include an alkylene oxide adduct (D13) of aliphatic amine of ⁇ 36, a polyhydric alcohol type nonionic surfactant (D14), and the like.
  • Examples of the higher alcohol alkylene (carbon number 2 to 4) oxide adduct (D11) having 8 to 18 carbon atoms include octyl alcohol ethylene oxide adduct, lauryl alcohol ethylene oxide adduct, stearyl alcohol ethylene oxide adduct, and the like. Can be mentioned.
  • the polyoxyethylene polyoxypropylene copolymer (D12) may be a block type or a random type.
  • Examples of the alkylene oxide adduct (D13) of an aliphatic amine having 8 to 36 carbon atoms include an alkylene oxide adduct (D131) of an aliphatic primary amine having 8 to 24 carbon atoms, or an aliphatic oxide having 8 to 36 carbon atoms.
  • the starting aliphatic primary amine in the alkylene oxide adduct (D131) of an aliphatic primary amine having 8 to 24 carbon atoms may be linear, branched or cyclic, and may have a saturated or unsaturated bond. It is an aliphatic primary amine having 8 to 24 carbon atoms.
  • aliphatic primary amine examples include laurylamine, octylamine, decylamine, undecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, nonadecylamine, icosylamine , Heicosylamine, docosylamine, tricosylamine, tetracosylamine, octadecenylamine or octadecadienylamine, and mixtures thereof beef tallow amine, hardened tallow amine, coconut oil amine, palm oil amine or soybean oil amine Mention may be made of aliphatic primary amines derived from iso-animal vegetable oils. As the aliphatic primary amine, one kind or a mixture of two or more kinds may be used.
  • the starting aliphatic secondary amine in the alkylene oxide adduct (D132) of an aliphatic secondary amine having 8 to 36 carbon atoms may be linear, branched or cyclic, and may have a saturated or unsaturated bond. It is an aliphatic secondary amine having 8 to 36 carbon atoms.
  • aliphatic secondary amine examples include dioctylamine, dibutylamine, dihexylamine, didecylamine, diundecylamine, didodecylamine, ditridecylamine, ditetradecylamine, dipentadecylamine, dihexadecylamine, Mention may be made of diheptadecylamine or dioctadecylamine.
  • the aliphatic secondary amine one kind or a mixture of two or more kinds may be used.
  • Examples of the starting alkylene oxide in the aliphatic amine alkylene oxide adduct (D13) of the present invention include alkylene oxides having 2 to 12 carbon atoms, such as ethylene oxide, 1,2-propylene oxide, 1,2-butylene oxide, Examples include tetrahydrofuran and 3-methyltetrahydrofuran. Of these, ethylene oxide and 1,2-propylene oxide are preferable from the viewpoint of availability. These alkylene oxides may use only 1 type and may use 2 or more types together. When using 2 or more types together, random or a block may be sufficient.
  • the average number of moles of alkylene oxide added in (D131) or (D132) is preferably 3 to 100 moles, more preferably 3 to 70 moles, and particularly preferably 3 to 40 moles per mole of amine.
  • a known method or the like can be used as a method for producing (D131) and (D132). Specifically, the above-mentioned aliphatic primary amine or aliphatic secondary amine is charged into a stirrable pressure vessel, sufficiently substituted with an inert gas (nitrogen, argon, etc.), then dehydrated under reduced pressure, A method in which the alkylene oxide is added and reacted at a reaction temperature of about 80 to 160 ° C. can be used. Moreover, you may use a well-known catalyst as needed at the time of reaction. The catalyst may be added from the beginning of the reaction or from the middle.
  • an inert gas nitrogen, argon, etc.
  • the catalyst examples include a metal atom-free catalyst (a quaternary ammonium hydroxide such as tetramethylammonium hydroxide, and a third such as tetramethylethylenediamine and 1,8-diazabicyclo [5.4.0] undecene-7. Secondary amines) and metal atom-containing catalysts (alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides and alkaline earth metal oxides).
  • a metal atom-free catalyst a quaternary ammonium hydroxide such as tetramethylammonium hydroxide, and a third such as tetramethylethylenediamine and 1,8-diazabicyclo [5.4.0] undecene-7. Secondary amines
  • metal atom-containing catalysts alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides and alkaline earth metal oxides.
  • the concentration of the aliphatic amine alkylene oxide adduct (D13) in actual use is 0.001 to 10% by weight based on the weight in the polishing liquid.
  • polyhydric alcohol type nonionic surfactant (D14) examples include glycerin ethylene oxide adduct and sorbitan ethylene oxide adduct.
  • anionic surfactant (D2) examples include fatty acid surfactants (fatty acid (salt) having 8 to 18 carbon atoms or ether carboxylic acid (salt) of an aliphatic alcohol having 8 to 18 carbon atoms); phosphate ester Surfactants [phosphoric mono- or diesters (salts) of higher alcohols having 8 to 24 carbon atoms, or phosphoric mono- or diesters (salts) of alkylene oxide adducts of higher alcohols having 8 to 24 carbon atoms, etc.] .
  • a fatty acid amine salt is preferable from the viewpoint of lubricity, and the fatty acid amine salt is a fatty acid amine salt having 8 to 22 carbon atoms (for example, oleic acid) completely or completely with an amine.
  • the thing which neutralized a part is mentioned.
  • the amine include primary amines such as monoethanolamine; secondary amines such as diethanolamine; tertiary amines such as triethanolamine.
  • the concentration of the surfactant (D) in the polishing liquid for electronic materials is usually 0 to 90% by weight, preferably 0.001 to 80% by weight, more preferably 0.01 to 20% by weight.
  • the weight ratio of the neutralized salt (AB) to the weight of the surfactant (D) is 0.001 to 1.
  • the polishing liquid for electronic materials of the present invention may contain an organic reducing agent (E) as necessary.
  • an organic reducing agent (E) By mix
  • Examples of the organic reducing agent (E) include phenols (E1) and reductones (E2).
  • the organic reducing agent (E) a commercially available organic reducing agent can be used, and phenols (E1) and reductones (E2) are preferable from the viewpoint of polishing rate.
  • Examples of the phenols (E1) include compounds represented by the following general formula (11).
  • X 1 to X 5 each independently represents a hydrogen atom, a hydroxyl group, a carboxyl group, an amino group or an alkyl group.
  • phenols (E1) represented by the general formula (11) include phenols in which all of X 1 to X 5 are hydrogen; polyhydric phenol compounds such as pyrocatechol, resorcinol, hydroquinone and pyrogallol (E11 ); Phenolic compounds containing carboxyl groups such as 2-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,6-dicarboxyphenol, and 2,4,6-tricarboxyphenol (E12); gallic acid, etc.
  • a polyhydric phenol compound containing a carboxyl group (E13); a phenolic compound containing an amino group such as 4-aminophenol (E14); a phenolic compound containing an alkyl group such as cresol (E15); or a salt thereof. It is done.
  • polyhydric phenol compounds (E11) and polyhydric phenol compounds containing carboxyl groups (E13) are preferred, and more preferred are polyhydric phenols containing carboxyl groups.
  • the reductones (E2) may be any compound having a ketoenediol group represented by the following general formula (12) in the molecule.
  • reductones (E2) include ascorbic acid (L-form, DL-form, D-form), isoascorbic acid, erythorbic acid, or esters thereof (L-ascorbic acid sulfate, L-ascorbine). Acid phosphate ester, L-ascorbic acid 2-glucoside, L-ascorbic acid palmitic acid ester, tetraisopalmitic acid L-ascorbyl, ascorbic acid isopalmitate, erythorbic acid phosphoric acid ester, erythorbic acid palmitic acid ester, tetraisopalmitin Erysovir acid); or a salt thereof.
  • L-ascorbic acid, isoascorbic acid, esters of L-ascorbic acid or esters of isoascorbic acid, or salts thereof are preferred from the viewpoint of polishing rate and particle adhesion prevention, and more preferably L-ascorbic acid or a salt thereof.
  • Examples of the salts of (E1) and (E2) include alkali metal salts (sodium salts, potassium salts, etc.), alkaline earth metal salts (calcium salts, magnesium salts, etc.), ammonium salts, amine salts, or quaternary ammonium salts. Is mentioned.
  • the concentration of the organic reducing agent (E) in the polishing liquid during use is preferably 0.01 to 1% by weight from the viewpoint of preventing adhesion of particles.
  • the polishing liquid of the present invention includes inorganic acids (nitric acid, sulfuric acid, phosphoric acid, etc.), chelating agents (phosphonic acid-based chelating agents [hydroxyethylidene diphosphonic acid (HEDP) or salts thereof, methyl diphosphones).
  • inorganic acids nitric acid, sulfuric acid, phosphoric acid, etc.
  • chelating agents phosphonic acid-based chelating agents [hydroxyethylidene diphosphonic acid (HEDP) or salts thereof, methyl diphosphones).
  • An additive such as an adduct may be contained. As these additives, those conventionally used as polishing liquids can be used, and are not particularly limited.
  • the polishing method of the present invention is a polishing method for polishing an electronic material intermediate using the polishing liquid for electronic material of the present invention in the production process of the electronic material.
  • Another embodiment of the present invention is an electronic material manufacturing method including a step of polishing an electronic material intermediate using the above-described polishing liquid in the polishing step.
  • a lapping process of a hard disk glass substrate will be described below as an example.
  • a glass substrate is set on a carrier of a polishing apparatus, and the glass substrate is sandwiched by a surface plate to which a polishing pad to which a diamond grindstone is fixed is attached.
  • a load is applied to rotate the surface plate and the carrier.
  • the rotation is stopped.
  • the substrate is dried.
  • a substrate process for a hard disk glass substrate will be described below as an example.
  • (1) The above-mentioned lapped glass substrate is set on a carrier of a polishing apparatus, and the glass substrate is sandwiched by a surface plate to which a polyurethane polishing pad is attached.
  • (2) A load is applied while supplying the polishing liquid of the present invention containing cerium oxide, and the surface plate and the carrier are rotated.
  • the glass substrate is rinsed with running water, taken out from the carrier, and dipped or scrubbed with a cleaning agent.
  • a glass substrate rinsed with running water is set on a carrier of a polishing apparatus and polished in the same manner as described above using the polishing liquid of the present invention containing colloidal silica.
  • a commercially available polishing apparatus can be used as the polishing apparatus, and is not particularly limited.
  • polishing conditions such as the number of rotations, polishing time, number of oscillations, load, etc.
  • the conditions for polishing with a conventional polishing liquid can be used.
  • Production Example 1 (Production of polyacrylic acid DBU salt) A reaction vessel capable of temperature control and stirring was charged with 300 parts of isopropyl alcohol and 100 parts of ultrapure water, and the reaction vessel was purged with nitrogen, and then heated to 75 ° C. While stirring at 30 rpm, 407 parts of a 75% aqueous solution of acrylic acid and 95 parts of a 15% isopropyl alcohol solution of dimethyl 2,2′-azobisisobutyrate were simultaneously added dropwise over 3.5 hours. After completion of the dropwise addition, the mixture was stirred at 75 ° C.
  • polyacrylic acid aqueous solution was neutralized with 450 parts of DBU until the pH became 7.0, and the concentration was adjusted with ultrapure water to obtain a 40% aqueous solution of polyacrylic acid DBU salt (AB-1). .
  • the Mw of the polyacrylic acid DBU salt was 10,000.
  • Production Example 2 (Production of naphthalenesulfonic acid formaldehyde condensate DBU salt)
  • a reaction vessel with stirring was charged with 21 parts of naphthalenesulfonic acid and 10 parts of ultrapure water, and 8 parts of 37% formaldehyde was added dropwise over 3 hours while maintaining the temperature in the system at 80 ° C. with stirring.
  • the temperature was raised to 105 ° C. and reacted for 25 hours, then cooled to room temperature (about 25 ° C.), DBU was gradually added while adjusting to 25 ° C. in a water bath, and adjusted to pH 6.5 (DBU). Use about 15 parts).
  • Ultrapure water was added to adjust the solid content to 40% to obtain a 40% aqueous solution of DBU salt (AB-2) of naphthalenesulfonic acid formaldehyde condensate as an anionic surfactant.
  • the Mw of the DBU salt of (AB-2) was 5,000.
  • Production Example 3 (Production of polystyrene sulfonic acid guanidine salt) 100 parts of ethylene dichloride was charged into a reaction vessel with stirring capable of temperature control and refluxing, and after purging with nitrogen under stirring, the temperature was raised to 90 ° C. to reflux ethylene dichloride. 120 parts of styrene and an initiator solution prepared by dissolving 1.7 parts of 2,2′-azobisisobutyronitrile in 20 parts of ethylene dichloride are dropped into the reaction vessel separately for 6 hours, and the dropping is completed. Thereafter, polymerization was further performed for 1 hour. After the polymerization, the mixture was cooled to 20 ° C.
  • Production Example 4 (Production of polystyrene sulfonic acid guanidine salt) 80 parts of ethylene dichloride was charged into a reaction vessel with stirring capable of temperature control and refluxing, and the temperature was raised to 90 ° C. after stirring and purging with nitrogen, thereby refluxing ethylene dichloride. 200 parts of styrene and an initiator solution prepared by dissolving 1.0 part of 2,2′-azobisisobutyronitrile in 20 parts of ethylene dichloride were dropped into the reaction vessel separately over 6 hours, and the addition was completed. Thereafter, polymerization was further performed for 1 hour. After the polymerization, the mixture was cooled to 20 ° C.
  • Production Example 6 (Production of aliphatic amine ethylene oxide adduct) 185 parts (1.0 mole part) of laurylamine and 3.6 parts (0.01 mole part) of 25% TMAH aqueous solution were charged into a stainless steel autoclave equipped with a stirrer and a temperature controller, and 100 ° C., 4 kPa or less. For 30 minutes under reduced pressure. 308 parts (7.0 mole parts) of ethylene oxide was added dropwise over 3 hours while controlling the reaction temperature at 100 ° C., and then aged at 100 ° C. for 3 hours. Further, the mixture was stirred at 150 ° C. for 2 hours under a reduced pressure of 2.6 kPa or less to decompose and remove the remaining TMAH, and a nonionic surfactant laurylamine ethylene oxide 7 mol adduct (D-2) 490 parts were obtained.
  • D-2 nonionic surfactant laurylamine ethylene oxide 7 mol adduct
  • Comparative Production Example 1 (Production of polyacrylic acid Na salt) A reaction vessel capable of temperature control and stirring was charged with 300 parts of isopropyl alcohol and 100 parts of ultrapure water, and the reaction vessel was purged with nitrogen, and then heated to 75 ° C. While stirring at 30 rpm, 407 parts of a 75% aqueous solution of acrylic acid and 95 parts of a 15% isopropyl alcohol solution of dimethyl 2,2′-azobisisobutyrate were simultaneously added dropwise over 3.5 hours. After completion of the dropwise addition, the mixture was stirred at 75 ° C.
  • Examples 1 to 49 and Comparative Examples 1 to 19 Each component was blended so as to be a total of 100 parts with the composition described in Tables 1 to 6, and stirred for 20 minutes at 25 ° C. with a magnetic stirrer at 40 rpm to obtain the polishing liquid of the present invention and the polishing for comparison. A liquid was obtained. The following abrasive particles were used in the table.
  • Colloidal silica slurry “COMPOL80” manufactured by Fujimi Incorporated (average particle size 80 nm, active ingredient concentration 40% by weight)
  • Cerium oxide “HS-8005” manufactured by Showa Denko KK (average particle size 0.5 ⁇ m)
  • Alumina “WA # 20000” manufactured by Fujimi Incorporated (average particle size 0.4 ⁇ m)
  • Diamond “1/10 PCS-WB2” manufactured by Nano Factor Co., Ltd.
  • Polyoxyethylene polyoxypropylene copolymer New Pole GEP2800 manufactured by Sanyo Chemical Industries
  • Dioleyl phosphate Na salt NAS-546 manufactured by Sanyo Chemical Industries
  • Aromatic sulfonate hydroxynaphthyl sulfonic acid Na salt reagent was used.
  • the number of rotations was set to 30 rpm, the number of oscillations was set to 60 times / minute, the pressing pressure was set to 50 g weight / cm 2 , and the above test solution was polished for 5 minutes while being poured onto the substrate at a rate of 1 mL / second.
  • the polished glass substrate was taken out from the polishing apparatus, rinsed with running water for 1 minute, rinsed, and then removed from the polishing apparatus and dried by nitrogen blowing to prepare an evaluation substrate.
  • a surface inspection device (made by Vision Cytec Co., Ltd.) that emphasizes and inspects fine scratches on the surface by applying light to scratches on the evaluation substrate and condensing and amplifying the weak scattered light generated.
  • the evaluation substrate surface was arbitrarily selected at five locations (10 mm ⁇ 10 mm square), the number of scratches within the range was counted, and the average value at the five locations was calculated.
  • the average number of scratches on the substrate of Comparative Example 1 (blank) was 50.
  • the number of scratches on each substrate was compared with the number of scratches on the substrate of Comparative Example 1 (blank), and the effect of suppressing the generation of scratches on the substrate surface was evaluated and determined according to the following criteria.
  • the results are shown in Table 1. 5: Less than 20% of blanks (50 pieces) 4: 20% to less than 40% 3: 40% to less than 60% 2: 60% to less than 80% 1: 80% or more
  • the number of particles on each substrate was compared with the number of particles on the substrate of Comparative Example 1, and the effect of reducing the adhesion of particles in the polishing process was evaluated and determined according to the following criteria.
  • the results are shown in Table 1. 5: Less than 20% of blanks (1950 pieces) 4: 20% to less than 40% 3: 40% to less than 60% 2: 60% to less than 80% 1: 80% or more
  • the number of rotations was set to 30 rpm, the number of oscillations was set to 60 times / minute, the pressing pressure was set to 50 g weight / cm 2 , and the above test solution was polished for 5 minutes while being poured onto the substrate at a rate of 1 mL / second.
  • the polished aluminum substrate was taken out from the polishing apparatus, rinsed with running water for 1 minute, rinsed, and then removed from the polishing apparatus and dried by nitrogen blowing to prepare an evaluation substrate.
  • a surface inspection device (made by Vision Cytec Co., Ltd.) that emphasizes and inspects fine scratches on the surface by applying light to scratches on the evaluation substrate and condensing and amplifying the weak scattered light generated.
  • the evaluation substrate surface was arbitrarily selected at five locations (10 mm ⁇ 10 mm square), the number of scratches within the range was counted, and the average value at the five locations was calculated.
  • the average number of scratches on the substrate of Comparative Example 4 was 100.
  • the number of scratches on each substrate was compared with the number of scratches on the substrate of Comparative Example 4, and the effect of suppressing the generation of scratches on the substrate surface was evaluated and determined according to the following criteria.
  • the results are shown in Table 2. 5: Less than 20% of blank (100 pieces) 4: 20% to less than 40% 3: 40% to less than 60% 2: 60% to less than 80% 1: 80% or more
  • the number of particles on each substrate was compared with the number of particles on the substrate of Comparative Example 4, and the effect of reducing the adhesion of particles in the polishing process was evaluated and determined according to the following criteria.
  • the results are shown in Table 2. 5: Less than 20% of blanks (1200) 4: 20% to less than 40% 3: 40% to less than 60% 2: 60% to less than 80% 1: 80% or more
  • the number of rotations was set to 100 rpm, the number of oscillations was set to 60 times / minute, the pressing pressure was set to 100 g weight / cm 2 , and the above test solution was polished onto the substrate at a rate of 1 mL / second for 5 minutes.
  • the polished glass substrate was taken out from the polishing apparatus, rinsed with running water for 1 minute, rinsed, and then removed from the polishing apparatus and dried by nitrogen blowing to prepare an evaluation substrate.
  • the above surface inspection apparatus capable of inspecting fine residue on the surface by applying light to residual particles on the evaluation substrate, emphasizing and amplifying the weak scattered light generated, and amplifying it.
  • the number of particles on each substrate was compared with the number of particles on the substrate of Comparative Example 16, and the effect of reducing the adhesion of particles in the polishing process was evaluated and determined according to the following criteria.
  • the results are shown in Table 6. 5: Less than 20% of blanks (4500 pieces) 4: 20% to less than 40% 3: 40% to less than 60% 2: 60% to less than 80% 1: 80% or more
  • the polishing liquids of Examples 1 to 49 of the present invention can greatly reduce the amount of adhered particles and can maintain the polishing rate as compared with Comparative Examples 1 to 19. Further, the polishing liquids of the present invention of Examples 1 to 40 can greatly reduce the number of scratches compared to Comparative Examples 1 to 15.
  • the polishing liquids of Comparative Examples 3, 6, 9, 12, 15, and 18 have some effect of suppressing the adhesion of certain particles as compared with the blank, but the acceptable particle adhesion for high capacity is possible. It does not reach the amount. Further, the polishing liquids of Comparative Examples 3, 6, 9, 12, and 15 are somewhat effective in suppressing the occurrence of a certain scratch compared to the blank, but do not reach the number of scratches that can be allowed for higher capacity.
  • the polishing liquids of Comparative Examples 2, 5, 8, 11, and 14 using benzotriazole have almost the same number of scratches after polishing the glass substrate as compared with Comparative Examples 1, 4, 7, 10, and 13. The effect of suppressing the generation of scratches and particles is small.
  • the polishing liquid for electronic materials of the present invention is excellent in the effect of suppressing the occurrence of scratches during the polishing process, and is also excellent in the effect of reducing particle adhesion during polishing, so the polishing liquid for electronic materials including the polishing process in the manufacturing process
  • it is useful as a polishing liquid for producing glass substrates for magnetic disks, Ni-P plated aluminum substrates for magnetic disks, silicon substrates for semiconductors, and sapphire substrates for LEDs.
  • the method for producing an electronic material including the step of polishing using the polishing liquid of the present invention is a method for producing a magnetic disk because scratching during polishing is very small and particle adhesion during polishing is small. It can be used as a manufacturing method for glass substrates, Ni—P plated aluminum substrates for magnetic disks, silicon substrates for semiconductors, sapphire substrates for LEDs, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

This invention comprises: a specific neutral salt (AB) used in a step for polishing an electronic material intermediary using a polishing pad; an electronic material polishing liquid containing said neutral salt (AB); a polishing method for polishing an electronic material intermediary using said electronic material polishing liquid; and a manufacturing method of an electronic material involving a step for polishing an electronic material intermediary with said polishing method. Here, the neutral salt (AB) is a salt of (A) an acidic compound having at least one acid radical (X) in the molecule, and (B) a nitrogen-containing basic compound having a 10-152 kcal/mol heat of formation change (Q2) in protonation reactions, wherein said neutral salt has a 3-200 kcal/mol heat of formation change (Q1) in acid dissociation reactions of the aforementioned acid radical (X). Thus provided is a material which, compared to conventional polishing liquids, results in fewer substrate defects such as scratches, which further, in a subsequent washing step, facilitates removal of polishing debris, and which further makes it possible to sustain polishing speed in the polishing step.

