WO2013002229A1 - Shift register, scanning signal line drive circuit, display panel, and display device - Google Patents

Shift register, scanning signal line drive circuit, display panel, and display device Download PDF

Info

Publication number
WO2013002229A1
WO2013002229A1 PCT/JP2012/066302 JP2012066302W WO2013002229A1 WO 2013002229 A1 WO2013002229 A1 WO 2013002229A1 JP 2012066302 W JP2012066302 W JP 2012066302W WO 2013002229 A1 WO2013002229 A1 WO 2013002229A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
terminal
shift register
transistor
signal
Prior art date
Application number
PCT/JP2012/066302
Other languages
French (fr)
Japanese (ja)
Inventor
村上 祐一郎
成 古田
真 横山
佐々木 寧
業天 誠二郎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013002229A1 publication Critical patent/WO2013002229A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery

Definitions

  • the present invention relates to a shift register used in a display device.
  • FIG. 59 is a block diagram showing a schematic configuration of a conventional shift register
  • FIG. 60 is a circuit diagram of a holding circuit constituting the shift register shown in FIG.
  • This D-type flip-flop DFF has a clocked inverter INV1 connected in series, an inverter INV2, an output terminal of the inverter INV2 connected to the input terminal, and an output terminal connected to the input terminal of the inverter INV2.
  • the inverters INV1, INV2, and INV5 are composed of CMOS transistors.
  • the clock signal / C is input to the clock input terminal on the PMOS side of the clocked inverter INV1, while the clock signal C is input to the clock input terminal on the NMOS side, and the clock signal C is input to the clock input terminal on the PMOS side of the clocked inverter INV5.
  • the clock signal / C is input to the clock input terminal on the NMOS side.
  • the D-type flip-flop DFF is composed of one inverter and two clocked inverters, and clock signals having opposite phases are input to the two clocked inverters, respectively.
  • the adjacent D-type flip-flops DFF are input with clock signals having opposite phases.
  • FIG. 61 is a timing chart when the shift register shown in FIG. 59 operates.
  • the shift register sequentially outputs the output signal O from each holding circuit while shifting in synchronization with the rising edges of the clock signals CK and CKB.
  • an object of the present invention is to reduce the circuit scale of the shift register.
  • the shift register of the present invention provides A shift register having a holding circuit in each stage,
  • the holding circuit includes a data input unit that captures a retention target signal in response to an enable signal, and a first inverter and a second inverter that retain the captured retention target signal, and the first inverter or the second inverter. Based on the output of the inverter, it outputs a high level or low level signal, When the enable signal is active, the input terminal of the first inverter and the output terminal of the second inverter are electrically connected to each other, and the output terminal of the first inverter and the input of the second inverter The terminals are electrically connected to each other.
  • the shift register of the present invention has a configuration in which the output of the first inverter and the input of the second inverter are electrically connected when an enable signal (for example, a clock signal) is active. With this configuration, the circuit scale of the shift register can be reduced.
  • an enable signal for example, a clock signal
  • the second inverter can be operated (reversed) normally.
  • the channel of the transistor constituting the first inverter By providing a configuration in which the length is increased and a configuration in which a resistor is provided in the first inverter, a signal input to the second inverter at the time of a short circuit can be drawn into the potential level of the input signal. It can be operated (inverted) (details will be described later). Therefore, there is no problem in operation due to the reduction in circuit scale.
  • the input terminal of the first inverter and the output terminal of the second inverter are electrically connected to each other.
  • the output terminal of one inverter and the input terminal of the second inverter are electrically connected to each other.
  • FIG. 3 is a circuit diagram of a unit circuit included in the shift register according to the first embodiment.
  • 1 is a block diagram illustrating a schematic configuration of a shift register according to a first embodiment.
  • 4 is a timing chart during operation of the shift register according to the first embodiment.
  • FIG. 6 is a diagram schematically illustrating a timing chart during operation of the shift register according to the first embodiment. 6 is a circuit diagram of a unit circuit included in a shift register according to Embodiment 2.
  • FIG. FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to a third embodiment.
  • FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to a fourth embodiment.
  • FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to a fourth embodiment.
  • FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to a fifth embodiment.
  • FIG. 10 is a block diagram illustrating a schematic configuration of a shift register according to a fifth embodiment.
  • FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to a sixth embodiment.
  • FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to a seventh embodiment.
  • FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to an eighth embodiment.
  • FIG. 20 is a circuit diagram of a unit circuit included in a shift register according to Embodiment 9.
  • FIG. 20 is a circuit diagram of a unit circuit included in a shift register according to the tenth embodiment.
  • FIG. 20 is a circuit diagram of a unit circuit included in a shift register according to the tenth embodiment.
  • FIG. 22 is a circuit diagram of a unit circuit included in a shift register according to an eleventh embodiment.
  • FIG. 22 is a circuit diagram of a unit circuit included in a shift register according to a twelfth embodiment.
  • 18 is a timing chart at the time of operation of the shift register according to the twelfth embodiment.
  • FIG. 23 is a circuit diagram of a unit circuit included in a shift register according to a thirteenth embodiment.
  • 14 is a timing chart of the operation of the shift register according to the thirteenth embodiment.
  • FIG. 22 is a circuit diagram of a unit circuit included in a shift register according to Embodiment 14; FIG.
  • FIG. 20 is a circuit diagram illustrating a connection relationship between a switching circuit and a k-th unit circuit included in a shift register according to a fourteenth embodiment. It is a block diagram which shows schematic structure of the shift register provided with the switching circuit. 6 is a timing chart during operation of a shift register including a switching circuit. It is a block diagram which shows schematic structure of the shift register provided with the switching circuit. FIG. 6 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to a second embodiment.
  • FIG. 26 is an equivalent circuit diagram illustrating an electrical configuration of a pixel of the liquid crystal display device of FIG. 25.
  • FIG. 20 is a block diagram illustrating a schematic configuration of a shift register according to a fifteenth embodiment.
  • FIG. 22 is a circuit diagram of odd-numbered unit circuits included in a shift register according to a fifteenth embodiment.
  • FIG. 22 is a circuit diagram of a unit circuit of an even number stage included in a shift register according to the fifteenth embodiment.
  • 18 is a timing chart at the time of operation of the shift register according to the fifteenth embodiment.
  • 18 is a timing chart at the time of operation of the shift register according to the fifteenth embodiment.
  • FIG. 20 is a block diagram illustrating a schematic configuration of a shift register according to a sixteenth embodiment.
  • FIG. 22 is a circuit diagram of an SR unit circuit constituting a shift register according to Embodiment 16; 18 is a timing chart at the time of operation of the shift register according to the sixteenth embodiment.
  • FIG. 18 is a timing chart at the time of operation of the shift register according to the sixteenth embodiment.
  • FIG. 30 is a circuit diagram illustrating another configuration of a unit circuit included in a shift register according to Embodiment 16;
  • FIG. 18B is a circuit diagram of an odd-numbered SR unit circuit constituting the shift register according to the seventeenth embodiment.
  • FIG. 20 is a circuit diagram of an SR unit circuit of an even number stage configuring a shift register according to Embodiment 17; 18 is a timing chart during operation of the shift register according to the seventeenth embodiment.
  • FIG. 28 is a circuit diagram of an odd-numbered SR unit circuit constituting a shift register according to Embodiment 18;
  • FIG. 22 is a circuit diagram of even-numbered SR unit circuits constituting a shift register according to Embodiment 18; 19 is a timing chart at the time of operation of the shift register according to the eighteenth embodiment.
  • FIG. 40 is a circuit diagram of an SR unit circuit constituting a shift register according to Embodiment 19;
  • FIG. 23 is a timing chart of the operation of the shift register according to the nineteenth embodiment.
  • FIG. FIG. 38 is a circuit diagram illustrating another configuration of the SR unit circuit constituting the shift register according to the nineteenth embodiment.
  • FIG. 22 is a circuit diagram of a unit circuit included in a shift register according to the fifteenth embodiment.
  • FIG. 30 is a circuit diagram of an SR unit circuit constituting a shift register according to Embodiment 20; 24 is a timing chart at the time of operation of the shift register according to the twentieth embodiment.
  • FIG. 38 is a circuit diagram of a first-stage SR unit circuit constituting a shift register according to Embodiment 21;
  • FIG. 32 is a circuit diagram of a second-stage SR unit circuit constituting the shift register according to the twenty-first embodiment.
  • FIG. 22 is a circuit diagram of an SR unit circuit constituting a shift register according to a twenty-second embodiment.
  • FIG. 25 is a block diagram illustrating a schematic configuration of a shift register according to a twenty-third embodiment.
  • FIG. 38 is a circuit diagram of a second-stage SR unit circuit constituting the shift register according to the twenty-third embodiment.
  • 23 is a timing chart at the time of operation of the shift register according to the twenty-third embodiment.
  • 54 is a timing chart for explaining a potential change of a node N1 in the SR unit circuit of FIG. 53.
  • FIG. 54 is a circuit diagram of an SR unit circuit showing a modification of the SR unit circuit of FIG. 53.
  • 57 is a timing chart at the time of operation of the shift register according to FIG. 56.
  • 57 is a timing chart for explaining a potential change of a node N1 in the SR unit circuit of FIG. 56.
  • It is a block diagram which shows schematic structure of the conventional shift register. It is a circuit diagram of the holding circuit which comprises the conventional shift register. It is a timing chart at the time of operation
  • FIG. 2 is a block diagram showing a schematic configuration of the shift register according to the first embodiment.
  • the shift register 10 includes n (n is an integer of 2 or more) unit circuits 11a (holding circuits) connected in multiple stages.
  • the unit circuit 11a has a clock terminal (CKa terminal, CKb terminal), an input terminal (IN terminal), and an output terminal (OUT terminal).
  • CKa terminal, CKb terminal a clock terminal
  • I terminal an input terminal
  • OUT terminal an output terminal
  • a signal input / output via each terminal is referred to by the same name as the terminal (for example, a signal input via the clock terminal CK is referred to as a clock signal CK).
  • the shift register 10 is supplied with a start pulse ST and two-phase clock signals CK and CKB (inverted signal of CK) (enable signal) from the outside.
  • the start pulse ST is given to the IN terminal of the first stage unit circuit 11a.
  • the clock signal CK is supplied to the CKa terminal of the odd-numbered unit circuit 11a and to the CKb terminal of the even-numbered unit circuit 11a.
  • the clock signal CKB is supplied to the CKb terminal of the odd-numbered unit circuit 11a and to the CKa terminal of the even-numbered unit circuit 11a.
  • the output signal O of the unit circuit 11a is output from the OUT terminal to the outside and is input to the IN terminal of the next stage unit circuit 11a.
  • the output signal O1 of the first stage unit circuit 11a is input to the IN terminal, and the clock signal CKB is input to the CKa terminal.
  • the clock signal CK is supplied to the CKb terminal.
  • the output signal O2 of the second stage unit circuit 11a is output from the OUT terminal to the outside and is input to the IN terminal of the third stage unit circuit 11a.
  • the shift register 10 sequentially outputs the output signals O1 to On by the shift operation.
  • FIG. 1 is a circuit diagram of a unit circuit 11a of the shift register 10 according to the first embodiment.
  • the unit circuit 11a includes a latching inverter INV1 (first inverter) / INV2 (second inverter), a data input unit SW1, and an output inverter INV3.
  • the connection point between the output terminal of the latch inverter INV1 and the input terminal of the latch inverter INV2 is a node N1 (first connection point), and the input terminal of the latch inverter INV1 and the latch inverter INV2 A connection point with the output terminal is referred to as a node N2.
  • the data input unit SW1 includes an N-channel transistor T1 (first transistor) and a P-channel transistor T2.
  • the transistor T1 has a gate terminal connected to the CKa terminal, a source terminal connected to the IN terminal, and a transistor T2.
  • the gate terminal is connected to the CKb terminal and the source terminal is connected to the IN terminal.
  • the output signal O of the shift register unit circuit 11a is input to the IN terminal.
  • the latching inverter INV2 includes a P-channel transistor T3 (fourth transistor) and an N-channel transistor T4 (fifth transistor).
  • the latching inverter INV2 has an input terminal (the gate terminal of the transistor T3 and the gate of the transistor T4).
  • a connection point with the terminal (node N1) is connected to an output terminal of the data input section SW1 (drain terminals of the transistors T1 and T2).
  • the power supply voltage Vdd (high potential) is applied to the source terminal of the transistor T3, and the drain terminal of the transistor T3 is the connection point (node) between the output terminal of the latch inverter INV2 (the drain terminal of the transistor T3 and the drain terminal of the transistor T4).
  • the power supply voltage Vss (low potential) is applied to the source terminal of the transistor T4, and the drain terminal of the transistor T4 is connected to the output terminal (node N2) of the latching inverter INV2.
  • the node N2 is connected to the OUT terminal via the output inverter INV3, and is also connected to the input terminal of the latching inverter INV1 (gate terminals of the transistors T5 and T6).
  • the latching inverter INV1 includes a P-channel transistor T5 (second transistor) and an N-channel transistor T6 (third transistor).
  • the input terminal of the latching inverter INV1 (the gate terminals of the transistors T5 and T6) is latched. Connected to the output terminal (node N2) of the inverter INV2.
  • the source voltage Vdd is applied to the source terminal of the transistor T5, and the drain terminal of the transistor T5 is connected to the output terminal of the latching inverter INV1 (the connection point between the drain terminal of the transistor T5 and the drain terminal of the transistor T6).
  • the source voltage Vss is applied to the source terminal of the transistor T6, and the drain terminal of the transistor T6 is connected to the output terminal of the latching inverter INV1.
  • the output terminal of the latching inverter INV1 is connected to the input terminal (node N1) of the latching inverter INV2.
  • the output terminal (node N2) of the latching inverter INV2 is connected to the input terminal of the output inverter INV3, and the output terminal of the output inverter INV3 is connected to the output terminal OUT of the unit circuit 11a.
  • the output signal O (k ⁇ 1) of the (k ⁇ 1) th unit circuit 11a is input to the IN terminal of the kth unit circuit 11a, and the output terminal of the kth unit circuit 11a.
  • An output signal Ok is output from OUT.
  • the channel lengths L of the transistors T5 and T6 are set to be longer than the channel lengths L of the transistors T3 and T4 so that the driving capabilities of the transistors T5 and T6 are smaller than those of the transistors T3 and T4. That is, the latching inverter INV1 is set to have a driving capability lower than that of the input signal O (output inverter INV3) (holding target signal).
  • the internal signal of the unit circuit 11a including the clock signals CK, CKB, CK1, and CK2 and the potential of the input / output signal are assumed to be Vdd when the signal is high and Vss when the signal is low.
  • the “high level” in the input signal O input to the IN terminal is higher than the inversion potential of the latching inverter INV2, and the “low level” is lower than the inversion potential of the latching inverter INV2.
  • FIG. 3 is a timing chart at the time of operation of the shift register 10
  • FIG. 4 is a diagram schematically showing a timing chart at the time of operation of the shift register 10.
  • input / output in the first stage unit circuit 11a, the second stage unit circuit 11a, the third stage unit circuit 11a, the (n-1) th stage unit circuit 11a, and the nth stage unit circuit 11a The signal is shown.
  • CK is a clock signal supplied to the CKa terminal of the odd-numbered unit circuit 11a and to the CKb terminal of the even-numbered unit circuit 11a, and CKB is connected to the CKb terminal of the odd-numbered unit circuit 11a.
  • the clock signal is supplied to the CKa terminal of the even-numbered unit circuit 11a.
  • ST is a start pulse input to the IN terminal of the first stage unit circuit 11a.
  • O1, O2, O3, O (n-1), On are the outputs of the first, second, third, (n-1) th, and nth stage unit circuits 11a of the shift register, respectively. It shows the potential of the signal.
  • the clock signal CK is at the high level at time t1 (hereinafter referred to as t1). Then, the data input unit SW1 is turned on, and the start pulse ST (high level; Vdd) is input to the node N1.
  • the potential of the node N1 is held at Vss (low level), and the transistor T6 is turned on. Therefore, when the clock signal CK becomes high level (t1) ), Vdd (high level) of the start pulse ST and the power source VSS (low level) (low potential side power source) are short-circuited.
  • the transistor T6 of the latching inverter INV1 is set to have a long channel length L and has a low driving capability, the potential of the node N1 is drawn to the start pulse ST side and becomes the Vdd (high level) of the start pulse ST. It rises to a near potential (a potential higher than the inversion potential of the latching inverter INV2) (see FIG. 4).
  • the transistor T4 is turned on, and the output of the latching inverter INV2 (node N2; Vss (low level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T6 is turned off, and the transistor T5 is turned on.
  • the potential of the node N1 rises from a potential close to Vdd of the start pulse ST to Vdd (see FIG. 4).
  • the transistor T4 of the latching inverter INV2 When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the latching inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and Vss (low level) is output from the latching inverter INV2. Then, an output signal O1 of Vdd (high level) is output via the output inverter INV3.
  • the potential of the node N1 is held at Vdd (high level), and the transistor T5 is in an on state. Therefore, when the clock signal CK becomes high level (t3 ), Vss (low level) of the start pulse ST and the power source VDD (high level) (high potential side power source) are short-circuited.
  • the transistor T5 of the latching inverter INV1 since the transistor T5 of the latching inverter INV1 has a long channel length L and a low driving capability, the potential of the node N1 is drawn to the start pulse ST side and becomes Vss (low level) of the start pulse ST. The voltage drops to a near potential (a potential lower than the inversion potential of the latching inverter INV2) (see FIG. 4).
  • the transistor T3 is turned on, and the output of the latching inverter INV2 (node N2; Vdd (high level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T5 is turned off, and the transistor T6 is turned on.
  • the potential of the node N1 further decreases from a potential close to Vss of the start pulse ST to Vss (see FIG. 4).
  • the transistor T3 of the latching inverter INV2 When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the latching inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and Vdd (high level) is output from the latching inverter INV2. Then, an output signal O1 of Vss (low level) is output via the output inverter INV3.
  • the data input unit SW1 is turned off, the input of the start pulse ST is cut off, and the node N1 is latched by the latch inverters INV1 and INV2.
  • the potential (Vss (low level)) held immediately before is held, and the output signal O1 maintains Vss (low level).
  • the unit circuit 11a repeats the above operations t3 and t4 until the start pulse ST becomes high level, and the output signal O1 maintains Vss (low level).
  • the clock signal CKB is supplied at t2.
  • the data input unit SW1 is turned on, and the input signal O1 (high level; Vdd) is input to the node N1.
  • the potential of the node N1 is held at Vss (low level), and the transistor T6 is turned on. Therefore, when the clock signal CKB becomes high level (t2 ), Vdd (high level) of the input signal O1 and the power supply VSS (low level) are short-circuited.
  • the transistor T6 of the latching inverter INV1 since the transistor T6 of the latching inverter INV1 has a long channel length L and low driving capability, the potential of the node N1 is pulled to the input signal O1 side and becomes Vdd (high level) of the input signal O1. It rises to a near potential (a potential higher than the inversion potential of the latching inverter INV2) (see FIG. 4).
  • the transistor T4 is turned on, and the output of the latching inverter INV2 (node N2; Vss (low level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T6 is turned off, and the transistor T5 is turned on.
  • the potential of the node N1 rises from a potential close to Vdd of the input signal O1 to Vdd (see FIG. 4).
  • the transistor T4 of the latching inverter INV2 When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the latching inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and Vss (low level) is output from the latching inverter INV2. Then, an output signal O2 of Vdd (high level) is output via the output inverter INV3.
  • the potential of the node N1 is held at Vdd (high level), and the transistor T5 is in an on state. Therefore, when the clock signal CKB becomes high level (t4 ), Vss (low level) of the input signal O1 and the power supply VDD (high level) are short-circuited.
  • the transistor T5 of the latching inverter INV1 since the transistor T5 of the latching inverter INV1 has a long channel length L and a low driving capability, the potential of the node N1 is drawn to the input signal O1 side and becomes Vss (low level) of the input signal O1. The voltage drops to a near potential (a potential lower than the inversion potential of the latching inverter INV2).
  • the transistor T3 is turned on, and the output of the latching inverter INV2 (node N2; Vdd (high level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T5 is turned off, and the transistor T6 is turned on.
  • the potential of the node N1 further decreases from the potential close to Vss of the input signal O1 to Vss.
  • the transistor T3 of the latching inverter INV2 When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the latching inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and Vdd (high level) is output from the latching inverter INV2. Then, an output signal O2 of Vss (low level) is output via the output inverter INV3.
  • the data input unit SW1 is turned off, the input of the input signal O1 is cut off, and the node N1 is latched by the latching inverters INV1 and INV2.
  • the potential (Vss (low level)) held immediately before is held, and the output signal O2 maintains Vss (low level).
  • the unit circuit 11a repeats the operations at t4 and t5 until the input signal O1 becomes high level, and the output signal O2 maintains Vss (low level).
  • the number of transistors can be reduced as compared with the conventional unit circuit (D-type flip-flop DFF) shown in FIG. Therefore, the circuit scale of the shift register 10 can be reduced. In addition, there is no problem of operation due to the reduction in circuit scale. Further, it is possible to reduce a through current generated at the moment when the input signal and the power supply are short-circuited.
  • the channel lengths L of the transistors T5 and T6 are individually increased.
  • the present invention is not limited to this.
  • a plurality of stages of transistors are connected in series, and
  • the channel length L may be substantially increased by connecting the gate terminals to each other.
  • the channel width W of the transistors constituting the output inverter INV3 is changed to the transistor T5 without changing the channel length L of the transistors T5 and T6. , It may be larger than the channel width W of T6. According to this configuration, since the drive capability of the input signal of the unit circuit 11a can be increased, the same effect as the unit circuit 11a can be obtained.
  • the start pulse ST is used as an output of a buffer having a channel width W larger than that of the transistors T5 and T6 of the latch inverter INV1 outside the shift register 10, or an output of an IC having a high drive capability, thereby increasing the drive capability. be able to.
  • FIG. 5 is a circuit diagram of the unit circuit 12a included in the shift register 10 according to the second embodiment.
  • resistors R1 first resistor
  • R2 second resistor
  • the channel length L of the transistors T5 and T6 constituting the latching inverter INV1a of the unit circuit 12a is set to be the same as the channel length L of the transistors T3 and T4 constituting the latching inverter INV2.
  • the resistor R2 has one terminal connected to the power supply VDD, the other terminal connected to the source terminal of the transistor T5, and the resistor R1 has one terminal connected to the power supply VSS and the other terminal. Is connected to the source terminal of the transistor T6.
  • the resistors R1 and R2 are several k ⁇ to several M ⁇ .
  • start pulse ST high level (active)
  • the start pulse ST high level (active)
  • the clock signal CK becomes high level (t1)
  • start pulse ST high level; Vdd
  • the potential of the node N1 is held at Vss (low level), and the transistor T6 is turned on. Therefore, when the clock signal CK becomes high level (t1) ), Vdd (high level) of the start pulse ST and the power source VSS (low level) are short-circuited.
  • the resistor R1 since the resistor R1 is provided between the power supply VSS and the node N1, the potential of the node N1 is drawn to the start pulse ST side and becomes Vdd (high level) of the start pulse ST. It rises to a near potential (a potential higher than the inversion potential of the latching inverter INV2) (see FIG. 4).
  • the transistor T4 is turned on, and the output of the latching inverter INV2 (node N2; Vss (low level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T6 is turned off, and the transistor T5 is turned on.
  • the potential of the node N1 rises from a potential close to Vdd of the start pulse ST to Vdd (see FIG. 4).
  • the transistor T4 of the latching inverter INV2 When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the latching inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and Vss (low level) is output from the latching inverter INV2. Then, an output signal O1 of Vdd (high level) is output via the output inverter INV3.
  • the potential of the node N1 is held at Vdd (high level), and the transistor T5 is in an on state. Therefore, when the clock signal CK becomes high level (t3 ), Vss (low level) of the start pulse ST and the power supply VDD (high level) are short-circuited.
  • the resistor R2 is provided between the power supply VDD and the node N1, the potential of the node N1 is drawn to the start pulse ST side and is a potential close to Vss (low level) of the start pulse ST (for latching). The potential drops to a potential lower than the inversion potential of the inverter INV2 (see FIG. 4).
  • the transistor T3 is turned on, and the output of the latching inverter INV2 (node N2; Vdd (high level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T5 is turned off, and the transistor T6 is turned on.
  • the potential of the node N1 further decreases from a potential close to Vss of the start pulse ST to Vss (see FIG. 4).
  • the transistor T3 of the latching inverter INV2 When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the latching inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and Vdd (high level) is output from the latching inverter INV2. Then, an output signal O1 of Vss (low level) is output via the output inverter INV3.
  • the data input unit SW1 is turned off, the input of the start pulse ST is cut off, and the node N1 is latched by the latch inverters INV1 and INV2.
  • the potential (Vss (low level)) held immediately before is held, and the output signal O1 maintains Vss (low level).
  • the unit circuit 11 repeats the operations of t3 and t4 until the start pulse ST becomes high level, and the output signal O1 maintains Vss (low level).
  • a resistor is used. Since the shape of the resistors can be freely deformed, the resistors can be laid out efficiently and the circuit scale can be further reduced. Further, it is possible to reduce a through current generated at the moment when the input signal and the power supply are short-circuited.
  • FIG. 6 is a circuit diagram of the unit circuit 13a included in the shift register 10 according to the third embodiment. As shown in FIG. 6, in the latching inverter INV1b of the unit circuit 13a, the positions of the resistors R1 and R2 are different from those of the latching inverter INV1a of the unit circuit 12a according to the second embodiment (see FIG. 5). .
  • the resistor R2 has one terminal connected to the drain terminal of the transistor T5, the other terminal connected to the node N1, and the resistor R1 having one terminal connected to the drain of the transistor T6. The other terminal is connected to the node N1.
  • the power source VSS Since the resistor R1 is provided between the node N1 and the node N1, the potential of the node N1 is drawn to the input signal side and is close to Vdd (high level) (potential higher than the inversion potential of the latch inverter INV2) And then rises to Vdd by feedback of the output (Vss) of the latching inverter INV2.
  • a resistor may be added to the source terminal side of the transistors T5 and T6 (see FIG. 5).
  • FIG. 7 is a circuit diagram of the unit circuit 14a included in the shift register 10 according to the fourth embodiment.
  • the unit circuit 14a between the output terminal of the latch inverter INV1 of the unit circuit 11 (see FIG. 1) according to the first embodiment and the input terminal (node N1) of the latch inverter INV2.
  • a resistor R3 is added.
  • the channel length L of the transistors T5 and T6 constituting the latching inverter INV1 of the unit circuit 14a is set to be the same as the channel length L of the transistors T3 and T4 constituting the latching inverter INV2.
  • one terminal of the resistor R3 is connected to the output terminal of the latching inverter INV1 (the connection point between the drain terminal of the transistor T5 and the drain terminal of the transistor T6), and the other terminal is connected to the latching inverter INV2.
  • the resistor R3 is several k ⁇ to several M ⁇ .
  • FIG. 8 is a circuit diagram of the unit circuit 15a included in the shift register 10 according to the fifth embodiment
  • FIG. 9 is a block diagram illustrating a schematic configuration of the shift register 10 according to the fifth embodiment.
  • the data input unit SW1a is configured by only the N-channel transistor T1.
  • the transistor T1 of the data input unit SW1a has a gate terminal connected to the CK terminal (see FIG. 9) of the unit circuit 15a, a source terminal connected to the IN terminal of the unit circuit 15a, and a drain terminal connected to the node N1. It is connected to the.
  • the potential of the node N1 becomes Vdd ⁇ Vth (threshold).
  • the resistor R1 is provided between the power supply VSS and the node N1, so the potential of the node N1 is Then, it is pulled to the input signal side and rises to a potential close to Vdd ⁇ Vth (potential higher than the inversion potential of the latching inverter INV2), and then rises to Vdd by feedback of the output (Vss) of the latching inverter INV2.
  • Vss low level
  • the potential of the node N1 is Vss.
  • Vss low level
  • the resistor R2 is provided between the power supply VDD and the node N1
  • the node N1 The potential is drawn to the input signal side and drops to a potential close to Vss (low level) (potential lower than the inversion potential of the latching inverter INV2), and then Vss is obtained by feedback of the output (Vdd) of the latching inverter INV2. To drop.
  • the resistance value of the resistor R1 is increased (or the channel length L of the transistor T6 of the latching inverter INV1a is increased to reduce the driving capability), and the latching is performed to lower the inversion potential of the latching inverter INV2. It is preferable that the size of the transistor T4 of the inverter INV2 is increased.
  • the data input unit SW1a is set to P What is necessary is just to comprise by channel type transistor T2 (refer FIG. 5).
  • the same effect as in the second embodiment can be obtained.
  • the data input unit SW1a is composed of only the transistor T1
  • the number of elements can be further reduced, and the circuit scale can be further reduced.
  • FIG. 10 is a circuit diagram of the unit circuit 16a included in the shift register 10 according to the sixth embodiment. As shown in FIG. 10, in the latch inverter INV1b of the unit circuit 16a, the positions of the resistors R1 and R2 are different from those of the latch inverter INV1a of the unit circuit 15a according to the fifth embodiment (see FIG. 8). .
  • the resistor R2 has one terminal connected to the drain terminal of the transistor T5, the other terminal connected to the node N1, and the resistor R1 having one terminal connected to the drain of the transistor T6. The other terminal is connected to the node N1.
  • FIG. 11 is a circuit diagram of the unit circuit 17a included in the shift register 10 according to the seventh embodiment.
  • the unit circuit 17a has a configuration in which an N-channel transistor T9 and a capacitor C1 are added to the data input unit SW1a of the unit circuit 15a according to the fifth embodiment (see FIG. 8). Yes.
  • the power supply voltage Vdd is applied to the gate terminal of the transistor T9, the source terminal is connected to the CK terminal, and the drain terminal is connected to the gate terminal of the transistor T1. .
  • the capacitor C1 is provided between the gate terminal and the drain terminal of the transistor T1. Note that a connection point between the capacitor C1 and the gate terminal of the transistor T1 is a node N3.
  • the potential of the node N1 when the input signal is at the high level (Vdd), the potential of the node N1 becomes Vdd ⁇ Vth until the output (Vss) of the latching inverter INV2 is fed back.
  • the potential of the node N1 in the unit circuit 17a of the seventh embodiment, can be set to Vdd by the bootstrap operation, so that an operation margin can be ensured. Operations other than those described above are the same as those of the unit circuit 15a of the fifth embodiment.
  • FIG. 12 is a circuit diagram of the unit circuit 18a included in the shift register 10 according to the eighth embodiment. As shown in FIG. 12, in the latch inverter INV1b of the unit circuit 18a, the positions of the resistors R1 and R2 are different from those of the latch inverter INV1a of the unit circuit 17a according to the seventh embodiment (see FIG. 11). .
  • the resistor R2 has one terminal connected to the drain terminal of the transistor T5, the other terminal connected to the node N1, and the resistor R1 having one terminal connected to the drain of the transistor T6. The other terminal is connected to the node N1.
  • the operation of the unit circuit 18a is the same as that of the unit circuit 17a of the seventh embodiment.
  • FIG. 13 is a circuit diagram of the unit circuit 19a included in the shift register 10 according to the ninth embodiment.
  • a resistor R1 and a P-channel transistor T10 are added to the latching inverter INV1 of the unit circuit 11a (see FIG. 1) according to the first embodiment.
  • the channel length L of the transistors T5, T6, and T10 that constitute the latching inverter INV1c of the unit circuit 19a is set to be the same as the channel length L of the transistors T3 and T4 that constitute the latching inverter INV2.
  • the transistor T10 has a gate terminal connected to the CK terminal and a source terminal connected to the power supply VDD.
  • the transistor T5 has a gate terminal connected to the node N2, a source terminal connected to the drain terminal of the transistor T10, and a drain terminal connected to the node N1.
  • One terminal of the resistor R1 is connected to the power supply VSS.
  • the transistor T6 has a gate terminal connected to the node N2, a source terminal connected to the other terminal of the resistor R1, and a drain terminal connected to the node N1, and the resistor R1 is several k ⁇ to several M ⁇ . .
  • Vdd voltage level
  • the input signal (Vdd) and the power supply VSS are short-circuited, but a resistor R1 is provided between the power supply VSS and the node N1. Therefore, the potential of the node N1 is drawn to the input signal side, rises to a potential close to Vdd (potential higher than the inversion potential of the latching inverter INV2), and then feedback of the output (Vss) of the latching inverter INV2 Rises to Vdd.
  • Vss low level
  • FIG. 14 is a circuit diagram of the unit circuit 20a included in the shift register 10 according to the tenth embodiment.
  • a resistor R2 and an N-channel transistor T11 are added to the latching inverter INV1 of the unit circuit 11 (see FIG. 1) according to the first embodiment.
  • the channel length L of the transistors T5, T6, and T11 that constitute the latching inverter INV1d of the unit circuit 20a is set to be the same as the channel length L of the transistors T3 and T4 that constitute the latching inverter INV2.
  • the resistor R2 has one terminal connected to the power supply VDD
  • the transistor T5 has a gate terminal connected to the node N2, a source terminal connected to the other terminal of the resistor R2, and a drain terminal connected to the node. Connected to N1.
  • the transistor T11 has a gate terminal connected to the CKB terminal and a source terminal connected to the power supply VSS.
  • the transistor T6 has a gate terminal connected to the node N2, a source terminal connected to the drain terminal of the transistor T11, and a drain terminal connected to the node N1.
  • the resistor R1 is several k ⁇ to several M ⁇ .
  • Vdd high level
  • Vss low level
  • the input signal (Vss) and the power supply VDD are short-circuited, but a resistor R2 is provided between the power supply VDD and the node N1.
  • the potential of the node N1 is drawn to the input signal side and drops to a potential close to Vss (potential higher than the inversion potential of the latching inverter INV2), and then Vss by feedback of the output (Vdd) of the latching inverter INV2. To drop.
  • FIG. 15 is a circuit diagram of the unit circuit 21a included in the common electrode driving circuit 200 according to the eleventh embodiment.
  • the sizes (channel length L, channel width W) of the transistors T5, T6 constituting the inverter INV1 are the same as the sizes (channel length L, channel width W) of the transistors T3, T4 constituting the inverter INV2.
  • the driving capability of the input signal input to the IN terminal is set to be high.
  • the channel width W of the inverter INV3 (buffer) is configured to be larger than the channel width W size of the inverter INV1.
  • the input signal drive capability even if the clock signal CK becomes high level (active) and the input signal Vss (low level) and the power supply VDD (high level) are short-circuited, the input signal drive capability Therefore, the potential of the node N1 is drawn to the input signal side, drops to a potential close to Vss (low level) of the input signal (potential lower than the inversion potential of the inverter INV2), and then the output of the inverter INV2 ( Vdd) is reduced to Vss by feedback. Even if the input signal Vdd (high level) and the power source VSS (low level) are short-circuited, the input signal drive capability is similarly high, so that the potential of the node N1 is pulled to the input signal side. Then, it rises to a potential close to Vdd of the input signal (potential higher than the inversion potential of the inverter INV2), and then rises to Vdd by feedback of the output (Vss) of the inverter INV2.
  • FIG. 16 is a circuit diagram of the unit circuit 22a of the shift register 10 according to the twelfth embodiment, and FIG. 17 is a timing chart when the shift register 10 operates.
  • the output inverter INV3 is omitted in the unit circuit 11a of the first embodiment, and the output of the inverter INV2 is connected to the OUT terminal.
  • the circuit scale of the shift register 10 can be further reduced.
  • the output inverter INV3 is omitted, as shown in FIG. 17, the polarity of the output signal O is reversed between the odd and even stages.
  • FIG. 18 is a circuit diagram of the unit circuit 23a included in the shift register 10 according to the thirteenth embodiment.
  • FIG. 19 is a timing chart when the shift register 10 operates.
  • an inverter INV4 is provided, the input terminal of the inverter INV4 is connected to the CK terminal, and the output terminal of the inverter INV4 is It is connected to the gate terminal of the transistor T2.
  • CK1 is a clock signal supplied to the CK terminal of the odd-numbered unit circuit 23a
  • CK2 is a clock signal supplied to the CK terminal of the even-numbered unit circuit 23a.
  • the clock signals CK1 and CK2 each have a duty ratio smaller than 50% and are set so that the active periods (high periods) do not overlap each other.
  • both of the clock signals CK1 and CK2 are affected by the influence of the wiring load during the switching period of CK and its inverted signal CKB.
  • the transistor is in an active state where it is turned on.
  • the data input unit SW1 is switched on at all stages of the shift register and erroneous input of data called latch through occurs.
  • the active periods of the clock signals CK1 and CK2 do not overlap each other, so that the latch-through phenomenon can be prevented.
  • T4 has a channel width W larger than that of the transistors T5, T6.
  • the start pulse ST is output from a buffer having a channel width W larger than that of the transistors T5 and T6 of the latching inverter INV1 outside the shift register 10 or from an IC having a high driving capability.
  • the drive capability of the input signal of the unit circuit 23a is enhanced, and the same effect as the unit circuit 11a and the like can be obtained.
  • the above configuration can be applied to the following unit circuits.
  • FIG. 20 is a circuit diagram of the unit circuit 24a of the shift register 10 according to the fourteenth embodiment.
  • the inverter INV4 and the transistor T2 are omitted, and a transistor T9 and a capacitor C1 (bootstrap function shown in FIG. 11) are added.
  • FIG. 46 is a circuit diagram of the unit circuit 25a of the shift register 10 according to the fifteenth embodiment.
  • the unit circuit 25a has the input terminal of the output inverter INV3 connected to the node N1, and the output signal OB (inverted signal of O) is input to the input terminal INc.
  • the other configurations are the same as those of the unit circuit 11a.
  • the transistor T5 of the inverter INV1 is connected to the channel. Since the length L is set to be long and the driving capability is low, the potential of the node N1 is drawn to the input signal OB side and is a potential close to Vss (low level) of the input signal OB (a potential lower than the inversion potential of the inverter INV2). ) And then to Vss by feedback of the output (Vdd) of the inverter INV2.
  • the transistor T6 of the inverter INV1 is set to have a long channel length L and has a low driving capability.
  • the potential of the node N1 is drawn to the input signal OB side, rises to a potential close to Vdd of the input signal OB (potential higher than the inversion potential of the inverter INV2), and then Vdd is fed back by feedback of the output (Vss) of the inverter INV2. To rise.
  • Each unit circuit described above may include a switching circuit UDSW that switches the scanning direction (shift direction) of the shift register.
  • FIG. 21 is a circuit diagram illustrating a connection relationship between the switching circuit UDSW and the k-th unit circuit 24a included in the shift register 10 according to the fourteenth embodiment.
  • FIG. 22 illustrates a shift register including the switching circuit UDSW.
  • 10 is a block diagram showing a schematic configuration of 10.
  • the switching circuit UDSW includes N-channel transistors Tu1 and Tu2.
  • the transistor Tu1 has a source terminal connected to the input terminal INa, a drain terminal connected to the output terminal OUT, and a switching signal UD supplied to the gate terminal.
  • the transistor Tu2 has a source terminal connected to the input terminal INb, a drain terminal connected to the output terminal OUT, and a gate signal supplied with a switching signal UDB (inverted signal of UD).
  • the output terminal of the switching circuit UDSW is connected to the IN terminal of the unit circuit 24a.
  • the output signal O (k-1) of the (k-1) -th unit circuit 24a of the shift register is input to the INa terminal of the switching circuit UDSW, and the INb terminal of the switching circuit UDSW
  • the output signal O (k + 1) of the unit circuit 24a at the (k + 1) -th stage of the shift register is input.
  • the switching signals UD and UDB are signals whose polarities are reversed
  • the transistor Tu1 is turned on and the output signal O (k ⁇ 1) ) Is input from the switching circuit UDSW to the k-th unit circuit 24a
  • the shift direction of the shift register 10 is the first from the first stage to the n-th stage as shown in FIG. Direction.
  • the scanning direction of the shift register 10 is the second direction from the nth stage to the first stage, as shown in FIG.
  • the scanning direction can be switched by the switching signals UD and UDB.
  • the switching circuit UDSW may be composed of N-channel transistors Tu1, Tu2 and P-channel transistors Tu3, Tu4.
  • the switching circuit UDSW can be applied to the above-described embodiments.
  • Embodiment 2 of the present invention will be described below with reference to the drawings.
  • members having the same functions as those shown in the first embodiment are given the same reference numerals, and explanation thereof is omitted.
  • the terms defined in Embodiment 1 are used in accordance with the definitions in this example unless otherwise specified.
  • FIG. 25 is a block diagram illustrating a schematic configuration of the liquid crystal display device 1 according to the second embodiment
  • FIG. 26 is an equivalent circuit diagram illustrating an electrical configuration of a pixel of the liquid crystal display device 1.
  • the liquid crystal display device 1 includes a scanning signal line driving circuit 100 (gate driver), a data signal line driving circuit 300 (source driver), and a display panel 400. Further, the liquid crystal display device 1 includes a control circuit (not shown) that controls each drive circuit. Note that each drive circuit may be monolithically formed on the active matrix substrate.
  • the display panel 400 is configured by sandwiching a liquid crystal between an active matrix substrate (not shown) and a counter substrate, and has a large number of pixels P (FIG. 26) arranged in a matrix.
  • the display panel 400 includes a scanning signal line 41 (GLn), a data signal line 43 (SLi), a thin film transistor (hereinafter also referred to as “TFT”) 44, and a pixel electrode 45 on an active matrix substrate.
  • a common line (common electrode wiring) 42 (CMLn) is provided on the counter substrate. I and n are integers of 2 or more.
  • One scanning signal line 41 is formed in each row so as to be parallel to each other in the row direction (lateral direction), and the data signal line 43 is arranged in each column so as to be parallel to each other in the column direction (vertical direction).
  • the TFT 44 and the pixel electrode 45 are formed corresponding to each intersection of the scanning signal line 41 and the data signal line 43, and the gate electrode g of the TFT 44 is connected to the scanning signal line 41 and the source.
  • the electrode s is connected to the data signal line 43, and the drain electrode d is connected to the pixel electrode 45.
  • the pixel electrode 45 forms a capacitance Clc (including a liquid crystal capacitance) between the common line 42.
  • the gate of the TFT 44 is turned on by the gate signal (scanning signal) supplied to the scanning signal line 41, the source signal (data signal) from the data signal line 43 is written to the pixel electrode 45, and the pixel electrode 45 is written in the above-described manner. It is possible to realize gradation display according to the source signal by setting the potential according to the source signal and applying a voltage according to the source signal to the liquid crystal interposed between the common line 42. it can.
  • the display panel 400 having the above configuration is driven by the scanning signal line driving circuit 100, the data signal line driving circuit 300, and a control circuit for controlling them.
  • the horizontal scanning period of each row is sequentially assigned, and each row is sequentially scanned.
  • the scanning signal line driving circuit 100 sequentially outputs a gate signal for turning on the TFT 44 to the scanning signal line 41 of the row in synchronization with the horizontal scanning period of each row.
  • the data signal line driving circuit 300 outputs a source signal to each data signal line 43.
  • This source signal is a signal obtained by assigning a video signal supplied to the data signal line driving circuit 300 from the outside of the liquid crystal display device 1 through the control circuit to each column in the data signal line driving circuit 300 and performing boosting or the like. is there.
  • the control circuit controls the scanning signal line driving circuit 100 and the data signal line driving circuit 300 described above to output a gate signal, a source signal, and a common signal from each of these circuits.
  • the scanning signal line driving circuit 100 includes the shift register 10 according to the first embodiment.
  • the shift register 10 is configured by connecting n (n is an integer of 2 or more) SR unit circuits in multiple stages.
  • the SR unit circuit has a clock terminal (CKa terminal, CKb terminal), an input terminal (IN terminal), and an output terminal (OUT1 terminal, OUT2 terminal).
  • the liquid crystal display device 1 has a configuration in which the circuit area is reduced and a stable operation is performed by preventing the potential level of the output signal of the scanning signal line driving circuit 100 from being lowered.
  • a specific configuration of the shift register included in the scanning signal line driver circuit 100 will be described.
  • FIG. 27 is a block diagram illustrating a schematic configuration of the shift register 10 according to the fifteenth embodiment.
  • a switching circuit UDSW is included.
  • FIG. 28 is a circuit diagram of a first stage unit circuit (hereinafter referred to as SR unit circuit SR1) constituting the shift register 10
  • FIG. 29 is a second stage unit circuit (hereinafter referred to as SR unit circuit SR1) constituting the shift register 10. It is a circuit diagram of SR unit circuit SR2.
  • SR unit circuit includes a latch circuit and a pulse output circuit.
  • the unit circuit shown in each example of the first embodiment can be applied to the latch circuit.
  • the unit circuit 24a according to Example 14 of the first embodiment is shown as the latch circuit 24a.
  • the pulse output circuit 24b includes a P-channel transistor Tr1 and N-channel transistors Tr2 and Tr3, but the connection relationship is different between the odd-numbered stage (FIG. 28) and the even-numbered stage (FIG. 29).
  • the gate terminals of the transistors Tr1 and Tr3 and the output out (node N2) of the inverter INV2 are connected to each other, and the transistors Tr1, Tr2, Tr3 Is connected to the OUT2 terminal.
  • the gate terminal of the transistor Tr2 is connected to the input (node N1) of the inverter INV2, the source terminals of the transistors Tr1 and Tr2 are connected to the CKb terminal, and the power supply voltage Vss is applied to the source terminal of the transistor Tr3.
  • the gate terminals of the transistors Tr1 and Tr3 and the input (node N1) of the inverter INV2 are connected to each other, and the drains of the transistors Tr1, Tr2, and Tr3 The terminal is connected to the OUT2 terminal.
  • the gate terminal of the transistor Tr2 is connected to the output out (node N2) of the inverter INV2 and the OUT1 terminal, the source terminals of the transistors Tr1 and Tr2 are connected to the CKb terminal, and the power supply voltage Vss is applied to the source terminal of the transistor Tr3. It is done.
  • the start pulse ST and the two-phase clock signals CK1 and CK2 are supplied to the shift register 10 from the outside (see FIGS. 25 and 27).
  • the start pulse ST is applied to the IN terminal of the first-stage SR unit circuit SR1 via the first-stage switching circuit UDSW.
  • the clock signal CK1 is supplied to the CKa terminal of the odd-numbered SR unit circuit (see FIG. 28) and to the CKb terminal of the even-numbered SR unit circuit (see FIG. 29).
  • the clock signal CK2 is supplied to the CKb terminal of the odd-numbered SR unit circuit and to the CKa terminal of the even-numbered SR unit circuit.
  • the output signal O1 of the first-stage latch circuit 24a is input to the pulse output circuit 24b and also output from the OUT1 terminal of the SR unit circuit SR1, and is output from the second-stage switching unit UDSW to the second-stage SR unit.
  • the signal is input to the IN terminal of the circuit SR2.
  • the output signal CKO1 output from the OUT2 terminal is supplied to the first-stage scanning signal line GL1 as SROUT1 (gate signal).
  • the (k ⁇ 1) th SR unit circuit SR (k) is connected to the IN terminal of the SR unit circuit SRk of the kth stage (k is an integer of 1 to n) of the shift register 10.
  • -1) output signal CKO (k-1) is input, and the k-th SR unit circuit SRk outputs the output signal CKOk (SROUTk) to the scanning signal line GLk.
  • the shift register 10 sequentially outputs the output signals SROUT1 to SROUTn to the scanning signal lines GL1 to GLn by the shift operation.
  • FIG. 30 is a timing chart when the shift register 10 operates.
  • the first SR unit circuit SR1, the second SR unit circuit SR2, the third SR unit circuit SR3, the (n ⁇ 1) th SR unit circuit SR (n ⁇ 1), n The input / output signals in the SR unit circuit SRn at the stage are shown.
  • the clock signal CK1 is supplied to the CKa terminal of the odd-numbered SR unit circuit and the CKb terminal of the even-numbered SR unit circuit, and the clock signal CK2 is supplied to the CKb terminal of the odd-numbered SR unit circuit. It is given to the CKa terminal of the SR unit circuit of the even-numbered stage.
  • the clock signals CK1 and CK2 each have a duty ratio smaller than 50% and are set so that the active periods (high periods) do not overlap each other.
  • ST is a start pulse input to the first-stage SR unit circuit SR1.
  • On are the SR unit circuits of the first, second, third, (n-1) th, and nth stages of the shift register 10, respectively.
  • CKO1, CKO2, CKO3, CKO (n ⁇ 1), and CKOn are the first, second, third, and (n ⁇ 1)
  • the potential of the output signal output from the OUT2 terminal of the SR unit circuit at the stage and the n-th stage is shown.
  • start pulse ST high level (active)
  • clock signal CK1 becomes high level at t1
  • data input unit SW1 is turned on.
  • a start pulse ST high level; Vdd
  • node N1 bootsstrap operation
  • the potential of the node N1 is held at Vss (low level), and the transistor T6 is turned on. Therefore, when the clock signal CK1 becomes high level (t1) ), Vdd (high level) of the start pulse ST and the power source VSS (low level) are short-circuited.
  • the potential of the node N1 is drawn to the start pulse ST side and is close to Vdd (high level) of the start pulse ST (higher than the inversion potential of the latch inverter INV2). (See FIG. 4).
  • the start pulse ST is used as an output of a buffer having a channel width W larger than that of the transistors T5 and T6 of the latch inverter INV1 outside the shift register 10, or an output of an IC having a high drive capability, thereby increasing the drive capability. be able to.
  • the transistor T4 is turned on, and the output of the latching inverter INV2 (node N2; Vss (low level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T6 is turned off, and the transistor T5 is turned on.
  • the potential of the node N1 rises from a potential close to Vdd of the start pulse ST to Vdd (see FIG. 4).
  • the transistor T4 of the latching inverter INV2 When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the latching inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and O1 becomes low level (Vss).
  • the transistors Tr1 and Tr2 are turned on and the transistor Tr3 is turned off, and the low level (Vss) of CK2 is output as CKO1 from the OUT2 terminal.
  • the transistor T3 is turned on, and the output of the latching inverter INV2 (node N2; Vdd (high level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T5 is turned off, and the transistor T6 is turned on.
  • the potential of the node N1 further decreases from a potential close to Vss of the start pulse ST to Vss (see FIG. 4).
  • the transistor T3 of the latching inverter INV2 When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the latching inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and O1 becomes high level (Vdd).
  • the transistors Tr1 and Tr2 are turned off, the transistor Tr3 is turned on, and CKO1 is set to a low level (Vss).
  • the data input unit SW1 is turned off, the input of the start pulse ST is cut off, and the node N1 is latched by the latch inverters INV1 and INV2. Holds the potential (Vss (low level)) held immediately before, O1 maintains Vdd (high level), and CKO1 maintains Vss (low level). Thereafter, the SR unit circuit SR1 maintains Odd at Vdd (high level) and CKO1 at Vss (low level) until the start pulse ST becomes high level.
  • the transistor T3 of the latching inverter INV2 is turned on, and the transistor T4 is turned off.
  • the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and O2 becomes Vdd (high level).
  • the transistors Tr1 and Tr2 are turned on and the transistor Tr3 is turned off, and the CK1 low level (Vss) is output as CKO1 from the OUT2 terminal.
  • the transistors Tr1 and Tr2 are turned off, the transistor Tr3 is turned on, and CKO2 is at a low level (Vss).
  • the data input unit SW1 is turned off, the input of O1 is cut off, and the node N1 is immediately before the latch operation by the latch inverters INV1 and INV2. Is held at the potential (Vdd (high level)), and O2 and CKO2 maintain Vss (low level). Thereafter, the SR unit circuit SR2 maintains Vss (low level) for O2 and Vss (low level) for CKO2 until O1 becomes high level.
  • the SR unit circuit SR1 is operated in the odd-numbered SR unit circuits after the third stage, and the SR unit circuit SR2 is operated in the even-numbered SR unit circuit.
  • the scanning direction of the shift register 10 is the first direction (switching signal UD: high level, switching signal UDB: low level) from the first stage to the nth stage, but from the nth stage.
  • the switching signal UDB may be set to a high level (the switching signal UD is set to a low level).
  • FIG. 31 is a timing chart when the shift direction is the second direction.
  • FIG. 32 is a block diagram illustrating a schematic configuration of the shift register 10 according to the sixteenth embodiment.
  • FIG. 33 is a circuit diagram of the SR unit circuit constituting the shift register 10.
  • n is an integer of 2 or more SR unit circuits and two dummy SR unit circuits SRa and SRb are provided.
  • the SR unit circuit has an IN1, IN2, UD, CK, OUT1, and OUT2 terminals.
  • the previous (k ⁇ 1) -th stage output signal CKO (k ⁇ 1) is input to the IN1 terminal, and the previous (k + 1) to the IN2 terminal.
  • the output signal CKO (k + 1) at the stage is input, the switching signal UD is input to UD, the clock signal CK1 or CK2 is input to the CK terminal, the output signal Ok is output from the OUT1 terminal, and the output signal CKOk is output from the OUT2 terminal. Is output.
  • the output signal CKOk is input to the IN1 terminal of the (k + 1) -th stage SR unit circuit SR (k + 1).
  • FIG. 34 is a timing chart when the shift register 10 operates.
  • the polarity of the output signal Ok at the OUT1 terminal is equal between the odd-numbered stage and the even-numbered stage.
  • the output signal CKO (k + 1) of the next stage OUT2 terminal is input to the IN2 terminal, the node N2 becomes Vdd (high level) and the output signal Ok becomes Vss (low level) by the bootstrap operation.
  • the latch inverters INV1 and INV2 can exceed the inversion potential of the inverter constituting the latch if the drive capability is lower than that of the switching signal UD.
  • the switching signal UD needs only to have a higher driving capability than the latching inverters INV1 and INV2, and is driven by a buffer having a channel width W larger than that of the latching inverters INV1 and INV2 outside the shift register, or has a higher driving capability. It is preferable to use the output of the IC.
  • the SR unit circuit of this embodiment requires two inputs, it is necessary to arrange a dummy stage at the final stage in the scanning direction.
  • the output CKOb of the dummy stage is delayed via an inverter. After that, it feeds back to its own IN2 terminal to make the latch state inactive.
  • the shift direction is the first direction (switching signal UD: high level, switching signal UDB: low level).
  • switching signal UDB is switched to high level (switching signal UD may be set to a low level).
  • FIG. 35 is a timing chart when the shift direction is the second direction.
  • circuit configuration of FIG. 33 may be the configuration of FIG. In FIG. 36, the inverted signal UDB of the switching signal UD is input to the data input unit SW2b.
  • FIG. 37 is a circuit diagram of the SR unit circuit constituting the shift register 10.
  • the SR unit circuit of FIG. 37 has a configuration in which an initialization signal is input instead of the power supply of the latching inverter in the SR unit circuit of FIGS.
  • FIG. 37 is a circuit diagram of the first-stage SR unit circuit SR1 that constitutes the shift register 10
  • FIG. 38 is a circuit diagram of the second-stage SR unit circuit SR2 that constitutes the shift register 10.
  • the initialization signal INIT is input to the source terminal of the transistor T4 of the latching inverter INV2.
  • the initialization signal INIT is input to the source terminal of the transistor T6 of the latching inverter INV1.
  • FIG. 39 is a timing chart when the shift register 10 operates.
  • the transistor T4 when the node N1 is Vdd (high level) in an undefined state before initialization, the transistor T4 is turned on and the output O is the initialization signal INIT.
  • the output CKO becomes Vss (low level) when the transistor Tr3 is turned on.
  • the transistor T3 when the node N1 is Vss (low level) in an indefinite state before initialization, the transistor T3 is turned on and the output O is high level, and the output CKO is turned on and the transistor Tr3 is turned on to Vss (low level). become.
  • the transistor T4 when the node N1 is Vdd (high level) in an undefined state before initialization, the transistor T4 is turned on and the output O becomes low level.
  • the output CKO becomes Vss (low level) when the transistor Tr3 is turned on.
  • the transistor T6 when the node N1 is Vss (low level) in an indeterminate state before initialization, the transistor T6 is on, and when the initialization signal INIT goes high, N1 goes from low level to high level. Therefore, the transistor T4 is turned on and the output O becomes low level, and the output CKO becomes Vss (low level) when the transistors Tr1 and Tr2 are turned off and Tr3 is turned on.
  • the output CKO is inactive (low level) at the time of initialization. However, as shown in FIGS. 40 and 41, the output CKO is active (high level) at the time of initialization. It is good also as composition which becomes.
  • an initialization signal INIT is input to the source terminal of the transistor Tr3 in addition to the configurations of FIGS.
  • FIG. 42 is a timing chart when the shift register 10 operates.
  • SR1 In the odd-numbered SR unit circuit (SR1) (for example, FIG. 40), when the node N1 is Vdd (high level) in an undefined state before initialization, the transistor T4 is turned on and the output O is the initialization signal INIT. The output CKO becomes high level of the initialization signal INIT when the transistor Tr3 is turned on.
  • the node N1 is Vss (low level) in an indefinite state before initialization
  • the transistor T3 is turned on and the output O becomes high level, and the output CKO is turned on by the transistor Tr3 and the initialization signal INIT. Become a high level.
  • SR unit circuit for example, FIG. 41
  • the transistor T4 when the node N1 is Vdd (high level) in an undefined state before initialization, the transistor T4 is turned on and the output O becomes low level.
  • the output CKO becomes high level of the initialization signal INIT when the transistor Tr3 is turned on.
  • the transistor T6 when the node N1 is Vss (low level) in an indeterminate state before initialization, the transistor T6 is on, and when the initialization signal INIT goes high, N1 goes from low level to high level. Therefore, the transistor T4 is turned on and the output O is at the low level, and the output CKO is turned on at the high level of the initialization signal INIT with the transistor Tr3 turned on.
  • the initialization signal INIT input to the transistor Tr3 may be the all-on signal AON.
  • a high level may be input if the output is to be activated during initialization, and a low level may be input if the output is to be inactive during initialization.
  • FIG. 43 is a circuit diagram of the SR unit circuit constituting the shift register 10.
  • the SR unit circuit of FIG. 43 has a configuration in which an initialization signal INIT is input instead of the VSS power supply of the latching inverter in the SR unit circuit of FIG.
  • FIG. 44 is a timing chart during operation of the shift register 10 according to the present embodiment.
  • the circuit configuration of FIG. 43 may be the configuration of FIG. In FIG. 45, an inverted signal UDB of the switching signal UD is input.
  • FIG. 47 is a circuit diagram of the SR unit circuit constituting the shift register 10.
  • the output inverter INV3 and resistors R1 and R2 are provided in the SR unit circuit of FIG.
  • the clock signals CK1 and CK2 input to the CK terminal are signals inverted from the clock signals CK1 and CK2 of FIG.
  • FIG. 48 is a timing chart during operation of the shift register 10 according to the present embodiment.
  • 49 and 50 are circuit diagrams of the SR unit circuit constituting the shift register 10.
  • 49 shows the first-stage SR unit circuit SR1 constituting the shift register 10
  • FIG. 50 shows the second-stage SR unit circuit SR2 constituting the shift register 10.
  • the SR unit circuits of FIGS. 49 and 50 are the same as the SR unit circuits of FIGS. 37 and 38 except for the configuration of the pulse output circuit 24b.
  • the pulse output circuit 24b in the odd-numbered stage includes a transistor Tr4a whose gate terminal is connected to the power supply VDD and whose source terminal is connected to the node N1, and whose gate terminal is the drain of the transistor Tr4a.
  • a transistor Tr2a connected to the terminal, a source terminal connected to the CKb terminal, a gate terminal connected to the node N2 and the OUT1 terminal, a source terminal connected to the power supply VSS, a gate terminal and a drain of the transistor Tr2a And a capacitor C2a connected to the terminal. Further, the drain terminal of the transistor Tr2a, the drain terminal of the transistor Tr3a, and the OUT2 terminal are connected.
  • the even-numbered pulse output circuit 24b includes a transistor Tr4b whose gate terminal is connected to the power supply VDD and whose source terminal is connected to the node N2, and whose gate terminal is the drain of the transistor Tr4b.
  • the transistor Tr2b is connected to the terminal, the source terminal is connected to the CKb terminal, the gate terminal is connected to the node N1, the transistor Tr3b is connected to the power source VSS, and the gate terminal and the drain terminal of the transistor Tr2b are connected.
  • Capacitance C2b Further, the drain terminal of the transistor Tr2b, the drain terminal of the transistor Tr3b, and the OUT2 terminal are connected.
  • Vdd ⁇ Vth + ⁇ push-up voltage
  • FIG. 51 is a circuit diagram of the SR unit circuit constituting the shift register 10.
  • the SR unit circuit of FIG. 51 is the same as the SR unit circuit of FIG. 43 except for the configuration of the pulse output circuit 24b.
  • the pulse output circuit 24b includes a transistor Tr4 having a gate terminal connected to the power supply VDD, a source terminal connected to the node N1, a gate terminal connected to the drain terminal of the transistor Tr4, and a source terminal connected to the node Tr1.
  • a transistor Tr2 connected to the CK terminal; a transistor Tr3 having a gate terminal connected to the node N2; a source terminal connected to the power supply VSS; and a capacitor C2 connected to the gate terminal and the drain terminal of the transistor Tr2. Yes.
  • the drain terminal of the transistor Tr2, the drain terminal of the transistor Tr3, and the OUT terminal are connected.
  • Vdd ⁇ Vth + ⁇ push-up voltage
  • FIG. 52 is a block diagram illustrating a schematic configuration of the shift register 10 according to the twenty-third embodiment.
  • 53 is a circuit diagram of the second-stage SR unit circuit (SR unit circuit SR2) constituting the shift register 10, and
  • FIG. 54 is a timing chart when the shift register 10 operates.
  • FIG. 55 is a timing chart for explaining the potential change of the node N1.
  • the output signal CKO of the preceding SR unit circuit is input to the IN terminal of each SR unit circuit.
  • the output signal CKO1 of the SR unit circuit SR1 is input to the IN terminal.
  • the source terminal of the transistor Tr3 of the pulse output circuit 24b is connected to the power supply VDD, and further includes a buffer BF including transistors Tr9 and Tr10. Note that the initialization signal INIT input to the source terminal of the transistor Tr10 may be the all-on signal AON.
  • the potential of the node N1 is determined by a signal (CKO1 in FIG. 53) input to the IN terminal when the clock signal CK2 (enable signal) becomes inactive. Therefore, in order to operate the SR unit circuit normally, it is necessary that CKO1 is at the high level at the rising timing of the clock signal CK2, as shown in FIG. However, in actuality, as shown in FIG. 55 (b), there is a possibility that CKO1 becomes low level at the rising timing of the clock signal CK2 due to the influence of the turning of the clock signal CK2. In this case, since the potential of the node N1 is held at a low level, the SR unit circuit causes a malfunction.
  • FIG. 53 may be configured as shown in FIG. 56.
  • 57 is a timing chart at the time of operation of the shift register 10 according to the configuration of FIG. 56
  • FIG. 58 is a timing chart for explaining a potential change of the node N1.
  • the buffer BF of FIG. 53 is omitted, but since CKO2 is connected to the gate line, the output signal as shown in FIG. The potential change of CKO1 can be delayed. Therefore, CKO1 can be reliably maintained at the high level at the falling timing of the clock signal CK2, so that the malfunction can be prevented as in the SR unit circuit of FIG.
  • the initialization signal INIT input to the source terminal of the transistor Tr3 constituting the pulse output circuit 24b may be the all-on signal AON.
  • a signal obtained by delaying the output signal of the pulse output circuit (24b) in the previous SR unit circuit is input to the data input unit (SW1a) of the SR unit circuit (holding circuit). It can be set as the structure to do.
  • the potential level of the signal held at the first connection point that is the connection point between the output terminal of the first inverter and the input terminal of the second inverter is the enable signal.
  • it When becomes active, it may be configured to change so as to approach the potential level of the hold target signal.
  • the potential level of the signal held at the first connection point is such that the enable signal is active and the output signal of the second inverter is the first inverter. Can be configured to be equal to the potential level of the hold target signal.
  • the shift register according to the embodiment of the present invention may be configured such that the output signal of the first inverter or the second inverter is supplied to the holding circuit in the next stage through a buffer.
  • the transistor constituting the first inverter provided between the first connection point and the input terminal of the first inverter has the channel length of the second register. It can also be set as the structure set so that it may become larger than the channel length of the transistor which comprises an inverter.
  • the transistor constituting the second inverter is configured such that the channel width thereof is set larger than the channel width of the transistor constituting the first inverter. You can also.
  • the output signal of the first inverter or the second inverter is supplied to the holding circuit of the next stage through the buffer, and the transistor constituting the first inverter is A configuration in which the channel width is set to be smaller than the channel width of the transistors constituting the buffer may be employed.
  • the shift register according to the embodiment of the present invention may have a configuration in which a resistor is provided between the first connection point and the output terminal of the first inverter.
  • the holding circuit includes first to fifth transistors
  • the first inverter includes the second and third transistors
  • the second inverter includes the fourth and fourth transistors.
  • the first transistor includes the fifth transistor
  • the gate terminal is supplied with the enable signal
  • the source terminal is input with the output signal of the previous holding circuit
  • the gate terminals of the second and third transistors and the first transistor
  • the drain terminals of the fourth and fifth transistors are connected, and the drain terminals of the second and third transistors, the gate terminals of the fourth and fifth transistors, and the drain terminals of the first transistor are connected. It can also be set as the structure which has.
  • the source terminal of the third transistor is connected to the low-potential side power supply via the first resistor, and the source terminal of the second transistor is connected to the high potential via the second resistor.
  • a low potential signal is input to the source terminal of the fifth transistor, and a high potential signal is input to the source terminal of the fourth transistor.
  • a first resistor is provided between the drain terminal of the third transistor and the output terminal of the first inverter, and the drain terminal of the second transistor and the first inverter are provided.
  • the second resistor may be provided between the output terminal and the output terminal.
  • the shift register according to the embodiment of the present invention may be configured such that an initialization signal is input to any one of the source terminals of the second to fifth transistors.
  • a scanning signal line driving circuit includes the shift register, and an output signal of the holding circuit is supplied as a scanning signal to a scanning signal line corresponding to the holding circuit.
  • the display panel according to the embodiment of the present invention is characterized in that the scanning signal line driving circuit and the pixel circuit are formed monolithically.
  • a display device includes the scan signal line driving circuit.
  • the present invention is suitable for each drive circuit of a display device.
  • Liquid crystal display device 10 Shift Register 11 Shift Register Unit Circuit 41 Scan Signal Line (Gate Line) 42 Common electrode wiring (common line) 43 Data signal line (source line) 44 TFT 45 Pixel electrode 100 Scanning signal line drive circuit (gate driver) 300 Data signal line drive circuit (source driver) 400 Display panel T1 transistor (first transistor) T3 transistor (4th transistor) T4 transistor (5th transistor) T5 transistor (second transistor) T6 transistor (third transistor) INV1 inverter (first inverter) INV2 inverter (second inverter) R1 resistance (first resistance) R2 resistance (second resistance)

