JP2006066851A - Chemical machine polishing composition - Google Patents

Chemical machine polishing composition Download PDF

Info

Publication number
JP2006066851A
JP2006066851A JP2004285428A JP2004285428A JP2006066851A JP 2006066851 A JP2006066851 A JP 2006066851A JP 2004285428 A JP2004285428 A JP 2004285428A JP 2004285428 A JP2004285428 A JP 2004285428A JP 2006066851 A JP2006066851 A JP 2006066851A
Authority
JP
Japan
Prior art keywords
polishing
copper
polishing composition
acid
anticorrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004285428A
Other languages
Japanese (ja)
Inventor
Junichi Yano
淳一 矢野
Seiichi Honda
誠一 本田
Masato Tanaka
真人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumura Oil Research Corp
Original Assignee
Matsumura Oil Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumura Oil Research Corp filed Critical Matsumura Oil Research Corp
Priority to JP2004285428A priority Critical patent/JP2006066851A/en
Publication of JP2006066851A publication Critical patent/JP2006066851A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing composition, especially a polishing composition for CMP wherein high polishing speed is attained in spite of not needing combination of polish abrasive grains, and faults such as dishing can be reduce though bad influence of an anticorrosive is excepted, and to provide a method for polishing copper or a copper alloy wiring board by especially applying the polishing composition for CMP to CMP of copper or the copper alloy wiring board. <P>SOLUTION: In the polishing composition, a water medium, an oxidant, a polish accelerator which has both polish accelerating nature and corrosion proof functionality, and a friction reduction agent if it is requested are contained, a polish abrasive grain is not blended, and furthermore, the anticorrosive is not necessarily blended. A polishing method of a metal (copper) surface which uses the polishing composition is also provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体、フォトマスク、各種メモリーハードディスク用基板およびヘッド、各種工業用部材の研磨に使用される研磨用組成物に関し、特に半導体産業等におけるデバイスウエハーの表面平坦化加工に最適な研磨用組成物に関するものである。さらに詳しくは、特に銅または銅合金配線基板の化学的機械研磨に適した研磨用組成物に関する。さらに、本発明は上記研磨用組成物を用いた特に銅配線基板の研磨方法に関する。  The present invention relates to a polishing composition used for polishing semiconductors, photomasks, substrates and heads for various memory hard disks, and various industrial members, and particularly for polishing that is optimal for surface planarization of device wafers in the semiconductor industry and the like. It relates to a composition. More particularly, the present invention relates to a polishing composition suitable for chemical mechanical polishing of a copper or copper alloy wiring board. Furthermore, this invention relates to the grinding | polishing method of the copper wiring board especially using the said polishing composition.

近年の半導体は、小型化・高性能化が進み、この進歩におけるキープロセスが配線の集積化、微細化、そして多層化である。これらの半導体を製造するプロセスにおいては、化学的機械研磨(CMP)工程が半導体配線基板表面を平坦化できることから注目され、半導体製造の必須技術として実用化が進み、CMP工程が非常に重要なプロセスになっている。さらに、金属配線材料としては配線の微細化および高速化を実現するために、従来のアルミニウム合金やタングステンに代えて低抵抗(高誘電率)物質である銅または銅合金配線が主流となっている。銅または銅合金配線を基板上に形成する方法としては、溝の形成された絶縁膜上にバリア金属等を介して、銅薄膜を堆積し、溝内に埋め込まれた部分以外の銅薄膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が一般に採用されている。  In recent years, semiconductors have been reduced in size and performance, and the key processes in this advance are the integration, miniaturization, and multilayering of wiring. In the process of manufacturing these semiconductors, a chemical mechanical polishing (CMP) process has attracted attention because it can flatten the surface of a semiconductor wiring substrate, and its practical application has progressed as an essential technology for semiconductor manufacturing, and the CMP process is a very important process. It has become. Furthermore, as a metal wiring material, copper or copper alloy wiring, which is a low resistance (high dielectric constant) material, is used in place of conventional aluminum alloy and tungsten in order to realize miniaturization and high speed of wiring. . As a method of forming copper or copper alloy wiring on the substrate, a copper thin film is deposited on the insulating film in which the groove is formed via a barrier metal or the like, and the copper thin film other than the portion embedded in the groove is CMP. In general, a so-called damascene method is employed in which a buried wiring is formed by removing the substrate by the above method.

金属配線用CMPに用いられる化学機械研磨用組成物(CMPスラリー、以降、研磨液と記載)は、研磨速度を向上させるため、シリカ、アルミナ、酸化セリウム等の研磨砥粒や研磨促進剤として有機酸や無機酸が一般的に使用される。また、ウエハー研磨時には、酸化剤として過酸化水素水等を添加することも一般的である。  Chemical mechanical polishing compositions used in CMP for metal wiring (CMP slurry, hereinafter referred to as polishing liquid) are organic as polishing abrasives and polishing accelerators such as silica, alumina and cerium oxide in order to improve the polishing rate. Acids and inorganic acids are generally used. It is also common to add hydrogen peroxide water or the like as an oxidizing agent during wafer polishing.

従来より、有機酸と銅による錯体を形成させ、配合した研磨砥粒でその錯体を取り除くことで研磨速度を発現するもの、銅を水溶性化させる物質の配合により研磨速度を発現するものなど、いくつかの方法が既に示されている。  Conventionally, forming a complex with an organic acid and copper, and developing the polishing rate by removing the complex with the blended abrasive grains, those expressing the polishing rate by compounding a substance that makes copper water-soluble, etc. Several methods have already been shown.

一方、銅配線は、Low−kやウルトラLoW−k(以下、ULow−k)と呼ばれる、低誘電率層間絶縁膜との組み合わせが主流となっているが、その機械的強度の低さから、膜破壊や膜剥がれの問題が顕在化している。  On the other hand, for copper wiring, a combination with a low dielectric constant interlayer insulating film called Low-k or Ultra Low-k (hereinafter referred to as UL-k) has become mainstream, but due to its low mechanical strength, The problem of film destruction and film peeling has become apparent.

この課題への対応として、低研磨圧力での研磨による膜へのダメージ低減および研磨中のウエハ−−パッド間のフリクションを低減することが有用であり、必須でもある。
Low−kの場合で約10kPa、ULow−kでは7kPa以下での研磨が必須と言われている。しかし、低い圧力で研磨することにより、研磨速度も低下するという課題が発生する。研磨速度の低下は研磨時間の延長、すなわち、生産性の低下を招くことになる。ところが、研磨速度を向上させるためには多量の研磨促進剤の添加や高い研磨砥粒濃度に設定しなければならない。多量の研磨促進剤の配合は、配線材料に対するケミカルエッチングを主要因とするディッシング(絶縁膜に形成された溝の内部に埋め込まれる金属配線の表面中央部が周辺部分よりも過剰に除去されて凹む現象:図2)の進行、研磨後の配線金属表面やプロセス環境の汚染、それに伴う過度の洗浄や多量の廃液の処理が必要となる。
ケミカルエッチングに起因するディッシングを抑制するためには、防食剤の配合が有用である。しかし、過度の防食剤の含有は、研磨速度の低下、ウエハー研磨面での研磨均一性の悪化を招く。さらに、研磨後の洗浄性にまで悪影響を及ぼすことが知られている。
In order to cope with this problem, it is useful and essential to reduce damage to the film due to polishing at a low polishing pressure and to reduce friction between the wafer and the pad during polishing.
Polishing at about 10 kPa in the case of Low-k and 7 kPa or less in UL-k is said to be essential. However, there is a problem that the polishing rate is reduced by polishing at a low pressure. A decrease in the polishing rate leads to an increase in the polishing time, that is, a decrease in productivity. However, in order to improve the polishing rate, it is necessary to add a large amount of polishing accelerator and to set a high polishing abrasive concentration. A large amount of polishing accelerator is compounded by dishing mainly due to chemical etching of the wiring material (the central part of the surface of the metal wiring embedded in the groove formed in the insulating film is removed more than the peripheral part and is recessed. Phenomenon: The progress of FIG. 2), contamination of the surface of the wiring metal after polishing and the process environment, excessive cleaning and treatment of a large amount of waste liquid are required.
In order to suppress dishing due to chemical etching, it is useful to add a corrosion inhibitor. However, containing an excessive anticorrosive agent causes a decrease in polishing rate and a deterioration in polishing uniformity on the wafer polishing surface. Further, it is known that the cleaning performance after polishing is adversely affected.