Description

研磨液用中和塩、電子材料用研磨液、研磨方法及び電子材料の製造方法Neutralizing salt for polishing liquid, polishing liquid for electronic material, polishing method and method for producing electronic material
本発明は、研磨工程で用いる中和塩、この中和塩を含む電子材料用研磨液、この電子材料用研磨液を用いて電子材料中間体を研磨する研磨方法、及び、この研磨方法で電子材料中間体を研磨する工程を含む電子材料の製造方法に関する。
さらに詳しくは、電子材料製造工程中の研磨工程において使用し、従来と比較して研磨速度の持続性が良く、かつ電子材料の表面品質が向上する中和塩、この中和塩を含む電子材料用研磨液、この電子材料用研磨液を用いて電子材料中間体を研磨する研磨方法、及び、この研磨方法で電子材料中間体を研磨する工程を含む電子材料の製造方法に関する。
The present invention relates to a neutralized salt used in a polishing step, a polishing liquid for electronic materials containing the neutralized salt, a polishing method for polishing an electronic material intermediate using the polishing liquid for electronic materials, and an electron in this polishing method. The present invention relates to a method for manufacturing an electronic material including a step of polishing a material intermediate.
More specifically, a neutralized salt that is used in a polishing process during the manufacturing process of an electronic material, has a better polishing rate than conventional methods, and improves the surface quality of the electronic material, and an electronic material containing the neutralized salt The present invention relates to a polishing liquid for polishing, a polishing method for polishing an electronic material intermediate using the polishing liquid for electronic material, and a method for manufacturing an electronic material including a step of polishing the electronic material intermediate by the polishing method.
電子材料、とりわけ磁気ディスクは、年々小型化、高容量化の一途をたどっており、磁気ヘッドと磁気ディスク基板間の距離がますます小さくなってきている。そのため、磁気ディスク基板の製造での研磨工程直後の洗浄工程で、研磨に使用した研磨粒子や発生した研磨屑等のパーティクルの残留が極力発生しない基板が求められている。また、近年はスクラッチやピット、表面うねり、ダレ等の表面欠陥の低減が求められるようになってきている。さらに近年の旺盛な需要に対応するために、前述した基板の品質のみならず、生産の効率化が一層求められており、具体的に研磨速度の持続性を強く求められている。 Electronic materials, especially magnetic disks, are becoming smaller and higher capacity year by year, and the distance between the magnetic head and the magnetic disk substrate is becoming smaller. Therefore, there is a demand for a substrate in which particles such as abrasive particles used for polishing and generated polishing scraps are not generated as much as possible in a cleaning step immediately after the polishing step in manufacturing a magnetic disk substrate. In recent years, reduction of surface defects such as scratches, pits, surface waviness and sagging has been demanded. Furthermore, in order to meet the recent strong demand, not only the quality of the substrate described above but also the production efficiency is further demanded, and specifically, the sustainability of the polishing rate is strongly demanded.
磁気ディスク製造工程は、基板用の板を面取り加工する工程であるラッピング工程と、平坦化した基板を作成する工程であるサブストレート製造工程と、磁性層をこの基板上に形成する工程であるメディア工程とを含む。
これらのうち、ラッピング工程では、基板を粗く面取りするためにダイヤモンド等の砥石を樹脂で固定した研磨パッドと研磨液を用いて、基板の主表面や端面の研磨を行い、それに続く洗浄工程で基板の主表面や端面の研磨屑を除去した後、乾燥工程を経て、加工された基板はサブストレート製造工程に輸送される。
また、サブストレート製造工程では、基板の平坦化のために研磨パッドと、コロイダルシリカ、酸化セリウム等の研磨粒子を含む研磨液による研磨を行い、それに続く洗浄工程で基板表面の研磨粒子や発生した研磨屑等のパーティクルを除去した後、乾燥工程を経て、加工された基板は所定の容器に梱包されメディア工程に輸送される。
The magnetic disk manufacturing process includes a lapping process that is a process for chamfering a substrate plate, a substrate manufacturing process that is a process for creating a flattened substrate, and a medium that is a process for forming a magnetic layer on the substrate. Process.
Among these, in the lapping process, the main surface and end face of the substrate are polished using a polishing pad and a polishing liquid in which a grindstone such as diamond is fixed with a resin in order to roughly chamfer the substrate, and then the substrate is cleaned in a subsequent cleaning process. After removing the polishing scraps on the main surface and end face of the substrate, the processed substrate is transported to the substrate manufacturing process through a drying process.
In addition, in the substrate manufacturing process, polishing with a polishing pad and polishing liquid containing polishing particles such as colloidal silica and cerium oxide was performed to flatten the substrate, and polishing particles generated on the substrate surface were generated in the subsequent cleaning process. After removing particles such as polishing debris, the processed substrate is packed in a predetermined container through a drying process and transported to a media process.
研磨液中の研磨粒子や発生した研磨屑は非常に細かいため凝集しやすく、これらの凝集物は、基板を研磨する工程において、基板の表面品質に影響を与えることがある。例えば、これら凝集物と基板との間に抵抗が生じて基板上にスクラッチが発生することがある。基板上に発生したスクラッチは、例えば後のメディア工程での磁性膜と基板との密着不良の原因となり、磁気ディスクの高容量化を妨げる一因となりうる。
そのため、前述したスクラッチ発生の低減や研磨速度の低下を抑制するために、従来からベンゾトリアゾール等のアゾール類やマレイン酸などを含有する研磨液が提案されている(例えば特許文献1、2)。
また、研磨速度の持続性向上を目的に、芳香族スルホン酸塩を含有する研磨液が提案されている(例えば特許文献3)。
また、基板表面へのパーティクル付着を低減するために、従来からヒドロキシエチルセルロースを含有する研磨液が提案されている(例えば特許文献4)。
Abrasive particles and generated polishing debris in the polishing liquid are very fine and easily aggregate. These aggregates may affect the surface quality of the substrate in the step of polishing the substrate. For example, resistance may be generated between these aggregates and the substrate, and scratches may be generated on the substrate. Scratches generated on the substrate may cause, for example, a poor adhesion between the magnetic film and the substrate in a later media process, and may be a factor that hinders the increase in the capacity of the magnetic disk.
Therefore, in order to suppress the above-described reduction in scratch generation and reduction in the polishing rate, polishing liquids containing azoles such as benzotriazole, maleic acid, and the like have been proposed (for example, Patent Documents 1 and 2).
Moreover, a polishing liquid containing an aromatic sulfonate has been proposed for the purpose of improving the durability of the polishing rate (for example, Patent Document 3).
In order to reduce the adhesion of particles to the substrate surface, a polishing liquid containing hydroxyethyl cellulose has been proposed (for example, Patent Document 4).
特開2007-92064号公報JP 2007-92064 A 特開2005-138197号公報JP 2005-138197 A 特開平08-109389号公報JP-A-08-109389 特開平11-116942号公報JP-A-11-116942
しかしながら、特許文献1~4に代表されるような従来の研磨液では研磨中のスクラッチ発生やパーティクルの付着等を抑える効果が充分でなく、高容量化を実現するために許容される基板品質に対応できるものではなかった。また、特許文献2の研磨液は、研磨速度の持続性には若干効果があるものの充分でなく、また研磨後の基板品質も満足できるものではなかった。
そこで、電子材料製造工程中の研磨工程において、従来の研磨液と比較してスクラッチ等の基板の欠陥が少なく、また続く洗浄工程において、研磨で発生した研磨屑を容易に除去でき、さらに、研磨工程での研磨速度を持続できる材、その材を含む電子材料用研磨液、この電子材料用研磨液を用いて電子材料中間体を研磨する研磨方法、及び、この研磨方法で電子材料中間体を研磨する工程を含む電子材料の製造方法を提供することを目的とする。
However, conventional polishing liquids as typified by Patent Documents 1 to 4 are not sufficient in suppressing the generation of scratches and adhesion of particles during polishing, and the substrate quality allowed to achieve high capacity is achieved. It could not be supported. Further, the polishing liquid of Patent Document 2 is not sufficient, although it has a slight effect on the sustainability of the polishing rate, and the substrate quality after polishing is not satisfactory.
Therefore, there are fewer defects in the substrate such as scratches in the polishing process during the electronic material manufacturing process than in conventional polishing liquids, and polishing debris generated by polishing can be easily removed in the subsequent cleaning process. A material capable of sustaining the polishing rate in the process, a polishing liquid for electronic material containing the material, a polishing method for polishing an electronic material intermediate using the polishing liquid for electronic material, and an electronic material intermediate by this polishing method It is an object of the present invention to provide a method for manufacturing an electronic material including a polishing step.
本発明者は、上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明は、研磨パッドを用いて電子材料中間体を研磨する工程で使用する特定の中和塩(AB)、この中和塩(AB)を含む電子材料用研磨液、この電子材料用研磨液を用いて電子材料中間体を研磨する研磨方法、及び、この研磨方法で電子材料中間体を研磨する工程を含む電子材料の製造方法である。
ここで、中和塩(AB)は、分子内に少なくとも1つの酸基(X)を有する酸性化合物(A)と、プロトン付加反応における生成熱変化(Q2)が10~152kcal/molである窒素含有塩基性化合物(B)との塩であって、前記酸基(X)の酸解離反応における生成熱変化(Q1)が3~200kcal/molである中和塩である。
The inventor of the present invention has arrived at the present invention as a result of studies to achieve the above object.
That is, the present invention relates to a specific neutralized salt (AB) used in the step of polishing an electronic material intermediate using a polishing pad, a polishing liquid for electronic material containing the neutralized salt (AB), and the electronic material A polishing method for polishing an electronic material intermediate using a polishing liquid, and an electronic material manufacturing method including a step of polishing an electronic material intermediate by the polishing method.
Here, the neutralized salt (AB) includes an acidic compound (A) having at least one acid group (X) in the molecule, and nitrogen having a heat generation change (Q2) in the proton addition reaction of 10 to 152 kcal / mol. A salt with the basic compound (B), which is a neutralized salt having a change in heat of formation (Q1) in the acid dissociation reaction of the acid group (X) of 3 to 200 kcal / mol.
研磨工程で使用する本発明の中和塩は、研磨工程において被研磨物の表面に生じる表面欠陥を格段に低減する効果を有する。また、研磨中のパーティクルの付着を低減して、その後に続く洗浄工程において上記パーティクルを基板から除去しやすくする効果を有する。また、この中和塩を含む電子材料用研磨液は、従来の研磨液と比較して、前述の効果のほかに、研磨速度の持続性に優れる。そのため、スクラッチ若しくはピットなどの表面欠陥及び/又はパーティクルの残留が少ない電子材料を安定的に製造することができる。 The neutralized salt of the present invention used in the polishing step has an effect of significantly reducing surface defects generated on the surface of the object to be polished in the polishing step. Further, it has an effect of reducing adhesion of particles during polishing and facilitating removal of the particles from the substrate in the subsequent cleaning step. Moreover, the polishing liquid for electronic materials containing this neutralized salt is excellent in sustainability of the polishing rate, in addition to the above-described effects, as compared with the conventional polishing liquid. Therefore, an electronic material with few surface defects such as scratches or pits and / or residual particles can be stably produced.
本発明の中和塩は、研磨パッドを用いて電子材料中間体を研磨する工程で使用する特定の中和塩(AB)である。ここで、中和塩(AB)は、分子内に少なくとも1つの酸基(X)を有する酸性化合物(A)と、プロトン付加反応における生成熱変化(Q2)が10~152kcal/molである窒素含有塩基性化合物(B)との塩であって、上記酸基(X)の酸解離反応における生成熱変化(Q1)が3~200kcal/molである中和塩である。 The neutralized salt of the present invention is a specific neutralized salt (AB) used in the step of polishing an electronic material intermediate using a polishing pad. Here, the neutralized salt (AB) includes an acidic compound (A) having at least one acid group (X) in the molecule, and nitrogen having a heat generation change (Q2) in the proton addition reaction of 10 to 152 kcal / mol. A salt with a basic compound (B), which is a neutralized salt having a change in heat of formation (Q1) in the acid dissociation reaction of the acid group (X) of 3 to 200 kcal / mol.
本発明における電子材料とは、製造工程中に研磨パッドを用いて研磨する工程を含む工程により製造される電子材料であれば特に限定するものではない。
例えば、(1)ハードディスク用ガラス基板又は表面がニッケル-リン(Ni-P)メッキされたハードディスク用アルミ基板等の磁気ディスク用基板、(2)半導体素子又はシリコンウェハ等の半導体基板、(3)SiC基板、GaAs基板、GaN基板、AlGaAs基板等の化合物半導体基板、(4)LED用等のサファイヤ基板等が挙げられる。
The electronic material in the present invention is not particularly limited as long as it is an electronic material manufactured by a process including a process of polishing using a polishing pad during the manufacturing process.
For example, (1) a magnetic disk substrate such as a hard disk glass substrate or a hard disk aluminum substrate whose surface is plated with nickel-phosphorus (Ni-P), (2) a semiconductor substrate such as a semiconductor element or a silicon wafer, (3) Examples thereof include compound semiconductor substrates such as SiC substrates, GaAs substrates, GaN substrates, and AlGaAs substrates, and (4) sapphire substrates for LEDs.
これらのうち、生産効率向上の観点で好ましくは磁気ディスク用基板であり、具体的にハードディスク用ガラス基板又は表面がニッケル-リン(Ni-P)メッキされたハードディスク用アルミ基板である。 Of these, a magnetic disk substrate is preferable from the viewpoint of improving production efficiency, and specifically, a glass substrate for hard disk or an aluminum substrate for hard disk plated with nickel-phosphorus (Ni-P).
電子材料中間体とは、電子材料になる前の状態の被研磨物のことを指し、例えばハードディスク用ガラス基板の場合、ラッピングされる前のガラス基板や、酸化セリウム等で粗研磨される前のガラス基板や、コロイダルシリカ等で精密研磨される前のガラス基板等のことを指し、研磨加工前の電子材料は全て電子材料中間体のことを意味する。 The electronic material intermediate refers to an object to be polished before becoming an electronic material. For example, in the case of a glass substrate for hard disk, the glass substrate before lapping, or before rough polishing with cerium oxide or the like. It refers to a glass substrate, a glass substrate before being precisely polished with colloidal silica or the like, and all electronic materials before polishing processing mean an electronic material intermediate.
本発明における研磨工程とは、材料を砥石や研磨粒子を用いて平坦に加工する工程のことを指し、例えば砥石が固定された研磨パッドを用いて粗く面取りするラッピング工程や、研磨粒子を用いて精密に平坦化する研磨工程を含む。 The polishing step in the present invention refers to a step of processing a material flat using a grindstone or abrasive particles, for example, a lapping step of rough chamfering using a polishing pad to which a grindstone is fixed, or using abrasive particles It includes a polishing process for precise planarization.
本発明における研磨パッドとは、ポリウレタン樹脂製やポリエステル樹脂製のパッドであり、表面にダイヤモンド等の砥石が固定されているパッドを含む。また、発泡タイプであってもスエードタイプであっても良く、様々な硬さのものが使用できる。これら研磨パッドは特に限定するものではなく、市販されている研磨パッドを使用することができる。
研磨パッドは、前述した粗く面取り加工するラッピング工程や、研磨粒子を用いて精密に平坦化する研磨工程で、研磨装置の定盤に貼り付けて使用される。
The polishing pad in the present invention is a pad made of polyurethane resin or polyester resin, and includes a pad on which a grindstone such as diamond is fixed. Further, it may be a foam type or a suede type, and various hardnesses can be used. These polishing pads are not particularly limited, and commercially available polishing pads can be used.
The polishing pad is used by being affixed to a surface plate of a polishing apparatus in the lapping step for rough chamfering described above or the polishing step for precise flattening using abrasive particles.
本発明における中和塩(AB)は、酸性化合物(A1)と化合物(B)との中和塩(AB1)及び/又は酸性化合物であるポリマー(A2)と化合物(B)との中和塩(AB2)からなることを特徴とする。
中和塩(AB1)は、酸解離反応における生成熱変化(Q1)が3~200kcal/molである酸の酸基(X1)と炭素数が1~36の疎水基(Y)とをそれぞれ少なくとも1つ有する酸性化合物(A1)と、プロトン付加反応における生成熱変化(Q2)が10~152kcal/molである化合物(B)との中和塩であって、(X1)がスルホン酸基、硫酸基、カルボキシル基、カルボキシメチルオキシ基、カルボキシエチルオキシ基、(ジ)カルボキシメチルアミノ基及び(ジ)カルボキシエチルアミノ基からなる群より選ばれる少なくとも1種である中和塩であり、中和塩(AB2)は、分子内に少なくとも1つの酸基(X2)を有する酸性化合物であるポリマー(A2)と、プロトン付加反応における生成熱変化(Q2)が10~152kcal/molである化合物(B)との中和塩である。
The neutralized salt (AB) in the present invention is a neutralized salt (AB1) of an acidic compound (A1) and a compound (B) and / or a neutralized salt of a polymer (A2) which is an acidic compound and a compound (B). (AB2).
The neutralized salt (AB1) comprises at least an acid group (X1) of an acid having a heat of formation (Q1) in an acid dissociation reaction of 3 to 200 kcal / mol and a hydrophobic group (Y) having 1 to 36 carbon atoms, respectively. A neutral salt of one acidic compound (A1) and a compound (B) having a heat of formation (Q2) of 10 to 152 kcal / mol in a proton addition reaction, wherein (X1) is a sulfonic acid group, sulfuric acid A neutralized salt which is at least one selected from the group consisting of a group, a carboxyl group, a carboxymethyloxy group, a carboxyethyloxy group, a (di) carboxymethylamino group and a (di) carboxyethylamino group, (AB2) includes a polymer (A2) that is an acidic compound having at least one acid group (X2) in the molecule, and a change in heat of formation (Q2) in the proton addition reaction. Is 0 ~ 152kcal / mol, compound (B) and neutralization salts.
酸性化合物(A1)は、酸解離反応における生成熱変化(Q1)が3~200kcal/molである酸の酸基(X1)と炭素数が1~36の疎水基(Y)とをそれぞれ少なくとも1つ有するものであり、ポリマー(A2)は、分子内に少なくとも1つの酸基(X2)を有するものである。酸基(X2)も、酸解離反応における生成熱変化(Q1)が3~200kcal/molである。
酸基(X1)、(X2)の酸解離反応における生成熱変化(Q1)とは、下記式(1)に示す酸(HX)の酸解離反応におけるHXの生成熱とXとの生成熱との差を意味する。
HX→H+X (1)
なお、酸基(X1)の酸解離反応における生成熱変化は、疎水基(Y)を水素原子と仮定した値である。
また、酸基(X2)の酸解離反応における生成熱変化は、酸基(X2)が結合しているポリマー鎖を水素原子と仮定した値である。
例えば、スルホン酸基(-SOH)の場合、H-SOHとして計算した値;硫酸基(-OSOH)の場合、H-OSOHとして計算した値;カルボキシル基(-COOH)の場合、H-COOHとして計算した値;カルボキシメチルオキシ基(-OCHCOOH)の場合、H-OCHCOOHとして計算した値;カルボキシエチルオキシ基(-OCHCHCOOH)の場合、H-OCHCHCOOHとして計算した値;(ジ)カルボキシメチルアミノ基(-NRCHCOOH又は-N(CHCOOH))の場合、H-NHCHCOOHとして計算した値;(ジ)カルボキシエチルアミノ基(-NRCHCHCOOH又は-N(CHCHCOOH))の場合、H-NHCHCHCOOHとして計算した値である。なお、Rは水素原子又は炭素数1~24のアルキル基(メチル、エチル、プロピル、ブチル、オクチル、ノニル、デシル、ドデシルなど)を表す。
The acidic compound (A1) includes at least one acid group (X1) of an acid having a heat of formation (Q1) in an acid dissociation reaction of 3 to 200 kcal / mol and a hydrophobic group (Y) having 1 to 36 carbon atoms. The polymer (A2) has at least one acid group (X2) in the molecule. The acid group (X2) also has a heat generation change (Q1) in the acid dissociation reaction of 3 to 200 kcal / mol.
The heat of formation (Q1) in the acid dissociation reaction of the acid groups (X1) and (X2) is the heat of formation of HX and the heat of formation of X in the acid dissociation reaction of the acid (HX) represented by the following formula (1). Means the difference.
HX → H + + X (1)
The change in the heat of formation in the acid dissociation reaction of the acid group (X1) is a value assuming that the hydrophobic group (Y) is a hydrogen atom.
In addition, the change in heat of formation in the acid dissociation reaction of the acid group (X2) is a value assuming that the polymer chain to which the acid group (X2) is bonded is a hydrogen atom.
For example, in the case of a sulfonic acid group (—SO 3 H), a value calculated as H—SO 3 H; in the case of a sulfate group (—OSO 3 H), a value calculated as H—OSO 3 H; a carboxyl group (—COOH ), The value calculated as H—COOH; in the case of carboxymethyloxy group (—OCH 2 COOH), the value calculated as H—OCH 2 COOH; in the case of carboxyethyloxy group (—OCH 2 CH 2 COOH), Calculated as H—OCH 2 CH 2 COOH; (di) In the case of a carboxymethylamino group (—NRCH 2 COOH or —N (CH 2 COOH) 2 ), calculated as H—NHCH 2 COOH; for carboxyethyl amino group (-NRCH 2 CH 2 COOH or -N (CH 2 CH 2 COOH) 2), H-NHCH Is a calculated value as CH 2 COOH. R represents a hydrogen atom or an alkyl group having 1 to 24 carbon atoms (methyl, ethyl, propyl, butyl, octyl, nonyl, decyl, dodecyl, etc.).
すなわち、生成熱変化(Q1)は下記式(2)で表される。
Q1=Δ HX-Δ X- (2)
[式中、Δ HX、Δ X-は、それぞれ順に、HX、Xについての真空中における生成熱を表す。]
That is, the generated heat change (Q1) is expressed by the following formula (2).
Q1 = Δ f H o HX −Δ f H o X− (2)
[In the formula, Δ f H o HX and Δ f H o X− represent the heat of formation in vacuum for HX and X − in order, respectively. ]
ここで、生成熱(Δ)の値は、J.Chem.Soc.Perkin Trans.2,p.923(1995)に記載の半経験的分子軌道法(MOPAC PM3法)を用いて計算することができる。
この生成熱の値は、たとえば、富士通株式会社製「CAChe Worksystem6.01」を用いて真空中における生成熱(25℃)として計算できる。すなわち、この生成熱の値は、計算したい分子構造を「Work Space」上で書き、分子力場法である「MM2 geometry」で構造最適化した後、半経験的分子軌道法である「PM3 geometry」で計算することにより得られる。
Here, the value of the heat of formation (Δ f H o ) Chem. Soc. Perkin Trans. 2, p. 923 (1995), and can be calculated using the semiempirical molecular orbital method (MOPAC PM3 method).
The value of the generated heat can be calculated as generated heat (25 ° C.) in a vacuum using, for example, “CAChe Worksystem 6.01” manufactured by Fujitsu Limited. That is, the value of this heat of formation is calculated by writing the molecular structure to be calculated on “Work Space”, optimizing the structure with the molecular force field method “MM2 geometry”, and then “PM3 geometry” which is a semi-empirical molecular orbital method. Is obtained by calculation.
また、酸基(X1)又は(X2)の酸解離反応における生成熱変化(Q1)(kcal/mol、25℃)は、3~200であり、ゼータ電位を下げるという観点等から、好ましくは10~150、次に好ましくは15~100、次に好ましくは20~80、特に好ましくは20~65である。 Further, the heat of formation (Q1) (kcal / mol, 25 ° C.) in the acid dissociation reaction of the acid group (X1) or (X2) is 3 to 200, and is preferably 10 from the viewpoint of lowering the zeta potential. To 150, then preferably 15 to 100, then preferably 20 to 80, particularly preferably 20 to 65.
酸基(X2)としては、スルホン酸基(-SOH)(Q1=32kcal/mol)、硫酸基(-OSOH)(Q1=46kcal/mol)、カルボキシル基(-COOH)(Q1=21kcal/mol)、カルボキシメチルオキシ基(-OCHCOOH)(Q1=19kcal/mol)、カルボキシエチルオキシ基(-OCHCHCOOH)(Q1=20kcal/mol)、(ジ)カルボキシメチルアミノ基(-NRCHCOOH又は-N(CHCOOH))(Q1=26kcal/mol)、(ジ)カルボキシエチルアミノ基(-NRCHCHCOOH又は-N(CHCHCOOH))(Q1=20kcal/mol)などが挙げられる。
これらの酸基のうち、パーティクルの再付着防止性及び工業的に生産しやすい観点等から、スルホン酸基、硫酸基又はカルボキシル基が好ましく、中和塩(AB2)の加水分解の防止の観点等から、さらに好ましくはスルホン酸基又はカルボキシル基である。
As the acid group (X2), a sulfonic acid group (—SO 3 H) (Q1 = 32 kcal / mol), a sulfuric acid group (—OSO 3 H) (Q1 = 46 kcal / mol), a carboxyl group (—COOH) (Q1 = 21 kcal / mol), carboxymethyloxy group (—OCH 2 COOH) (Q1 = 19 kcal / mol), carboxyethyloxy group (—OCH 2 CH 2 COOH) (Q1 = 20 kcal / mol), (di) carboxymethylamino group (—NRCH 2 COOH or —N (CH 2 COOH) 2 ) (Q1 = 26 kcal / mol), (di) carboxyethylamino group (—NRCH 2 CH 2 COOH or —N (CH 2 CH 2 COOH) 2 ) ( Q1 = 20 kcal / mol).
Among these acid groups, sulfonic acid groups, sulfuric acid groups, or carboxyl groups are preferable from the viewpoint of preventing re-adhesion of particles and easy industrial production, and the viewpoint of preventing hydrolysis of the neutralized salt (AB2). More preferably a sulfonic acid group or a carboxyl group.
酸基(X1)としては、上記で例示した酸基(X2)の内、スルホン酸基、硫酸基、カルボキシル基、カルボキシメチルオキシ基、カルボキシエチルオキシ基、(ジ)カルボキシメチルアミノ基、(ジ)カルボキシエチルアミノ基などが挙げられる。
これらの酸基のうち、パーティクルの再付着防止性及び工業的に生産しやすい観点等から、スルホン酸基、硫酸基、カルボキシメチルオキシ基又はカルボキシエチルオキシ基が好ましく、中和塩(AB1)の加水分解の防止の観点等から、さらに好ましくはスルホン酸基、カルボキシメチルオキシ基又はカルボキシエチルオキシ基、特に好ましくはスルホン酸基である。
As the acid group (X1), among the acid groups (X2) exemplified above, a sulfonic acid group, a sulfuric acid group, a carboxyl group, a carboxymethyloxy group, a carboxyethyloxy group, a (di) carboxymethylamino group, ) Carboxyethylamino group and the like.
Of these acid groups, sulfonic acid groups, sulfuric acid groups, carboxymethyloxy groups, or carboxyethyloxy groups are preferable from the viewpoint of preventing re-adhesion of particles and industrially easy production, and the neutral salt (AB1). From the viewpoint of preventing hydrolysis and the like, a sulfonic acid group, a carboxymethyloxy group or a carboxyethyloxy group is more preferable, and a sulfonic acid group is particularly preferable.
酸性化合物(A1)中の疎水基(Y)としては、脂肪族炭化水素基、芳香環含有炭化水素基等が含まれる。
脂肪族炭化水素基としては、炭素数1~36のアルキル基、炭素数2~36のアルケニル基、炭素数3~36のシクロアルキル基等が含まれる(直鎖状又は分岐状のいずれでもよい)。
アルキル基としては、メチル、エチル、n-又はi-プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシルなどが挙げられる。
アルケニル基としては、n-又はi-プロペニル、ヘキセニル、ヘプテニル、オクテニル、デセニル、ウンデセニル、ドデセニルなどが挙げられる。
Examples of the hydrophobic group (Y) in the acidic compound (A1) include an aliphatic hydrocarbon group and an aromatic ring-containing hydrocarbon group.
Examples of the aliphatic hydrocarbon group include an alkyl group having 1 to 36 carbon atoms, an alkenyl group having 2 to 36 carbon atoms, a cycloalkyl group having 3 to 36 carbon atoms, and the like (which may be linear or branched) ).
Examples of the alkyl group include methyl, ethyl, n- or i-propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and the like.
Alkenyl groups include n- or i-propenyl, hexenyl, heptenyl, octenyl, decenyl, undecenyl, dodecenyl and the like.
炭素数3~36のシクロアルキル基としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどが挙げられる。 Examples of the cycloalkyl group having 3 to 36 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
芳香環含有炭化水素基としては、炭素数7~36の芳香族炭化水素等が含まれ、メチルフェニル、エチルフェニル、n-又はi-プロピルフェニル、ブチルフェニル、ペンチルフェニル、ヘキシルフェニル、ヘプチルフェニル、オクチルフェニル、ノニルフェニル、デシルフェニル、ウンデシルフェニル、ドデシルフェニル、オクチルナフチル、ノニルナフチル、ドデシルナフチルなどが挙げられる。 Examples of the aromatic ring-containing hydrocarbon group include aromatic hydrocarbons having 7 to 36 carbon atoms, such as methylphenyl, ethylphenyl, n- or i-propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, Examples include octylphenyl, nonylphenyl, decylphenyl, undecylphenyl, dodecylphenyl, octylnaphthyl, nonylnaphthyl, dodecylnaphthyl and the like.