Abstract

In a holding circuit (11a) of each stage of a shift register, when a clock signal (CK) is at a high level, the input terminal of an inverter INV1 and the output terminal of an inverter INV2 are electrically connected to each other, and the output terminal of the inverter INV1 and the input terminal of the inverter INV2 are electrically connected to each other. The size of the shift register circuit can thus be reduced.

Description

シフトレジスタ、走査信号線駆動回路、表示パネル、及び表示装置Shift register, scanning signal line drive circuit, display panel, and display device
 本発明は、表示装置に用いられるシフトレジスタに関する。 The present invention relates to a shift register used in a display device.
 近年、液晶表示装置の狭額縁化を図るため、液晶パネルを駆動する表示駆動回路の縮小化が求められている。表示駆動回路の規模は、回路を構成するトランジスタの素子数に大きく影響するため、トランジスタ数を削減することが重要である。 In recent years, in order to narrow the frame of a liquid crystal display device, there has been a demand for downsizing a display driving circuit that drives a liquid crystal panel. Since the scale of the display driving circuit greatly affects the number of transistors included in the circuit, it is important to reduce the number of transistors.
 ここで、従来の表示駆動回路の一例として、走査信号線駆動回路(ゲートドライバ)に用いられるシフトレジスタを構成する信号保持回路(以下、保持回路と称す)を挙げる(例えば特許文献1)。図59は従来のシフトレジスタの概略構成を示すブロック図であり、図60は図59に示すシフトレジスタを構成する保持回路の回路図である。 Here, as an example of a conventional display driving circuit, a signal holding circuit (hereinafter referred to as a holding circuit) constituting a shift register used in a scanning signal line driving circuit (gate driver) is cited (for example, Patent Document 1). FIG. 59 is a block diagram showing a schematic configuration of a conventional shift register, and FIG. 60 is a circuit diagram of a holding circuit constituting the shift register shown in FIG.
 図60の保持回路は、D型フリップフロップとして構成されている。このD型フリップフロップDFFは、直列に接続されたクロックドインバータINV1と、インバータINV2と、インバータINV2の出力端子が入力端子に接続され、出力端子がインバータINV2の入力端子に接続されたクロックドインバータINV5とを備えている。上記インバータINV1、INV2、INV5は、CMOSトランジスタで構成されている。クロックドインバータINV1のPMOS側のクロック入力端子にクロック信号/Cを入力する一方、NMOS側のクロック入力端子にクロック信号Cを入力し、クロックドインバータINV5のPMOS側のクロック入力端子にクロック信号Cを入力する一方、NMOS側のクロック入力端子にクロック信号/Cを入力している。 60 is configured as a D-type flip-flop. This D-type flip-flop DFF has a clocked inverter INV1 connected in series, an inverter INV2, an output terminal of the inverter INV2 connected to the input terminal, and an output terminal connected to the input terminal of the inverter INV2. INV5. The inverters INV1, INV2, and INV5 are composed of CMOS transistors. The clock signal / C is input to the clock input terminal on the PMOS side of the clocked inverter INV1, while the clock signal C is input to the clock input terminal on the NMOS side, and the clock signal C is input to the clock input terminal on the PMOS side of the clocked inverter INV5. The clock signal / C is input to the clock input terminal on the NMOS side.
 このように、上記D型フリップフロップDFFは、1個のインバータと2個のクロックドインバータからなっており、2個のクロックドインバータには、それぞれ逆位相のクロック信号が入力されている。そして、隣接するD型フリップフロップDFFにおいては、それぞれ、逆位相のクロック信号が入力されている。 As described above, the D-type flip-flop DFF is composed of one inverter and two clocked inverters, and clock signals having opposite phases are input to the two clocked inverters, respectively. The adjacent D-type flip-flops DFF are input with clock signals having opposite phases.
 図61は、図59に示すシフトレジスタの動作時のタイミングチャートである。シフトレジスタは、スタート信号STが入力されると、クロック信号CK、CKBの立ち上がりエッジに同期してシフトしながら各保持回路から順に出力信号Oを出力する。 FIG. 61 is a timing chart when the shift register shown in FIG. 59 operates. When the start signal ST is input, the shift register sequentially outputs the output signal O from each holding circuit while shifting in synchronization with the rising edges of the clock signals CK and CKB.
日本国公開特許公報「特開2001-216796(2001年8月10日公開)」Japanese Patent Publication “JP 2001-216696 (published August 10, 2001)”
 上記従来の保持回路では、D型フリップフロップにおいて、入力信号を正常にラッチするために、入力端子INから信号を受け付ける際には、クロックドインバータINV5の出力をフローティング状態にしてラッチを解除する必要がある。このラッチを解除する回路分だけ、素子数が増加するという問題がある。 In the above conventional holding circuit, in order to properly latch the input signal in the D-type flip-flop, when receiving the signal from the input terminal IN, it is necessary to release the latch by setting the output of the clocked inverter INV5 to the floating state. There is. There is a problem that the number of elements increases by the circuit for releasing the latch.
 そこで、本発明では、シフトレジスタの回路規模を縮小化することを目的とする。 Accordingly, an object of the present invention is to reduce the circuit scale of the shift register.
 本発明のシフトレジスタは、上記課題を解決するために、
 各段に保持回路を有するシフトレジスタであって、
 上記保持回路は、イネーブル信号に応じて保持対象信号を取り込むデータ入力部と、取り込まれた上記保持対象信号を保持するための第1インバータ及び第2インバータとを備え、上記第1インバータまたは第2インバータの出力に基づいて、ハイレベルまたはローレベルの信号を出力し、
 上記イネーブル信号がアクティブのときに、上記第1インバータの入力端子と上記第2インバータの出力端子とが互いに電気的に接続されているとともに、上記第1インバータの出力端子と上記第2インバータの入力端子とが互いに電気的に接続されていることを特徴とする。
In order to solve the above problems, the shift register of the present invention provides
A shift register having a holding circuit in each stage,
The holding circuit includes a data input unit that captures a retention target signal in response to an enable signal, and a first inverter and a second inverter that retain the captured retention target signal, and the first inverter or the second inverter. Based on the output of the inverter, it outputs a high level or low level signal,
When the enable signal is active, the input terminal of the first inverter and the output terminal of the second inverter are electrically connected to each other, and the output terminal of the first inverter and the input of the second inverter The terminals are electrically connected to each other.
 本発明のシフトレジスタでは、イネーブル信号(例えばクロック信号)がアクティブのときに、第1インバータの出力と第2インバータの入力とが電気的に接続されている構成である。この構成により、シフトレジスタの回路規模を縮小化することができる。 The shift register of the present invention has a configuration in which the output of the first inverter and the input of the second inverter are electrically connected when an enable signal (for example, a clock signal) is active. With this configuration, the circuit scale of the shift register can be reduced.
 ここで、入力信号と電源VDDとが短絡した場合でも、第2インバータを正常に動作(反転)させることができれば不具合は生じないところ、上記構成では、例えば、第1インバータを構成するトランジスタのチャネル長を大きくする構成や、第1インバータに抵抗を設ける構成を備えることにより、短絡時に第2インバータに入力される信号を、入力信号の電位レベルに引き込むことができるため、第2インバータを正常に動作(反転)させることができる(詳細は後述)。よって、回路規模の縮小に伴って動作不具合を生じることもない。 Here, even if the input signal and the power supply VDD are short-circuited, there is no problem if the second inverter can be operated (reversed) normally. In the above configuration, for example, the channel of the transistor constituting the first inverter By providing a configuration in which the length is increased and a configuration in which a resistor is provided in the first inverter, a signal input to the second inverter at the time of a short circuit can be drawn into the potential level of the input signal. It can be operated (inverted) (details will be described later). Therefore, there is no problem in operation due to the reduction in circuit scale.
 以上のように、本発明のシフトレジスタは、上記イネーブル信号がアクティブのときに、上記第1インバータの入力端子と上記第2インバータの出力端子とが互いに電気的に接続されているとともに、上記第1インバータの出力端子と上記第2インバータの入力端子とが互いに電気的に接続されている構成である。これにより、シフトレジスタの回路規模を縮小化することができる。 As described above, in the shift register of the present invention, when the enable signal is active, the input terminal of the first inverter and the output terminal of the second inverter are electrically connected to each other. The output terminal of one inverter and the input terminal of the second inverter are electrically connected to each other. Thereby, the circuit scale of the shift register can be reduced.
実施例1に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 3 is a circuit diagram of a unit circuit included in the shift register according to the first embodiment. 実施の形態1に係るシフトレジスタの概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of a shift register according to a first embodiment. 実施例1に係るシフトレジスタの動作時のタイミングチャートである。4 is a timing chart during operation of the shift register according to the first embodiment. 実施例1に係るシフトレジスタの動作時のタイミングチャートを模式的に示した図である。FIG. 6 is a diagram schematically illustrating a timing chart during operation of the shift register according to the first embodiment. 実施例2に係るシフトレジスタに含まれる単位回路の回路図である。6 is a circuit diagram of a unit circuit included in a shift register according to Embodiment 2. FIG. 実施例3に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to a third embodiment. 実施例4に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to a fourth embodiment. 実施例5に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to a fifth embodiment. 実施例5に係るシフトレジスタの概略構成を示すブロック図である。FIG. 10 is a block diagram illustrating a schematic configuration of a shift register according to a fifth embodiment. 実施例6に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to a sixth embodiment. 実施例7に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to a seventh embodiment. 実施例8に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 10 is a circuit diagram of a unit circuit included in a shift register according to an eighth embodiment. 実施例9に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 20 is a circuit diagram of a unit circuit included in a shift register according to Embodiment 9. 実施例10に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 20 is a circuit diagram of a unit circuit included in a shift register according to the tenth embodiment. 実施例11に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 22 is a circuit diagram of a unit circuit included in a shift register according to an eleventh embodiment. 実施例12に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 22 is a circuit diagram of a unit circuit included in a shift register according to a twelfth embodiment. 実施例12に係るシフトレジスタの動作時のタイミングチャートである。18 is a timing chart at the time of operation of the shift register according to the twelfth embodiment. 実施例13に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 23 is a circuit diagram of a unit circuit included in a shift register according to a thirteenth embodiment. 実施例13に係るシフトレジスタの動作時のタイミングチャートである。14 is a timing chart of the operation of the shift register according to the thirteenth embodiment. 実施例14に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 22 is a circuit diagram of a unit circuit included in a shift register according to Embodiment 14; 切替回路と、実施例14に係るシフトレジスタに含まれるk段目の単位回路との接続関係を示す回路図である。FIG. 20 is a circuit diagram illustrating a connection relationship between a switching circuit and a k-th unit circuit included in a shift register according to a fourteenth embodiment. 切替回路を備えたシフトレジスタの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the shift register provided with the switching circuit. 切替回路を備えたシフトレジスタの動作時のタイミングチャートである。6 is a timing chart during operation of a shift register including a switching circuit. 切替回路を備えたシフトレジスタの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the shift register provided with the switching circuit. 実施の形態2に係る液晶表示装置の概略構成を示すブロック図である。FIG. 6 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to a second embodiment. 図25の液晶表示装置の画素の電気的構成を示す等価回路図である。FIG. 26 is an equivalent circuit diagram illustrating an electrical configuration of a pixel of the liquid crystal display device of FIG. 25. 実施例15に係るシフトレジスタの概略構成を示すブロック図である。FIG. 20 is a block diagram illustrating a schematic configuration of a shift register according to a fifteenth embodiment. 実施例15に係るシフトレジスタに含まれる奇数段の単位回路の回路図である。FIG. 22 is a circuit diagram of odd-numbered unit circuits included in a shift register according to a fifteenth embodiment. 実施例15に係るシフトレジスタに含まれる偶数段の単位回路の回路図である。FIG. 22 is a circuit diagram of a unit circuit of an even number stage included in a shift register according to the fifteenth embodiment. 実施例15に係るシフトレジスタの動作時のタイミングチャートである。18 is a timing chart at the time of operation of the shift register according to the fifteenth embodiment. 実施例15に係るシフトレジスタの動作時のタイミングチャートである。18 is a timing chart at the time of operation of the shift register according to the fifteenth embodiment. 実施例16に係るシフトレジスタの概略構成を示すブロック図である。FIG. 20 is a block diagram illustrating a schematic configuration of a shift register according to a sixteenth embodiment. 実施例16に係るシフトレジスタを構成するSR単位回路の回路図である。FIG. 22 is a circuit diagram of an SR unit circuit constituting a shift register according to Embodiment 16; 実施例16に係るシフトレジスタの動作時のタイミングチャートである。18 is a timing chart at the time of operation of the shift register according to the sixteenth embodiment. 実施例16に係るシフトレジスタの動作時のタイミングチャートである。18 is a timing chart at the time of operation of the shift register according to the sixteenth embodiment. 実施例16に係るシフトレジスタに含まれる単位回路の他の構成を示す回路図である。FIG. 30 is a circuit diagram illustrating another configuration of a unit circuit included in a shift register according to Embodiment 16; 実施例17に係るシフトレジスタを構成する奇数段のSR単位回路の回路図である。FIG. 18B is a circuit diagram of an odd-numbered SR unit circuit constituting the shift register according to the seventeenth embodiment. 実施例17に係るシフトレジスタを構成する偶数段のSR単位回路の回路図である。FIG. 20 is a circuit diagram of an SR unit circuit of an even number stage configuring a shift register according to Embodiment 17; 実施例17に係るシフトレジスタの動作時のタイミングチャートである。18 is a timing chart during operation of the shift register according to the seventeenth embodiment. 実施例18に係るシフトレジスタを構成する奇数段のSR単位回路の回路図である。FIG. 28 is a circuit diagram of an odd-numbered SR unit circuit constituting a shift register according to Embodiment 18; 実施例18に係るシフトレジスタを構成する偶数段のSR単位回路の回路図である。FIG. 22 is a circuit diagram of even-numbered SR unit circuits constituting a shift register according to Embodiment 18; 実施例18に係るシフトレジスタの動作時のタイミングチャートである。19 is a timing chart at the time of operation of the shift register according to the eighteenth embodiment. 実施例19に係るシフトレジスタを構成するSR単位回路の回路図である。FIG. 40 is a circuit diagram of an SR unit circuit constituting a shift register according to Embodiment 19; 実施例19に係るシフトレジスタの動作時のタイミングチャートである。FIG. 23 is a timing chart of the operation of the shift register according to the nineteenth embodiment. FIG. 実施例19に係るシフトレジスタを構成するSR単位回路の他の構成を示す回路図である。FIG. 38 is a circuit diagram illustrating another configuration of the SR unit circuit constituting the shift register according to the nineteenth embodiment. 実施例15に係るシフトレジスタに含まれる単位回路の回路図である。FIG. 22 is a circuit diagram of a unit circuit included in a shift register according to the fifteenth embodiment. 実施例20に係るシフトレジスタを構成するSR単位回路の回路図である。FIG. 30 is a circuit diagram of an SR unit circuit constituting a shift register according to Embodiment 20; 実施例20に係るシフトレジスタの動作時のタイミングチャートである。24 is a timing chart at the time of operation of the shift register according to the twentieth embodiment. 実施例21に係るシフトレジスタを構成する1段目のSR単位回路の回路図である。FIG. 38 is a circuit diagram of a first-stage SR unit circuit constituting a shift register according to Embodiment 21; 実施例21に係るシフトレジスタを構成する2段目のSR単位回路の回路図である。FIG. 32 is a circuit diagram of a second-stage SR unit circuit constituting the shift register according to the twenty-first embodiment. 実施例22に係るシフトレジスタを構成するSR単位回路の回路図である。FIG. 22 is a circuit diagram of an SR unit circuit constituting a shift register according to a twenty-second embodiment. 実施例23に係るシフトレジスタの概略構成を示すブロック図である。FIG. 25 is a block diagram illustrating a schematic configuration of a shift register according to a twenty-third embodiment. 実施例23に係るシフトレジスタを構成する2段目のSR単位回路の回路図である。FIG. 38 is a circuit diagram of a second-stage SR unit circuit constituting the shift register according to the twenty-third embodiment. 実施例23に係るシフトレジスタの動作時のタイミングチャートである。23 is a timing chart at the time of operation of the shift register according to the twenty-third embodiment. 図53のSR単位回路におけるノードN1の電位変化を説明するためのタイミングチャートである。54 is a timing chart for explaining a potential change of a node N1 in the SR unit circuit of FIG. 53. 図53のSR単位回路の変形例を示すSR単位回路の回路図である。FIG. 54 is a circuit diagram of an SR unit circuit showing a modification of the SR unit circuit of FIG. 53. 図56に係るシフトレジスタの動作時のタイミングチャートである。57 is a timing chart at the time of operation of the shift register according to FIG. 56. 図56のSR単位回路におけるノードN1の電位変化を説明するためのタイミングチャートである。57 is a timing chart for explaining a potential change of a node N1 in the SR unit circuit of FIG. 56. 従来のシフトレジスタの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the conventional shift register. 従来のシフトレジスタを構成する保持回路の回路図である。It is a circuit diagram of the holding circuit which comprises the conventional shift register. 従来のシフトレジスタの動作時のタイミングチャートである。It is a timing chart at the time of operation | movement of the conventional shift register.
 〔実施の形態1〕
 本発明に係る実施の形態1について、以下に説明する。図2は、実施の形態1に係るシフトレジスタの概略構成を示すブロック図である。
[Embodiment 1]
Embodiment 1 according to the present invention will be described below. FIG. 2 is a block diagram showing a schematic configuration of the shift register according to the first embodiment.
 シフトレジスタ10は、図2に示すように、n個(nは2以上の整数)の単位回路11a(保持回路)を多段接続して構成されている。単位回路11aは、クロック用端子(CKa端子、CKb端子)、入力端子(IN端子)、及び出力端子(OUT端子)を有している。以下、各端子経由で入出力される信号を当該端子と同じ名称で呼ぶ(例えば、クロック端子CK経由で入力される信号をクロック信号CKという)。 As shown in FIG. 2, the shift register 10 includes n (n is an integer of 2 or more) unit circuits 11a (holding circuits) connected in multiple stages. The unit circuit 11a has a clock terminal (CKa terminal, CKb terminal), an input terminal (IN terminal), and an output terminal (OUT terminal). Hereinafter, a signal input / output via each terminal is referred to by the same name as the terminal (for example, a signal input via the clock terminal CK is referred to as a clock signal CK).
 シフトレジスタ10には、外部からスタートパルスSTと2相のクロック信号CK、CKB(CKの反転信号)(イネーブル信号)が供給される。スタートパルスSTは、1段目の単位回路11aのIN端子に与えられる。クロック信号CKは、奇数段目の単位回路11aのCKa端子に与えられるとともに、偶数段目の単位回路11aのCKb端子に与えられる。クロック信号CKBは、奇数段目の単位回路11aのCKb端子に与えられるとともに、偶数段目の単位回路11aのCKa端子に与えられる。単位回路11aの出力信号Oは、OUT端子から外部に出力されるとともに、次段の単位回路11aのIN端子に入力される。 The shift register 10 is supplied with a start pulse ST and two-phase clock signals CK and CKB (inverted signal of CK) (enable signal) from the outside. The start pulse ST is given to the IN terminal of the first stage unit circuit 11a. The clock signal CK is supplied to the CKa terminal of the odd-numbered unit circuit 11a and to the CKb terminal of the even-numbered unit circuit 11a. The clock signal CKB is supplied to the CKb terminal of the odd-numbered unit circuit 11a and to the CKa terminal of the even-numbered unit circuit 11a. The output signal O of the unit circuit 11a is output from the OUT terminal to the outside and is input to the IN terminal of the next stage unit circuit 11a.
 具体的には、図2に示すように、シフトレジスタ10の2段目の単位回路11aにおいて、IN端子に1段目の単位回路11aの出力信号O1が入力され、CKa端子にクロック信号CKBが与えられ、CKb端子にクロック信号CKが与えられる。2段目の単位回路11aの出力信号O2は、OUT端子から外部に出力されるとともに、3段目の単位回路11aのIN端子に入力される。このように、シフトレジスタ10は、シフト動作によって、出力信号O1~Onを順に出力する。 Specifically, as shown in FIG. 2, in the second stage unit circuit 11a of the shift register 10, the output signal O1 of the first stage unit circuit 11a is input to the IN terminal, and the clock signal CKB is input to the CKa terminal. The clock signal CK is supplied to the CKb terminal. The output signal O2 of the second stage unit circuit 11a is output from the OUT terminal to the outside and is input to the IN terminal of the third stage unit circuit 11a. Thus, the shift register 10 sequentially outputs the output signals O1 to On by the shift operation.
 以下、シフトレジスタ10の詳細な構成について説明する。 Hereinafter, a detailed configuration of the shift register 10 will be described.
 (実施例1)
 図1は、実施例1に係るシフトレジスタ10の単位回路11aの回路図である。図1に示すように、単位回路11aは、ラッチ用インバータINV1(第1インバータ)・INV2(第2インバータ)、データ入力部SW1、出力インバータINV3により構成される。また、ラッチ用インバータINV2において、ラッチ用インバータINV1の出力端子とラッチ用インバータINV2の入力端子との接続点をノードN1(第1接続点)とし、ラッチ用インバータINV1の入力端子とラッチ用インバータINV2の出力端子との接続点をノードN2とする。
Example 1
FIG. 1 is a circuit diagram of a unit circuit 11a of the shift register 10 according to the first embodiment. As shown in FIG. 1, the unit circuit 11a includes a latching inverter INV1 (first inverter) / INV2 (second inverter), a data input unit SW1, and an output inverter INV3. In the latch inverter INV2, the connection point between the output terminal of the latch inverter INV1 and the input terminal of the latch inverter INV2 is a node N1 (first connection point), and the input terminal of the latch inverter INV1 and the latch inverter INV2 A connection point with the output terminal is referred to as a node N2.
 データ入力部SW1は、Nチャネル型トランジスタT1(第1トランジスタ)とPチャネル型トランジスタT2で構成され、トランジスタT1は、ゲート端子がCKa端子に接続され、ソース端子がIN端子に接続され、トランジスタT2は、ゲート端子がCKb端子に接続され、ソース端子がIN端子に接続されている。IN端子にシフトレジスタの単位回路11aの出力信号Oが入力される。 The data input unit SW1 includes an N-channel transistor T1 (first transistor) and a P-channel transistor T2. The transistor T1 has a gate terminal connected to the CKa terminal, a source terminal connected to the IN terminal, and a transistor T2. The gate terminal is connected to the CKb terminal and the source terminal is connected to the IN terminal. The output signal O of the shift register unit circuit 11a is input to the IN terminal.
 ラッチ用インバータINV2は、Pチャネル型トランジスタT3(第4トランジスタ)とNチャネル型トランジスタT4(第5トランジスタ)で構成され、ラッチ用インバータINV2の入力端子(トランジスタT3のゲート端子と、トランジスタT4のゲート端子との接続点(ノードN1))は、データ入力部SW1の出力端子(トランジスタT1、T2のドレイン端子)に接続されている。トランジスタT3のソース端子には電源電圧Vdd(高電位)が与えられ、トランジスタT3のドレイン端子はラッチ用インバータINV2の出力端子(トランジスタT3のドレイン端子と、トランジスタT4のドレイン端子との接続点(ノードN2))に接続され、トランジスタT4のソース端子には電源電圧Vss(低電位)が与えられ、トランジスタT4のドレイン端子はラッチ用インバータINV2の出力端子(ノードN2)に接続されている。ノードN2は、出力インバータINV3を介してOUT端子に接続されているとともに、ラッチ用インバータINV1の入力端子(トランジスタT5、T6のゲート端子)に接続されている。 The latching inverter INV2 includes a P-channel transistor T3 (fourth transistor) and an N-channel transistor T4 (fifth transistor). The latching inverter INV2 has an input terminal (the gate terminal of the transistor T3 and the gate of the transistor T4). A connection point with the terminal (node N1) is connected to an output terminal of the data input section SW1 (drain terminals of the transistors T1 and T2). The power supply voltage Vdd (high potential) is applied to the source terminal of the transistor T3, and the drain terminal of the transistor T3 is the connection point (node) between the output terminal of the latch inverter INV2 (the drain terminal of the transistor T3 and the drain terminal of the transistor T4). N2)), the power supply voltage Vss (low potential) is applied to the source terminal of the transistor T4, and the drain terminal of the transistor T4 is connected to the output terminal (node N2) of the latching inverter INV2. The node N2 is connected to the OUT terminal via the output inverter INV3, and is also connected to the input terminal of the latching inverter INV1 (gate terminals of the transistors T5 and T6).
 ラッチ用インバータINV1は、Pチャネル型トランジスタT5(第2トランジスタ)とNチャネル型トランジスタT6(第3トランジスタ)で構成され、ラッチ用インバータINV1の入力端子(トランジスタT5、T6のゲート端子)は、ラッチ用インバータINV2の出力端子(ノードN2)に接続されている。トランジスタT5のソース端子には電源電圧Vddが与えられ、トランジスタT5のドレイン端子は、ラッチ用インバータINV1の出力端子(トランジスタT5のドレイン端子と、トランジスタT6のドレイン端子との接続点)に接続され、トランジスタT6のソース端子には電源電圧Vssが与えられ、トランジスタT6のドレイン端子はラッチ用インバータINV1の出力端子に接続されている。ラッチ用インバータINV1の出力端子は、ラッチ用インバータINV2の入力端子(ノードN1)に接続されている。ラッチ用インバータINV2の出力端子(ノードN2)は、出力インバータINV3の入力端子に接続され、出力インバータINV3の出力端子は、単位回路11aの出力端子OUTに接続されている。 The latching inverter INV1 includes a P-channel transistor T5 (second transistor) and an N-channel transistor T6 (third transistor). The input terminal of the latching inverter INV1 (the gate terminals of the transistors T5 and T6) is latched. Connected to the output terminal (node N2) of the inverter INV2. The source voltage Vdd is applied to the source terminal of the transistor T5, and the drain terminal of the transistor T5 is connected to the output terminal of the latching inverter INV1 (the connection point between the drain terminal of the transistor T5 and the drain terminal of the transistor T6). The source voltage Vss is applied to the source terminal of the transistor T6, and the drain terminal of the transistor T6 is connected to the output terminal of the latching inverter INV1. The output terminal of the latching inverter INV1 is connected to the input terminal (node N1) of the latching inverter INV2. The output terminal (node N2) of the latching inverter INV2 is connected to the input terminal of the output inverter INV3, and the output terminal of the output inverter INV3 is connected to the output terminal OUT of the unit circuit 11a.
 これにより、k段目の単位回路11aのIN端子には、(k-1)段目の単位回路11aの出力信号O(k-1)が入力され、k段目の単位回路11aの出力端子OUTから、出力信号Okが出力される。 Accordingly, the output signal O (k−1) of the (k−1) th unit circuit 11a is input to the IN terminal of the kth unit circuit 11a, and the output terminal of the kth unit circuit 11a. An output signal Ok is output from OUT.
 ここで、トランジスタT5、T6は、トランジスタT3、T4よりも駆動能力が小さくなるように、それぞれのチャネル長Lが、トランジスタT3、T4それぞれのチャネル長Lよりも長く設定されている。すなわち、ラッチ用インバータINV1は、入力信号O(出力インバータINV3)(保持対象信号)よりも駆動能力が低く設定されている。 Here, the channel lengths L of the transistors T5 and T6 are set to be longer than the channel lengths L of the transistors T3 and T4 so that the driving capabilities of the transistors T5 and T6 are smaller than those of the transistors T3 and T4. That is, the latching inverter INV1 is set to have a driving capability lower than that of the input signal O (output inverter INV3) (holding target signal).
 以下、クロック信号CK、CKB、CK1、CK2を含め、単位回路11aの内部の信号と入出力信号の電位は、特に断わらない限り、ハイレベルのときにはVdd、ローレベルのときにはVssであるとする。また、IN端子に入力される入力信号Oにおける「ハイレベル」はラッチ用インバータINV2の反転電位よりも高く、「ローレベル」はラッチ用インバータINV2の反転電位よりも低いものとする。 Hereinafter, unless otherwise specified, the internal signal of the unit circuit 11a including the clock signals CK, CKB, CK1, and CK2 and the potential of the input / output signal are assumed to be Vdd when the signal is high and Vss when the signal is low. The “high level” in the input signal O input to the IN terminal is higher than the inversion potential of the latching inverter INV2, and the “low level” is lower than the inversion potential of the latching inverter INV2.
 (動作について)
 シフトレジスタ10の動作について図3及び図4を用いて説明する。図3は、シフトレジスタ10の動作時のタイミングチャートであり、図4は、シフトレジスタ10の動作時のタイミングチャートを模式的に示した図である。図3では、1段目の単位回路11a、2段目の単位回路11a、3段目の単位回路11a、(n-1)段目の単位回路11a、n段目の単位回路11aにおける入出力信号を示している。
(About operation)
The operation of the shift register 10 will be described with reference to FIGS. FIG. 3 is a timing chart at the time of operation of the shift register 10, and FIG. 4 is a diagram schematically showing a timing chart at the time of operation of the shift register 10. In FIG. 3, input / output in the first stage unit circuit 11a, the second stage unit circuit 11a, the third stage unit circuit 11a, the (n-1) th stage unit circuit 11a, and the nth stage unit circuit 11a. The signal is shown.
 CKは、奇数段目の単位回路11aのCKa端子に与えられるとともに、偶数段目の単位回路11aのCKb端子に与えられるクロック信号であり、CKBは、奇数段目の単位回路11aのCKb端子に与えられるとともに、偶数段目の単位回路11aのCKa端子に与えられるクロック信号である。STは1段目の単位回路11aのIN端子に入力されるスタートパルスである。O1、O2、O3、O(n-1)、Onは、それぞれ、シフトレジスタの1段目、2段目、3段目、(n-1)段目、n段目の単位回路11aの出力信号の電位を示している。 CK is a clock signal supplied to the CKa terminal of the odd-numbered unit circuit 11a and to the CKb terminal of the even-numbered unit circuit 11a, and CKB is connected to the CKb terminal of the odd-numbered unit circuit 11a. The clock signal is supplied to the CKa terminal of the even-numbered unit circuit 11a. ST is a start pulse input to the IN terminal of the first stage unit circuit 11a. O1, O2, O3, O (n-1), On are the outputs of the first, second, third, (n-1) th, and nth stage unit circuits 11a of the shift register, respectively. It shows the potential of the signal.
 まず、1段目の単位回路11aの動作について説明する。 First, the operation of the unit circuit 11a at the first stage will be described.
 初めに、1段目の単位回路11aのIN端子に、スタートパルスST(ハイレベル(アクティブ))が入力された後に、時点t1(以下、t1のように称す)において、クロック信号CKがハイレベルになると、データ入力部SW1がオン状態になり、スタートパルスST(ハイレベル;Vdd)がノードN1に入力される。 First, after the start pulse ST (high level (active)) is input to the IN terminal of the first stage unit circuit 11a, the clock signal CK is at the high level at time t1 (hereinafter referred to as t1). Then, the data input unit SW1 is turned on, and the start pulse ST (high level; Vdd) is input to the node N1.
 ここで、クロック信号CKがハイレベルになる直前ではノードN1の電位がVss(ローレベル)に保持されており、トランジスタT6がオン状態になっているため、クロック信号CKがハイレベルになると(t1)、スタートパルスSTのVdd(ハイレベル)と、電源VSS(ローレベル)(低電位側電源)とが短絡することになる。この点、ラッチ用インバータINV1のトランジスタT6はチャネル長Lが長く設定されており駆動能力が低いため、ノードN1の電位は、スタートパルスST側へ引き込まれ、スタートパルスSTのVdd(ハイレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも高い電位)まで上昇する(図4参照)。 Here, immediately before the clock signal CK becomes high level, the potential of the node N1 is held at Vss (low level), and the transistor T6 is turned on. Therefore, when the clock signal CK becomes high level (t1) ), Vdd (high level) of the start pulse ST and the power source VSS (low level) (low potential side power source) are short-circuited. In this respect, since the transistor T6 of the latching inverter INV1 is set to have a long channel length L and has a low driving capability, the potential of the node N1 is drawn to the start pulse ST side and becomes the Vdd (high level) of the start pulse ST. It rises to a near potential (a potential higher than the inversion potential of the latching inverter INV2) (see FIG. 4).