一方、研磨砥粒の過度の添加は、ディッシングやエロージョン(配線が密に並んだ部分の絶縁膜が薄くなってしまう現象:図3)の悪化、スクラッチ(研磨終了後、金属膜や絶縁膜上に発生する引っかき傷)の増加、研磨中のウエハー−パッド間のフリクション増大、廃液処理の手間増大などを招く。さらに、研磨砥粒の機械的な働きによってバリア金属が研磨・除去されやすく、その下層である絶縁膜が露出しやすくなる。その場合、除去された配線金属が絶縁膜中に拡散しやすいという欠点があり、主配線材料である銅の場合、他の配線材料に比べて絶縁膜中に拡散しやすく、リーク等の欠陥を生じやすい。  On the other hand, excessive addition of abrasive grains deteriorates dishing and erosion (the phenomenon that the insulating film in the part where the wirings are densely arranged becomes thin: FIG. 3), scratch (on the metal film or insulating film after polishing is completed). Increase in the number of scratches generated on the wafer, an increase in friction between the wafer and the pad during polishing, and an increase in labor for waste liquid treatment. Furthermore, the barrier metal is easily polished and removed by the mechanical action of the abrasive grains, and the underlying insulating film is easily exposed. In that case, there is a drawback that the removed wiring metal is likely to diffuse into the insulating film, and in the case of copper as the main wiring material, it is easier to diffuse into the insulating film than other wiring materials, and defects such as leakage are caused. Prone to occur.

従って、従来の機械的要素(研磨圧力や研磨砥粒)だけに頼るのではなく、化学的な効果を高める方向に進んでおり、その回答のひとつが研磨砥粒を全く含まない「砥粒フリー型」の研磨液である。「砥粒フリー型」の研磨液としては、銅を水溶性化させる物質の配合により研磨速度を発現するもの、有機酸とリン酸との相乗効果によって研磨性能を向上するなど、いくつかの方法が既に示されているが、課題も多い。  Therefore, instead of relying solely on conventional mechanical elements (polishing pressure and abrasive grains), we are moving toward increasing the chemical effect, and one of the answers is that "abrasive free" Type "polishing liquid. Abrasive-free type polishing liquids include several methods such as those that develop polishing speed by compounding substances that make copper water-soluble, and those that improve polishing performance by the synergistic effect of organic acid and phosphoric acid. Has already been shown, but there are many challenges.

従来の技術では、研磨速度を向上するため、有機酸や無機酸を用いることが提案されているが、これらを単独、または併用して用いた場合の顕著な研磨速度の向上は報告されていない。一方、これらの物質を用いて高い研磨速度を得るためには、研磨砥粒、もしくは配線金属に対して高いエッチング性を有する物質の配合が必須となっている。研磨砥粒の配合は前記課題を抱え、一方、配線金属に対するエッチング性を高くすることにより、研磨速度は向上するものの、配線金属腐食による配線容量の減少により、デバイスとしての性能が十分に発揮されないという重要な課題が存在する。  In the prior art, in order to improve the polishing rate, it has been proposed to use an organic acid or an inorganic acid, but no significant improvement in the polishing rate when used alone or in combination has been reported. . On the other hand, in order to obtain a high polishing rate using these materials, it is essential to mix a material having high etching properties with respect to the abrasive grains or the wiring metal. The composition of abrasive grains has the above-mentioned problems. On the other hand, the polishing rate is improved by increasing the etching property to the wiring metal, but the performance as a device is not sufficiently exhibited due to the decrease in the wiring capacity due to the wiring metal corrosion. There is an important issue.

また、2−キノリンカルボン酸を用い、水に難溶性で、かつ銅よりも機械的に脆弱な銅錯体を形成し、研磨速度とディッシングの両立を図るという方法が開示されている(例えば特許文献1参照)。しかし、この場合、銅錯体を除去するためには研磨砥粒の含有を必須としており、前記課題を解決できるものではない。  In addition, a method is disclosed in which 2-quinolinecarboxylic acid is used to form a copper complex that is hardly soluble in water and mechanically weaker than copper to achieve both polishing speed and dishing (for example, Patent Documents). 1). However, in this case, in order to remove the copper complex, the inclusion of abrasive grains is essential, and the above problem cannot be solved.

さらに、クエン酸などの有機酸とベンゾトリアゾールなどの防食剤に、過酸化水素などの酸化剤とを添加することにより、研磨砥粒の濃度を微小量に抑えたり、研磨砥粒を用いない研磨液も提案されている(例えば特許文献2参照)が、過度の銅の水溶性化はディッシングを招き、防食剤の配合が必須である一方、銅の水溶性化を抑制することが、研磨速度をも抑制してしまう。  Furthermore, by adding an organic acid such as citric acid and an anti-corrosion agent such as benzotriazole to an oxidizing agent such as hydrogen peroxide, the concentration of abrasive grains can be kept to a very small amount or polishing without using abrasive grains. Although liquids have also been proposed (see, for example, Patent Document 2), excessive water-solubilization of copper leads to dishing, and the addition of an anticorrosive is essential, while suppressing the water-solubilization of copper is a polishing rate. Will also be suppressed.

一方、リン酸と有機酸の併用により、研磨と砥粒を含有しなくとも高い研磨速度を発揮する研磨液も示されている(例えば特許文献3、特許文献4参照)が、防食剤の併用が必須となっている。  On the other hand, a polishing liquid that exhibits a high polishing rate without containing polishing and abrasive grains by using phosphoric acid and organic acid in combination is also shown (for example, see Patent Document 3 and Patent Document 4). Is mandatory.

特許第3192968号明細書  Japanese Patent No. 3192968 特許第3371775号明細書  Japanese Patent No. 3371775 特開2002−50595号公報  JP 2002-50595 A 特開2003−27304号公報  JP 2003-27304 A

したがって、本発明の課題は、前記課題の原因となる研磨砥粒の配合を必要としないのにも拘わらず高い研磨速度を達成するとともに、前記防食剤の悪影響を除外しながらもディッシングなどの不具合を低減できる研磨用組成物、特にCMP用研磨組成物を提供することにある。さらに、本発明の別の目的は、これらのCMP用研磨組成物を、特に銅または銅合金配線基板のCMPに適用して、銅または銅合金配線基板を研磨する方法を提供することにある。  Therefore, the problem of the present invention is to achieve a high polishing rate despite not requiring the blending of abrasive grains that cause the problem, and to eliminate defects such as dishing while excluding the adverse effects of the anticorrosive agent. An object of the present invention is to provide a polishing composition, particularly a CMP polishing composition, capable of reducing the above-mentioned. Furthermore, another object of the present invention is to provide a method for polishing a copper or copper alloy wiring board by applying these polishing compositions for CMP, particularly to CMP of a copper or copper alloy wiring board.

本発明者らは、先に示した課題の一因である防食剤を極力または一切配合しないという手段を用い、防食剤の悪影響を排除するとともに、研磨性能、特に低研磨圧力下での研磨性能を維持することを試みた。  The present inventors have used the means that the anticorrosive agent that contributes to the above-mentioned problems as much as possible or not at all, eliminates the adverse effects of the anticorrosive agent, and polishing performance, particularly polishing performance under low polishing pressure Tried to maintain.

さらには、研磨砥粒を配合しなくても研磨性能を発揮できる研磨液の開発に注力した。そこで、砥粒を必要とせず、形成された研磨促進剤と銅との反応物がパッドによる摩擦のみで容易に除去でき、一方、形成された反応物が水不溶性で、パッドが届かない配線凹部では、保護膜として機能する物質に着目した。鋭意検討した結果、相反する機能を保有している物質を確認し、この物質を用いることで、研磨砥粒および必ずしも防食剤を必要とせず、高い研磨速度を発揮するとともにディッシングをも抑制できる本発明を完成するに至った。  Furthermore, we focused on the development of a polishing liquid that can exhibit polishing performance without blending abrasive grains. Therefore, without the need for abrasive grains, the reaction product of the formed polishing accelerator and copper can be easily removed only by friction with the pad, while the formed reaction product is water-insoluble and the wiring recess that the pad does not reach So, we focused on substances that function as protective films. As a result of intensive studies, we confirmed a substance possessing contradictory functions, and by using this substance, the abrasive grains and the anticorrosive agent are not necessarily required, and a high polishing rate and dishing can be suppressed. The invention has been completed.

