WO2013001800A1 - Electrolysis device - Google Patents

Electrolysis device Download PDF

Info

Publication number
WO2013001800A1
WO2013001800A1 PCT/JP2012/004145 JP2012004145W WO2013001800A1 WO 2013001800 A1 WO2013001800 A1 WO 2013001800A1 JP 2012004145 W JP2012004145 W JP 2012004145W WO 2013001800 A1 WO2013001800 A1 WO 2013001800A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
electrolytic cell
lid
gas
partition wall
Prior art date
Application number
PCT/JP2012/004145
Other languages
French (fr)
Japanese (ja)
Inventor
昌士 児玉
善夫 初代
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011143908A external-priority patent/JP5824256B2/en
Priority claimed from JP2011155066A external-priority patent/JP2013019035A/en
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to KR1020137034358A priority Critical patent/KR20140035957A/en
Priority to DE112012002702.7T priority patent/DE112012002702T8/en
Priority to CN201280032007.0A priority patent/CN103635609A/en
Publication of WO2013001800A1 publication Critical patent/WO2013001800A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • the present invention relates to an electrolysis apparatus provided with an electrolytic cell.
  • fluorine gas has been used in various applications such as material cleaning and surface modification in semiconductor manufacturing processes and the like.
  • the fluorine gas itself may be used, and various fluorine such as NF3 (nitrogen trifluoride) gas, NeF (neon fluoride) gas, and ArF (argon fluoride) gas synthesized based on the fluorine gas may be used.
  • a system gas may be used.
  • an electrolysis apparatus that generates fluorine gas by electrolyzing HF (hydrogen fluoride) is usually used.
  • HF hydrogen fluoride
  • an electrolytic bath made of a mixed molten salt of KF—HF potassium-hydrogen fluoride
  • Fluorine gas is generated by electrolysis of the electrolytic bath in the electrolytic cell.
  • the molten salt electrolysis apparatus described in Patent Document 1 has an electrolytic cell composed of an electrolytic cell main body and an upper lid.
  • the interior of the electrolytic cell is separated by a partition into an anode chamber located at the center of the electrolytic cell and a cathode chamber surrounding the anode chamber.
  • An anode is disposed in the anode chamber, and a cathode is provided in the cathode chamber.
  • An opening for inserting the anode into the electrolytic cell main body is formed in a substantially central portion of the upper lid, and a lid is provided so as to cover the opening.
  • a gas seal material is interposed between the lid and the upper lid.
  • the lid is vertically provided with a connecting rod that holds the anode.
  • the anode can be easily removed from the electrolytic cell main body together with the upper lid by removing the lid from the upper lid. Thereby, even when the anode is consumed, the anode can be easily replaced.
  • the gas seal material interposed between the lid and the upper lid is required to have corrosion resistance against fluorine gas. Further, even a gas seal material having corrosion resistance to fluorine gas is corroded by being in contact with fluorine gas for a long time. Therefore, it is necessary to frequently replace the gas seal material. As a result, maintenance costs increase. Further, since the frequency of replacing the gas seal material is higher than the frequency of replacing the anode, the maintenance work efficiency is poor.
  • the present inventor has found that in the electrolytic cell of Patent Document 2, the generated gas bubbles block the hole of the partition plate, thereby preventing permeation of the electrolytic bath. As a result, the electrolytic reaction of the electrolytic bath cannot proceed stably.
  • An object of the present invention is to provide an electrolyzer capable of reducing maintenance costs and improving maintenance work efficiency.
  • Another object of the present invention is to provide an electrolysis apparatus capable of allowing an electrolytic reaction to proceed stably while preventing gas mixing.
  • An electrolysis apparatus is an electrolysis apparatus for generating fluorine and other gases by electrolyzing an electrolysis bath, and includes an electrolysis tank that accommodates the electrolysis bath.
  • An electrolytic cell main body having a first opening at an upper portion, a first lid body having a second opening smaller than the first opening and provided in the electrolytic cell main body so as to close the first opening;
  • the first seal member provided on the first lid body so as to surround the second opening and the first seal member sandwiched between the first seal member so as to close the second opening are provided on the first lid body.
  • the first opening at the top of the electrolytic cell main body is closed by the first lid.
  • the second opening of the first lid is closed by the second lid with the first seal member interposed therebetween.
  • the first electrode is attached to the second lid. Since the second opening is smaller than the first opening, the second lid body is smaller and lighter than the first lid body. Therefore, even when the first electrode is consumed, the first electrode can be easily replaced by removing the second lid from the first lid.
  • the first chamber is arranged in a region inside the first seal member by a partition wall. In this case, since fluorine generated in the first chamber does not contact the first seal member, corrosion of the first seal member is prevented. This reduces the frequency of replacing the first seal member.
  • the partition wall may be provided integrally with the first lid so as to surround the periphery of the first electrode.
  • the partition can be easily inspected by removing the second lid from the first lid. Thereby, the maintenance cost of the electrolyzer is further reduced, and the maintenance work efficiency is further improved.
  • the electrolytic cell main body may function as the second electrode. In this case, it is not necessary to provide the second electrode separately. Thereby, the structure of the electrolyzer can be simplified.
  • the electrolysis apparatus further includes a second seal member provided in the electrolytic cell main body so as to surround the first opening, and the first lid body is disposed on the electrolytic cell main body with the second seal member interposed therebetween. It may be provided.
  • the first lid can be removed from the electrolytic cell main body. Therefore, the inside of the electrolysis apparatus can be inspected by removing the first lid from the electrolytic cell main body.
  • An electrolysis apparatus is provided so as to partition an electrolytic bath that accommodates an electrolytic bath and an electrolytic chamber into an anode chamber and a cathode chamber, and ions in the electrolytic bath can pass therethrough.
  • a partition having an opening, an anode provided in an anode chamber of the electrolytic cell, and a cathode provided in a cathode chamber of the electrolytic cell, wherein the partition opening extends obliquely upward toward at least one of the anode chamber and the cathode chamber. It has an upper surface.
  • the electrolytic cell is partitioned into an anode chamber and a cathode chamber by a partition wall.
  • the electrolytic bath in the electrolytic cell is electrolyzed. Thereby, gas is generated in the anode chamber and the cathode chamber.
  • the partition is provided with an opening through which ions in the electrolytic bath can pass.
  • the opening has an upper surface extending obliquely upward toward at least one of the anode chamber and the cathode chamber. Therefore, even if the generated gas bubbles enter the opening from at least one of the anode chamber and the cathode chamber, the bubbles are returned to the anode chamber or the cathode chamber along the upper surface of the opening. Therefore, by setting the size of the opening so that the generated gas bubbles do not pass, the gas generated in the anode chamber and the gas generated in the cathode chamber are prevented from being mixed. It is possible to prevent the opening from being blocked by the gas bubbles. As a result, the electrolytic reaction of the electrolytic bath can proceed stably while preventing gas mixing.
  • Fluorine gas is generated in the anode chamber, hydrogen gas is generated in the cathode chamber, and the upper surface of the opening may be provided to extend obliquely upward toward the cathode chamber side.
  • the area of the end of the opening on the anode chamber side may be smaller than the area of the end of the opening on the cathode chamber side.
  • the fluorine gas generated in the anode chamber is prevented from entering the opening. This prevents the fluorine gas from moving to the cathode chamber and prevents the fluorine gas and the hydrogen gas from being mixed.
  • the partition may include a liquid partition immersed in the electrolytic bath, the opening may be provided in the liquid partition, and the liquid partition may be formed of a perfluoro resin.
  • the electrolytic bath prevents the liquid partition wall from being corroded.
  • the liquid partition wall can be easily processed when forming the opening. Furthermore, the material cost of the liquid partition is reduced.
  • a conductive diamond coating may be applied to the surface of the anode.
  • the gas generation efficiency is improved. Even if the amount of gas generated increases, the opening of the partition wall is prevented from being blocked by bubbles, so that the electrolytic reaction can proceed stably.
  • the maintenance cost of the electrolyzer can be reduced and the work efficiency of the maintenance can be improved.
  • FIG. 1 is a schematic cross-sectional view of an electrolysis apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the electrolytic cell of FIG.
  • FIG. 3 is a bottom view of the second lid.
  • FIG. 4 is a schematic cross-sectional view of an electrolysis apparatus according to the second embodiment of the present invention.
  • FIG. 5 is an external perspective view of the liquid partition wall.
  • FIG. 6 is an enlarged view of a through hole formed in the liquid partition wall.
  • FIG. 7 is a view showing another example of the through hole formed in the liquid partition wall.
  • FIG. 8 is a cross-sectional view for explaining another example of the liquid partition wall.
  • FIG. 1 is a schematic cross-sectional view of an electrolyzer according to a first embodiment of the present invention.
  • the electrolyzer 10 of FIG. 1 is a gas generator that generates fluorine gas.
  • the electrolysis apparatus 10 includes an electrolytic cell 11.
  • the electrolytic cell 11 includes an electrolytic cell main body 11a, a first lid 11b, a seal member 11c, a second lid 11d, and a seal member 11e.
  • a partition wall 13 is integrally provided on the lower surface of the second lid 11d so as to surround the central space in the electrolytic cell main body 11a.
  • the electrolytic cell main body 11a, the first and second lid bodies 11b and 11d, and the partition wall 13 are made of, for example, a metal or alloy such as Ni (nickel), monel, pure iron, or stainless steel.
  • the electrolytic cell 11 high current power is handled.
  • a gas such as hydrogen is present in the cathode chamber 14b, it is necessary to prevent discharge in the cathode chamber 14b due to static electricity or discharge. Therefore, the first lid 11b of the cathode chamber 14b is grounded by the ground wire E1. Thereby, an electric shock or the like due to electric leakage from the electrolytic cell 11 can be prevented and a gas such as hydrogen can be prevented from exploding.
  • an electrolytic bath (electrolytic solution) 12 made of a KF-HF (potassium-hydrogen fluoride) mixed molten salt is formed in the electrolytic cell 11.
  • an anode chamber 14 a is formed inside the partition wall 13
  • a cathode chamber 14 b is formed outside the partition wall 13.
  • the anode 15a is disposed in the anode chamber 14a. A part of the partition wall 13 and the anode 15 a are immersed in the electrolytic bath 12. A cathode 15b is formed on the inner surface of the electrolytic cell main body 11a.
  • Ni is preferably used as the material of the cathode 15b.
  • HF supply line 18a for supplying HF is connected to the first lid 11b.
  • the HF supply line 18a is covered with a temperature adjusting heater 18b. This prevents HF from being liquefied in the HF supply line 18a.
  • the height of the electrolytic bath 12 is detected by a liquid level detector (not shown). When the height of the liquid level detected by the liquid level detection device becomes lower than a predetermined value, HF is supplied into the electrolytic cell 11 through the HF supply line 18a.
  • the electrolysis apparatus 10 includes a control unit 23.
  • the electrolytic bath 12 in the electrolytic cell 11 is in a solid state at room temperature and atmospheric pressure. Therefore, in order to perform electrolysis of the electrolytic bath 12, it is necessary to heat the electrolytic bath 12 to 80 to 90 ° C. and dissolve it in a liquid state.
  • the controller 23 controls the temperature controller (not shown) based on the temperature of the electrolytic bath 12 detected by a temperature sensor (not shown), and maintains the temperature of the electrolytic bath 12 at 80 to 90 ° C.
  • the controller 23 applies a voltage between the anode 15a and the cathode 15b. Thereby, the electrolytic bath 12 in the electrolytic cell 11 is electrolyzed. As a result, fluorine gas is mainly generated in the anode chamber 14a. Further, hydrogen gas is mainly generated in the cathode chamber 14b.
  • the second lid body 11d is provided with a gas discharge port 16a
  • the first lid body 11b is provided with a gas discharge port 16b.
  • An exhaust pipe 17a is connected to the gas exhaust port 16a
  • an exhaust pipe 17b is connected to the gas exhaust port 16b.
  • the gas discharge port 16a communicates with the anode chamber 14a
  • the gas discharge port 16b communicates with the cathode chamber 14b.
  • the gas generated in the anode chamber 14a is discharged from the gas discharge port 16a through the exhaust pipe 17a
  • the gas generated in the cathode chamber 14b is discharged from the gas discharge port 16b through the exhaust pipe 17b.
  • FIG. 2 is an exploded perspective view of the electrolytic cell 11 of FIG.
  • FIG. 3 is a bottom view of the second lid 11d.
  • the electrolytic cell main body 11a has a bottom surface portion and four side surface portions, and has a rectangular opening H1 at the top.
  • the seal member 11c is provided on the upper end surfaces of the four side surfaces so as to surround the opening H1.
  • the seal member 11c is an O-ring made of, for example, fluorine rubber.
  • the first lid 11b has a rectangular shape and a size larger than the opening H1.
  • the first lid 11b is disposed on the seal member 11c so as to close the opening H1 of the electrolytic cell main body 11a. Thereby, the electrolytic cell main body 11a and the first lid 11b are sealed while being electrically insulated from each other by the seal member 11c.
  • the first lid 11b has a rectangular opening H2 at a substantially central portion.
  • the seal member 11e is provided on the upper surface of the first lid body 11b so as to surround the opening H2 along the edge of the first lid body 11b in the opening H2.
  • the seal member 11e is an O-ring made of, for example, fluorine rubber.
  • the second lid 11d has a rectangular shape and a size larger than the opening H2.
  • the second lid 11d is disposed on the seal member 11e so as to close the opening H2 of the first lid 11b. Thereby, the first lid body 11b and the second lid body 11d are sealed while being electrically insulated from each other by the seal member 11e.
  • the first lid 11b is provided with an HF supply hole 18c into which the HF supply line 18a is inserted.
  • the partition wall 13 includes four side walls 13a, 13b, 13c, and 13d. As shown in FIG. 3, the partition wall 13 is provided integrally with the second lid body 11d on the lower surface of the second lid body 11d.
  • the four side walls 13a to 13d of the partition wall 13 are made of, for example, Ni or Monel.
  • a rectangular plate-like anode 15a is attached via a mounting member 19 in FIG. 2 in a space surrounded by the four side walls 13a to 13d of the partition wall 13 on the lower surface side of the second lid 11d.
  • a material of the anode 15a for example, a low polarizable carbon electrode is used.
  • the seal members 11c and 11e are arranged outside the anode chamber 14a. Therefore, the fluorine gas generated in the anode chamber 14a does not come into contact with the seal members 11c and 11e. Thereby, corrosion of the sealing members 11c and 11e can be prevented. As a result, the frequency with which the seal members 11c and 11e are inspected and replaced is reduced.
  • the anode 15a can be easily detached from the electrolytic cell body 11a together with the second lid 11d. Thereby, even when the anode 15a is consumed, the anode 15a can be easily replaced.
  • the electrolytic cell 11 is increased in size, the electrolytic cell main body 11a and the first lid 11b are increased in size and weight. Even in such a case, since it is not necessary to increase the size of the second lid 11d, the second lid 11d can be easily detached from the first lid 11b.
  • the electrolyzer 10 when used for a long time, it is necessary to check whether or not the partition wall 13 is consumed. Even in such a case, the partition 13 can be removed from the first lid 11b by removing the second lid 11d from the first lid 11b. Thereby, the partition wall 13 can be easily inspected.