 その後、トランジスタT4がオン状態になり、ラッチ用インバータINV2の出力(ノードN2;Vss(ローレベル))がラッチ用インバータINV1の入力端子にフィードバックされることにより、トランジスタT6がオフ状態になり、トランジスタT5がオン状態になる。これにより、ノードN1の電位は、スタートパルスSTのVddに近い電位からさらにVddまで上昇する(図4参照)。 Thereafter, the transistor T4 is turned on, and the output of the latching inverter INV2 (node N2; Vss (low level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T6 is turned off, and the transistor T5 is turned on. As a result, the potential of the node N1 rises from a potential close to Vdd of the start pulse ST to Vdd (see FIG. 4).
 ノードN1の電位が、Vdd(ハイレベル)近くまたはVdd(ハイレベル)になることによりラッチ用インバータINV2のトランジスタT4がオン状態になり、トランジスタT3がオフ状態になる。トランジスタT4がオン状態になることにより、ノードN2の電位がVss(ローレベル)になり、ラッチ用インバータINV2からVss(ローレベル)が出力される。そして、出力インバータINV3を介して、Vdd(ハイレベル)の出力信号O1が出力される。 When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the latching inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and Vss (low level) is output from the latching inverter INV2. Then, an output signal O1 of Vdd (high level) is output via the output inverter INV3.
 続いて、クロック信号CKがハイレベルからローレベルになると(t2)、データ入力部SW1がオフ状態になり、スタートパルスSTの入力が遮断され、ノードN1は、ラッチ用インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vdd(ハイレベル))を保持し、出力信号O1はVdd(ハイレベル)を維持する。 Subsequently, when the clock signal CK changes from the high level to the low level (t2), the data input unit SW1 is turned off, the input of the start pulse ST is cut off, and the node N1 is latched by the latch inverters INV1 and INV2. Thus, the potential (Vdd (high level)) held immediately before is held, and the output signal O1 maintains Vdd (high level).
 次に、クロック信号CKがハイレベルになると(t3)、データ入力部SW1がオン状態になり、スタートパルスST(ローレベル;Vss)がノードN1に入力される。 Next, when the clock signal CK becomes high level (t3), the data input unit SW1 is turned on, and the start pulse ST (low level; Vss) is input to the node N1.
 ここで、クロック信号CKがハイレベルになる直前ではノードN1の電位がVdd(ハイレベル)に保持されており、トランジスタT5がオン状態になっているため、クロック信号CKがハイレベルになると(t3)、スタートパルスSTのVss(ローレベル)と、電源VDD(ハイレベル)(高電位側電源)とが短絡することなる。この点、ラッチ用インバータINV1のトランジスタT5はチャネル長Lが長く設定されており駆動能力が低いため、ノードN1の電位は、スタートパルスST側へ引き込まれ、スタートパルスSTのVss(ローレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも低い電位)まで低下する(図4参照)。 Here, immediately before the clock signal CK becomes high level, the potential of the node N1 is held at Vdd (high level), and the transistor T5 is in an on state. Therefore, when the clock signal CK becomes high level (t3 ), Vss (low level) of the start pulse ST and the power source VDD (high level) (high potential side power source) are short-circuited. In this respect, since the transistor T5 of the latching inverter INV1 has a long channel length L and a low driving capability, the potential of the node N1 is drawn to the start pulse ST side and becomes Vss (low level) of the start pulse ST. The voltage drops to a near potential (a potential lower than the inversion potential of the latching inverter INV2) (see FIG. 4).
 その後、トランジスタT3がオン状態になり、ラッチ用インバータINV2の出力(ノードN2;Vdd(ハイレベル))がラッチ用インバータINV1の入力端子にフィードバックされることにより、トランジスタT5がオフ状態になり、トランジスタT6がオン状態になる。これにより、ノードN1の電位は、スタートパルスSTのVssに近い電位からさらにVssに低下する(図4参照)。 Thereafter, the transistor T3 is turned on, and the output of the latching inverter INV2 (node N2; Vdd (high level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T5 is turned off, and the transistor T6 is turned on. As a result, the potential of the node N1 further decreases from a potential close to Vss of the start pulse ST to Vss (see FIG. 4).
 ノードN1の電位が、Vss(ローレベル)近くまたはVss(ローレベル)になることによりラッチ用インバータINV2のトランジスタT3がオン状態になり、トランジスタT4がオフ状態になる。トランジスタT3がオン状態になることにより、ノードN2の電位がVdd(ハイレベル)になり、ラッチ用インバータINV2からVdd(ハイレベル)が出力される。そして、出力インバータINV3を介して、Vss(ローレベル)の出力信号O1が出力される。 When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the latching inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and Vdd (high level) is output from the latching inverter INV2. Then, an output signal O1 of Vss (low level) is output via the output inverter INV3.
 続いて、クロック信号CKがハイレベルからローレベルになると(t4)、データ入力部SW1がオフ状態になり、スタートパルスSTの入力が遮断され、ノードN1は、ラッチ用インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vss(ローレベル))を保持し、出力信号O1はVss(ローレベル)を維持する。以降、単位回路11aは、スタートパルスSTがハイレベルになるまで、上記t3、t4の動作を繰り返し、出力信号O1はVss(ローレベル)を維持する。 Subsequently, when the clock signal CK changes from the high level to the low level (t4), the data input unit SW1 is turned off, the input of the start pulse ST is cut off, and the node N1 is latched by the latch inverters INV1 and INV2. Thus, the potential (Vss (low level)) held immediately before is held, and the output signal O1 maintains Vss (low level). Thereafter, the unit circuit 11a repeats the above operations t3 and t4 until the start pulse ST becomes high level, and the output signal O1 maintains Vss (low level).
 次に、2段目の単位回路11aの動作について説明する。 Next, the operation of the second stage unit circuit 11a will be described.
 初めに、2段目の単位回路11aのIN端子に、1段目の単位回路11aの出力信号O1(ハイレベル(アクティブ))が入力信号O1として入力された後に、t2において、クロック信号CKBがハイレベルになると、データ入力部SW1がオン状態になり、入力信号O1(ハイレベル;Vdd)がノードN1に入力される。 First, after the output signal O1 (high level (active)) of the first stage unit circuit 11a is input as the input signal O1 to the IN terminal of the second stage unit circuit 11a, the clock signal CKB is supplied at t2. When the level is high, the data input unit SW1 is turned on, and the input signal O1 (high level; Vdd) is input to the node N1.
 ここで、クロック信号CKBがハイレベルになる直前ではノードN1の電位がVss(ローレベル)に保持されており、トランジスタT6がオン状態になっているため、クロック信号CKBがハイレベルになると(t2)、入力信号O1のVdd(ハイレベル)と、電源VSS(ローレベル)とが短絡することになる。この点、ラッチ用インバータINV1のトランジスタT6はチャネル長Lが長く設定されており駆動能力が低いため、ノードN1の電位は、入力信号O1側へ引き込まれ、入力信号O1のVdd(ハイレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも高い電位)まで上昇する(図4参照)。 Here, immediately before the clock signal CKB becomes high level, the potential of the node N1 is held at Vss (low level), and the transistor T6 is turned on. Therefore, when the clock signal CKB becomes high level (t2 ), Vdd (high level) of the input signal O1 and the power supply VSS (low level) are short-circuited. In this regard, since the transistor T6 of the latching inverter INV1 has a long channel length L and low driving capability, the potential of the node N1 is pulled to the input signal O1 side and becomes Vdd (high level) of the input signal O1. It rises to a near potential (a potential higher than the inversion potential of the latching inverter INV2) (see FIG. 4).
 その後、トランジスタT4がオン状態になり、ラッチ用インバータINV2の出力(ノードN2;Vss(ローレベル))がラッチ用インバータINV1の入力端子にフィードバックされることにより、トランジスタT6がオフ状態になり、トランジスタT5がオン状態になる。これにより、ノードN1の電位は、入力信号O1のVddに近い電位からさらにVddまで上昇する(図4参照)。 Thereafter, the transistor T4 is turned on, and the output of the latching inverter INV2 (node N2; Vss (low level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T6 is turned off, and the transistor T5 is turned on. As a result, the potential of the node N1 rises from a potential close to Vdd of the input signal O1 to Vdd (see FIG. 4).
 ノードN1の電位が、Vdd(ハイレベル)近くまたはVdd(ハイレベル)になることによりラッチ用インバータINV2のトランジスタT4がオン状態になり、トランジスタT3がオフ状態になる。トランジスタT4がオン状態になることにより、ノードN2の電位がVss(ローレベル)になり、ラッチ用インバータINV2からVss(ローレベル)が出力される。そして、出力インバータINV3を介して、Vdd(ハイレベル)の出力信号O2が出力される。 When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the latching inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and Vss (low level) is output from the latching inverter INV2. Then, an output signal O2 of Vdd (high level) is output via the output inverter INV3.
 続いて、クロック信号CKBがハイレベルからローレベルになると(t3)、データ入力部SW1がオフ状態になり、入力信号O1の入力が遮断され、ノードN1は、ラッチ用インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vdd(ハイレベル))を保持し、出力信号O2はVdd(ハイレベル)を維持する。 Subsequently, when the clock signal CKB changes from the high level to the low level (t3), the data input unit SW1 is turned off, the input of the input signal O1 is cut off, and the node N1 is latched by the latching inverters INV1 and INV2. Thus, the potential (Vdd (high level)) held immediately before is held, and the output signal O2 maintains Vdd (high level).
 次に、クロック信号CKBがハイレベルになると(t4)、データ入力部SW1がオン状態になり、入力信号O1(ローレベル;Vss)がノードN1に入力される。 Next, when the clock signal CKB becomes high level (t4), the data input unit SW1 is turned on, and the input signal O1 (low level; Vss) is input to the node N1.
 ここで、クロック信号CKBがハイレベルになる直前ではノードN1の電位がVdd(ハイレベル)に保持されており、トランジスタT5がオン状態になっているため、クロック信号CKBがハイレベルになると(t4)、入力信号O1のVss(ローレベル)と、電源VDD(ハイレベル)とが短絡することなる。この点、ラッチ用インバータINV1のトランジスタT5はチャネル長Lが長く設定されており駆動能力が低いため、ノードN1の電位は、入力信号O1側へ引き込まれ、入力信号O1のVss(ローレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも低い電位)まで低下する。 Here, immediately before the clock signal CKB becomes high level, the potential of the node N1 is held at Vdd (high level), and the transistor T5 is in an on state. Therefore, when the clock signal CKB becomes high level (t4 ), Vss (low level) of the input signal O1 and the power supply VDD (high level) are short-circuited. In this respect, since the transistor T5 of the latching inverter INV1 has a long channel length L and a low driving capability, the potential of the node N1 is drawn to the input signal O1 side and becomes Vss (low level) of the input signal O1. The voltage drops to a near potential (a potential lower than the inversion potential of the latching inverter INV2).
 その後、トランジスタT3がオン状態になり、ラッチ用インバータINV2の出力(ノードN2;Vdd(ハイレベル))がラッチ用インバータINV1の入力端子にフィードバックされることにより、トランジスタT5がオフ状態になり、トランジスタT6がオン状態になる。これにより、ノードN1の電位は、入力信号O1のVssに近い電位からさらにVssに低下する。 Thereafter, the transistor T3 is turned on, and the output of the latching inverter INV2 (node N2; Vdd (high level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T5 is turned off, and the transistor T6 is turned on. As a result, the potential of the node N1 further decreases from the potential close to Vss of the input signal O1 to Vss.
 ノードN1の電位が、Vss(ローレベル)近くまたはVss(ローレベル)になることによりラッチ用インバータINV2のトランジスタT3がオン状態になり、トランジスタT4がオフ状態になる。トランジスタT3がオン状態になることにより、ノードN2の電位がVdd(ハイレベル)になり、ラッチ用インバータINV2からVdd(ハイレベル)が出力される。そして、出力インバータINV3を介して、Vss(ローレベル)の出力信号O2が出力される。 When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the latching inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and Vdd (high level) is output from the latching inverter INV2. Then, an output signal O2 of Vss (low level) is output via the output inverter INV3.
 続いて、クロック信号CKBがハイレベルからローレベルになると(t5)、データ入力部SW1がオフ状態になり、入力信号O1の入力が遮断され、ノードN1は、ラッチ用インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vss(ローレベル))を保持し、出力信号O2はVss(ローレベル)を維持する。以降、単位回路11aは、入力信号O1がハイレベルになるまで、上記t4、t5の動作を繰り返し、出力信号O2はVss(ローレベル)を維持する。 Subsequently, when the clock signal CKB changes from the high level to the low level (t5), the data input unit SW1 is turned off, the input of the input signal O1 is cut off, and the node N1 is latched by the latching inverters INV1 and INV2. Thus, the potential (Vss (low level)) held immediately before is held, and the output signal O2 maintains Vss (low level). Thereafter, the unit circuit 11a repeats the operations at t4 and t5 until the input signal O1 becomes high level, and the output signal O2 maintains Vss (low level).
 本実施例1の単位回路11aでは、図60に示す従来の単位回路(D型フリップフロップDFF)と比較して、トランジスタ数を削減することができる。よって、シフトレジスタ10の回路規模を縮小化することができる。また、回路規模の縮小化に伴う動作不具合が生じることもない。また、入力信号と電源とが短絡する瞬間に発生する貫通電流を削減することができる。 In the unit circuit 11a of the first embodiment, the number of transistors can be reduced as compared with the conventional unit circuit (D-type flip-flop DFF) shown in FIG. Therefore, the circuit scale of the shift register 10 can be reduced. In addition, there is no problem of operation due to the reduction in circuit scale. Further, it is possible to reduce a through current generated at the moment when the input signal and the power supply are short-circuited.
 ここで、図1に示す構成では、トランジスタT5、T6のチャネル長Lを個別に大きくしているが、本発明はこれに限定されず、例えば、複数段のトランジスタを直列に接続し、さらにそれぞれのゲート端子を互いに接続することによって、実質的にチャネル長Lを大きくする構成としてもよい。 Here, in the configuration shown in FIG. 1, the channel lengths L of the transistors T5 and T6 are individually increased. However, the present invention is not limited to this. For example, a plurality of stages of transistors are connected in series, and The channel length L may be substantially increased by connecting the gate terminals to each other.
 また、出力インバータINV3の駆動能力を、インバータINV1の駆動能力よりも大きくするために、トランジスタT5、T6のチャネル長Lを変えずに、出力インバータINV3を構成するトランジスタのチャネル幅Wを、トランジスタT5、T6のチャネル幅Wよりも大きくしてもよい。この構成によれば、単位回路11aの入力信号の駆動能力を高めることができるため、上記単位回路11aと同様の効果を得られる。なお、スタートパルスSTは、シフトレジスタ10外にラッチ用インバータINV1のトランジスタT5、T6よりもチャネル幅Wの大きいバッファの出力、あるいは、駆動能力の高いICの出力とすることにより、駆動能力を高めることができる。 Further, in order to make the drive capability of the output inverter INV3 larger than the drive capability of the inverter INV1, the channel width W of the transistors constituting the output inverter INV3 is changed to the transistor T5 without changing the channel length L of the transistors T5 and T6. , It may be larger than the channel width W of T6. According to this configuration, since the drive capability of the input signal of the unit circuit 11a can be increased, the same effect as the unit circuit 11a can be obtained. The start pulse ST is used as an output of a buffer having a channel width W larger than that of the transistors T5 and T6 of the latch inverter INV1 outside the shift register 10, or an output of an IC having a high drive capability, thereby increasing the drive capability. be able to.
 次に、本実施の形態1に係るシフトレジスタ10の他の形態について説明する。なお、以下の説明では、主に、実施例1に係るシフトレジスタ10との相違点について説明するものとし、実施例1で説明した各構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。 Next, another form of the shift register 10 according to the first embodiment will be described. In the following description, differences from the shift register 10 according to the first embodiment will be mainly described. Components having the same functions as those described in the first embodiment have the same numbers. The description is omitted.
 (実施例2)
 図5は、実施例2に係るシフトレジスタ10に含まれる単位回路12aの回路図である。図5に示すように、単位回路12aのラッチ用インバータINV1aでは、実施例1に係る単位回路11a(図1参照)のラッチ用インバータINV1に、抵抗R1(第1抵抗)、R2(第2抵抗)が追加されている。また、単位回路12aのラッチ用インバータINV1aを構成するトランジスタT5、T6のチャネル長Lは、ラッチ用インバータINV2を構成するトランジスタT3、T4のチャネル長Lと同一に設定されている。
(Example 2)
FIG. 5 is a circuit diagram of the unit circuit 12a included in the shift register 10 according to the second embodiment. As shown in FIG. 5, in the latching inverter INV1a of the unit circuit 12a, resistors R1 (first resistor) and R2 (second resistor) are added to the latching inverter INV1 of the unit circuit 11a (see FIG. 1) according to the first embodiment. ) Has been added. The channel length L of the transistors T5 and T6 constituting the latching inverter INV1a of the unit circuit 12a is set to be the same as the channel length L of the transistors T3 and T4 constituting the latching inverter INV2.
 ラッチ用インバータINV1aでは、抵抗R2は、一方の端子が電源VDDに接続され、他方の端子がトランジスタT5のソース端子に接続され、抵抗R1は、一方の端子が電源VSSに接続され、他方の端子がトランジスタT6のソース端子に接続されている。なお、抵抗R1、R2は、数kΩから数MΩである。 In the latch inverter INV1a, the resistor R2 has one terminal connected to the power supply VDD, the other terminal connected to the source terminal of the transistor T5, and the resistor R1 has one terminal connected to the power supply VSS and the other terminal. Is connected to the source terminal of the transistor T6. The resistors R1 and R2 are several kΩ to several MΩ.
 (動作について)
 シフトレジスタ10の動作について説明する。タイミングチャートは、図3と同一である。ここでは、1段目の単位回路12aにおける動作を例に挙げて、実施例1との相違点を中心に説明する。
(About operation)
The operation of the shift register 10 will be described. The timing chart is the same as FIG. Here, the operation in the unit circuit 12a at the first stage will be described as an example, and the difference from the first embodiment will be mainly described.
 初めに、1段目の単位回路12aのIN端子にスタートパルスST(ハイレベル(アクティブ))が入力され、クロック信号CKがハイレベルになると(t1)、スタートパルスST(ハイレベル;Vdd)がノードN1に入力される。 First, when the start pulse ST (high level (active)) is input to the IN terminal of the first stage unit circuit 12a and the clock signal CK becomes high level (t1), the start pulse ST (high level; Vdd) is generated. Input to node N1.
 ここで、クロック信号CKがハイレベルになる直前ではノードN1の電位がVss(ローレベル)に保持されており、トランジスタT6がオン状態になっているため、クロック信号CKがハイレベルになると(t1)、スタートパルスSTのVdd(ハイレベル)と、電源VSS(ローレベル)とが短絡することになる。この点、単位回路12aでは、電源VSSとノードN1との間に抵抗R1が設けられているため、ノードN1の電位は、スタートパルスST側へ引き込まれ、スタートパルスSTのVdd(ハイレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも高い電位)まで上昇する(図4参照)。 Here, immediately before the clock signal CK becomes high level, the potential of the node N1 is held at Vss (low level), and the transistor T6 is turned on. Therefore, when the clock signal CK becomes high level (t1) ), Vdd (high level) of the start pulse ST and the power source VSS (low level) are short-circuited. In this regard, in the unit circuit 12a, since the resistor R1 is provided between the power supply VSS and the node N1, the potential of the node N1 is drawn to the start pulse ST side and becomes Vdd (high level) of the start pulse ST. It rises to a near potential (a potential higher than the inversion potential of the latching inverter INV2) (see FIG. 4).
 その後、トランジスタT4がオン状態になり、ラッチ用インバータINV2の出力(ノードN2;Vss(ローレベル))がラッチ用インバータINV1の入力端子にフィードバックされることにより、トランジスタT6がオフ状態になり、トランジスタT5がオン状態になる。これにより、ノードN1の電位は、スタートパルスSTのVddに近い電位からさらにVddまで上昇する(図4参照)。 Thereafter, the transistor T4 is turned on, and the output of the latching inverter INV2 (node N2; Vss (low level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T6 is turned off, and the transistor T5 is turned on. As a result, the potential of the node N1 rises from a potential close to Vdd of the start pulse ST to Vdd (see FIG. 4).
 ノードN1の電位が、Vdd(ハイレベル)近くまたはVdd(ハイレベル)になることによりラッチ用インバータINV2のトランジスタT4がオン状態になり、トランジスタT3がオフ状態になる。トランジスタT4がオン状態になることにより、ノードN2の電位がVss(ローレベル)になり、ラッチ用インバータINV2からVss(ローレベル)が出力される。そして、出力インバータINV3を介して、Vdd(ハイレベル)の出力信号O1が出力される。 When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the latching inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and Vss (low level) is output from the latching inverter INV2. Then, an output signal O1 of Vdd (high level) is output via the output inverter INV3.
 続いて、クロック信号CKがハイレベルからローレベルになると(t2)、データ入力部SW1がオフ状態になり、スタートパルスSTの入力が遮断され、ノードN1は、ラッチ用インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vdd(ハイレベル))を保持し、出力信号O1はVdd(ハイレベル)を維持する。 Subsequently, when the clock signal CK changes from the high level to the low level (t2), the data input unit SW1 is turned off, the input of the start pulse ST is cut off, and the node N1 is latched by the latch inverters INV1 and INV2. Thus, the potential (Vdd (high level)) held immediately before is held, and the output signal O1 maintains Vdd (high level).
 次に、クロック信号CKがハイレベルになると(t3)、データ入力部SW1がオン状態になり、スタートパルスST(ローレベル;Vss)がノードN1に入力される。 Next, when the clock signal CK becomes high level (t3), the data input unit SW1 is turned on, and the start pulse ST (low level; Vss) is input to the node N1.
 ここで、クロック信号CKがハイレベルになる直前ではノードN1の電位がVdd(ハイレベル)に保持されており、トランジスタT5がオン状態になっているため、クロック信号CKがハイレベルになると(t3)、スタートパルスSTのVss(ローレベル)と、電源VDD(ハイレベル)とが短絡することなる。この点、電源VDDとノードN1との間に抵抗R2が設けられているため、ノードN1の電位は、スタートパルスST側へ引き込まれ、スタートパルスSTのVss(ローレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも低い電位)まで低下する(図4参照)。 Here, immediately before the clock signal CK becomes high level, the potential of the node N1 is held at Vdd (high level), and the transistor T5 is in an on state. Therefore, when the clock signal CK becomes high level (t3 ), Vss (low level) of the start pulse ST and the power supply VDD (high level) are short-circuited. In this respect, since the resistor R2 is provided between the power supply VDD and the node N1, the potential of the node N1 is drawn to the start pulse ST side and is a potential close to Vss (low level) of the start pulse ST (for latching). The potential drops to a potential lower than the inversion potential of the inverter INV2 (see FIG. 4).
 その後、トランジスタT3がオン状態になり、ラッチ用インバータINV2の出力(ノードN2;Vdd(ハイレベル))がラッチ用インバータINV1の入力端子にフィードバックされることにより、トランジスタT5がオフ状態になり、トランジスタT6がオン状態になる。これにより、ノードN1の電位は、スタートパルスSTのVssに近い電位からさらにVssに低下する(図4参照)。 Thereafter, the transistor T3 is turned on, and the output of the latching inverter INV2 (node N2; Vdd (high level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T5 is turned off, and the transistor T6 is turned on. As a result, the potential of the node N1 further decreases from a potential close to Vss of the start pulse ST to Vss (see FIG. 4).
 ノードN1の電位が、Vss(ローレベル)近くまたはVss(ローレベル)になることによりラッチ用インバータINV2のトランジスタT3がオン状態になり、トランジスタT4がオフ状態になる。トランジスタT3がオン状態になることにより、ノードN2の電位がVdd(ハイレベル)になり、ラッチ用インバータINV2からVdd(ハイレベル)が出力される。そして、出力インバータINV3を介して、Vss(ローレベル)の出力信号O1が出力される。 When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the latching inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and Vdd (high level) is output from the latching inverter INV2. Then, an output signal O1 of Vss (low level) is output via the output inverter INV3.
 続いて、クロック信号CKがハイレベルからローレベルになると(t4)、データ入力部SW1がオフ状態になり、スタートパルスSTの入力が遮断され、ノードN1は、ラッチ用インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vss(ローレベル))を保持し、出力信号O1はVss(ローレベル)を維持する。以降、単位回路11は、スタートパルスSTがハイレベルになるまで、上記t3、t4の動作を繰り返し、出力信号O1はVss(ローレベル)を維持する。 Subsequently, when the clock signal CK changes from the high level to the low level (t4), the data input unit SW1 is turned off, the input of the start pulse ST is cut off, and the node N1 is latched by the latch inverters INV1 and INV2. Thus, the potential (Vss (low level)) held immediately before is held, and the output signal O1 maintains Vss (low level). Thereafter, the unit circuit 11 repeats the operations of t3 and t4 until the start pulse ST becomes high level, and the output signal O1 maintains Vss (low level).
 これにより、実施例1と同様の効果を得ることができる。また、本実施例2では、抵抗を用いている。抵抗は、その形状を自由に変形することができるため、効率的にレイアウトすることができ、回路規模をより縮小化することができる。また、入力信号と電源とが短絡する瞬間に発生する貫通電流を削減することができる。 Thereby, the same effect as in the first embodiment can be obtained. In the second embodiment, a resistor is used. Since the shape of the resistors can be freely deformed, the resistors can be laid out efficiently and the circuit scale can be further reduced. Further, it is possible to reduce a through current generated at the moment when the input signal and the power supply are short-circuited.
 (実施例3)
 図6は、実施例3に係るシフトレジスタ10に含まれる単位回路13aの回路図である。図6に示すように、単位回路13aのラッチ用インバータINV1bでは、実施例2に係る単位回路12a(図5参照)のラッチ用インバータINV1aと比較して、抵抗R1、R2の位置が異なっている。
(Example 3)
FIG. 6 is a circuit diagram of the unit circuit 13a included in the shift register 10 according to the third embodiment. As shown in FIG. 6, in the latching inverter INV1b of the unit circuit 13a, the positions of the resistors R1 and R2 are different from those of the latching inverter INV1a of the unit circuit 12a according to the second embodiment (see FIG. 5). .
 具体的には、ラッチ用インバータINV1bでは、抵抗R2は、一方の端子がトランジスタT5のドレイン端子に接続され、他方の端子がノードN1に接続され、抵抗R1は、一方の端子がトランジスタT6のドレイン端子に接続され、他方の端子がノードN1に接続されている。 Specifically, in the latch inverter INV1b, the resistor R2 has one terminal connected to the drain terminal of the transistor T5, the other terminal connected to the node N1, and the resistor R1 having one terminal connected to the drain of the transistor T6. The other terminal is connected to the node N1.
 この構成によれば、実施例2と同様、クロック信号CKがハイレベルになって、入力信号のVdd(ハイレベル)と、電源VSS(ローレベル)とが短絡することになっても、電源VSSとノードN1との間に抵抗R1が設けられているため、ノードN1の電位は、入力信号側へ引き込まれ、Vdd(ハイレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも高い電位)まで上昇し、その後にラッチ用インバータINV2の出力(Vss)のフィードバックによりVddに上昇する。また、入力信号のVss(ローレベル)と、電源VDD(ハイレベル)とが短絡することになっても、電源VDDとノードN1との間に抵抗R2が設けられているため、ノードN1の電位は、入力信号側へ引き込まれ、Vssに近い電位(ラッチ用インバータINV2の反転電位よりも低い電位)まで低下し、その後にラッチ用インバータINV2の出力(Vdd)のフィードバックによりVssに低下する。 According to this configuration, even when the clock signal CK becomes high level and the input signal Vdd (high level) and the power source VSS (low level) are short-circuited, as in the second embodiment, the power source VSS Since the resistor R1 is provided between the node N1 and the node N1, the potential of the node N1 is drawn to the input signal side and is close to Vdd (high level) (potential higher than the inversion potential of the latch inverter INV2) And then rises to Vdd by feedback of the output (Vss) of the latching inverter INV2. Even if the input signal Vss (low level) and the power supply VDD (high level) are short-circuited, since the resistor R2 is provided between the power supply VDD and the node N1, the potential of the node N1 Is pulled to the input signal side and drops to a potential close to Vss (a potential lower than the inversion potential of the latching inverter INV2), and then lowered to Vss by feedback of the output (Vdd) of the latching inverter INV2.
 これにより、実施例2と同様の効果を得ることができる。なお、図6においてさらに、抵抗をトランジスタT5、T6のソース端子側に追加(図5参照)しても良い。 Thereby, the same effect as in the second embodiment can be obtained. In FIG. 6, a resistor may be added to the source terminal side of the transistors T5 and T6 (see FIG. 5).
 (実施例4)
 図7は、実施例4に係るシフトレジスタ10に含まれる単位回路14aの回路図である。図7に示すように、単位回路14aでは、実施例1に係る単位回路11(図1参照)のラッチ用インバータINV1の出力端子と、ラッチ用インバータINV2の入力端子(ノードN1)との間に、抵抗R3が追加されている。また、単位回路14aのラッチ用インバータINV1を構成するトランジスタT5、T6のチャネル長Lは、ラッチ用インバータINV2を構成するトランジスタT3、T4のチャネル長Lと同一に設定されている。
(Example 4)
FIG. 7 is a circuit diagram of the unit circuit 14a included in the shift register 10 according to the fourth embodiment. As shown in FIG. 7, in the unit circuit 14a, between the output terminal of the latch inverter INV1 of the unit circuit 11 (see FIG. 1) according to the first embodiment and the input terminal (node N1) of the latch inverter INV2. A resistor R3 is added. The channel length L of the transistors T5 and T6 constituting the latching inverter INV1 of the unit circuit 14a is set to be the same as the channel length L of the transistors T3 and T4 constituting the latching inverter INV2.
 具体的には、抵抗R3は、一方の端子がラッチ用インバータINV1の出力端子(トランジスタT5のドレイン端子と、トランジスタT6のドレイン端子との接続点)に接続され、他方の端子がラッチ用インバータINV2の入力端子(ノードN1)に接続されている。なお、抵抗R3は、数kΩから数MΩである。 Specifically, one terminal of the resistor R3 is connected to the output terminal of the latching inverter INV1 (the connection point between the drain terminal of the transistor T5 and the drain terminal of the transistor T6), and the other terminal is connected to the latching inverter INV2. To the input terminal (node N1). The resistor R3 is several kΩ to several MΩ.
 この構成によれば、実施例2及び3と同様、クロック信号CKがハイレベルになって、入力信号のVdd(ハイレベル)と、電源VSS(ローレベル)とが短絡することになっても、電源VSSとノードN1との間に抵抗R3が設けられているため、ノードN1の電位は、入力信号側へ引き込まれ、Vdd(ハイレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも高い電位)まで上昇し、その後にラッチ用インバータINV2の出力(Vss)のフィードバックによりVddに上昇する。また、入力信号のVss(ローレベル)と、電源VDD(ハイレベル)とが短絡することになっても、電源VDDとノードN1との間に抵抗R3が設けられているため、ノードN1の電位は、入力信号側へ引き込まれ、Vssに近い電位(ラッチ用インバータINV2の反転電位よりも低い電位)まで低下し、その後にラッチ用インバータINV2の出力(Vdd)のフィードバックによりVssに低下する。 According to this configuration, similarly to the second and third embodiments, even when the clock signal CK becomes high level and the input signal Vdd (high level) and the power source VSS (low level) are short-circuited, Since the resistor R3 is provided between the power supply VSS and the node N1, the potential of the node N1 is drawn to the input signal side and is close to Vdd (high level) (higher than the inverted potential of the latch inverter INV2) Potential), and then increases to Vdd by feedback of the output (Vss) of the latching inverter INV2. Even if the input signal Vss (low level) and the power supply VDD (high level) are short-circuited, since the resistor R3 is provided between the power supply VDD and the node N1, the potential of the node N1 Is pulled to the input signal side and drops to a potential close to Vss (a potential lower than the inversion potential of the latching inverter INV2), and then lowered to Vss by feedback of the output (Vdd) of the latching inverter INV2.
 これにより、実施例2と同様の効果を得ることができる。 Thereby, the same effect as in the second embodiment can be obtained.
 (実施例5)
 図8は、実施例5に係るシフトレジスタ10に含まれる単位回路15aの回路図であり、図9は、実施例5に係るシフトレジスタ10の概略構成を示すブロック図である。
図8に示すように、単位回路15aでは、実施例2に係る単位回路12a(図5参照)において、データ入力部SW1aがNチャネル型トランジスタT1のみで構成されている。
(Example 5)
FIG. 8 is a circuit diagram of the unit circuit 15a included in the shift register 10 according to the fifth embodiment, and FIG. 9 is a block diagram illustrating a schematic configuration of the shift register 10 according to the fifth embodiment.
As shown in FIG. 8, in the unit circuit 15a, in the unit circuit 12a according to the second embodiment (see FIG. 5), the data input unit SW1a is configured by only the N-channel transistor T1.
 具体的には、データ入力部SW1aのトランジスタT1は、ゲート端子が単位回路15aのCK端子(図9参照)に接続され、ソース端子が単位回路15aのIN端子に接続され、ドレイン端子がノードN1に接続されている。 Specifically, the transistor T1 of the data input unit SW1a has a gate terminal connected to the CK terminal (see FIG. 9) of the unit circuit 15a, a source terminal connected to the IN terminal of the unit circuit 15a, and a drain terminal connected to the node N1. It is connected to the.