即ち、本発明は、下記(1)〜(9)に関わる。
(1)金属に対する研磨促進性と防食機能とを有する研磨促進剤、水性媒体および酸化剤を含み、研磨砥粒を含まない研磨用組成物である。
(2)また、さらに前記研磨用組成物は防食剤を含まないことを特徴とする。
(3)好ましくは前記防食剤は、トリアゾール化合物および/またはその誘導体である。
(4)好ましい実施態様では、前記研磨促進剤はカルボン酸および/またはその塩からなる研磨用組成物である。
(5)更に好ましい実施態様では前記カルボン酸および/またはその塩はシュウ酸である研磨用組成物である。
(6)また更に、前記研磨組成物は摩擦低減剤を含むことができる。
(7)好ましくは、前記、研磨摩擦低減剤は脂肪酸および/または脂肪酸のアミン塩である。
(8)また、本発明は上記の(1)〜(7)に記載の研磨用組成物を用いる金属の研磨方法である。
(9)好ましくは、前記金属は、銅もしくは銅合金を主成分とする。
That is, the present invention relates to the following (1) to (9).
(1) A polishing composition containing a polishing accelerator having a polishing acceleration property and anticorrosion function for metals, an aqueous medium and an oxidizing agent, and containing no abrasive grains.
(2) Further, the polishing composition does not contain an anticorrosive agent.
(3) Preferably, the anticorrosive is a triazole compound and / or a derivative thereof.
(4) In a preferred embodiment, the polishing accelerator is a polishing composition comprising a carboxylic acid and / or a salt thereof.
(5) In a more preferred embodiment, the carboxylic acid and / or salt thereof is a polishing composition which is oxalic acid.
(6) Still further, the polishing composition may contain a friction reducing agent.
(7) Preferably, the abrasive friction reducing agent is a fatty acid and / or an amine salt of a fatty acid.
(8) Moreover, this invention is a metal grinding | polishing method using the polishing composition as described in said (1)-(7).
(9) Preferably, the metal has copper or a copper alloy as a main component.

本発明によれば、先ず、高い研磨性能と防食機能を併せ持つ研磨促進剤を用いることで、必ずしも防食剤の配合を必要とせず、高い研磨速度を維持させることができる。
今後、開発が期待されるULow−kを用いたプロセスにおいて、低い研磨圧力下での使用を可能とし、絶縁膜へのダメージを低減するとともに、生産性の向上をも可能にする。また、この研磨促進剤を用いることで、研磨砥粒の配合も必要とせず、研磨砥粒の悪影響であるディッシング、エロージョンおよび研磨中のパッド−ウエハー間のフリクションを低減することができる。
According to the present invention, first, by using a polishing accelerator having both high polishing performance and anticorrosion function, it is not always necessary to add an anticorrosive agent, and a high polishing rate can be maintained.
In the future, a process using UL-k, which is expected to be developed, can be used under a low polishing pressure, thereby reducing damage to the insulating film and improving productivity. Further, by using this polishing accelerator, it is not necessary to mix abrasive grains, and dishing, erosion, and friction between the pad and the wafer during polishing, which are adverse effects of the abrasive grains, can be reduced.

一方、バリア金属に対する研磨速度は低く抑えられるため、きわめて優れた配線材料/バリア金属研磨選択比を得ることができる。さらに、配線金属への研磨砥粒の埋まり込みやスクラッチの発生を低減でき、デバイス生産効率の向上と共に洗浄工程をも簡素化することができる。また、研磨パッドの目詰まりも低減できるため、パッド面への研磨砥粒の残留による以後への影響を低減することができる。また、コンディショニング回数や時間の削減によるパッド寿命延長も可能で、大きなコスト低減を図ることが可能となる。  On the other hand, since the polishing rate for the barrier metal can be kept low, an extremely excellent wiring material / barrier metal polishing selection ratio can be obtained. Furthermore, embedding of abrasive grains in the wiring metal and generation of scratches can be reduced, and the cleaning process can be simplified while improving the device production efficiency. Further, since clogging of the polishing pad can be reduced, it is possible to reduce the subsequent influence due to the remaining abrasive grains on the pad surface. In addition, the pad life can be extended by reducing the number of times of conditioning and time, and a large cost reduction can be achieved.

本発明の研磨用組成物は、バリア金属として主に用いられるタンタル、窒化タンタル、チタン、窒化チタン、タングステン、窒化タングステンなどに対する研磨速度が極めて低く抑制され、バリア金属を安定的に存在させることで、除去された配線金属の絶縁膜への拡散を抑制すると共に、研磨の終点検出の容易化に大きく貢献できる。さらに、摩擦低減剤の配合により、研磨液そのものによる研磨中のパッド−ウエハー間のフリクション低減が可能となり、低圧での高い研磨性能と併せ、今後のデバイスおよびプロセス開発に多大な貢献が可能となる。  The polishing composition of the present invention has an extremely low polishing rate for tantalum, tantalum nitride, titanium, titanium nitride, tungsten, tungsten nitride and the like, which are mainly used as a barrier metal, and allows the barrier metal to exist stably. In addition to suppressing the diffusion of the removed wiring metal into the insulating film, it can greatly contribute to the easy detection of the polishing end point. In addition, the incorporation of a friction reducing agent makes it possible to reduce the pad-wafer friction during polishing with the polishing liquid itself, and can contribute greatly to future device and process development, along with high polishing performance at low pressure. .

本発明の研磨用組成物は、水性媒体、酸化剤、研磨促進性と防食機能を併せ持つ研磨促進剤および所望により摩擦低減剤を含有する一方、研磨砥粒を配合しない。更に必ずしも防食剤を配合しないことを特徴とする。研磨促進剤には、砥粒が含有されなくとも、形成された研磨促進剤と銅との反応物がパッドによる摩擦のみで容易に除去でき、一方、形成された反応物が水不溶性で、パッドが届かない配線凹部では、保護膜として機能する物質が求められる。本発明に使用する研磨促進剤は、カルボン酸および/またはその塩からなる成分が好ましい。  The polishing composition of the present invention contains an aqueous medium, an oxidizing agent, a polishing accelerator having both polishing acceleration and anticorrosion function, and optionally a friction reducing agent, but does not contain abrasive grains. Furthermore, the anticorrosive agent is not necessarily blended. Even if the polishing accelerator does not contain abrasive grains, the reaction product of the formed polishing accelerator and copper can be easily removed only by friction with the pad, while the formed reaction product is water-insoluble and the pad is insoluble. For wiring recesses that cannot be reached, a substance that functions as a protective film is required. The polishing accelerator used in the present invention is preferably a component composed of carboxylic acid and / or a salt thereof.

しかし、水酸基を含むオキシ酸は銅に対するエッチング性が高く、ディッシングの面で、研磨促進剤としては適さない。また、高い研磨速度を発揮させるためには、カルボキシル基を2個以上含む物質が望ましいが、3個以上になると、銅に対するエッチングが増加するため、カルボキシル基の数は2個が好ましい。  However, an oxyacid containing a hydroxyl group has a high etching property with respect to copper, and is not suitable as a polishing accelerator in terms of dishing. In order to exhibit a high polishing rate, a substance containing two or more carboxyl groups is desirable. However, when the number is three or more, etching with respect to copper increases, so the number of carboxyl groups is preferably two.

しかし、他の官能基、例えばアミノ基を含むと銅研磨速度を抑制することが分かっており、これらを含まない物質が適している。以上の点より、カルボン酸および/またはその塩からなる成分としては、シュウ酸、マロン酸および/またはその誘導体、コハク酸/またはその誘導体、フマル酸、マレイン酸/またはその誘導体、グルタル酸/またはその誘導体、アジピン酸/またはその誘導体、フタル酸および/またはその誘導体、およびこれらの混合物から選択される成分が好ましい。さらに、その中でもシュウ酸が最も好ましい。  However, it has been found that inclusion of other functional groups, such as amino groups, suppresses the copper polishing rate, and materials not containing these are suitable. In view of the above, the component consisting of carboxylic acid and / or its salt includes oxalic acid, malonic acid and / or its derivative, succinic acid / or its derivative, fumaric acid, maleic acid / or its derivative, glutaric acid / or Preferred are components selected from derivatives thereof, adipic acid / or derivatives thereof, phthalic acid and / or derivatives thereof, and mixtures thereof. Of these, oxalic acid is most preferred.