  • the maintenance cost of the electrolyzer 10 can be reduced and the maintenance work efficiency can be improved.
  • the electrolytic cell main body 11a has a bottom surface portion and four side surface portions and has a rectangular opening H1 in the upper portion, but is not limited thereto.
  • the electrolytic cell main body 11a may have a bottom surface portion and a cylindrical side surface portion, and may have a circular opening at the top. In this case, the opening of the electrolytic cell main body 11a is closed by the first lid body 11b having a circular shape.
  • the first lid 11b has a rectangular opening H2, but is not limited thereto.
  • the first lid 11b may have a circular opening.
  • the opening of the first lid 11b is closed by the second lid 11d having a circular shape.
  • the partition wall 13 includes four side walls 13a to 13d, but is not limited thereto.
  • the partition wall 13 may be constituted by a cylindrical side wall.
  • the partition wall 13 and the second lid body 11d are preferably provided integrally, and the partition wall 13 and the second lid body 11d formed of separate metal materials are integrally provided by welding. Although it is more preferable, it is not limited to this.
  • the partition wall 13 and the second lid body 11d may be integrally provided by casting.
  • the partition wall 13 may be provided separately from the second lid body 11d as long as the adhesion with the second lid body 11d is ensured and the airtightness of the anode chamber 14a is maintained. In this case, it is preferable to ensure adhesion by providing a highly corrosion-resistant sealing material such as a metal seal between the partition wall 13 and the second lid 11d.
  • the electrolytic bath 12 is an example of an electrolytic bath
  • the electrolytic device 10 is an electrolytic device
  • hydrogen is an example of another gas
  • the electrolytic cell 11 is an example of an electrolytic cell
  • the main body 11a is an example of an electrolytic cell main body.
  • the opening H1 is an example of the first opening
  • the opening H2 is an example of the second opening
  • the first lid 11b is an example of the first lid
  • the second lid 11d is the second.
  • the sealing member 11e is an example of a first sealing member
  • the sealing member 11c is an example of a second sealing member.
  • the anode 15a is an example of the first electrode
  • the cathode 15b is an example of the second electrode
  • the anode chamber 14a is an example of the first chamber
  • the cathode chamber 14b is an example of the second chamber
  • the partition wall 13 Is an example of a partition wall.
  • FIG. 4 is a schematic cross-sectional view of an electrolyzer according to the second embodiment of the present invention.
  • the electrolyzer 10 in FIG. 4 is an electrolyzer that generates fluorine gas.
  • the electrolysis apparatus 10 includes an electrolytic cell 11.
  • the electrolytic cell 11 includes an electrolytic cell main body 11a and an upper lid 11f.
  • the electrolytic cell main body 11a and the upper lid 11f are made of, for example, a metal or alloy such as Ni (nickel), monel, pure iron or stainless steel.
  • the electrolytic cell main body 11a has a bottom surface portion and a side surface portion, and has an opening at the top.
  • the insulating member 11g is disposed so as to cover the upper surface of the bottom surface portion.
  • An insulating member (seal member) 11h is attached on the upper end surface of the side surface portion.
  • the insulating members 11g and 11h are made of an insulating material such as resin.
  • An upper lid 11f is disposed on the insulating member 11h so as to close the opening of the electrolytic cell main body 11a. Thereby, the electrolytic cell main body 11a and the upper lid 11f are electrically insulated from each other by the insulating member 11h.
  • An electrolytic bath 12 made of a KF-HF (potassium-hydrogen fluoride) mixed molten salt is accommodated in the electrolytic cell 11.
  • a cylindrical partition wall 13 is provided so as to extend downward from the lower surface of the upper lid body 11f.
  • the partition wall 13 includes a cylindrical gas partition wall 13A and a cylindrical liquid partition wall 13B.
  • the gas partition wall 13A is provided integrally with the upper lid body 11f.
  • the height of the lower end portion of the gas partition wall 13A is set to be substantially equal to the height of the liquid surface of the electrolytic bath 12.
  • a metal or alloy such as Ni (nickel), Ni alloy, Monel, pure iron or stainless steel is preferably used. In this case, corrosion of the gas partition wall 13A by fluorine gas and hydrogen fluoride vapor is suppressed.
  • 13 A of gas partition walls may be provided so that removal from the upper cover body 11f is possible.
  • the liquid partition wall 13B is attached to the lower end of the gas partition wall 13A so as to be immersed in the electrolytic bath 12.
  • a plurality of through holes H (FIG. 5 described later) for ensuring the permeability of the electrolytic bath 12 are formed in the liquid partition wall 13B. Details of the liquid partition wall 13B will be described later.
  • a perfluoro resin such as PTFE (polytetrafluoroethylene) or PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) is preferably used, and PTFE is particularly preferably used. .
  • an anode chamber 14 a is formed inside the partition wall 13, and a cathode chamber 14 b is formed outside the partition wall 13.
  • An anode 15a is disposed so as to be immersed in the electrolytic bath 12 in the anode chamber 14a.
  • a material of the anode 15a for example, a low polarizable carbon electrode is preferably used.
  • a conductive diamond coating is applied to the surface of the anode 15a.
  • a diamond having conductivity by using a mixed gas of hydrogen gas and a carbon source as a diamond raw material and adding a small amount of an element (hereinafter referred to as a dopant) having a different valence from carbon to the mixed gas.
  • a coating layer can be formed.
  • the dopant boron, phosphorus or nitrogen is preferably used, and boron is particularly preferably used.
  • the weight of the added dopant is preferably 1 ppm or more and 30000 ppm or less, and more preferably 100 ppm or more and 10000 ppm or less with respect to the total weight of the diamond coating layer.
  • the side surface portion of the electrolytic cell main body 11a functions as a cathode.
  • An HF supply line 18a for supplying HF into the electrolytic cell 11 is connected to the upper lid 11f.
  • the HF supply line 18a is covered with a temperature adjusting heater 18b. This prevents HF from being liquefied in the HF supply line 18a.
  • the height of the electrolytic bath 12 is detected by a liquid level detector (not shown). When the height of the liquid level detected by the liquid level detection device becomes lower than a predetermined value, HF is supplied into the electrolytic cell 11 through the HF supply line 18a.
  • the upper lid 11f is provided with gas discharge ports 16a and 16b.
  • An exhaust pipe 17a is connected to the gas exhaust port 16a, and an exhaust pipe 17b is connected to the gas exhaust port 16b.
  • the gas discharge port 16a communicates with the anode chamber 14a, and the gas discharge port 16b communicates with the cathode chamber 14b.
  • the electrolytic bath 12 When a voltage is applied between the anode 15a and the electrolytic cell body 11a, the electrolytic bath 12 is electrolyzed. In this case, fluorine gas is generated on the surface of the anode 15a, and hydrogen gas is generated on the inner surface of the side surface portion of the electrolytic cell main body 11a. Since the upper surface of the bottom surface portion of the electrolytic cell main body 11a is covered with the insulating member 11g, the electrolytic reaction of the electrolytic bath 12 does not proceed on the upper surface of the bottom surface portion, and hydrogen gas is not generated.
  • the fluorine gas generated in the anode chamber 14a is guided to the outside of the electrolytic cell 11 from the gas discharge port 16a through the exhaust pipe 17a.
  • Hydrogen gas generated in the cathode chamber 14b is guided to the outside of the electrolytic cell 11 from the gas discharge port 16b through the exhaust pipe 17b.
  • FIG. 5 is an external perspective view of the liquid partition wall 13B
  • FIG. 6 is an enlarged view of the through hole H formed in the liquid partition wall 13B
  • 6A is a longitudinal sectional view of the through hole H
  • FIG. 6B is a side view of the through hole H viewed from the anode chamber 14a
  • FIG. 6C is a through view viewed from the cathode chamber 14b
  • 3 is a side view of a hole H.
  • FIG. FIG. 6A shows a cross section taken along line AA of FIGS. 6B and 6C.
  • a plurality of circular through holes H are formed in the liquid partition wall 13B.
  • the plurality of through holes H form two rows along the circumferential direction of the liquid partition wall 13B.
  • ions in the electrolytic bath 12 can move between the anode chamber 14a and the cathode chamber 14b through the plurality of through holes H.
  • the electrolytic reaction proceeds stably and smoothly in the anode chamber 14a and the cathode chamber 14b.
  • the diameter of each through hole H is set to such a size that the bubbles of fluorine gas and hydrogen gas do not pass. However, this may cause bubbles to stay in the through hole H and close the through hole H. In particular, since hydrogen gas is less soluble in the electrolytic bath 12 than fluorine gas, bubbles of hydrogen gas tend to stay in the through hole H and easily close the through hole H. When the through hole H is blocked, the electrolytic bath 12 cannot move through the through hole H. As a result, the electrolytic reaction cannot proceed stably.
  • each through hole H has an upper surface L1 that extends obliquely upward from the end on the anode chamber 14a side to the end on the cathode chamber 14b side.
  • the end of the through hole H on the anode chamber 14a side is referred to as the anode side end
  • the end of the through hole H on the cathode chamber 14b side is referred to as the cathode side end.
  • the lower surface L2 of the through hole H extends horizontally from the anode side end to the cathode side end.
  • the upper surface of the through hole H refers to a region facing downward in the inner peripheral surface of the through hole H
  • the lower surface of the through hole H refers to a region facing upward in the inner peripheral surface of the through hole H.
  • the diameter D1 in the vertical direction of the anode side end of the through hole H is set to a size that allows the electrolytic bath to pass therethrough and does not allow the bubbles of fluorine gas and hydrogen gas to pass through.
  • the diameter D1 is, for example, 1 mm or more and 3 mm or less, and preferably 1 mm or more and 2 mm or less.
  • the diameter D2 in the vertical direction of the cathode side end of the through hole H is larger than the diameter D1.
  • the diameter D2 is, for example, 5 mm to 10 mm, and preferably 5 mm to 8 mm.
  • the thickness TH of the liquid partition wall 13B is, for example, 5 mm or more and 10 mm or less, and preferably 5 mm or more and 8 mm or less.
  • the vertical diameter of the through hole H on the anode chamber 14a side is smaller than the vertical diameter of the through hole H on the cathode chamber 14b side. Furthermore, as described above, the fluorine gas is more easily dissolved in the electrolytic bath 12 than the hydrogen gas. This prevents fluorine gas bubbles from entering the through hole H from the anode chamber 14a.
  • the bubbles of fluorine gas and hydrogen gas are prevented from moving through the through hole H, and the bubbles of fluorine gas and hydrogen gas are prevented from blocking the through hole H.
  • the electrolytic reaction can proceed stably and smoothly without reducing the generation efficiency of the fluorine gas.
  • FIG. 7 is a diagram illustrating another example of the through hole H formed in the liquid partition wall 13B. Differences of the example of FIGS. 7A and 7B from the example of FIGS. 5 and 6 will be described.
  • the upper surface L1 of the through hole H extends horizontally from the anode side end to the intermediate point P1 between the anode side end and the cathode side end, and extends obliquely upward from the intermediate point P1 to the cathode side end.
  • hydrogen gas bubbles entering the through hole H from the cathode chamber 14b are prevented from blocking the through hole H, and fluorine gas bubbles can enter the through hole H from the anode chamber 14a. Is prevented.
  • the upper surface L1 of the through hole H extends obliquely downward from the anode side end to the intermediate point P1, and extends obliquely upward from the intermediate point P1 to the cathode side end.
  • hydrogen gas bubbles that have entered the through hole H from the cathode chamber 14 b are prevented from blocking the through hole H.
  • the bubble returns to the anode chamber 14a along the upper surface L1 of the through hole H and floats on the liquid surface. Accordingly, it is possible to prevent the fluorine gas bubbles that have entered the through hole H from the anode chamber 14a from blocking the through hole H.
  • the through hole H has a circular vertical cross section, but the through hole H may have a vertical cross section of another shape such as an oval shape, a triangle, or a quadrangle.
  • the upper surface L1 of the through hole H is provided so as to linearly extend obliquely upward toward the cathode side end.
  • the present invention is not limited thereto, and for example, the upper surface L1 of the through hole H is directed toward the cathode side end. It may be provided so as to bend and extend obliquely upward.
  • FIG. 8 is a cross-sectional view for explaining another example of the liquid partition wall 13B.
  • FIG. 8 shows a lower end portion of the gas partition wall 13A and an upper end portion of the liquid partition wall 13B. The example of FIG. 8 will be described while referring to differences from the examples of FIGS.
  • the upper end portion of the liquid partition wall 13B is provided so as to cover the lower end portion of the outer peripheral surface (surface on the cathode chamber 14b side) of the gas partition wall 13A.
  • the gas partition wall 13A is polarized in the electrolytic bath 12, and the outer peripheral surface of the gas partition wall 13A has a positive charge.
  • the metal is ionized from the outer peripheral surface of the positive gas partition wall 13A and is eluted into the electrolytic bath 12, and the outer peripheral surface of the gas partition wall 13A is easily corroded.
  • the outer peripheral surface portion of the gas partition wall 13A immersed in the electrolytic bath 12 is covered with the liquid surface partition wall 13B. This prevents the electrolytic bath 12 from coming into contact with the outer peripheral surface of the gas partition wall 13A, and prevents the portion of the outer peripheral surface of the gas partition wall 13A immersed in the electrolytic bath 12 from corroding.
  • the upper end portion of the liquid surface partition 13B extends to above the liquid surface of the electrolytic bath 12. In this case, it is possible to reliably prevent the electrolytic bath 12 from contacting the outer peripheral surface of the gas partition wall 13A. Since the upper end portion of the liquid level partition wall 13B is located on the cathode chamber 14b side, even if the upper end portion of the liquid level partition wall 13B extends above the liquid surface of the electrolytic bath 12, fluorine gas and fluorine are added to the liquid level partition wall 13B. There is no contact with hydrogen fluoride vapor. Therefore, corrosion of the liquid level partition wall 13B is prevented.
  • the gas partition wall 13A and the liquid partition wall 13B are provided as separate bodies. However, the corrosion of the gas partition wall 13A and the liquid partition wall 13B is prevented, or the corrosion of the gas partition wall 13A and the liquid partition wall 13B does not matter. In this case, the gas partition wall 13A and the liquid partition wall 13B may be provided integrally.
  • the gas partition wall 13A and the liquid partition wall 13B are each cylindrical.
  • the present invention is not limited to this, and the gas partition wall 13A and the liquid partition wall 13B may have other shapes such as a rectangular tube shape or a flat plate shape. Good.
  • the above embodiment is an example in which the present invention is applied to an electrolysis apparatus that generates fluorine gas.
  • the present invention can be similarly applied to an electrolysis apparatus that generates other gas such as oxygen gas.
  • the electrolytic bath 12 is an example of an electrolytic bath
  • the electrolytic bath 11 is an example of an electrolytic bath
  • the through hole H is an example of an opening
  • the upper surface L1 is an example of an upper surface
  • the partition wall 13 is This is an example of a partition wall
  • the anode chamber 14a is an example of an anode chamber
  • the anode 15a is an example of an anode
  • the cathode chamber 14b is an example of a cathode chamber
  • the cathode 15b is an example of a cathode
  • the liquid partition wall 13B is It is an example of a liquid partition.
  • the present invention can be effectively used for various electrolyzers such as gas generators.