 この構成では、クロック信号CKがハイレベルになると、データ入力部SW1aがオン状態になる。 In this configuration, when the clock signal CK becomes high level, the data input unit SW1a is turned on.
 入力信号がハイレベル(Vdd)のときは、ノードN1の電位はVdd-Vth(閾値)になる。ここで、入力信号のVdd-Vthと、電源VSS(ローレベル)とが短絡することになっても、電源VSSとノードN1との間に抵抗R1が設けられているため、ノードN1の電位は、入力信号側へ引き込まれ、Vdd-Vthに近い電位(ラッチ用インバータINV2の反転電位よりも高い電位)に上昇し、その後にラッチ用インバータINV2の出力(Vss)のフィードバックによりVddに上昇する。 When the input signal is at a high level (Vdd), the potential of the node N1 becomes Vdd−Vth (threshold). Here, even if the input signal Vdd−Vth and the power supply VSS (low level) are short-circuited, the resistor R1 is provided between the power supply VSS and the node N1, so the potential of the node N1 is Then, it is pulled to the input signal side and rises to a potential close to Vdd−Vth (potential higher than the inversion potential of the latching inverter INV2), and then rises to Vdd by feedback of the output (Vss) of the latching inverter INV2.
 一方、入力信号がローレベル(Vss)のときは、ノードN1の電位はVssになる。ここで、入力信号のローレベル(Vss)と、電源VDD(ハイレベル)とが短絡することになっても、電源VDDとノードN1との間に抵抗R2が設けられているため、ノードN1の電位は、入力信号側へ引き込まれ、Vss(ローレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも低い電位)に低下し、その後にラッチ用インバータINV2の出力(Vdd)のフィードバックによりVssに低下する。 On the other hand, when the input signal is at a low level (Vss), the potential of the node N1 is Vss. Here, even if the low level (Vss) of the input signal and the power supply VDD (high level) are short-circuited, since the resistor R2 is provided between the power supply VDD and the node N1, the node N1 The potential is drawn to the input signal side and drops to a potential close to Vss (low level) (potential lower than the inversion potential of the latching inverter INV2), and then Vss is obtained by feedback of the output (Vdd) of the latching inverter INV2. To drop.
 ここで、入力信号がハイレベル(Vdd)の場合、データ入力部SW1aの出力がVdd-Vthとなるため、トランジスタT1は比較的高抵抗となる。そのため、ノードN1の電位が上がり難くなるため、動作遅延や動作マージンが低下することになる。そこで、単位回路15aでは、抵抗R1の抵抗値を大きくする(もしくはラッチ用インバータINV1aのトランジスタT6のチャネル長Lを長くして駆動能力を低下させる)、ラッチ用インバータINV2の反転電位を下げるべくラッチ用インバータINV2のトランジスタT4のサイズを大きくする、などの構成とすることが好ましい。 Here, when the input signal is at the high level (Vdd), the output of the data input unit SW1a becomes Vdd-Vth, and thus the transistor T1 has a relatively high resistance. For this reason, the potential of the node N1 is difficult to rise, and the operation delay and the operation margin are reduced. Therefore, in the unit circuit 15a, the resistance value of the resistor R1 is increased (or the channel length L of the transistor T6 of the latching inverter INV1a is increased to reduce the driving capability), and the latching is performed to lower the inversion potential of the latching inverter INV2. It is preferable that the size of the transistor T4 of the inverter INV2 is increased.
 なお、クロック信号CKの反転信号が入力される場合、例えば図9において、図3のクロック信号CK及びCKBが反転されて入力(入れ替えて入力)される場合には、データ入力部SW1aを、Pチャネル型トランジスタT2(図5参照)で構成すれば良い。 When an inverted signal of the clock signal CK is input, for example, in FIG. 9, when the clock signals CK and CKB of FIG. 3 are inverted and input (replaced), the data input unit SW1a is set to P What is necessary is just to comprise by channel type transistor T2 (refer FIG. 5).
 これにより、実施例2と同様の効果を得ることができる。また、本実施例5では、データ入力部SW1aをトランジスタT1のみで構成しているため、素子数をさらに低減でき、回路規模をより縮小化することができる。 Thereby, the same effect as in the second embodiment can be obtained. In the fifth embodiment, since the data input unit SW1a is composed of only the transistor T1, the number of elements can be further reduced, and the circuit scale can be further reduced.
 (実施例6)
 図10は、実施例6に係るシフトレジスタ10に含まれる単位回路16aの回路図である。図10に示すように、単位回路16aのラッチ用インバータINV1bでは、実施例5に係る単位回路15a(図8参照)のラッチ用インバータINV1aと比較して、抵抗R1、R2の位置が異なっている。
(Example 6)
FIG. 10 is a circuit diagram of the unit circuit 16a included in the shift register 10 according to the sixth embodiment. As shown in FIG. 10, in the latch inverter INV1b of the unit circuit 16a, the positions of the resistors R1 and R2 are different from those of the latch inverter INV1a of the unit circuit 15a according to the fifth embodiment (see FIG. 8). .
 具体的には、ラッチ用インバータINV1bでは、抵抗R2は、一方の端子がトランジスタT5のドレイン端子に接続され、他方の端子がノードN1に接続され、抵抗R1は、一方の端子がトランジスタT6のドレイン端子に接続され、他方の端子がノードN1に接続されている。 Specifically, in the latch inverter INV1b, the resistor R2 has one terminal connected to the drain terminal of the transistor T5, the other terminal connected to the node N1, and the resistor R1 having one terminal connected to the drain of the transistor T6. The other terminal is connected to the node N1.
 この構成によれば、実施例5と同様、クロック信号CKがハイレベルになって、入力信号のVdd-Vthと、電源VSS(ローレベル)とが短絡することになっても、電源VSSとノードN1との間に抵抗R1が設けられているため、ノードN1の電位は、入力信号側へ引き込まれ、Vdd-Vthに近い電位(ラッチ用インバータINV2の反転電位よりも高い電位)に上昇し、その後にラッチ用インバータINV2の出力(Vss)のフィードバックによりVddに上昇する。 According to this configuration, similarly to the fifth embodiment, even when the clock signal CK becomes a high level and the input signal Vdd−Vth and the power supply VSS (low level) are short-circuited, the power supply VSS and the node Since the resistor R1 is provided between N1 and N1, the potential of the node N1 is drawn to the input signal side and rises to a potential close to Vdd−Vth (potential higher than the inversion potential of the latch inverter INV2), Thereafter, the voltage rises to Vdd by feedback of the output (Vss) of the latching inverter INV2.
 また、入力信号のローレベル(Vss)と、電源VDD(ハイレベル)とが短絡することになっても、電源VDDとノードN1との間に抵抗R2が設けられているため、ノードN1の電位は、入力信号側へ引き込まれ、Vss(ローレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも低い電位)に低下し、その後にラッチ用インバータINV2の出力(Vdd)のフィードバックによりVssに低下する。 Even if the low level (Vss) of the input signal and the power supply VDD (high level) are short-circuited, since the resistor R2 is provided between the power supply VDD and the node N1, the potential of the node N1 Is pulled to the input signal side and drops to a potential close to Vss (low level) (potential lower than the inversion potential of the latching inverter INV2), and then to Vss by feedback of the output (Vdd) of the latching inverter INV2. descend.
 これにより、実施例5と同様の効果を得ることができる。 Thereby, the same effect as in the fifth embodiment can be obtained.
 (実施例7)
 図11は、実施例7に係るシフトレジスタ10に含まれる単位回路17aの回路図である。図11に示すように、単位回路17aでは、実施例5に係る単位回路15a(図8参照)のデータ入力部SW1aに、Nチャネル型トランジスタT9と、容量C1とが追加された構成となっている。
(Example 7)
FIG. 11 is a circuit diagram of the unit circuit 17a included in the shift register 10 according to the seventh embodiment. As shown in FIG. 11, the unit circuit 17a has a configuration in which an N-channel transistor T9 and a capacitor C1 are added to the data input unit SW1a of the unit circuit 15a according to the fifth embodiment (see FIG. 8). Yes.
 具体的には、単位回路17aのデータ入力部SW1bは、トランジスタT9のゲート端子に電源電圧Vddが与えられ、ソース端子がCK端子に接続され、ドレイン端子がトランジスタT1のゲート端子に接続されている。また、容量C1は、トランジスタT1のゲート端子及びドレイン端子の間に設けられている。なお、容量C1とトランジスタT1のゲート端子との接続点をノードN3とする。 Specifically, in the data input unit SW1b of the unit circuit 17a, the power supply voltage Vdd is applied to the gate terminal of the transistor T9, the source terminal is connected to the CK terminal, and the drain terminal is connected to the gate terminal of the transistor T1. . The capacitor C1 is provided between the gate terminal and the drain terminal of the transistor T1. Note that a connection point between the capacitor C1 and the gate terminal of the transistor T1 is a node N3.
 この構成では、クロック信号CKがハイレベルになると、ノードN3の電位がVdd-Vthにチャージされた後、トランジスタT9はオフ状態になる。ノードN1では、クロック信号CK(ハイレベル)によりトランジスタT1がオン状態になり、入力信号のVdd(ハイレベル)が入力され、Vss(ローレベル)からVdd(ハイレベル)に上がり始める。すると、ノードN1の電位変動により、容量C1を介してノードN3の電位がVdd-Vth+αに突き上げられる。これにより、入力信号(Vdd)が閾値(Vth)落ちせずに入力され、ノードN1の電位がVddになる(ブートストラップ動作)。 In this configuration, when the clock signal CK becomes high level, the potential of the node N3 is charged to Vdd-Vth, and then the transistor T9 is turned off. At the node N1, the transistor T1 is turned on by the clock signal CK (high level), the input signal Vdd (high level) is input, and starts to rise from Vss (low level) to Vdd (high level). Then, the potential of the node N3 is pushed up to Vdd−Vth + α through the capacitor C1 due to the potential fluctuation of the node N1. As a result, the input signal (Vdd) is input without dropping the threshold value (Vth), and the potential of the node N1 becomes Vdd (bootstrap operation).
 ここで、上記実施例5の単位回路15aでは、入力信号がハイレベル(Vdd)のとき、ノードN1の電位は、ラッチ用インバータINV2の出力(Vss)がフィードバックされるまでVdd-Vthとなる。これに対して、本実施例7の単位回路17aでは、ノードN1の電位は、ブートストラップ動作によりVddにすることができるため、動作マージンを確保することができる。上記に示した以外の動作は実施例5の単位回路15aの動作と同一である。 Here, in the unit circuit 15a of the fifth embodiment, when the input signal is at the high level (Vdd), the potential of the node N1 becomes Vdd−Vth until the output (Vss) of the latching inverter INV2 is fed back. On the other hand, in the unit circuit 17a of the seventh embodiment, the potential of the node N1 can be set to Vdd by the bootstrap operation, so that an operation margin can be ensured. Operations other than those described above are the same as those of the unit circuit 15a of the fifth embodiment.
 なお、クロック信号CKの反転信号が入力される場合、例えば図9では、図3のクロック信号CK及びCKBが反転されて入力(入れ替えて入力)される場合には、データ入力部SW1bを、Pチャネル型トランジスタで構成するとともに、電源をVSSに固定すれば良い。 Note that when an inverted signal of the clock signal CK is input, for example, in FIG. 9, when the clock signals CK and CKB of FIG. What is necessary is just to comprise a channel type transistor and to fix a power supply to VSS.
 (実施例8)
 図12は、実施例8に係るシフトレジスタ10に含まれる単位回路18aの回路図である。図12に示すように、単位回路18aのラッチ用インバータINV1bでは、実施例7に係る単位回路17a(図11参照)のラッチ用インバータINV1aと比較して、抵抗R1、R2の位置が異なっている。
(Example 8)
FIG. 12 is a circuit diagram of the unit circuit 18a included in the shift register 10 according to the eighth embodiment. As shown in FIG. 12, in the latch inverter INV1b of the unit circuit 18a, the positions of the resistors R1 and R2 are different from those of the latch inverter INV1a of the unit circuit 17a according to the seventh embodiment (see FIG. 11). .
 具体的には、ラッチ用インバータINV1bでは、抵抗R2は、一方の端子がトランジスタT5のドレイン端子に接続され、他方の端子がノードN1に接続され、抵抗R1は、一方の端子がトランジスタT6のドレイン端子に接続され、他方の端子がノードN1に接続されている。単位回路18aの動作は、実施例7の単位回路17aの動作と同一である。 Specifically, in the latch inverter INV1b, the resistor R2 has one terminal connected to the drain terminal of the transistor T5, the other terminal connected to the node N1, and the resistor R1 having one terminal connected to the drain of the transistor T6. The other terminal is connected to the node N1. The operation of the unit circuit 18a is the same as that of the unit circuit 17a of the seventh embodiment.
 (実施例9)
 図13は、実施例9に係るシフトレジスタ10に含まれる単位回路19aの回路図である。図13に示すように、単位回路19aのラッチ用インバータINV1cでは、実施例1に係る単位回路11a(図1参照)のラッチ用インバータINV1に、抵抗R1及びPチャネル型トランジスタT10が追加されている。なお、単位回路19aのラッチ用インバータINV1cを構成するトランジスタT5、T6、T10のチャネル長Lは、ラッチ用インバータINV2を構成するトランジスタT3、T4のチャネル長Lと同一に設定されている。
Example 9
FIG. 13 is a circuit diagram of the unit circuit 19a included in the shift register 10 according to the ninth embodiment. As shown in FIG. 13, in the latching inverter INV1c of the unit circuit 19a, a resistor R1 and a P-channel transistor T10 are added to the latching inverter INV1 of the unit circuit 11a (see FIG. 1) according to the first embodiment. . The channel length L of the transistors T5, T6, and T10 that constitute the latching inverter INV1c of the unit circuit 19a is set to be the same as the channel length L of the transistors T3 and T4 that constitute the latching inverter INV2.
 ラッチ用インバータINV1cでは、トランジスタT10は、ゲート端子がCK端子に接続され、ソース端子が電源VDDに接続されている。トランジスタT5は、ゲート端子がノードN2に接続され、ソース端子がトランジスタT10のドレイン端子に接続され、ドレイン端子がノードN1に接続されている。抵抗R1は、一方の端子が電源VSSに接続されている。トランジスタT6は、ゲート端子がノードN2に接続され、ソース端子が抵抗R1の他方の端子に接続され、ドレイン端子がノードN1に接続されている、なお、抵抗R1は、数kΩから数MΩである。 In the latch inverter INV1c, the transistor T10 has a gate terminal connected to the CK terminal and a source terminal connected to the power supply VDD. The transistor T5 has a gate terminal connected to the node N2, a source terminal connected to the drain terminal of the transistor T10, and a drain terminal connected to the node N1. One terminal of the resistor R1 is connected to the power supply VSS. The transistor T6 has a gate terminal connected to the node N2, a source terminal connected to the other terminal of the resistor R1, and a drain terminal connected to the node N1, and the resistor R1 is several kΩ to several MΩ. .
 この構成では、クロック信号CKがハイレベルになると、データ入力部SW1がオン状態になるとともに、トランジスタT10がオフ状態になる。 In this configuration, when the clock signal CK goes high, the data input unit SW1 is turned on and the transistor T10 is turned off.
 この状態でハイレベル(Vdd)の入力信号が入力されると、入力信号(Vdd)と電源VSSとが短絡することになるが、電源VSSとノードN1との間に抵抗R1が設けられているため、ノードN1の電位は、入力信号側へ引き込まれ、Vddに近い電位(ラッチ用インバータINV2の反転電位よりも高い電位)に上昇し、その後にラッチ用インバータINV2の出力(Vss)のフィードバックによりVddに上昇する。 When a high level (Vdd) input signal is input in this state, the input signal (Vdd) and the power supply VSS are short-circuited, but a resistor R1 is provided between the power supply VSS and the node N1. Therefore, the potential of the node N1 is drawn to the input signal side, rises to a potential close to Vdd (potential higher than the inversion potential of the latching inverter INV2), and then feedback of the output (Vss) of the latching inverter INV2 Rises to Vdd.
 一方、ローレベル(Vss)の入力信号が入力されると、Vddに保持されていたノードN1の電位は、トランジスタT10のオフにより電源VDDと切り離されているため、入力信号と電源VDDとが短絡することなく、Vssに低下する。 On the other hand, when a low level (Vss) input signal is input, the potential of the node N1 held at Vdd is disconnected from the power supply VDD by turning off the transistor T10, and thus the input signal and the power supply VDD are short-circuited. Without being reduced to Vss.
 (実施例10)
 図14は、実施例10に係るシフトレジスタ10に含まれる単位回路20aの回路図である。図14に示すように、単位回路20aのラッチ用インバータINV1dでは、実施例1に係る単位回路11(図1参照)のラッチ用インバータINV1に、抵抗R2及びNチャネル型トランジスタT11が追加されている。なお、単位回路20aのラッチ用インバータINV1dを構成するトランジスタT5、T6、T11のチャネル長Lは、ラッチ用インバータINV2を構成するトランジスタT3、T4のチャネル長Lと同一に設定されている。
(Example 10)
FIG. 14 is a circuit diagram of the unit circuit 20a included in the shift register 10 according to the tenth embodiment. As shown in FIG. 14, in the latching inverter INV1d of the unit circuit 20a, a resistor R2 and an N-channel transistor T11 are added to the latching inverter INV1 of the unit circuit 11 (see FIG. 1) according to the first embodiment. . The channel length L of the transistors T5, T6, and T11 that constitute the latching inverter INV1d of the unit circuit 20a is set to be the same as the channel length L of the transistors T3 and T4 that constitute the latching inverter INV2.
 ラッチ用インバータINV1dでは、抵抗R2は、一方の端子が電源VDDに接続され、トランジスタT5は、ゲート端子がノードN2に接続され、ソース端子が抵抗R2の他方の端子に接続され、ドレイン端子がノードN1に接続されている。トランジスタT11は、ゲート端子がCKB端子に接続され、ソース端子が電源VSSに接続されている。トランジスタT6は、ゲート端子がノードN2に接続され、ソース端子がトランジスタT11のドレイン端子に接続され、ドレイン端子がノードN1に接続されている。なお、抵抗R1は、数kΩから数MΩである。 In the latch inverter INV1d, the resistor R2 has one terminal connected to the power supply VDD, the transistor T5 has a gate terminal connected to the node N2, a source terminal connected to the other terminal of the resistor R2, and a drain terminal connected to the node. Connected to N1. The transistor T11 has a gate terminal connected to the CKB terminal and a source terminal connected to the power supply VSS. The transistor T6 has a gate terminal connected to the node N2, a source terminal connected to the drain terminal of the transistor T11, and a drain terminal connected to the node N1. The resistor R1 is several kΩ to several MΩ.
 この構成では、クロック信号CKがハイレベル、クロック信号CKBがローレベルになると、データ入力部SW1がオン状態になるとともに、トランジスタT11がオフ状態になる。 In this configuration, when the clock signal CK is at a high level and the clock signal CKB is at a low level, the data input unit SW1 is turned on and the transistor T11 is turned off.
 この状態でハイレベル(Vdd)の入力信号が入力されると、Vssに保持されていたノードN1の電位は、トランジスタT11のオフにより電源VSSと切り離されているため、入力信号と電源VSSとが短絡することなく、Vddに上昇する。 When a high level (Vdd) input signal is input in this state, the potential of the node N1 held at Vss is disconnected from the power supply VSS by turning off the transistor T11. It rises to Vdd without short-circuiting.
 一方、ローレベル(Vss)の入力信号が入力されると、入力信号(Vss)と電源VDDとが短絡することになるが、電源VDDとノードN1との間に抵抗R2が設けられているため、ノードN1の電位は、入力信号側へ引き込まれ、Vssに近い電位(ラッチ用インバータINV2の反転電位よりも高い電位)に低下し、その後にラッチ用インバータINV2の出力(Vdd)のフィードバックによりVssに低下する。 On the other hand, when a low level (Vss) input signal is input, the input signal (Vss) and the power supply VDD are short-circuited, but a resistor R2 is provided between the power supply VDD and the node N1. The potential of the node N1 is drawn to the input signal side and drops to a potential close to Vss (potential higher than the inversion potential of the latching inverter INV2), and then Vss by feedback of the output (Vdd) of the latching inverter INV2. To drop.
 (実施例11)
 図15は、実施例11に係る共通電極駆動回路200に含まれる単位回路21aの回路図である。単位回路21aのインバータINV1では、インバータINV1を構成するトランジスタT5、T6のサイズ(チャネル長L、チャネル幅W)が、インバータINV2を構成するトランジスタT3、T4のサイズ(チャネル長L、チャネル幅W)を同一に設定されている。すなわち、インバータINV1、INV2を構成する全てのトランジスタが同一サイズに設定されている。また、単位回路21aでは、IN端子に入力される入力信号の駆動能力が高くなるように設定されている。具体的には、例えば、駆動能力を上げるため、インバータINV3(バッファ)のチャネル幅Wを、インバータINV1のチャネル幅Wサイズよりも大きくなるように構成されている。
(Example 11)
FIG. 15 is a circuit diagram of the unit circuit 21a included in the common electrode driving circuit 200 according to the eleventh embodiment. In the inverter INV1 of the unit circuit 21a, the sizes (channel length L, channel width W) of the transistors T5, T6 constituting the inverter INV1 are the same as the sizes (channel length L, channel width W) of the transistors T3, T4 constituting the inverter INV2. Are set the same. That is, all the transistors constituting the inverters INV1 and INV2 are set to the same size. In the unit circuit 21a, the driving capability of the input signal input to the IN terminal is set to be high. Specifically, for example, in order to increase the driving capability, the channel width W of the inverter INV3 (buffer) is configured to be larger than the channel width W size of the inverter INV1.
 この構成によれば、クロック信号CKがハイレベル(アクティブ)になって、入力信号のVss(ローレベル)と、電源VDD(ハイレベル)とが短絡することになっても、入力信号の駆動能力が高いため、ノードN1の電位は、入力信号側へ引き込まれ、入力信号のVss(ローレベル)に近い電位(インバータINV2の反転電位よりも低い電位)に低下し、その後にインバータINV2の出力(Vdd)のフィードバックによりVssに低下する。また、入力信号のVdd(ハイレベル)と、電源VSS(ローレベル)とが短絡することになっても、同様に入力信号の駆動能力が高いため、ノードN1の電位は、入力信号側へ引き込まれ、入力信号のVddに近い電位(インバータINV2の反転電位よりも高い電位)に上昇し、その後にインバータINV2の出力(Vss)のフィードバックによりVddに上昇する。 According to this configuration, even if the clock signal CK becomes high level (active) and the input signal Vss (low level) and the power supply VDD (high level) are short-circuited, the input signal drive capability Therefore, the potential of the node N1 is drawn to the input signal side, drops to a potential close to Vss (low level) of the input signal (potential lower than the inversion potential of the inverter INV2), and then the output of the inverter INV2 ( Vdd) is reduced to Vss by feedback. Even if the input signal Vdd (high level) and the power source VSS (low level) are short-circuited, the input signal drive capability is similarly high, so that the potential of the node N1 is pulled to the input signal side. Then, it rises to a potential close to Vdd of the input signal (potential higher than the inversion potential of the inverter INV2), and then rises to Vdd by feedback of the output (Vss) of the inverter INV2.
 これにより、実施例1等と同様の効果を得ることができる。また、本実施例の構成は、上述した各実施例に適用することもできる。 Thereby, it is possible to obtain the same effect as in the first embodiment. Further, the configuration of the present embodiment can also be applied to the above-described embodiments.
 (実施例12)
 図16は、実施例12に係るシフトレジスタ10の単位回路22aの回路図であり、図17は、当該シフトレジスタ10の動作時のタイミングチャートである。
Example 12
FIG. 16 is a circuit diagram of the unit circuit 22a of the shift register 10 according to the twelfth embodiment, and FIG. 17 is a timing chart when the shift register 10 operates.
 単位回路22aでは、実施例1の単位回路11aにおいて、出力インバータINV3が省略され、インバータINV2の出力がOUT端子に接続されている。これにより、素子数を削減できるため、シフトレジスタ10の回路規模をさらに縮小化できる。なお、単位回路33では、出力インバータINV3が省略されているため、図17に示すように、奇数段と偶数段とで出力信号Oの極性が逆転する。 In the unit circuit 22a, the output inverter INV3 is omitted in the unit circuit 11a of the first embodiment, and the output of the inverter INV2 is connected to the OUT terminal. Thereby, since the number of elements can be reduced, the circuit scale of the shift register 10 can be further reduced. In the unit circuit 33, since the output inverter INV3 is omitted, as shown in FIG. 17, the polarity of the output signal O is reversed between the odd and even stages.
 本実施例における出力インバータINV3を省略する構成は、上述の各実施例にも適用できる。 The configuration in which the output inverter INV3 in this embodiment is omitted can be applied to the above-described embodiments.
 (実施例13)
 図18は、実施例13に係るシフトレジスタ10に含まれる単位回路23aの回路図であり、図19は、当該シフトレジスタ10の動作時のタイミングチャートである。
(Example 13)
FIG. 18 is a circuit diagram of the unit circuit 23a included in the shift register 10 according to the thirteenth embodiment. FIG. 19 is a timing chart when the shift register 10 operates.
 単位回路23aは、実施例1の単位回路11aにおいて、出力インバータINV3が省略される代わりに、インバータINV4が設けられており、インバータINV4の入力端子がCK端子に接続され、インバータINV4の出力端子がトランジスタT2のゲート端子に接続されている。また、CK1は、奇数段目の単位回路23aのCK端子に与えられるクロック信号であり、CK2は、偶数段目の単位回路23aのCK端子に与えられるクロック信号である。クロック信号CK1、CK2は、それぞれデューティ比が50%より小さく、互いにアクティブ期間(ハイ期間)が重ならないように設定されている。 In the unit circuit 23a, instead of omitting the output inverter INV3 in the unit circuit 11a of the first embodiment, an inverter INV4 is provided, the input terminal of the inverter INV4 is connected to the CK terminal, and the output terminal of the inverter INV4 is It is connected to the gate terminal of the transistor T2. CK1 is a clock signal supplied to the CK terminal of the odd-numbered unit circuit 23a, and CK2 is a clock signal supplied to the CK terminal of the even-numbered unit circuit 23a. The clock signals CK1 and CK2 each have a duty ratio smaller than 50% and are set so that the active periods (high periods) do not overlap each other.
 ここで、クロック信号CK1、CK2それぞれが、デューティ比50%である場合(すなわち、CK、CKBの場合)、CKとその反転信号CKBの切り替わりの期間に、配線の負荷等の影響により、双方が、トランジスタがオンするアクティブ状態になる場合がある。この場合、シフトレジスタの全段でデータ入力部SW1のスイッチがオンとなりラッチスルーと呼ばれるデータの誤入力が生じるおそれがある。この点、本実施例の構成によれば、クロック信号CK1、CK2のアクティブ期間は互いに重ならないため、上記ラッチスルー現象を防止することができる。 Here, when each of the clock signals CK1 and CK2 has a duty ratio of 50% (that is, in the case of CK and CKB), both of the clock signals CK1 and CK2 are affected by the influence of the wiring load during the switching period of CK and its inverted signal CKB. In some cases, the transistor is in an active state where it is turned on. In this case, there is a possibility that the data input unit SW1 is switched on at all stages of the shift register and erroneous input of data called latch through occurs. In this respect, according to the configuration of the present embodiment, the active periods of the clock signals CK1 and CK2 do not overlap each other, so that the latch-through phenomenon can be prevented.
 また、単位回路23aでは、ラッチ用インバータINV2の駆動能力を、インバータINV1の駆動能力よりも大きくするために、トランジスタT5、T6のチャネル長Lを変えずに、ラッチ用インバータINV2を構成するトランジスタT3、T4のチャネル幅Wを、トランジスタT5、T6のチャネル幅Wよりも大きくしている。また、スタートパルスSTは、シフトレジスタ10外にラッチ用インバータINV1のトランジスタT5、T6よりもチャネル幅Wの大きいバッファの出力、あるいは、駆動能力の高いICの出力としている。これにより、単位回路23aの入力信号の駆動能力が高まるため、上記単位回路11a等と同様の効果を得られる。上記構成は、以下の各単位回路に適用することができる。 In the unit circuit 23a, in order to make the driving capability of the latching inverter INV2 larger than that of the inverter INV1, the transistor T3 constituting the latching inverter INV2 without changing the channel length L of the transistors T5 and T6. , T4 has a channel width W larger than that of the transistors T5, T6. Further, the start pulse ST is output from a buffer having a channel width W larger than that of the transistors T5 and T6 of the latching inverter INV1 outside the shift register 10 or from an IC having a high driving capability. As a result, the drive capability of the input signal of the unit circuit 23a is enhanced, and the same effect as the unit circuit 11a and the like can be obtained. The above configuration can be applied to the following unit circuits.
 (実施例14)
 図20は、実施例14に係るシフトレジスタ10の単位回路24aの回路図である。
(Example 14)
FIG. 20 is a circuit diagram of the unit circuit 24a of the shift register 10 according to the fourteenth embodiment.
 単位回路24aは、実施例13の単位回路23aにおいて、インバータINV4及びトランジスタT2が省略され、トランジスタT9及び容量C1(図11に示すブートストラップ機能)が追加されている。 In the unit circuit 24a, in the unit circuit 23a of the thirteenth embodiment, the inverter INV4 and the transistor T2 are omitted, and a transistor T9 and a capacitor C1 (bootstrap function shown in FIG. 11) are added.
 これにより、単位回路24aにおいてクロック信号(CK1、CK2)の反転信号を生成する必要がなくなるため、実施例13の単位回路13aと比較して消費電力を削減することができる。 This eliminates the need to generate inverted signals of the clock signals (CK1, CK2) in the unit circuit 24a, so that power consumption can be reduced compared to the unit circuit 13a of the thirteenth embodiment.
 (実施例15)
 図46は、実施例15に係るシフトレジスタ10の単位回路25aの回路図である。単位回路25aは、実施例1に係る単位回路11a(図1参照)と比較すると、出力インバータINV3の入力端子がノードN1に接続され、入力端子INcに出力信号OB(Oの反転信号)が入力される点で異なり、その他の構成は単位回路11aと同一である。
(Example 15)
FIG. 46 is a circuit diagram of the unit circuit 25a of the shift register 10 according to the fifteenth embodiment. Compared with the unit circuit 11a according to the first embodiment (see FIG. 1), the unit circuit 25a has the input terminal of the output inverter INV3 connected to the node N1, and the output signal OB (inverted signal of O) is input to the input terminal INc. The other configurations are the same as those of the unit circuit 11a.
 この構成によれば、クロック信号CKがハイレベルになって、入力信号OBのVss(ローレベル)と、電源VDD(ハイレベル)とが短絡することになっても、インバータINV1のトランジスタT5はチャネル長Lが長く設定されており駆動能力が低いため、ノードN1の電位は、入力信号OB側へ引き込まれ、入力信号OBのVss(ローレベル)に近い電位(インバータINV2の反転電位よりも低い電位)に低下し、その後にインバータINV2の出力(Vdd)のフィードバックによりVssに低下する。また、入力信号OBのVdd(ハイレベル)と、電源VSS(ローレベル)とが短絡することになっても、インバータINV1のトランジスタT6はチャネル長Lが長く設定されており駆動能力が低いため、ノードN1の電位は、入力信号OB側へ引き込まれ、入力信号OBのVddに近い電位(インバータINV2の反転電位よりも高い電位)に上昇し、その後にインバータINV2の出力(Vss)のフィードバックによりVddに上昇する。 According to this configuration, even when the clock signal CK becomes high level and the Vss (low level) of the input signal OB and the power supply VDD (high level) are short-circuited, the transistor T5 of the inverter INV1 is connected to the channel. Since the length L is set to be long and the driving capability is low, the potential of the node N1 is drawn to the input signal OB side and is a potential close to Vss (low level) of the input signal OB (a potential lower than the inversion potential of the inverter INV2). ) And then to Vss by feedback of the output (Vdd) of the inverter INV2. Even if Vdd (high level) of the input signal OB and the power supply VSS (low level) are short-circuited, the transistor T6 of the inverter INV1 is set to have a long channel length L and has a low driving capability. The potential of the node N1 is drawn to the input signal OB side, rises to a potential close to Vdd of the input signal OB (potential higher than the inversion potential of the inverter INV2), and then Vdd is fed back by feedback of the output (Vss) of the inverter INV2. To rise.
 これにより、実施例1等と同様の効果を得ることができる。また、本実施例の構成は、上述した各実施例に適用することもできる。 Thereby, it is possible to obtain the same effect as in the first embodiment. Further, the configuration of the present embodiment can also be applied to the above-described embodiments.
 (走査方向の切り替え)
 上述した各単位回路は、シフトレジスタの走査方向(シフト方向)を切り替える切替回路UDSWを備えていても良い。図21は、切替回路UDSWと、実施例14に係るシフトレジスタ10に含まれるk段目の単位回路24aとの接続関係を示す回路図であり、図22は、切替回路UDSWを備えたシフトレジスタ10の概略構成を示すブロック図である。
(Switching scanning direction)
Each unit circuit described above may include a switching circuit UDSW that switches the scanning direction (shift direction) of the shift register. FIG. 21 is a circuit diagram illustrating a connection relationship between the switching circuit UDSW and the k-th unit circuit 24a included in the shift register 10 according to the fourteenth embodiment. FIG. 22 illustrates a shift register including the switching circuit UDSW. 10 is a block diagram showing a schematic configuration of 10. FIG.
 切替回路UDSWは、Nチャネル型トランジスタTu1、Tu2を備える。トランジスタTu1は、ソース端子が入力端子INaに接続され、ドレイン端子が出力端子OUTに接続され、ゲート端子に切替信号UDが与えられる。トランジスタTu2は、ソース端子が入力端子INbに接続され、ドレイン端子が出力端子OUTに接続され、ゲート端子に切替信号UDB(UDの反転信号)が与えられる。切替回路UDSWの出力端子は、単位回路24aのIN端子に接続されている。k段目の単位回路24aでは、切替回路UDSWのINa端子に、シフトレジスタの(k-1)段目の単位回路24aの出力信号O(k-1)が入力され、切替回路UDSWのINb端子に、シフトレジスタの(k+1)段目の単位回路24aの出力信号O(k+1)が入力される。 The switching circuit UDSW includes N-channel transistors Tu1 and Tu2. The transistor Tu1 has a source terminal connected to the input terminal INa, a drain terminal connected to the output terminal OUT, and a switching signal UD supplied to the gate terminal. The transistor Tu2 has a source terminal connected to the input terminal INb, a drain terminal connected to the output terminal OUT, and a gate signal supplied with a switching signal UDB (inverted signal of UD). The output terminal of the switching circuit UDSW is connected to the IN terminal of the unit circuit 24a. In the k-th unit circuit 24a, the output signal O (k-1) of the (k-1) -th unit circuit 24a of the shift register is input to the INa terminal of the switching circuit UDSW, and the INb terminal of the switching circuit UDSW The output signal O (k + 1) of the unit circuit 24a at the (k + 1) -th stage of the shift register is input.