含有量は、求められる研磨性能によって選択されるが、水性媒体1000部に対し、0.5〜10重量部が好ましく、この範囲において必要とされる研磨速度の発現とディッシングの抑制を両立することができる。より好ましくは、2〜6重量部である。  The content is selected depending on the required polishing performance, but it is preferably 0.5 to 10 parts by weight with respect to 1000 parts of the aqueous medium, and both the expression of the polishing rate required in this range and the suppression of dishing are compatible. Can do. More preferably, it is 2 to 6 parts by weight.

研磨促進剤(代表的にはシュウ酸)の含有量が高い場合、金属(代表的には銅および銅合金)との反応物形成が促進され、反応物形成とパッドによる除去とのバランスが崩れる場合があり、除去しきれなかった反応物が残留・堆積することにより、強固な保護膜として残存し、研磨促進剤と銅との反応を阻害することで研磨性能の低下が発生する場合がある。また、反応が十分に行われないと、研磨速度の低下と共に、保護膜としての反応物形成も低下し、本来の性能が発揮されないことにも留意しなければならない。従って、研磨条件などに応じ、最適な研磨促進剤(代表的にはシュウ酸)含有量を設定することが重要である。  When the content of the polishing accelerator (typically oxalic acid) is high, the formation of a reaction product with metal (typically copper and copper alloy) is promoted, and the balance between the formation of the reaction product and the removal by the pad is lost. In some cases, reactants that could not be removed remain and accumulate, so that they remain as a strong protective film, and the polishing performance may deteriorate due to inhibition of the reaction between the polishing accelerator and copper. . In addition, it must be noted that if the reaction is not sufficiently performed, the formation of a reaction product as a protective film is reduced as the polishing rate is lowered, and the original performance is not exhibited. Therefore, it is important to set the optimum polishing accelerator (typically oxalic acid) content according to the polishing conditions.

特許第3192968号において、2−キノリンカルボン酸を用いることで、銅のエッチング抑制と研磨速度向上が示されているが、この場合、研磨砥粒の配合を必須としたものであり、本発明になんら影響を及ぼさない。  In Japanese Patent No. 3192968, by using 2-quinolinecarboxylic acid, copper etching suppression and polishing rate improvement are shown, but in this case, it is essential to blend abrasive grains, It has no effect.

また、有機酸を用いた研磨砥粒フリー型研磨液として、特許第3371775号が存在するが、この場合、銅を水溶性化することで研磨性能を発現しており、また、防食剤の含有を前提としているため、本発明の目的とは明らかに異なる。  In addition, there is Patent No. 3371775 as a polishing grain-free type polishing liquid using an organic acid, but in this case, polishing performance is expressed by making copper water-soluble, and containing an anticorrosive agent This is clearly different from the object of the present invention.

シュウ酸を用いた砥粒フリー型研磨液としては、本発明者らに係る発明として出願されている(特開2003−273044)。しかし、この発明は、リン酸とシュウ酸との併用による研磨性能向上を目的としたものであり、防食剤の含有を前提としたものである。シュウ酸の持つ、自己保護膜としての反応物形成によって、必ずしも防食剤の含有を前提としない本発明とは異なるものである。  As an abrasive-free type polishing liquid using oxalic acid, an application has been filed as an invention relating to the present inventors (Japanese Patent Laid-Open No. 2003-273044). However, the present invention aims to improve the polishing performance by using phosphoric acid and oxalic acid in combination, and is premised on containing an anticorrosive. The formation of a reaction product as a self-protecting film possessed by oxalic acid is different from the present invention which does not necessarily assume the inclusion of an anticorrosive agent.

さらに、研磨摩擦低減剤として、一般の潤滑剤に用いる脂肪酸および/または脂肪酸のアミン塩を用いることができる。好ましくは、炭素数が6〜18、さらには、8〜12の脂肪酸が望ましい。脂肪酸の含有量は、水性媒体1000部に対し、0.1〜200部、より好ましくは、0.5〜100部である。
また、脂肪酸の種類や濃度によっては、研磨液に溶解しない場合があり、この場合は、アミン等との塩を形成させることで、研磨液への溶解を容易にする。脂肪酸および/もしくは脂肪酸アミン塩の添加は、研磨速度に影響しない配合量においても、摩擦を低減する効果を発揮する。
Furthermore, fatty acid and / or amine salt of fatty acid used for a general lubricant can be used as a polishing friction reducing agent. Preferably, a fatty acid having 6 to 18 carbon atoms, more preferably 8 to 12 carbon atoms is desirable. The content of the fatty acid is 0.1 to 200 parts, more preferably 0.5 to 100 parts, with respect to 1000 parts of the aqueous medium.
Depending on the type and concentration of the fatty acid, it may not be dissolved in the polishing liquid. In this case, a salt with an amine or the like is formed to facilitate dissolution in the polishing liquid. Addition of a fatty acid and / or a fatty acid amine salt exhibits an effect of reducing friction even at a blending amount that does not affect the polishing rate.

本発明の研磨用組成物は任意の防食剤を含むことを許容する。防食剤としては、トリアゾール化合物および/またはその誘導体などの公知物質が極微量用いられ得る。しかしながら、本発明を一層際立たせる特徴は、防食剤、研磨砥粒を全く必要としない研磨用組成物を提供できることにある。すなわち、研磨砥粒や防食剤を含まない組成においても、高い研磨性能と優れた防食性能を両立できることにある。  The polishing composition of the present invention is allowed to contain any anticorrosive agent. As the anticorrosive, a very small amount of a known substance such as a triazole compound and / or a derivative thereof can be used. However, a feature that makes the present invention stand out further is that a polishing composition that does not require any anticorrosive and no abrasive grains can be provided. That is, even in a composition that does not contain abrasive grains or anticorrosive agents, it is possible to achieve both high polishing performance and excellent anticorrosion performance.

酸化剤は、過酸化物、硝酸、過塩素酸等を用いることができるが、過酸化水素が特に好ましい。この過酸化水素は、通常過酸化水素水として、研磨を実施する直前に他の研磨組成物成分に添加して用いられる。過酸化水素含有量は、水性媒体1000部に対し、10〜100部が好ましい。  As the oxidizing agent, peroxide, nitric acid, perchloric acid and the like can be used, and hydrogen peroxide is particularly preferable. This hydrogen peroxide is usually used as a hydrogen peroxide solution added to other polishing composition components immediately before polishing. The hydrogen peroxide content is preferably 10 to 100 parts with respect to 1000 parts of the aqueous medium.

本発明の化学的機械研磨組成物に用いる水性媒体としては、代表的には水であり、金属イオン等の夾雑物を含まないものが望ましく、イオン交換水あるいは夾雑物を高度に除去した純水が好ましく用いられる。  The aqueous medium used in the chemical mechanical polishing composition of the present invention is typically water and preferably does not contain impurities such as metal ions, and ion-exchanged water or pure water from which impurities are highly removed. Is preferably used.

また、本発明の研磨用組成物は、ナトリウム、カリウム、カルシウム、マグネシウム、銅、鉄などの金属および金属イオンは含まないものとすることが好ましい。これらの金属および金属イオンは、絶縁膜の絶縁特性を劣化させ、リークなどの障害をもたらし、デバイスの信頼性にとって好ましくない。上記構成は、例えば水性媒体として、超純水を用いたり、研磨用組成物に配合する成分を、上記金属を含まないものを選択することによって達成される。  Moreover, it is preferable that the polishing composition of the present invention does not contain metals such as sodium, potassium, calcium, magnesium, copper, and iron and metal ions. These metals and metal ions deteriorate the insulating properties of the insulating film, cause a failure such as leakage, and are not preferable for device reliability. The said structure is achieved, for example by using an ultrapure water as an aqueous medium, or selecting the component mix | blended with polishing composition which does not contain the said metal.

さらに、本発明の研磨用組成物を銅配線基板のCMPに適用することによって、銅または銅合金配線基板を効果的に研磨することができ、本CMP工程は、銅または銅合金配線基板の製造に有用である。  Furthermore, by applying the polishing composition of the present invention to CMP of a copper wiring board, the copper or copper alloy wiring board can be effectively polished, and this CMP step is a process for producing a copper or copper alloy wiring board. Useful for.

以下、研磨液検討における例および製造された研磨用組成物の特性について説明する。
しかしながら、本発明は以下に示す実施例に限定されるものではない。
当業者によって容易に達成し得る本発明のいかなる改良または変更も、本発明に包括されるものである。
Hereinafter, examples in the investigation of the polishing liquid and characteristics of the produced polishing composition will be described.
However, the present invention is not limited to the following examples.
Any improvement or modification of the present invention that can be easily achieved by those skilled in the art is intended to be covered by the present invention.