Abstract

An opening in the upper part of an electrolysis tank main body is closed by a first cover body with a sealing member sandwiched therebetween. An opening in the first cover body is closed by a second cover body with a sealing member sandwiched therebetween. The opening in the first cover body is smaller than the opening in the electrolysis tank main body. A partition wall that divides the inside of the electrolysis tank main body into a positive electrode chamber and a negative electrode chamber is provided integrally on the lower surface of the second cover body. The positive electrode chamber is disposed in an area on the inside of the sealing member. A positive electrode is attached to the second cover body inside of the positive electrode chamber, and the negative electrode is formed on the inside surface of the electrolysis tank main body. An electrolyte bath inside the electrolysis tank undergoes electrolysis, thereby generating fluorine gas in the positive electrode chamber. A plurality of round through holes may be formed in a liquid partition wall. Each through hole has an upper surface that extends upward at a slant from an end part on the positive electrode chamber side to an end part on the negative electrode chamber side. The diameter of the positive electrode side end of the through holes in the vertical direction is set to a size such that the electrolyte bath can pass through and bubbles of fluorine gas and hydrogen gas cannot pass through. The diameter of the through holes in the vertical direction on the negative electrode side end is larger than the diameter of the through holes on the positive electrode side end.

Description

電解装置Electrolyzer
 本発明は、電解槽を備えた電解装置に関する。 The present invention relates to an electrolysis apparatus provided with an electrolytic cell.
 従来、半導体の製造工程等において、材料の洗浄および表面改質等の種々の用途でフッ素ガスが用いられている。この場合、フッ素ガス自体が用いられることもあり、フッ素ガスを基に合成されたNF3(三フッ化窒素)ガス、NeF(フッ化ネオン)ガスおよびArF(フッ化アルゴン)ガス等の種々のフッ素系ガスが用いられることもある。 Conventionally, fluorine gas has been used in various applications such as material cleaning and surface modification in semiconductor manufacturing processes and the like. In this case, the fluorine gas itself may be used, and various fluorine such as NF3 (nitrogen trifluoride) gas, NeF (neon fluoride) gas, and ArF (argon fluoride) gas synthesized based on the fluorine gas may be used. A system gas may be used.
 フッ素ガスを安定に供給するために、通常、HF(フッ化水素)を電気分解してフッ素ガスを発生する電解装置が用いられる。このような電解装置では、例えば、電解槽内にKF-HF(カリウム-フッ化水素)系の混合溶融塩からなる電解浴が形成される。電解槽内の電解浴が電気分解されることによりフッ素ガスが発生される。 In order to stably supply fluorine gas, an electrolysis apparatus that generates fluorine gas by electrolyzing HF (hydrogen fluoride) is usually used. In such an electrolysis apparatus, for example, an electrolytic bath made of a mixed molten salt of KF—HF (potassium-hydrogen fluoride) is formed in an electrolytic cell. Fluorine gas is generated by electrolysis of the electrolytic bath in the electrolytic cell.
 例えば、特許文献1に記載された溶融塩電解装置は、電解槽本体と上蓋とにより構成された電解槽を有する。電解槽の内部は、隔壁により電解槽の中心部に位置する陽極室とその陽極室を取り囲む陰極室とに分離されている。陽極室には陽極が配置され、陰極室には陰極が設けられている。上蓋の略中央部には、陽極を電解槽本体内に挿入するための開口部が形成され、開口部を覆うように蓋体が設けられている。蓋体と上蓋との間には、ガスシール材が介在される。蓋体には、陽極を保持する連結棒が垂直に設けられている。 For example, the molten salt electrolysis apparatus described in Patent Document 1 has an electrolytic cell composed of an electrolytic cell main body and an upper lid. The interior of the electrolytic cell is separated by a partition into an anode chamber located at the center of the electrolytic cell and a cathode chamber surrounding the anode chamber. An anode is disposed in the anode chamber, and a cathode is provided in the cathode chamber. An opening for inserting the anode into the electrolytic cell main body is formed in a substantially central portion of the upper lid, and a lid is provided so as to cover the opening. A gas seal material is interposed between the lid and the upper lid. The lid is vertically provided with a connecting rod that holds the anode.
 上記のように、電解槽内においては、フッ素ガスとともに水素ガスが発生される。そのため、電解槽内には、発生されるフッ素ガスと水素ガスとを分離するための隔壁が設けられる。特許文献2に記載される電解槽では、ガスの混合を防止するために、多孔性または繊維状の構成を有する隔板が用いられる。この場合、電解浴が隔板を透過することが可能となる。そのため、電解槽内に配置される陽極と陰極との間の通電抵抗の増加が防止される。
特開2005-48290号公報 特開2000-104187号公報
As described above, hydrogen gas is generated along with fluorine gas in the electrolytic cell. Therefore, a partition for separating generated fluorine gas and hydrogen gas is provided in the electrolytic cell. In the electrolytic cell described in Patent Document 2, a separator having a porous or fibrous structure is used in order to prevent gas mixing. In this case, the electrolytic bath can pass through the diaphragm. For this reason, an increase in energization resistance between the anode and the cathode disposed in the electrolytic cell is prevented.
JP 2005-48290 A JP 2000-104187 A
 特許文献1に記載された溶融塩電解装置においては、蓋体を上蓋から取り外すことにより、陽極を上蓋とともに容易に電解槽本体から取り外すことができる。これにより、陽極が消耗した場合でも、陽極を容易に交換することが可能になる。 In the molten salt electrolysis apparatus described in Patent Document 1, the anode can be easily removed from the electrolytic cell main body together with the upper lid by removing the lid from the upper lid. Thereby, even when the anode is consumed, the anode can be easily replaced.
 しかしながら、上記溶融塩電解装置においては、蓋体と上蓋との間に介在されるガスシール材には、フッ素ガスに対する耐食性が要求される。また、フッ素ガスに対して耐食性を有するガスシール材であっても、長期的にフッ素ガスに接することにより腐食する。そのため、頻繁にガスシール材を交換する必要がある。その結果、メンテナンスのコストが増加する。また、ガスシール材を交換する頻度は、陽極を交換する頻度よりも多いため、メンテナンスの作業効率が悪い。 However, in the molten salt electrolysis apparatus, the gas seal material interposed between the lid and the upper lid is required to have corrosion resistance against fluorine gas. Further, even a gas seal material having corrosion resistance to fluorine gas is corroded by being in contact with fluorine gas for a long time. Therefore, it is necessary to frequently replace the gas seal material. As a result, maintenance costs increase. Further, since the frequency of replacing the gas seal material is higher than the frequency of replacing the anode, the maintenance work efficiency is poor.
 また、本発明者は、特許文献2の電解槽では、発生したガスの泡が隔板の孔を塞ぐことによって電解浴の透過が妨げられることを見出した。それにより、電解浴の電解反応を安定に進行させることができない。 Further, the present inventor has found that in the electrolytic cell of Patent Document 2, the generated gas bubbles block the hole of the partition plate, thereby preventing permeation of the electrolytic bath. As a result, the electrolytic reaction of the electrolytic bath cannot proceed stably.
 本発明の目的は、メンテナンスのコストの低減およびメンテナンスの作業効率の向上が可能な電解装置を提供することである。 An object of the present invention is to provide an electrolyzer capable of reducing maintenance costs and improving maintenance work efficiency.
 本発明の他の目的は、気体の混合を防止しつつ電解反応を安定に進行させることが可能な電解装置を提供することである。 Another object of the present invention is to provide an electrolysis apparatus capable of allowing an electrolytic reaction to proceed stably while preventing gas mixing.
 (1)本発明の一局面に従う電解装置は、電解浴を電気分解することによりフッ素および他の気体を発生するための電解装置であって、電解浴を収容する電解槽を備え、電解槽は、第1の開口を上部に有する電解槽本体と、第1の開口よりも小さい第2の開口を有し、第1の開口を閉塞するように電解槽本体に設けられる第1の蓋体と、第2の開口を取り囲むように第1の蓋体に設けられる第1のシール部材と、第2の開口を閉塞するように第1のシール部材を挟んで第1の蓋体上に設けられる第2の蓋体と、第2の蓋体に取り付けられる第1の電極と、電解槽本体内をフッ素が発生される第1室と他の気体が発生される第2室とに分離する隔壁とを含み、隔壁は、第1室が第1のシール部材の内側の領域に配置されるように形成されるものである。 (1) An electrolysis apparatus according to one aspect of the present invention is an electrolysis apparatus for generating fluorine and other gases by electrolyzing an electrolysis bath, and includes an electrolysis tank that accommodates the electrolysis bath. An electrolytic cell main body having a first opening at an upper portion, a first lid body having a second opening smaller than the first opening and provided in the electrolytic cell main body so as to close the first opening; The first seal member provided on the first lid body so as to surround the second opening and the first seal member sandwiched between the first seal member so as to close the second opening are provided on the first lid body. A partition that separates the second lid, a first electrode attached to the second lid, and a first chamber in which fluorine is generated and a second chamber in which other gas is generated in the electrolytic cell body And the partition is formed such that the first chamber is disposed in a region inside the first seal member. It is.
 この電解装置においては、電解槽本体の上部の第1の開口が第1の蓋体により閉塞される。第1の蓋体の第2の開口は、第1のシール部材を挟んで第2の蓋体により閉塞される。第1の電極が第2の蓋体に取り付けられる。第2の開口は第1の開口よりも小さいので、第2の蓋体は第1の蓋体よりも小型でかつ軽量な構成となる。そのため、第1の電極が消耗した場合でも、第2の蓋体を第1の蓋体から取り外すことにより第1の電極を容易に交換することができる。 In this electrolysis apparatus, the first opening at the top of the electrolytic cell main body is closed by the first lid. The second opening of the first lid is closed by the second lid with the first seal member interposed therebetween. The first electrode is attached to the second lid. Since the second opening is smaller than the first opening, the second lid body is smaller and lighter than the first lid body. Therefore, even when the first electrode is consumed, the first electrode can be easily replaced by removing the second lid from the first lid.
 また、第1室は隔壁により第1のシール部材の内側の領域に配置される。この場合、第1室において発生されるフッ素が第1のシール部材に接触することがないので、第1のシール部材の腐食が防止される。これにより、第1のシール部材を交換する頻度が減少する。 Further, the first chamber is arranged in a region inside the first seal member by a partition wall. In this case, since fluorine generated in the first chamber does not contact the first seal member, corrosion of the first seal member is prevented. This reduces the frequency of replacing the first seal member.
 これらの結果、電解装置のメンテナンスのコストが低減するとともに、メンテナンスの作業効率が向上する。 As a result, the maintenance cost of the electrolyzer is reduced and the work efficiency of the maintenance is improved.
 (2)隔壁は、第1の電極の周囲を取り囲むように第1の蓋体に一体的に設けられてもよい。この場合、第2の蓋体を第1の蓋体から取り外すことにより隔壁を容易に点検することができる。これにより、電解装置のメンテナンスのコストがより低減するとともに、メンテナンスの作業効率がより向上する。 (2) The partition wall may be provided integrally with the first lid so as to surround the periphery of the first electrode. In this case, the partition can be easily inspected by removing the second lid from the first lid. Thereby, the maintenance cost of the electrolyzer is further reduced, and the maintenance work efficiency is further improved.
 (3)電解槽本体が第2の電極として機能してもよい。この場合、第2の電極を別個に設ける必要がない。これにより、電解装置の構成を単純化することができる。 (3) The electrolytic cell main body may function as the second electrode. In this case, it is not necessary to provide the second electrode separately. Thereby, the structure of the electrolyzer can be simplified.
 (4)電解装置は、第1の開口を取り囲むように電解槽本体に設けられる第2のシール部材をさらに備え、第1の蓋体は、第2のシール部材を挟んで電解槽本体上に設けられてもよい。 (4) The electrolysis apparatus further includes a second seal member provided in the electrolytic cell main body so as to surround the first opening, and the first lid body is disposed on the electrolytic cell main body with the second seal member interposed therebetween. It may be provided.
 この場合、第1の蓋体を電解槽本体から取り外すことが可能になる。そのため、第1の蓋体を電解槽本体から取り外すことにより電解装置の内部を点検することができる。 In this case, the first lid can be removed from the electrolytic cell main body. Therefore, the inside of the electrolysis apparatus can be inspected by removing the first lid from the electrolytic cell main body.
 (5)本発明の他の局面に従う電解装置は、電解浴を収容する電解槽と、電解槽内を陽極室と陰極室とに区画するように設けられ、電解浴中のイオンが通過可能な開口を有する隔壁と、電解槽の陽極室に設けられる陽極と、電解槽の陰極室に設けられる陰極とを備え、隔壁の開口は、陽極室および陰極室の少なくとも一方に向かって斜め上方に延びる上面を有するものである。 (5) An electrolysis apparatus according to another aspect of the present invention is provided so as to partition an electrolytic bath that accommodates an electrolytic bath and an electrolytic chamber into an anode chamber and a cathode chamber, and ions in the electrolytic bath can pass therethrough. A partition having an opening, an anode provided in an anode chamber of the electrolytic cell, and a cathode provided in a cathode chamber of the electrolytic cell, wherein the partition opening extends obliquely upward toward at least one of the anode chamber and the cathode chamber. It has an upper surface.
 その電解装置においては、隔壁により電解槽内が陽極室と陰極室とに区画される。陽極室に設けられた陽極と陰極室に設けられた陰極との間に電圧が印加されることにより、電解槽内の電解浴が電気分解される。それにより、陽極室および陰極室において気体が発生する。 In the electrolyzer, the electrolytic cell is partitioned into an anode chamber and a cathode chamber by a partition wall. By applying a voltage between the anode provided in the anode chamber and the cathode provided in the cathode chamber, the electrolytic bath in the electrolytic cell is electrolyzed. Thereby, gas is generated in the anode chamber and the cathode chamber.
 隔壁には、電解浴中のイオンが通過可能な開口が設けられる。開口は、陽極室および陰極室の少なくとも一方に向かって斜め上方に延びる上面を有する。そのため、発生される気体の泡が陽極室および陰極室の上記の少なくとも一方から開口内に進入しても、その泡は開口の上面に沿って陽極室または陰極室に戻される。したがって、発生される気体の泡が通過しないように開口の大きさを設定することにより、陽極室で発生される気体と陰極室で発生される気体とが混合されることを防止しつつ、発生される気体の泡によって開口が塞がれることを防止することができる。その結果、気体の混合を防止しつつ電解浴の電解反応を安定に進行させることができる。 The partition is provided with an opening through which ions in the electrolytic bath can pass. The opening has an upper surface extending obliquely upward toward at least one of the anode chamber and the cathode chamber. Therefore, even if the generated gas bubbles enter the opening from at least one of the anode chamber and the cathode chamber, the bubbles are returned to the anode chamber or the cathode chamber along the upper surface of the opening. Therefore, by setting the size of the opening so that the generated gas bubbles do not pass, the gas generated in the anode chamber and the gas generated in the cathode chamber are prevented from being mixed. It is possible to prevent the opening from being blocked by the gas bubbles. As a result, the electrolytic reaction of the electrolytic bath can proceed stably while preventing gas mixing.
 (6)陽極室においてフッ素ガスが発生され、陰極室において水素ガスが発生され、開口の上面は、陰極室側に向かって斜め上方に延びるように設けられてもよい。 (6) Fluorine gas is generated in the anode chamber, hydrogen gas is generated in the cathode chamber, and the upper surface of the opening may be provided to extend obliquely upward toward the cathode chamber side.