 切替信号UD、UDBは、互いに極性が逆転した信号であるため、切替信号UDがハイレベル(切替信号UDBがローレベル)のときは、トランジスタTu1がオン状態になって出力信号O(k-1)が、切替回路UDSWからk段目の単位回路24aに入力されるため、シフトレジスタ10の走査方向は、図23の(a)に示すように、1段目からn段目へ向かう第1方向となる。 Since the switching signals UD and UDB are signals whose polarities are reversed, when the switching signal UD is at a high level (the switching signal UDB is at a low level), the transistor Tu1 is turned on and the output signal O (k−1) ) Is input from the switching circuit UDSW to the k-th unit circuit 24a, the shift direction of the shift register 10 is the first from the first stage to the n-th stage as shown in FIG. Direction.
 一方、切替信号UDBがハイレベル(切替信号UDがローレベル)のときは、トランジスタTu2がオン状態になって出力信号O(k+1)が、切替回路UDSWからk段目の単位回路24aに入力されるため、シフトレジスタ10の走査方向は、図23の(b)に示すように、n段目から1段目へ向かう第2方向となる。このように、切替信号UD、UDBにより、走査方向を切り替えることができる。 On the other hand, when the switching signal UDB is at a high level (the switching signal UD is at a low level), the transistor Tu2 is turned on and the output signal O (k + 1) is input from the switching circuit UDSW to the k-th unit circuit 24a. Therefore, the scanning direction of the shift register 10 is the second direction from the nth stage to the first stage, as shown in FIG. Thus, the scanning direction can be switched by the switching signals UD and UDB.
 なお、図24に示すように、切替回路UDSWを、Nチャネル型トランジスタTu1、Tu2と、Pチャネル型トランジスタTu3、Tu4とで構成してもよい。上記切替回路UDSWは、上述した各実施例に適用することができる。 Note that, as shown in FIG. 24, the switching circuit UDSW may be composed of N-channel transistors Tu1, Tu2 and P-channel transistors Tu3, Tu4. The switching circuit UDSW can be applied to the above-described embodiments.
 〔実施の形態2〕
 本発明の実施の形態2について図面に基づいて説明すると以下の通りである。なお、説明の便宜上、上記実施の形態1において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1において定義した用語については、特に断らない限り本実施例においてもその定義に則って用いるものとする。
[Embodiment 2]
Embodiment 2 of the present invention will be described below with reference to the drawings. For convenience of explanation, members having the same functions as those shown in the first embodiment are given the same reference numerals, and explanation thereof is omitted. In addition, the terms defined in Embodiment 1 are used in accordance with the definitions in this example unless otherwise specified.
 図25は、実施の形態2に係る液晶表示装置1の概略構成を示すブロック図であり、図26は、液晶表示装置1の画素の電気的構成を示す等価回路図である。 FIG. 25 is a block diagram illustrating a schematic configuration of the liquid crystal display device 1 according to the second embodiment, and FIG. 26 is an equivalent circuit diagram illustrating an electrical configuration of a pixel of the liquid crystal display device 1.
 まず、図25及び図26を用いて液晶表示装置1の概略構成について説明する。液晶表示装置1は、走査信号線駆動回路100(ゲートドライバ)、データ信号線駆動回路300(ソースドライバ)、及び表示パネル400を備えている。また、液晶表示装置1には、各駆動回路を制御する制御回路(図示せず)が含まれる。なお、各駆動回路はアクティブマトリクス基板にモノリシックに作り込まれていてもよい。 First, a schematic configuration of the liquid crystal display device 1 will be described with reference to FIGS. 25 and 26. FIG. The liquid crystal display device 1 includes a scanning signal line driving circuit 100 (gate driver), a data signal line driving circuit 300 (source driver), and a display panel 400. Further, the liquid crystal display device 1 includes a control circuit (not shown) that controls each drive circuit. Note that each drive circuit may be monolithically formed on the active matrix substrate.
 表示パネル400は、図示しないアクティブマトリクス基板と対向基板との間に液晶を挟持して構成されており、行列状に配列された多数の画素P(図26)を有している。 The display panel 400 is configured by sandwiching a liquid crystal between an active matrix substrate (not shown) and a counter substrate, and has a large number of pixels P (FIG. 26) arranged in a matrix.
 そして、表示パネル400は、アクティブマトリクス基板上に、走査信号線41(GLn)、データ信号線43(SLi)、薄膜トランジスタ(Thin Film Transistor;以下「TFT」とも言う)44、及び画素電極45を備え、対向基板上にコモンライン(共通電極配線)42(CMLn)を備えている。なお、i、nは2以上の整数である。 The display panel 400 includes a scanning signal line 41 (GLn), a data signal line 43 (SLi), a thin film transistor (hereinafter also referred to as “TFT”) 44, and a pixel electrode 45 on an active matrix substrate. A common line (common electrode wiring) 42 (CMLn) is provided on the counter substrate. I and n are integers of 2 or more.
 走査信号線41は行方向(横方向)に互いに平行となるように各行に1本ずつ形成されており、データ信号線43は、列方向(縦方向)に互いに平行となるように各列に1本ずつ形成されている。図26に示すように、TFT44及び画素電極45は、走査信号線41とデータ信号線43との各交点に対応してそれぞれ形成されており、TFT44のゲート電極gが走査信号線41に、ソース電極sがデータ信号線43に、ドレイン電極dが画素電極45にそれぞれ接続されている。また、画素電極45は、コモンライン42との間に容量Clc(液晶容量を含む)を形成している。 One scanning signal line 41 is formed in each row so as to be parallel to each other in the row direction (lateral direction), and the data signal line 43 is arranged in each column so as to be parallel to each other in the column direction (vertical direction). One by one. As shown in FIG. 26, the TFT 44 and the pixel electrode 45 are formed corresponding to each intersection of the scanning signal line 41 and the data signal line 43, and the gate electrode g of the TFT 44 is connected to the scanning signal line 41 and the source. The electrode s is connected to the data signal line 43, and the drain electrode d is connected to the pixel electrode 45. Further, the pixel electrode 45 forms a capacitance Clc (including a liquid crystal capacitance) between the common line 42.
 これにより、走査信号線41に供給されるゲート信号(走査信号)によってTFT44のゲートをオン状態にし、データ信号線43からのソース信号(データ信号)を画素電極45に書き込んで画素電極45を上記ソース信号に応じた電位に設定し、コモンライン42との間に介在する液晶に対して上記ソース信号に応じた電圧を印加することによって、上記ソース信号に応じた階調表示を実現することができる。 As a result, the gate of the TFT 44 is turned on by the gate signal (scanning signal) supplied to the scanning signal line 41, the source signal (data signal) from the data signal line 43 is written to the pixel electrode 45, and the pixel electrode 45 is written in the above-described manner. It is possible to realize gradation display according to the source signal by setting the potential according to the source signal and applying a voltage according to the source signal to the liquid crystal interposed between the common line 42. it can.
 上記構成の表示パネル400は、走査信号線駆動回路100、データ信号線駆動回路300、及びこれらを制御する制御回路によって駆動される。 The display panel 400 having the above configuration is driven by the scanning signal line driving circuit 100, the data signal line driving circuit 300, and a control circuit for controlling them.
 本実施の形態では、周期的に繰り返される垂直走査期間におけるアクティブ期間(有効走査期間)において、各行の水平走査期間を順次割り当て、各行を順次走査していく。 In this embodiment, in the active period (effective scanning period) in the vertical scanning period that is periodically repeated, the horizontal scanning period of each row is sequentially assigned, and each row is sequentially scanned.
 そのため、走査信号線駆動回路100は、TFT44をオンするためのゲート信号を各行の水平走査期間に同期して当該行の走査信号線41に対して順次出力する。 Therefore, the scanning signal line driving circuit 100 sequentially outputs a gate signal for turning on the TFT 44 to the scanning signal line 41 of the row in synchronization with the horizontal scanning period of each row.
 データ信号線駆動回路300は、各データ信号線43に対してソース信号を出力する。このソース信号は、液晶表示装置1の外部から制御回路を介してデータ信号線駆動回路300に供給された映像信号を、データ信号線駆動回路300において各列に割り当て、昇圧等を施した信号である。 The data signal line driving circuit 300 outputs a source signal to each data signal line 43. This source signal is a signal obtained by assigning a video signal supplied to the data signal line driving circuit 300 from the outside of the liquid crystal display device 1 through the control circuit to each column in the data signal line driving circuit 300 and performing boosting or the like. is there.
 制御回路は、上述した走査信号線駆動回路100、及びデータ信号線駆動回路300を制御することにより、これら各回路から、ゲート信号、ソース信号、及びコモン信号を出力させる。 The control circuit controls the scanning signal line driving circuit 100 and the data signal line driving circuit 300 described above to output a gate signal, a source signal, and a common signal from each of these circuits.
 走査信号線駆動回路100は、上記実施の形態1に係るシフトレジスタ10を備えている。シフトレジスタ10は、n個(nは2以上の整数)のSR単位回路を多段接続して構成されている。SR単位回路は、クロック用端子(CKa端子、CKb端子)、入力端子(IN端子)、及び出力端子(OUT1端子、OUT2端子)を有している。 The scanning signal line driving circuit 100 includes the shift register 10 according to the first embodiment. The shift register 10 is configured by connecting n (n is an integer of 2 or more) SR unit circuits in multiple stages. The SR unit circuit has a clock terminal (CKa terminal, CKb terminal), an input terminal (IN terminal), and an output terminal (OUT1 terminal, OUT2 terminal).
 本実施の形態に係る液晶表示装置1では、回路面積を縮小化しつつ、走査信号線駆動回路100の出力信号の電位レベルの低下を防いで安定した動作を行う構成を有している。以下では、走査信号線駆動回路100を構成するシフトレジスタの具体的な構成について説明する。 The liquid crystal display device 1 according to the present embodiment has a configuration in which the circuit area is reduced and a stable operation is performed by preventing the potential level of the output signal of the scanning signal line driving circuit 100 from being lowered. Hereinafter, a specific configuration of the shift register included in the scanning signal line driver circuit 100 will be described.
 (実施例15)
 図27は、実施例15に係るシフトレジスタ10の概略構成を示すブロック図である。なお、図27では、切替回路UDSWを含んでいる。図28は、シフトレジスタ10を構成する1段目の単位回路(以下、SR単位回路SR1という)の回路図であり、図29は、シフトレジスタ10を構成する2段目の単位回路(以下、SR単位回路SR2という)の回路図である。
(Example 15)
FIG. 27 is a block diagram illustrating a schematic configuration of the shift register 10 according to the fifteenth embodiment. In FIG. 27, a switching circuit UDSW is included. FIG. 28 is a circuit diagram of a first stage unit circuit (hereinafter referred to as SR unit circuit SR1) constituting the shift register 10, and FIG. 29 is a second stage unit circuit (hereinafter referred to as SR unit circuit SR1) constituting the shift register 10. It is a circuit diagram of SR unit circuit SR2.
 SR単位回路は、ラッチ回路とパルス出力回路とを含んでいる。ラッチ回路は、上記実施の形態1の各実施例に示した単位回路を適用することができる。 SR unit circuit includes a latch circuit and a pulse output circuit. The unit circuit shown in each example of the first embodiment can be applied to the latch circuit.
 図28及び図29では、ラッチ回路24aとして、上記実施の形態1の実施例14に係る単位回路24aを示しているが、これに限定されるものではなく、上記実施の形態1に示した各単位回路を適用することができる。パルス出力回路24bは、Pチャネル型トランジスタTr1とNチャネル型トランジスタTr2及びTr3で構成されているが、奇数段(図28)と偶数段(図29)とで接続関係が異なっている。 In FIG. 28 and FIG. 29, the unit circuit 24a according to Example 14 of the first embodiment is shown as the latch circuit 24a. However, the present invention is not limited to this, and each unit circuit shown in the first embodiment is shown. A unit circuit can be applied. The pulse output circuit 24b includes a P-channel transistor Tr1 and N-channel transistors Tr2 and Tr3, but the connection relationship is different between the odd-numbered stage (FIG. 28) and the even-numbered stage (FIG. 29).
 図28のSR単位回路SR1に示すように、奇数段のパルス出力回路24bでは、トランジスタTr1とTr3のゲート端子とインバータINV2の出力out(ノードN2)とが互いに接続され、トランジスタTr1、Tr2、Tr3のドレイン端子が、OUT2端子に接続されている。トランジスタTr2のゲート端子はインバータINV2の入力(ノードN1)に接続され、トランジスタTr1、Tr2のソース端子はCKb端子に接続され、トランジスタTr3のソース端子に電源電圧Vssが与えられる。 As shown in the SR unit circuit SR1 of FIG. 28, in the odd-numbered pulse output circuit 24b, the gate terminals of the transistors Tr1 and Tr3 and the output out (node N2) of the inverter INV2 are connected to each other, and the transistors Tr1, Tr2, Tr3 Is connected to the OUT2 terminal. The gate terminal of the transistor Tr2 is connected to the input (node N1) of the inverter INV2, the source terminals of the transistors Tr1 and Tr2 are connected to the CKb terminal, and the power supply voltage Vss is applied to the source terminal of the transistor Tr3.
 図29のSR単位回路SR2に示すように、偶数段のパルス出力回路では、トランジスタTr1とTr3のゲート端子とインバータINV2の入力(ノードN1)とが互いに接続され、トランジスタTr1、Tr2、Tr3のドレイン端子が、OUT2端子に接続されている。トランジスタTr2のゲート端子は、インバータINV2の出力out(ノードN2)と、OUT1端子とに接続され、トランジスタTr1、Tr2のソース端子がCKb端子に接続され、トランジスタTr3のソース端子に電源電圧Vssが与えられる。 As shown in the SR unit circuit SR2 of FIG. 29, in the even-numbered pulse output circuit, the gate terminals of the transistors Tr1 and Tr3 and the input (node N1) of the inverter INV2 are connected to each other, and the drains of the transistors Tr1, Tr2, and Tr3 The terminal is connected to the OUT2 terminal. The gate terminal of the transistor Tr2 is connected to the output out (node N2) of the inverter INV2 and the OUT1 terminal, the source terminals of the transistors Tr1 and Tr2 are connected to the CKb terminal, and the power supply voltage Vss is applied to the source terminal of the transistor Tr3. It is done.
 シフトレジスタ10には、外部からスタートパルスSTと2相のクロック信号CK1、CK2が供給される(図25、図27参照)。スタートパルスSTは、1段目の切替回路UDSWを介して1段目のSR単位回路SR1のIN端子に与えられる。クロック信号CK1は、奇数段目のSR単位回路(図28参照)のCKa端子に与えられるとともに、偶数段目のSR単位回路(図29参照)のCKb端子に与えられる。クロック信号CK2は、奇数段目のSR単位回路のCKb端子に与えられるとともに、偶数段目のSR単位回路のCKa端子に与えられる。1段目のラッチ回路24aの出力信号O1は、パルス出力回路24bに入力されるとともに、SR単位回路SR1のOUT1端子から出力され、2段目の切替回路UDSWを介して2段目のSR単位回路SR2のIN端子に入力される。OUT2端子から出力された出力信号CKO1は、SROUT1(ゲート信号)として、1段目の走査信号線GL1に供給される。 The start pulse ST and the two-phase clock signals CK1 and CK2 are supplied to the shift register 10 from the outside (see FIGS. 25 and 27). The start pulse ST is applied to the IN terminal of the first-stage SR unit circuit SR1 via the first-stage switching circuit UDSW. The clock signal CK1 is supplied to the CKa terminal of the odd-numbered SR unit circuit (see FIG. 28) and to the CKb terminal of the even-numbered SR unit circuit (see FIG. 29). The clock signal CK2 is supplied to the CKb terminal of the odd-numbered SR unit circuit and to the CKa terminal of the even-numbered SR unit circuit. The output signal O1 of the first-stage latch circuit 24a is input to the pulse output circuit 24b and also output from the OUT1 terminal of the SR unit circuit SR1, and is output from the second-stage switching unit UDSW to the second-stage SR unit. The signal is input to the IN terminal of the circuit SR2. The output signal CKO1 output from the OUT2 terminal is supplied to the first-stage scanning signal line GL1 as SROUT1 (gate signal).
 すなわち、図25に示すように、シフトレジスタ10のk段目(kは1以上n以下の整数)のSR単位回路SRkのIN端子に、(k-1)段目のSR単位回路SR(k-1)の出力信号CKO(k-1)が入力され、当該k段目のSR単位回路SRkは、出力信号CKOk(SROUTk)を走査信号線GLkに出力する。このように、シフトレジスタ10は、シフト動作によって、出力信号SROUT1~SROUTnを、走査信号線GL1~GLnに順に出力する。 That is, as shown in FIG. 25, the (k−1) th SR unit circuit SR (k) is connected to the IN terminal of the SR unit circuit SRk of the kth stage (k is an integer of 1 to n) of the shift register 10. -1) output signal CKO (k-1) is input, and the k-th SR unit circuit SRk outputs the output signal CKOk (SROUTk) to the scanning signal line GLk. As described above, the shift register 10 sequentially outputs the output signals SROUT1 to SROUTn to the scanning signal lines GL1 to GLn by the shift operation.
 以下、シフトレジスタ10の詳細な構成について説明する。 Hereinafter, a detailed configuration of the shift register 10 will be described.
 (動作について)
 シフトレジスタ10の動作について図30を用いて説明する。図30は、シフトレジスタ10の動作時のタイミングチャートである。図30では、1段目のSR単位回路SR1、2段目のSR単位回路SR2、3段目のSR単位回路SR3、(n-1)段目のSR単位回路SR(n-1)、n段目のSR単位回路SRnにおける入出力信号を示している。
(About operation)
The operation of the shift register 10 will be described with reference to FIG. FIG. 30 is a timing chart when the shift register 10 operates. In FIG. 30, the first SR unit circuit SR1, the second SR unit circuit SR2, the third SR unit circuit SR3, the (n−1) th SR unit circuit SR (n−1), n The input / output signals in the SR unit circuit SRn at the stage are shown.
 クロック信号CK1は、奇数段目のSR単位回路のCKa端子に与えられるとともに、偶数段目のSR単位回路のCKb端子に与えられ、クロック信号CK2は、奇数段目のSR単位回路のCKb端子に与えられるとともに、偶数段目のSR単位回路のCKa端子に与えられる。クロック信号CK1、CK2は、それぞれデューティ比が50%より小さく、互いにアクティブ期間(ハイ期間)が重ならないように設定されている。STは1段目のSR単位回路SR1に入力されるスタートパルスである。O1、O2、O3、O(n-1)、Onは、それぞれ、シフトレジスタ10の1段目、2段目、3段目、(n-1)段目、n段目のSR単位回路のOUT1端子から出力される出力信号の電位を示し、CKO1、CKO2、CKO3、CKO(n-1)、CKOnは、それぞれ、シフトレジスタ10の1段目、2段目、3段目、(n-1)段目、n段目のSR単位回路のOUT2端子から出力される出力信号の電位を示している。 The clock signal CK1 is supplied to the CKa terminal of the odd-numbered SR unit circuit and the CKb terminal of the even-numbered SR unit circuit, and the clock signal CK2 is supplied to the CKb terminal of the odd-numbered SR unit circuit. It is given to the CKa terminal of the SR unit circuit of the even-numbered stage. The clock signals CK1 and CK2 each have a duty ratio smaller than 50% and are set so that the active periods (high periods) do not overlap each other. ST is a start pulse input to the first-stage SR unit circuit SR1. O1, O2, O3, O (n-1), On are the SR unit circuits of the first, second, third, (n-1) th, and nth stages of the shift register 10, respectively. This indicates the potential of the output signal output from the OUT1 terminal, and CKO1, CKO2, CKO3, CKO (n−1), and CKOn are the first, second, third, and (n− 1) The potential of the output signal output from the OUT2 terminal of the SR unit circuit at the stage and the n-th stage is shown.
 まず、1段目のSR単位回路SR1の動作について説明する。 First, the operation of the first-stage SR unit circuit SR1 will be described.
 初めに、SR単位回路SR1のIN端子に、スタートパルスST(ハイレベル(アクティブ))が入力された後に、t1において、クロック信号CK1がハイレベルになると、データ入力部SW1がオン状態になり、スタートパルスST(ハイレベル;Vdd)がノードN1に入力される(ブートストラップ動作)。 First, after the start pulse ST (high level (active)) is input to the IN terminal of the SR unit circuit SR1, when the clock signal CK1 becomes high level at t1, the data input unit SW1 is turned on. A start pulse ST (high level; Vdd) is input to the node N1 (bootstrap operation).
 ここで、クロック信号CK1がハイレベルになる直前ではノードN1の電位がVss(ローレベル)に保持されており、トランジスタT6がオン状態になっているため、クロック信号CK1がハイレベルになると(t1)、スタートパルスSTのVdd(ハイレベル)と、電源VSS(ローレベル)とが短絡することになる。この点、スタートパルスSTの駆動能力が高ければ、ノードN1の電位は、スタートパルスST側へ引き込まれ、スタートパルスSTのVdd(ハイレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも高い電位)まで上昇する(図4参照)。なお、スタートパルスSTは、シフトレジスタ10外にラッチ用インバータINV1のトランジスタT5、T6よりもチャネル幅Wの大きいバッファの出力、あるいは、駆動能力の高いICの出力とすることにより、駆動能力を高めることができる。 Here, immediately before the clock signal CK1 becomes high level, the potential of the node N1 is held at Vss (low level), and the transistor T6 is turned on. Therefore, when the clock signal CK1 becomes high level (t1) ), Vdd (high level) of the start pulse ST and the power source VSS (low level) are short-circuited. In this regard, if the drive capability of the start pulse ST is high, the potential of the node N1 is drawn to the start pulse ST side and is close to Vdd (high level) of the start pulse ST (higher than the inversion potential of the latch inverter INV2). (See FIG. 4). The start pulse ST is used as an output of a buffer having a channel width W larger than that of the transistors T5 and T6 of the latch inverter INV1 outside the shift register 10, or an output of an IC having a high drive capability, thereby increasing the drive capability. be able to.
 その後、トランジスタT4がオン状態になり、ラッチ用インバータINV2の出力(ノードN2;Vss(ローレベル))がラッチ用インバータINV1の入力端子にフィードバックされることにより、トランジスタT6がオフ状態になり、トランジスタT5がオン状態になる。これにより、ノードN1の電位は、スタートパルスSTのVddに近い電位からさらにVddまで上昇する(図4参照)。 Thereafter, the transistor T4 is turned on, and the output of the latching inverter INV2 (node N2; Vss (low level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T6 is turned off, and the transistor T5 is turned on. As a result, the potential of the node N1 rises from a potential close to Vdd of the start pulse ST to Vdd (see FIG. 4).
 ノードN1の電位が、Vdd(ハイレベル)近くまたはVdd(ハイレベル)になることによりラッチ用インバータINV2のトランジスタT4がオン状態になり、トランジスタT3がオフ状態になる。トランジスタT4がオン状態になることにより、ノードN2の電位がVss(ローレベル)になり、O1はローレベル(Vss)になる。 When the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the latching inverter INV2 is turned on and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and O1 becomes low level (Vss).
 また、ノードN1がVdd、ノードN2がVssのため、トランジスタTr1、Tr2がオン状態、トランジスタTr3がオフ状態になり、OUT2端子から、CKO1として、CK2のローレベル(Vss)が出力される。 Further, since the node N1 is Vdd and the node N2 is Vss, the transistors Tr1 and Tr2 are turned on and the transistor Tr3 is turned off, and the low level (Vss) of CK2 is output as CKO1 from the OUT2 terminal.
 続いて、クロック信号CK1がハイレベルからローレベルになると(t2)、データ入力部SW1がオフ状態になり、スタートパルスSTの入力が遮断され、ノードN1は、ラッチ用インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vdd(ハイレベル))を保持し、O1、CKO1はVss(ローレベル)を維持する。 Subsequently, when the clock signal CK1 changes from the high level to the low level (t2), the data input unit SW1 is turned off, the input of the start pulse ST is cut off, and the node N1 is latched by the latch inverters INV1 and INV2. Thus, the potential (Vdd (high level)) held immediately before is held, and O1 and CKO1 maintain Vss (low level).
 続いて、クロック信号CK2がハイレベルになると(t3)、トランジスタTr1、Tr2はオン状態になっているため、CKO1はハイレベル(Vdd)になり、クロック信号CK2がローレベルになると(t4)、CKO1はローレベル(Vss)になる。 Subsequently, when the clock signal CK2 becomes high level (t3), the transistors Tr1 and Tr2 are turned on, so that CKO1 becomes high level (Vdd) and when the clock signal CK2 becomes low level (t4). CKO1 becomes low level (Vss).
 次に、クロック信号CK1がハイレベルになると(t5)、データ入力部SW1が再びオン状態になり、スタートパルスST(ローレベル;Vss)がノードN1に入力される。 Next, when the clock signal CK1 becomes high level (t5), the data input unit SW1 is turned on again, and the start pulse ST (low level; Vss) is input to the node N1.
 ここで、クロック信号CK1がハイレベルになる直前ではノードN1の電位がVdd(ハイレベル)に保持されており、トランジスタT5がオン状態になっているため、クロック信号CK1がハイレベルになると(t5)、スタートパルスSTのVss(ローレベル)と、電源VDD(ハイレベル)とが短絡することなる。この点、スタートパルスSTの駆動能力が高いため、ノードN1の電位は、スタートパルスST側へ引き込まれ、スタートパルスSTのVss(ローレベル)に近い電位(ラッチ用インバータINV2の反転電位よりも低い電位)まで低下する(図4参照)。 Here, immediately before the clock signal CK1 becomes high level, the potential of the node N1 is held at Vdd (high level), and the transistor T5 is turned on. Therefore, when the clock signal CK1 becomes high level (t5 ), Vss (low level) of the start pulse ST and the power supply VDD (high level) are short-circuited. In this respect, since the drive capability of the start pulse ST is high, the potential of the node N1 is drawn to the start pulse ST side and is close to Vss (low level) of the start pulse ST (lower than the inversion potential of the latch inverter INV2). (See FIG. 4).
 その後、トランジスタT3がオン状態になり、ラッチ用インバータINV2の出力(ノードN2;Vdd(ハイレベル))がラッチ用インバータINV1の入力端子にフィードバックされることにより、トランジスタT5がオフ状態になり、トランジスタT6がオン状態になる。これにより、ノードN1の電位は、スタートパルスSTのVssに近い電位からさらにVssに低下する(図4参照)。 Thereafter, the transistor T3 is turned on, and the output of the latching inverter INV2 (node N2; Vdd (high level)) is fed back to the input terminal of the latching inverter INV1, so that the transistor T5 is turned off, and the transistor T6 is turned on. As a result, the potential of the node N1 further decreases from a potential close to Vss of the start pulse ST to Vss (see FIG. 4).
 ノードN1の電位が、Vss(ローレベル)近くまたはVss(ローレベル)になることによりラッチ用インバータINV2のトランジスタT3がオン状態になり、トランジスタT4がオフ状態になる。トランジスタT3がオン状態になることにより、ノードN2の電位がVdd(ハイレベル)になり、O1はハイレベル(Vdd)になる。 When the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the latching inverter INV2 is turned on and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and O1 becomes high level (Vdd).
 また、ノードN1がVss、ノードN2がVddのため、トランジスタTr1、Tr2がオフ状態、トランジスタTr3がオン状態になり、CKO1がローレベル(Vss)になる。 Further, since the node N1 is Vss and the node N2 is Vdd, the transistors Tr1 and Tr2 are turned off, the transistor Tr3 is turned on, and CKO1 is set to a low level (Vss).
 続いて、クロック信号CK1がハイレベルからローレベルになると(t6)、データ入力部SW1がオフ状態になり、スタートパルスSTの入力が遮断され、ノードN1は、ラッチ用インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vss(ローレベル))を保持し、O1はVdd(ハイレベル)、CKO1はVss(ローレベル)を維持する。以降、SR単位回路SR1は、スタートパルスSTがハイレベルになるまで、O1はVdd(ハイレベル)、CKO1はVss(ローレベル)を維持する。 Subsequently, when the clock signal CK1 changes from the high level to the low level (t6), the data input unit SW1 is turned off, the input of the start pulse ST is cut off, and the node N1 is latched by the latch inverters INV1 and INV2. Holds the potential (Vss (low level)) held immediately before, O1 maintains Vdd (high level), and CKO1 maintains Vss (low level). Thereafter, the SR unit circuit SR1 maintains Odd at Vdd (high level) and CKO1 at Vss (low level) until the start pulse ST becomes high level.
 次に、2段目のSR単位回路SR2の動作について説明する。 Next, the operation of the second-stage SR unit circuit SR2 will be described.
 初めに、2段目のSR単位回路SR2のIN端子に、1段目のSR単位回路SR1の出力O1(ローレベル)が入力された後に、t3において、クロック信号CK2がハイレベルになると、データ入力部SW1がオン状態になり、O1(ローレベル;Vss)がノードN1に入力される。 First, after the output O1 (low level) of the first stage SR unit circuit SR1 is input to the IN terminal of the second stage SR unit circuit SR2, when the clock signal CK2 becomes high level at t3, the data The input unit SW1 is turned on, and O1 (low level; Vss) is input to the node N1.
 これにより、ノードN1の電位が、Vss(ローレベル)近くまたはVss(ローレベル)になることによりラッチ用インバータINV2のトランジスタT3がオン状態になり、トランジスタT4がオフ状態になる。トランジスタT3がオン状態になることにより、ノードN2の電位がVdd(ハイレベル)になり、O2はVdd(ハイレベル)になる。 Thereby, when the potential of the node N1 becomes close to Vss (low level) or Vss (low level), the transistor T3 of the latching inverter INV2 is turned on, and the transistor T4 is turned off. When the transistor T3 is turned on, the potential of the node N2 becomes Vdd (high level), and O2 becomes Vdd (high level).
 また、ノードN1がVss、ノードN2がVddのため、トランジスタTr1、Tr2がオン状態、トランジスタTr3がオフ状態になり、OUT2端子から、CKO1として、CK1のローレベル(Vss)が出力される。 Further, since the node N1 is Vss and the node N2 is Vdd, the transistors Tr1 and Tr2 are turned on and the transistor Tr3 is turned off, and the CK1 low level (Vss) is output as CKO1 from the OUT2 terminal.
 続いて、クロック信号CK2がハイレベルからローレベルになると(t4)、データ入力部SW1がオフ状態になり、O1の入力が遮断され、ノードN1は、ラッチ用インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vss(ローレベル))を保持し、O2はVdd(ハイレベル)、CKO2はCK1のVss(ローレベル)を維持する。 Subsequently, when the clock signal CK2 changes from the high level to the low level (t4), the data input unit SW1 is turned off, the input of O1 is cut off, and the node N1 is immediately before the latch operation by the latch inverters INV1 and INV2. Is held at the potential (Vss (low level)), O2 is maintained at Vdd (high level), and CKO2 is maintained at Vss (low level) of CK1.
 続いて、クロック信号CK1がハイレベルになると(t5)、CKO2はハイレベル(Vdd)になり、クロック信号CK1がローレベルになると(t6)、CKO2はローレベル(Vss)になる。 Subsequently, when the clock signal CK1 becomes high level (t5), CKO2 becomes high level (Vdd), and when the clock signal CK1 becomes low level (t6), CKO2 becomes low level (Vss).
 次に、クロック信号CK2がハイレベルになると(t7)、データ入力部SW1が再びオン状態になり、O1(ハイレベル;Vdd)がノードN1に入力される。 Next, when the clock signal CK2 becomes high level (t7), the data input unit SW1 is turned on again, and O1 (high level; Vdd) is input to the node N1.
 これにより、ノードN1の電位が、Vdd(ハイレベル)近くまたはVdd(ハイレベル)になることによりラッチ用インバータINV2のトランジスタT4がオン状態になり、トランジスタT3がオフ状態になる。トランジスタT4がオン状態になることにより、ノードN2の電位がVss(ローレベル)になり、O2はローレベル(Vss)になる。 Thereby, when the potential of the node N1 becomes close to Vdd (high level) or Vdd (high level), the transistor T4 of the latching inverter INV2 is turned on, and the transistor T3 is turned off. When the transistor T4 is turned on, the potential of the node N2 becomes Vss (low level), and O2 becomes low level (Vss).
 また、ノードN1がVdd、ノードN2がVssのため、トランジスタTr1、Tr2がオフ状態、トランジスタTr3がオン状態になり、CKO2はローレベル(Vss)になる。 Further, since the node N1 is Vdd and the node N2 is Vss, the transistors Tr1 and Tr2 are turned off, the transistor Tr3 is turned on, and CKO2 is at a low level (Vss).
 続いて、クロック信号CK2がハイレベルからローレベルになると(t8)、データ入力部SW1がオフ状態になり、O1の入力が遮断され、ノードN1は、ラッチ用インバータINV1、INV2によるラッチ動作により直前に保持した電位(Vdd(ハイレベル))を保持し、O2、CKO2はVss(ローレベル)を維持する。以降、SR単位回路SR2は、O1がハイレベルになるまで、O2はVss(ローレベル)、CKO2はVss(ローレベル)を維持する。 Subsequently, when the clock signal CK2 changes from the high level to the low level (t8), the data input unit SW1 is turned off, the input of O1 is cut off, and the node N1 is immediately before the latch operation by the latch inverters INV1 and INV2. Is held at the potential (Vdd (high level)), and O2 and CKO2 maintain Vss (low level). Thereafter, the SR unit circuit SR2 maintains Vss (low level) for O2 and Vss (low level) for CKO2 until O1 becomes high level.
 3段目以降の奇数段のSR単位回路では、上記SR単位回路SR1の動作が行われ、偶数段のSR単位回路では、上記SR単位回路SR2の動作が行われる。 The SR unit circuit SR1 is operated in the odd-numbered SR unit circuits after the third stage, and the SR unit circuit SR2 is operated in the even-numbered SR unit circuit.
 ここで、上記の動作では、シフトレジスタ10の走査方向を1段目からn段目へ向かう第1方向(切替信号UD:ハイレベル、切替信号UDB:ローレベル)としているが、n段目から1段目へ向かう第2方向とする場合には、切替信号UDBをハイレベル(切替信号UDをローレベル)にすればよい。図31は、シフト方向を第2方向とした場合のタイミングチャートである。 Here, in the above operation, the scanning direction of the shift register 10 is the first direction (switching signal UD: high level, switching signal UDB: low level) from the first stage to the nth stage, but from the nth stage. In the case of the second direction toward the first stage, the switching signal UDB may be set to a high level (the switching signal UD is set to a low level). FIG. 31 is a timing chart when the shift direction is the second direction.
 (実施例16)
 図32は、実施例16に係るシフトレジスタ10の概略構成を示すブロック図である。なお、図33は、シフトレジスタ10を構成するSR単位回路の回路図である。
(Example 16)