疎水基(Y)のうち、脂肪族炭化水素基又は芳香環含有炭化水素基が好ましく、さらに好ましくは、オクチル、ノニル、デシル、ウンデシル、ドデシル、オクチルフェニル、ノニルフェニル、ドデシルフェニル、オクチルナフチル、ノニルナフチル、ドデシルナフチル、特に好ましくはオクチル、ノニル、ドデシル、オクチルフェニル、ドデシルフェニル、オクチルナフチルである。 Of the hydrophobic group (Y), an aliphatic hydrocarbon group or an aromatic ring-containing hydrocarbon group is preferable, and more preferable is octyl, nonyl, decyl, undecyl, dodecyl, octylphenyl, nonylphenyl, dodecylphenyl, octylnaphthyl, nonyl. Naphthyl and dodecylnaphthyl, particularly preferably octyl, nonyl, dodecyl, octylphenyl, dodecylphenyl and octylnaphthyl.
疎水基(Y)の炭素数は、1~36であり、さらに好ましくは4~24、特に好ましくは8~24である。これらの疎水基は、水素原子の一部又は全部が他の原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)又は官能基(水酸基、アミノ基、メルカプト基、パーフルオロアルキル基、カルボキシル基、又は、エーテル結合、アミド結合、若しくは、エステル結合を含む有機基など)で置換されていてもよく、またこの官能基には1個以上のオキシアルキレン基を含んでもよい。 The number of carbon atoms of the hydrophobic group (Y) is 1 to 36, more preferably 4 to 24, and particularly preferably 8 to 24. In these hydrophobic groups, some or all of the hydrogen atoms are other atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.) or functional groups (hydroxyl group, amino group, mercapto group, perfluoroalkyl group, carboxyl group) Or an organic group including an ether bond, an amide bond, or an ester bond), and the functional group may include one or more oxyalkylene groups.
酸性化合物(A1)としては、以下の化合物等が含まれる。
スルホン酸基を有する化合物(A1-1)
アルキルスルホン酸(オクチルスルホン酸、デシルスルホン酸、ドデシルスルホン酸、ミリスチルスルホン酸、セチルスルホン酸、ステアリルスルホン酸など)、ベンゼンスルホン酸、アルキルベンゼンスルホン酸(トルエンスルホン酸、キシレンスルホン酸、ドデシルベンゼンスルホン酸、エイコシルベンゼンスルホン酸など)、ナフタレンスルホン酸、スルホコハク酸、アルキルナフタレンスルホン酸(メチルナフタレンスルホン酸、ドデシルナフタレンスルホン酸、エイコシルナフタレンスルホン酸など)、ポリオキシアルキレンアルキルエーテルスルホン酸(ポリオキシエチレンオクチルエーテルスルホン酸、ポリオキシエチレンラウリルエーテルスルホン酸など)、α-オレフィンスルホン酸、アルキロイルアミノエチルスルホン酸等が挙げられる。
Examples of the acidic compound (A1) include the following compounds.
Compound having sulfonic acid group (A1-1)
Alkylsulfonic acid (octylsulfonic acid, decylsulfonic acid, dodecylsulfonic acid, myristylsulfonic acid, cetylsulfonic acid, stearylsulfonic acid, etc.), benzenesulfonic acid, alkylbenzenesulfonic acid (toluenesulfonic acid, xylenesulfonic acid, dodecylbenzenesulfonic acid) , Eicosylbenzenesulfonic acid, etc.), naphthalenesulfonic acid, sulfosuccinic acid, alkylnaphthalenesulfonic acid (methylnaphthalenesulfonic acid, dodecylnaphthalenesulfonic acid, eicosylnaphthalenesulfonic acid, etc.), polyoxyalkylene alkyl ether sulfonic acid (polyoxyethylene) Octyl ether sulfonic acid, polyoxyethylene lauryl ether sulfonic acid, etc.), α-olefin sulfonic acid, alkyloylaminoethyl sulfone Etc. The.
硫酸基を有する化合物(A1-2)
アルキル硫酸エステル(オクチル硫酸エステル、デシル硫酸エステル、ドデシル硫酸エステル、ミリスチル硫酸エステル、セチル硫酸エステル、ステアリル硫酸エステルなど)、ポリオキシアルキレンアルキルエーテル硫酸エステル(ポリオキシエチレンオクチルエーテル硫酸エステル、ポリオキシエチレンラウリルエーテル硫酸エステルなど)、ポリオキシアルキレンアルキルアリールエーテル硫酸エステル(ポリオキシエチレンオクチルフェニルエーテル硫酸エステル、ポリオキシエチレンノニルフェニルエーテル硫酸エステルなど)、アシルアミドアルキル硫酸エステル等が挙げられる。
Compound having a sulfate group (A1-2)
Alkyl sulfate (octyl sulfate, decyl sulfate, dodecyl sulfate, myristyl sulfate, cetyl sulfate, stearyl sulfate, etc.), polyoxyalkylene alkyl ether sulfate (polyoxyethylene octyl ether sulfate, polyoxyethylene lauryl) Ether sulfates, etc.), polyoxyalkylene alkyl aryl ether sulfates (polyoxyethylene octyl phenyl ether sulfates, polyoxyethylene nonyl phenyl ether sulfates, etc.), acylamide alkyl sulfates, and the like.
これらのうち、アルキルスルホン酸、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、スルホコハク酸、ポリオキシアルキレンアルキルエーテルスルホン酸、ポリオキシアルキレンアルキルアリールエーテルスルホン酸、α-オレフィンスルホン酸、アルキロイルアミノエチルスルホン酸、アルキル硫酸エステル、ポリオキシアルキレンアルキルエーテル硫酸エステル、ポリオキシアルキレンアルキルアリールエーテル硫酸エステル、アシルアミドアルキル硫酸エステルが好ましく、さらに好ましくはアルキルスルホン酸、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、スルホコハク酸、ポリオキシアルキレンアルキルエーテルスルホン酸、ポリオキシアルキレンアルキルアリールエーテルスルホン酸、α-オレフィンスルホン酸、アルキロイルアミノエチルスルホン酸である。 Among these, alkylsulfonic acid, alkylbenzenesulfonic acid, alkylnaphthalenesulfonic acid, sulfosuccinic acid, polyoxyalkylene alkyl ether sulfonic acid, polyoxyalkylene alkylaryl ether sulfonic acid, α-olefin sulfonic acid, alkyloylaminoethyl sulfonic acid, Alkyl sulfate ester, polyoxyalkylene alkyl ether sulfate ester, polyoxyalkylene alkyl aryl ether sulfate ester, and acylamide alkyl sulfate ester are preferable, and alkyl sulfonic acid, alkyl benzene sulfonic acid, alkyl naphthalene sulfonic acid, sulfosuccinic acid, polyoxy are more preferable. Alkylene alkyl ether sulfonic acid, polyoxyalkylene alkyl aryl ether sulfonic acid, α-o Refin sulfonic acid, alkyloylaminoethyl sulfonic acid.
酸性化合物(A1)のHLB値は、5~30が好ましく、さらに好ましくは7~17、より好ましくは9~16、特に好ましくは10~15、最も好ましくは10.5~14.5である。
なお、本発明において、HLB値は、小田法により、下記式(3)を用いて算出される値である(藤本武彦著、界面活性剤入門(三洋化成工業株式会社)、p212(2007))。
The HLB value of the acidic compound (A1) is preferably 5 to 30, more preferably 7 to 17, more preferably 9 to 16, particularly preferably 10 to 15, and most preferably 10.5 to 14.5.
In the present invention, the HLB value is a value calculated using the following formula (3) by the Oda method (Takehiko Fujimoto, Introduction to Surfactant (Sanyo Chemical Industry Co., Ltd.), p212 (2007)). .
HLB=10×(無機性/有機性) (3)
なお、式中の有機性、無機性とは、分子を構成する原子及び官能基ごとに定められた数値の合計値であり、上記文献中に記載された値を用いることができる。
HLB = 10 × (inorganic / organic) (3)
In addition, the organic property and inorganic property in a formula are the total value of the numerical value defined for every atom and functional group which comprise a molecule | numerator, and can use the value described in the said literature.
酸性化合物(A1)のpKaは、8.0以下が好ましく、ゼータ電位を下げるという観点等から、さらに好ましくは7.0以下、特に好ましくは5.5以下、最も好ましくは3.0以下である。また、好ましくは0.5以上である。ここでpKaとは一段階目の酸解離定数を意味する。なお、pKaは、公知の方法{例えば、J.Am.Chem.Soc.,1673(1967)}等により得られる。 The pKa of the acidic compound (A1) is preferably 8.0 or less, more preferably 7.0 or less, particularly preferably 5.5 or less, and most preferably 3.0 or less from the viewpoint of lowering the zeta potential. . Moreover, Preferably it is 0.5 or more. Here, pKa means the acid dissociation constant at the first stage. In addition, pKa is a known method {for example, J.P. Am. Chem. Soc. , 1673 (1967)} and the like.
酸基(X2)を少なくとも1つ有するポリマー(A2)としては、パーティクルの再付着防止性の観点等から、スルホン酸基を有するポリマー(A2-1)、硫酸基を有するポリマー(A2-2)又はカルボキシル基を有するポリマー(A2-3)が好ましく、さらに好ましくはスルホン酸基を有するポリマー(A2-1)又はカルボキシル基を有するポリマー(A2-3)である。 Examples of the polymer (A2) having at least one acid group (X2) include a polymer having a sulfonic acid group (A2-1) and a polymer having a sulfate group (A2-2) from the viewpoint of preventing reattachment of particles. Alternatively, a polymer (A2-3) having a carboxyl group is preferable, and a polymer (A2-1) having a sulfonic acid group or a polymer (A2-3) having a carboxyl group is more preferable.
スルホン酸基を有するポリマー(A2-1)としては、スルホン酸基を有する不飽和モノマー(aX-1)を用いてラジカル重合により得られるポリマー(A2-1-1)、分子内にスルホン酸基を有する芳香族化合物(aY-1)を用いてホルムアルデヒドとの重縮合反応によって得られるポリマー(A2-1-2)などが挙げられる。 Examples of the polymer (A2-1) having a sulfonic acid group include a polymer (A2-1-1) obtained by radical polymerization using an unsaturated monomer (aX-1) having a sulfonic acid group, and a sulfonic acid group in the molecule. And a polymer (A2-1-2) obtained by a polycondensation reaction with formaldehyde using an aromatic compound (aY-1) having
硫酸基を有するポリマー(A2-2)としては、硫酸基を有する不飽和モノマー(aX-2)を用いてラジカル重合により得られるポリマー(A2-2-1)などが挙げられる。 Examples of the polymer (A2-2) having a sulfate group include a polymer (A2-2-1) obtained by radical polymerization using an unsaturated monomer (aX-2) having a sulfate group.
カルボキシル基を有するポリマー(A2-3)としては、カルボキシル基を有する不飽和モノマー(aX-3)を用いてラジカル重合により得られるポリマー(A2-3-1)などが挙げられる。 Examples of the polymer (A2-3) having a carboxyl group include a polymer (A2-3-1) obtained by radical polymerization using an unsaturated monomer (aX-3) having a carboxyl group.
ポリマー(A2)の内で、パーティクル再付着防止性の観点等から、カルボキシル基を有するポリマー(A2-3)、スルホン酸基を有するポリマー(A2-1)が好ましく、さらに好ましくは(A2-3-1)、(A2-1-1)又は(A2-1-2)である。
本発明に用いるポリマー(A2)は、単独で用いても良いが、2種以上の混合物として用いることもできる。
Among the polymers (A2), from the viewpoint of preventing particle reattachment, a polymer (A2-3) having a carboxyl group and a polymer (A2-1) having a sulfonic acid group are preferable, and (A2-3) is more preferable. -1), (A2-1-1) or (A2-1-2).
Although the polymer (A2) used for this invention may be used independently, it can also be used as a 2 or more types of mixture.
スルホン酸基を有する不飽和モノマー(aX-1)としては、炭素数2~20の脂肪族不飽和スルホン酸(ビニルスルホン酸、(メタ)アリルスルホン酸など)、炭素数6~24の芳香族不飽和スルホン酸(スチレンスルホン酸、p-ノニルスチレンスルホン酸など)、スルホン酸基含有(メタ)アクリレート{2-(メタ)アクリロイルオキシエタンスルホン酸、2-(メタ)アクリロイルオキシプロパンスルホン酸、3-(メタ)アクリロイルオキシプロパンスルホン酸、2-(メタ)アクリロイルオキシブタンスルホン酸、4-(メタ)アクリロイルオキシブタンスルホン酸、2-(メタ)アクリロイルオキシ-2,2-ジメチルエタンスルホン酸、p-(メタ)アクリロイルオキシメチルベンゼンスルホン酸など}、スルホン酸基含有(メタ)アクリルアミド{2-(メタ)アクリロイルアミノエタンスルホン酸、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸、など}などが挙げられる。
これらの内、重合性及び水中における耐加水分解性の観点等から、炭素数2~20の脂肪族不飽和スルホン酸、炭素数6~24の芳香族不飽和スルホン酸又はスルホン酸基含有(メタ)アクリルアミドが好ましく、さらに好ましくはビニルスルホン酸、スチレンスルホン酸又は2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸である。
Examples of the unsaturated monomer (aX-1) having a sulfonic acid group include aliphatic unsaturated sulfonic acids having 2 to 20 carbon atoms (such as vinyl sulfonic acid and (meth) allyl sulfonic acid), and aromatics having 6 to 24 carbon atoms. Unsaturated sulfonic acid (styrene sulfonic acid, p-nonyl styrene sulfonic acid, etc.), sulfonic acid group-containing (meth) acrylate {2- (meth) acryloyloxyethanesulfonic acid, 2- (meth) acryloyloxypropanesulfonic acid, 3 -(Meth) acryloyloxypropanesulfonic acid, 2- (meth) acryloyloxybutanesulfonic acid, 4- (meth) acryloyloxybutanesulfonic acid, 2- (meth) acryloyloxy-2,2-dimethylethanesulfonic acid, p -(Meth) acryloyloxymethylbenzenesulfonic acid, etc.}, including sulfonic acid group (Meth) acrylamide {2- (meth) acryloyl-aminoethanesulfonic acid, 2- (meth) acryloyl-2,2-dimethyl-ethanesulfonic acid, etc.} and the like.
Among these, from the viewpoints of polymerizability and hydrolysis resistance in water, etc., it contains an aliphatic unsaturated sulfonic acid having 2 to 20 carbon atoms, an aromatic unsaturated sulfonic acid having 6 to 24 carbon atoms or a sulfonic acid group (meta ) Acrylamide is preferred, and vinyl sulfonic acid, styrene sulfonic acid or 2- (meth) acryloylamino-2,2-dimethylethane sulfonic acid is more preferred.
硫酸基を有する不飽和モノマー(aX-2)としては、水酸基含有モノマーの硫酸エステルなどが挙げられる。
これらの内、重合性の観点等から、水酸基含有(メタ)アクリル酸エステルの硫酸エステルが好ましく、さらに好ましくは2-ヒドロキシエチル(メタ)アクリレート又は2-ヒドロキシプロピル(メタ)アクリレートの硫酸エステルである。
Examples of the unsaturated monomer (aX-2) having a sulfate group include sulfate ester of a hydroxyl group-containing monomer.
Of these, from the viewpoint of polymerizability and the like, a hydroxyl group-containing (meth) acrylic acid ester sulfate is preferable, and a 2-hydroxyethyl (meth) acrylate or 2-hydroxypropyl (meth) acrylate sulfate is more preferable. .
カルボキシル基を有する不飽和モノマー(aX-3)としては、不飽和モノカルボン酸{(メタ)アクリル酸、ビニル安息香酸、アリル酢酸、(イソ)クロトン酸、シンナミック酸及びアクリル酸2-カルボキシエチルなど}、不飽和ジカルボン酸又は不飽和ジカルボン酸の無水物{(無水)マレイン酸、フマル酸、(無水)イタコン酸、(無水)シトラコン酸、メサコン酸など}が挙げられる。
これらの内、重合性及び水中における耐加水分解性の観点等から、不飽和モノカルボン酸、不飽和ジカルボン酸又は不飽和ジカルボン酸の無水物が好ましく、さらに好ましくは(メタ)アクリル酸、(無水)マレイン酸、フマル酸又は(無水)イタコン酸である。
As unsaturated monomer (aX-3) having a carboxyl group, unsaturated monocarboxylic acid {(meth) acrylic acid, vinylbenzoic acid, allyl acetic acid, (iso) crotonic acid, cinnamic acid, 2-carboxyethyl acrylate, etc. }, Unsaturated dicarboxylic acid or anhydride of unsaturated dicarboxylic acid {(anhydrous) maleic acid, fumaric acid, (anhydrous) itaconic acid, (anhydrous) citraconic acid, mesaconic acid, etc.}.
Of these, unsaturated monocarboxylic acid, unsaturated dicarboxylic acid or anhydride of unsaturated dicarboxylic acid is preferable from the viewpoint of polymerizability and hydrolysis resistance in water, and more preferably (meth) acrylic acid, (anhydrous) ) Maleic acid, fumaric acid or (anhydrous) itaconic acid.
不飽和モノマーを用いてラジカル重合により得られるポリマー(A2-1-1)~(A2-3-1)には、スルホン酸基を有する不飽和モノマー(aX-1)、硫酸基を有する不飽和モノマー(aX-2)、カルボキシル基を有する不飽和モノマー(aX-3)以外のラジカル重合性不飽和モノマーを共重合させることができる。 Polymers (A2-1-1) to (A2-3-1) obtained by radical polymerization using unsaturated monomers include unsaturated monomers having sulfonic acid groups (aX-1) and unsaturated monomers having sulfuric acid groups. A radically polymerizable unsaturated monomer other than the monomer (aX-2) and the unsaturated monomer having a carboxyl group (aX-3) can be copolymerized.
モノマー(aX-1)~(aX-3)は、それぞれ、単独で用いてもよいし、2種以上の混合物として用いてもよい。共重合体の場合は、ランダム共重合体、ブロック共重合体のいずれの構造であってもよい。 Monomers (aX-1) to (aX-3) may be used alone or as a mixture of two or more. In the case of a copolymer, the structure may be either a random copolymer or a block copolymer.
ポリマー(A2-1-1)の具体例としては、ポリスチレンスルホン酸、スチレン/スチレンスルホン酸共重合体、ポリ{2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸}、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸/スチレン共重合体、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸/アクリルアミド共重合体、又は、2-(メタ)アクリロイルアミノ-2,2-ジメチルエタンスルホン酸/スチレン/アクリルアミド共重合体などが挙げられる。 Specific examples of the polymer (A2-1-1) include polystyrene sulfonic acid, styrene / styrene sulfonic acid copolymer, poly {2- (meth) acryloylamino-2,2-dimethylethanesulfonic acid}, 2- ( (Meth) acryloylamino-2,2-dimethylethanesulfonic acid / styrene copolymer, 2- (meth) acryloylamino-2,2-dimethylethanesulfonic acid / acrylamide copolymer, or 2- (meth) acryloylamino -2,2-dimethylethanesulfonic acid / styrene / acrylamide copolymer.
ポリマー(A2-2-1)の具体例としては、ポリ{2-ヒドロキシエチル(メタ)アクリレート硫酸エステル}、2-ヒドロキシエチルアクリレート/2-ヒドロキシエチルアクリレート硫酸エステル共重合体、2-ヒドロキシエチルメタクリレート/2-ヒドロキシエチルメタクリレート硫酸エステル共重合体などが挙げられる。 Specific examples of the polymer (A2-2-1) include poly {2-hydroxyethyl (meth) acrylate sulfate}, 2-hydroxyethyl acrylate / 2-hydroxyethyl acrylate sulfate copolymer, 2-hydroxyethyl methacrylate. / 2-hydroxyethyl methacrylate sulfate copolymer and the like.
ポリマー(A2-3-1)の具体例としては、ポリ(メタ)アクリル酸、(メタ)アクリル酸/酢酸ビニル共重合体、2-ヒドロキシエチルメタクリレート/(メタ)アクリル酸共重合体などが挙げられる。 Specific examples of the polymer (A2-3-1) include poly (meth) acrylic acid, (meth) acrylic acid / vinyl acetate copolymer, 2-hydroxyethyl methacrylate / (meth) acrylic acid copolymer, and the like. It is done.
不飽和モノマーを用いてラジカル重合により得られるポリマー(A2-1-1)~(A2-3-1)の合成方法としては、公知のラジカル重合法が利用できる。例えば、モノマー(aX-1)~(aX-3)と必要によりその他のラジカル重合性不飽和モノマーからなるモノマーと、ラジカル開始剤(過硫酸塩、アゾビスアミジノプロパン塩、アゾビスイソブチルニトリルなど)を、モノマーに対して0.1~30重量%用い、水又はアルコール系溶剤などの溶媒中で30~150℃の温度にて重合する。必要であれば、メルカプタンなどの連鎖移動剤を用いてもよい。 As a synthesis method of the polymers (A2-1-1) to (A2-3-1) obtained by radical polymerization using an unsaturated monomer, a known radical polymerization method can be used. For example, a monomer comprising monomers (aX-1) to (aX-3) and other radical polymerizable unsaturated monomers as required, and a radical initiator (persulfate, azobisamidinopropane salt, azobisisobutylnitrile, etc.) Is polymerized at a temperature of 30 to 150 ° C. in a solvent such as water or an alcohol solvent using 0.1 to 30% by weight based on the monomer. If necessary, a chain transfer agent such as mercaptan may be used.
ポリマー(A2-1-2)を合成する際に用いるスルホン酸基を有する芳香族化合物(aY-1)としては、アリールスルホン酸(ベンゼンスルホン酸など)、アルキル(炭素数1~24)アリールスルホン酸(トルエンスルホン酸、ドデシルベンゼンスルホン酸、モノブチルビフェニルスルホン酸など)、多環芳香族スルホン酸(ナフタレンスルホン酸、アントラセンスルホン酸、ヒドロキシナフタレンスルホン酸、ヒドロキシアントラセンスルホン酸など)、アルキル(炭素数1~24)置換多環芳香族スルホン酸{アルキル(炭素数1~24)ナフタレンスルホン酸(メチルナフタレンスルホン酸、ジメチルナフタレンスルホン酸、イソプロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸、オクチルナフタレンスルホン酸、ラウリルナフタレンスルホン酸、エイコシルナフタレンスルホン酸など)、メチルアントラセンスルホン酸、ラウリルアントラセンスルホン酸、エイコシルアントラセンスルホン酸など}、フェノールスルホン酸(フェノールスルホン酸、モノブチルフェニルフェノールモノスルホン酸、ジブチルフェニルフェノールジスルホン酸など)、アルキル(炭素数1~24)フェノールスルホン酸(クレゾールスルホン酸、ノニルフェノールスルホン酸、エイコシルフェノールスルホン酸など)、芳香族アミノスルホン酸(アニリンスルホン酸など)、リグニンスルホン酸(リグニンスルホン酸塩、変性リグニンスルホン酸など)、トリアジン環を有するスルホン酸基含有化合物(メラミンスルホン酸など)などが挙げられる。
これらの内で再付着防止性の観点等から、アルキル(炭素数1~24)アリールスルホン酸、多環芳香族スルホン酸、アルキル(炭素数1~24)置換多環芳香族スルホン酸が好ましく、さらに好ましくはドデシルベンゼンスルホン酸、ナフタレンスルホン酸、ジメチルナフタレンスルホン酸である。
Examples of the aromatic compound (aY-1) having a sulfonic acid group used for the synthesis of the polymer (A2-1-2) include aryl sulfonic acid (benzenesulfonic acid, etc.), alkyl (carbon number 1 to 24) aryl sulfone. Acids (toluenesulfonic acid, dodecylbenzenesulfonic acid, monobutylbiphenylsulfonic acid, etc.), polycyclic aromatic sulfonic acids (naphthalenesulfonic acid, anthracenesulfonic acid, hydroxynaphthalenesulfonic acid, hydroxyanthracenesulfonic acid, etc.), alkyl (carbon number) 1-24) substituted polycyclic aromatic sulfonic acid {alkyl (carbon number 1-24) naphthalenesulfonic acid (methylnaphthalenesulfonic acid, dimethylnaphthalenesulfonic acid, isopropylnaphthalenesulfonic acid, butylnaphthalenesulfonic acid, octylnaphthalenesulfonic acid, Urylnaphthalenesulfonic acid, eicosylnaphthalenesulfonic acid, etc.), methylanthracenesulfonic acid, laurylanthracenesulfonic acid, eicosylanthracenesulfonic acid, etc.}, phenolsulfonic acid (phenolsulfonic acid, monobutylphenylphenol monosulfonic acid, dibutylphenylphenol) Disulfonic acid, etc.), alkyl (C1-C24) phenolsulfonic acid (cresolsulfonic acid, nonylphenolsulfonic acid, eicosylphenolsulfonic acid, etc.), aromatic aminosulfonic acid (anilinesulfonic acid, etc.), ligninsulfonic acid (lignin) Sulfonates, modified lignin sulfonic acids, etc.), sulfonic acid group-containing compounds having a triazine ring (such as melamine sulfonic acid), and the like.
Of these, alkyl (C1-24) arylsulfonic acid, polycyclic aromatic sulfonic acid, and alkyl (C1-24) substituted polycyclic aromatic sulfonic acid are preferable from the viewpoint of preventing redeposition. More preferred are dodecylbenzenesulfonic acid, naphthalenesulfonic acid, and dimethylnaphthalenesulfonic acid.
ポリマー(A2-1-2)には、スルホン酸基を有する芳香族化合物(aY-1)以外に、必要によりその他の芳香族化合物(aO)や尿素等を構成成分とすることができる。
その他の芳香族化合物(aO)としては、ベンゼン、アルキルベンゼン(アルキル基の炭素数1~20)、ナフタレン、アルキルナフタレン(アルキル基の炭素数1~20)、フェノール、クレゾール、ヒドロキシナフタレン、アニリンなどが挙げられる。
In addition to the aromatic compound (aY-1) having a sulfonic acid group, the polymer (A2-1-2) can contain other aromatic compound (aO), urea, or the like as necessary, if necessary.
Other aromatic compounds (aO) include benzene, alkylbenzene (alkyl group having 1 to 20 carbon atoms), naphthalene, alkylnaphthalene (alkyl group having 1 to 20 carbon atoms), phenol, cresol, hydroxynaphthalene, aniline, and the like. Can be mentioned.
ポリマー(A2-1-2)の具体例としては、ナフタレンスルホン酸ホルムアルデヒド縮合物、メチルナフタレンスルホン酸ホルムアルデヒド縮合物、ジメチルナフタレンスルホン酸ホルムアルデヒド縮合物、オクチルナフタレンスルホン酸ホルムアルデヒド縮合物、ナフタレンスルホン酸-メチルナフタレン-ホルムアルデヒド縮合物、ナフタレンスルホン酸-オクチルナフタレン-ホルムアルデヒド縮合物、ヒドロキシナフタレンスルホン酸ホルムアルデヒド縮合物、ヒドロキシナフタレンスルホン酸-クレゾールスルホン酸-ホルムアルデヒド縮合物、アントラセンスルホン酸ホルムアルデヒド縮合物、メラミンスルホン酸ホルムアルデヒド縮合物、アニリンスルホン酸-フェノール-ホルムアルデヒド縮合物などが挙げられる。 Specific examples of the polymer (A2-1-2) include naphthalene sulfonic acid formaldehyde condensate, methyl naphthalene sulfonic acid formaldehyde condensate, dimethyl naphthalene sulfonic acid formaldehyde condensate, octyl naphthalene sulfonic acid formaldehyde condensate, naphthalene sulfonic acid-methyl. Naphthalene-formaldehyde condensate, naphthalene sulfonic acid-octyl naphthalene-formaldehyde condensate, hydroxy naphthalene sulfonic acid formaldehyde condensate, hydroxy naphthalene sulfonic acid-cresol sulfonic acid-formaldehyde condensate, anthracene sulfonic acid formaldehyde condensate, melamine sulfonic acid formaldehyde condensate And aniline sulfonic acid-phenol-formaldehyde condensate.
ポリマー(A2-1-2)の合成方法としては、公知の方法が利用できる。例えば、上記スルホン酸基を有する芳香族化合物(aY-1)と、必要によりその他の化合物(aO)や尿素、触媒として用いる酸(硫酸など)又はアルカリ(水酸化ナトリウムなど)を反応容器に仕込み、70~90℃の攪拌下で所定量のホルムアルデヒド水溶液(例えば37重量%水溶液)を1~4時間かけて滴下し、滴下後、還流下で3~30時間攪拌して冷却する方法が挙げられる。
また化合物(aY-1)としては、予め一部又は全部のスルホン酸基を化合物(B)で中和したものを用いて、ポリマー(A2-1-2)を合成すると同時に直接中和塩(AB2)を得てもよい。
その他の化合物(aO)を用いる場合、(aY-1)と(aO)とのモル比{(aY-1)/(aO)}は、1~99/99~1が好ましく、さらに好ましくは10~90/90~10、特に好ましくは30~85/70~15、最も好ましくは50~80/50~20である。
As a synthesis method of the polymer (A2-1-2), a known method can be used. For example, the reaction vessel is charged with the aromatic compound (aY-1) having the sulfonic acid group and, if necessary, other compounds (aO), urea, an acid (such as sulfuric acid) or an alkali (such as sodium hydroxide) used as a catalyst. A predetermined amount of an aqueous formaldehyde solution (for example, 37% by weight aqueous solution) is dropped over 1 to 4 hours with stirring at 70 to 90 ° C., and after the dropwise addition, the mixture is stirred for 3 to 30 hours under reflux and cooled. .
Further, as the compound (aY-1), a polymer (A2-1-2) was synthesized at the same time using a compound in which a part or all of the sulfonic acid groups had been neutralized with the compound (B) in advance, and at the same time a directly neutralized salt ( AB2) may be obtained.
When other compound (aO) is used, the molar ratio ((aY-1) / (aO)} of (aY-1) to (aO) is preferably 1 to 99/99 to 1, more preferably 10 ˜90 / 90˜10, particularly preferably 30˜85 / 70˜15, most preferably 50˜80 / 50˜20.
尿素を用いる場合、(aY-1)と尿素とのモル比{(aY-1)/尿素}は、1~99/99~1が好ましく、さらに好ましくは10~90/90~10、特に好ましくは30~85/70~15、最も好ましくは50~80/50~20である。 When urea is used, the molar ratio of (aY-1) to urea {(aY-1) / urea} is preferably 1 to 99/99 to 1, more preferably 10 to 90/90 to 10, particularly preferably. Is from 30 to 85/70 to 15, most preferably from 50 to 80/50 to 20.
また、(aY-1)又は(aO)は2種以上の混合物として用いてもよい。
ポリマー(A2)のpKaは、8.0以下が好ましく、ゼータ電位を下げるという観点等から、さらに好ましくは7.0以下、特に好ましくは5.5以下、最も好ましくは3.0以下である。pKaは、前記の方法により求めることができる。
Further, (aY-1) or (aO) may be used as a mixture of two or more.
The pKa of the polymer (A2) is preferably 8.0 or less, more preferably 7.0 or less, particularly preferably 5.5 or less, and most preferably 3.0 or less from the viewpoint of lowering the zeta potential. pKa can be determined by the above method.
ポリマー(A2)の重量平均分子量(以下、Mwと略記。)は、スクラッチ低減等の表面品質向上及び低泡性の観点等から、300~200,000が好ましく、さらに好ましくは1,000~100,000である。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCと略記。)によって、ポリエチレンオキサイドを標準物質として40℃で測定される値である。たとえば、装置本体:東ソー(株)製HLC-8120、カラム:東ソー(株)製TSKgel G5000 PWXL、G3000 PW XL、検出器:装置本体内蔵の示差屈折計検出器、溶離液:0.2M無水硫酸ナトリウム、10%アセトニトリル緩衝液、溶離液流量:0.8ml/分、カラム温度:40℃、試料:1.0重量%の溶離液溶液、注入量:100μl、標準物質:東ソー(株)製TSK SE-30、SE-15、SE-8、SE-5の条件により測定することができる。
The weight average molecular weight (hereinafter abbreviated as Mw) of the polymer (A2) is preferably from 300 to 200,000, more preferably from 1,000 to 100, from the viewpoint of improving surface quality such as scratch reduction and low foaming properties. , 000.
The weight average molecular weight is a value measured by gel permeation chromatography (hereinafter abbreviated as GPC) at 40 ° C. using polyethylene oxide as a standard substance. For example, apparatus main body: HLC-8120 manufactured by Tosoh Corporation, column: TSKgel G5000 PWXL, G3000 PW XL manufactured by Tosoh Corporation, detector: differential refractometer detector built in the apparatus main body, eluent: 0.2 M sulfuric anhydride Sodium, 10% acetonitrile buffer, eluent flow rate: 0.8 ml / min, column temperature: 40 ° C., sample: 1.0 wt% eluent solution, injection volume: 100 μl, standard substance: TSK manufactured by Tosoh Corporation It can be measured under the conditions of SE-30, SE-15, SE-8, and SE-5.
次に、中和塩(AB1)及び(AB2)を構成する化合物(B)について説明する。
本発明では、化合物(B)として、プロトン付加反応における生成熱変化(Q2)が10~152kcal/molであるものを用いる。
本発明において、プロトン付加反応における生成熱変化(Q2)とは、下記式(4)に示す化合物(B)のプロトン付加反応におけるBの生成熱とHBの生成熱との差を意味する。
B+H→HB (4)
Next, the compound (B) constituting the neutralized salts (AB1) and (AB2) will be described.
In the present invention, a compound (B) having a heat generation change (Q2) in the proton addition reaction of 10 to 152 kcal / mol is used.
In the present invention, the change in heat of formation (Q2) in the proton addition reaction means the difference between the heat of formation of B and the heat of formation of H + B in the proton addition reaction of the compound (B) represented by the following formula (4). .
B + H + → H + B (4)
すなわち、Q2は下記式(5)で表される。
Q2=Δ H+B-Δ  (5)
[式中、Δ H+B、Δ は、それぞれ順に、HB、Bについての真空中における生成熱を表す。]
That is, Q2 is represented by the following formula (5).
Q2 = Δ f H o H + B -Δ f H o B (5)
Wherein, Δ f H o H + B , Δ f H o B are respectively a representing the generated heat in a vacuum for H + B, B. ]
生成熱(Δ)の値は、上述したように、半経験的分子軌道法(MOPAC PM3法)を用いて計算することができる。
なお、HBの生成熱を計算する際のHを付加させる位置は、化合物(B)に含まれる窒素原子上である。また窒素原子が複数個存在する場合、各窒素原子ごとに生成熱を計算し、Bの生成熱とHBの生成熱の差が最小になる時の値を生成熱変化(Q2)とする。
As described above, the value of the heat of formation (Δ f H o ) can be calculated using the semiempirical molecular orbital method (MOPAC PM3 method).