 水素ガスはフッ素ガスに比べて電解浴に溶解しにくいので、水素ガスの泡は開口内に滞留して開口を塞ぎやすい。そこで、開口の上面が陰極室側に向かって斜め上方に延びるように設けられることにより、陰極室で発生される水素ガスの泡が開口内に進入しても、その泡は開口の上面に沿って陰極室に戻される。それにより、水素ガスによって開口が塞がれることが防止される。 Since hydrogen gas is less soluble in the electrolytic bath than fluorine gas, hydrogen gas bubbles stay in the opening and easily close the opening. Therefore, by providing the upper surface of the opening so as to extend obliquely upward toward the cathode chamber side, even if hydrogen gas bubbles generated in the cathode chamber enter the opening, the bubbles follow the upper surface of the opening. And returned to the cathode chamber. This prevents the opening from being blocked by hydrogen gas.
 (7)陽極室側における開口の端部の面積は、陰極室側における開口の端部の面積よりも小さくてもよい。 (7) The area of the end of the opening on the anode chamber side may be smaller than the area of the end of the opening on the cathode chamber side.
 この場合、陽極室において発生されるフッ素ガスが開口内に進入することが防止される。それにより、フッ素ガスが陰極室に移動することが防止され、フッ素ガスと水素ガスとが混合されることが防止される。 In this case, the fluorine gas generated in the anode chamber is prevented from entering the opening. This prevents the fluorine gas from moving to the cathode chamber and prevents the fluorine gas and the hydrogen gas from being mixed.
 (8)隔壁は、電解浴に浸漬する液体隔壁を含み、開口は液体隔壁に設けられ、液体隔壁は、パーフルオロ樹脂により形成されてもよい。 (8) The partition may include a liquid partition immersed in the electrolytic bath, the opening may be provided in the liquid partition, and the liquid partition may be formed of a perfluoro resin.
 この場合、電解浴により液体隔壁が腐食することが防止される。また、開口を形成する際の液体隔壁の加工が容易になる。さらに、液体隔壁の材料コストが低減される。 In this case, the electrolytic bath prevents the liquid partition wall from being corroded. In addition, the liquid partition wall can be easily processed when forming the opening. Furthermore, the material cost of the liquid partition is reduced.
 (9)陽極の表面に導電性ダイヤモンドコーティングが施されてもよい。この場合、陽極に分極が発生しにくくなるため、気体の発生効率が向上される。気体の発生量が多くなっても、隔壁の開口が泡によって塞がれることが防止されるので、電解反応を安定に進行させることができる。 (9) A conductive diamond coating may be applied to the surface of the anode. In this case, since the polarization hardly occurs in the anode, the gas generation efficiency is improved. Even if the amount of gas generated increases, the opening of the partition wall is prevented from being blocked by bubbles, so that the electrolytic reaction can proceed stably.
 本発明によれば、電解装置のメンテナンスのコストの低減およびメンテナンスの作業効率の向上が可能となる。 According to the present invention, the maintenance cost of the electrolyzer can be reduced and the work efficiency of the maintenance can be improved.
 また、本発明によれば、気体の混合を防止しつつ電解反応を安定に進行させることが可能となる。 In addition, according to the present invention, it is possible to allow the electrolytic reaction to proceed stably while preventing gas mixing.
図1は本発明の第1の実施の形態に係る電解装置の模式的断面図である。FIG. 1 is a schematic cross-sectional view of an electrolysis apparatus according to a first embodiment of the present invention. 図2は図1の電解槽の分解斜視図である。FIG. 2 is an exploded perspective view of the electrolytic cell of FIG. 図3は第2の蓋体の下面図である。FIG. 3 is a bottom view of the second lid. 図4は本発明の第2の実施の形態に係る電解装置の模式的断面図である。FIG. 4 is a schematic cross-sectional view of an electrolysis apparatus according to the second embodiment of the present invention. 図5は液体隔壁の外観斜視図である。FIG. 5 is an external perspective view of the liquid partition wall. 図6は液体隔壁に形成される貫通孔の拡大図である。FIG. 6 is an enlarged view of a through hole formed in the liquid partition wall. 図7は液体隔壁に形成される貫通孔の他の例を示す図である。FIG. 7 is a view showing another example of the through hole formed in the liquid partition wall. 図8は液体隔壁の他の例について説明するための断面図である。FIG. 8 is a cross-sectional view for explaining another example of the liquid partition wall.
 [1]第1の実施の形態
 以下、本発明の第1の実施の形態に係る電解装置(気体発生装置)について図面を参照しながら説明する。
[1] First Embodiment Hereinafter, an electrolysis apparatus (gas generation apparatus) according to a first embodiment of the present invention will be described with reference to the drawings.
 (1)電解装置の構成
 図1は、本発明の第1の実施の形態に係る電解装置の模式的断面図である。図1の電解装置10は、フッ素ガスを発生する気体発生装置である。図1に示すように、電解装置10は電解槽11を備える。電解槽11は、電解槽本体11a、第1の蓋体11b、シール部材11c、第2の蓋体11dおよびシール部材11eにより構成される。第2の蓋体11dの下面には、電解槽本体11a内の中心部の空間を取り囲むように隔壁13が一体的に設けられる。電解槽本体11a、第1および第2の蓋体11b,11dならびに隔壁13は、例えばNi(ニッケル)、モネル、純鉄もしくはステンレス鋼等の金属または合金により形成される。
(1) Configuration of electrolyzer FIG. 1 is a schematic cross-sectional view of an electrolyzer according to a first embodiment of the present invention. The electrolyzer 10 of FIG. 1 is a gas generator that generates fluorine gas. As shown in FIG. 1, the electrolysis apparatus 10 includes an electrolytic cell 11. The electrolytic cell 11 includes an electrolytic cell main body 11a, a first lid 11b, a seal member 11c, a second lid 11d, and a seal member 11e. A partition wall 13 is integrally provided on the lower surface of the second lid 11d so as to surround the central space in the electrolytic cell main body 11a. The electrolytic cell main body 11a, the first and second lid bodies 11b and 11d, and the partition wall 13 are made of, for example, a metal or alloy such as Ni (nickel), monel, pure iron, or stainless steel.
 電解槽11では、高電流の電力が扱われる。また、陰極室14b内に水素等の気体が存在する場合、静電気または放電による陰極室14b内の放電を防止する必要がある。そのため、陰極室14bの第1の蓋体11bは、アース線E1により接地される。これにより、電解槽11からの漏電による感電等が防止されるとともに水素等の気体が爆発することを防止することができる。 In the electrolytic cell 11, high current power is handled. When a gas such as hydrogen is present in the cathode chamber 14b, it is necessary to prevent discharge in the cathode chamber 14b due to static electricity or discharge. Therefore, the first lid 11b of the cathode chamber 14b is grounded by the ground wire E1. Thereby, an electric shock or the like due to electric leakage from the electrolytic cell 11 can be prevented and a gas such as hydrogen can be prevented from exploding.
 電解槽11内には、KF-HF(カリウム-フッ化水素)系混合溶融塩からなる電解浴(電解液)12が形成される。電解槽11内において、隔壁13の内側に陽極室14aが形成され、隔壁13の外側に陰極室14bが形成される。 In the electrolytic cell 11, an electrolytic bath (electrolytic solution) 12 made of a KF-HF (potassium-hydrogen fluoride) mixed molten salt is formed. In the electrolytic cell 11, an anode chamber 14 a is formed inside the partition wall 13, and a cathode chamber 14 b is formed outside the partition wall 13.
 陽極室14a内に陽極15aが配置される。隔壁13の一部および陽極15aは電解浴12に浸漬する。電解槽本体11aの内面には、陰極15bが形成される。陰極15bの材料としては、例えばNiを用いることが好ましい。 The anode 15a is disposed in the anode chamber 14a. A part of the partition wall 13 and the anode 15 a are immersed in the electrolytic bath 12. A cathode 15b is formed on the inner surface of the electrolytic cell main body 11a. For example, Ni is preferably used as the material of the cathode 15b.
 HFを供給するためのHF供給ライン18aが第1の蓋体11bに接続される。HF供給ライン18aは温度調整用ヒータ18bで覆われる。これにより、HF供給ライン18aでHFが液化することが防止される。電解浴12の液面の高さは液面検出装置(図示せず)により検出される。液面検出装置により検出される液面の高さが所定値よりも低くなると、HF供給ライン18aを通して電解槽11内にHFが供給される。 HF supply line 18a for supplying HF is connected to the first lid 11b. The HF supply line 18a is covered with a temperature adjusting heater 18b. This prevents HF from being liquefied in the HF supply line 18a. The height of the electrolytic bath 12 is detected by a liquid level detector (not shown). When the height of the liquid level detected by the liquid level detection device becomes lower than a predetermined value, HF is supplied into the electrolytic cell 11 through the HF supply line 18a.
 この電解装置10は、制御部23を備える。電解槽11内の電解浴12は、室温でかつ大気圧下では固体状態をとる。そのため、電解浴12の電気分解を行うためには、電解浴12を80~90℃に加熱し、液体状態に溶解させる必要がある。制御部23は、温度センサ(図示せず)により検出される電解浴12の温度に基づいて温度制御部(図示せず)を制御し、電解浴12の温度を80~90℃に維持する。 The electrolysis apparatus 10 includes a control unit 23. The electrolytic bath 12 in the electrolytic cell 11 is in a solid state at room temperature and atmospheric pressure. Therefore, in order to perform electrolysis of the electrolytic bath 12, it is necessary to heat the electrolytic bath 12 to 80 to 90 ° C. and dissolve it in a liquid state. The controller 23 controls the temperature controller (not shown) based on the temperature of the electrolytic bath 12 detected by a temperature sensor (not shown), and maintains the temperature of the electrolytic bath 12 at 80 to 90 ° C.
 制御部23により陽極15aと陰極15bとの間に電圧が印加される。それにより、電解槽11内の電解浴12が電気分解される。その結果、陽極室14aにおいて主にフッ素ガスが発生する。また、陰極室14bにおいて主に水素ガスが発生する。 The controller 23 applies a voltage between the anode 15a and the cathode 15b. Thereby, the electrolytic bath 12 in the electrolytic cell 11 is electrolyzed. As a result, fluorine gas is mainly generated in the anode chamber 14a. Further, hydrogen gas is mainly generated in the cathode chamber 14b.
 第2の蓋体11dにはガス排出口16aが設けられ、第1の蓋体11bにはガス排出口16bが設けられる。ガス排出口16aには排気管17aが接続され、ガス排出口16bには排気管17bが接続される。ガス排出口16aは陽極室14aに連通し、ガス排出口16bは陰極室14bに連通する。陽極室14aで発生される気体は、ガス排出口16aから排気管17aを通して排出され、陰極室14bで発生する気体はガス排出口16bから排気管17bを通して排出される。 The second lid body 11d is provided with a gas discharge port 16a, and the first lid body 11b is provided with a gas discharge port 16b. An exhaust pipe 17a is connected to the gas exhaust port 16a, and an exhaust pipe 17b is connected to the gas exhaust port 16b. The gas discharge port 16a communicates with the anode chamber 14a, and the gas discharge port 16b communicates with the cathode chamber 14b. The gas generated in the anode chamber 14a is discharged from the gas discharge port 16a through the exhaust pipe 17a, and the gas generated in the cathode chamber 14b is discharged from the gas discharge port 16b through the exhaust pipe 17b.
 (2)電解槽の詳細
 図2は、図1の電解槽11の分解斜視図である。図3は、第2の蓋体11dの下面図である。
(2) Details of the electrolytic cell FIG. 2 is an exploded perspective view of the electrolytic cell 11 of FIG. FIG. 3 is a bottom view of the second lid 11d.
 図2に示すように、電解槽本体11aは、底面部および4つの側面部を有し、上部に矩形の開口H1を有する。シール部材11cは、開口H1を取り囲むように4つの側面部の上端面上に設けられる。シール部材11cは、例えばフッ素ゴムからなるOリングである。第1の蓋体11bは、矩形形状を有するとともに開口H1よりも大きな寸法を有する。この第1の蓋体11bは、電解槽本体11aの開口H1を閉塞するようにシール部材11c上に配置される。それにより、電解槽本体11aと第1の蓋体11bとが、シール部材11cにより互いに電気的に絶縁されつつ密封される。 As shown in FIG. 2, the electrolytic cell main body 11a has a bottom surface portion and four side surface portions, and has a rectangular opening H1 at the top. The seal member 11c is provided on the upper end surfaces of the four side surfaces so as to surround the opening H1. The seal member 11c is an O-ring made of, for example, fluorine rubber. The first lid 11b has a rectangular shape and a size larger than the opening H1. The first lid 11b is disposed on the seal member 11c so as to close the opening H1 of the electrolytic cell main body 11a. Thereby, the electrolytic cell main body 11a and the first lid 11b are sealed while being electrically insulated from each other by the seal member 11c.
 第1の蓋体11bは、略中央部に矩形の開口H2を有する。シール部材11eは、開口H2における第1の蓋体11bの縁部に沿って開口H2を取り囲むように第1の蓋体11bの上面に設けられる。シール部材11eは、例えばフッ素ゴムからなるOリングである。第2の蓋体11dは、矩形形状を有するとともに、開口H2よりも大きな寸法を有する。この第2の蓋体11dは、第1の蓋体11bの開口H2を閉塞するようにシール部材11e上に配置される。それにより、第1の蓋体11bと第2の蓋体11dとが、シール部材11eにより互いに電気的に絶縁されつつ密封される。第1の蓋体11bには、HF供給ライン18aが挿入されるHF供給孔18cが設けられる。 The first lid 11b has a rectangular opening H2 at a substantially central portion. The seal member 11e is provided on the upper surface of the first lid body 11b so as to surround the opening H2 along the edge of the first lid body 11b in the opening H2. The seal member 11e is an O-ring made of, for example, fluorine rubber. The second lid 11d has a rectangular shape and a size larger than the opening H2. The second lid 11d is disposed on the seal member 11e so as to close the opening H2 of the first lid 11b. Thereby, the first lid body 11b and the second lid body 11d are sealed while being electrically insulated from each other by the seal member 11e. The first lid 11b is provided with an HF supply hole 18c into which the HF supply line 18a is inserted.
 隔壁13は、4つの側壁13a,13b,13c,13dからなる。図3に示すように、隔壁13は、第2の蓋体11dの下面に第2の蓋体11dと一体的に設けられる。隔壁13の4つの側壁13a~13dは、例えばNiまたはモネルからなる。第2の蓋体11dの下面側で隔壁13の4つの側壁13a~13dにより取り囲まれる空間内に矩形板状の陽極15aが図2の取り付け部材19を介して取り付けられる。陽極15aの材料としては、例えば低分極性炭素電極が用いられる。 The partition wall 13 includes four side walls 13a, 13b, 13c, and 13d. As shown in FIG. 3, the partition wall 13 is provided integrally with the second lid body 11d on the lower surface of the second lid body 11d. The four side walls 13a to 13d of the partition wall 13 are made of, for example, Ni or Monel. A rectangular plate-like anode 15a is attached via a mounting member 19 in FIG. 2 in a space surrounded by the four side walls 13a to 13d of the partition wall 13 on the lower surface side of the second lid 11d. As a material of the anode 15a, for example, a low polarizable carbon electrode is used.
 (3)効果
 本実施の形態に係る図1の電解装置10においては、シール部材11c,11eが陽極室14aの外側に配置される。そのため、陽極室14a内で発生するフッ素ガスがシール部材11c,11eと接触しない。それにより、シール部材11c,11eの腐食を防止することができる。その結果、シール部材11c,11eの点検および交換をする頻度が低減される。
(3) Effect In the electrolysis apparatus 10 of FIG. 1 according to the present embodiment, the seal members 11c and 11e are arranged outside the anode chamber 14a. Therefore, the fluorine gas generated in the anode chamber 14a does not come into contact with the seal members 11c and 11e. Thereby, corrosion of the sealing members 11c and 11e can be prevented. As a result, the frequency with which the seal members 11c and 11e are inspected and replaced is reduced.
 また、第2の蓋体11dを第1の蓋体11bから取り外すことにより、陽極15aを第2の蓋体11dとともに電解槽本体11aから容易に取り外すことができる。これにより、陽極15aが消耗した場合でも、陽極15aを容易に交換することが可能になる。特に、電解槽11が大型化する場合、電解槽本体11aおよび第1の蓋体11bは大型化するとともに重量化する。このような場合でも、第2の蓋体11dを大型化する必要がないので、第2の蓋体11dを第1の蓋体11bから容易に取り外すことができる。 Further, by removing the second lid 11d from the first lid 11b, the anode 15a can be easily detached from the electrolytic cell body 11a together with the second lid 11d. Thereby, even when the anode 15a is consumed, the anode 15a can be easily replaced. In particular, when the electrolytic cell 11 is increased in size, the electrolytic cell main body 11a and the first lid 11b are increased in size and weight. Even in such a case, since it is not necessary to increase the size of the second lid 11d, the second lid 11d can be easily detached from the first lid 11b.
 さらに、電解装置10を長期に渡って使用した場合、隔壁13が消耗しているか否かを点検する必要がある。このような場合でも、第2の蓋体11dを第1の蓋体11bから取り外すことにより、隔壁13を第1の蓋体11bから取り外すことができる。それにより、隔壁13を容易に点検することが可能になる。 Furthermore, when the electrolyzer 10 is used for a long time, it is necessary to check whether or not the partition wall 13 is consumed. Even in such a case, the partition 13 can be removed from the first lid 11b by removing the second lid 11d from the first lid 11b. Thereby, the partition wall 13 can be easily inspected.