先ず、研磨促進剤としての各物質の研磨性能・特性の把握を目的に、1000部の純水に、各物質を5重量部および10重量部を添加し、これを攪拌機で混合した後、研磨液を得た。  First, for the purpose of grasping the polishing performance and characteristics of each substance as a polishing accelerator, 5 parts by weight and 10 parts by weight of each substance are added to 1000 parts of pure water, and this is mixed with a stirrer and then polished. A liquid was obtained.

なお、本発明の研磨促進剤としてはシュウ酸を用い、比較として、研磨促進剤として既に公知となっている物質(キナルジン酸、オキシ酸としてクエン酸および酒石酸、アミノ酸としてのグリシンおよびヒスチジン)を用いた。  In addition, oxalic acid is used as the polishing accelerator of the present invention, and for comparison, substances already known as polishing accelerators (quinaldic acid, citric acid and tartaric acid as oxyacids, glycine and histidine as amino acids) are used. It was.

このようにして調製された研磨液に、酸化剤として、過酸化水素(31重量%の過酸化水素水を使用)を100部もしくは10部添加し、下記の研磨条件で銅成膜ウエハーの研磨を行った。なお、過酸化水素濃度に関し、既に確認されている各物質の研磨性能を最大限に発揮できる濃度を用いた。  To the polishing liquid thus prepared, 100 parts or 10 parts of hydrogen peroxide (31% by weight of hydrogen peroxide water) is added as an oxidizing agent, and polishing of a copper film-formed wafer is performed under the following polishing conditions. Went. In addition, regarding the hydrogen peroxide concentration, a concentration capable of maximizing the polishing performance of each substance already confirmed was used.

〔研磨試験機および研磨条件〕
研磨装置として、CMP実験機(定盤径610mm)を使用した。
研磨条件は、以下のとおりである。
定盤の回転数:75rpm
キャリアの回転数:78rpm
研磨圧力:7kPa(1psi)および14kPa(2psi)
研磨時間:1分間
スラリー供給量:150ml/min
ポリッシングパッド:IC−1000/SUBA400(ロデール・ニッタ社製)
[Polishing tester and polishing conditions]
As a polishing apparatus, a CMP experimental machine (plate diameter 610 mm) was used.
The polishing conditions are as follows.
Surface plate speed: 75 rpm
Carrier rotation speed: 78 rpm
Polishing pressure: 7 kPa (1 psi) and 14 kPa (2 psi)
Polishing time: 1 minute Slurry supply amount: 150 ml / min
Polishing pad: IC-1000 / SUBA400 (Rodel Nitta)

研磨速度に関する研磨液組成を表1に、評価結果を表2に示す。  Table 1 shows the polishing liquid composition relating to the polishing rate, and Table 2 shows the evaluation results.

Figure 2006066851
Figure 2006066851

Figure 2006066851
Figure 2006066851

研磨促進剤濃度が0.5%の場合、シュウ酸、オキシ酸であるクエン酸および酒石酸が実用的な研磨速度を示し、特にシュウ酸は、他物質と比較し、低研磨圧力下でも極めて優れた銅研磨速度を示した。
一方、その他の物質を用い、実用的な研磨速度を発揮させるためには、添加濃度を高めたり、研磨砥粒の配合が必要である。しかし、前記方法は、本発明の目指す方向とは異なるものである。
When the polishing accelerator concentration is 0.5%, oxalic acid, oxyacids such as citric acid and tartaric acid show practical polishing rates, especially oxalic acid is extremely superior even under low polishing pressure compared to other substances. The copper polishing rate was shown.
On the other hand, in order to use other substances and exhibit a practical polishing rate, it is necessary to increase the addition concentration or to mix abrasive grains. However, the method is different from the intended direction of the present invention.

次に、防食剤として、一般的に用いられているベンゾトリアゾールを配合した場合の銅研磨速度を比較した。評価を行った研磨液組成を表3に、評価結果を表4に示す。  Next, the copper polishing rate was compared when benzotriazole, which is generally used as an anticorrosive, was blended. Table 3 shows the evaluated polishing liquid composition, and Table 4 shows the evaluation results.

Figure 2006066851
Figure 2006066851

Figure 2006066851
Figure 2006066851

ベンゾトリアゾールを配合した場合、シュウ酸、クエン酸および酒石酸を除く物質は、銅研磨速度が著しく低下し、実用的な研磨性能を示さない。
なお、クエン酸および酒石酸は、ベンゾトリアゾール濃度が高まっても、銅研磨速度の低下が少なく、本評価で検討したベンゾトリアゾール濃度領域では、銅の水溶性化が維持されていることが示唆される。
When benzotriazole is blended, substances other than oxalic acid, citric acid and tartaric acid have a significantly reduced copper polishing rate and do not exhibit practical polishing performance.
It should be noted that citric acid and tartaric acid showed little decrease in copper polishing rate even when the benzotriazole concentration increased, suggesting that the water-solubilization of copper was maintained in the benzotriazole concentration region examined in this evaluation. .

CMPにおける研磨機構は、研磨促進剤と銅との反応物を除去することで発現する。つまり、研磨促進剤と銅との反応が非常に重要であることが一般に知られている。
銅との反応性を促進させるためには、物質の持つカルボキシル基が多い方、具体的には2個以上保有する物質が有利である傾向を示す。ただし、他の官能基をも併せ持つ場合、その特性に左右されることもあるため、全てに当てはまる訳ではない。
上記より、銅研磨速度評価において、研磨砥粒フリー型研磨液に使用できる可能性のある物質を確認できた。
The polishing mechanism in CMP is manifested by removing a reaction product between a polishing accelerator and copper. That is, it is generally known that the reaction between the polishing accelerator and copper is very important.
In order to promote the reactivity with copper, a substance having more carboxyl groups, specifically, a substance having two or more possesses a tendency to be advantageous. However, when it has other functional groups, it may be influenced by its characteristics, so it does not apply to all.
From the above, in the copper polishing rate evaluation, it was possible to confirm substances that could be used for the polishing abrasive-free polishing liquid.

しかし、本用途で用いる場合、研磨速度だけではなく、ディッシングや研磨中のパッド−ウエハー間のフリクションなどにおいても優れた性能が求められる。
ディッシングに関し、その主要因である銅に対するエッチング性に着目し、腐食電気化学測定方法の分極抵抗法およびインピーダンス法を用い、研磨促進剤としての各物質を評価した。
However, when used in this application, excellent performance is required not only in polishing speed but also in dishing and pad-wafer friction during polishing.
With regard to dishing, focusing on the etching property to copper, which is the main factor, each substance as a polishing accelerator was evaluated using the polarization resistance method and the impedance method of the corrosion electrochemical measurement method.

〔評価試験機および評価条件〕
評価装置:ソーラトロン社製1280B
電極:銅試験片(表面積1cm)になるように、エポキシ樹脂、シリコンシーラントで周囲を絶縁した物を用いた。
電極の前処理:タフピッチ銅を最終的に♯1000で研磨し、アセトン、ヘキサン洗浄により脱脂後、硝酸水溶液に浸漬し、純水洗浄して用いた。
[Evaluation tester and evaluation conditions]
Evaluation device: 1280B manufactured by Solartron
Electrode: A copper test piece (surface area 1 cm 2 ) was used that was insulated with epoxy resin and silicon sealant.
Electrode pretreatment: Tough pitch copper was finally polished at # 1000, degreased by washing with acetone and hexane, immersed in an aqueous nitric acid solution, and washed with pure water.

電気化学的な腐食評価おける結果(インピーダンス法)を表5に、シュウ酸およびキナルジン酸の分極抵抗法における経時変化を表6に示す。  Table 5 shows the results (impedance method) in electrochemical corrosion evaluation, and Table 6 shows changes with time in the polarization resistance method of oxalic acid and quinaldic acid.

Figure 2006066851
Figure 2006066851

Figure 2006066851
Figure 2006066851

電気化学的な腐食性評価法について簡単に説明を加える。腐食とは電子の授受が行われる反応であり、抵抗が高くなると電子の授受が行われにくくなる。従って、腐食を抑制するには、電気を流れにくくすることが1つの方法と言える。  A brief description of the electrochemical corrosion evaluation method will be given. Corrosion is a reaction in which electrons are exchanged. When resistance increases, electrons become difficult to exchange. Therefore, it can be said that one way to suppress corrosion is to make it difficult for electricity to flow.