In addition, the position where H + is added in calculating the heat of formation of H + B is on the nitrogen atom contained in the compound (B). When there are a plurality of nitrogen atoms, the heat of formation is calculated for each nitrogen atom, and the value when the difference between the heat of formation of B and the heat of formation of H + B is minimized is defined as the change in heat generation (Q2). .
化合物(B)のプロトン付加反応における生成熱変化(Q2)(kcal/mol、25℃)は、10~152であり、ゼータ電位を下げるという観点等から、好ましくは30~148、さらに好ましくは40~145、特に好ましくは50~143、最も好ましくは100~141である。 The change in heat of formation (Q2) (kcal / mol, 25 ° C.) in the proton addition reaction of compound (B) is 10 to 152, preferably 30 to 148, more preferably 40 from the viewpoint of lowering the zeta potential. To 145, particularly preferably 50 to 143, most preferably 100 to 141.
化合物(B)は、上記のプロトン付加反応における生成熱変化(Q2)が10~152kcal/molの範囲にあれば制限なく、例えば、分子内に少なくとも1つのグアニジン骨格を有する化合物(B-1)、分子内に少なくとも1つのアミジン骨格を有する化合物(B-2)などが含まれる。 The compound (B) is not limited as long as the change in heat of formation (Q2) in the proton addition reaction is in the range of 10 to 152 kcal / mol. For example, the compound (B-1) having at least one guanidine skeleton in the molecule And a compound (B-2) having at least one amidine skeleton in the molecule.
化合物(B)の分子体積(nm)は、0.025~0.7が好ましく、ゼータ電位を下げるという観点等から、さらに好ましくは0.050~0.5、特に好ましくは0.12~0.36である。
ここで分子体積とは、分子の等電子密度面でできる空間の体積を指し、分子力場法であるMM2(Allinger,N.L.,J.Am.Chem.Soc.,99,8127(1977))及び半経験的分子軌道法であるPM3(Stewart,J.J.P.,J.Am.Chem.Soc.,10,221(1989))を用いて計算した最適化構造から得ることができる。たとえば、上記の富士通株式会社製「CAChe Worksystem6.01」を用いて、同様に構造最適化した後、「Project Leader」上で半経験的分子軌道法である「PM3 geometry」により、計算することができる。なお、計算の結果、分子体積の値が複数個得られた場合については、最大値を用いる。
The molecular volume (nm 3 ) of the compound (B) is preferably from 0.025 to 0.7, more preferably from 0.050 to 0.5, particularly preferably from 0.12 to 0.5 from the viewpoint of lowering the zeta potential. 0.36.
Here, the molecular volume refers to the volume of the space formed on the isoelectronic density surface of the molecule, and is the molecular force field method MM2 (Allinger, NL, J. Am. Chem. Soc., 99, 8127 (1977). ))) And an optimized structure calculated using PM3 (Stewart, J. J. P., J. Am. Chem. Soc., 10, 221 (1989)), which is a semi-empirical molecular orbital method. it can. For example, after using the above-mentioned “CAChe Worksystem 6.01” manufactured by Fujitsu Limited, the structure is optimized in the same manner, and then the calculation is performed by “PM3 geometry” which is a semi-empirical molecular orbital method on “Project Leader”. it can. As a result of the calculation, when a plurality of molecular volume values are obtained, the maximum value is used.
化合物(B-1)の具体例としては、グアニジン{グアニジン(Q2=147kcal/mol、分子体積=0.062nm)、メチルグアニジン(Q2=144kcal/mol、分子体積=0.084nm)、テトラメチルグアニジン(Q2=145kcal/mol、分子体積=0.147nm)、エチルグアニジン(Q2=142kcal/mol、分子体積=0.104nm)、フェニルグアニジン(Q2=141kcal/mol、分子体積=0.139nm)など}、単環式グアニジン[2-アミノ-イミダゾール{2-アミノ-1H-イミダゾール(Q2=146kcal/mol、分子体積=0.080nm)、2-ジメチルアミノ-1H-イミダゾール(Q2=138kcal/mol、分子体積=0.113nm)など}]、多環式グアニジン{1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(以下TBDと略記)(Q2=147kcal/mol、分子体積=0.159nm)、1,3,4,6,7,8-ヘキサヒドロ-1-メチル-2H-ピリミド[1,2-a]ピリミジン(以下MTBDと略記)(Q2=139kcal/mol、分子体積=0.180nm)など}などが挙げられる。 Specific examples of the compound (B-1) include guanidine {guanidine (Q2 = 147 kcal / mol, molecular volume = 0.062 nm 3 ), methylguanidine (Q2 = 144 kcal / mol, molecular volume = 0.084 nm 3 ), tetra Methyl guanidine (Q2 = 145 kcal / mol, molecular volume = 0.147 nm 3 ), ethyl guanidine (Q2 = 142 kcal / mol, molecular volume = 0.104 nm 3 ), phenyl guanidine (Q2 = 141 kcal / mol, molecular volume = 0. 139 nm 3 ), etc.}, monocyclic guanidine [2-amino-imidazole {2-amino-1H-imidazole (Q2 = 146 kcal / mol, molecular volume = 0.080 nm 3 ), 2-dimethylamino-1H-imidazole (Q2 = 138 kcal / mol, molecular volume 0.113nm 3) such}], polycyclic guanidine {1,3,4,6,7,8-hexahydro -2H- pyrimido [1,2-a] pyrimidine (hereinafter TBD abbreviated) (Q2 = 147kcal / mol, molecular volume = 0.159 nm 3 ), 1,3,4,6,7,8-hexahydro-1-methyl-2H-pyrimido [1,2-a] pyrimidine (hereinafter abbreviated as MTBD) (Q2 = 139 kcal) / Mol, molecular volume = 0.180 nm 3 ), etc.}.
化合物(B-2)の具体例としては、イミダゾール{1H-イミダゾール(Q2=147kcal/mol、分子体積=0.067nm)、2-メチル-1H-イミダゾール(Q2=144kcal/mol、分子体積=0.113nm)、2-エチル-1H-イミダゾール(Q2=143kcal/mol、分子体積=0.113nm)、4,5-ジヒドロ-1H-イミダゾール(Q2=147kcal/mol、分子体積=0.113nm)、2-メチル-4,5-ジヒドロ-1H-イミダゾール(Q2=147kcal/mol、分子体積=0.113nm)、2-エチル-4,5-ジヒドロ-1H-イミダゾール(Q2=145kcal/mol、分子体積=0.119nm)など}、下記一般式(6)で表される2環式アミジンなどが挙げられる。 Specific examples of the compound (B-2) include imidazole {1H-imidazole (Q2 = 147 kcal / mol, molecular volume = 0.067 nm 3 ), 2-methyl-1H-imidazole (Q2 = 144 kcal / mol, molecular volume = 0.113 nm 3 ), 2-ethyl-1H-imidazole (Q2 = 143 kcal / mol, molecular volume = 0.113 nm 3 ), 4,5-dihydro-1H-imidazole (Q2 = 147 kcal / mol, molecular volume = 0.0.1). 113 nm 3 ), 2-methyl-4,5-dihydro-1H-imidazole (Q2 = 147 kcal / mol, molecular volume = 0.113 nm 3 ), 2-ethyl-4,5-dihydro-1H-imidazole (Q2 = 145 kcal) / mol, molecular volume = 0.119nm 3) such}, represented by the following general formula (6) Such as bicyclic amidines that are mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[式中、R及びRは、互いに独立した水素原子、炭素数1~24のアルキル基、炭素数2~24のアルケニル基、炭素数2~30のアルキニル基、炭素数6~30のアリール基、又は、炭素数7~30のアリールアルキル基を表し、アルキル基、アルケニル基、アルキニル基、アリール基又はアリールアルキル基中の水素原子の一部又は全部が水酸基、アミノ基、(ジ)アルキル(炭素数1~24)アミノ基、(ジ)ヒドロキシアルキル(炭素数2~4)アミノ基、メルカプト基又はハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)によってさらに置換されていてもよい。また2つのR及び2つのRは、同一であってもよいし異なっていてもよく、互いに結合(炭素-炭素結合、エーテル結合等)して炭素数4~12の環を形成してもよい。m及びnは互いに独立して1~12の整数を表す。] [Wherein R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, or an alkyl group having 6 to 30 carbon atoms. Represents an aryl group or an arylalkyl group having 7 to 30 carbon atoms, and a part or all of hydrogen atoms in the alkyl group, alkenyl group, alkynyl group, aryl group or arylalkyl group are a hydroxyl group, an amino group, (di) Further substituted by alkyl (1 to 24 carbon) amino group, (di) hydroxyalkyl (2 to 4 carbon) amino group, mercapto group or halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) Also good. Further, two R 7 and two R 8 may be the same or different and are bonded to each other (carbon-carbon bond, ether bond, etc.) to form a ring having 4 to 12 carbon atoms. Also good. m and n each independently represent an integer of 1 to 12. ]
炭素数1~24のアルキル基又は炭素数2~24のアルケニル基としては、疎水基(Y)で例示したアルキル基又はアルケニル基の内、炭素数1~24のものが挙げられる。
炭素数2~30のアルキニル基としては、直鎖状及び分岐状のいずれでもよく、エチニル、1-プロピニル、2-プロピニル、1-又は2-ドデシニル、1-又は2-トリデシニル、1-又は2-テトラデシニル、1-又は2-ヘキサデシニル、1-又は2-ステアリニル、1-又は2-ノナデシニル、1-又は2-エイコシニル、1-又は2-テトラコシニルなどが挙げられる。
Examples of the alkyl group having 1 to 24 carbon atoms or the alkenyl group having 2 to 24 carbon atoms include those having 1 to 24 carbon atoms among the alkyl groups and alkenyl groups exemplified for the hydrophobic group (Y).
The alkynyl group having 2 to 30 carbon atoms may be linear or branched, and is ethynyl, 1-propynyl, 2-propynyl, 1- or 2-dodecynyl, 1- or 2-tridecynyl, 1- or 2 -Tetradecynyl, 1- or 2-hexadecynyl, 1- or 2-stearinyl, 1- or 2-nonadecynyl, 1- or 2-eicosinyl, 1- or 2-tetracosinyl and the like.
炭素数6~30のアリール基としては、フェニル、トリル、キシリル、ナフチル又はメチルナフチルなどが挙げられる。
炭素数7~30のアリールアルキル基としては、ベンジル、2-フェニルエチル、3-フェニルプロピル、4-フェニルブチル、5-フェニルペンチル、6-フェニルヘキシル、7-フェニルヘプチル、8-フェニルオクチル、10-フェニルデシル、12-フェニルドデシル、ナフチルメチル、ナフチルエチルなどが挙げられる。
Examples of the aryl group having 6 to 30 carbon atoms include phenyl, tolyl, xylyl, naphthyl, and methylnaphthyl.
Examples of the arylalkyl group having 7 to 30 carbon atoms include benzyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, 5-phenylpentyl, 6-phenylhexyl, 7-phenylheptyl, 8-phenyloctyl, 10 -Phenyldecyl, 12-phenyldodecyl, naphthylmethyl, naphthylethyl and the like.
2つのR又は2つのRが互いに結合して炭素数4~12の環を形成する場合、2つのR又は2つのRは、2価の有機基(炭素数4~12のアルキレン基等)を形成する。
炭素数4~12のアルキレン基としては、ブチレン、ペンチレン、ヘキシレン、ヘプチレン、オクチレン、デシレン、ドデシレンなどが挙げられ、これらのアルキレン基はエーテル結合等で結合されていてもよい。
When two R 7 or two R 8 are bonded to each other to form a ring having 4 to 12 carbon atoms, two R 7 or two R 8 are divalent organic groups (alkylene having 4 to 12 carbon atoms). Group).
Examples of the alkylene group having 4 to 12 carbon atoms include butylene, pentylene, hexylene, heptylene, octylene, decylene and dodecylene, and these alkylene groups may be bonded by an ether bond or the like.
一般式(6)で表される化合物の具体例としては、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(以下DBUと略記。なお、DBUはサンアプロ社の登録商標である。)(Q2=137kcal/mol、分子体積=0.185nm)、1,5-ジアザビシクロ[4.3.0]ノネン-5(以下DBNと略記)(Q2=141kcal/mol、分子体積=0.146nm)、1,8-ジアザビシクロ[5.3.0]デセン-7(Q2=142kcal/mol、分子体積=0.166nm)、1,4-ジアザビシクロ[3.3.0]オクテン-4(Q2=146kcal/mol、分子体積=0.126nm)などが挙げられる。 Specific examples of the compound represented by the general formula (6) include 1,8-diazabicyclo [5.4.0] undecene-7 (hereinafter abbreviated as DBU. DBU is a registered trademark of Sun Apro). (Q2 = 137 kcal / mol, molecular volume = 0.185 nm 3 ), 1,5-diazabicyclo [4.3.0] nonene-5 (hereinafter abbreviated as DBN) (Q2 = 141 kcal / mol, molecular volume = 0.146 nm) 3 ), 1,8-diazabicyclo [5.3.0] decene-7 (Q2 = 142 kcal / mol, molecular volume = 0.166 nm 3 ), 1,4-diazabicyclo [3.3.0] octene-4 ( Q2 = 146 kcal / mol, molecular volume = 0.126 nm 3 ) and the like.
化合物(B)として好ましいものは、ゼータ電位の観点等から、(B-1)の内、グアニジン、メチルグアニジン、エチルグアニジン、(B-2)の内、DBU、DBNであり、さらに好ましくはDBU又はDBNである。
化合物(B)は、単独で用いてもよく、2種以上の混合物として用いてもよい。
Preferred from the viewpoint of zeta potential and the like as compound (B) are guanidine, methylguanidine, ethylguanidine, (B-2) of (B-1), DBU and DBN, and more preferably DBU. Or DBN.
A compound (B) may be used independently and may be used as a 2 or more types of mixture.
また化合物(B)のpKaは、11~40が好ましく、ゼータ電位を下げるという観点等から、さらに好ましくは11.5~30、特に好ましくは12~25である。
なお、化合物(B)のpKaは、公知の方法{例えば、Can.J.Chem.65,626(1987)}等により得られる。
The pKa of the compound (B) is preferably 11 to 40, more preferably 11.5 to 30, particularly preferably 12 to 25 from the viewpoint of lowering the zeta potential.
In addition, pKa of compound (B) is a known method {for example, Can. J. et al. Chem. 65, 626 (1987)} and the like.
本発明において、酸性化合物(A1)と化合物(B)との中和塩(AB1)、ポリマー(A2)と化合物(B)との中和塩(AB2)は、酸基(X1)又は(X2)の一部又は全部が(B)で中和されていればよい。 In the present invention, the neutralized salt (AB1) of the acidic compound (A1) and the compound (B) and the neutralized salt (AB2) of the polymer (A2) and the compound (B) are the acid group (X1) or (X2 ) May be partially or completely neutralized with (B).
中和塩(AB1)の具体例としては、以下の化合物等が含まれる。
アルキルベンゼンスルホン酸塩(トルエンスルホン酸グアニジン塩、トルエンスルホン酸DBU塩、トルエンスルホン酸DBN塩、キシレンスルホン酸グアニジン塩、キシレンスルホン酸DBU塩、キシレンスルホン酸DBN塩、ドデシルベンゼンスルホン酸グアニジン塩、ドデシルベンゼンスルホン酸DBU塩、ドデシルベンゼンスルホン酸DBN塩など)、ナフタレンスルホン酸塩(ナフタレンスルホン酸グアニジン塩、ナフタレンスルホン酸DBU塩、ナフタレンスルホン酸DBN塩など)、アルキルナフタレンスルホン酸塩(メチルナフタレンスルホン酸グアニジン塩、メチルナフタレンスルホン酸DBU塩、メチルナフタレンスルホン酸DBN塩、ドデシルナフタレンスルホン酸グアニジン塩、ドデシルナフタレンスルホン酸DBU塩、ドデシルナフタレンスルホン酸DBN塩など)等が挙げられる。
Specific examples of the neutralized salt (AB1) include the following compounds.
Alkylbenzenesulfonate (toluenesulfonate guanidine salt, toluenesulfonate DBU salt, toluenesulfonate DBN salt, xylenesulfonate guanidine salt, xylenesulfonate DBU salt, xylenesulfonate DBN salt, dodecylbenzenesulfonate guanidine salt, dodecylbenzene Sulfonic acid DBU salt, dodecylbenzene sulfonic acid DBN salt, etc.), naphthalene sulfonic acid salt (naphthalene sulfonic acid guanidine salt, naphthalene sulfonic acid DBU salt, naphthalene sulfonic acid DBN salt etc.), alkyl naphthalene sulfonic acid salt (methyl naphthalene sulfonic acid guanidine) Salt, methyl naphthalene sulfonic acid DBU salt, methyl naphthalene sulfonic acid DBN salt, dodecyl naphthalene sulfonic acid guanidine salt, dodecyl naphthalene sulfonic acid DB Salts, such as dodecyl naphthalenesulfonate DBN salt), and the like.
中和塩(AB2)の具体例としては、以下の化合物等が含まれる。
ポリアクリル酸塩(ポリアクリル酸DBU塩、ポリアクリル酸DBN塩など)、ポリスチレンスルホン酸塩(ポリスチレンスルホン酸グアニジン塩、ポリスチレンスルホン酸DBU塩、ポリスチレンスルホン酸DBN塩など)、ナフタレンスルホン酸ホルムアルデヒド縮合物の塩(ナフタレンスルホン酸ホルムアルデヒド縮合物グアニジン塩、ナフタレンスルホン酸ホルムアルデヒド縮合物DBU塩、ナフタレンスルホン酸ホルムアルデヒド縮合物DBN塩など)、アルキルナフタレンスルホン酸ホルムアルデヒド縮合物の塩(メチルナフタレンスルホン酸ホルムアルデヒド縮合物グアニジン塩、メチルナフタレンスルホン酸ホルムアルデヒド縮合物DBU塩、メチルナフタレンスルホン酸ホルムアルデヒド縮合物DBN塩、メチルナフタレンスルホン酸ホルムアルデヒド縮合物TBD塩、メチルナフタレンスルホン酸ホルムアルデヒド縮合物MTBD塩、オクチルナフタレンスルホン酸ホルムアルデヒド縮合物グアニジン塩、オクチルナフタレンスルホン酸ホルムアルデヒド縮合物DBU塩、オクチルナフタレンスルホン酸ホルムアルデヒド縮合物DBN塩など)、ナフタレンスルホン酸-アルキルナフタレン-ホルムアルデヒド縮合物の塩(ナフタレンスルホン酸-オクチルナフタレン-ホルムアルデヒド縮合物グアニジン塩、ナフタレンスルホン酸-オクチルナフタレン-ホルムアルデヒド縮合物DBU塩、ナフタレンスルホン酸-オクチルナフタレン-ホルムアルデヒド縮合物DBN塩など)等が挙げられる。(AB1)及び(AB2)は、単独又は2種以上の混合物であってもよい。
Specific examples of the neutralized salt (AB2) include the following compounds.
Polyacrylate (polyacrylic acid DBU salt, polyacrylic acid DBN salt, etc.), polystyrene sulfonate (polystyrene sulfonic acid guanidine salt, polystyrene sulfonic acid DBU salt, polystyrene sulfonic acid DBN salt, etc.), naphthalene sulfonic acid formaldehyde condensate Salts of naphthalene sulfonic acid formaldehyde condensate guanidine salt, naphthalene sulfonic acid formaldehyde condensate DBU salt, naphthalene sulfonic acid formaldehyde condensate DBN salt, etc., alkyl naphthalene sulfonic acid formaldehyde condensate salt (methyl naphthalene sulfonic acid formaldehyde condensate guanidine Salt, methyl naphthalene sulfonic acid formaldehyde condensate DBU salt, methyl naphthalene sulfonic acid formaldehyde condensate DBN salt, methyl naphthalene Sulfonic acid formaldehyde condensate TBD salt, methyl naphthalene sulfonic acid formaldehyde condensate MTBD salt, octyl naphthalene sulfonic acid formaldehyde condensate guanidine salt, octyl naphthalene sulfonic acid formaldehyde condensate DBU salt, octyl naphthalene sulfonic acid formaldehyde condensate DBN salt, etc.) Naphthalenesulfonic acid-alkylnaphthalene-formaldehyde condensate salt (naphthalenesulfonic acid-octylnaphthalene-formaldehyde condensate guanidine salt, naphthalenesulfonic acid-octylnaphthalene-formaldehyde condensate DBU salt, naphthalenesulfonic acid-octylnaphthalene-formaldehyde condensate DBN Salt, etc.). (AB1) and (AB2) may be single or a mixture of two or more.
中和塩(AB1)は、ゼータ電位を低下させる観点等から、(Q1)と(Q2)との比{Q2/(Q1×p)}が式(7)を満たすことが好ましく、さらに好ましくは式(8)、特に好ましくは式(9)、最も好ましくは式(10)を満たすことが好ましい。
0.01≦{Q2/(Q1×p)}≦3.0 (7)
0.1≦{Q2/(Q1×p)}≦2.5 (8)
0.2≦{Q2/(Q1×p)}≦2.3 (9)
0.5≦{Q2/(Q1×p)}≦2.2 (10)
[式中、pは塩基性化合物(B)を中和するのに必要な酸基(X)の個数を表す。]
The neutralized salt (AB1) is preferably such that the ratio {Q2 / (Q1 × p)} of (Q1) and (Q2) satisfies the formula (7) from the viewpoint of reducing the zeta potential, and more preferably It is preferable to satisfy the formula (8), particularly preferably the formula (9), and most preferably the formula (10).
0.01 ≦ {Q2 / (Q1 × p)} ≦ 3.0 (7)
0.1 ≦ {Q2 / (Q1 × p)} ≦ 2.5 (8)
0.2 ≦ {Q2 / (Q1 × p)} ≦ 2.3 (9)
0.5 ≦ {Q2 / (Q1 × p)} ≦ 2.2 (10)
[Wherein, p represents the number of acid groups (X) necessary for neutralizing the basic compound (B). ]
中和塩(AB2)の重量平均分子量(Mw)は、スクラッチ低減等の表面品質向上及び低泡性の観点等から、1,000~1,000,000が好ましく、さらに好ましくは1,000~200,000、特に好ましくは3,000~100,000である。なお、中和塩(AB2)のMwは、ポリマー(A2)と同様にGPCにより得られる値である。 The weight average molecular weight (Mw) of the neutralized salt (AB2) is preferably 1,000 to 1,000,000, more preferably 1,000 to 1,000, from the viewpoint of improving surface quality such as scratch reduction and low foaming properties. 200,000, particularly preferably 3,000 to 100,000. In addition, Mw of neutralization salt (AB2) is a value obtained by GPC similarly to a polymer (A2).
本発明の電子材料用研磨液は、中和塩(AB1)及び(AB2)の少なくとも1つ含有すればよいが、スクラッチ低減等の表面品質向上の観点等から、中和塩(AB2)を含むものが好ましい。 The polishing liquid for electronic material of the present invention may contain at least one of neutralized salts (AB1) and (AB2), but contains neutralized salt (AB2) from the viewpoint of improving surface quality such as scratch reduction. Those are preferred.
中和塩(AB1)又は(AB2)は、酸性化合物(A1)又はポリマー(A2)と窒素含有塩基性化合物(B)との中和反応により得ることができる。例えば、温調、撹拌が可能な反応容器に(A1)及び/又は(A2)の水溶液を仕込み、撹拌しながら室温(約25℃)で(B)(必要により水溶液)を投入して均一混合することができる。また、例えば、予め水を仕込んだ反応容器に、撹拌しながら(A1)及び/又は(A2)、並びに、(B)を同時又は別々に投入して均一混合することにより得ることができる。中和反応時の濃度は、目的により適宜選択することができる。 The neutralized salt (AB1) or (AB2) can be obtained by a neutralization reaction between the acidic compound (A1) or polymer (A2) and the nitrogen-containing basic compound (B). For example, an aqueous solution of (A1) and / or (A2) is charged into a reaction vessel capable of temperature control and stirring, and (B) (aqueous solution if necessary) is added at room temperature (about 25 ° C.) with stirring to mix uniformly. can do. Further, for example, it can be obtained by mixing (A1) and / or (A2) and (B) simultaneously or separately into a reaction vessel preliminarily charged with water and mixing them uniformly. The concentration during the neutralization reaction can be appropriately selected depending on the purpose.
本発明の電子材料用研磨液は、酸基(X1)及び(X2)の解離度が大きいため、パーティクル及び基板のゼータ電位を効果的に下げることができ、パーティクルの再付着を防止することができる。 Since the polishing liquid for electronic materials of the present invention has a high degree of dissociation of the acid groups (X1) and (X2), the zeta potential of the particles and the substrate can be effectively lowered, and the reattachment of particles can be prevented. it can.
電子材料用研磨液中の中和塩(AB)の濃度は、研磨液の重量に基づいて0.001~10重量%であり、好ましくは0.01~5重量%である。 The concentration of the neutralized salt (AB) in the polishing slurry for electronic materials is 0.001 to 10% by weight, preferably 0.01 to 5% by weight, based on the weight of the polishing solution.
本発明の電子材料用研磨液の必須成分である水は、清浄度の観点から電気抵抗率が18MΩ・cm以上の純水が好ましく、超純水、イオン交換水、逆浸透水(RO水)、蒸留水などが挙げられる。 The water that is an essential component of the polishing liquid for electronic materials of the present invention is preferably pure water having an electrical resistivity of 18 MΩ · cm or more from the viewpoint of cleanliness, ultrapure water, ion exchange water, reverse osmosis water (RO water). And distilled water.
本発明の別の実施態様は、研磨パッドを用いて電子材料中間体を研磨する工程で使用する研磨液であって、中和塩(AB)及び水を必須とする電子材料用研磨液である。 Another embodiment of the present invention is a polishing liquid for use in a step of polishing an electronic material intermediate using a polishing pad, which is a polishing liquid for an electronic material that requires neutralization salt (AB) and water as essential. .
本発明の電子材料用研磨液には、前述した中和塩(AB)、水のほかに研磨粒子(C)を含有しても良い。研磨粒子(C)を含有することで、平坦性に優れた電子材料を製造することができる。 The polishing liquid for electronic materials of the present invention may contain abrasive particles (C) in addition to the neutralized salt (AB) and water described above. By containing the abrasive particles (C), an electronic material excellent in flatness can be produced.
本発明における研磨粒子(C)としては、電子材料研磨用の市販の研磨粒子が使用でき、特に限定するものではない。研磨粒子(C)の材質としては、コロイダルシリカ、酸化セリウム、アルミナ、酸化ジルコニウム、ダイヤモンド、酸化マンガン、酸化チタン、炭化ケイ素、窒化ホウ素等が挙げられ、スクラッチ低減の効果の観点から、好ましくはコロイダルシリカ、酸化セリウム、アルミナ又はダイヤモンドである。 As the abrasive particles (C) in the present invention, commercially available abrasive particles for polishing electronic materials can be used and are not particularly limited. Examples of the material for the abrasive particles (C) include colloidal silica, cerium oxide, alumina, zirconium oxide, diamond, manganese oxide, titanium oxide, silicon carbide, and boron nitride. From the viewpoint of the effect of reducing scratches, colloidal is preferable. Silica, cerium oxide, alumina or diamond.
研磨粒子(C)の平均粒子径は、使用される研磨粒子によって異なり、コロイダルシリカの場合、通常5nm~100nmであり、酸化セリウムの場合、0.1μm~3.0μmであることが電子材料用基板の生産性の観点で好ましい。 The average particle diameter of the abrasive particles (C) varies depending on the abrasive particles used. In the case of colloidal silica, it is usually 5 nm to 100 nm, and in the case of cerium oxide, it is 0.1 μm to 3.0 μm. This is preferable from the viewpoint of substrate productivity.
電子材料用研磨液中の研磨粒子(C)は、研磨液中の重量に基づいて、0~20重量%であり、好ましくは0.5~20重量%である。 The abrasive particles (C) in the polishing liquid for electronic materials is 0 to 20% by weight, preferably 0.5 to 20% by weight, based on the weight in the polishing liquid.
本発明の電子材料用研磨液には、前述した中和塩(AB)、水のほかに、中和塩(AB)以外の界面活性剤(D)を含有しても良い。界面活性剤(D)を含有することで、ラッピング工程に使用することができる。 The polishing liquid for electronic materials of the present invention may contain a surfactant (D) other than the neutralized salt (AB) and water described above, in addition to the neutralized salt (AB). By containing the surfactant (D), it can be used in the lapping step.
本発明における界面活性剤(D)としては、ノニオン性界面活性剤(D1)、中和塩(AB)以外のアニオン性界面活性剤(D2)が挙げられる。 Examples of the surfactant (D) in the present invention include nonionic surfactants (D1) and anionic surfactants (D2) other than neutralized salts (AB).
ノニオン性界面活性剤(D1)としては、炭素数8~18の高級アルコールアルキレン(炭素数2~4)オキサイド付加物(D11)、ポリオキシエチレンポリオキシプロピレン共重合体(D12)、炭素数8~36の脂肪族アミンのアルキレンオキサイド付加物(D13)、又は、多価アルコール型非イオン界面活性剤(D14)等が挙げられる。 Nonionic surfactant (D1) includes higher alcohol alkylene having 8 to 18 carbon atoms (2 to 4 carbon atoms) oxide adduct (D11), polyoxyethylene polyoxypropylene copolymer (D12), 8 carbon atoms. Examples include an alkylene oxide adduct (D13) of aliphatic amine of ˜36, a polyhydric alcohol type nonionic surfactant (D14), and the like.
炭素数8~18の高級アルコールアルキレン(炭素数2~4)オキサイド付加物(D11)としては、オクチルアルコールのエチレンオキサイド付加物、ラウリルアルコールのエチレンオキサイド付加物、ステアリルアルコールのエチレンオキサイド付加物等が挙げられる。 Examples of the higher alcohol alkylene (carbon number 2 to 4) oxide adduct (D11) having 8 to 18 carbon atoms include octyl alcohol ethylene oxide adduct, lauryl alcohol ethylene oxide adduct, stearyl alcohol ethylene oxide adduct, and the like. Can be mentioned.
ポリオキシエチレンポリオキシプロピレン共重合体(D12)としては、ブロック型であっても、ランダム型であっても良い。 The polyoxyethylene polyoxypropylene copolymer (D12) may be a block type or a random type.
炭素数8~36の脂肪族アミンのアルキレンオキサイド付加物(D13)としては、炭素数8~24の脂肪族第1級アミンのアルキレンオキサイド付加物(D131)、又は、炭素数8~36の脂肪族第2級アミンのアルキレンオキサイド付加物(D132)等が挙げられる。 Examples of the alkylene oxide adduct (D13) of an aliphatic amine having 8 to 36 carbon atoms include an alkylene oxide adduct (D131) of an aliphatic primary amine having 8 to 24 carbon atoms, or an aliphatic oxide having 8 to 36 carbon atoms. An alkylene oxide adduct (D132) of a group secondary amine.
炭素数8~24の脂肪族第1級アミンのアルキレンオキサイド付加物(D131)における原料の脂肪族第1級アミンは、直鎖、分岐鎖又は環状でもよく、飽和又は不飽和結合をもっていてもよい炭素数8~24の脂肪族第1級アミンである。
脂肪族第1級アミンの具体例としては、ラウリルアミン、オクチルアミン、デシルアミン、ウンデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン、イコシルアミン、ヘンイコシルアミン、ドコシルアミン、トリコシルアミン、テトラコシルアミン、オクタデセニルアミン又はオクタデカジエニルアミンや、これらの混合物である牛脂アミン、硬化牛脂アミン、ヤシ油アミン、パーム油アミン又は大豆油アミン等動植物油由来の脂肪族第1級アミンを挙げることができる。脂肪族第1級アミンは1種又は2種以上の混合物を用いてもよい。
The starting aliphatic primary amine in the alkylene oxide adduct (D131) of an aliphatic primary amine having 8 to 24 carbon atoms may be linear, branched or cyclic, and may have a saturated or unsaturated bond. It is an aliphatic primary amine having 8 to 24 carbon atoms.
Specific examples of the aliphatic primary amine include laurylamine, octylamine, decylamine, undecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, nonadecylamine, icosylamine , Heicosylamine, docosylamine, tricosylamine, tetracosylamine, octadecenylamine or octadecadienylamine, and mixtures thereof beef tallow amine, hardened tallow amine, coconut oil amine, palm oil amine or soybean oil amine Mention may be made of aliphatic primary amines derived from iso-animal vegetable oils. As the aliphatic primary amine, one kind or a mixture of two or more kinds may be used.
炭素数8~36の脂肪族第2級アミンのアルキレンオキサイド付加物(D132)における原料の脂肪族第2級アミンは、直鎖、分岐鎖又は環状でもよく、飽和又は不飽和結合をもっていてもよい炭素数8~36の脂肪族第2級アミンである。
脂肪族第2級アミンの具体例としては、ジオクチルアミン、ジブチルアミン、ジヘキシルアミン、ジデシルアミン、ジウンデシルアミン、ジドデシルアミン、ジトリデシルアミン、ジテトラデシルアミン、ジペンタデシルアミン、ジヘキサデシルアミン、ジヘプタデシルアミン又はジオクタデシルアミンを挙げることができる。
脂肪族第2級アミンは1種又は2種以上の混合物を用いてもよい。
The starting aliphatic secondary amine in the alkylene oxide adduct (D132) of an aliphatic secondary amine having 8 to 36 carbon atoms may be linear, branched or cyclic, and may have a saturated or unsaturated bond. It is an aliphatic secondary amine having 8 to 36 carbon atoms.
Specific examples of the aliphatic secondary amine include dioctylamine, dibutylamine, dihexylamine, didecylamine, diundecylamine, didodecylamine, ditridecylamine, ditetradecylamine, dipentadecylamine, dihexadecylamine, Mention may be made of diheptadecylamine or dioctadecylamine.
As the aliphatic secondary amine, one kind or a mixture of two or more kinds may be used.