 これらの結果、電解装置10のメンテナンスのコストを低減するとともにメンテナンスの作業効率の向上させることができる。 As a result, the maintenance cost of the electrolyzer 10 can be reduced and the maintenance work efficiency can be improved.
 (4)他の実施の形態
 上記実施の形態において、電解槽本体11aは、底面部および4つの側面部を有し、上部に矩形の開口H1を有するが、これに限定されない。例えば、電解槽本体11aは、底面部および円筒状の側面部を有し、上部に円形の開口を有してもよい。この場合、電解槽本体11aの開口は、円形形状を有する第1の蓋体11bにより閉塞される。
(4) Other Embodiments In the above embodiment, the electrolytic cell main body 11a has a bottom surface portion and four side surface portions and has a rectangular opening H1 in the upper portion, but is not limited thereto. For example, the electrolytic cell main body 11a may have a bottom surface portion and a cylindrical side surface portion, and may have a circular opening at the top. In this case, the opening of the electrolytic cell main body 11a is closed by the first lid body 11b having a circular shape.
 第1の蓋体11bは矩形の開口H2を有するが、これに限定されない。例えば、第1の蓋体11bは円形の開口を有してもよい。この場合、第1の蓋体11bの開口は、円形形状を有する第2の蓋体11dにより閉塞される。 The first lid 11b has a rectangular opening H2, but is not limited thereto. For example, the first lid 11b may have a circular opening. In this case, the opening of the first lid 11b is closed by the second lid 11d having a circular shape.
 隔壁13は4つの側壁13a~13dにより構成されるが、これに限定されない。例えば、隔壁13は円筒状の側壁により構成されてもよい。また、隔壁13と第2の蓋体11dとが一体的に設けられることが好ましく、別個の金属材料により形成された隔壁13および第2の蓋体11dが溶接されることにより一体的に設けられることがより好ましいが、これに限定されない。隔壁13と第2の蓋体11dとが鋳造により一体的に設けられてもよい。 The partition wall 13 includes four side walls 13a to 13d, but is not limited thereto. For example, the partition wall 13 may be constituted by a cylindrical side wall. In addition, the partition wall 13 and the second lid body 11d are preferably provided integrally, and the partition wall 13 and the second lid body 11d formed of separate metal materials are integrally provided by welding. Although it is more preferable, it is not limited to this. The partition wall 13 and the second lid body 11d may be integrally provided by casting.
 第2の蓋体11dとの間の密着性が確保され、陽極室14aの気密性が保持されるのであれば、隔壁13は第2の蓋体11dと別個に設けられてもよい。この場合、隔壁13と第2の蓋体11dとの間に金属シール等の耐食性の高いシール材を設けることにより密着性を確保することが好ましい。 The partition wall 13 may be provided separately from the second lid body 11d as long as the adhesion with the second lid body 11d is ensured and the airtightness of the anode chamber 14a is maintained. In this case, it is preferable to ensure adhesion by providing a highly corrosion-resistant sealing material such as a metal seal between the partition wall 13 and the second lid 11d.
 (5)請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
(5) Correspondence between each component of claim and each part of embodiment The following describes an example of the correspondence between each component of the claim and each part of the embodiment. It is not limited.
 上記実施の形態においては、電解浴12が電解浴の例であり、電解装置10が電解装置であり、水素が他の気体の例であり、電解槽11が電解槽の例であり、電解槽本体11aが電解槽本体の例である。開口H1が第1の開口の例であり、開口H2が第2の開口の例であり、第1の蓋体11bが第1の蓋体の例であり、第2の蓋体11dが第2の蓋体の例であり、シール部材11eが第1のシール部材の例であり、シール部材11cが第2のシール部材の例である。陽極15aが第1の電極の例であり、陰極15bが第2の電極の例であり、陽極室14aが第1室の例であり、陰極室14bが第2室の例であり、隔壁13が隔壁の例である。 In the above embodiment, the electrolytic bath 12 is an example of an electrolytic bath, the electrolytic device 10 is an electrolytic device, hydrogen is an example of another gas, the electrolytic cell 11 is an example of an electrolytic cell, and the electrolytic cell The main body 11a is an example of an electrolytic cell main body. The opening H1 is an example of the first opening, the opening H2 is an example of the second opening, the first lid 11b is an example of the first lid, and the second lid 11d is the second. The sealing member 11e is an example of a first sealing member, and the sealing member 11c is an example of a second sealing member. The anode 15a is an example of the first electrode, the cathode 15b is an example of the second electrode, the anode chamber 14a is an example of the first chamber, the cathode chamber 14b is an example of the second chamber, and the partition wall 13 Is an example of a partition wall.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 [2]第2の実施の形態
 以下、本発明の第2の実施の形態に係る電解装置について図面を参照しながら説明する。
[2] Second Embodiment Hereinafter, an electrolysis apparatus according to a second embodiment of the present invention will be described with reference to the drawings.
 (1)電解装置の構成
 図4は、本発明の第2の実施の形態に係る電解装置の模式的断面図である。図4の電解装置10は、フッ素ガスを発生する電解装置である。図4に示すように、電解装置10は電解槽11を備える。電解槽11は、電解槽本体11aおよび上部蓋体11fを含む。
(1) Configuration of Electrolyzer FIG. 4 is a schematic cross-sectional view of an electrolyzer according to the second embodiment of the present invention. The electrolyzer 10 in FIG. 4 is an electrolyzer that generates fluorine gas. As shown in FIG. 4, the electrolysis apparatus 10 includes an electrolytic cell 11. The electrolytic cell 11 includes an electrolytic cell main body 11a and an upper lid 11f.
 電解槽本体11aおよび上部蓋体11fは、例えばNi(ニッケル)、モネル、純鉄もしくはステンレス鋼等の金属または合金により形成される。電解槽本体11aは、底面部および側面部を有し、上部に開口を有する。底面部の上面を覆うように、絶縁部材11gが配置される。側面部の上端面上には、絶縁部材(シール部材)11hが取り付けられる。絶縁部材11g,11hは、樹脂等の絶縁材料からなる。電解槽本体11aの開口を閉塞するように、絶縁部材11h上に上部蓋体11fが配置される。それにより、電解槽本体11aと上部蓋体11fとが絶縁部材11hにより互いに電気的に絶縁される。 The electrolytic cell main body 11a and the upper lid 11f are made of, for example, a metal or alloy such as Ni (nickel), monel, pure iron or stainless steel. The electrolytic cell main body 11a has a bottom surface portion and a side surface portion, and has an opening at the top. The insulating member 11g is disposed so as to cover the upper surface of the bottom surface portion. An insulating member (seal member) 11h is attached on the upper end surface of the side surface portion. The insulating members 11g and 11h are made of an insulating material such as resin. An upper lid 11f is disposed on the insulating member 11h so as to close the opening of the electrolytic cell main body 11a. Thereby, the electrolytic cell main body 11a and the upper lid 11f are electrically insulated from each other by the insulating member 11h.
 電解槽11内には、KF-HF(カリウム-フッ化水素)系混合溶融塩からなる電解浴12が収容される。上部蓋体11fの下面から下方に延びるように、円筒状の隔壁13が設けられる。隔壁13は、円筒状の気体隔壁13Aおよび円筒状の液体隔壁13Bからなる。気体隔壁13Aは上部蓋体11fに一体的に設けられる。気体隔壁13Aの下端部の高さは、電解浴12の液面の高さと略等しくなるように設定される。気体隔壁13Aの材料としては、Ni(ニッケル)、Ni合金、モネル、純鉄もしくはステンレス鋼等の金属または合金が用いられることが好ましい。この場合、フッ素ガスおよびフッ化水素蒸気による気体隔壁13Aの腐食が抑制される。気体隔壁13Aは、上部蓋体11fから取り外し可能に設けられてもよい。 An electrolytic bath 12 made of a KF-HF (potassium-hydrogen fluoride) mixed molten salt is accommodated in the electrolytic cell 11. A cylindrical partition wall 13 is provided so as to extend downward from the lower surface of the upper lid body 11f. The partition wall 13 includes a cylindrical gas partition wall 13A and a cylindrical liquid partition wall 13B. The gas partition wall 13A is provided integrally with the upper lid body 11f. The height of the lower end portion of the gas partition wall 13A is set to be substantially equal to the height of the liquid surface of the electrolytic bath 12. As a material for the gas partition wall 13A, a metal or alloy such as Ni (nickel), Ni alloy, Monel, pure iron or stainless steel is preferably used. In this case, corrosion of the gas partition wall 13A by fluorine gas and hydrogen fluoride vapor is suppressed. 13 A of gas partition walls may be provided so that removal from the upper cover body 11f is possible.
 液体隔壁13Bは、電解浴12に浸漬するように気体隔壁13Aの下端部に取り付けられる。液体隔壁13Bには、電解浴12の透過性を確保するための複数の貫通孔H(後述の図5)が形成される。液体隔壁13Bの詳細については後述する。液体隔壁13Bの材料としては、PTFE(ポリテトラフルオロエチレン)またはPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)等のパーフルオロ樹脂が用いられることが好ましく、特にPTFEが用いられることが好ましい。この場合、液体隔壁13Bの材料として金属が用いられる場合に比べて、電解浴12による液体隔壁13Bの腐食が抑制される。また、上記の貫通孔Hを形成する際の加工が容易になる。さらに、液体隔壁13Bの材料コストが低減される。 The liquid partition wall 13B is attached to the lower end of the gas partition wall 13A so as to be immersed in the electrolytic bath 12. A plurality of through holes H (FIG. 5 described later) for ensuring the permeability of the electrolytic bath 12 are formed in the liquid partition wall 13B. Details of the liquid partition wall 13B will be described later. As the material of the liquid partition wall 13B, a perfluoro resin such as PTFE (polytetrafluoroethylene) or PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) is preferably used, and PTFE is particularly preferably used. . In this case, compared with the case where a metal is used as the material of the liquid partition wall 13B, the corrosion of the liquid partition wall 13B by the electrolytic bath 12 is suppressed. Moreover, the process at the time of forming said through-hole H becomes easy. Furthermore, the material cost of the liquid partition wall 13B is reduced.
 電解槽11内において、隔壁13の内側に陽極室14aが形成され、隔壁13の外側に陰極室14bが形成される。陽極室14a内で電解浴12に浸漬するように陽極15aが配置される。陽極15aの材料としては、例えば低分極性炭素電極を用いることが好ましい。 In the electrolytic cell 11, an anode chamber 14 a is formed inside the partition wall 13, and a cathode chamber 14 b is formed outside the partition wall 13. An anode 15a is disposed so as to be immersed in the electrolytic bath 12 in the anode chamber 14a. As a material of the anode 15a, for example, a low polarizable carbon electrode is preferably used.
 陽極15aの表面には、導電性ダイヤモンドコーティングが施されることが好ましい。具体的には、ダイヤモンド原料として水素ガスおよび炭素源の混合ガスを用いるとともに、その混合ガスに炭素と原子価が異なる元素(以下、ドーパントと呼ぶ)を微量添加することにより、導電性を有するダイヤモンドコーティング層を形成することができる。ドーパントとしては、硼素、リンまたは窒素を用いることが好ましく、特に硼素を用いることが好ましい。添加されるドーパントの重量は、ダイヤモンドコーティング層の全重量に対して、1ppm以上30000ppm以下であることが好ましく、100ppm以上10000ppm以下であることがより好ましい。陽極15aの表面に導電性ダイヤモンドコーティングが施されることにより、陽極15aで分極が発生しにくくなる。そのため、フッ素ガスの生成効率が向上される。本実施の形態では、電解槽本体11aの側面部が陰極として機能する。 It is preferable that a conductive diamond coating is applied to the surface of the anode 15a. Specifically, a diamond having conductivity by using a mixed gas of hydrogen gas and a carbon source as a diamond raw material and adding a small amount of an element (hereinafter referred to as a dopant) having a different valence from carbon to the mixed gas. A coating layer can be formed. As the dopant, boron, phosphorus or nitrogen is preferably used, and boron is particularly preferably used. The weight of the added dopant is preferably 1 ppm or more and 30000 ppm or less, and more preferably 100 ppm or more and 10000 ppm or less with respect to the total weight of the diamond coating layer. By applying a conductive diamond coating to the surface of the anode 15a, polarization hardly occurs in the anode 15a. Therefore, the generation efficiency of fluorine gas is improved. In the present embodiment, the side surface portion of the electrolytic cell main body 11a functions as a cathode.
 電解槽11内にHFを供給するためのHF供給ライン18aが上部蓋体11fに接続される。HF供給ライン18aは温度調整用ヒータ18bで覆われる。これにより、HF供給ライン18aでHFが液化することが防止される。電解浴12の液面の高さは液面検出装置(図示せず)により検出される。液面検出装置により検出される液面の高さが所定値よりも低くなると、HF供給ライン18aを通して電解槽11内にHFが供給される。 An HF supply line 18a for supplying HF into the electrolytic cell 11 is connected to the upper lid 11f. The HF supply line 18a is covered with a temperature adjusting heater 18b. This prevents HF from being liquefied in the HF supply line 18a. The height of the electrolytic bath 12 is detected by a liquid level detector (not shown). When the height of the liquid level detected by the liquid level detection device becomes lower than a predetermined value, HF is supplied into the electrolytic cell 11 through the HF supply line 18a.
 上部蓋体11fには、ガス排出口16a,16bが設けられる。ガス排出口16aには排気管17aが接続され、ガス排出口16bには排気管17bが接続される。ガス排出口16aは陽極室14aに連通し、ガス排出口16bは陰極室14bに連通する。 The upper lid 11f is provided with gas discharge ports 16a and 16b. An exhaust pipe 17a is connected to the gas exhaust port 16a, and an exhaust pipe 17b is connected to the gas exhaust port 16b. The gas discharge port 16a communicates with the anode chamber 14a, and the gas discharge port 16b communicates with the cathode chamber 14b.
 陽極15aと電解槽本体11aとの間に電圧が印加されることにより、電解浴12が電気分解される。この場合、陽極15aの表面上でフッ素ガスが発生し、電解槽本体11aの側面部の内面上で水素ガスが発生する。電解槽本体11aの底面部の上面は絶縁部材11gにより覆われるので、底面部の上面上では電解浴12の電解反応が進行せず、水素ガスが発生しない。 When a voltage is applied between the anode 15a and the electrolytic cell body 11a, the electrolytic bath 12 is electrolyzed. In this case, fluorine gas is generated on the surface of the anode 15a, and hydrogen gas is generated on the inner surface of the side surface portion of the electrolytic cell main body 11a. Since the upper surface of the bottom surface portion of the electrolytic cell main body 11a is covered with the insulating member 11g, the electrolytic reaction of the electrolytic bath 12 does not proceed on the upper surface of the bottom surface portion, and hydrogen gas is not generated.
 陽極室14aで発生したフッ素ガスは、ガス排出口16aから排気管17aを通して電解槽11の外部に導かれる。陰極室14bで発生した水素ガスは、ガス排出口16bから排気管17bを通して電解槽11の外部に導かれる。 The fluorine gas generated in the anode chamber 14a is guided to the outside of the electrolytic cell 11 from the gas discharge port 16a through the exhaust pipe 17a. Hydrogen gas generated in the cathode chamber 14b is guided to the outside of the electrolytic cell 11 from the gas discharge port 16b through the exhaust pipe 17b.
 (2)液体隔壁の詳細
 図5は液体隔壁13Bの外観斜視図であり、図6は液体隔壁13Bに形成される貫通孔Hの拡大図である。図6(a)は貫通孔Hの縦断面図であり、図6(b)は陽極室14aから見た貫通孔Hの側面図であり、図6(c)は陰極室14bから見た貫通孔Hの側面図である。図6(a)は、図6(b)および図6(c)のA-A線断面を示す。
(2) Details of Liquid Partition Wall FIG. 5 is an external perspective view of the liquid partition wall 13B, and FIG. 6 is an enlarged view of the through hole H formed in the liquid partition wall 13B. 6A is a longitudinal sectional view of the through hole H, FIG. 6B is a side view of the through hole H viewed from the anode chamber 14a, and FIG. 6C is a through view viewed from the cathode chamber 14b. 3 is a side view of a hole H. FIG. FIG. 6A shows a cross section taken along line AA of FIGS. 6B and 6C.
 図5に示すように、液体隔壁13Bには複数の円形の貫通孔Hが形成される。図5の例では、複数の貫通孔Hが、液体隔壁13Bの周方向に沿って2列をなす。この場合、電解浴12中のイオンが複数の貫通孔Hを通って陽極室14aと陰極室14bとの間で移動可能となる。これにより、陽極室14aおよび陰極室14bにおいて電解反応が安定にかつ円滑に進行する。 As shown in FIG. 5, a plurality of circular through holes H are formed in the liquid partition wall 13B. In the example of FIG. 5, the plurality of through holes H form two rows along the circumferential direction of the liquid partition wall 13B. In this case, ions in the electrolytic bath 12 can move between the anode chamber 14a and the cathode chamber 14b through the plurality of through holes H. Thereby, the electrolytic reaction proceeds stably and smoothly in the anode chamber 14a and the cathode chamber 14b.
 この場合、電解反応により発生したフッ素ガスおよび水素ガスが貫通孔Hを通って移動すると、陽極室14aまたは陰極室14bにおいてフッ素ガスと水素ガスとが混合される。それにより、フッ素ガスと水素ガスとが反応してフッ素ガスの生成効率が低下するとともに、フッ素ガスおよび水素ガスの比によっては爆発性の混合ガスが生成される可能性も考えられる。 In this case, when the fluorine gas and the hydrogen gas generated by the electrolytic reaction move through the through hole H, the fluorine gas and the hydrogen gas are mixed in the anode chamber 14a or the cathode chamber 14b. Thereby, fluorine gas and hydrogen gas react with each other to reduce the generation efficiency of fluorine gas, and an explosive gas mixture may be generated depending on the ratio of fluorine gas and hydrogen gas.
 そこで、各貫通孔Hの径は、フッ素ガスおよび水素ガスの泡が通過しないような大きさに設定される。しかしながら、これによって泡が貫通孔H内に滞留し、貫通孔Hが塞がれることがある。特に、水素ガスはフッ素ガスに比べて電解浴12に溶解しにくいので、水素ガスの泡は、貫通孔H内に滞留しやすく、貫通孔Hを塞ぎやすい。貫通孔Hが塞がれると、電解浴12が貫通孔Hを通って移動することができない。それにより、安定に電解反応を進行させることができない。 Therefore, the diameter of each through hole H is set to such a size that the bubbles of fluorine gas and hydrogen gas do not pass. However, this may cause bubbles to stay in the through hole H and close the through hole H. In particular, since hydrogen gas is less soluble in the electrolytic bath 12 than fluorine gas, bubbles of hydrogen gas tend to stay in the through hole H and easily close the through hole H. When the through hole H is blocked, the electrolytic bath 12 cannot move through the through hole H. As a result, the electrolytic reaction cannot proceed stably.
 そこで、本実施の形態では、図6に示すように、各貫通孔Hが、陽極室14a側の端部から陰極室14b側の端部まで斜め上方に延びる上面L1を有する。以下、陽極室14a側における貫通孔Hの端部を陽極側端と呼び、陰極室14b側における貫通孔Hの端部を陰極側端と呼ぶ。貫通孔Hの下面L2は、陽極側端から陰極側端まで水平に延びる。ここで、貫通孔Hの上面とは、貫通孔Hの内周面のうち、下方を向く領域をいい、貫通孔Hの下面とは、貫通孔Hの内周面のうち、上方を向く領域をいう。 Therefore, in the present embodiment, as shown in FIG. 6, each through hole H has an upper surface L1 that extends obliquely upward from the end on the anode chamber 14a side to the end on the cathode chamber 14b side. Hereinafter, the end of the through hole H on the anode chamber 14a side is referred to as the anode side end, and the end of the through hole H on the cathode chamber 14b side is referred to as the cathode side end. The lower surface L2 of the through hole H extends horizontally from the anode side end to the cathode side end. Here, the upper surface of the through hole H refers to a region facing downward in the inner peripheral surface of the through hole H, and the lower surface of the through hole H refers to a region facing upward in the inner peripheral surface of the through hole H. Say.
 貫通孔Hの陽極側端の上下方向の径D1は、電解浴が通過可能でかつフッ素ガスおよび水素ガスの泡が通過しないような大きさに設定される。径D1は、例えば1mm以上3mm以下であり、1mm以上2mm以下であることが好ましい。貫通孔Hの陰極側端の上下方向の径D2は、径D1よりも大きい。径D2は、例えば5mm以上10mm以下であり、5mm以上8mm以下であることが好ましい。液体隔壁13Bの厚みTHは、例えば5mm以上10mm以下であり、5mm以上8mm以下であることが好ましい。 The diameter D1 in the vertical direction of the anode side end of the through hole H is set to a size that allows the electrolytic bath to pass therethrough and does not allow the bubbles of fluorine gas and hydrogen gas to pass through. The diameter D1 is, for example, 1 mm or more and 3 mm or less, and preferably 1 mm or more and 2 mm or less. The diameter D2 in the vertical direction of the cathode side end of the through hole H is larger than the diameter D1. The diameter D2 is, for example, 5 mm to 10 mm, and preferably 5 mm to 8 mm. The thickness TH of the liquid partition wall 13B is, for example, 5 mm or more and 10 mm or less, and preferably 5 mm or more and 8 mm or less.
 本実施の形態に係る電解装置10においては、陰極室14bから水素ガスの泡が貫通孔H内に進入しても、その泡は、貫通孔Hの上面に沿って陰極室14bに戻り、液面に浮上する。したがって、陰極室14bから貫通孔H内に進入した水素ガスの泡が貫通孔Hを塞ぐことが防止される。 In the electrolysis apparatus 10 according to the present embodiment, even if hydrogen gas bubbles enter the through hole H from the cathode chamber 14b, the bubbles return to the cathode chamber 14b along the upper surface of the through hole H, and the liquid Surface. Therefore, hydrogen gas bubbles that have entered the through hole H from the cathode chamber 14 b are prevented from blocking the through hole H.
 また、陽極室14a側における貫通孔Hの上下方向の径は、陰極室14b側における貫通孔Hの上下方向の径よりも小さい。さらに、上記のように、フッ素ガスは、水素ガスに比べて電解浴12中に溶解しやすい。そのため、フッ素ガスの泡が陽極室14aから貫通孔H内に進入することが防止される。 The vertical diameter of the through hole H on the anode chamber 14a side is smaller than the vertical diameter of the through hole H on the cathode chamber 14b side. Furthermore, as described above, the fluorine gas is more easily dissolved in the electrolytic bath 12 than the hydrogen gas. This prevents fluorine gas bubbles from entering the through hole H from the anode chamber 14a.
 このように、フッ素ガスおよび水素ガスの泡が貫通孔Hを通って移動することが防止されつつ、フッ素ガスおよび水素ガスの泡が貫通孔Hを塞ぐことが防止される。それにより、フッ素ガスの生成効率を低下させることなく、電解反応を安定にかつ円滑に進行させることができる。 Thus, the bubbles of fluorine gas and hydrogen gas are prevented from moving through the through hole H, and the bubbles of fluorine gas and hydrogen gas are prevented from blocking the through hole H. As a result, the electrolytic reaction can proceed stably and smoothly without reducing the generation efficiency of the fluorine gas.
 (3)貫通孔の他の例
 (3-1)
 液体隔壁13Bの貫通孔Hの形状は、図5および図6の例に限らない。図7は、液体隔壁13Bに形成される貫通孔Hの他の例を示す図である。図7(a)および図7(b)の例について、図5および図6の例と異なる点を説明する。
(3) Other examples of through holes (3-1)
The shape of the through hole H of the liquid partition wall 13B is not limited to the examples of FIGS. FIG. 7 is a diagram illustrating another example of the through hole H formed in the liquid partition wall 13B. Differences of the example of FIGS. 7A and 7B from the example of FIGS. 5 and 6 will be described.
 図7(a)の例では、貫通孔Hの上面L1が、陽極側端から陽極側端と陰極側端との中間点P1まで水平に延び、中間点P1から陰極側端まで斜め上方に延びる。この場合も、陰極室14bから貫通孔H内に進入した水素ガスの泡が貫通孔Hを塞ぐことが防止されるとともに、フッ素ガスの泡が陽極室14aから貫通孔H内に進入することが防止される。 In the example of FIG. 7A, the upper surface L1 of the through hole H extends horizontally from the anode side end to the intermediate point P1 between the anode side end and the cathode side end, and extends obliquely upward from the intermediate point P1 to the cathode side end. . Also in this case, hydrogen gas bubbles entering the through hole H from the cathode chamber 14b are prevented from blocking the through hole H, and fluorine gas bubbles can enter the through hole H from the anode chamber 14a. Is prevented.
 図7(b)の例では、貫通孔Hの上面L1が、陽極側端から中間点P1まで斜め下方に延び、中間点P1から陰極側端まで斜め上方に延びる。この場合も、陰極室14bから貫通孔H内に進入した水素ガスの泡が貫通孔Hを塞ぐことが防止される。また、陽極室14aから貫通孔H内にフッ素ガスの泡が進入しても、その泡は、貫通孔Hの上面L1に沿って陽極室14aに戻り、液面に浮上する。したがって、陽極室14aから貫通孔H内に進入したフッ素ガスの泡が貫通孔Hを塞ぐことが防止される。 In the example of FIG. 7B, the upper surface L1 of the through hole H extends obliquely downward from the anode side end to the intermediate point P1, and extends obliquely upward from the intermediate point P1 to the cathode side end. Also in this case, hydrogen gas bubbles that have entered the through hole H from the cathode chamber 14 b are prevented from blocking the through hole H. Further, even if a fluorine gas bubble enters the through hole H from the anode chamber 14a, the bubble returns to the anode chamber 14a along the upper surface L1 of the through hole H and floats on the liquid surface. Accordingly, it is possible to prevent the fluorine gas bubbles that have entered the through hole H from the anode chamber 14a from blocking the through hole H.
 (3-2)
 上記の例では、貫通孔Hが円形の縦断面を有するが、貫通孔Hが楕円形状、三角形または四角形等の他の形状の縦断面を有してもよい。
(3-2)
In the above example, the through hole H has a circular vertical cross section, but the through hole H may have a vertical cross section of another shape such as an oval shape, a triangle, or a quadrangle.
 (3-3)
 上記の例では、貫通孔Hの上面L1が陰極側端に向かって斜め上方に直線状に延びるように設けられるが、これに限らず、例えば貫通孔Hの上面L1が陰極側端に向かって斜め上方に湾曲して延びるように設けられてもよい。
(3-3)
In the above example, the upper surface L1 of the through hole H is provided so as to linearly extend obliquely upward toward the cathode side end. However, the present invention is not limited thereto, and for example, the upper surface L1 of the through hole H is directed toward the cathode side end. It may be provided so as to bend and extend obliquely upward.
 (4)液体隔壁の他の例
 図8は、液体隔壁13Bの他の例について説明するための断面図である。図8には、気体隔壁13Aの下端部および液体隔壁13Bの上端部が示される。図8の例について、図5および図6の例と異なる点を説明する。
(4) Another Example of Liquid Partition Wall FIG. 8 is a cross-sectional view for explaining another example of the liquid partition wall 13B. FIG. 8 shows a lower end portion of the gas partition wall 13A and an upper end portion of the liquid partition wall 13B. The example of FIG. 8 will be described while referring to differences from the examples of FIGS.
 図8の例では、液体隔壁13Bの上端部が、気体隔壁13Aの外周面(陰極室14b側の面)の下端部を覆うように設けられる。気体隔壁13Aの下端部が電解浴12に浸漬する状態で電解浴12の電解反応が進行する場合、電解浴12内で気体隔壁13Aが分極し、気体隔壁13Aの外周面が正の電荷を帯びる。その場合、正の電荷を帯びた気体隔壁13Aの外周面から金属がイオン化して電解浴12中に溶出し、気体隔壁13Aの外周面が腐食されやすくなる。そこで、本例では、電解浴12に浸漬する気体隔壁13Aの外周面の部分が液面隔壁13Bにより覆われる。それにより、気体隔壁13Aの外周面に電解浴12が接触することが防止され、電解浴12に浸漬する気体隔壁13Aの外周面の部分が腐食することが防止される。 In the example of FIG. 8, the upper end portion of the liquid partition wall 13B is provided so as to cover the lower end portion of the outer peripheral surface (surface on the cathode chamber 14b side) of the gas partition wall 13A. When the electrolytic reaction of the electrolytic bath 12 proceeds while the lower end of the gas partition wall 13A is immersed in the electrolytic bath 12, the gas partition wall 13A is polarized in the electrolytic bath 12, and the outer peripheral surface of the gas partition wall 13A has a positive charge. . In this case, the metal is ionized from the outer peripheral surface of the positive gas partition wall 13A and is eluted into the electrolytic bath 12, and the outer peripheral surface of the gas partition wall 13A is easily corroded. Therefore, in this example, the outer peripheral surface portion of the gas partition wall 13A immersed in the electrolytic bath 12 is covered with the liquid surface partition wall 13B. This prevents the electrolytic bath 12 from coming into contact with the outer peripheral surface of the gas partition wall 13A, and prevents the portion of the outer peripheral surface of the gas partition wall 13A immersed in the electrolytic bath 12 from corroding.
 また、液面隔壁13Bの上端部は、電解浴12の液面の上方まで延びることが好ましい。この場合、気体隔壁13Aの外周面に電解浴12が接触することを確実に防止することができる。なお、液面隔壁13Bの上端部は陰極室14b側に位置するので、液面隔壁13Bの上端部が電解浴12の液面の上方まで延びていても、液面隔壁13Bにフッ素ガスおよびフッ化水素蒸気が接触することはない。そのため、液面隔壁13Bの腐食が防止される。 Further, it is preferable that the upper end portion of the liquid surface partition 13B extends to above the liquid surface of the electrolytic bath 12. In this case, it is possible to reliably prevent the electrolytic bath 12 from contacting the outer peripheral surface of the gas partition wall 13A. Since the upper end portion of the liquid level partition wall 13B is located on the cathode chamber 14b side, even if the upper end portion of the liquid level partition wall 13B extends above the liquid surface of the electrolytic bath 12, fluorine gas and fluorine are added to the liquid level partition wall 13B. There is no contact with hydrogen fluoride vapor. Therefore, corrosion of the liquid level partition wall 13B is prevented.
 (5)他の実施の形態
 (5-1)
 上記実施の形態では、気体隔壁13Aと液体隔壁13Bとが別体として設けられるが、気体隔壁13Aおよび液体隔壁13Bの腐食が防止される場合または気体隔壁13Aおよび液体隔壁13Bの腐食が問題とならない場合には、気体隔壁13Aおよび液体隔壁13Bが一体的に設けられてもよい。
(5) Other embodiments (5-1)
In the above embodiment, the gas partition wall 13A and the liquid partition wall 13B are provided as separate bodies. However, the corrosion of the gas partition wall 13A and the liquid partition wall 13B is prevented, or the corrosion of the gas partition wall 13A and the liquid partition wall 13B does not matter. In this case, the gas partition wall 13A and the liquid partition wall 13B may be provided integrally.
 (5-2)
 上記実施の形態では、気体隔壁13Aおよび液体隔壁13Bがそれぞれ円筒状であるが、これに限らず、気体隔壁13Aおよび液体隔壁13Bがそれぞれ角筒状または平板状等の他の形状であってもよい。
(5-2)
In the above embodiment, the gas partition wall 13A and the liquid partition wall 13B are each cylindrical. However, the present invention is not limited to this, and the gas partition wall 13A and the liquid partition wall 13B may have other shapes such as a rectangular tube shape or a flat plate shape. Good.
 (5-3)
 上記実施の形態は、フッ素ガスを発生する電解装置に本発明を適用した例であるが、酸素ガス等の他の気体を発生する電解装置にも本発明を同様に適用することができる。
(5-3)
The above embodiment is an example in which the present invention is applied to an electrolysis apparatus that generates fluorine gas. However, the present invention can be similarly applied to an electrolysis apparatus that generates other gas such as oxygen gas.
 (6)請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
(6) Correspondence between each component of claim and each part of embodiment The following describes an example of a correspondence between each component of the claim and each part of the embodiment. It is not limited.
 上記実施の形態では、電解浴12が電解浴の例であり、電解槽11が電解槽の例であり、貫通孔Hが開口の例であり、上面L1が上面の例であり、隔壁13が隔壁の例であり、陽極室14aが陽極室の例であり、陽極15aが陽極の例であり、陰極室14bが陰極室の例であり、陰極15bが陰極の例であり、液体隔壁13Bが液体隔壁の例である。 In the above embodiment, the electrolytic bath 12 is an example of an electrolytic bath, the electrolytic bath 11 is an example of an electrolytic bath, the through hole H is an example of an opening, the upper surface L1 is an example of an upper surface, and the partition wall 13 is This is an example of a partition wall, the anode chamber 14a is an example of an anode chamber, the anode 15a is an example of an anode, the cathode chamber 14b is an example of a cathode chamber, the cathode 15b is an example of a cathode, and the liquid partition wall 13B is It is an example of a liquid partition.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、気体発生装置等の種々の電解装置に有効に利用することができる。 The present invention can be effectively used for various electrolyzers such as gas generators.

Claims (9)

  1. 電解浴を電気分解することによりフッ素および他の気体を発生するための電解装置であって、
     電解浴を収容する電解槽を備え、
     前記電解槽は、
     第1の開口を上部に有する電解槽本体と、
     前記第1の開口よりも小さい第2の開口を有し、前記第1の開口を閉塞するように前記電解槽本体に設けられる第1の蓋体と、
     前記第2の開口を取り囲むように前記第1の蓋体に設けられる第1のシール部材と、
     前記第2の開口を閉塞するように前記第1のシール部材を挟んで前記第1の蓋体上に設けられる第2の蓋体と、
     前記第2の蓋体に取り付けられる第1の電極と、
     前記電解槽本体内をフッ素が発生される第1室と他の気体が発生される第2室とに分離する隔壁とを含み、
     前記隔壁は、前記第1室が前記第1のシール部材の内側の領域に配置されるように形成される、電解装置。
    An electrolyzer for generating fluorine and other gases by electrolyzing an electrolytic bath, comprising:
    It has an electrolytic cell that houses an electrolytic bath,
    The electrolytic cell is
    An electrolytic cell body having a first opening at the top;
    A first lid provided on the electrolytic cell main body so as to have a second opening smaller than the first opening and close the first opening;
    A first seal member provided on the first lid so as to surround the second opening;
    A second lid provided on the first lid with the first seal member sandwiched so as to close the second opening;
    A first electrode attached to the second lid;
    A partition that separates the inside of the electrolytic cell main body into a first chamber in which fluorine is generated and a second chamber in which another gas is generated;
    The partition wall is an electrolysis apparatus, wherein the first chamber is formed in a region inside the first seal member.
  2. 前記隔壁は、前記第1の電極の周囲を取り囲むように前記第1の蓋体に一体的に設けられる、請求項1記載の電解装置。 The electrolytic apparatus according to claim 1, wherein the partition wall is provided integrally with the first lid body so as to surround a periphery of the first electrode.
  3. 前記電解槽本体が第2の電極として機能する、請求項1または2記載の電解装置。 The electrolyzer according to claim 1, wherein the electrolytic cell main body functions as a second electrode.
  4. 前記第1の開口を取り囲むように前記電解槽本体に設けられる第2のシール部材をさらに備え、
     前記第1の蓋体は、前記第2のシール部材を挟んで前記電解槽本体上に設けられる、請求項1~3のいずれかに記載の電解装置。
    A second seal member provided on the electrolytic cell main body so as to surround the first opening;
    The electrolysis apparatus according to any one of claims 1 to 3, wherein the first lid is provided on the electrolytic cell main body with the second seal member interposed therebetween.
  5. 電解浴を収容する電解槽と、
     前記電解槽内を陽極室と陰極室とに区画するように設けられ、前記電解浴中のイオンが通過可能な開口を有する隔壁と、
     前記電解槽の前記陽極室に設けられる陽極と、
     前記電解槽の前記陰極室に設けられる陰極とを備え、
     前記隔壁の前記開口は、前記陽極室および前記陰極室の少なくとも一方に向かって斜め上方に延びる上面を有する、電解装置。
    An electrolytic cell containing an electrolytic bath;
    A partition wall provided to partition the inside of the electrolytic cell into an anode chamber and a cathode chamber, and having an opening through which ions in the electrolytic bath can pass;
    An anode provided in the anode chamber of the electrolytic cell;
    A cathode provided in the cathode chamber of the electrolytic cell,
    The opening of the partition has an upper surface extending obliquely upward toward at least one of the anode chamber and the cathode chamber.
  6. 前記陽極室においてフッ素ガスが発生され、前記陰極室において水素ガスが発生され、
     前記開口の前記上面は、前記陰極室側に向かって斜め上方に延びるように設けられる、請求項5記載の電解装置。
    Fluorine gas is generated in the anode chamber, hydrogen gas is generated in the cathode chamber,
    The electrolytic apparatus according to claim 5, wherein the upper surface of the opening is provided so as to extend obliquely upward toward the cathode chamber side.
  7. 前記陽極室側における前記開口の端部の面積は、前記陰極室側における前記開口の端部の面積よりも小さい、請求項6記載の電解装置。 The electrolysis apparatus according to claim 6, wherein an area of an end portion of the opening on the anode chamber side is smaller than an area of an end portion of the opening on the cathode chamber side.
  8. 前記隔壁は、前記電解浴に浸漬する液体隔壁を含み、
     前記開口は前記液体隔壁に設けられ、
     前記液体隔壁は、パーフルオロ樹脂により形成される、請求項5~7のいずれかに記載の電解装置。
    The partition includes a liquid partition immersed in the electrolytic bath,
    The opening is provided in the liquid partition;
    The electrolyzer according to any one of claims 5 to 7, wherein the liquid partition is made of a perfluoro resin.
  9. 前記陽極の表面に導電性ダイヤモンドコーティングが施される、請求項5~8のいずれかに記載の電解装置。 The electrolyzer according to any one of claims 5 to 8, wherein a conductive diamond coating is applied to a surface of the anode.
PCT/JP2012/004145 2011-06-29 2012-06-27 Electrolysis device WO2013001800A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137034358A KR20140035957A (en) 2011-06-29 2012-06-27 Electrolysis device
DE112012002702.7T DE112012002702T8 (en) 2011-06-29 2012-06-27 Electrolytic device
CN201280032007.0A CN103635609A (en) 2011-06-29 2012-06-27 Electrolysis device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011143908A JP5824256B2 (en) 2011-06-29 2011-06-29 Electrolyzer
JP2011-143908 2011-06-29
JP2011-155066 2011-07-13
JP2011155066A JP2013019035A (en) 2011-07-13 2011-07-13 Gas generator

Publications (1)

Publication Number Publication Date
WO2013001800A1 true WO2013001800A1 (en) 2013-01-03

Family

ID=47423720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004145 WO2013001800A1 (en) 2011-06-29 2012-06-27 Electrolysis device

Country Status (5)

Country Link
KR (1) KR20140035957A (en)
CN (1) CN103635609A (en)
DE (1) DE112012002702T8 (en)
TW (1) TW201311935A (en)
WO (1) WO2013001800A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162868A1 (en) * 2014-04-24 2015-10-29 東洋炭素株式会社 Reaction device
US10378166B2 (en) 2015-10-22 2019-08-13 Pasquale Impero Deformation guiding system for a road safety device and a road safety device group
CN111183247A (en) * 2017-10-31 2020-05-19 关东电化工业株式会社 Electrolytic cell for producing nitrogen trifluoride gas and partition wall thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6096258B1 (en) * 2015-09-11 2017-03-15 株式会社ウォーターエージェンシー Ozone water production equipment
KR101771862B1 (en) * 2015-10-02 2017-08-28 후성정공 주식회사 Collector of electrolyzer for manufacturing nitrogen trifluoride and manufacturing method the same
US20210395901A1 (en) * 2018-10-24 2021-12-23 Showa Denko K.K. Fluorine gas production device
CN113906164B (en) * 2019-12-27 2024-01-05 株式会社力森诺科 Method for producing fluorine gas and apparatus for producing fluorine gas

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350187A (en) * 1991-08-19 1992-12-04 Mitsui Toatsu Chem Inc Electrolytic cell
JP2002339090A (en) * 2000-04-07 2002-11-27 Toyo Tanso Kk Gaseous fluorine generator
JP2005048290A (en) * 2003-01-22 2005-02-24 Toyo Tanso Kk Molten salt electrolysis apparatus
JP2006283158A (en) * 2005-04-01 2006-10-19 Mitsui Chemicals Inc Electrolytic cell for producing gaseous nitrogen trifluoride, and method for producing gaseous nitrogen trifluoride
WO2007083740A1 (en) * 2006-01-20 2007-07-26 Toyo Tanso Co., Ltd. Electrolytic apparatus for producing fluorine or nitrogen trifluoride
JP2009215578A (en) * 2008-03-07 2009-09-24 Toyohashi Univ Of Technology Fluorine electrolysis apparatus
JP2009263765A (en) * 2008-02-14 2009-11-12 Snecma Propulsion Solide Electrolysis installation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2684940A (en) * 1949-08-02 1954-07-27 Ici Ltd Apparatus for the electrolytic production of fluorine
EP0424727B1 (en) * 1989-10-26 1995-04-19 MITSUI TOATSU CHEMICALS, Inc. Method for producing nitrogen trifluoride
EP0716717B1 (en) * 1993-09-03 1998-12-02 Minnesota Mining And Manufacturing Company Fluorine cell
TWI247051B (en) * 2000-04-07 2006-01-11 Toyo Tanso Co Apparatus for generating fluorine gas
TWI322198B (en) * 2003-01-22 2010-03-21 Toyo Tanso Co Electrolytic apparatus for molten salt

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350187A (en) * 1991-08-19 1992-12-04 Mitsui Toatsu Chem Inc Electrolytic cell
JP2002339090A (en) * 2000-04-07 2002-11-27 Toyo Tanso Kk Gaseous fluorine generator
JP2005048290A (en) * 2003-01-22 2005-02-24 Toyo Tanso Kk Molten salt electrolysis apparatus
JP2006283158A (en) * 2005-04-01 2006-10-19 Mitsui Chemicals Inc Electrolytic cell for producing gaseous nitrogen trifluoride, and method for producing gaseous nitrogen trifluoride
WO2007083740A1 (en) * 2006-01-20 2007-07-26 Toyo Tanso Co., Ltd. Electrolytic apparatus for producing fluorine or nitrogen trifluoride
JP2009263765A (en) * 2008-02-14 2009-11-12 Snecma Propulsion Solide Electrolysis installation
JP2009215578A (en) * 2008-03-07 2009-09-24 Toyohashi Univ Of Technology Fluorine electrolysis apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162868A1 (en) * 2014-04-24 2015-10-29 東洋炭素株式会社 Reaction device
US10378166B2 (en) 2015-10-22 2019-08-13 Pasquale Impero Deformation guiding system for a road safety device and a road safety device group
CN111183247A (en) * 2017-10-31 2020-05-19 关东电化工业株式会社 Electrolytic cell for producing nitrogen trifluoride gas and partition wall thereof
CN111183247B (en) * 2017-10-31 2022-07-15 关东电化工业株式会社 Electrolytic cell for producing nitrogen trifluoride gas and partition wall thereof
US11401614B2 (en) 2017-10-31 2022-08-02 Kanto Denka Kogyo Co., Ltd. Electrolytic cell for producing nitrogen trifluoride gas and partition therefor

Also Published As

Publication number Publication date
CN103635609A (en) 2014-03-12
DE112012002702T8 (en) 2014-04-10
TW201311935A (en) 2013-03-16
KR20140035957A (en) 2014-03-24
DE112012002702T5 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
WO2013001800A1 (en) Electrolysis device
KR102274666B1 (en) Electrolytic enrichment method for heavy water
TWI471459B (en) Electrolysis unit and electrolytic cell
CN104364425A (en) Bipolar alkaline water electrolysis unit and electrolytic cell
CN101818357A (en) Electrochemical appliance
JP2008144274A (en) Gas evolving electrolysis system
JP2013194296A (en) Protective member of electrolytic cell and electrolytic cell using the same
JP5830430B2 (en) Electrolyzed water production equipment
JP2009215578A (en) Fluorine electrolysis apparatus
US5194132A (en) Electrolysis apparatus
JP2015086454A (en) Differential pressure-system high-pressure water electrolysis apparatus
JP5341547B2 (en) Water electrolysis system
KR102609118B1 (en) Fluorine gas production device
JP2010053401A (en) Separator for electrolyzer and method for manufacturing the same
JP5824256B2 (en) Electrolyzer
JP2005528528A5 (en)
JP2013019035A (en) Gas generator
CN201292408Y (en) High-capacity corrosion resistant electrolytic tank for production of fluorine
KR102503370B1 (en) Anode for electrolytic synthesis and method for producing fluorine gas
JP2015089949A (en) Differential pressure type high pressure water electrolyzer
JP2007059196A (en) Power generating system
KR200322666Y1 (en) Apparatus for generating a hydrogen gas and oxygen gas
CN102383141B (en) Anti-corrosion electrolytic tank for nitrogen trifluoride
JP2018178202A (en) Bipolar electrolytic cell
CN1631807A (en) Metal recovery apparatus used for wastewater treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137034358

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120027027

Country of ref document: DE

Ref document number: 112012002702

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804407

Country of ref document: EP

Kind code of ref document: A1