電気化学的腐食評価方法の1つとして、分極抵抗法は、研磨液に銅を浸漬した際に示す自然電位を中心に、±10mV程度の電位を掃引する。そのときの電流から、E(電位)/I(電流密度)プロットをし、そのE/Iプロットは通常直線になるため、その傾きから抵抗値を求める方法である。本方法は直流電圧により実施される。
本評価において、抵抗が大きいことは電気が流れにくく、従って、腐食が抑制されていることを示す。しかし、抵抗の中には防食性とは関係なく、測定法による抵抗(例えば、対極(白金など)での気体発生に起因する場合など)や溶液抵抗も計測されてしまうため、有用な抵抗であるのか見極めるために周波数応答性をインピーダンス法で確認し、一般的に表面に皮膜が形成すると考えられる10kHz未満にあるか、また目的の抵抗が分極抵抗のうちのどの程度の割合かなどを確認する必要がある。
As one of the electrochemical corrosion evaluation methods, the polarization resistance method sweeps a potential of about ± 10 mV around a natural potential shown when copper is immersed in a polishing liquid. This is a method of plotting E (potential) / I (current density) from the current at that time, and the E / I plot is usually a straight line, so that the resistance value is obtained from the slope. The method is performed with a DC voltage.
In this evaluation, a large resistance indicates that electricity does not flow easily, and therefore corrosion is suppressed. However, some resistances are not related to anticorrosion properties, but are also measured by resistance (for example, due to gas generation at the counter electrode (such as platinum)) and solution resistance. In order to determine whether it is present, the frequency response is confirmed by the impedance method, and it is generally confirmed that the film is formed on the surface at less than 10 kHz, and the target resistance is the proportion of the polarization resistance. There is a need to.

なお、本評価は、測定時間が10秒以内など、短時間で完了させることが可能であるため、研磨促進剤と銅の反応と反応物除去が連続的に行われるCMPにおける防食機構を把握する1つの方法として有用と言える。ただし、前述に示した溶液抵抗など全ての抵抗も合わせて測定してしまうことを考慮する必要がある。  In addition, since this evaluation can be completed in a short time, for example, within 10 seconds, grasp the anticorrosion mechanism in CMP in which the reaction between the polishing accelerator and copper and the removal of the reactant are continuously performed. It can be said that it is useful as one method. However, it is necessary to consider that all the resistances such as the solution resistance described above are also measured.

続いて、インピーダンス法について簡単に説明を加える。本法は交流電圧(通常5〜10mV)を印加し、交流電圧の周波数を、例えば、高周波(20kHz)から低周波(0.01Hz)まで掃引し、実数成分、虚数成分のベクトルをプロットしたナイキスト線図、周波数に対するインピーダンス及びベクトルの位相を示したボード線図を得る。その結果から等価回路を推測し、防食成分の容量成分、 抵抗などを計測するものである。等価回路の例を図4に示す。  Next, the impedance method will be briefly described. This method applies an AC voltage (usually 5-10 mV), sweeps the frequency of the AC voltage from, for example, a high frequency (20 kHz) to a low frequency (0.01 Hz), and plots a vector of real and imaginary components. A Bode diagram showing the diagram, impedance versus frequency and phase of the vector is obtained. Based on the results, an equivalent circuit is estimated, and the capacitance component and resistance of the anticorrosive component are measured. An example of an equivalent circuit is shown in FIG.

インピーダンス法を用いた結果では、シュウ酸およびキナルジン酸が高い表面抵抗を示す。銅表面で電気化学的な抵抗物質が形成されている可能性が示唆される。一方、クエン酸および酒石酸ならびにグリシンなどは低い抵抗値を示す。また表6記載のシュウ酸、キナルジン酸についての分極抵抗の経時変化について、キナルジン酸が時間が経過しても分極抵抗値が殆ど変化しないことに対し、シュウ酸の場合、時間経過とともに抵抗値が大幅に上昇しており、異なる傾向を示した。本現象において、抵抗値の増加は銅表面に形成された抵抗物質の増加、すなわち、シュウ酸と銅の反応物が銅表面に形成され、時間経過とともに増加していることを示す。  As a result of using the impedance method, oxalic acid and quinaldic acid show high surface resistance. It is suggested that an electrochemical resistance material may be formed on the copper surface. On the other hand, citric acid, tartaric acid, glycine and the like show low resistance values. In addition, with respect to the change with time of the polarization resistance for oxalic acid and quinaldic acid shown in Table 6, the polarization resistance value hardly changes with the passage of time for quinalic acid. It has risen significantly and showed different trends. In this phenomenon, an increase in resistance value indicates an increase in resistance material formed on the copper surface, that is, a reaction product of oxalic acid and copper is formed on the copper surface and increases with time.

図5および図6に各有機酸の過酸化水素溶液にウエハーを浸漬し、乾燥した際のウエハー表面のFT−IRを示す。シュウ酸およびキナルジン酸の場合、表面にCuとの反応物と見られるIR吸収を示した。一方、クエン酸、グリシンは表面に反応物が形成されず、インピーダンス法による表面抵抗値との相関が示された。
シュウ酸およびキナルジン酸は、インピーダンス法、FT−IRの結果より、不水溶性の反応生成物の形成および銅表面への自身による保護膜形成が証明される結果が得られている。なお、本結果より、水酸基を有するオキシ酸の場合、銅との反応物を水溶性化する機能が強く、エッチング性が高くなるものと考えられる。
以上のことから、シュウ酸、および、キナルジン酸を用いれば、研磨が進行するに伴い、銅配線の凹部表面に形成される反応層、すなわち保護膜も増加し、結果として銅のエッチングを抑制できる防食機能を有することが示唆された。
5 and 6 show the FT-IR of the wafer surface when the wafer is immersed in a hydrogen peroxide solution of each organic acid and dried. In the case of oxalic acid and quinaldic acid, IR absorption that appears to be a reaction product with Cu was shown on the surface. On the other hand, no reaction product was formed on the surface of citric acid and glycine, and a correlation with the surface resistance value by the impedance method was shown.
As for oxalic acid and quinaldic acid, the results of the formation of a water-insoluble reaction product and the formation of a protective film by itself on the copper surface are obtained from the results of impedance method and FT-IR. In addition, from this result, in the case of the oxyacid which has a hydroxyl group, it is thought that the function which makes the reaction material with copper water-soluble is strong, and etching property becomes high.
From the above, if oxalic acid and quinaldic acid are used, the reaction layer formed on the concave surface of the copper wiring, that is, the protective film increases as polishing progresses, and as a result, copper etching can be suppressed. It was suggested that it has anti-corrosion function.

次に、シュウ酸単独およびシュウ酸にベンゾトリアゾールを添加した場合の分極抵抗を表7に示す。  Table 7 shows the polarization resistance when benzotriazole is added to oxalic acid alone or to oxalic acid.

Figure 2006066851
Figure 2006066851

ベンゾトリアゾールは、銅表面に吸着・保護膜を形成する。研磨促進剤と併用した場合、研磨促進剤と銅の反応が抑制され、一般に、エッチングは減少する。また、本評価では、この保護膜は抵抗物質として測定され、ベンゾトリアゾール単独の場合、非常に大きな抵抗値を示す。従って、ベンゾトリアゾールを含む場合、研磨促進剤単独の場合よりも大きな抵抗値を示すのが一般的である。  Benzotriazole forms an adsorption / protection film on the copper surface. When used in combination with a polishing accelerator, the reaction between the polishing accelerator and copper is suppressed, and etching is generally reduced. In this evaluation, this protective film is measured as a resistance substance, and benzotriazole alone exhibits a very large resistance value. Therefore, when benzotriazole is included, it generally shows a larger resistance value than the case of the polishing accelerator alone.

しかし、シュウ酸の場合、特に、CMPにおいて重要である0から2分間の範囲において、逆に分極抵抗が低下する傾向を示した。この理由として、自身で保護膜となる抵抗物質を形成する能力が高い、というシュウ酸の特性が起因している。つまり、ベンゾトリアゾールにより、シュウ酸と銅との反応が阻害され、シュウ酸の自己保護膜形成能力が低下したことを示す。  However, in the case of oxalic acid, in particular, the polarization resistance tended to decrease in the range of 0 to 2 minutes, which is important in CMP. This is because oxalic acid has a high ability to form a resistance substance as a protective film by itself. That is, it shows that the reaction between oxalic acid and copper was inhibited by benzotriazole, and the ability of oxalic acid to form a self-protecting film was lowered.

また、実施例4の組成に関し、ベンゾトリアゾール濃度が高い場合、分極抵抗は低いにもかかわらず、銅研磨速度も低い結果が得られている。これは、ベンゾトリアゾールの存在によりシュウ酸と銅とが十分に反応できず、反応物を形成できていないために分極抵抗値は低下したと考えられる。また、研磨速度は、反応物をパッドで除去することで発現、すなわち、反応物の除去量である。反応物自体の量が少なければ、反応物が全て除去されたとしても研磨速度も低下することとなる。  Further, regarding the composition of Example 4, when the benzotriazole concentration is high, the result that the copper polishing rate is low is obtained even though the polarization resistance is low. This is probably because oxalic acid and copper could not sufficiently react due to the presence of benzotriazole, and the reaction product could not be formed, so that the polarization resistance value was lowered. The polishing rate is expressed by removing the reactant with a pad, that is, the removal amount of the reactant. If the amount of the reaction product itself is small, even if all of the reaction product is removed, the polishing rate will decrease.

以上の考察より、シュウ酸を研磨促進剤として用いる場合、ベンゾトリアゾールを用いなくても、高い防食能力を示すことが明確となった。
研磨中のパッド−ウエハー間のフリクション低減には、摩擦低減剤の配合が有用であり、一般の潤滑剤に通常用いられる脂肪酸を配合した。ここでは、カプリル酸を用い、水への溶解性を高めるため、トリエタノールアミンを併用した。
From the above considerations, it was clarified that when oxalic acid is used as a polishing accelerator, high anticorrosion ability is exhibited without using benzotriazole.
In order to reduce the friction between the pad and the wafer during polishing, it is useful to add a friction reducing agent, and a fatty acid usually used in a general lubricant is added. Here, caprylic acid was used, and triethanolamine was used in combination in order to increase the solubility in water.

〔研磨試験機および研磨条件〕
研磨装置として、CMP実験機(定盤径610mm)を使用した。
研磨条件は、以下のとおりである。
定盤の回転数:75rpm
キャリアの回転数:78rpm
研磨圧力:7kPa(1psi)および14kPa(2psi)
研磨時間:1分間
スラリー供給量:150ml/min
ポリッシングパッド:IC−1000/SUBA400(ロデール・ニッタ社製)
[Polishing tester and polishing conditions]
As a polishing apparatus, a CMP experimental machine (plate diameter 610 mm) was used.
The polishing conditions are as follows.
Surface plate speed: 75 rpm
Carrier rotation speed: 78 rpm
Polishing pressure: 7 kPa (1 psi) and 14 kPa (2 psi)
Polishing time: 1 minute Slurry supply amount: 150 ml / min
Polishing pad: IC-1000 / SUBA400 (Rodel Nitta)

〔研磨トルク測定方法と装置〕
研磨装置のキャリアの回転モータアンプからトルク電流をPCリンク型高機能レコーダ(KEYENCE社製GR−3500)を用いて採取した。採取データはソフト(マイクロソフトEXCEL)で変換し、平均のトルクを算出した。表8に検討した組成、表9に研磨トルク測定結果を示す。
[Method and apparatus for measuring polishing torque]
Torque current was collected from a rotary motor amplifier of the carrier of the polishing apparatus using a PC link type high-performance recorder (GR-3500 manufactured by KEYENCE). The collected data was converted by software (Microsoft EXCEL), and the average torque was calculated. Table 8 shows the studied compositions, and Table 9 shows the polishing torque measurement results.

Figure 2006066851
Figure 2006066851

Figure 2006066851
Figure 2006066851

摩擦低減剤の配合により、研磨トルクは低減し、配合の効果が確認されている。
一方、摩擦低減剤を配合しても、分極抵抗はほぼ同様の値を示し、摩擦低減剤の配合が、シュウ酸と銅の反応、すなわち防食性能に影響しないことを確認した。その結果を表10に示す。
By blending the friction reducing agent, the polishing torque is reduced, and the blending effect has been confirmed.
On the other hand, even when a friction reducing agent was added, the polarization resistance showed almost the same value, and it was confirmed that the mixing of the friction reducing agent did not affect the reaction between oxalic acid and copper, that is, the anticorrosion performance. The results are shown in Table 10.

Figure 2006066851
Figure 2006066851

一方、銅研磨速度は低下する傾向を示した。その結果を表11に示す。  On the other hand, the copper polishing rate tended to decrease. The results are shown in Table 11.

Figure 2006066851
Figure 2006066851

本発明における研磨機構は、シュウ酸と銅との反応物をパッドによって取り除いていく、というものである。摩擦低減剤の配合により、パッドとウエハー間との摩擦が減少し、これによって反応物を除去する能力が低下したためと考えられる。しかし、銅研磨速度は十分な値を示している。  The polishing mechanism in the present invention is to remove the reaction product of oxalic acid and copper with a pad. This is considered to be because the friction between the pad and the wafer was reduced by the addition of the friction reducing agent, thereby reducing the ability to remove the reactants. However, the copper polishing rate shows a sufficient value.

研磨速度面では、研磨促進剤濃度の増量により、研磨砥粒フリー型でも実用的な値を示す物質はいくつか確認できた。しかし、銅に対する防食面で防食剤の配合が必須となり、研磨速度が極端に低下する。研磨砥粒の配合を前提とすれば、上記性能の適正化は可能であるが、研磨時のフリクションが増大してしまう。  In terms of the polishing rate, several substances showing practical values even in the abrasive grain free type could be confirmed by increasing the polishing accelerator concentration. However, the addition of an anticorrosive agent is essential in terms of anticorrosion against copper, and the polishing rate is extremely reduced. If the composition of abrasive grains is assumed, the above performance can be optimized, but the friction during polishing increases.

以上の結果より、研磨性能及び防食性能を両立できる物質としてシュウ酸が有効であることが明確となった。シュウ酸を用いることで、高い研磨性能と必ずしも防食剤を必要せずにディッシングの抑制を達成でき、また研磨フリクション低減という相反する項目を解決できることが明確になった。  From the above results, it became clear that oxalic acid is effective as a substance that can achieve both polishing performance and anticorrosion performance. By using oxalic acid, it became clear that high polishing performance and suppression of dishing can be achieved without necessarily requiring an anticorrosive, and that the conflicting items of polishing friction reduction can be solved.

(a)はCMP前のCu配線基板の配線断面図、(b)はCMP後のCu配線基板の配線断面図である。  (A) is wiring cross-sectional view of Cu wiring board before CMP, (b) is wiring cross-sectional view of Cu wiring board after CMP. ディッシングを示す図である。  It is a figure which shows dishing. エロージョンを示す図である。  It is a figure which shows erosion. 等価回路の一般例を示す図である。図中Rsolは溶液の抵抗、R1、もしくはR2は直流抵抗、C1、C2は容量成分である。  It is a figure which shows the general example of an equivalent circuit. In the figure, Rsol is the resistance of the solution, R1 or R2 is a direct current resistance, and C1 and C2 are capacitance components. 3サンプルのFT−IRチャートである。 上:シュウ酸第2銅(試薬)を示した図である。 真ん中:シュウ酸0.5%、ベンゾトリアゾール0.2%、過酸化水素10%の溶液にウエハーを3分浸漬し、乾燥した後のウエハー表面を示した図である。 下:シュウ酸0.5%、過酸化水素10%の溶液にウエハーを3分浸漬し、乾燥した後のウエハー表面を示した図である。  It is a FT-IR chart of 3 samples. Top: A diagram showing cupric oxalate (reagent). Middle: The wafer surface is shown after the wafer has been dipped in a solution of 0.5% oxalic acid, 0.2% benzotriazole, and 10% hydrogen peroxide for 3 minutes and dried. Bottom: It is a view showing the wafer surface after the wafer was immersed in a solution of 0.5% oxalic acid and 10% hydrogen peroxide for 3 minutes and dried. シュウ酸、キナルジン酸、グリシン、クエン酸に過酸化水素を添加した液にウエハーを3分浸漬し乾燥した後、ウエハーの表面をFT−IRで分析した結果を示す図である。  It is a figure which shows the result of having analyzed the surface of the wafer by FT-IR after immersing and drying the wafer for 3 minutes in the liquid which added the hydrogen peroxide to the oxalic acid, the quinaldic acid, the glycine, and the citric acid.

符号の説明Explanation of symbols

1 絶縁膜
2 バリア金属膜
3 Cu配線部
1 Insulating film 2 Barrier metal film 3 Cu wiring part

Claims (9)

金属に対する研磨促進性と防食機能とを有する研磨促進剤、水性媒体および酸化剤を含み、研磨砥粒を含まない研磨用組成物。  A polishing composition comprising a polishing accelerator, an aqueous medium, and an oxidizing agent having a polishing accelerating property and an anticorrosive function for metals, and containing no abrasive grains. さらに防食剤を含まない請求項1記載の研磨用組成物。  The polishing composition according to claim 1, further comprising no anticorrosive. 前記防食剤がトリアゾール化合物および/またはその誘導体である請求項2記載の研磨用組成物。  The polishing composition according to claim 2, wherein the anticorrosive is a triazole compound and / or a derivative thereof. 前記研磨促進剤がカルボン酸および/またはその塩からなる請求項1〜3記載の研磨用組成物。  The polishing composition according to claim 1, wherein the polishing accelerator comprises a carboxylic acid and / or a salt thereof. 前記カルボン酸および/またはその塩がシュウ酸である請求項4記載の研磨用組成物。  The polishing composition according to claim 4, wherein the carboxylic acid and / or salt thereof is oxalic acid. さらに摩擦低減剤を含む請求項1〜5記載の研磨用組成物。  Furthermore, the polishing composition of Claims 1-5 containing a friction reducing agent. 研磨摩擦低減剤が脂肪酸および/または脂肪酸のアミン塩である請求項6記載の研磨用組成物。  The polishing composition according to claim 6, wherein the polishing friction reducing agent is a fatty acid and / or an amine salt of a fatty acid. 請求項1〜請求項7のいずれか1項に記載の研磨用組成物を用いる金属の研磨方法。  A metal polishing method using the polishing composition according to claim 1. 前記金属は、銅もしくは銅合金を主成分とする請求項8記載の研磨方法。  The polishing method according to claim 8, wherein the metal is mainly composed of copper or a copper alloy.
JP2004285428A 2004-08-30 2004-08-30 Chemical machine polishing composition Pending JP2006066851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285428A JP2006066851A (en) 2004-08-30 2004-08-30 Chemical machine polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285428A JP2006066851A (en) 2004-08-30 2004-08-30 Chemical machine polishing composition

Publications (1)

Publication Number Publication Date
JP2006066851A true JP2006066851A (en) 2006-03-09

Family

ID=36113015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285428A Pending JP2006066851A (en) 2004-08-30 2004-08-30 Chemical machine polishing composition

Country Status (1)

Country Link
JP (1) JP2006066851A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008013226A1 (en) * 2006-07-28 2009-12-17 昭和電工株式会社 Polishing composition
JP2013031914A (en) * 2011-06-29 2013-02-14 Sanyo Chem Ind Ltd Electronic material polishing liquid
CN103619982A (en) * 2011-06-29 2014-03-05 三洋化成工业株式会社 Neutral salt for use in polishing liquid, electronic material polishing liquid, polishing method, and method of manufacturing electronic materials
US8834589B2 (en) 2006-04-28 2014-09-16 Kao Corporation Polishing composition for magnetic disk substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185249A (en) * 1997-12-25 1999-07-09 Mitsubishi Chemical Corp Production of magnetic recording medium
JP2000150435A (en) * 1998-11-09 2000-05-30 Hitachi Ltd Semiconductor device and manufacture thereof
JP2000163740A (en) * 1998-11-26 2000-06-16 Mitsui Kinzoku Precision:Kk Production of crystallized glass substrate for magnetic recording medium
JP2000306873A (en) * 1999-04-20 2000-11-02 Tokuyama Corp Polishing
JP2002158194A (en) * 2000-11-20 2002-05-31 Toshiba Corp Slurry for chemically and mechanically polishing and method for manufacturing semiconductor device
JP2002170790A (en) * 2000-11-30 2002-06-14 Showa Denko Kk Composition for polishing semiconductor substrate, semiconductor wiring board and manufacturing method thereof
JP2004031442A (en) * 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185249A (en) * 1997-12-25 1999-07-09 Mitsubishi Chemical Corp Production of magnetic recording medium
JP2000150435A (en) * 1998-11-09 2000-05-30 Hitachi Ltd Semiconductor device and manufacture thereof
JP2000163740A (en) * 1998-11-26 2000-06-16 Mitsui Kinzoku Precision:Kk Production of crystallized glass substrate for magnetic recording medium
JP2000306873A (en) * 1999-04-20 2000-11-02 Tokuyama Corp Polishing
JP2002158194A (en) * 2000-11-20 2002-05-31 Toshiba Corp Slurry for chemically and mechanically polishing and method for manufacturing semiconductor device
JP2002170790A (en) * 2000-11-30 2002-06-14 Showa Denko Kk Composition for polishing semiconductor substrate, semiconductor wiring board and manufacturing method thereof
JP2004031442A (en) * 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834589B2 (en) 2006-04-28 2014-09-16 Kao Corporation Polishing composition for magnetic disk substrate
JPWO2008013226A1 (en) * 2006-07-28 2009-12-17 昭和電工株式会社 Polishing composition
JP2013031914A (en) * 2011-06-29 2013-02-14 Sanyo Chem Ind Ltd Electronic material polishing liquid
CN103619982A (en) * 2011-06-29 2014-03-05 三洋化成工业株式会社 Neutral salt for use in polishing liquid, electronic material polishing liquid, polishing method, and method of manufacturing electronic materials
CN103619982B (en) * 2011-06-29 2015-09-30 三洋化成工业株式会社 With the manufacture method of salt, electronic material lapping liquid, Ginding process and electronic material in lapping liquid use
TWI513804B (en) * 2011-06-29 2015-12-21 Sanyo Chemical Ind Ltd Slurry for electronic materials, polishing method and manufacturing method of electronic materials

Similar Documents

Publication Publication Date Title
JP4202424B2 (en) Chemical mechanical polishing composition and chemical mechanical polishing method
EP0896042B1 (en) A polishing composition including an inhibitor of tungsten etching
KR101069472B1 (en) Method for chemical mechanical planarization of chalcogenide materials
JP5539934B2 (en) Chemical mechanical polishing slurry useful for copper substrate
JP4261058B2 (en) Chemical mechanical polishing slurry useful for copper / tantalum substrates
KR101144419B1 (en) Method and composition for chemical mechanical planarization of a metal-containing substrate
JP4167214B2 (en) Bicine / tricine-containing composition and method for chemical-mechanical planarization
JP2007318152A (en) Chemical mechanical polishing slurry useful for cooper/tantalum substrate
KR100956216B1 (en) Compositions for chemical mechanical planarization of copper
JP2005167204A (en) Composition and method capable of carrying out adjustment for chemical and mechanical planarization by use of aspartic acid/tolyl triazole
KR101731523B1 (en) Treatment composition for chemical mechanical polishing, chemical mechanical polishing method, and cleaning method
JP2006060205A (en) Slurry composition, its production process, and polishing method of workpiece employing it
WO2009064365A2 (en) Compositions and methods for ruthenium and tantalum barrier cmp
KR100566537B1 (en) Slurry for polishing copper-based metal
US20100167545A1 (en) Method and Composition for Chemical Mechanical Planarization of A Metal
JP2008112969A (en) Polishing liquid, and polishing method using the polishing liquid
US20090061630A1 (en) Method for Chemical Mechanical Planarization of A Metal-containing Substrate
JP2001127019A (en) Polishing fluid for metal and method for polishing substrate using the same
JP2006066851A (en) Chemical machine polishing composition
JP2010103409A (en) Metal polishing solution and polishing method using same
JP2003188120A (en) Polishing liquid and polishing method for metal
KR20030070191A (en) Chemical Mechanical Polishing Slurry Composition Having Improved Stability and Polishing Speed on Tantalum Metal Layer
JP3668694B2 (en) Manufacturing method of semiconductor device
JP2008277848A (en) Chemical mechanical polishing composition and process
JP2003273044A (en) Component for chemical mechanical polishing, and method of manufacturing copper wiring board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070829

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091203

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Effective date: 20101119

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20110120

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110329

Free format text: JAPANESE INTERMEDIATE CODE: A02