本発明の脂肪族アミンのアルキレンオキサイド付加物(D13)における原料のアルキレンオキサイドとしては、炭素数2~12のアルキレンオキサイド、例えば、エチレンオキサイド、1,2-プロピレンオキサイド、1,2-ブチレンオキサイド、テトラヒドロフラン並びに3―メチルテトラヒドロフラン等が挙げられる。これらのうち、入手しやすさの観点でエチレンオキサイド、1,2-プロピレンオキサイドが好ましい。これらのアルキレンオキサイドは1種のみを用いてもよく、2種以上を併用してもよい。2種以上を併用するときは、ランダムでもブロックでもよい。  Examples of the starting alkylene oxide in the aliphatic amine alkylene oxide adduct (D13) of the present invention include alkylene oxides having 2 to 12 carbon atoms, such as ethylene oxide, 1,2-propylene oxide, 1,2-butylene oxide, Examples include tetrahydrofuran and 3-methyltetrahydrofuran. Of these, ethylene oxide and 1,2-propylene oxide are preferable from the viewpoint of availability. These alkylene oxides may use only 1 type and may use 2 or more types together. When using 2 or more types together, random or a block may be sufficient.
(D131)又は(D132)におけるアルキレンオキサイドの平均付加モル数は、アミン1モル当たり3~100モルであることが好ましく、さらに好ましくは3~70モル、特に好ましくは3~40モルである。 The average number of moles of alkylene oxide added in (D131) or (D132) is preferably 3 to 100 moles, more preferably 3 to 70 moles, and particularly preferably 3 to 40 moles per mole of amine.
(D131)及び(D132)の製造方法としては、公知の方法等が利用できる。
具体的には、攪拌可能な耐圧容器に上記脂肪族第1級アミン又は脂肪族第2級アミンを仕込み、不活性ガス(窒素、アルゴンなど)で十分に置換後、減圧下で脱水を行い、反応温度約80~160℃で上記アルキレンオキサイドを投入し反応させる方法が利用できる。また、反応時は必要により公知の触媒を使用してもよい。触媒は反応の最初から加えても、途中から加えてもよい。
触媒としては、金属原子を含有しない触媒(テトラメチルアンモニウムヒドロキサイドなどの第4級アンモニウム水酸化物、並びにテトラメチルエチレンジアミンや1,8-ジアザビシクロ[5.4.0]ウンデセン-7などの第3級アミンなど)及び金属原子含有触媒(水酸化ナトリウム及び水酸化カリウムなどのアルカリ金属水酸化物、アルカリ土類金属水酸化物並びにアルカリ土類金属酸化物など)が挙げられる。
As a method for producing (D131) and (D132), a known method or the like can be used.
Specifically, the above-mentioned aliphatic primary amine or aliphatic secondary amine is charged into a stirrable pressure vessel, sufficiently substituted with an inert gas (nitrogen, argon, etc.), then dehydrated under reduced pressure, A method in which the alkylene oxide is added and reacted at a reaction temperature of about 80 to 160 ° C. can be used. Moreover, you may use a well-known catalyst as needed at the time of reaction. The catalyst may be added from the beginning of the reaction or from the middle.
Examples of the catalyst include a metal atom-free catalyst (a quaternary ammonium hydroxide such as tetramethylammonium hydroxide, and a third such as tetramethylethylenediamine and 1,8-diazabicyclo [5.4.0] undecene-7. Secondary amines) and metal atom-containing catalysts (alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides and alkaline earth metal oxides).
脂肪族アミンのアルキレンオキサイド付加物(D13)の実使用時における濃度は、研磨液中の重量に基づいて、0.001~10重量%である。 The concentration of the aliphatic amine alkylene oxide adduct (D13) in actual use is 0.001 to 10% by weight based on the weight in the polishing liquid.
多価アルコール型非イオン界面活性剤(D14)としては、グリセリンエチレンオキサイド付加物や、ソルビタンエチレンオキサイド付加物等が挙げられる。 Examples of the polyhydric alcohol type nonionic surfactant (D14) include glycerin ethylene oxide adduct and sorbitan ethylene oxide adduct.
アニオン性界面活性剤(D2)としては、脂肪酸系界面活性剤[炭素数8~18の脂肪酸(塩)又は炭素数8~18の脂肪族アルコールのエーテルカルボン酸(塩)等];リン酸エステル系界面活性剤[炭素数8~24の高級アルコールの燐酸モノ若しくはジエステル(塩)、又は、炭素数8~24の高級アルコールのアルキレンオキサイド付加物の燐酸モノ若しくはジエステル(塩)等]が挙げられる。 Examples of the anionic surfactant (D2) include fatty acid surfactants (fatty acid (salt) having 8 to 18 carbon atoms or ether carboxylic acid (salt) of an aliphatic alcohol having 8 to 18 carbon atoms); phosphate ester Surfactants [phosphoric mono- or diesters (salts) of higher alcohols having 8 to 24 carbon atoms, or phosphoric mono- or diesters (salts) of alkylene oxide adducts of higher alcohols having 8 to 24 carbon atoms, etc.] .
アニオン性界面活性剤(D2)のうち、潤滑性の観点から好ましくは、脂肪酸アミン塩であり、脂肪酸アミン塩としては、炭素数8~22の脂肪酸(例えばオレイン酸等)をアミンで完全にもしくは一部を中和したものが挙げられる。
アミンとしては、モノエタノールアミン等の1級アミン;ジエタノールアミン等の2級アミン;トリエタノールアミン等の3級アミンが挙げられる。
Of the anionic surfactant (D2), a fatty acid amine salt is preferable from the viewpoint of lubricity, and the fatty acid amine salt is a fatty acid amine salt having 8 to 22 carbon atoms (for example, oleic acid) completely or completely with an amine. The thing which neutralized a part is mentioned.
Examples of the amine include primary amines such as monoethanolamine; secondary amines such as diethanolamine; tertiary amines such as triethanolamine.
電子材料用研磨液中の界面活性剤(D)の濃度は、通常0~90重量%であり、好ましくは0.001~80重量%であり、さらに好ましくは0.01~20重量%で、かつ、界面活性剤(D)の重量に対する中和塩(AB)の重量比が、0.001~1である。 The concentration of the surfactant (D) in the polishing liquid for electronic materials is usually 0 to 90% by weight, preferably 0.001 to 80% by weight, more preferably 0.01 to 20% by weight. In addition, the weight ratio of the neutralized salt (AB) to the weight of the surfactant (D) is 0.001 to 1.
本発明の電子材料用研磨液には、必要に応じて有機還元剤(E)を含有しても良い。有機還元剤(E)を配合することにより、研磨後において、パーティクルに対する付着防止性を向上することができる。 The polishing liquid for electronic materials of the present invention may contain an organic reducing agent (E) as necessary. By mix | blending an organic reducing agent (E), the adhesion prevention property with respect to a particle can be improved after grinding | polishing.
有機還元剤(E)としては、フェノール類(E1)、レダクトン類(E2)が挙げられる。
有機還元剤(E)としては、市販の有機還元剤が使用でき、研磨速度の観点でフェノール類(E1)、レダクトン類(E2)が好ましい。
Examples of the organic reducing agent (E) include phenols (E1) and reductones (E2).
As the organic reducing agent (E), a commercially available organic reducing agent can be used, and phenols (E1) and reductones (E2) are preferable from the viewpoint of polishing rate.
フェノール類(E1)としては、下記一般式(11)で表される化合物が挙げられる。 Examples of the phenols (E1) include compounds represented by the following general formula (11).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式中、X~Xはそれぞれ独立に水素原子、水酸基、カルボキシル基、アミノ基又はアルキル基を表す。] [Wherein, X 1 to X 5 each independently represents a hydrogen atom, a hydroxyl group, a carboxyl group, an amino group or an alkyl group. ]
一般式(11)で表されるフェノール類(E1)の具体例としては、X~Xのすべてが水素であるフェノール;ピロカテコール、レゾルシノール、ヒドロキノン並びにピロガロール等の多価フェノール系化合物(E11);2-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、2,6-ジカルボキシフェノール、並びに、2,4,6-トリカルボキシフェノール等のカルボキシル基を含むフェノール系化合物(E12);没食子酸等のカルボキシル基を含む多価フェノール化合物(E13);4-アミノフェノール等のアミノ基を含むフェノール系化合物(E14);クレゾール等のアルキル基を含むフェノール系化合物(E15);又はこれらの塩等が挙げられる。 Specific examples of the phenols (E1) represented by the general formula (11) include phenols in which all of X 1 to X 5 are hydrogen; polyhydric phenol compounds such as pyrocatechol, resorcinol, hydroquinone and pyrogallol (E11 ); Phenolic compounds containing carboxyl groups such as 2-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,6-dicarboxyphenol, and 2,4,6-tricarboxyphenol (E12); gallic acid, etc. A polyhydric phenol compound containing a carboxyl group (E13); a phenolic compound containing an amino group such as 4-aminophenol (E14); a phenolic compound containing an alkyl group such as cresol (E15); or a salt thereof. It is done.
これらのうち、研磨速度とパーティクルの付着防止性の観点で、多価フェノール系化合物(E11)、カルボキシル基を含む多価フェノール化合物(E13)が好ましく、さらに好ましくは、カルボキシル基を含む多価フェノール化合物(E13)であり、具体的に、没食子酸又はその塩である。 Of these, from the viewpoints of polishing rate and particle adhesion prevention, polyhydric phenol compounds (E11) and polyhydric phenol compounds containing carboxyl groups (E13) are preferred, and more preferred are polyhydric phenols containing carboxyl groups. Compound (E13), specifically, gallic acid or a salt thereof.
レダクトン類(E2)としては、分子内に下記一般式(12)で表されるケトエンジオール基を有する化合物であればよい。 The reductones (E2) may be any compound having a ketoenediol group represented by the following general formula (12) in the molecule.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
レダクトン類(E2)の具体例としては、アスコルビン酸(L-体、DL-体、D-体)、イソアスコルビン酸、エリソルビン酸、若しくは、これらのエステル(L-アスコルビン酸硫酸エステル、L-アスコルビン酸リン酸エステル、L-アスコルビン酸2-グルコシド、L-アスコルビン酸パルミチン酸エステル、テトライソパルミチン酸L-アスコルビル、アスコルビン酸イソパルミネート、エリソルビン酸リン酸エステル、エリソルビン酸パルミチン酸エステル、テトライソパルミチン酸エリソビル等);又はこれらの塩等が挙げられる。 Specific examples of reductones (E2) include ascorbic acid (L-form, DL-form, D-form), isoascorbic acid, erythorbic acid, or esters thereof (L-ascorbic acid sulfate, L-ascorbine). Acid phosphate ester, L-ascorbic acid 2-glucoside, L-ascorbic acid palmitic acid ester, tetraisopalmitic acid L-ascorbyl, ascorbic acid isopalmitate, erythorbic acid phosphoric acid ester, erythorbic acid palmitic acid ester, tetraisopalmitin Erysovir acid); or a salt thereof.
これらのうち、研磨速度とパーティクルの付着防止性の観点で、L-アスコルビン酸、イソアスコルビン酸、L-アスコルビン酸のエステル若しくはイソアスコルビン酸のエステル、又は、それらの塩が好ましく、さらに好ましくは、L-アスコルビン酸又はその塩である。 Of these, L-ascorbic acid, isoascorbic acid, esters of L-ascorbic acid or esters of isoascorbic acid, or salts thereof are preferred from the viewpoint of polishing rate and particle adhesion prevention, and more preferably L-ascorbic acid or a salt thereof.
上記(E1)及び(E2)の塩としては、例えばアルカリ金属塩(ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(カルシウム塩、マグネシウム塩等)、アンモニウム塩、アミン塩又は4級アンモニウム塩が挙げられる。 Examples of the salts of (E1) and (E2) include alkali metal salts (sodium salts, potassium salts, etc.), alkaline earth metal salts (calcium salts, magnesium salts, etc.), ammonium salts, amine salts, or quaternary ammonium salts. Is mentioned.
使用時における有機還元剤(E)の研磨液中の濃度は、パーティクルの付着防止性の観点から0.01~1重量%であることが好ましい。 The concentration of the organic reducing agent (E) in the polishing liquid during use is preferably 0.01 to 1% by weight from the viewpoint of preventing adhesion of particles.
本発明の研磨液には、前述の物質以外に、無機酸(硝酸、硫酸、リン酸等)、キレート剤(ホスホン酸系キレート剤[ヒドロキシエチリデンジホスホン酸(HEDP)又はその塩、メチルジホスホン酸、又はその塩、アミノトリ(メチレンホスホン酸)又はその塩等];カルボン酸系キレート剤[ジエチレントリアミンペンタ酢酸(DTPA)又はその塩、エチレンジアミンテトラ酢酸(EDTA)又はその塩、ヒドロキシエチルイミノ二酢酸(HIDA)又はその塩、クエン酸又はその塩、グルコン酸又はその塩など])、安定化剤(例えばp-トルエンスルホン酸塩等)、防錆剤(ベンゾトリアゾール、メルカプトベンゾトリアゾール、シクロヘキシルアミンエチレンオキサイド付加物等)等の添加剤を含有しても良い。これら添加剤は、従来研磨液として使用されてきたものを使用することができ、特に限定するものではない。 In addition to the aforementioned substances, the polishing liquid of the present invention includes inorganic acids (nitric acid, sulfuric acid, phosphoric acid, etc.), chelating agents (phosphonic acid-based chelating agents [hydroxyethylidene diphosphonic acid (HEDP) or salts thereof, methyl diphosphones). Acid or salt thereof, aminotri (methylenephosphonic acid) or salt thereof]; carboxylic acid chelating agent [diethylenetriaminepentaacetic acid (DTPA) or salt thereof, ethylenediaminetetraacetic acid (EDTA) or salt thereof, hydroxyethyliminodiacetic acid ( HIDA) or a salt thereof, citric acid or a salt thereof, gluconic acid or a salt thereof]), a stabilizer (for example, p-toluenesulfonate), a rust inhibitor (benzotriazole, mercaptobenzotriazole, cyclohexylamine ethylene oxide) An additive such as an adduct may be contained. As these additives, those conventionally used as polishing liquids can be used, and are not particularly limited.
本発明の研磨方法は、電子材料の製造工程において、本発明の電子材料用研磨液を用いて電子材料中間体を研磨する研磨方法である。 The polishing method of the present invention is a polishing method for polishing an electronic material intermediate using the polishing liquid for electronic material of the present invention in the production process of the electronic material.
本発明の別の実施態様は、研磨工程において、前述した研磨液を用いて電子材料中間体を研磨する工程を含む電子材料の製造方法である。 Another embodiment of the present invention is an electronic material manufacturing method including a step of polishing an electronic material intermediate using the above-described polishing liquid in the polishing step.
本発明の研磨液を用いた電子材料の製造工程(一部)の一例として、ハードディスクガラス基板のラッピング工程を例にとり、以下に述べる。
(1)研磨装置のキャリアにガラス基板をセットし、ダイヤモンド砥石が固定された研磨パッドが貼られた定盤でガラス基板を挟む。
(2)本発明の研磨液を定盤に供給しながら、荷重をかけ、定盤及びキャリアを回転させる。
(3)一定膜厚が研磨したことを確認し、回転を止める。
(4)ガラス基板をキャリアから取り出し、流水リンスする。
(5)流水リンス後、基板を乾燥する。
As an example of the manufacturing process (part) of the electronic material using the polishing liquid of the present invention, a lapping process of a hard disk glass substrate will be described below as an example.
(1) A glass substrate is set on a carrier of a polishing apparatus, and the glass substrate is sandwiched by a surface plate to which a polishing pad to which a diamond grindstone is fixed is attached.
(2) While supplying the polishing liquid of the present invention to the surface plate, a load is applied to rotate the surface plate and the carrier.
(3) After confirming that a certain film thickness has been polished, the rotation is stopped.
(4) Remove the glass substrate from the carrier and rinse with running water.
(5) After rinsing with running water, the substrate is dried.
また、別の例として、ハードディスクガラス基板のサブストレート工程を例にとり、以下に述べる。
(1)上記のラッピングされたガラス基板を研磨装置のキャリアにセットし、ポリウレタン製の研磨パッドが貼られた定盤でガラス基板を挟む。
(2)酸化セリウムを含む本発明の研磨液を供給しながら荷重をかけ、定盤及びキャリアを回転させる。
(3)一定膜厚が研磨したことを確認し、回転を止める。
(4)ガラス基板を流水リンスし、キャリアから取り出し、洗浄剤で浸漬洗浄もしくはスクラブ洗浄する。
(5)流水リンスしたガラス基板を研磨装置のキャリアにセットし、コロイダルシリカを含む本発明の研磨液を用いて上記と同様に研磨する。
(6)研磨後の基板を流水リンス、洗浄し、再び流水リンスする。
(7)乾燥、梱包する。
As another example, a substrate process for a hard disk glass substrate will be described below as an example.
(1) The above-mentioned lapped glass substrate is set on a carrier of a polishing apparatus, and the glass substrate is sandwiched by a surface plate to which a polyurethane polishing pad is attached.
(2) A load is applied while supplying the polishing liquid of the present invention containing cerium oxide, and the surface plate and the carrier are rotated.
(3) After confirming that a certain film thickness has been polished, the rotation is stopped.
(4) The glass substrate is rinsed with running water, taken out from the carrier, and dipped or scrubbed with a cleaning agent.
(5) A glass substrate rinsed with running water is set on a carrier of a polishing apparatus and polished in the same manner as described above using the polishing liquid of the present invention containing colloidal silica.
(6) Rinse and rinse the substrate after polishing and rinse with running water again.
(7) Dry and pack.
研磨装置としては、市販の研磨装置を使用することができ、特に限定するものではない。 A commercially available polishing apparatus can be used as the polishing apparatus, and is not particularly limited.
回転数、研磨時間、揺動数、荷重等の研磨条件は、従来の研磨液で研磨するときの条件を使用することができる。 As the polishing conditions such as the number of rotations, polishing time, number of oscillations, load, etc., the conditions for polishing with a conventional polishing liquid can be used.
以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。 Hereinafter, although an example and a comparative example explain the present invention further, the present invention is not limited to these. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.
製造例1 (ポリアクリル酸DBU塩の製造) 
温調及び攪拌が可能な反応容器にイソプロピルアルコール300部及び超純水100部を仕込み、反応容器内を窒素で置換後、75℃に昇温した。30rpmで撹拌下、アクリル酸の75%水溶液407部及びジメチル2,2’-アゾビスイソブチレートの15%イソプロピルアルコール溶液95部を3.5時間かけてそれぞれ同時に滴下した。
滴下終了後、75℃で5時間撹拌した後、系内が固化しないように超純水を間欠的に投入し、イソプロピルアルコールが検出できなくなるまで水とイソプロピルアルコールの混合物を留去した。得られたポリアクリル酸水溶液をDBU450部でpHが7.0になるまで中和し、超純水で濃度調整することにより、ポリアクリル酸DBU塩(AB-1)の40%水溶液を得た。
なお、ポリアクリル酸DBU塩のMwは10,000であった。
Production Example 1 (Production of polyacrylic acid DBU salt)
A reaction vessel capable of temperature control and stirring was charged with 300 parts of isopropyl alcohol and 100 parts of ultrapure water, and the reaction vessel was purged with nitrogen, and then heated to 75 ° C. While stirring at 30 rpm, 407 parts of a 75% aqueous solution of acrylic acid and 95 parts of a 15% isopropyl alcohol solution of dimethyl 2,2′-azobisisobutyrate were simultaneously added dropwise over 3.5 hours.
After completion of the dropwise addition, the mixture was stirred at 75 ° C. for 5 hours, and then ultrapure water was intermittently added so that the system did not solidify, and the mixture of water and isopropyl alcohol was distilled off until isopropyl alcohol could not be detected. The obtained polyacrylic acid aqueous solution was neutralized with 450 parts of DBU until the pH became 7.0, and the concentration was adjusted with ultrapure water to obtain a 40% aqueous solution of polyacrylic acid DBU salt (AB-1). .
The Mw of the polyacrylic acid DBU salt was 10,000.
製造例2 (ナフタレンスルホン酸ホルムアルデヒド縮合物DBU塩の製造)
攪拌付き反応容器にナフタレンスルホン酸21部、超純水を10部仕込み、撹拌下、系内の温度を80℃に保ちながら、37%ホルムアルデヒド8部を3時間かけて滴下した。滴下終了後、105℃に昇温して25時間反応した後、室温(約25℃)まで冷却して水浴中、25℃に調整しながらDBUを徐々に加え、pH6.5に調製した(DBU約15部使用)。超純水を加えて固形分を40%に調整して、アニオン性界面活性剤であるナフタレンスルホン酸ホルムアルデヒド縮合物のDBU塩(AB-2)の40%水溶液を得た。尚、(AB-2)のDBU塩のMwは、5,000であった。
Production Example 2 (Production of naphthalenesulfonic acid formaldehyde condensate DBU salt)
A reaction vessel with stirring was charged with 21 parts of naphthalenesulfonic acid and 10 parts of ultrapure water, and 8 parts of 37% formaldehyde was added dropwise over 3 hours while maintaining the temperature in the system at 80 ° C. with stirring. After completion of the dropwise addition, the temperature was raised to 105 ° C. and reacted for 25 hours, then cooled to room temperature (about 25 ° C.), DBU was gradually added while adjusting to 25 ° C. in a water bath, and adjusted to pH 6.5 (DBU). Use about 15 parts). Ultrapure water was added to adjust the solid content to 40% to obtain a 40% aqueous solution of DBU salt (AB-2) of naphthalenesulfonic acid formaldehyde condensate as an anionic surfactant. The Mw of the DBU salt of (AB-2) was 5,000.
製造例3 (ポリスチレンスルホン酸グアニジン塩の製造)
温調、還流が可能な攪拌付き反応容器にエチレンジクロライド100部を仕込み、攪拌下、窒素置換した後に90℃まで昇温し、エチレンジクロライドを還流させた。スチレン120部と、予め2,2’-アゾビスイソブチロニトリル1.7部をエチレンジクロライド20部に溶かした開始剤溶液を、それぞれ別々に6時間かけて反応容器内に滴下し、滴下終了後さらに1時間重合を行った。重合後、窒素シール下で20℃に冷却した後、温度を20℃にコントロールしながら無水硫酸105部を10時間かけて滴下し、滴下終了後さらに3時間スルホン化反応させた。反応後、溶媒を留去し固化させた後、超純水345部を投入して溶解し、ポリスチレンスルホン酸水溶液を得た。得られたポリスチレンスルホン酸水溶液をグアニジンでpHが7になるまで中和し、超純水で濃度調整することにより、アニオン性界面活性剤であるポリスチレンスルホン酸グアニジン塩(AB-3)の40%水溶液を得た。なお、(AB-3)のMwは、40,000、スルホン化率は97%であった。
Production Example 3 (Production of polystyrene sulfonic acid guanidine salt)
100 parts of ethylene dichloride was charged into a reaction vessel with stirring capable of temperature control and refluxing, and after purging with nitrogen under stirring, the temperature was raised to 90 ° C. to reflux ethylene dichloride. 120 parts of styrene and an initiator solution prepared by dissolving 1.7 parts of 2,2′-azobisisobutyronitrile in 20 parts of ethylene dichloride are dropped into the reaction vessel separately for 6 hours, and the dropping is completed. Thereafter, polymerization was further performed for 1 hour. After the polymerization, the mixture was cooled to 20 ° C. under a nitrogen seal, 105 parts of anhydrous sulfuric acid was added dropwise over 10 hours while controlling the temperature at 20 ° C., and a sulfonation reaction was further carried out for 3 hours after the completion of the addition. After the reaction, the solvent was distilled off and solidified, and then 345 parts of ultrapure water was added and dissolved to obtain a polystyrenesulfonic acid aqueous solution. The obtained polystyrene sulfonic acid aqueous solution was neutralized with guanidine until the pH reached 7, and the concentration was adjusted with ultrapure water, whereby 40% of polystyrene sulfonic acid guanidine salt (AB-3) as an anionic surfactant was obtained. An aqueous solution was obtained. In addition, Mw of (AB-3) was 40,000, and the sulfonation rate was 97%.
製造例4(ポリスチレンスルホン酸グアニジン塩の製造)
温調、還流が可能な攪拌付き反応容器にエチレンジクロライド80部を仕込み、攪拌下、窒素置換した後に90℃まで昇温し、エチレンジクロライドを還流させた。スチレン200部と、予め2,2’-アゾビスイソブチロニトリル1.0部をエチレンジクロライド20部に溶かした開始剤溶液を、それぞれ別々に6時間かけて反応容器内に滴下し、滴下終了後さらに1時間重合を行った。重合後、窒素シール下で20℃に冷却した後、温度を20℃にコントロールしながら無水硫酸105部を10時間かけて滴下し、滴下終了後さらに3時間スルホン化反応させた。反応後、溶媒を留去し固化させた後、超純水345部を投入して溶解し、ポリスチレンスルホン酸水溶液を得た。得られたポリスチレンスルホン酸水溶液をグアニジンでpHが7になるまで中和し、超純水で濃度調整することにより、アニオン性界面活性剤であるポリスチレンスルホン酸グアニジン塩(AB-4)の40%水溶液を得た。なお、(AB-4)のMwは、224,000、スルホン化率は97%であった。
Production Example 4 (Production of polystyrene sulfonic acid guanidine salt)
80 parts of ethylene dichloride was charged into a reaction vessel with stirring capable of temperature control and refluxing, and the temperature was raised to 90 ° C. after stirring and purging with nitrogen, thereby refluxing ethylene dichloride. 200 parts of styrene and an initiator solution prepared by dissolving 1.0 part of 2,2′-azobisisobutyronitrile in 20 parts of ethylene dichloride were dropped into the reaction vessel separately over 6 hours, and the addition was completed. Thereafter, polymerization was further performed for 1 hour. After the polymerization, the mixture was cooled to 20 ° C. under a nitrogen seal, 105 parts of anhydrous sulfuric acid was added dropwise over 10 hours while controlling the temperature at 20 ° C., and a sulfonation reaction was further carried out for 3 hours after the completion of the addition. After the reaction, the solvent was distilled off and solidified, and then 345 parts of ultrapure water was added and dissolved to obtain a polystyrenesulfonic acid aqueous solution. The obtained polystyrene sulfonic acid aqueous solution was neutralized with guanidine until the pH became 7, and the concentration was adjusted with ultrapure water, whereby 40% of polystyrene sulfonic acid guanidine salt (AB-4) as an anionic surfactant was obtained. An aqueous solution was obtained. In addition, Mw of (AB-4) was 224,000, and the sulfonation rate was 97%.
製造例5(ドデシルベンゼンスルホン酸DBU塩の製造)
温調可能で攪拌付きの反応容器に、ドデシルベンゼンスルホン酸(東京化成株式会社製、HLB:7.4)の10%水溶液100部を仕込み、25℃に温調、撹拌しながらDBU4.7部をゆっくり加え、そのまま10分間攪拌してドデシルベンゼンスルホン酸DBU塩(AB-5)の14%水溶液を得た(25℃におけるpH=6.5)。
Production Example 5 (Production of dodecylbenzenesulfonic acid DBU salt)
A reaction vessel with temperature control and stirring is charged with 100 parts of a 10% aqueous solution of dodecylbenzenesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd., HLB: 7.4), and 4.7 parts of DBU with temperature control and stirring at 25 ° C. Was slowly added and stirred for 10 minutes to obtain a 14% aqueous solution of dodecylbenzenesulfonic acid DBU salt (AB-5) (pH at 25 ° C. = 6.5).
製造例6 (脂肪族アミンエチレンオキサイド付加物の製造)
撹拌装置及び温度制御装置付きのステンレス製オートクレーブに、ラウリルアミンを185部(1.0モル部)、25%TMAH水溶液を3.6部(0.01モル部)を仕込み、100℃、4kPa以下の減圧下で30分間脱水した。エチレンオキサイド308部(7.0モル部)を、反応温度を100℃に制御しながら、3時間かけて滴下した後、100℃で3時間熟成した。さらに、2.6kPa以下の減圧下、150℃で2時間撹拌して、残存するTMAHを分解して除去し、非イオン性界面活性剤であるラウリルアミンエチレンオキサイド7モル付加物(D-2)490部を得た。
Production Example 6 (Production of aliphatic amine ethylene oxide adduct)
185 parts (1.0 mole part) of laurylamine and 3.6 parts (0.01 mole part) of 25% TMAH aqueous solution were charged into a stainless steel autoclave equipped with a stirrer and a temperature controller, and 100 ° C., 4 kPa or less. For 30 minutes under reduced pressure. 308 parts (7.0 mole parts) of ethylene oxide was added dropwise over 3 hours while controlling the reaction temperature at 100 ° C., and then aged at 100 ° C. for 3 hours. Further, the mixture was stirred at 150 ° C. for 2 hours under a reduced pressure of 2.6 kPa or less to decompose and remove the remaining TMAH, and a nonionic surfactant laurylamine ethylene oxide 7 mol adduct (D-2) 490 parts were obtained.
比較製造例1 (ポリアクリル酸Na塩の製造)
温調及び攪拌が可能な反応容器にイソプロピルアルコール300部及び超純水100部を仕込み、反応容器内を窒素で置換後、75℃に昇温した。30rpmで撹拌下、アクリル酸の75%水溶液407部及びジメチル2,2’-アゾビスイソブチレートの15%イソプロピルアルコール溶液95部を3.5時間かけてそれぞれ同時に滴下した。
滴下終了後、75℃で5時間撹拌した後、系内が固化しないように超純水を間欠的に投入し、イソプロピルアルコールが検出できなくなるまで水とイソプロピルアルコールの混合物を留去した。得られたポリアクリル酸水溶液を水酸化ナトリウム70部でpHが7.0になるまで中和し、超純水で濃度調整することにより、ポリアクリル酸Na塩(AB’-1)の40%水溶液を得た。
なお、ポリアクリル酸Na塩のMwは10,000であった。
Comparative Production Example 1 (Production of polyacrylic acid Na salt)
A reaction vessel capable of temperature control and stirring was charged with 300 parts of isopropyl alcohol and 100 parts of ultrapure water, and the reaction vessel was purged with nitrogen, and then heated to 75 ° C. While stirring at 30 rpm, 407 parts of a 75% aqueous solution of acrylic acid and 95 parts of a 15% isopropyl alcohol solution of dimethyl 2,2′-azobisisobutyrate were simultaneously added dropwise over 3.5 hours.
After completion of the dropwise addition, the mixture was stirred at 75 ° C. for 5 hours, and then ultrapure water was intermittently added so that the system did not solidify, and the mixture of water and isopropyl alcohol was distilled off until isopropyl alcohol could not be detected. The resulting polyacrylic acid aqueous solution was neutralized with 70 parts of sodium hydroxide until the pH became 7.0, and the concentration was adjusted with ultrapure water, whereby 40% of polyacrylic acid Na salt (AB′-1) was obtained. An aqueous solution was obtained.
In addition, Mw of polyacrylic acid Na salt was 10,000.
実施例1~49、及び、比較例1~19
表1~6に記載の組成で、合計100部となるように、各成分を配合し、25℃、マグネチックスターラーで40rpm、20分間攪拌して、本発明の研磨液及び比較のための研磨液を得た。
なお、表中の研磨粒子は以下のものを使用した。
コロイダルシリカスラリー:株式会社フジミインコーポレーテッド製「COMPOL80」(平均粒径80nm、有効成分濃度40重量%)
酸化セリウム:昭和電工株式会社製「HS-8005」(平均粒径0.5μm)
アルミナ:株式会社フジミインコーポレーテッド製「WA#20000」(平均粒径0.4μm)
ダイヤモンド:株式会社ナノファクター製「1/10PCS-WB2」(平均粒径100nm)
ポリオキシエチレンポリオキシプロピレン共重合体:三洋化成工業株式会社製ニューポールGEP2800
リン酸ジオレイルエステルNa塩:三洋化成工業株式会社製NAS-546
芳香族スルホン酸塩:ヒドロキシナフチルスルホン酸Na塩の試薬を用いた。
Examples 1 to 49 and Comparative Examples 1 to 19
Each component was blended so as to be a total of 100 parts with the composition described in Tables 1 to 6, and stirred for 20 minutes at 25 ° C. with a magnetic stirrer at 40 rpm to obtain the polishing liquid of the present invention and the polishing for comparison. A liquid was obtained.
The following abrasive particles were used in the table.
Colloidal silica slurry: “COMPOL80” manufactured by Fujimi Incorporated (average particle size 80 nm, active ingredient concentration 40% by weight)
Cerium oxide: “HS-8005” manufactured by Showa Denko KK (average particle size 0.5 μm)
Alumina: “WA # 20000” manufactured by Fujimi Incorporated (average particle size 0.4 μm)
Diamond: “1/10 PCS-WB2” manufactured by Nano Factor Co., Ltd. (average particle size 100 nm)
Polyoxyethylene polyoxypropylene copolymer: New Pole GEP2800 manufactured by Sanyo Chemical Industries
Dioleyl phosphate Na salt: NAS-546 manufactured by Sanyo Chemical Industries
Aromatic sulfonate: hydroxynaphthyl sulfonic acid Na salt reagent was used.
研磨液の性能評価として、スクラッチ低減性能、パーティクル付着低減性能及び研磨速度持続性能の評価試験は下記の方法で行った。
なお、本評価は大気からの汚染を防ぐため、クラス1,000(FED-STD-209D、米国連邦規格、1988年)のクリーンルーム内で実施した。
As evaluation of the performance of the polishing liquid, evaluation tests of scratch reduction performance, particle adhesion reduction performance, and polishing rate sustainability performance were performed by the following methods.
This evaluation was conducted in a clean room of class 1,000 (FED-STD-209D, US Federal Standard, 1988) to prevent contamination from the atmosphere.
[評価1 コロイダルシリカを配合した研磨液でガラス基板を研磨する場合]
<スクラッチ低減性能の評価>
実施例1~8の研磨液、比較例1~3の研磨液をさらにイオン交換水で10倍希釈し、試験液を得た。
(1)2.5インチの磁気ディスク用ガラス基板及びポリウレタン製の研磨パッド(フジボウ株式会社製、「H9900S」)を研磨装置(株式会社ナノファクター製、「FACT-200」)にセットした。
(2)回転数を30rpm、揺動回数を60回/分、押し付け圧を50g重/cmに設定し、上記の試験液を1mL/秒の速度で基板に注ぎながら5分間研磨した。
(3)上記の研磨したガラス基板を研磨装置から取り出し、1分間流水ですすいでリンスした後、研磨装置から基板を取り外して窒素ブローで乾燥させ、評価用基板を作成した。
(4)光を評価用基板上のスクラッチに当て、発生する微弱な散乱光を集光、増幅させることで表面の微細なスクラッチを強調し、検査することができる表面検査装置(ビジョンサイテック社製、「MicroMax VMX-6100SK」)を使って、評価用基板表面を任意に5箇所(10mm×10mm角)選んでその範囲内のスクラッチ数を数え、5箇所の平均値を算出した。
なお、比較例1(ブランク)の基板上スクラッチの平均数は50個であった。
[Evaluation 1 When polishing glass substrate with polishing liquid containing colloidal silica]
<Evaluation of scratch reduction performance>
The polishing liquids of Examples 1 to 8 and the polishing liquids of Comparative Examples 1 to 3 were further diluted 10 times with ion exchange water to obtain test liquids.
(1) A 2.5-inch glass substrate for a magnetic disk and a polyurethane polishing pad (manufactured by Fujibow Co., Ltd., “H9900S”) were set in a polishing apparatus (manufactured by Nano Factor Co., Ltd., “FACT-200”).
(2) The number of rotations was set to 30 rpm, the number of oscillations was set to 60 times / minute, the pressing pressure was set to 50 g weight / cm 2 , and the above test solution was polished for 5 minutes while being poured onto the substrate at a rate of 1 mL / second.
(3) The polished glass substrate was taken out from the polishing apparatus, rinsed with running water for 1 minute, rinsed, and then removed from the polishing apparatus and dried by nitrogen blowing to prepare an evaluation substrate.
(4) A surface inspection device (made by Vision Cytec Co., Ltd.) that emphasizes and inspects fine scratches on the surface by applying light to scratches on the evaluation substrate and condensing and amplifying the weak scattered light generated. Using “MicroMax VMX-6100SK”), the evaluation substrate surface was arbitrarily selected at five locations (10 mm × 10 mm square), the number of scratches within the range was counted, and the average value at the five locations was calculated.
The average number of scratches on the substrate of Comparative Example 1 (blank) was 50.
それぞれの基板上のスクラッチ数を比較例1(ブランク)の基板上スクラッチ数と比較し、下記の判断基準に従い基板表面のスクラッチ発生を抑える効果を評価し、判定した。
結果を表1に示す。
5:ブランク(50個)の20%未満
4:20%~40%未満
3:40%~60%未満
2:60%~80%未満
1:80%以上
The number of scratches on each substrate was compared with the number of scratches on the substrate of Comparative Example 1 (blank), and the effect of suppressing the generation of scratches on the substrate surface was evaluated and determined according to the following criteria.
The results are shown in Table 1.
5: Less than 20% of blanks (50 pieces) 4: 20% to less than 40% 3: 40% to less than 60% 2: 60% to less than 80% 1: 80% or more
<パーティクル付着低減性能の評価>
(1)スクラッチ低減性能の評価と同様の評価用基板を作成した。
(2)光を評価用基板上の残留パーティクルに当て、発生する微弱な散乱光を集光、増幅させることで強調し、表面の微細な残査を検査することができる上記の表面検査装置を使って、評価用基板表面を任意に5箇所(10mm×10mm角)選んでその範囲内のパーティクル数を画像解析ソフト(三谷商事株式会社製、WinRoof)で集計し、5箇所の平均値を算出した。
なお、比較例1(ブランク)の基板上パーティクル数は1950個であった。
<Evaluation of particle adhesion reduction performance>
(1) An evaluation substrate similar to the evaluation of scratch reduction performance was prepared.
(2) The above surface inspection apparatus capable of inspecting fine residues on the surface by applying light to residual particles on the evaluation substrate, emphasizing and amplifying the weak scattered light generated and amplifying it. Using the evaluation substrate surface arbitrarily, select 5 locations (10mm x 10mm square), and count the number of particles in the range with image analysis software (Mitani Corporation, WinRoof) to calculate the average value of 5 locations did.
The number of particles on the substrate of Comparative Example 1 (blank) was 1950.
それぞれの基板上のパーティクル数を比較例1の基板上パーティクル数と比較し、下記の判断基準に従い、研磨工程でのパーティクルの付着を低減する効果を評価し、判定した。
結果を表1に示す。
5:ブランク(1950個)の20%未満
4:20%~40%未満
3:40%~60%未満
2:60%~80%未満
1:80%以上
The number of particles on each substrate was compared with the number of particles on the substrate of Comparative Example 1, and the effect of reducing the adhesion of particles in the polishing process was evaluated and determined according to the following criteria.
The results are shown in Table 1.
5: Less than 20% of blanks (1950 pieces) 4: 20% to less than 40% 3: 40% to less than 60% 2: 60% to less than 80% 1: 80% or more
<研磨速度持続性能の評価>
(1)重量を測定した2.5インチの磁気ディスク用ガラス基板及びポリウレタン樹脂製の研磨パッド(フジボウ株式会社製、「H9900S」)を研磨装置(株式会社ナノファクター製、「FACT-200」)にセットした。
(2)回転数を30rpm、揺動回数を60回/分、押し付け圧を50g重/cmに設定し、上記の試験液を1mL/秒の速度で基板に注ぎながら30分間研磨した。
(3)上記の研磨したガラス基板を研磨装置から取り出し、1分間流水ですすいでリンスした後、窒素ブローで乾燥させ、重量測定を行った。
<Evaluation of polishing rate sustainability>
(1) A 2.5-inch glass disk for magnetic disk and a polishing pad made of polyurethane resin (manufactured by Fujibow Co., Ltd., “H9900S”) and a polishing apparatus (manufactured by Nano Factor Co., Ltd., “FACT-200”) Set.
(2) The number of rotations was set to 30 rpm, the number of oscillations was set to 60 times / minute, the pressing pressure was set to 50 g weight / cm 2 , and the above test solution was polished on the substrate at a rate of 1 mL / second for 30 minutes.
(3) The polished glass substrate was taken out from the polishing apparatus, rinsed with running water for 1 minute, rinsed with nitrogen blow, and weighed.
(1)~(3)を10回繰り返し、1回目と10回目の重量変化量を比較することで、下記の判断基準に従い、研磨速度持続性能の評価を判定した。(1回目の重量変化量/10回目の重量変化量×100)
結果を表1に示す。
5:80%以上
4:60%~80%未満
3:40%~60%未満
2:20%~40%未満
1:20%未満
(1) to (3) were repeated 10 times, and the weight change amount of the first time and the 10th time was compared, and the evaluation of the polishing rate sustainability performance was determined according to the following criteria. (First weight change / 10th weight change × 100)
The results are shown in Table 1.
5: 80% or more 4: 60% to less than 80% 3: 40% to less than 60% 2: 20% to less than 40% 1: less than 20%
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[評価2 コロイダルシリカを配合した研磨液でアルミ基板を研磨する場合]
<スクラッチ低減性能の評価>
実施例9~16の研磨液、比較例4~6の研磨液をさらにイオン交換水で10倍希釈し、試験液を得た。
(1)3.5インチの磁気ディスク用アルミ基板及びポリウレタン樹脂製の研磨パッド(フジボウ株式会社製、「H9900S」)を研磨装置(株式会社ナノファクター製、「FACT-200」)にセットした。
(2)回転数を30rpm、揺動回数を60回/分、押し付け圧を50g重/cmに設定し、上記の試験液を1mL/秒の速度で基板に注ぎながら5分間研磨した。
(3)上記の研磨したアルミ基板を研磨装置から取り出し、1分間流水ですすいでリンスした後、研磨装置から基板を取り外して窒素ブローで乾燥させ、評価用基板を作成した。
(4)光を評価用基板上のスクラッチに当て、発生する微弱な散乱光を集光、増幅させることで表面の微細なスクラッチを強調し、検査することができる表面検査装置(ビジョンサイテック社製、「MicroMax VMX-6100SK」)を使って、評価用基板表面を任意に5箇所(10mm×10mm角)選んでその範囲内のスクラッチ数を数え、5箇所の平均値を算出した。
なお、比較例4の基板上スクラッチの平均数は100個であった。
[Evaluation 2: When polishing an aluminum substrate with a polishing liquid containing colloidal silica]
<Evaluation of scratch reduction performance>
The polishing liquids of Examples 9 to 16 and the polishing liquids of Comparative Examples 4 to 6 were further diluted 10 times with ion-exchanged water to obtain test liquids.
(1) A 3.5-inch aluminum substrate for a magnetic disk and a polyurethane resin polishing pad (Fujibow Co., Ltd., “H9900S”) were set in a polishing apparatus (Nano Factor Co., Ltd., “FACT-200”).
(2) The number of rotations was set to 30 rpm, the number of oscillations was set to 60 times / minute, the pressing pressure was set to 50 g weight / cm 2 , and the above test solution was polished for 5 minutes while being poured onto the substrate at a rate of 1 mL / second.
(3) The polished aluminum substrate was taken out from the polishing apparatus, rinsed with running water for 1 minute, rinsed, and then removed from the polishing apparatus and dried by nitrogen blowing to prepare an evaluation substrate.
(4) A surface inspection device (made by Vision Cytec Co., Ltd.) that emphasizes and inspects fine scratches on the surface by applying light to scratches on the evaluation substrate and condensing and amplifying the weak scattered light generated. Using “MicroMax VMX-6100SK”), the evaluation substrate surface was arbitrarily selected at five locations (10 mm × 10 mm square), the number of scratches within the range was counted, and the average value at the five locations was calculated.
The average number of scratches on the substrate of Comparative Example 4 was 100.
それぞれの基板上のスクラッチ数を比較例4の基板上スクラッチ数と比較し、下記の判断基準に従い基板表面のスクラッチ発生を抑える効果を評価し、判定した。
結果を表2に示す。
5:ブランク(100個)の20%未満
4:20%~40%未満
3:40%~60%未満
2:60%~80%未満
1:80%以上
The number of scratches on each substrate was compared with the number of scratches on the substrate of Comparative Example 4, and the effect of suppressing the generation of scratches on the substrate surface was evaluated and determined according to the following criteria.
The results are shown in Table 2.
5: Less than 20% of blank (100 pieces) 4: 20% to less than 40% 3: 40% to less than 60% 2: 60% to less than 80% 1: 80% or more
<パーティクル付着低減性能の評価>
(1)スクラッチ低減性能の評価と同様の評価用基板を作成した。
(2)光を評価用基板上の残留パーティクルに当て、発生する微弱な散乱光を集光、増幅させることで強調し、表面の微細な残査を検査することができる上記の表面検査装置を使って、評価用基板表面を任意に5箇所(10mm×10mm角)選んでその範囲内のパーティクル数を画像解析ソフト(三谷商事株式会社製、WinRoof)で集計し、5箇所の平均値を算出した。
なお、比較例4の基板上パーティクル数は1200個であった。
<Evaluation of particle adhesion reduction performance>
(1) An evaluation substrate similar to the evaluation of scratch reduction performance was prepared.
(2) The above surface inspection apparatus capable of inspecting fine residues on the surface by applying light to residual particles on the evaluation substrate, emphasizing and amplifying the weak scattered light generated and amplifying it. Using the evaluation substrate surface arbitrarily, select 5 locations (10mm x 10mm square), and count the number of particles in the range with image analysis software (Mitani Corporation, WinRoof) to calculate the average value of 5 locations did.
The number of particles on the substrate of Comparative Example 4 was 1200.
それぞれの基板上のパーティクル数を比較例4の基板上パーティクル数と比較し、下記の判断基準に従い、研磨工程でのパーティクルの付着を低減する効果を評価し、判定した。
結果を表2に示す。
5:ブランク(1200個)の20%未満
4:20%~40%未満
3:40%~60%未満
2:60%~80%未満
1:80%以上
The number of particles on each substrate was compared with the number of particles on the substrate of Comparative Example 4, and the effect of reducing the adhesion of particles in the polishing process was evaluated and determined according to the following criteria.
The results are shown in Table 2.
5: Less than 20% of blanks (1200) 4: 20% to less than 40% 3: 40% to less than 60% 2: 60% to less than 80% 1: 80% or more
<研磨速度持続性能の評価>
(1)重量を測定した3.5インチの磁気ディスク用アルミ基板及びポリウレタン製の研磨パッド(フジボウ株式会社製、「H9900S」)を研磨装置(株式会社ナノファクター製、「FACT-200」)にセットした。
(2)回転数を30rpm、揺動回数を60回/分、押し付け圧を50g重/cmに設定し、上記の試験液を1mL/秒の速度で基板に注ぎながら30分間研磨した。
(3)上記の研磨したアルミ基板を研磨装置から取り出し、1分間流水ですすいでリンスした後、窒素ブローで乾燥させ、重量測定を行った。
<Evaluation of polishing rate sustainability>
(1) Weighed 3.5 inch aluminum substrate for magnetic disk and polyurethane polishing pad (manufactured by Fujibow Co., Ltd., “H9900S”) on a polishing apparatus (manufactured by Nano Factor Co., Ltd., “FACT-200”) I set it.
(2) The number of rotations was set to 30 rpm, the number of oscillations was set to 60 times / minute, the pressing pressure was set to 50 g weight / cm 2 , and the above test solution was polished on the substrate at a rate of 1 mL / second for 30 minutes.
(3) The polished aluminum substrate was taken out from the polishing apparatus, rinsed with running water for 1 minute, rinsed with nitrogen blow, and weighed.
(1)~(3)を10回繰り返し、1回目と10回目の重量変化量を比較することで、下記の判断基準に従い、研磨速度持続性能の評価を判定した。(1回目の重量変化量/10回目の重量変化量×100)
結果を表2に示す。
5:80%以上
4:60%~80%未満
3:40%~60%未満
2:20%~40%未満
1:20%未満
(1) to (3) were repeated 10 times, and the weight change amount of the first time and the 10th time was compared, and the evaluation of the polishing rate sustainability performance was determined according to the following criteria. (First weight change / 10th weight change × 100)
The results are shown in Table 2.
5: 80% or more 4: 60% to less than 80% 3: 40% to less than 60% 2: 20% to less than 40% 1: less than 20%
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[評価3 酸化セリウムを配合した研磨液でガラス基板を研磨する場合]
実施例17~24の研磨液、比較例7~9の研磨液をさらにイオン交換水で10倍希釈し、試験液を得た。
評価1と同様にして、スクラッチ低減性能、パーティクル付着低減性能、及び、研磨速度持続性能の評価を行った。
なお、比較例7(ブランク)の基板上スクラッチの平均数は70個であり、比較例7(ブランク)の基板上パーティクル数は1000個であった。結果を表3に示す。
[Evaluation 3 When polishing glass substrate with polishing liquid containing cerium oxide]
The polishing liquids of Examples 17 to 24 and the polishing liquids of Comparative Examples 7 to 9 were further diluted 10 times with ion-exchanged water to obtain test liquids.
In the same manner as in Evaluation 1, the scratch reduction performance, particle adhesion reduction performance, and polishing rate duration performance were evaluated.
The average number of scratches on the substrate of Comparative Example 7 (blank) was 70, and the number of particles on the substrate of Comparative Example 7 (blank) was 1000. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[評価4 アルミナを配合した研磨液でアルミ基板を研磨する場合]
実施例25~32の研磨液、比較例10~12の研磨液をさらにイオン交換水で10倍希釈し、試験液を得た。
評価2と同様にして、スクラッチ低減性能、パーティクル付着低減性能、及び、研磨速度持続性能の評価を行った。
なお、比較例10(ブランク)の基板上スクラッチ平均数は150個であり、比較例10(ブランク)の基板上パーティクル数は1000個であった。結果を表4に示す。
[Evaluation 4 When polishing aluminum substrate with polishing liquid containing alumina]
The polishing liquids of Examples 25 to 32 and the polishing liquids of Comparative Examples 10 to 12 were further diluted 10 times with ion-exchanged water to obtain test solutions.
In the same manner as in Evaluation 2, the scratch reduction performance, particle adhesion reduction performance, and polishing rate duration performance were evaluated.
The average number of scratches on the substrate of Comparative Example 10 (blank) was 150, and the number of particles on the substrate of Comparative Example 10 (blank) was 1000. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[評価5 ダイヤモンドを配合した研磨液でアルミ基板を研磨する場合]
実施例33~40の研磨液、比較例13~15の研磨液をさらにイオン交換水で10倍希釈し、試験液を得た。
評価2と同様にして、スクラッチ低減性能、パーティクル付着低減性能、及び、研磨速度持続性能の評価を行った。
なお、比較例13(ブランク)の基板上スクラッチ平均数は70個であり、比較例13(ブランク)の基板上パーティクル数は500個であった。結果を表5に示す。
[Evaluation 5: When polishing aluminum substrate with polishing liquid containing diamond]
The polishing liquids of Examples 33 to 40 and Comparative Examples 13 to 15 were further diluted 10 times with ion-exchanged water to obtain test liquids.
In the same manner as in Evaluation 2, the scratch reduction performance, particle adhesion reduction performance, and polishing rate duration performance were evaluated.
The average number of scratches on the substrate in Comparative Example 13 (blank) was 70, and the number of particles on the substrate in Comparative Example 13 (blank) was 500. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[評価6 砥石固定研磨パッドを使用し、ノニオン性界面活性剤を配合した研磨液でガラスを研磨(ガラスラッピング)する場合]
<パーティクル付着低減性能の評価>
実施例41~49の研磨液、比較例16~19の研磨液をさらにイオン交換水で10倍希釈し、試験液を得た。
(1)2.5インチの磁気ディスク用ガラス基板及びダイヤモンド砥石固定研磨パッド(住友3M株式会社製、「トライザクト677XA」)を研磨装置(株式会社ナノファクター製、「FACT-200」)にセットした。
(2)回転数を100rpm、揺動回数を60回/分、押し付け圧を100g重/cmに設定し、上記の試験液を1mL/秒の速度で基板に注ぎながら5分間研磨した。
(3)上記の研磨したガラス基板を研磨装置から取り出し、1分間流水ですすいでリンスした後、研磨装置から基板を取り外して窒素ブローで乾燥させ、評価用基板を作成した。
(4)光を評価用基板上の残留パーティクルに当て、発生する微弱な散乱光を集光、増幅させることで強調し、表面の微細な残査を検査することができる上記の表面検査装置を使って、評価用基板表面を任意に5箇所(10mm×10mm角)選んでその範囲内のパーティクル数を画像解析ソフト(三谷商事株式会社製、WinRoof)で集計し、5箇所の平均値を算出した。
なお、比較例16の基板上パーティクル数は4500個であった。
[Evaluation 6 When using a grinding wheel fixed polishing pad and polishing glass (glass wrapping) with a polishing liquid containing a nonionic surfactant]
<Evaluation of particle adhesion reduction performance>
The polishing liquids of Examples 41 to 49 and the polishing liquids of Comparative Examples 16 to 19 were further diluted 10-fold with ion exchange water to obtain test liquids.
(1) A 2.5-inch glass substrate for a magnetic disk and a diamond grinding wheel fixed polishing pad (manufactured by Sumitomo 3M Co., Ltd., “Trizact 677XA”) were set in a polishing apparatus (manufactured by Nano Factor Co., Ltd., “FACT-200”). .
(2) The number of rotations was set to 100 rpm, the number of oscillations was set to 60 times / minute, the pressing pressure was set to 100 g weight / cm 2 , and the above test solution was polished onto the substrate at a rate of 1 mL / second for 5 minutes.
(3) The polished glass substrate was taken out from the polishing apparatus, rinsed with running water for 1 minute, rinsed, and then removed from the polishing apparatus and dried by nitrogen blowing to prepare an evaluation substrate.
(4) The above surface inspection apparatus capable of inspecting fine residue on the surface by applying light to residual particles on the evaluation substrate, emphasizing and amplifying the weak scattered light generated, and amplifying it. Using the evaluation substrate surface arbitrarily, select 5 locations (10mm x 10mm square), and count the number of particles in the range with image analysis software (Mitani Corporation, WinRoof) to calculate the average value of 5 locations did.
The number of particles on the substrate of Comparative Example 16 was 4500.
それぞれの基板上のパーティクル数を比較例16の基板上パーティクル数と比較し、下記の判断基準に従い、研磨工程でのパーティクルの付着を低減する効果を評価し、判定した。
結果を表6に示す。
5:ブランク(4500個)の20%未満
4:20%~40%未満
3:40%~60%未満
2:60%~80%未満
1:80%以上
The number of particles on each substrate was compared with the number of particles on the substrate of Comparative Example 16, and the effect of reducing the adhesion of particles in the polishing process was evaluated and determined according to the following criteria.
The results are shown in Table 6.
5: Less than 20% of blanks (4500 pieces) 4: 20% to less than 40% 3: 40% to less than 60% 2: 60% to less than 80% 1: 80% or more
<研磨速度持続性能の評価>
(1)重量を測定した2.5インチの磁気ディスク用ガラス基板及びダイヤモンド砥石固定研磨パッド(住友3M株式会社製、「トライザクト677XA」)を研磨装置(株式会社ナノファクター製、「FACT-200」)にセットした。
(2)回転数を100rpm、揺動回数を60回/分、押し付け圧を100g重/cmに設定し、上記の試験液を1mL/秒の速度で基板に注ぎながら30分間研磨した。
(3)上記の研磨したガラス基板を研磨装置から取り出し、1分間流水ですすいでリンスした後、窒素ブローで乾燥させ、重量測定を行った。
<Evaluation of polishing rate sustainability>
(1) A 2.5 inch magnetic disk glass substrate and a diamond grinding wheel fixed polishing pad (manufactured by Sumitomo 3M Co., Ltd., “Trizact 677XA”) whose weight was measured were polished with a polishing apparatus (manufactured by Nano Factor Co., Ltd., “FACT-200”). ).
(2) The number of rotations was set to 100 rpm, the number of oscillations was set to 60 times / minute, the pressing pressure was set to 100 g weight / cm 2 , and the test solution was polished for 30 minutes while being poured onto the substrate at a rate of 1 mL / second.
(3) The polished glass substrate was taken out from the polishing apparatus, rinsed with running water for 1 minute, rinsed with nitrogen blow, and weighed.
(1)~(3)を2回繰り返し、1回目と2回目の重量変化量を比較することで、下記の判断基準に従い、研磨速度持続性能の評価を判定した。(1回目の重量変化量/2回目の重量変化量×100)
結果を表6に示す。
5:80%以上
4:60%~80%未満
3:40%~60%未満
2:20%~40%未満
1:20%未満
By repeating the steps (1) to (3) twice and comparing the first and second weight changes, the evaluation of the polishing rate sustainability was determined according to the following criteria. (First weight change / second weight change × 100)
The results are shown in Table 6.
5: 80% or more 4: 60% to less than 80% 3: 40% to less than 60% 2: 20% to less than 40% 1: less than 20%
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
実施例1~49の本発明の研磨液は、比較例1~19と比較してパーティクル付着量を大きく低減することができ、また研磨速度を持続することができることがわかる。また、実施例1~40の本発明の研磨液は、比較例1~15と比較してスクラッチ数を大きく低減することができる。
一方、比較例3、6、9、12、15、18の研磨液は、ブランクと比較すると一定のパーティクルの付着を抑える効果が多少は認められるが、高容量化のために許容できるパーティクルの付着量には及ばない。また、比較例3、6、9、12、15の研磨液は、ブランクと比較すると一定のスクラッチ発生を抑える効果が多少は認められるが、高容量化のために許容できるスクラッチ数には及ばない。
また、ベンゾトリアゾールを用いた比較例2、5、8、11、14の研磨液は、比較例1、4、7、10、13と比較して、ガラス基板研磨後のスクラッチ数がほとんど変わらず、スクラッチ発生とパーティクルの付着を抑える効果が小さい。
It can be seen that the polishing liquids of Examples 1 to 49 of the present invention can greatly reduce the amount of adhered particles and can maintain the polishing rate as compared with Comparative Examples 1 to 19. Further, the polishing liquids of the present invention of Examples 1 to 40 can greatly reduce the number of scratches compared to Comparative Examples 1 to 15.
On the other hand, the polishing liquids of Comparative Examples 3, 6, 9, 12, 15, and 18 have some effect of suppressing the adhesion of certain particles as compared with the blank, but the acceptable particle adhesion for high capacity is possible. It does not reach the amount. Further, the polishing liquids of Comparative Examples 3, 6, 9, 12, and 15 are somewhat effective in suppressing the occurrence of a certain scratch compared to the blank, but do not reach the number of scratches that can be allowed for higher capacity. .
Further, the polishing liquids of Comparative Examples 2, 5, 8, 11, and 14 using benzotriazole have almost the same number of scratches after polishing the glass substrate as compared with Comparative Examples 1, 4, 7, 10, and 13. The effect of suppressing the generation of scratches and particles is small.
本発明の電子材料用研磨液は、研磨工程中のスクラッチ発生を抑える効果に優れ、また、研磨でのパーティクル付着低減効果にも優れているため、製造工程に研磨工程を含む電子材料用研磨液、例えば磁気ディスク用ガラス基板、磁気ディスク用Ni-Pメッキされたアルミ基板、半導体用シリコン基板、LED用サファイヤ基板製造用の研磨液として有用である。
また、本発明の研磨液を用いて研磨する工程を含む電子材料の製造方法は、研磨中のスクラッチ発生が非常に少なく、また、研磨でのパーティクル付着が少ない製造方法であるので、磁気ディスク用ガラス基板、磁気ディスク用Ni-Pメッキされたアルミ基板、半導体用シリコン基板、LED用サファイヤ基板等の製造方法として利用できる。
The polishing liquid for electronic materials of the present invention is excellent in the effect of suppressing the occurrence of scratches during the polishing process, and is also excellent in the effect of reducing particle adhesion during polishing, so the polishing liquid for electronic materials including the polishing process in the manufacturing process For example, it is useful as a polishing liquid for producing glass substrates for magnetic disks, Ni-P plated aluminum substrates for magnetic disks, silicon substrates for semiconductors, and sapphire substrates for LEDs.
In addition, the method for producing an electronic material including the step of polishing using the polishing liquid of the present invention is a method for producing a magnetic disk because scratching during polishing is very small and particle adhesion during polishing is small. It can be used as a manufacturing method for glass substrates, Ni—P plated aluminum substrates for magnetic disks, silicon substrates for semiconductors, sapphire substrates for LEDs, and the like.

Claims (16)

  1. 研磨パッドを用いて電子材料中間体を研磨する工程で使用する研磨液用中和塩(AB)。
    (AB):分子内に少なくとも1つの酸基(X)を有する酸性化合物(A)と、プロトン付加反応における生成熱変化(Q2)が10~152kcal/molである窒素含有塩基性化合物(B)との塩であって、前記酸基(X)の酸解離反応における生成熱変化(Q1)が3~200kcal/molである中和塩。
    Neutralizing salt (AB) for polishing liquid used in the step of polishing an electronic material intermediate using a polishing pad.
    (AB): an acidic compound (A) having at least one acid group (X) in the molecule, and a nitrogen-containing basic compound (B) having a heat generation change (Q2) in the proton addition reaction of 10 to 152 kcal / mol And a neutralized salt having a change in heat of formation (Q1) in the acid dissociation reaction of the acid group (X) of 3 to 200 kcal / mol.
  2. 該中和塩(AB)の重量平均分子量が1,000~200,000である請求項1記載の中和塩。 The neutralized salt according to claim 1, wherein the weight average molecular weight of the neutralized salt (AB) is 1,000 to 200,000.
  3. 該中和塩(AB)がカルボキシル基を有するポリマー(A2-3)の塩である請求項1又は2記載の中和塩。 The neutralized salt according to claim 1 or 2, wherein the neutralized salt (AB) is a salt of a polymer (A2-3) having a carboxyl group.
  4. 該窒素含有塩基性化合物(B)が1,8-ジアザビシクロ[5.4.0]ウンデセン-7である請求項1~3のいずれか記載の中和塩。 The neutralized salt according to any one of claims 1 to 3, wherein the nitrogen-containing basic compound (B) is 1,8-diazabicyclo [5.4.0] undecene-7.
  5. 研磨パッドを用いて電子材料中間体を研磨する工程で使用する研磨液であって、請求項1~4のいずれか記載の中和塩(AB)及び水を必須として含有する電子材料用研磨液。 A polishing liquid for use in a step of polishing an electronic material intermediate using a polishing pad, comprising the neutralizing salt (AB) according to any one of claims 1 to 4 and water as essential components .
  6. さらに研磨粒子(C)を含む請求項5記載の電子材料用研磨液。 The polishing liquid for electronic materials according to claim 5, further comprising abrasive particles (C).
  7. 該研磨粒子(C)がコロイダルシリカ、酸化セリウム、アルミナ及びダイヤモンドからなる群から選ばれる1種以上である請求項6記載の電子材料用研磨液。 The polishing liquid for electronic materials according to claim 6, wherein the abrasive particles (C) are at least one selected from the group consisting of colloidal silica, cerium oxide, alumina and diamond.
  8. 電子材料用研磨液中の中和塩(AB)の濃度が0.01~4重量%、研磨粒子(C)の濃度が1~40重量%で、研磨粒子(C)に対する中和塩(AB)の割合が、0.001~0.1である請求項6又は7記載の電子材料用研磨液。 The concentration of neutralized salt (AB) in the polishing liquid for electronic materials is 0.01 to 4% by weight and the concentration of abrasive particles (C) is 1 to 40% by weight. The polishing liquid for electronic materials according to claim 6 or 7, wherein the ratio of) is 0.001 to 0.1.
  9. さらに炭素数8~18の高級アルコールアルキレン(炭素数2~4)オキサイド付加物(D11)、ポリオキシエチレンポリオキシプロピレン共重合体(D12)、炭素数8~36の脂肪族アミンのアルキレンオキサイド付加物(D13)及び多価アルコール型非イオン界面活性剤(D14)からなる群から選ばれる1種以上の界面活性剤(D)を含む請求項5~8のいずれか記載の電子材料用研磨液。 Further, higher alcohol alkylene (C2-4) oxide adduct (D11) having 8 to 18 carbon atoms, polyoxyethylene polyoxypropylene copolymer (D12), alkylene oxide addition of aliphatic amine having 8 to 36 carbon atoms The polishing slurry for electronic materials according to any one of claims 5 to 8, comprising at least one surfactant (D) selected from the group consisting of a product (D13) and a polyhydric alcohol type nonionic surfactant (D14). .
  10. 界面活性剤(D)が、炭素数8~36の脂肪族アミンのアルキレンオキサイド付加物(D13)である請求項9記載の電子材料用研磨液。 The polishing slurry for electronic materials according to claim 9, wherein the surfactant (D) is an alkylene oxide adduct (D13) of an aliphatic amine having 8 to 36 carbon atoms.
  11. 電子材料用研磨液中の中和塩(AB)の濃度が0.01~5重量%、界面活性剤(D)の濃度が0.01~60重量%で、界面活性剤(D)に対する中和塩(AB)の割合が、0.001~1である請求項9又は10記載の電子材料用研磨液。 The concentration of the neutralized salt (AB) in the polishing liquid for electronic materials is 0.01 to 5% by weight and the concentration of the surfactant (D) is 0.01 to 60% by weight. The polishing liquid for electronic materials according to claim 9 or 10, wherein the ratio of the sum salt (AB) is 0.001 to 1.
  12. さらに有機還元剤(E)を含有する請求項5~11のいずれか記載の電子材料用研磨液。 The polishing slurry for electronic materials according to any one of claims 5 to 11, further comprising an organic reducing agent (E).
  13. 該有機還元剤(E)がフェノール類(E1)及び/又はレダクトン類(E2)である請求項12記載の電子材料用研磨液。 The polishing liquid for electronic materials according to claim 12, wherein the organic reducing agent (E) is a phenol (E1) and / or a reductone (E2).
  14. 該電子材料用研磨液がハードディスク用ガラス基板又は表面がニッケル-リンメッキされたハードディスク用アルミ基板の製造に用いられる請求項5~13のいずれか記載の電子材料用研磨液。 The polishing liquid for electronic materials according to any one of claims 5 to 13, wherein the polishing liquid for electronic materials is used for producing a glass substrate for hard disks or an aluminum substrate for hard disks whose surface is nickel-phosphorous plated.
  15. 電子材料の製造工程において、請求項5~14のいずれかに記載の電子材料用研磨液を用いて電子材料中間体を研磨する研磨方法。 A polishing method for polishing an electronic material intermediate using the polishing liquid for electronic material according to any one of claims 5 to 14 in a manufacturing process of the electronic material.
  16. 製造工程中に研磨工程を含む電子材料の製造方法であって、請求項15記載の研磨方法で電子材料中間体を研磨する工程を含む電子材料の製造方法。 An electronic material manufacturing method comprising a polishing step in the manufacturing step, the method comprising the step of polishing an electronic material intermediate by the polishing method according to claim 15.
PCT/JP2012/066424 2011-06-29 2012-06-27 Neutral salt for use in polishing liquid, electronic material polishing liquid, polishing method, and method of manufacturing electronic materials WO2013002281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280031168.8A CN103619982B (en) 2011-06-29 2012-06-27 With the manufacture method of salt, electronic material lapping liquid, Ginding process and electronic material in lapping liquid use

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011144241 2011-06-29
JP2011-144241 2011-06-29
JP2011-146481 2011-06-30
JP2011146486 2011-06-30
JP2011146481 2011-06-30
JP2011-146486 2011-06-30
JP2011149227 2011-07-05
JP2011-149228 2011-07-05
JP2011149229 2011-07-05
JP2011149228 2011-07-05
JP2011-149229 2011-07-05
JP2011-149227 2011-07-05

Publications (1)

Publication Number Publication Date
WO2013002281A1 true WO2013002281A1 (en) 2013-01-03

Family

ID=47424171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066424 WO2013002281A1 (en) 2011-06-29 2012-06-27 Neutral salt for use in polishing liquid, electronic material polishing liquid, polishing method, and method of manufacturing electronic materials

Country Status (4)

Country Link
CN (1) CN103619982B (en)
MY (1) MY163071A (en)
TW (1) TWI513804B (en)
WO (1) WO2013002281A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196826A (en) * 2014-04-03 2015-11-09 昭和電工株式会社 Polishing composition, and method for polishing substrate using the polishing composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10640681B1 (en) * 2018-10-20 2020-05-05 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing composition and method for tungsten

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064632A (en) * 1999-06-23 2001-03-13 Jsr Corp Composition for abrasion and abrasion method
JP2002249762A (en) * 2001-02-27 2002-09-06 Sanyo Chem Ind Ltd Additive for polishing material
JP2004031442A (en) * 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method
JP2004051756A (en) * 2002-07-19 2004-02-19 Sanyo Chem Ind Ltd Abrasive composition for cmp process
JP2008182221A (en) * 2006-12-28 2008-08-07 Sanyo Chem Ind Ltd Cleaning agent for semiconductor substrate
JP2009087523A (en) * 2007-09-14 2009-04-23 Sanyo Chem Ind Ltd Cleaning agent for magnetic disk glass substrate
JP2009084568A (en) * 2007-09-14 2009-04-23 Sanyo Chem Ind Ltd Cleaning agent for magnetic disk substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155368A (en) * 1999-06-23 2008-07-10 Jsr Corp Polishing composition and polishing method
JP2002050595A (en) * 2000-08-04 2002-02-15 Hitachi Ltd Polishing method, wiring forming method and method for manufacturing semiconductor device
US7300480B2 (en) * 2003-09-25 2007-11-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. High-rate barrier polishing composition
JP2006066851A (en) * 2004-08-30 2006-03-09 Matsumura Sekiyu Kenkyusho:Kk Chemical machine polishing composition
WO2006025373A1 (en) * 2004-08-31 2006-03-09 Sanyo Chemical Industries, Ltd. Surfactant
JP5437571B2 (en) * 2006-12-26 2014-03-12 花王株式会社 Polishing fluid kit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064632A (en) * 1999-06-23 2001-03-13 Jsr Corp Composition for abrasion and abrasion method
JP2002249762A (en) * 2001-02-27 2002-09-06 Sanyo Chem Ind Ltd Additive for polishing material
JP2004031442A (en) * 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method
JP2004051756A (en) * 2002-07-19 2004-02-19 Sanyo Chem Ind Ltd Abrasive composition for cmp process
JP2008182221A (en) * 2006-12-28 2008-08-07 Sanyo Chem Ind Ltd Cleaning agent for semiconductor substrate
JP2009087523A (en) * 2007-09-14 2009-04-23 Sanyo Chem Ind Ltd Cleaning agent for magnetic disk glass substrate
JP2009084568A (en) * 2007-09-14 2009-04-23 Sanyo Chem Ind Ltd Cleaning agent for magnetic disk substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196826A (en) * 2014-04-03 2015-11-09 昭和電工株式会社 Polishing composition, and method for polishing substrate using the polishing composition

Also Published As

Publication number Publication date
TWI513804B (en) 2015-12-21
TW201307543A (en) 2013-02-16
CN103619982A (en) 2014-03-05
CN103619982B (en) 2015-09-30
MY163071A (en) 2017-08-15

Similar Documents

Publication Publication Date Title
JP2014141667A (en) Polishing liquid for electronic material
JP5117480B2 (en) Electronic material cleaner
US9481811B2 (en) Composition and method for polishing memory hard disks exhibiting reduced edge roll-off
TWI490332B (en) Alkaline detergent compositions for hard surfaces
TW201139306A (en) Preparation of synthetic quartz glass substrates
US20180244532A1 (en) Increased wetting of colloidal silica as a polishing slurry
JP5711589B2 (en) Magnetic disk substrate cleaning agent
CN106663619A (en) Composition for polishing silicon wafers
WO2014087995A1 (en) Method for cleaning glass substrate
KR20070100122A (en) Etchant composition for polishing semiconductor wafer, method for producing polishing composition using the same and polishing processing method
JP2015053101A (en) Abrasive material for electronic material and abrasive liquid
JP5575837B2 (en) Polishing liquid for electronic materials
JP2014142987A (en) Polishing liquid for electronic material
JP2015181079A (en) Cleaning agent composition for magnetic disk substrate
JP2012248247A (en) Method for manufacturing hard disk
WO2013002281A1 (en) Neutral salt for use in polishing liquid, electronic material polishing liquid, polishing method, and method of manufacturing electronic materials
JP2014125628A (en) Polishing liquid for electronic materials
JP5086450B2 (en) Magnetic disk substrate cleaning agent
JP2014141668A (en) Cleaner for electronic material
JP4322998B2 (en) Cleaning composition
JP2014124760A (en) Electronic material polishing liquid
JP2012197429A (en) Detergent for electronic material
JP2014127217A (en) Electronic material polishing liquid
JP2014124759A (en) Electronic material polishing liquid
JPWO2017061109A1 (en) Abrasive material for magnetic disk and method of manufacturing magnetic disk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805149

Country of ref document: EP

Kind code of ref document: A1