FIG. 32 is a block diagram illustrating a schematic configuration of the shift register 10 according to the sixteenth embodiment. FIG. 33 is a circuit diagram of the SR unit circuit constituting the shift register 10.
 図32のシフトレジスタ10では、n個(nは2以上の整数)のSR単位回路と、2個のダミー用のSR単位回路SRa、SRbとが設けられている。SR単位回路は、IN1端子、IN2端子、UD端子、CK端子、OUT1端子、及びOUT2端子を有している。図33に示すように、k段目のSR単位回路SRkでは、IN1端子に前段の(k-1)段目の出力信号CKO(k-1)が入力され、IN2端子に前段の(k+1)段目の出力信号CKO(k+1)が入力され、UDに切替信号UDが入力され、CK端子にクロック信号CK1あるいはCK2が入力され、OUT1端子から出力信号Okが出力され、OUT2端子から出力信号CKOkが出力される。出力信号CKOkは(k+1)段目のSR単位回路SR(k+1)のIN1端子に入力される。 32, n (n is an integer of 2 or more) SR unit circuits and two dummy SR unit circuits SRa and SRb are provided. The SR unit circuit has an IN1, IN2, UD, CK, OUT1, and OUT2 terminals. As shown in FIG. 33, in the k-th SR unit circuit SRk, the previous (k−1) -th stage output signal CKO (k−1) is input to the IN1 terminal, and the previous (k + 1) to the IN2 terminal. The output signal CKO (k + 1) at the stage is input, the switching signal UD is input to UD, the clock signal CK1 or CK2 is input to the CK terminal, the output signal Ok is output from the OUT1 terminal, and the output signal CKOk is output from the OUT2 terminal. Is output. The output signal CKOk is input to the IN1 terminal of the (k + 1) -th stage SR unit circuit SR (k + 1).
 図34は、シフトレジスタ10の動作時のタイミングチャートである。上記の構成によれば、OUT1端子の出力信号Okは、奇数段と偶数段とで極性が等しくなる。また、次段のOUT2端子の出力信号CKO(k+1)がIN2端子に入力されると、ブートストラップ動作により、ノードN2がVdd(ハイレベル)となり、出力信号OkがVss(ローレベル)になる。なお、ラッチ用インバータINV1、INV2が、切替信号UDに比べて、駆動能力が低ければラッチを構成するインバータの反転電位を超えることができる。 FIG. 34 is a timing chart when the shift register 10 operates. According to the above configuration, the polarity of the output signal Ok at the OUT1 terminal is equal between the odd-numbered stage and the even-numbered stage. When the output signal CKO (k + 1) of the next stage OUT2 terminal is input to the IN2 terminal, the node N2 becomes Vdd (high level) and the output signal Ok becomes Vss (low level) by the bootstrap operation. Note that the latch inverters INV1 and INV2 can exceed the inversion potential of the inverter constituting the latch if the drive capability is lower than that of the switching signal UD.
 この場合、切替信号UDの駆動能力がラッチ用インバータINV1、INV2より高ければよく、シフトレジスタ外にラッチ用インバータINV1、INV2よりチャネル幅Wのサイズの大きいバッファで駆動する、もしくは、駆動能力の高いICの出力を使用することが好ましい。 In this case, the switching signal UD needs only to have a higher driving capability than the latching inverters INV1 and INV2, and is driven by a buffer having a channel width W larger than that of the latching inverters INV1 and INV2 outside the shift register, or has a higher driving capability. It is preferable to use the output of the IC.
 また、本実施例のSR単位回路では、2入力が必要なため、走査方向の最終段にダミー段を配置する必要があり、本構成では、ダミー段の出力CKObを、インバータを介して遅延させた上で、自段のIN2端子にフィードバックし、ラッチの状態を非アクティブとしている。 Further, since the SR unit circuit of this embodiment requires two inputs, it is necessary to arrange a dummy stage at the final stage in the scanning direction. In this configuration, the output CKOb of the dummy stage is delayed via an inverter. After that, it feeds back to its own IN2 terminal to make the latch state inactive.
 なお、上記の動作は、シフト方向が第1方向(切替信号UD:ハイレベル、切替信号UDB:ローレベル)であるが、第2方向とする場合には、切替信号UDBをハイレベル(切替信号UDをローレベル)にすればよい。図35は、シフト方向を第2方向とした場合のタイミングチャートである。 In the above operation, the shift direction is the first direction (switching signal UD: high level, switching signal UDB: low level). However, when the second direction is set, the switching signal UDB is switched to high level (switching signal UD may be set to a low level). FIG. 35 is a timing chart when the shift direction is the second direction.
 また、図33の回路構成を、図36の構成とすることもできる。図36では、データ入力部SW2bに、切替信号UDの反転信号UDBが入力される。 Also, the circuit configuration of FIG. 33 may be the configuration of FIG. In FIG. 36, the inverted signal UDB of the switching signal UD is input to the data input unit SW2b.
 (実施例17)
 図37は、シフトレジスタ10を構成するSR単位回路の回路図である。図37のSR単位回路では、図28及び図29のSR単位回路において、ラッチ用インバータの電源に代えて初期化用信号を入力する構成である。図37は、シフトレジスタ10を構成する1段目のSR単位回路SR1の回路図であり、図38は、シフトレジスタ10を構成する2段目のSR単位回路SR2の回路図である。
(Example 17)
FIG. 37 is a circuit diagram of the SR unit circuit constituting the shift register 10. The SR unit circuit of FIG. 37 has a configuration in which an initialization signal is input instead of the power supply of the latching inverter in the SR unit circuit of FIGS. FIG. 37 is a circuit diagram of the first-stage SR unit circuit SR1 that constitutes the shift register 10, and FIG. 38 is a circuit diagram of the second-stage SR unit circuit SR2 that constitutes the shift register 10.
 図37のSR単位回路SR1に示すように、ラッチ用インバータINV2のトランジスタT4のソース端子に初期化用信号INITが入力される。また、図38のSR単位回路SR2に示すように、ラッチ用インバータINV1のトランジスタT6のソース端子に初期化用信号INITが入力される。 37. As shown in the SR unit circuit SR1 in FIG. 37, the initialization signal INIT is input to the source terminal of the transistor T4 of the latching inverter INV2. As shown in the SR unit circuit SR2 of FIG. 38, the initialization signal INIT is input to the source terminal of the transistor T6 of the latching inverter INV1.
 図39は、シフトレジスタ10の動作時のタイミングチャートである。 FIG. 39 is a timing chart when the shift register 10 operates.
 奇数段のSR単位回路(SR1)(例えば図37)では、初期化前の不定の状態でノードN1がVdd(ハイレベル)の場合は、トランジスタT4がオンして出力Oは初期化用信号INITのハイレベルになり、出力CKOはトランジスタTr3がオンしてVss(ローレベル)になる。一方、初期化前の不定の状態でノードN1がVss(ローレベル)の場合は、トランジスタT3がオンして出力Oはハイレベルになり、出力CKOはトランジスタTr3がオンしてVss(ローレベル)になる。 In the odd-numbered SR unit circuit (SR1) (for example, FIG. 37), when the node N1 is Vdd (high level) in an undefined state before initialization, the transistor T4 is turned on and the output O is the initialization signal INIT. The output CKO becomes Vss (low level) when the transistor Tr3 is turned on. On the other hand, when the node N1 is Vss (low level) in an indefinite state before initialization, the transistor T3 is turned on and the output O is high level, and the output CKO is turned on and the transistor Tr3 is turned on to Vss (low level). become.
 偶数段のSR単位回路(SR2)(例えば図38)では、初期化前の不定の状態でノードN1がVdd(ハイレベル)の場合は、トランジスタT4がオンして出力Oはローレベルになり、出力CKOはトランジスタTr3がオンしてVss(ローレベル)になる。一方、初期化前の不定の状態でノードN1がVss(ローレベル)の場合は、トランジスタT6がオンしており、初期化用信号INITがハイレベルになると、N1がローレベルからハイレベルになるためトランジスタT4がオンとなり出力Oはローレベルになり、出力CKOはトランジスタTr1、Tr2がオフ、Tr3がオンしてVss(ローレベル)になる。 In the even-numbered SR unit circuit (SR2) (for example, FIG. 38), when the node N1 is Vdd (high level) in an undefined state before initialization, the transistor T4 is turned on and the output O becomes low level. The output CKO becomes Vss (low level) when the transistor Tr3 is turned on. On the other hand, when the node N1 is Vss (low level) in an indeterminate state before initialization, the transistor T6 is on, and when the initialization signal INIT goes high, N1 goes from low level to high level. Therefore, the transistor T4 is turned on and the output O becomes low level, and the output CKO becomes Vss (low level) when the transistors Tr1 and Tr2 are turned off and Tr3 is turned on.
 (実施例18)
 実施例17のSR単位回路では、初期化時に出力CKOが非アクティブ(ローレベル)になる構成であるが、図40及び図41に示すように、初期化時に出力CKOがアクティブ(ハイレベル)になる構成としてもよい。本実施例では、図37及び図38の構成に、さらにトランジスタTr3のソース端子に初期化用信号INITが入力される。
(Example 18)
In the SR unit circuit of the seventeenth embodiment, the output CKO is inactive (low level) at the time of initialization. However, as shown in FIGS. 40 and 41, the output CKO is active (high level) at the time of initialization. It is good also as composition which becomes. In this embodiment, an initialization signal INIT is input to the source terminal of the transistor Tr3 in addition to the configurations of FIGS.
 図42は、シフトレジスタ10の動作時のタイミングチャートである。 FIG. 42 is a timing chart when the shift register 10 operates.
 奇数段のSR単位回路(SR1)(例えば図40)では、初期化前の不定の状態でノードN1がVdd(ハイレベル)の場合は、トランジスタT4がオンして出力Oは初期化用信号INITのハイレベルになり、出力CKOはトランジスタTr3がオンして初期化用信号INITのハイレベルになる。一方、初期化前の不定の状態でノードN1がVss(ローレベル)の場合は、トランジスタT3がオンして出力Oはハイレベルになり、出力CKOはトランジスタTr3がオンして初期化用信号INITのハイレベルになる。 In the odd-numbered SR unit circuit (SR1) (for example, FIG. 40), when the node N1 is Vdd (high level) in an undefined state before initialization, the transistor T4 is turned on and the output O is the initialization signal INIT. The output CKO becomes high level of the initialization signal INIT when the transistor Tr3 is turned on. On the other hand, when the node N1 is Vss (low level) in an indefinite state before initialization, the transistor T3 is turned on and the output O becomes high level, and the output CKO is turned on by the transistor Tr3 and the initialization signal INIT. Become a high level.
 偶数段のSR単位回路(SR2)(例えば図41)では、初期化前の不定の状態でノードN1がVdd(ハイレベル)の場合は、トランジスタT4がオンして出力Oはローレベルになり、出力CKOはトランジスタTr3がオンして初期化用信号INITのハイレベルになる。一方、初期化前の不定の状態でノードN1がVss(ローレベル)の場合は、トランジスタT6がオンしており、初期化用信号INITがハイレベルになると、N1がローレベルからハイレベルになるためトランジスタT4がオンとなり出力Oはローレベルになり、出力CKOはトランジスタTr3がオンして初期化用信号INITのハイレベルになる。 In the even-numbered SR unit circuit (SR2) (for example, FIG. 41), when the node N1 is Vdd (high level) in an undefined state before initialization, the transistor T4 is turned on and the output O becomes low level. The output CKO becomes high level of the initialization signal INIT when the transistor Tr3 is turned on. On the other hand, when the node N1 is Vss (low level) in an indeterminate state before initialization, the transistor T6 is on, and when the initialization signal INIT goes high, N1 goes from low level to high level. Therefore, the transistor T4 is turned on and the output O is at the low level, and the output CKO is turned on at the high level of the initialization signal INIT with the transistor Tr3 turned on.
 なお、トランジスタTr3に入力される初期化用信号INITを、全オン用信号AONとしてもよい。この場合、初期化時に出力をアクティブにしたいときはハイレベルを入力し、初期化時に出力を非アクティブにしたいときはローレベルを入力すればよい。 The initialization signal INIT input to the transistor Tr3 may be the all-on signal AON. In this case, a high level may be input if the output is to be activated during initialization, and a low level may be input if the output is to be inactive during initialization.
 (実施例19)
 図43は、シフトレジスタ10を構成するSR単位回路の回路図である。図43のSR単位回路では、図33のSR単位回路において、ラッチ用インバータのVSS電源に代えて初期化用信号INITを入力する構成である。
(Example 19)
FIG. 43 is a circuit diagram of the SR unit circuit constituting the shift register 10. The SR unit circuit of FIG. 43 has a configuration in which an initialization signal INIT is input instead of the VSS power supply of the latching inverter in the SR unit circuit of FIG.
 図43のSR単位回路に示すように、ラッチ用インバータINV2のトランジスタT4のソース端子に初期化用信号INITが入力される。図44は、本実施例に係るシフトレジスタ10の動作時のタイミングチャートである。 43. As shown in the SR unit circuit of FIG. 43, the initialization signal INIT is input to the source terminal of the transistor T4 of the latching inverter INV2. FIG. 44 is a timing chart during operation of the shift register 10 according to the present embodiment.
 ここで、図43の回路構成を、図45の構成とすることもできる。図45では、切替信号UDの反転信号UDBが入力される。 Here, the circuit configuration of FIG. 43 may be the configuration of FIG. In FIG. 45, an inverted signal UDB of the switching signal UD is input.
 (実施例20)
 図47は、シフトレジスタ10を構成するSR単位回路の回路図である。図47のSR単位回路では、図36のSR単位回路において、出力インバータINV3と、抵抗R1、R2が設けられている。また、図47のSR単位回路では、CK端子に入力されるクロック信号CK1、CK2は、図36のクロック信号CK1、CK2とは反転した信号である。
(Example 20)
FIG. 47 is a circuit diagram of the SR unit circuit constituting the shift register 10. In the SR unit circuit of FIG. 47, the output inverter INV3 and resistors R1 and R2 are provided in the SR unit circuit of FIG. In the SR unit circuit of FIG. 47, the clock signals CK1 and CK2 input to the CK terminal are signals inverted from the clock signals CK1 and CK2 of FIG.
 図48は、本実施例に係るシフトレジスタ10の動作時のタイミングチャートである。 FIG. 48 is a timing chart during operation of the shift register 10 according to the present embodiment.
 (実施例21)
 図49、図50は、シフトレジスタ10を構成するSR単位回路の回路図である。図49は、シフトレジスタ10を構成する1段目のSR単位回路SR1を示し、図50は、シフトレジスタ10を構成する2段目のSR単位回路SR2を示している。図49、図50のSR単位回路はそれぞれ、パルス出力回路24bの構成を除いて、図37、図38のSR単位回路と同一である。
(Example 21)
49 and 50 are circuit diagrams of the SR unit circuit constituting the shift register 10. 49 shows the first-stage SR unit circuit SR1 constituting the shift register 10, and FIG. 50 shows the second-stage SR unit circuit SR2 constituting the shift register 10. The SR unit circuits of FIGS. 49 and 50 are the same as the SR unit circuits of FIGS. 37 and 38 except for the configuration of the pulse output circuit 24b.
 図49のSR単位回路SR1に示すように、奇数段のパルス出力回路24bは、ゲート端子が電源VDDに接続され、ソース端子がノードN1に接続されたトランジスタTr4aと、ゲート端子がトランジスタTr4aのドレイン端子に接続され、ソース端子がCKb端子に接続されたトランジスタTr2aと、ゲート端子がノードN2及びOUT1端子に接続され、ソース端子が電源VSSに接続されたトランジスタTr3aと、トランジスタTr2aのゲート端子及びドレイン端子に接続された容量C2aとを備えている。また、トランジスタTr2aのドレイン端子と、トランジスタTr3aのドレイン端子と、OUT2端子とが接続されている。 As shown in the SR unit circuit SR1 of FIG. 49, the pulse output circuit 24b in the odd-numbered stage includes a transistor Tr4a whose gate terminal is connected to the power supply VDD and whose source terminal is connected to the node N1, and whose gate terminal is the drain of the transistor Tr4a. A transistor Tr2a connected to the terminal, a source terminal connected to the CKb terminal, a gate terminal connected to the node N2 and the OUT1 terminal, a source terminal connected to the power supply VSS, a gate terminal and a drain of the transistor Tr2a And a capacitor C2a connected to the terminal. Further, the drain terminal of the transistor Tr2a, the drain terminal of the transistor Tr3a, and the OUT2 terminal are connected.
 図50のSR単位回路SR2に示すように、偶数段のパルス出力回路24bは、ゲート端子が電源VDDに接続され、ソース端子がノードN2に接続されたトランジスタTr4bと、ゲート端子がトランジスタTr4bのドレイン端子に接続され、ソース端子がCKb端子に接続されたトランジスタTr2bと、ゲート端子がノードN1に接続され、ソース端子が電源VSSに接続されたトランジスタTr3bと、トランジスタTr2bのゲート端子及びドレイン端子に接続された容量C2bとを備えている。また、トランジスタTr2bのドレイン端子と、トランジスタTr3bのドレイン端子と、OUT2端子とが接続されている。 As shown in the SR unit circuit SR2 of FIG. 50, the even-numbered pulse output circuit 24b includes a transistor Tr4b whose gate terminal is connected to the power supply VDD and whose source terminal is connected to the node N2, and whose gate terminal is the drain of the transistor Tr4b. The transistor Tr2b is connected to the terminal, the source terminal is connected to the CKb terminal, the gate terminal is connected to the node N1, the transistor Tr3b is connected to the power source VSS, and the gate terminal and the drain terminal of the transistor Tr2b are connected. Capacitance C2b. Further, the drain terminal of the transistor Tr2b, the drain terminal of the transistor Tr3b, and the OUT2 terminal are connected.
 図49、図50のSR単位回路の構成によれば、トランジスタTr4a、Tr4b、容量C2a、C2bによるブートストラップ動作により、トランジスタTr2a、Tr2bのゲート端子にVdd-Vth+α(突き上げ電圧)を供給することができるため、適切な出力信号CKOを出力することができる。 49 and 50, Vdd−Vth + α (push-up voltage) can be supplied to the gate terminals of the transistors Tr2a and Tr2b by the bootstrap operation by the transistors Tr4a and Tr4b and the capacitors C2a and C2b. Therefore, an appropriate output signal CKO can be output.
 (実施例22)
 図51は、シフトレジスタ10を構成するSR単位回路の回路図である。図51のSR単位回路は、パルス出力回路24bの構成を除いて、図43のSR単位回路と同一である。
(Example 22)
FIG. 51 is a circuit diagram of the SR unit circuit constituting the shift register 10. The SR unit circuit of FIG. 51 is the same as the SR unit circuit of FIG. 43 except for the configuration of the pulse output circuit 24b.
 図51に示すように、パルス出力回路24bは、ゲート端子が電源VDDに接続され、ソース端子がノードN1に接続されたトランジスタTr4と、ゲート端子がトランジスタTr4のドレイン端子に接続され、ソース端子がCK端子に接続されたトランジスタTr2と、ゲート端子がノードN2に接続され、ソース端子が電源VSSに接続されたトランジスタTr3と、トランジスタTr2のゲート端子及びドレイン端子に接続された容量C2とを備えている。また、トランジスタTr2のドレイン端子と、トランジスタTr3のドレイン端子と、OUT端子とが接続されている。 As shown in FIG. 51, the pulse output circuit 24b includes a transistor Tr4 having a gate terminal connected to the power supply VDD, a source terminal connected to the node N1, a gate terminal connected to the drain terminal of the transistor Tr4, and a source terminal connected to the node Tr1. A transistor Tr2 connected to the CK terminal; a transistor Tr3 having a gate terminal connected to the node N2; a source terminal connected to the power supply VSS; and a capacitor C2 connected to the gate terminal and the drain terminal of the transistor Tr2. Yes. Further, the drain terminal of the transistor Tr2, the drain terminal of the transistor Tr3, and the OUT terminal are connected.
 図51のSR単位回路の構成によれば、トランジスタTr4、容量C2によるブートストラップ動作により、トランジスタTr2のゲート端子にVdd-Vth+α(突き上げ電圧)を供給することができるため、適切な出力信号CKOを出力することができる。 According to the configuration of the SR unit circuit of FIG. 51, Vdd−Vth + α (push-up voltage) can be supplied to the gate terminal of the transistor Tr2 by the bootstrap operation by the transistor Tr4 and the capacitor C2. Can be output.
 (実施例23)
 図52は、実施例23に係るシフトレジスタ10の概略構成を示すブロック図である。図53は、シフトレジスタ10を構成する2段目のSR単位回路(SR単位回路SR2)の回路図であり、図54は、当該シフトレジスタ10の動作時のタイミングチャートである。また、図55は、ノードN1の電位変化を説明するためのタイミングチャートである。
(Example 23)
FIG. 52 is a block diagram illustrating a schematic configuration of the shift register 10 according to the twenty-third embodiment. 53 is a circuit diagram of the second-stage SR unit circuit (SR unit circuit SR2) constituting the shift register 10, and FIG. 54 is a timing chart when the shift register 10 operates. FIG. 55 is a timing chart for explaining the potential change of the node N1.
 図52に示すシフトレジスタ10では、各段のSR単位回路のIN端子に前段のSR単位回路の出力信号CKOが入力される。例えば図53のSR単位回路SR2では、IN端子に、SR単位回路SR1の出力信号CKO1が入力される。図53のSR単位回路では、パルス出力回路24bのトランジスタTr3のソース端子が電源VDDに接続されており、トランジスタTr9、Tr10を含むバッファBFをさらに備えている。なお、トランジスタTr10のソース端子に入力される初期化用信号INITを、全オン用信号AONとしてもよい。 In the shift register 10 shown in FIG. 52, the output signal CKO of the preceding SR unit circuit is input to the IN terminal of each SR unit circuit. For example, in the SR unit circuit SR2 of FIG. 53, the output signal CKO1 of the SR unit circuit SR1 is input to the IN terminal. In the SR unit circuit of FIG. 53, the source terminal of the transistor Tr3 of the pulse output circuit 24b is connected to the power supply VDD, and further includes a buffer BF including transistors Tr9 and Tr10. Note that the initialization signal INIT input to the source terminal of the transistor Tr10 may be the all-on signal AON.
 ここで、ノードN1の電位は、クロック信号CK2(イネーブル信号)が非アクティブになる時点の、IN端子に入力される信号(図53ではCKO1)で決定される。そのため、SR単位回路を正常に動作させるためには、図55の(a)のように、クロック信号CK2の立ち上がりのタイミングでCKO1がハイレベルであることが必要となる。しかし、実際には図55の(b)のように、クロック信号CK2の訛り等の影響により、クロック信号CK2の立ち上がりのタイミングで、CKO1がローレベルになっているおそれがある。この場合、ノードN1の電位がローレベルに保持されてしまうため、SR単位回路は誤動作を引き起こすことになる。 Here, the potential of the node N1 is determined by a signal (CKO1 in FIG. 53) input to the IN terminal when the clock signal CK2 (enable signal) becomes inactive. Therefore, in order to operate the SR unit circuit normally, it is necessary that CKO1 is at the high level at the rising timing of the clock signal CK2, as shown in FIG. However, in actuality, as shown in FIG. 55 (b), there is a possibility that CKO1 becomes low level at the rising timing of the clock signal CK2 due to the influence of the turning of the clock signal CK2. In this case, since the potential of the node N1 is held at a low level, the SR unit circuit causes a malfunction.
 この点、図53のSR単位回路では、前段のSR単位回路SR1の出力信号CKO1が、バッファBFを介してSR単位回路SR2のIN端子に入力されるため、バッファBFを介さない場合と比較して、出力信号CKO1の電位変化を遅延させることができる。そのため、図55の(c)のように、クロック信号CK2の立ち上がりのタイミングで、CKO1を確実にハイレベルに維持しておくことができるため、上記誤動作を防止することができる。 In this regard, in the SR unit circuit of FIG. 53, since the output signal CKO1 of the SR unit circuit SR1 in the previous stage is input to the IN terminal of the SR unit circuit SR2 through the buffer BF, it is compared with the case where the output signal CKO1 is not passed through the buffer BF. Thus, the potential change of the output signal CKO1 can be delayed. Therefore, as shown in (c) of FIG. 55, CKO1 can be reliably maintained at a high level at the rising timing of the clock signal CK2, so that the malfunction can be prevented.
 図53のSR単位回路を図56の構成としても良い。図57は、図56の構成にかかるシフトレジスタ10の動作時のタイミングチャートであり、図58は、ノードN1の電位変化を説明するためのタイミングチャートである。 53 may be configured as shown in FIG. 56. 57 is a timing chart at the time of operation of the shift register 10 according to the configuration of FIG. 56, and FIG. 58 is a timing chart for explaining a potential change of the node N1.
 図56のSR単位回路では、図53のバッファBFは省略されているが、CKO2はゲートラインに接続されているため、ゲートラインの負荷により、図58の(c)に示すように、出力信号CKO1の電位変化を遅延させることができる。そのため、クロック信号CK2の立ち下がりのタイミングで、CKO1を確実にハイレベルに維持しておくことができるため、図53のSR単位回路と同様に、上記誤動作を防止することができる。なお、パルス出力回路24bを構成するトランジスタTr3のソース端子に入力される初期化用信号INITを、全オン用信号AONとしてもよい。 In the SR unit circuit of FIG. 56, the buffer BF of FIG. 53 is omitted, but since CKO2 is connected to the gate line, the output signal as shown in FIG. The potential change of CKO1 can be delayed. Therefore, CKO1 can be reliably maintained at the high level at the falling timing of the clock signal CK2, so that the malfunction can be prevented as in the SR unit circuit of FIG. Note that the initialization signal INIT input to the source terminal of the transistor Tr3 constituting the pulse output circuit 24b may be the all-on signal AON.
 本実施例のように、シフトレジスタ10では、SR単位回路(保持回路)のデータ入力部(SW1a)に、前段のSR単位回路におけるパルス出力回路(24b)の出力信号を遅延させた信号を入力する構成とすることができる。 As in this embodiment, in the shift register 10, a signal obtained by delaying the output signal of the pulse output circuit (24b) in the previous SR unit circuit is input to the data input unit (SW1a) of the SR unit circuit (holding circuit). It can be set as the structure to do.
 本発明の実施の形態に係るシフトレジスタでは、上記第1インバータの出力端子と上記第2インバータの入力端子との接続点である第1接続点に保持される信号の電位レベルは、上記イネーブル信号がアクティブになると、上記保持対象信号の電位レベルに近づくように変化する構成とすることもできる。 In the shift register according to the embodiment of the present invention, the potential level of the signal held at the first connection point that is the connection point between the output terminal of the first inverter and the input terminal of the second inverter is the enable signal. When becomes active, it may be configured to change so as to approach the potential level of the hold target signal.
 本発明の実施の形態に係るシフトレジスタでは、上記第1接続点に保持される信号の電位レベルは、さらに、上記イネーブル信号がアクティブになり、かつ上記第2インバータの出力信号が上記第1インバータに入力されると、上記保持対象信号の電位レベルと等しくなる構成とすることもできる。 In the shift register according to the embodiment of the present invention, the potential level of the signal held at the first connection point is such that the enable signal is active and the output signal of the second inverter is the first inverter. Can be configured to be equal to the potential level of the hold target signal.
 本発明の実施の形態に係るシフトレジスタでは、上記第1インバータまたは第2インバータの出力信号が、バッファを介して、次段の保持回路に供給される構成とすることもできる。 The shift register according to the embodiment of the present invention may be configured such that the output signal of the first inverter or the second inverter is supplied to the holding circuit in the next stage through a buffer.
 本発明の実施の形態に係るシフトレジスタでは、上記第1接続点と上記第1インバータの入力端子との間に設けられる、該第1インバータを構成するトランジスタは、そのチャネル長が、上記第2インバータを構成するトランジスタのチャネル長よりも大きくなるように設定されている構成とすることもできる。 In the shift register according to the embodiment of the present invention, the transistor constituting the first inverter provided between the first connection point and the input terminal of the first inverter has the channel length of the second register. It can also be set as the structure set so that it may become larger than the channel length of the transistor which comprises an inverter.
 本発明の実施の形態に係るシフトレジスタでは、上記第2インバータを構成するトランジスタは、そのチャネル幅が、上記第1インバータを構成するトランジスタのチャネル幅より大きくなるように設定されている構成とすることもできる。 In the shift register according to the embodiment of the present invention, the transistor constituting the second inverter is configured such that the channel width thereof is set larger than the channel width of the transistor constituting the first inverter. You can also.
 本発明の実施の形態に係るシフトレジスタでは、上記第1インバータまたは第2インバータの出力信号が、バッファを介して、次段の保持回路に供給され、上記第1インバータを構成するトランジスタは、そのチャネル幅が、上記バッファを構成するトランジスタのチャネル幅より小さくなるように設定されている構成とすることもできる。 In the shift register according to the embodiment of the present invention, the output signal of the first inverter or the second inverter is supplied to the holding circuit of the next stage through the buffer, and the transistor constituting the first inverter is A configuration in which the channel width is set to be smaller than the channel width of the transistors constituting the buffer may be employed.
 本発明の実施の形態に係るシフトレジスタでは、上記第1接続点と上記第1インバータの出力端子との間に抵抗が設けられている構成とすることもできる。 The shift register according to the embodiment of the present invention may have a configuration in which a resistor is provided between the first connection point and the output terminal of the first inverter.
 本発明の実施の形態に係るシフトレジスタでは、上記保持回路は、第1~第5トランジスタを含み、上記第1インバータは上記第2及び第3トランジスタを含み、上記第2インバータは上記第4及び第5トランジスタを含み、上記第1トランジスタは、ゲート端子に上記イネーブル信号が与えられ、ソース端子に前段の保持回路の出力信号が入力され、上記第2及び第3トランジスタのゲート端子と、上記第4及び第5トランジスタのドレイン端子とが接続されており、上記第2及び第3トランジスタのドレイン端子と、上記第4及び第5トランジスタのゲート端子と、上記第1トランジスタのドレイン端子とが接続されている構成とすることもできる。 In the shift register according to the embodiment of the present invention, the holding circuit includes first to fifth transistors, the first inverter includes the second and third transistors, and the second inverter includes the fourth and fourth transistors. The first transistor includes the fifth transistor, the gate terminal is supplied with the enable signal, the source terminal is input with the output signal of the previous holding circuit, the gate terminals of the second and third transistors, and the first transistor The drain terminals of the fourth and fifth transistors are connected, and the drain terminals of the second and third transistors, the gate terminals of the fourth and fifth transistors, and the drain terminals of the first transistor are connected. It can also be set as the structure which has.
 本発明の実施の形態に係るシフトレジスタでは、上記第3トランジスタのソース端子は第1抵抗を介して低電位側電源に接続され、上記第2トランジスタのソース端子は第2抵抗を介して高電位側電源に接続されており、上記第5トランジスタのソース端子には低電位の信号が入力され、上記第4トランジスタのソース端子には高電位の信号が入力される構成とすることもできる。 In the shift register according to the embodiment of the present invention, the source terminal of the third transistor is connected to the low-potential side power supply via the first resistor, and the source terminal of the second transistor is connected to the high potential via the second resistor. A low potential signal is input to the source terminal of the fifth transistor, and a high potential signal is input to the source terminal of the fourth transistor.
 本発明の実施の形態に係るシフトレジスタでは、上記第3トランジスタのドレイン端子と上記第1インバータの出力端子との間に第1抵抗が設けられ、上記第2トランジスタのドレイン端子と上記第1インバータの出力端子との間に第2抵抗が設けられている構成とすることもできる。 In the shift register according to the embodiment of the present invention, a first resistor is provided between the drain terminal of the third transistor and the output terminal of the first inverter, and the drain terminal of the second transistor and the first inverter are provided. The second resistor may be provided between the output terminal and the output terminal.
 本発明の実施の形態に係るシフトレジスタでは、上記第2~第5トランジスタの何れか1つのソース端子に初期化用信号が入力される構成とすることもできる。 The shift register according to the embodiment of the present invention may be configured such that an initialization signal is input to any one of the source terminals of the second to fifth transistors.
 本発明の実施の形態に係る走査信号線駆動回路は、上記シフトレジスタを備え、上記保持回路の出力信号は、走査信号として該保持回路に対応する走査信号線に供給されることを特徴とする。 A scanning signal line driving circuit according to an embodiment of the present invention includes the shift register, and an output signal of the holding circuit is supplied as a scanning signal to a scanning signal line corresponding to the holding circuit. .
 本発明の実施の形態に係る表示パネルは、上記走査信号線駆動回路と画素回路とがモノリシックに形成されていることを特徴とする。 The display panel according to the embodiment of the present invention is characterized in that the scanning signal line driving circuit and the pixel circuit are formed monolithically.
 本発明の実施の形態に係る表示装置は、上記走査信号線駆動回路を備えていることを特徴とする。 A display device according to an embodiment of the present invention includes the scan signal line driving circuit.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は、表示装置の各駆動回路に好適である。 The present invention is suitable for each drive circuit of a display device.
1     液晶表示装置(表示装置)
10    シフトレジスタ
11    シフトレジスタの単位回路
41    走査信号線(ゲートライン)
42    共通電極配線(コモンライン)
43    データ信号線(ソースライン)
44    TFT
45    画素電極
100   走査信号線駆動回路(ゲートドライバ)
300   データ信号線駆動回路(ソースドライバ)
400   表示パネル
T1    トランジスタ(第1トランジスタ)
T3    トランジスタ(第4トランジスタ)
T4    トランジスタ(第5トランジスタ)
T5    トランジスタ(第2トランジスタ)
T6    トランジスタ(第3トランジスタ)
INV1  インバータ(第1インバータ)
INV2  インバータ(第2インバータ)
R1    抵抗(第1抵抗)
R2    抵抗(第2抵抗)
1 Liquid crystal display device (display device)
10 Shift Register 11 Shift Register Unit Circuit 41 Scan Signal Line (Gate Line)
42 Common electrode wiring (common line)
43 Data signal line (source line)
44 TFT
45 Pixel electrode 100 Scanning signal line drive circuit (gate driver)
300 Data signal line drive circuit (source driver)
400 Display panel T1 transistor (first transistor)
T3 transistor (4th transistor)
T4 transistor (5th transistor)
T5 transistor (second transistor)
T6 transistor (third transistor)
INV1 inverter (first inverter)
INV2 inverter (second inverter)
R1 resistance (first resistance)
R2 resistance (second resistance)

Claims (15)

  1.  各段に保持回路を有するシフトレジスタであって、
     上記保持回路は、イネーブル信号に応じて保持対象信号を取り込むデータ入力部と、取り込まれた上記保持対象信号を保持するための第1インバータ及び第2インバータとを備え、上記第1インバータまたは第2インバータの出力に基づいて、ハイレベルまたはローレベルの信号を出力し、
     上記イネーブル信号がアクティブのときに、上記第1インバータの入力端子と上記第2インバータの出力端子とが互いに電気的に接続されているとともに、上記第1インバータの出力端子と上記第2インバータの入力端子とが互いに電気的に接続されていることを特徴とするシフトレジスタ。
    A shift register having a holding circuit in each stage,
    The holding circuit includes a data input unit that captures a retention target signal in response to an enable signal, and a first inverter and a second inverter that retain the captured retention target signal, and the first inverter or the second inverter. Based on the output of the inverter, it outputs a high level or low level signal,
    When the enable signal is active, the input terminal of the first inverter and the output terminal of the second inverter are electrically connected to each other, and the output terminal of the first inverter and the input of the second inverter A shift register characterized in that terminals are electrically connected to each other.
  2.  上記第1インバータの出力端子と上記第2インバータの入力端子との接続点である第1接続点に保持される信号の電位レベルは、上記イネーブル信号がアクティブになると、上記保持対象信号の電位レベルに近づくように変化することを特徴とする請求項1に記載のシフトレジスタ。 The potential level of the signal held at the first connection point, which is the connection point between the output terminal of the first inverter and the input terminal of the second inverter, is the potential level of the signal to be held when the enable signal becomes active. The shift register according to claim 1, wherein the shift register changes so as to approach.
  3.  上記第1接続点に保持される信号の電位レベルは、さらに、上記イネーブル信号がアクティブになり、かつ上記第2インバータの出力信号が上記第1インバータに入力されると、上記保持対象信号の電位レベルと等しくなることを特徴とする請求項2に記載のシフトレジスタ。 The potential level of the signal held at the first connection point is such that when the enable signal becomes active and the output signal of the second inverter is input to the first inverter, the potential of the signal to be held is held. The shift register according to claim 2, wherein the shift register is equal to the level.
  4.  上記第1インバータまたは第2インバータの出力信号が、バッファを介して、次段の保持回路に供給されることを特徴とする請求項1に記載のシフトレジスタ。 2. The shift register according to claim 1, wherein an output signal of the first inverter or the second inverter is supplied to a holding circuit in the next stage through a buffer.
  5.  上記第1接続点と上記第1インバータの入力端子との間に設けられる、該第1インバータを構成するトランジスタは、そのチャネル長が、上記第2インバータを構成するトランジスタのチャネル長よりも大きくなるように設定されていることを特徴とする請求項2または3に記載のシフトレジスタ。 The transistor constituting the first inverter provided between the first connection point and the input terminal of the first inverter has a channel length larger than the channel length of the transistor constituting the second inverter. The shift register according to claim 2, wherein the shift register is set as follows.
  6.  上記第2インバータを構成するトランジスタは、そのチャネル幅が、上記第1インバータを構成するトランジスタのチャネル幅より大きくなるように設定されていることを特徴とする請求項2または3に記載のシフトレジスタ。 4. The shift register according to claim 2, wherein the transistor constituting the second inverter has a channel width set to be larger than a channel width of the transistor constituting the first inverter. .
  7.  上記第1インバータまたは第2インバータの出力信号が、バッファを介して、次段の保持回路に供給され、
     上記第1インバータを構成するトランジスタは、そのチャネル幅が、上記バッファを構成するトランジスタのチャネル幅より小さくなるように設定されていることを特徴とする請求項2または3に記載のシフトレジスタ。
    The output signal of the first inverter or the second inverter is supplied to the holding circuit of the next stage through the buffer,
    4. The shift register according to claim 2, wherein the transistor constituting the first inverter has a channel width set to be smaller than a channel width of the transistor constituting the buffer.
  8.  上記第1接続点と上記第1インバータの出力端子との間に抵抗が設けられていることを特徴とする請求項2または3に記載のシフトレジスタ。 4. The shift register according to claim 2, wherein a resistor is provided between the first connection point and the output terminal of the first inverter.
  9.  上記保持回路は、第1~第5トランジスタを含み、上記第1インバータは上記第2及び第3トランジスタを含み、上記第2インバータは上記第4及び第5トランジスタを含み、
     上記第1トランジスタは、ゲート端子に上記イネーブル信号が与えられ、ソース端子に前段の保持回路の出力信号が入力され、
     上記第2及び第3トランジスタのゲート端子と、上記第4及び第5トランジスタのドレイン端子とが接続されており、
     上記第2及び第3トランジスタのドレイン端子と、上記第4及び第5トランジスタのゲート端子と、上記第1トランジスタのドレイン端子とが接続されていることを特徴とする請求項1に記載のシフトレジスタ。
    The holding circuit includes first to fifth transistors, the first inverter includes the second and third transistors, the second inverter includes the fourth and fifth transistors,
    In the first transistor, the enable signal is given to the gate terminal, and the output signal of the previous holding circuit is inputted to the source terminal,
    The gate terminals of the second and third transistors and the drain terminals of the fourth and fifth transistors are connected;
    2. The shift register according to claim 1, wherein drain terminals of the second and third transistors, gate terminals of the fourth and fifth transistors, and drain terminals of the first transistor are connected. .
  10.  上記第3トランジスタのソース端子は第1抵抗を介して低電位側電源に接続され、上記第2トランジスタのソース端子は第2抵抗を介して高電位側電源に接続されており、
     上記第5トランジスタのソース端子には低電位の信号が入力され、上記第4トランジスタのソース端子には高電位の信号が入力されることを特徴とする請求項9に記載のシフトレジスタ。
    The source terminal of the third transistor is connected to a low potential side power source via a first resistor, and the source terminal of the second transistor is connected to a high potential side power source via a second resistor,
    The shift register according to claim 9, wherein a low potential signal is input to a source terminal of the fifth transistor, and a high potential signal is input to a source terminal of the fourth transistor.
  11.  上記第3トランジスタのドレイン端子と上記第1インバータの出力端子との間に第1抵抗が設けられ、上記第2トランジスタのドレイン端子と上記第1インバータの出力端子との間に第2抵抗が設けられていることを特徴とする請求項9に記載のシフトレジスタ。 A first resistor is provided between the drain terminal of the third transistor and the output terminal of the first inverter, and a second resistor is provided between the drain terminal of the second transistor and the output terminal of the first inverter. The shift register according to claim 9, wherein the shift register is provided.
  12.  上記第2~第5トランジスタの何れか1つのソース端子に初期化用信号が入力されることを特徴とする請求項9~11の何れか1項に記載のシフトレジスタ。 12. The shift register according to claim 9, wherein an initialization signal is input to any one of the source terminals of the second to fifth transistors.
  13.  請求項1~12の何れか1項に記載のシフトレジスタを備えた走査信号線駆動回路であって、
     上記保持回路の出力信号は、走査信号として該保持回路に対応する走査信号線に供給されることを特徴とする走査信号線駆動回路。
    A scanning signal line driving circuit comprising the shift register according to any one of claims 1 to 12,
    An output signal of the holding circuit is supplied as a scanning signal to a scanning signal line corresponding to the holding circuit.
  14.  請求項13に記載の走査信号線駆動回路と画素回路とがモノリシックに形成されていることを特徴とする表示パネル。 14. A display panel, wherein the scanning signal line driving circuit and the pixel circuit according to claim 13 are monolithically formed.
  15.  請求項13に記載の走査信号線駆動回路を備えていることを特徴とする表示装置。 A display device comprising the scanning signal line driving circuit according to claim 13.
PCT/JP2012/066302 2011-06-30 2012-06-26 Shift register, scanning signal line drive circuit, display panel, and display device WO2013002229A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011146536 2011-06-30
JP2011-146536 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002229A1 true WO2013002229A1 (en) 2013-01-03

Family

ID=47424120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066302 WO2013002229A1 (en) 2011-06-30 2012-06-26 Shift register, scanning signal line drive circuit, display panel, and display device

Country Status (1)

Country Link
WO (1) WO2013002229A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392686A (en) * 2014-10-21 2015-03-04 厦门天马微电子有限公司 Shift register unit, drive circuit, and display apparatus
US9711238B2 (en) 2011-12-16 2017-07-18 Sharp Kabushiki Kaisha Shift register, scan signal line driver circuit, display panel and display device
CN113325640A (en) * 2018-06-29 2021-08-31 上海中航光电子有限公司 Array substrate, display panel and display device
US11763718B1 (en) 2022-05-20 2023-09-19 Tcl China Star Optoelectronics Technology Co., Ltd GOA circuit and array substrate
WO2023221158A1 (en) * 2022-05-20 2023-11-23 Tcl华星光电技术有限公司 Goa circuit and array substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217998A (en) * 1985-03-25 1986-09-27 Nec Corp Memory circuit
JPS61269412A (en) * 1985-05-23 1986-11-28 Seiko Epson Corp D type latch semiconductor integrated circuit
JPH01243296A (en) * 1988-03-24 1989-09-27 Sharp Corp Shift register circuit
JPH08256044A (en) * 1995-03-16 1996-10-01 Nippon Telegr & Teleph Corp <Ntt> Storage circuit and flip-flop circuit
JP2005228459A (en) * 2004-01-15 2005-08-25 Sony Corp Pulse signal generation method, shifting circuit, and display device
WO2010146740A1 (en) * 2009-06-17 2010-12-23 シャープ株式会社 Display driving circuit, display device and display driving method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217998A (en) * 1985-03-25 1986-09-27 Nec Corp Memory circuit
JPS61269412A (en) * 1985-05-23 1986-11-28 Seiko Epson Corp D type latch semiconductor integrated circuit
JPH01243296A (en) * 1988-03-24 1989-09-27 Sharp Corp Shift register circuit
JPH08256044A (en) * 1995-03-16 1996-10-01 Nippon Telegr & Teleph Corp <Ntt> Storage circuit and flip-flop circuit
JP2005228459A (en) * 2004-01-15 2005-08-25 Sony Corp Pulse signal generation method, shifting circuit, and display device
WO2010146740A1 (en) * 2009-06-17 2010-12-23 シャープ株式会社 Display driving circuit, display device and display driving method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9711238B2 (en) 2011-12-16 2017-07-18 Sharp Kabushiki Kaisha Shift register, scan signal line driver circuit, display panel and display device
CN104392686A (en) * 2014-10-21 2015-03-04 厦门天马微电子有限公司 Shift register unit, drive circuit, and display apparatus
CN113325640A (en) * 2018-06-29 2021-08-31 上海中航光电子有限公司 Array substrate, display panel and display device
CN113325640B (en) * 2018-06-29 2022-12-30 上海中航光电子有限公司 Array substrate, display panel and display device
US11763718B1 (en) 2022-05-20 2023-09-19 Tcl China Star Optoelectronics Technology Co., Ltd GOA circuit and array substrate
WO2023221158A1 (en) * 2022-05-20 2023-11-23 Tcl华星光电技术有限公司 Goa circuit and array substrate

Similar Documents

Publication Publication Date Title
JP4912186B2 (en) Shift register circuit and image display apparatus including the same
JP6800310B2 (en) GOA circuit
JP5859275B2 (en) Shift register unit, gate driver and liquid crystal display
WO2017054399A1 (en) Shift register, drive method therefor, gate drive circuit and display apparatus
JP4990034B2 (en) Shift register circuit and image display apparatus including the same
JP5127986B2 (en) Shift register, scanning signal line drive circuit and display device having the same
JP5436335B2 (en) Scan line drive circuit
JP6116665B2 (en) Shift register
JP6116664B2 (en) Shift register
WO2014054517A1 (en) Shift register, display device provided therewith, and shift-register driving method
WO2013002228A1 (en) Shift register, display drive circuit, display panel, and display device
WO2014054516A1 (en) Shift register, display device provided therewith, and shift-register driving method
US9711238B2 (en) Shift register, scan signal line driver circuit, display panel and display device
CN107533866B (en) Shift register
JP5833119B2 (en) Flip-flop, shift register, display panel, and display device
JP2012099211A (en) Shift register unit, gate drive device, and liquid crystal display
JP5496270B2 (en) Gate line drive circuit
JP2009092982A (en) Gate line drive circuit
JP2008251094A (en) Shift register circuit and image display apparatus with the same
WO2016175117A1 (en) Shift register
JP2010086640A (en) Shift register circuit
JP2007207411A (en) Shift register circuit and image display device provided with the same
WO2013002229A1 (en) Shift register, scanning signal line drive circuit, display panel, and display device
WO2013002192A1 (en) Display drive circuit, display panel, and display device
TWI552137B (en) Gate driving circuit and shift register thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP