WO2015162868A1 - Reaction device - Google Patents

Reaction device Download PDF

Info

Publication number
WO2015162868A1
WO2015162868A1 PCT/JP2015/001994 JP2015001994W WO2015162868A1 WO 2015162868 A1 WO2015162868 A1 WO 2015162868A1 JP 2015001994 W JP2015001994 W JP 2015001994W WO 2015162868 A1 WO2015162868 A1 WO 2015162868A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
fluorine gas
gas supply
electrolytic cell
pipe
Prior art date
Application number
PCT/JP2015/001994
Other languages
French (fr)
Japanese (ja)
Inventor
勝志 寺岡
平岩 次郎
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Publication of WO2015162868A1 publication Critical patent/WO2015162868A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof

Definitions

  • the present invention relates to a reaction apparatus for forming a predetermined film on the surface of an object.
  • a film is also formed on the inner surface of a chamber (reaction chamber) during film formation on the surface of an object.
  • a chamber reaction chamber
  • the peeled film is scattered as particles in the chamber, which adversely affects the film forming process.
  • the chamber is cleaned.
  • Patent Document 1 describes a plasma CVD apparatus that cleans a reaction chamber using a cleaning gas.
  • This plasma CVD apparatus includes a cleaning gas generator in addition to film forming components such as a reaction chamber, a high-frequency power source, a high-frequency application device, and a plurality of pumps.
  • the cleaning gas generator includes an energy application device and a fluorine gas concentrating / separating / purifying device, and generates fluorine gas as a cleaning gas.
  • fluorine gas When generating fluorine gas, energy is applied to the fluorine compound by the energy application device in the cleaning gas generator.
  • a plasma generator or the like is used as the energy application device.
  • a fluorine gas component and components other than fluorine gas are produced from the fluorine compound.
  • a fluorine gas component and a component other than fluorine gas are separated by a fluorine gas concentrating / separating device, and fluorine gas is generated.
  • Fluorine gas generated by the cleaning gas generator is supplied into the reaction chamber, and the inside of the reaction chamber is adjusted to a predetermined pressure. In this state, plasma is generated in the reaction chamber. Thereby, the by-product (film adhering to the inner surface of the reaction chamber) in the reaction chamber is gasified. Then, the gas containing a by-product is exhausted.
  • the cleaning gas generation apparatus for generating fluorine gas is composed of an energy application apparatus and a fluorine gas concentrating / separating / purifying apparatus.
  • the energy application device includes components similar to those for film formation such as a reaction chamber, a high-frequency power source, a high-frequency application device, and a pump, and thus is large and expensive.
  • the cleaning gas generator requires a fluorine gas concentrating / separating / purifying device in addition to such an energy applying device. Therefore, the cleaning gas generator is larger and expensive. Therefore, in the plasma CVD apparatus of Patent Document 1, it is difficult to reduce the size and cost.
  • An object of the present invention is to provide a reaction apparatus that has a cleaning function and can be reduced in size and cost.
  • a reaction apparatus is a reaction apparatus that forms a predetermined film on the surface of an object by gas reaction in a chamber, and a film forming gas supply system used for gas reaction,
  • a fluorine gas supply device for supplying fluorine gas, which serves as a cleaning gas for the inner wall of the chamber, by electrolysis of an electrolytic bath containing hydrogen fluoride to the chamber, a film forming gas supply system, and a controller for controlling the fluorine gas supply device
  • the fluorine gas supply device has an electrolytic cell, a cathode and an anode provided in the electrolytic cell, and at least a part of the surface of the anode is formed of a conductive carbon material having a diamond structure.
  • the control unit controls the film forming gas supply system during film formation.
  • the film-forming gas is supplied into the chamber by the film-forming gas supply system in a state where the object is accommodated in the chamber. Thereby, a gas reaction occurs in the chamber, and a predetermined film is formed on the surface of the object.
  • the control unit controls the fluorine gas supply device. That is, a control part controls the electrolysis of the electrolytic bath accommodated in the electrolytic cell. Fluorine gas is generated by electrolysis of the electrolytic bath in the electrolytic cell of the fluorine gas supply device. The generated fluorine gas is supplied into the chamber as a cleaning gas. Thereby, the deposit on the inner wall of the chamber is removed.
  • the fluorine gas supply device In the fluorine gas supply device, at least a part of the surface immersed in the electrolytic bath on the surface of the anode is formed of a conductive carbon material having a diamond structure. In this case, it is possible to increase the current density in the electrolytic bath while preventing polarization at the anode. Thereby, a sufficient amount of fluorine gas can be generated in a small electrolytic cell for cleaning the inner wall of the chamber in a short time. Moreover, the fluorine gas generated in the electrolytic cell can be supplied to the chamber without going through the storage facility. Further, the common control unit controls film formation processing by the film forming gas supply system and cleaning of the inner wall of the chamber by the fluorine gas supply device. As a result, a reactor having a cleaning function and capable of being reduced in size and cost is realized.
  • the fluorine gas supply device may perform electrolysis at an applied current density of 20 A / dm 2 or more and 1000 A / dm 2 or less during electrolysis of the electrolytic bath.
  • the reaction apparatus may be configured such that an inert gas is supplied from one inert gas supply source into the chamber and the electrolytic cell.
  • the inert gas can be supplied into the chamber and the electrolytic cell by one inert gas supply source.
  • an inert gas supply source for supplying an inert gas into the chamber and the electrolytic cell. Therefore, downsizing and cost reduction are realized.
  • the control unit may adjust the pressure in the electrolytic cell by controlling an inert gas supply system including an inert gas supply source.
  • the pressure in the electrolytic cell is adjusted by the inert gas.
  • the control unit is configured to replace the film forming gas or fluorine gas remaining in the chamber with an inert gas so as to replace the film forming gas or fluorine gas remaining in the chamber after at least one of the film formation and the chamber cleaning with the fluorine gas.
  • You may control the inert gas supply system containing a supply source.
  • the film forming gas or fluorine gas remaining in the chamber is replaced with an inert gas.
  • the chamber is filled with an inert gas after at least one of the film formation and the chamber cleaning.
  • film forming gas or fluorine gas harmful to the human body is prevented from remaining in the chamber. Therefore, safety is ensured when the operator opens the chamber after at least one of the above-described processes. Further, the reaction chamber after film formation or cleaning can be easily returned to atmospheric pressure.
  • the fluorine gas supply device may include a fluorine gas supply system that guides the fluorine gas generated in the electrolytic cell from the electrolytic cell to the chamber.
  • the fluorine gas generated in the electrolytic cell is guided into the chamber by the fluorine gas supply system.
  • the fluorine gas supply system may include a fluorine gas supply pipe.
  • the fluorine gas generated in the electrolytic cell is guided into the chamber through the fluorine gas supply pipe.
  • the fluorine gas can be supplied into the chamber with a simple configuration.
  • the fluorine gas supply system is a fluorine gas supply pipe, and the fluorine gas supply pipe includes one or a plurality of valves, and is configured to supply fluorine gas generated in the electrolytic cell directly into the chamber. Also good.
  • the supply path of the fluorine gas from the electrolytic cell to the inside of the chamber is composed of, for example, only a fluorine gas supply pipe including one or more valves.
  • the fluorine gas generated in the electrolytic cell is directly supplied to the chamber without going through the gas storage facility. Therefore, it is not necessary to provide a gas storage facility between the electrolytic cell and the chamber, so that an increase in the size of the reaction apparatus is suppressed.
  • the pressure in the chamber is reduced, and the pressure in the chamber becomes lower than the pressure in the anode chamber. Thereby, the fluorine gas generated in the electrolytic cell is smoothly guided into the chamber through the fluorine gas supply pipe. Therefore, it is not necessary to provide a configuration for pumping fluorine gas from the electrolytic cell to the chamber between the electrolytic cell and the chamber. Therefore, the enlargement of the reaction apparatus is suppressed.
  • the fluorine gas supply system may include a vacuum generator that sucks fluorine gas from the electrolytic cell by the flow of inert gas and guides the sucked fluorine gas to the chamber together with the inert gas.
  • the fluorine gas generated in the electrolytic cell can be introduced into the chamber while being diluted with an inert gas. Thereby, appropriate cleaning can be performed with diluted fluorine gas.
  • the fluorine gas supply system may include a pumping device that pumps the fluorine gas generated in the electrolytic cell to the chamber.
  • the fluorine gas generated in the electrolytic cell is supplied into the chamber while being pressurized.
  • pressurized fluorine gas can be supplied into the chamber. Therefore, appropriate cleaning can be performed with fluorine gas having a desired pressure.
  • the fluorine gas supply system may include a tank for storing fluorine gas generated in the electrolytic cell.
  • fluorine gas generated in the electrolytic cell is stored in the tank.
  • an amount of fluorine gas necessary for cleaning the chamber can be stored in the tank in advance. Therefore, a sufficient amount of fluorine gas can be supplied into the chamber when the chamber is cleaned.
  • the fluorine gas supply system may include a tank that stores the fluorine gas generated in the electrolytic cell and a pumping device that pumps the fluorine gas generated in the electrolytic cell to the tank.
  • the fluorine gas generated in the electrolytic cell is supplied into the tank while being pressurized by the pressure feeding device.
  • the pressurized fluorine gas can be stored in the tank, the enlargement of the tank can be suppressed.
  • a fluorine gas in an amount necessary for cleaning the chamber can be stored in the tank in advance. Therefore, a sufficient amount of fluorine gas can be supplied into the chamber when the chamber is cleaned.
  • the fluorine gas supply device may further include a flow rate adjusting device for adjusting the flow rate of the fluorine gas flowing into the chamber through the fluorine gas supply system.
  • the flow rate of the fluorine gas introduced into the chamber can be adjusted. Thereby, appropriate cleaning can be performed by supplying fluorine gas to the chamber at a desired flow rate.
  • the reaction apparatus may further include a housing that houses the chamber and the fluorine gas supply device, and an exhaust device that exhausts the inside of the housing.
  • the fluorine gas supply device includes a plurality of electrolytic cells, each electrolytic cell is provided with an anode and a cathode, and the control unit is an electrolyzer accommodated in each electrolytic cell when supplying fluorine gas into the chamber.
  • the fluorine gas supply device may be controlled so that fluorine gas is generated by electrolysis in the bath.
  • fluorine gas generated in a plurality of electrolytic cells can be supplied into the chamber when the chamber is cleaned. Thereby, an amount of fluorine gas necessary for cleaning can be supplied into the chamber in a short time.
  • the fluorine gas supply device has a plurality of electrolytic cells, for example, when a failure occurs in one electrolytic cell, the fluorine gas generated from the other electrolytic cell is maintained in the chamber while performing maintenance of the one electrolytic cell. Can be supplied to. Therefore, continuous operation of the reaction apparatus becomes possible.
  • a reactor having a cleaning function and capable of being reduced in size and cost is realized.
  • FIG. 1 is a configuration diagram of a CVD apparatus according to the first embodiment.
  • FIG. 2 is a block diagram showing a control system of the CVD apparatus of FIG.
  • FIG. 3 is a configuration diagram showing a part of a CVD apparatus according to the second embodiment.
  • FIG. 4 is a block diagram showing a part of a CVD apparatus according to another embodiment.
  • a reaction apparatus will be described.
  • a CVD apparatus that forms a predetermined film on the surface of an object by CVD (chemical vapor deposition) will be described as an example of a reaction apparatus.
  • the CVD apparatus described below removes the film attached to the inner wall (inner surface) of the chamber by the film formation processing function that forms a predetermined film on the surface of the object in the chamber (reaction chamber) and the film formation processing. Has a cleaning function.
  • FIG. 1 is a configuration diagram of a CVD apparatus according to the first embodiment.
  • the CVD apparatus 1 according to the present embodiment is provided in a building BL such as a semiconductor manufacturing factory.
  • the building BL has a first floor part and a second floor part.
  • the first floor portion of the building BL is used as a machine room MR, and the second floor portion of the building BL is used as a clean room CR.
  • a fan filter unit (not shown) is provided on the ceiling of the clean room CR.
  • the floor FL of the clean room CR is composed of, for example, grating. By operating the fan filter unit, a clean air flow from the upper side to the lower side is formed in the clean room CR.
  • the CVD apparatus 1 mainly includes a film formation processing unit 10, a fluorine gas generation unit 20, a control box 30, a housing 40, a vacuum pump 110, an abatement device 120, exhaust devices 130 and 140, and an HF (hydrogen fluoride) adsorption tower 150. , HF supply source 160, inert gas supply source 170, film forming gas supply source 180, exhaust equipment 190, a plurality of control valves v1 to v7, and a plurality of pipes p1 to p11.
  • the film formation processing unit 10, the fluorine gas generation unit 20, the control box 30, and the housing 40 are provided in the clean room CR.
  • the vacuum pump 110, the abatement device 120, the exhaust devices 130 and 140, the HF adsorption tower 150, the HF supply source 160, the inert gas supply source 170, the film forming gas supply source 180, and the exhaust equipment 190 are machine room MR. Placed inside.
  • the film formation processing unit 10 and the fluorine gas generation unit 20 are further accommodated in a housing 40.
  • An opening 41 is formed on one side wall of the housing 40.
  • a shutter 42 that can open and close the opening 41 and a shutter drive unit 43 that drives the shutter 42 are provided on one side wall.
  • An exhaust port 44 is formed at the bottom of the housing 40.
  • One end of a pipe p ⁇ b> 11 extending into the machine room MR is connected to the exhaust port 44.
  • the other end of the pipe p11 is connected to the exhaust equipment 190.
  • an exhaust device 130 and an abatement device 120 are inserted in this order from the upstream to the downstream in the pipe p11.
  • the exhaust device 130 is, for example, a blower.
  • the atmosphere in the housing 40 is sent to the exhaust facility 190 through the abatement device 120 by the exhaust device 130. Thereby, during the operation of the exhaust device 130, the pressure in the housing 40 becomes lower than the atmospheric pressure.
  • the abatement device 120 is configured to be able to remove HF components and other predetermined harmful components in the gas sent from the exhaust device 130.
  • control box 30 a DC power supply circuit 31, a high frequency power supply circuit 32, and a control unit 33 are provided.
  • the film formation processing unit 10 includes an upper electrode 11, a lower electrode 12, a heater 13, a heater drive unit 14, a chamber 15, a pressure sensor S11, and a temperature sensor S12.
  • the upper electrode 11 and the lower electrode 12 are provided so as to face each other inside the chamber 15.
  • the upper electrode 11 is located above the lower electrode 12 and is electrically connected to the high frequency power supply circuit 32 in the control box 30.
  • the upper electrode 11 has an upper surface and a lower surface. One opening is formed on the upper surface of the upper electrode 11, and a plurality of openings are formed on the lower surface. Inside the upper electrode 11, a gas supply path 11 i that connects the opening on the upper surface side and the plurality of openings on the lower surface side is formed. One end of the pipe p ⁇ b> 1 is connected to the opening on the upper surface side of the upper electrode 11. The other end of the pipe p ⁇ b> 1 is located outside the chamber 15 and inside the housing 40. One end of a plurality of (three in this example) pipes p2, p3, and p5 described later is connected to the outer portion of the chamber 15 in the pipe p1.
  • Gas is guided to the pipe p1 through the pipes p2, p3, and p5.
  • the gas guided to the pipe p1 is supplied from one end of the pipe p1 to the space between the upper electrode 11 and the lower electrode 12 through the gas supply path 11i of the upper electrode 11.
  • the lower electrode 12 has an upper surface and a lower surface.
  • the upper surface of the lower electrode 12 functions as a stage on which an object is placed during the film formation process.
  • a heater 13 is provided inside the lower electrode 12.
  • the heater 13 is electrically connected to a heater driving unit 14 provided outside the chamber 15.
  • the heater driving unit 14 is electrically connected to a DC power supply circuit 31 in the control box 30.
  • An opening 16 is formed on one side wall of the chamber 15.
  • a shutter 17 that can open and close the opening 16 and a shutter driving unit 18 that drives the shutter 17 are provided on one side wall.
  • both the shutter 42 provided in the housing 40 and the shutter 17 provided in the chamber 15 By opening both the shutter 42 provided in the housing 40 and the shutter 17 provided in the chamber 15, an object can be placed on the lower electrode 12 in the chamber 15. In addition, the object can be taken out from the chamber 15. On the other hand, when both the shutters 42 and 17 are closed, the film forming process and the chamber 15 can be cleaned.
  • An exhaust port 19 is formed at the bottom of the chamber 15.
  • One end of a pipe p10 extending from the clean room CR to the machine room MR is connected to the exhaust port 19.
  • the other end of the pipe p10 is connected to a part upstream of the abatement device 120 in the pipe p11 (a part between the exhaust device 130 and the abatement device 120 in the example of FIG. 1).
  • the abatement apparatus 120 removes the HF component and other predetermined harmful components in the gas sent from the vacuum pump 110.
  • a control valve v7 and a vacuum pump 110 are inserted in this order from the upstream to the downstream of the pipe p10.
  • the control valve v7 is opened while the shutter 17 of the chamber 15 is closed and the vacuum pump 110 is operating, the atmosphere in the chamber 15 is sent to the exhaust equipment 190 through the exhaust port 19, the pipe p10 and the pipe p11. Thereby, the inside of the chamber 15 is depressurized.
  • the chamber 15 is provided with a pressure sensor S11 and a temperature sensor S12.
  • the internal pressure of the chamber 15 is detected by the pressure sensor S11, and the temperature of the upper surface of the lower electrode 12 is detected by the temperature sensor S12.
  • the other end of the pipe p3 is connected to one end of the pipe p4.
  • a control valve v2 is inserted in the pipe p3.
  • the other end of the pipe p4 is connected to an inert gas supply source 170.
  • the inert gas supply source 170 is a gas cylinder in which an inert gas is stored, a liquid gas tank, a vaporizer, or the like.
  • the inert gas for example, N2 (nitrogen) gas, Ar (argon) gas, He (helium) gas, Xe (xenon) gas, or the like can be used.
  • One end of the pipe p6 is further connected to one end of the pipe p4. That is, in this example, the other end of the pipe p3, one end of the pipe p4, and one end of the pipe p6 are connected at one point.
  • the other end of the pipe p6 is connected to a cathode chamber 21b of the electrolytic cell 21 described later.
  • a control valve v4 is inserted in the pipe p6.
  • the other end of the pipe p5 is connected to a gas outlet 26 of the electrolytic cell 21 described later.
  • a control valve v3 is inserted in the pipe p5.
  • the fluorine gas generation unit 20 includes an electrolytic cell 21.
  • the electrolytic cell 21 is made of, for example, a metal or alloy such as Ni (nickel), monel, pure iron, or stainless steel.
  • An electrolytic bath 22 made of a KF-HF mixed molten salt is formed in the electrolytic bath 21.
  • a partition wall 23 is provided so as to be partially immersed in the electrolytic cell 21.
  • the partition wall 23 is made of, for example, Ni or Monel.
  • an anode chamber 21 a is formed on one side of the partition wall 23, and a cathode chamber 21 b is formed on the other side.
  • the space above the electrolytic bath 22 is blocked by the partition wall 23 between the anode chamber 21a and the cathode chamber 21b.
  • the anode 24 is disposed so as to contact the electrolytic bath 22 in the anode chamber 21a
  • the cathode 25 is disposed so as to contact the electrolytic bath 22 in the cathode chamber 21b.
  • the anode 24 and the cathode 25 are electrically connected to the current supply device 28.
  • the current supply device 28 is further electrically connected to a DC power supply circuit 31 in the control box 30.
  • the anode 24 has a configuration in which coating layers made of conductive diamond or conductive diamond-like carbon are formed on both sides of a rectangular conductive substrate.
  • a substrate made of diamond, graphite or amorphous carbon is preferably used.
  • a substrate made of a metal material such as Ni (nickel) may be used.
  • Ni is preferably used as a material of the cathode 25 for example. Note that the cathode 25 may have the same configuration as the anode 24.
  • a gas discharge port 26 is provided in the upper part of the anode chamber 21a. As described above, the other end of the pipe p ⁇ b> 5 is connected to the gas discharge port 26.
  • the gas mainly fluorine gas
  • the control valve v3 passes through the gas outlet 26, the pipe p5, the pipe p1, and the gas supply path 11i of the upper electrode 11 to form a film. It is supplied into the chamber 15 of the formation processing unit 10.
  • a mist filter 90 may be inserted in the pipe p5 as shown by a dotted line in FIG. In this case, dust or impurities contained in the gas generated in the anode chamber 21a can be removed. Thereby, high purity fluorine gas can be supplied into the chamber 15 from the anode chamber 21a.
  • a gas discharge port 27 is provided in the upper part of the cathode chamber 21b.
  • One end of a pipe p8 is connected to the gas discharge port 27.
  • the other end of the pipe p8 is connected to the exhaust equipment 190 of the machine room MR.
  • the exhaust device 140 is, for example, a vacuum generator.
  • the gas (mainly hydrogen gas) generated in the cathode chamber 21 b by the operation of the exhaust device 140 is sent to the exhaust equipment 190 through the HF adsorption tower 150.
  • the HF adsorption tower 150 is filled with, for example, soda lime as an adsorbent. In the HF adsorption tower 150, HF components in the gas generated in the cathode chamber 21b are removed by soda lime.
  • a pipe p 7 for supplying HF to the electrolytic bath 22 is connected to the electrolytic cell 21.
  • the other end of the pipe p7 is connected to the HF supply source 160 of the machine room MR.
  • the HF supply source 160 is a storage container in which HF is stored.
  • a control valve v5 is inserted in the pipe p7. By opening the control valve v ⁇ b> 5, HF is supplied from the HF supply source 160 into the electrolytic cell 21.
  • the other end of the pipe p6 is connected to the cathode chamber 21b.
  • the inert gas is supplied from the inert gas supply source 170 into the cathode chamber 21b through the pipes p4 and p6.
  • a pipe p9 is provided so as to connect the pipe p4 and the pipe p8.
  • a control valve v6 is inserted in the pipe p9. By opening the control valve v6, the inert gas is supplied from the inert gas supply source 170 through the pipes p4 and p9 into the pipe p8.
  • the electrolytic cell 21 is provided with pressure sensors S21 and S22 and liquid level sensors S23 and S24.
  • the pressure sensor S21 detects the internal pressure of the anode chamber 21a
  • the pressure sensor S22 detects the internal pressure of the cathode chamber 21b.
  • the liquid level of the electrolytic bath 22 in the anode chamber 21a is detected by the liquid level sensor S23
  • the liquid level of the electrolytic bath 22 in the cathode chamber 21b is detected by the liquid level sensor S24.
  • the control unit 33 in FIG. 1 includes a CPU (Central Processing Unit) and a memory or a microcomputer, and controls the operation of each component of the CVD apparatus 1.
  • a CPU Central Processing Unit
  • a memory or a microcomputer controls the operation of each component of the CVD apparatus 1.
  • FIG. 2 is a block diagram showing a control system of the CVD apparatus 1 of FIG.
  • the detection results of the pressure sensor S11 and the temperature sensor S12 of the film formation processing unit 10 are given to the control unit 33.
  • the detection results of the pressure sensors S21 and S22 and the liquid level sensors S23 and S24 of the fluorine gas generation unit 20 are given to the control unit 33.
  • the control unit 33 includes a heater drive unit 14, shutter drive units 18 and 43, a current supply device 28, a DC power supply circuit 31, a high frequency power supply circuit 32, a vacuum pump 110, an abatement device 120, exhaust devices 130 and 140, and a control. The operation of the valves v1 to v7 is controlled.
  • control valves v1 to v7 are closed. Further, the heater driving unit 14, the current supply device 28, and the exhaust device 140 are not operating. On the other hand, the vacuum pump 110, the abatement device 120, and the exhaust device 130 are operating.
  • the vacuum pump 110 and the control valve v7 are controlled by the control unit 33 based on the detection result of the pressure sensor S11. Thereby, the pressure in the chamber 15 is adjusted to a predetermined pressure lower than the atmospheric pressure. Further, the DC power supply circuit 31 and the heater driving unit 14 are controlled by the control unit 33 based on the detection result of the temperature sensor S12. Thereby, the heater 13 generates heat, and the temperature of the upper surface of the lower electrode 12 is adjusted to a predetermined temperature.
  • the control valves v1 and v2 are opened. Thereby, the film forming gas from the film forming gas supply source 180 is supplied into the chamber 15 through the pipes p ⁇ b> 2 and p ⁇ b> 1 and the gas supply path 11 i of the upper electrode 11. Further, the inert gas from the inert gas supply source 170 is supplied into the chamber 15 through the pipes p4, p3, p1 and the gas supply path 11i of the upper electrode 11. In this case, the film forming gas is diluted with the inert gas in the pipe p1.
  • control valves v1, v2, v7 are closed.
  • control valves v1 and v2 are adjusted so that the opening degree becomes small.
  • the high frequency power supply circuit 32 is controlled, and a high frequency voltage is applied to the upper electrode 11. Thereby, high frequency plasma is generated between the upper electrode 11 and the lower electrode 12, and a predetermined film is formed on the surface of the object.
  • the application of the high frequency voltage to the upper electrode 11 is stopped, and the control valves v2 and v7 are opened.
  • the inert gas of the inert gas supply source 170 is supplied to the chamber 15 and the atmosphere in the chamber 15 is sent to the exhaust equipment 190 through the exhaust port 19 and the pipes p10 and p11.
  • the atmosphere in the chamber 15 is replaced with the inert gas from the inert gas supply source 170.
  • control valve v7 is closed. Further, the control valve v ⁇ b> 2 is held open until the pressure in the chamber 15 reaches atmospheric pressure or the pressure in the housing 40. Finally, the control valve v2 is closed and the shutter 17 of the chamber 15 and the shutter 42 of the housing 40 are opened. In this state, the operator takes out the object after the film formation process from the chamber 15.
  • the chamber 15 is cleaned in a state where no high-frequency plasma is generated in the chamber 15.
  • the operator closes the shutter 42 of the housing 40 and the shutter 17 of the chamber 15 by operating an operation unit (not shown).
  • control valves v1 to v7 are closed. Further, the heater driving unit 14, the current supply device 28, and the exhaust device 140 are not operating. On the other hand, the vacuum pump 110, the abatement device 120, and the exhaust device 130 are operating.
  • the control valves v2, v3, v4, v6, v7 are opened.
  • the current supply device 28 and the DC power supply circuit 31 are controlled by the control unit 33, and a current flows between the anode 24 and the cathode 25 in the electrolytic cell 21.
  • the electrolytic bath 22 in the electrolytic cell 21 is electrolyzed, fluorine gas is generated in the anode chamber 21a in the electrolytic cell 21, and hydrogen gas is generated in the cathode chamber 21b.
  • the control valve v7 and the vacuum pump 110 are controlled by the control unit 33 based on the detection results of the pressure sensors S11 and S21.
  • the pressure in the chamber 15 is adjusted to be lower than the pressure in the anode chamber 21a.
  • the fluorine gas generated in the anode chamber 21 a is smoothly guided into the chamber 15 through the gas discharge port 26, the pipes p 5 and p 1, and the gas supply path 11 i of the upper electrode 11.
  • the inert gas from the inert gas supply source 170 is introduced into the chamber 15 through the pipes p4, p3, p1 and the gas supply path 11i of the upper electrode 11.
  • the fluorine gas is diluted with the inert gas in the pipe p1.
  • the inert gas of the inert gas supply source 170 is supplied into the cathode chamber 21b through the pipes p4 and p6.
  • the liquid level in the cathode chamber 21b can be controlled by adjusting the amount of the inert gas supplied into the cathode chamber 21b.
  • the generated hydrogen gas is diluted with an inert gas. Thereby, the hydrogen concentration in the cathode chamber 21b is maintained in a state lower than the explosion limit.
  • the diluted hydrogen gas is sent to the exhaust facility 190 through the gas exhaust port 27 and the pipe p8 by the exhaust device 140. At this time, since the control valve v6 is open, the hydrogen gas sent to the exhaust facility 190 is further diluted with the inert gas in the pipe p8.
  • the control valve v5 When the liquid level of the electrolytic bath 22 detected by the liquid level sensors S23 and S24 is lower than a predetermined value, the control valve v5 is opened. In this state, HF of the HF supply source 160 is supplied into the electrolytic cell 21 through the pipe p7. Thereby, it is prevented that the liquid level of the electrolytic cell 21 becomes lower than a certain height.
  • the internal pressure of the anode chamber 21a and the internal pressure of the cathode chamber 21b need to be maintained at a constant value equal to each other.
  • the opening degree of the control valve v3 is controlled by the control unit 33 based on the detection result of the pressure sensor S21. Thereby, the pressure in the anode chamber 21a is adjusted so as to approach the atmospheric pressure. Further, the opening degree of the control valve v4 is controlled by the control unit 33 based on the detection result of the pressure sensor S22. Thereby, the pressure in the cathode chamber 21b is adjusted so as to approach the atmospheric pressure.
  • the internal pressures of the anode chamber 21a and the cathode chamber 21b may be held at atmospheric pressure by controlling the opening degrees of the control valves v3 and v4.
  • diluted fluorine gas is supplied from the gas supply path 11 i of the upper electrode 11, and the atmosphere inside the chamber 15 is exhausted by the vacuum pump 110 through the exhaust port 19. In this way, new fluorine gas is supplied into the chamber 15 and fluorine gas used for cleaning in the chamber 15 is discharged. Thereby, the inside of the chamber 15 is efficiently cleaned with new fluorine gas.
  • the control valves v3, v4, v6 are closed. Further, the operations of the current supply device 28 and the DC power supply circuit 31 are stopped, and the electrolysis is stopped. On the other hand, the control valves v2 and v7 are held open. Thereby, the inert gas of the inert gas supply source 170 is supplied to the chamber 15 and the atmosphere in the chamber 15 is sent to the exhaust equipment 190 through the exhaust port 19 and the pipes p10 and p11. In this way, the atmosphere in the chamber 15 is replaced with the inert gas from the inert gas supply source 170.
  • control valve v7 is closed. Further, the control valve v ⁇ b> 2 is held open until the pressure in the chamber 15 reaches atmospheric pressure or the pressure in the housing 40. Finally, the control valve v2 is closed and the shutter 17 of the chamber 15 and the shutter 42 of the housing 40 are opened. Thereby, the cleaning of the chamber 15 is completed.
  • the anode 24 has a configuration in which coating layers made of conductive diamond or conductive diamond-like carbon are formed on both sides of a rectangular conductive substrate. As a result, it is possible to increase the current density in the electrolytic bath 22 while preventing polarization at the anode 24.
  • a direct current is applied between the anode 24 and the cathode 25 so that the current density around the anode 24 in the electrolytic bath 22 is 20 A / dm 2 or more and 1000 A / dm 2 or less when the chamber 15 is cleaned. Washed away.
  • the fluorine gas generation unit 20 can be reduced in size and extended in life.
  • the current density around the anode 24 in the electrolytic bath 22 when the chamber 15 is cleaned is preferably 20 A / dm 2 or more and 500 A / dm 2 or less, and more preferably 30 A / dm 2 or more and 100 A / dm 2 or less. More preferred.
  • the film forming gas supply source 180 is housed in the chamber 15 while the object is housed in the chamber 15 during the film forming process.
  • the film forming gas is supplied. Thereby, a predetermined film is formed on the surface of the object.
  • fluorine gas is generated by electrolysis of the electrolytic bath 22 in the electrolytic cell 21 of the fluorine gas generator 20.
  • the generated fluorine gas is supplied into the chamber 15 and the deposits on the inner wall of the chamber 15 are removed.
  • the fluorine gas generator 20 at least a part of the surface of the anode 24 immersed in the electrolytic bath 22 is formed of a conductive carbon material having a diamond structure.
  • the current density in the electrolytic bath 22 can be increased while preventing polarization at the anode 24.
  • a sufficient amount of fluorine gas can be generated in the small electrolytic cell 21 for cleaning the inner wall of the chamber 15 in a short time.
  • the fluorine gas generated in the electrolytic cell 21 can be supplied to the chamber 15 without going through the storage facility.
  • the common control unit 33 controls the film forming process of the object and the cleaning of the inner wall of the chamber 15. As a result, the CVD apparatus 1 that has a cleaning function and can be reduced in size and cost is realized.
  • the inert gas of the inert gas supply source 170 can be supplied from one inert gas supply source 170 into the chamber 15 and the electrolytic cell 21. In this case, it is not necessary to separately prepare the inert gas supply source 170 for supplying the inert gas into the chamber 15 and the electrolytic cell 21. Therefore, downsizing and cost reduction are realized.
  • the abatement device 120 removes predetermined harmful components in the gas sent from the vacuum pump 110 during the film formation process, and removes HF components in the gas sent from the vacuum pump 110 during the cleaning of the chamber 15 To do.
  • the harmful components of the exhaust gas can be removed without increasing the size of the CVD apparatus 1 by using the common abatement apparatus 120 for the film formation process and the cleaning of the chamber 15.
  • the chamber 15 and the fluorine gas generator 20 are accommodated in the housing 40.
  • the atmosphere inside the housing 40 is exhausted by the exhaust device 130. This prevents the fluorine gas or other gas generated by the fluorine gas generator 20 from leaking outside the housing 40.
  • the chamber 15 is filled with an inert gas after the film formation process and the cleaning of the chamber 15.
  • film forming gas or fluorine gas harmful to the human body is prevented from remaining in the chamber 15. Therefore, safety is ensured when the operator opens the chamber 15 after the film forming process and the cleaning of the chamber 15.
  • the chamber 15 after the film forming process or after the cleaning can be easily returned to the atmospheric pressure.
  • a predetermined amount of inert gas is supplied into the pipe p1 by controlling the control valve v2 during the film formation process and during the cleaning of the chamber 15.
  • the film forming gas diluted with the inert gas during the film forming process is supplied into the chamber 15.
  • fluorine gas diluted with an inert gas is supplied into the chamber 15 when the chamber 15 is cleaned.
  • the concentration of the film forming gas and the fluorine gas used for cleaning can be easily adjusted without increasing the size of the CVD apparatus 1.
  • the pressure in the electrolytic cell 21 is adjusted by the inert gas from the inert gas supply source 170. Thereby, stable electrolysis can be performed in the electrolytic cell 21 without increasing the size of the CVD apparatus 1. Further, in the electrolytic cell 21, an inert gas is supplied into the cathode chamber 21b. Thereby, the liquid level in the cathode chamber 21b can be controlled.
  • the hydrogen gas generated in the electrolytic cell 21 is diluted with an inert gas. By diluting the hydrogen gas, the hydrogen concentration in the electrolytic cell 21 can be adjusted to be lower than the explosion limit.
  • FIG. 1 A CVD apparatus according to the second embodiment will be described while referring to differences from the CVD apparatus 1 according to the first embodiment.
  • the CVD apparatus according to the second embodiment has the following configuration instead of the pipe p5 in FIG. 1 that guides the fluorine gas generated in the electrolytic cell 21 into the chamber 15.
  • FIG. 3 is a configuration diagram showing a part of the CVD apparatus according to the second embodiment.
  • FIG. 3 shows a configuration in which fluorine gas generated mainly in the electrolytic cell 21 is guided into the chamber 15.
  • a pipe p20 is connected to the pipe p1 attached to the chamber 15 instead of the pipe p5 of FIG.
  • the piping p20 is provided with a plurality (four in this example) of piping connection portions. One ends of the pipes p21, p22, p23, and p25 are connected to the plurality of pipe connection portions of the pipe p20, respectively.
  • the control valve v31 is inserted in the piping p21.
  • One end of the pipe p29 is connected to the other end of the pipe p21.
  • the other end of the pipe p29 is connected to the gas outlet 26 of the electrolytic cell 21.
  • a mist filter 90 and a control valve v40 are inserted in this order from upstream to downstream.
  • the other end of the pipe p22 is connected to the inert gas supply source 170 of FIG.
  • a vacuum generator 61, a mass flow controller (MFC: mass flow control device) 62, and a control valve v32 are interposed in this order from the upstream to the downstream of the pipe p22.
  • One end of a pipe p26 is connected to the vacuum generator 61.
  • the other end of the pipe p26 is connected to one end of the pipe p29.
  • a control valve v33 is inserted in the pipe p26.
  • a switching valve 72 is provided at the other end of the pipe p23.
  • the switching valve 72 has one inflow port and two outflow ports.
  • the other end of the pipe p23 is connected to one outflow port of the switching valve 72.
  • a mass flow controller 73 and a control valve v34 are inserted in this order from upstream to downstream.
  • One end of a pipe p24 is connected to the inflow port of the switching valve 72.
  • the other end of the pipe p24 is connected to one end of the pipe p29.
  • a control valve v35 and a pressure feeding device 71 are inserted in this order from upstream to downstream.
  • a bellows pump can be used as the pressure feeding device 71.
  • the other end of the pipe p25 is connected to one end of the pipe p29.
  • the other ends of the pipes p21, p26, p24, and p25 and one end of the pipe p29 are connected at one point.
  • a control valve v38, a tank 81, a control valve v37, a mass flow controller 82, and a control valve v36 are inserted in this order from upstream to downstream.
  • One end of a pipe p27 is connected to the tank 81.
  • the other end of the pipe p27 is connected to the inert gas supply source 170 of FIG.
  • a valve v39 is inserted in the pipe p27.
  • a pipe p28 is provided so as to connect the tank 81 and the other outflow port of the switching valve 72.
  • the operations of the pressure feeding device 71, the switching valve 72, the control valves v31 to v40, and the mass flow controllers 62, 73, and 82 in FIG. 3 are controlled by the control unit 33 in FIG.
  • the opening degree of the control valve v40 is controlled by the control unit 33 based on the detection result of the pressure sensor S21, similarly to the control valve v3 of FIG.
  • the pressure in the anode chamber 21a is adjusted so as to approach the atmospheric pressure.
  • the control valve v31 is opened and the control valves v32, v33, v34, v35, v36, v37, v38, v39 in a state where fluorine gas is generated in the electrolytic cell 21. Is closed.
  • the control valve v40 is opened, the fluorine gas generated in the electrolytic cell 21 is guided into the chamber 15 through the pipes p29, p21, p20, p1 and the gas supply path 11i of the upper electrode 11. Thereby, the chamber 15 can be cleaned with high-purity fluorine gas.
  • the control valves v32, v33 are opened, and the control valves v31, v34, v35, v36, v37, v38, v39 are closed. Further, an inert gas is supplied to the pipe p22, and an inert gas flow is formed in the pipe p22.
  • the control valve v40 is opened, the fluorine gas generated in the electrolytic cell 21 is sucked into the pipe p22 by the vacuum generator 61 through the pipes p29 and p26.
  • the fluorine gas sucked into the pipe p22 is diluted with an inert gas.
  • the diluted fluorine gas is sent to the pipe p20 through the mass flow controller 62, and is introduced into the chamber 15 through the pipe p1 and the gas supply path 11i of the upper electrode 11.
  • a sufficiently large difference (for example, a difference of 50 kPa or more) is generated between the pressure in the upstream pipe p22 and the pressure in the downstream pipe p22, so that the gas flowing through the pipe p22 The flow rate is adjusted.
  • the pressure inside the chamber 15 is reduced by the vacuum pump 110, so that the pressure on the downstream side of the mass flow controller 62 decreases.
  • the pressure on the upstream side of the mass flow controller 62 is increased by supplying the inert gas to the pipe p22.
  • appropriate cleaning can be performed by supplying the fluorine gas diluted at a desired flow rate into the chamber 15.
  • the control valves v34 and v35 are opened, and the control valves v31, v32, v33, v36, v37, v38 and v39 are closed. Further, the pressure feeding device 71 operates. Furthermore, the switching valve 72 communicates the internal space of the pipe p24 and the internal space of the pipe p23, and shuts off the internal space of the pipe p24 and the internal space of the pipe p28. In this case, when the control valve v40 is opened, the fluorine gas generated in the electrolytic cell 21 is sucked through the pipes p29 and p24 by the pressure feeding device 71 and supplied to the pipe p23 while being pressurized. The fluorine gas supplied to the pipe p23 is guided into the chamber 15 through the pipes p20 and p1 and the gas supply path 11i of the upper electrode 11.
  • the mass flow controller 73 As in the mass flow controller 62, a sufficient difference is generated between the pressure in the upstream pipe p23 and the pressure in the downstream pipe p23, so that the gas flowing through the pipe p23 The flow rate is adjusted.
  • the pressure inside the chamber 15 is reduced by the vacuum pump 110, thereby reducing the pressure on the downstream side of the mass flow controller 73.
  • the pressure on the upstream side of the mass flow controller 73 is increased by supplying the fluorine gas pressurized by the pressure feeding device 71 to the pipe p23.
  • a sufficiently large difference is ensured between the pressure in the upstream pipe p23 and the pressure in the downstream pipe p23. Therefore, appropriate cleaning can be performed by supplying high-purity fluorine gas having a desired pressure into the chamber 15 at a desired flow rate.
  • the control valve v38 is opened, and the control valves v31, v32, v33, v34, v35, v36, v37, v39 are closed.
  • the switching valve 72 communicates the internal space of the pipe p24 and the internal space of the pipe p23, and shuts off the internal space of the pipe p24 and the internal space of the pipe p28.
  • the control valves v36, v37 are opened and the control valves v31, v32, v33, v34, v35, v36, v37, v38, v39, Close v40.
  • the fluorine gas in the tank 81 is guided into the chamber 15 through the pipes p20 and p1 and the gas supply path 11i of the upper electrode 11 when the pressure in the chamber 15 is reduced.
  • the mass flow controller 82 similarly to the mass flow controller 62, a sufficiently large difference is generated between the pressure in the upstream pipe p 25 and the pressure in the downstream pipe p 25, thereby causing the pipe p 25.
  • the flow rate of the gas flowing through is adjusted. Therefore, only opening the control valves v36 and v37 may not produce a sufficiently large difference between the pressure in the upstream pipe p25 and the pressure in the downstream pipe p25.
  • the inert gas when supplying the fluorine gas from the tank 81 to the chamber 15, the inert gas may be supplied to the pipe p27 and the control valve v36 may be opened.
  • the pressure in the tank 81 is increased by supplying the inert gas into the tank 81.
  • pressurized fluorine gas can be supplied to the upstream side of the mass flow controller 82.
  • the fluorine gas is diluted with an inert gas in the tank 81.
  • the flow rate of the diluted inert gas is adjusted by the mass flow controller 82.
  • the diluted fluorine gas can be supplied into the chamber 15 at a desired flow rate and a desired concentration. As a result, appropriate cleaning can be performed.
  • the control valve v35 is opened and the control valves v31, v32, v33, v34, v35 are opened in a state where the fluorine gas is generated in the electrolytic cell 21.
  • V36, v37, v38, v39 may be closed.
  • the internal space of the pipe p24 and the internal space of the pipe p23 may be blocked by the switching valve 72, and the internal space of the pipe p24 and the internal space of the pipe p28 may be communicated.
  • the pressure feeding device 71 may be operated.
  • the electrolytic cell 21 to the chamber 15 are controlled according to the cleaning conditions of the chamber 15. It is possible to change the supply route of the fluorine gas to.
  • a film forming process is performed on the surface of an object by CVD in the chamber 15.
  • a film forming process may be performed on the surface of the object in the chamber 15 by a method other than CVD.
  • a film formation process by sputtering may be performed in the chamber 15, or a film formation process by PVD (physical vapor deposition) may be performed in the chamber 15.
  • PVD physical vapor deposition
  • the present invention is not limited to this, and a multi-chamber CVD apparatus may include the above-described fluorine gas generation unit 20.
  • the film formation processing unit 10 includes a plurality of chambers 15.
  • the film formation processing unit 10 and the fluorine gas generation unit 20 are further accommodated in the housing 40.
  • a fluorine gas supply pipe is provided between the plurality of chambers 15 and the fluorine gas generator 20.
  • the hydrogen gas generated by the fluorine gas generator 20 is diluted with an inert gas and exhausted.
  • the generated hydrogen gas may be stored in a gas cylinder.
  • the hydrogen gas generated in the cathode chamber 21b may be used for generating the film forming gas.
  • the inert gas may not be supplied to the cathode chamber 21b.
  • an inert gas may be supplied to the anode chamber 21a.
  • control box 30 is provided outside the housing 40. Not only this but the control box 30 may be provided inside the housing
  • the shutter 42 and the shutter driving unit 43 are provided on one side wall of the housing 40. Not limited to this, the shutter 42 and the shutter driving unit 43 may not be provided on one side wall of the housing 40. In this case, the configuration of the CVD apparatus 1 is simplified.
  • the CVD apparatus 1 includes one electrolytic cell 21, and the control unit 33 controls the electrolysis of the electrolytic bath 22 accommodated in one electrolytic cell 21.
  • the CVD apparatus 1 may have the following configuration.
  • FIG. 4 is a block diagram showing a part of a CVD apparatus according to another embodiment.
  • the components provided in the housing 40 are shown. Illustration of piping is omitted.
  • the CVD apparatus 1 of FIG. 4 is different from the CVD apparatus 1 of FIG. 1 in that the fluorine gas generation unit 20 of the CVD apparatus 1 includes a plurality (four in this example) of electrolytic cells 21.
  • Each electrolytic cell 21 is provided with an anode 24 and a cathode 25.
  • the control unit 33 of this example controls the electrolysis of the electrolytic baths 22 respectively accommodated in the plurality of electrolytic cells 21.
  • the fluorine gas generated in the four electrolytic cells 21 can be supplied into one chamber 15 when the chamber 15 is cleaned. Accordingly, the fluorine gas necessary for cleaning can be supplied into the chamber 15 in a short time.
  • a supply path including the vacuum generator 61, a supply path including the pipes p23 and p24, the control valves v34 and v35, the pressure feeding device 71 and the switching valve 72, and a supply path including the pipe p25, the control valves v36 to v38 and the tank 81. are provided in parallel, but the present invention is not limited to this.
  • a part of the plurality of supply paths may be provided between the pipe p20 and the pipe p29.
  • the pipe p21 is not provided with a mass flow controller, but the present invention is not limited to this.
  • a mass flow controller may be provided in the pipe p21. Accordingly, appropriate cleaning can be performed by supplying fluorine gas into the chamber 15 at a desired flow rate.
  • the high frequency voltage is not applied to the upper electrode 11 in the chamber 15 when the chamber 15 is cleaned, but the present invention is not limited to this.
  • a high frequency voltage may be applied to the upper electrode 11 from the high frequency power supply circuit 32 when the chamber 15 is cleaned. In this case, high-frequency plasma is generated between the upper electrode 11 and the lower electrode 12. As a result, the fluorine gas is activated, whereby cleaning can be performed more efficiently.
  • the CVD apparatus 1 is an example of a reaction apparatus
  • the chamber 15 is an example of a chamber
  • the film forming gas supply source 180, the pipes p1 and p2, and the control valve v1 are a film forming gas supply system.
  • an inert gas supply source 170 is an example of an inert gas supply source
  • an inert gas supply source 170, pipes p1, p3, p4, p6 and control valves v2, v4 are inactive. It is an example of an active gas supply system.
  • the electrolytic bath 22 is an example of an electrolytic bath
  • the electrolytic cell 21 is an example of an electrolytic cell
  • the anode 24 is an example of an anode
  • the cathode 25 is an example of a cathode.
  • the pipes p1, p5, p20 to p26, p28, and p29 are examples of fluorine gas supply pipes
  • the casing 40 is an example of a casing
  • the exhaust device 130 is an example of an exhaust device
  • the control unit 33 is It is an example of a control part.
  • the pipes p1, p5, p20 to p29, the control valves v3, v31 to v40, the vacuum generator 61, the pressure feeding device 71, the switching valve 72, and the tank 81 are examples of the fluorine gas supply system, and the vacuum generator 61 is the vacuum generator.
  • the pressure feeding device 71 is an example of a pressure feeding device
  • the tank 81 is an example of a tank
  • the mass flow controllers 62, 73, and 82 are examples of a flow rate adjusting device.
  • the present invention can be effectively used for a reactor that requires cleaning.

Abstract

A CVD device includes a film formation processing unit, a fluorine gas generation unit, an inert gas supply source, and a film forming gas supply source. An object is housed in a chamber of the film formation processing unit during film formation processing, and film forming gas from the film forming gas supply source is supplied into the chamber. The fluorine gas generation unit includes an electrolytic bath, an anode, and a cathode. At least part of the surface of the anode is formed from a conductive carbon material having a diamond structure. Fluorine gas generated by the fluorine gas generation unit is supplied into the chamber when the chamber is cleaned. The film formation processing of the object and the cleaning of the chamber are controlled by one control unit.

Description

反応装置Reactor
 本発明は、対象物の表面に所定の膜を形成する反応装置に関する。 The present invention relates to a reaction apparatus for forming a predetermined film on the surface of an object.
 CVD(化学蒸着法)装置においては、対象物の表面への膜形成時にチャンバー(反応室)の内表面等にも膜が形成される。チャンバーの内表面等に付着した膜がその内表面から剥離すると、剥離した膜がパーティクルとしてチャンバー内を飛散することにより膜形成処理に悪影響を及ぼす。膜形成時にチャンバーの内表面等に付着した膜を除去するために、チャンバーのクリーニングが行われる。 In a CVD (Chemical Vapor Deposition) apparatus, a film is also formed on the inner surface of a chamber (reaction chamber) during film formation on the surface of an object. When the film attached to the inner surface of the chamber is peeled off from the inner surface, the peeled film is scattered as particles in the chamber, which adversely affects the film forming process. In order to remove the film attached to the inner surface of the chamber at the time of film formation, the chamber is cleaned.
 特許文献1には、クリーニングガスを用いて反応チャンバーをクリーニングするプラズマCVD装置が記載されている。このプラズマCVD装置は、反応チャンバー、高周波電源、高周波印加装置および複数のポンプ等の膜形成用の構成要素に加えてクリーニングガス発生装置を含む。クリーニングガス発生装置は、エネルギー印加装置およびフッ素ガス濃縮・分離精製装置を備え、クリーニングガスとしてフッ素ガスを発生する。 Patent Document 1 describes a plasma CVD apparatus that cleans a reaction chamber using a cleaning gas. This plasma CVD apparatus includes a cleaning gas generator in addition to film forming components such as a reaction chamber, a high-frequency power source, a high-frequency application device, and a plurality of pumps. The cleaning gas generator includes an energy application device and a fluorine gas concentrating / separating / purifying device, and generates fluorine gas as a cleaning gas.
 フッ素ガスの発生時には、クリーニングガス発生装置において、エネルギー印加装置によりフッ素化合物にエネルギーが付与される。エネルギー印加装置としては、プラズマ発生装置等が用いられる。それにより、フッ素化合物からフッ素ガス成分とフッ素ガス以外の成分とが生成される。フッ素ガス濃縮・分離精製装置によりフッ素ガス成分とフッ素ガス以外の成分とが分離され、フッ素ガスが発生される。 When generating fluorine gas, energy is applied to the fluorine compound by the energy application device in the cleaning gas generator. A plasma generator or the like is used as the energy application device. Thereby, a fluorine gas component and components other than fluorine gas are produced from the fluorine compound. A fluorine gas component and a component other than fluorine gas are separated by a fluorine gas concentrating / separating device, and fluorine gas is generated.
 クリーニングガス発生装置により発生されたフッ素ガスが反応チャンバー内に供給され、反応チャンバー内が所定の圧力に調整される。この状態で、反応チャンバー内にプラズマが発生される。それにより、反応チャンバー内の副生成物(反応チャンバーの内表面等に付着する膜)がガス化される。その後、副生成物を含むガスが排気される。
特開2004-39740号公報
Fluorine gas generated by the cleaning gas generator is supplied into the reaction chamber, and the inside of the reaction chamber is adjusted to a predetermined pressure. In this state, plasma is generated in the reaction chamber. Thereby, the by-product (film adhering to the inner surface of the reaction chamber) in the reaction chamber is gasified. Then, the gas containing a by-product is exhausted.
JP 2004-39740 A
 上記のように、特許文献1のプラズマCVD装置においては、フッ素ガスを発生するためのクリーニングガス発生装置が、エネルギー印加装置およびフッ素ガス濃縮・分離精製装置により構成される。エネルギー印加装置は、プラズマ等の高いエネルギーを発生するために、反応チャンバー、高周波電源、高周波印加装置およびポンプ等の膜形成用の構成要素と同様の構成要素を備えるので、大型でかつ高価である。クリーニングガス発生装置は、このようなエネルギー印加装置に加えてフッ素ガス濃縮・分離精製装置を必要とする。そのため、クリーニングガス発生装置はさらに大型でかつ高価である。したがって、特許文献1のプラズマCVD装置においては、小型化および低コスト化が困難である。 As described above, in the plasma CVD apparatus of Patent Document 1, the cleaning gas generation apparatus for generating fluorine gas is composed of an energy application apparatus and a fluorine gas concentrating / separating / purifying apparatus. In order to generate high energy such as plasma, the energy application device includes components similar to those for film formation such as a reaction chamber, a high-frequency power source, a high-frequency application device, and a pump, and thus is large and expensive. . The cleaning gas generator requires a fluorine gas concentrating / separating / purifying device in addition to such an energy applying device. Therefore, the cleaning gas generator is larger and expensive. Therefore, in the plasma CVD apparatus of Patent Document 1, it is difficult to reduce the size and cost.
 本発明の目的は、クリーニング機能を有するとともに小型化および低コスト化が可能な反応装置を提供することである。 An object of the present invention is to provide a reaction apparatus that has a cleaning function and can be reduced in size and cost.
 (1)本発明の一局面に従う反応装置は、チャンバー内でガス反応により対象物の表面に所定の膜を形成する反応装置であって、ガス反応に用いられる膜形成用ガス供給系と、フッ化水素を含む電解浴の電気分解によりチャンバーの内壁のクリーニングガスとなるフッ素ガスをチャンバーに供給するフッ素ガス供給装置と、膜形成用ガス供給系およびフッ素ガス供給装置を制御する制御部とを備え、フッ素ガス供給装置は、電解槽と、電解槽に設けられる陰極および陽極とを有し、陽極の表面の少なくとも一部は、ダイヤモンド構造を有する導電性炭素材料により形成される。 (1) A reaction apparatus according to one aspect of the present invention is a reaction apparatus that forms a predetermined film on the surface of an object by gas reaction in a chamber, and a film forming gas supply system used for gas reaction, A fluorine gas supply device for supplying fluorine gas, which serves as a cleaning gas for the inner wall of the chamber, by electrolysis of an electrolytic bath containing hydrogen fluoride to the chamber, a film forming gas supply system, and a controller for controlling the fluorine gas supply device The fluorine gas supply device has an electrolytic cell, a cathode and an anode provided in the electrolytic cell, and at least a part of the surface of the anode is formed of a conductive carbon material having a diamond structure.
 その反応装置においては、膜形成時に制御部が膜形成用ガス供給系を制御する。この場合、チャンバー内に対象物が収容された状態で膜形成用ガス供給系によりチャンバー内に膜形成用ガスが供給される。それにより、チャンバー内でガス反応が発生し、対象物の表面に所定の膜が形成される。 In the reaction apparatus, the control unit controls the film forming gas supply system during film formation. In this case, the film-forming gas is supplied into the chamber by the film-forming gas supply system in a state where the object is accommodated in the chamber. Thereby, a gas reaction occurs in the chamber, and a predetermined film is formed on the surface of the object.
 一方、チャンバーのクリーニング時には、制御部がフッ素ガス供給装置を制御する。すなわち、制御部は、電解槽に収容された電解浴の電気分解を制御する。フッ素ガス供給装置の電解槽内で電解浴が電気分解されることによりフッ素ガスが発生する。発生したフッ素ガスは、クリーニングガスとしてチャンバー内に供給される。それにより、チャンバーの内壁の付着物が除去される。 On the other hand, when the chamber is cleaned, the control unit controls the fluorine gas supply device. That is, a control part controls the electrolysis of the electrolytic bath accommodated in the electrolytic cell. Fluorine gas is generated by electrolysis of the electrolytic bath in the electrolytic cell of the fluorine gas supply device. The generated fluorine gas is supplied into the chamber as a cleaning gas. Thereby, the deposit on the inner wall of the chamber is removed.
 フッ素ガス供給装置において、陽極の表面のうち電解浴に浸漬される部分の少なくとも一部がダイヤモンド構造を有する導電性炭素材料により形成される。この場合、陽極での分極を防止しつつ電解浴における電流密度を高くすることが可能である。それにより、小型の電解槽において短時間でチャンバーの内壁のクリーニングのために十分な量のフッ素ガスを発生することができる。また、電解槽において発生したフッ素ガスを貯留設備を経由することなくチャンバーに供給することもできる。さらに、共通の制御部により、膜形成用ガス供給系による膜形成処理およびフッ素ガス供給装置によるチャンバーの内壁のクリーニングが制御される。これらの結果、クリーニング機能を有するとともに小型化および低コスト化が可能な反応装置が実現される。 In the fluorine gas supply device, at least a part of the surface immersed in the electrolytic bath on the surface of the anode is formed of a conductive carbon material having a diamond structure. In this case, it is possible to increase the current density in the electrolytic bath while preventing polarization at the anode. Thereby, a sufficient amount of fluorine gas can be generated in a small electrolytic cell for cleaning the inner wall of the chamber in a short time. Moreover, the fluorine gas generated in the electrolytic cell can be supplied to the chamber without going through the storage facility. Further, the common control unit controls film formation processing by the film forming gas supply system and cleaning of the inner wall of the chamber by the fluorine gas supply device. As a result, a reactor having a cleaning function and capable of being reduced in size and cost is realized.
 (2)フッ素ガス供給装置は、電解浴の電気分解時に、印加電流密度20A/dm以上1000A/dm以下で電気分解してもよい。 (2) The fluorine gas supply device may perform electrolysis at an applied current density of 20 A / dm 2 or more and 1000 A / dm 2 or less during electrolysis of the electrolytic bath.
 電解浴における陽極周辺部の電流密度が20A/dm以上であることにより、小容量の電解浴で多量のフッ素ガスを発生することができる。また、電解浴における陽極周辺部の電流密度が1000A/dm以下であることにより、陽極の劣化を抑制することができる。したがって、フッ素ガス供給装置の小型化および長寿命化が可能となる。 When the current density in the periphery of the anode in the electrolytic bath is 20 A / dm 2 or more, a large amount of fluorine gas can be generated in the small-capacity electrolytic bath. Moreover, deterioration of the anode can be suppressed when the current density in the periphery of the anode in the electrolytic bath is 1000 A / dm 2 or less. Accordingly, it is possible to reduce the size and life of the fluorine gas supply device.
 (3)反応装置は、1つの不活性ガス供給源から、チャンバー内および電解槽内に不活性ガスが供給されるように構成されてもよい。 (3) The reaction apparatus may be configured such that an inert gas is supplied from one inert gas supply source into the chamber and the electrolytic cell.
 この場合、1つの不活性ガス供給源によりチャンバー内および電解槽内に不活性ガスを供給することができる。それにより、チャンバー内および電解槽内にそれぞれ不活性ガスを供給するための不活性ガス供給源を個別に用意する必要がない。したがって、小型化および低コスト化が実現される。  In this case, the inert gas can be supplied into the chamber and the electrolytic cell by one inert gas supply source. Thereby, it is not necessary to separately prepare an inert gas supply source for supplying an inert gas into the chamber and the electrolytic cell. Therefore, downsizing and cost reduction are realized.
 (4)制御部は、不活性ガス供給源を含む不活性ガス供給系を制御することにより電解槽内の圧力を調整してもよい。 (4) The control unit may adjust the pressure in the electrolytic cell by controlling an inert gas supply system including an inert gas supply source.
 この場合、不活性ガスにより電解槽内の圧力が調整される。それにより、反応装置を大型化することなく、電解槽において安定した電気分解を行うことができる。 In this case, the pressure in the electrolytic cell is adjusted by the inert gas. Thereby, stable electrolysis can be performed in the electrolytic cell without increasing the size of the reaction apparatus.
 また、フッ化水素を含む電解浴が電気分解されると、電解槽内ではフッ素ガスとともに水素ガスが発生する。上記のように、不活性ガスにより電解槽内の圧力が調整される場合には、電解槽内に発生する水素ガスを圧力調整に用いられる不活性ガスで希釈することができる。それにより、電解槽内の水素濃度の上昇を抑制することができるので、安全性が確保される。 In addition, when an electrolytic bath containing hydrogen fluoride is electrolyzed, hydrogen gas is generated together with fluorine gas in the electrolytic cell. As described above, when the pressure in the electrolytic cell is adjusted by the inert gas, the hydrogen gas generated in the electrolytic cell can be diluted with the inert gas used for pressure adjustment. Thereby, since the raise of the hydrogen concentration in an electrolytic vessel can be suppressed, safety is ensured.
 (5)制御部は、膜の形成およびフッ素ガスによるチャンバーのクリーニングのうち少なくとも一方の処理後に、チャンバー内に残留する膜形成用ガスまたはフッ素ガスを不活性ガスで置換するように、不活性ガス供給源を含む不活性ガス供給系を制御してもよい。 (5) The control unit is configured to replace the film forming gas or fluorine gas remaining in the chamber with an inert gas so as to replace the film forming gas or fluorine gas remaining in the chamber after at least one of the film formation and the chamber cleaning with the fluorine gas. You may control the inert gas supply system containing a supply source.
 それにより、チャンバー内に膜形成用ガスまたはフッ素ガスが供給された後、チャンバー内に残留する膜形成用ガスまたはフッ素ガスが不活性ガスで置換される。この場合、膜の形成およびチャンバーのクリーニングのうち少なくとも一方の処理後にチャンバー内が不活性ガスで満たされる。それにより、人体に有害な膜形成用ガスまたはフッ素ガスが、チャンバー内に残留することが防止される。したがって、上記の少なくとも一方の処理後に作業者がチャンバーを開く場合の安全性が確保される。また、膜形成後またはクリーニング後の反応室を容易に大気圧に戻すことが可能になる。 Thereby, after the film forming gas or fluorine gas is supplied into the chamber, the film forming gas or fluorine gas remaining in the chamber is replaced with an inert gas. In this case, the chamber is filled with an inert gas after at least one of the film formation and the chamber cleaning. Thereby, film forming gas or fluorine gas harmful to the human body is prevented from remaining in the chamber. Therefore, safety is ensured when the operator opens the chamber after at least one of the above-described processes. Further, the reaction chamber after film formation or cleaning can be easily returned to atmospheric pressure.
 (6)フッ素ガス供給装置は、電解槽で発生したフッ素ガスを電解槽からチャンバーに導くフッ素ガス供給系を含んでもよい。 (6) The fluorine gas supply device may include a fluorine gas supply system that guides the fluorine gas generated in the electrolytic cell from the electrolytic cell to the chamber.
 この場合、電解槽で発生したフッ素ガスがフッ素ガス供給系によりチャンバー内に導かれる。 In this case, the fluorine gas generated in the electrolytic cell is guided into the chamber by the fluorine gas supply system.
 (7)フッ素ガス供給系は、フッ素ガス供給配管を含んでもよい。 (7) The fluorine gas supply system may include a fluorine gas supply pipe.
 この場合、電解槽で発生したフッ素ガスがフッ素ガス供給配管を通してチャンバー内に導かれる。それにより、簡単な構成でフッ素ガスをチャンバー内に供給することができる。 In this case, the fluorine gas generated in the electrolytic cell is guided into the chamber through the fluorine gas supply pipe. Thereby, the fluorine gas can be supplied into the chamber with a simple configuration.
 (8)フッ素ガス供給系は、フッ素ガス供給配管であり、フッ素ガス供給配管は、1または複数の弁を含み、電解槽で発生したフッ素ガスをチャンバー内に直接、供給するように構成されてもよい。 (8) The fluorine gas supply system is a fluorine gas supply pipe, and the fluorine gas supply pipe includes one or a plurality of valves, and is configured to supply fluorine gas generated in the electrolytic cell directly into the chamber. Also good.
 この場合、電解槽からチャンバー内までのフッ素ガスの供給経路が、例えば1または複数の弁を含むフッ素ガス供給配管のみで構成される。このような構成により、電解槽で発生されるフッ素ガスがガス貯留設備を経由することなく直接チャンバーに供給される。したがって、電解槽とチャンバーとの間にガス貯留設備を設ける必要がないので、反応装置の大型化が抑制される。また、チャンバーのクリーニング時には、チャンバー内が減圧され、チャンバー内の圧力が陽極室内の圧力よりも低くなる。それにより、電解槽で発生されるフッ素ガスがフッ素ガス供給配管を通してチャンバー内に円滑に導かれる。そのため、電解槽とチャンバーとの間に、フッ素ガスを電解槽からチャンバーへ圧送するための構成を設ける必要がない。したがって、反応装置の大型化が抑制される。 In this case, the supply path of the fluorine gas from the electrolytic cell to the inside of the chamber is composed of, for example, only a fluorine gas supply pipe including one or more valves. With such a configuration, the fluorine gas generated in the electrolytic cell is directly supplied to the chamber without going through the gas storage facility. Therefore, it is not necessary to provide a gas storage facility between the electrolytic cell and the chamber, so that an increase in the size of the reaction apparatus is suppressed. Further, when the chamber is cleaned, the pressure in the chamber is reduced, and the pressure in the chamber becomes lower than the pressure in the anode chamber. Thereby, the fluorine gas generated in the electrolytic cell is smoothly guided into the chamber through the fluorine gas supply pipe. Therefore, it is not necessary to provide a configuration for pumping fluorine gas from the electrolytic cell to the chamber between the electrolytic cell and the chamber. Therefore, the enlargement of the reaction apparatus is suppressed.
 (9)フッ素ガス供給系は、不活性ガスの流れにより電解槽からフッ素ガスを吸引し、吸引したフッ素ガスを不活性ガスとともにチャンバーに導くバキュームジェネレータを含んでもよい。 (9) The fluorine gas supply system may include a vacuum generator that sucks fluorine gas from the electrolytic cell by the flow of inert gas and guides the sucked fluorine gas to the chamber together with the inert gas.
 この場合、電解槽で発生したフッ素ガスを不活性ガスにより希釈しつつチャンバー内に導くことができる。それにより、希釈されたフッ素ガスで適切なクリーニングを行うことができる。 In this case, the fluorine gas generated in the electrolytic cell can be introduced into the chamber while being diluted with an inert gas. Thereby, appropriate cleaning can be performed with diluted fluorine gas.
 (10)フッ素ガス供給系は、電解槽で発生したフッ素ガスをチャンバーに圧送する圧送装置を含んでもよい。 (10) The fluorine gas supply system may include a pumping device that pumps the fluorine gas generated in the electrolytic cell to the chamber.
 この場合、電解槽で発生したフッ素ガスが加圧されつつチャンバー内に供給される。それにより、チャンバー内に加圧されたフッ素ガスを供給することができる。したがって、所望の圧力を有するフッ素ガスで適切なクリーニングを行うことができる。 In this case, the fluorine gas generated in the electrolytic cell is supplied into the chamber while being pressurized. Thereby, pressurized fluorine gas can be supplied into the chamber. Therefore, appropriate cleaning can be performed with fluorine gas having a desired pressure.
 (11)フッ素ガス供給系は、電解槽で発生したフッ素ガスを貯留するタンクを含んでもよい。 (11) The fluorine gas supply system may include a tank for storing fluorine gas generated in the electrolytic cell.
 この場合、電解槽で発生したフッ素ガスがタンク内に貯留される。それにより、チャンバーのクリーニングに必要な量のフッ素ガスを予めタンク内に貯留しておくことができる。したがって、チャンバーのクリーニング時に、十分な量のフッ素ガスをチャンバー内に供給することができる。 In this case, fluorine gas generated in the electrolytic cell is stored in the tank. Thereby, an amount of fluorine gas necessary for cleaning the chamber can be stored in the tank in advance. Therefore, a sufficient amount of fluorine gas can be supplied into the chamber when the chamber is cleaned.
 (12)フッ素ガス供給系は、電解槽で発生したフッ素ガスを貯留するタンクと、電解槽で発生したフッ素ガスをタンクに圧送する圧送装置とを含んでもよい。 (12) The fluorine gas supply system may include a tank that stores the fluorine gas generated in the electrolytic cell and a pumping device that pumps the fluorine gas generated in the electrolytic cell to the tank.
 この場合、電解槽で発生したフッ素ガスが圧送装置により加圧されつつタンク内に供給される。それにより、加圧されたフッ素ガスをタンク内に貯留することができるので、タンクの大型化を抑制することができる。また、チャンバーのクリーニングに必要な量のフッ素ガスを予めタンク内に貯留しておくことができる。したがって、チャンバーのクリーニング時に、十分な量のフッ素ガスをチャンバー内に供給することができる。 In this case, the fluorine gas generated in the electrolytic cell is supplied into the tank while being pressurized by the pressure feeding device. Thereby, since the pressurized fluorine gas can be stored in the tank, the enlargement of the tank can be suppressed. Further, a fluorine gas in an amount necessary for cleaning the chamber can be stored in the tank in advance. Therefore, a sufficient amount of fluorine gas can be supplied into the chamber when the chamber is cleaned.
 (13)フッ素ガス供給装置は、フッ素ガス供給系を通してチャンバー内に流れるフッ素ガスの流量を調整する流量調整装置をさらに含んでもよい。 (13) The fluorine gas supply device may further include a flow rate adjusting device for adjusting the flow rate of the fluorine gas flowing into the chamber through the fluorine gas supply system.
 この場合、チャンバー内に導かれるフッ素ガスの流量を調整することができる。それにより、所望の流量でフッ素ガスをチャンバーに供給することにより、適切なクリーニングを行うことができる。 In this case, the flow rate of the fluorine gas introduced into the chamber can be adjusted. Thereby, appropriate cleaning can be performed by supplying fluorine gas to the chamber at a desired flow rate.
 (14)反応装置は、チャンバーおよびフッ素ガス供給装置を収容する筐体と、筐体内を排気する排気装置とをさらに備えてもよい。 (14) The reaction apparatus may further include a housing that houses the chamber and the fluorine gas supply device, and an exhaust device that exhausts the inside of the housing.
 この場合、筐体の内部の雰囲気が排気される。それにより、筐体の外部にフッ素ガスまたはその他のガスが漏れ出すことが防止される。 In this case, the atmosphere inside the housing is exhausted. This prevents fluorine gas or other gases from leaking out of the housing.
 (15)フッ素ガス供給装置は、複数の電解槽を含み、各電解槽には、陽極及び陰極が設けられ、制御部は、フッ素ガスをチャンバー内に供給する時に各電解槽に収容された電解浴において電気分解によりフッ素ガスが発生されるようにフッ素ガス供給装置を制御してもよい。 (15) The fluorine gas supply device includes a plurality of electrolytic cells, each electrolytic cell is provided with an anode and a cathode, and the control unit is an electrolyzer accommodated in each electrolytic cell when supplying fluorine gas into the chamber. The fluorine gas supply device may be controlled so that fluorine gas is generated by electrolysis in the bath.
 この場合、チャンバーのクリーニング時に、複数の電解槽で発生されるフッ素ガスをチャンバー内に供給することができる。それにより、クリーニングに必要な量のフッ素ガスをチャンバー内に短時間で供給することができる。 In this case, fluorine gas generated in a plurality of electrolytic cells can be supplied into the chamber when the chamber is cleaned. Thereby, an amount of fluorine gas necessary for cleaning can be supplied into the chamber in a short time.
 また、フッ素ガス供給装置が複数の電解槽を有するので、例えば一の電解槽に不具合が生じた場合に、その一の電解槽のメンテナンスを行いつつ他の電解槽から発生するフッ素ガスをチャンバー内に供給することができる。したがって、反応装置の連続運転が可能となる。 Further, since the fluorine gas supply device has a plurality of electrolytic cells, for example, when a failure occurs in one electrolytic cell, the fluorine gas generated from the other electrolytic cell is maintained in the chamber while performing maintenance of the one electrolytic cell. Can be supplied to. Therefore, continuous operation of the reaction apparatus becomes possible.
 本発明によれば、クリーニング機能を有するとともに小型化および低コスト化が可能な反応装置が実現される。 According to the present invention, a reactor having a cleaning function and capable of being reduced in size and cost is realized.
図1は第1の実施の形態に係るCVD装置の構成図である。FIG. 1 is a configuration diagram of a CVD apparatus according to the first embodiment. 図2は図1のCVD装置の制御系を示すブロック図である。FIG. 2 is a block diagram showing a control system of the CVD apparatus of FIG. 図3は第2の実施の形態に係るCVD装置の一部を示す構成図である。FIG. 3 is a configuration diagram showing a part of a CVD apparatus according to the second embodiment. 図4は他の実施の形態に係るCVD装置の一部を示すブロック図である。FIG. 4 is a block diagram showing a part of a CVD apparatus according to another embodiment.
 本発明の一実施の形態に係る反応装置について説明する。以下の説明では、反応装置の一例として、CVD(化学蒸着法)により対象物の表面に所定の膜を形成するCVD装置を説明する。以下に説明するCVD装置は、チャンバー(反応室)内で対象物の表面に所定の膜を形成する膜形成処理機能、および膜形成処理によりチャンバーの内壁(内表面)等に付着する膜を除去するためのクリーニング機能を有する。 A reaction apparatus according to an embodiment of the present invention will be described. In the following description, a CVD apparatus that forms a predetermined film on the surface of an object by CVD (chemical vapor deposition) will be described as an example of a reaction apparatus. The CVD apparatus described below removes the film attached to the inner wall (inner surface) of the chamber by the film formation processing function that forms a predetermined film on the surface of the object in the chamber (reaction chamber) and the film formation processing. Has a cleaning function.
 [1]第1の実施の形態
 (1)CVD装置の全体構成
 図1は、第1の実施の形態に係るCVD装置の構成図である。本実施の形態に係るCVD装置1は、半導体製造工場等の建屋BL内に設けられる。
[1] First Embodiment (1) Overall Configuration of CVD Apparatus FIG. 1 is a configuration diagram of a CVD apparatus according to the first embodiment. The CVD apparatus 1 according to the present embodiment is provided in a building BL such as a semiconductor manufacturing factory.
 図1の例では、建屋BLは一階部分および二階部分を有する。建屋BLの一階部分は機械室MRとして使用され、建屋BLの二階部分はクリーンルームCRとして使用される。クリーンルームCRの天井には、図示しないファンフィルタユニットが設けられている。クリーンルームCRの床FLは、例えばグレーチングで構成される。ファンフィルタユニットが動作することにより、クリーンルームCR内に上方から下方に向かう清浄な空気の流れが形成される。 In the example of FIG. 1, the building BL has a first floor part and a second floor part. The first floor portion of the building BL is used as a machine room MR, and the second floor portion of the building BL is used as a clean room CR. A fan filter unit (not shown) is provided on the ceiling of the clean room CR. The floor FL of the clean room CR is composed of, for example, grating. By operating the fan filter unit, a clean air flow from the upper side to the lower side is formed in the clean room CR.
 CVD装置1は、主として膜形成処理部10、フッ素ガス発生部20、制御ボックス30、筐体40、真空ポンプ110、除害装置120、排気装置130,140、HF(フッ化水素)吸着塔150、HF供給源160、不活性ガス供給源170、膜形成用ガス供給源180、排気設備190、複数の制御バルブv1~v7および複数の配管p1~p11を備える。 The CVD apparatus 1 mainly includes a film formation processing unit 10, a fluorine gas generation unit 20, a control box 30, a housing 40, a vacuum pump 110, an abatement device 120, exhaust devices 130 and 140, and an HF (hydrogen fluoride) adsorption tower 150. , HF supply source 160, inert gas supply source 170, film forming gas supply source 180, exhaust equipment 190, a plurality of control valves v1 to v7, and a plurality of pipes p1 to p11.
 膜形成処理部10、フッ素ガス発生部20、制御ボックス30および筐体40は、クリーンルームCR内に設けられる。一方、真空ポンプ110、除害装置120、排気装置130,140、HF吸着塔150、HF供給源160、不活性ガス供給源170、膜形成用ガス供給源180および排気設備190は、機械室MR内に配置される。 The film formation processing unit 10, the fluorine gas generation unit 20, the control box 30, and the housing 40 are provided in the clean room CR. On the other hand, the vacuum pump 110, the abatement device 120, the exhaust devices 130 and 140, the HF adsorption tower 150, the HF supply source 160, the inert gas supply source 170, the film forming gas supply source 180, and the exhaust equipment 190 are machine room MR. Placed inside.
 クリーンルームCR内で、膜形成処理部10およびフッ素ガス発生部20は、さらに筐体40内に収容される。筐体40の一側壁には開口41が形成されている。その一側壁には、開口41を開閉可能なシャッタ42およびシャッタ42を駆動するシャッタ駆動部43が設けられている。 In the clean room CR, the film formation processing unit 10 and the fluorine gas generation unit 20 are further accommodated in a housing 40. An opening 41 is formed on one side wall of the housing 40. A shutter 42 that can open and close the opening 41 and a shutter drive unit 43 that drives the shutter 42 are provided on one side wall.
 筐体40の底部に排気ポート44が形成されている。排気ポート44には、機械室MR内に延びる配管p11の一端が接続されている。配管p11の他端は、排気設備190に接続されている。機械室MRにおいて、配管p11には、上流から下流に向かって排気装置130および除害装置120がこの順で介挿されている。 An exhaust port 44 is formed at the bottom of the housing 40. One end of a pipe p <b> 11 extending into the machine room MR is connected to the exhaust port 44. The other end of the pipe p11 is connected to the exhaust equipment 190. In the machine room MR, an exhaust device 130 and an abatement device 120 are inserted in this order from the upstream to the downstream in the pipe p11.
 排気装置130は、例えばブロワーである。排気装置130により筐体40内の雰囲気が除害装置120を通して排気設備190に送られる。それにより、排気装置130の動作中は、筐体40内の圧力が大気圧よりも低くなる。除害装置120は、排気装置130から送られるガス中のHF成分およびその他の所定の有害成分を除去可能に構成される。 The exhaust device 130 is, for example, a blower. The atmosphere in the housing 40 is sent to the exhaust facility 190 through the abatement device 120 by the exhaust device 130. Thereby, during the operation of the exhaust device 130, the pressure in the housing 40 becomes lower than the atmospheric pressure. The abatement device 120 is configured to be able to remove HF components and other predetermined harmful components in the gas sent from the exhaust device 130.
 制御ボックス30内には、直流電源回路31、高周波電源回路32および制御部33が設けられている。 In the control box 30, a DC power supply circuit 31, a high frequency power supply circuit 32, and a control unit 33 are provided.
 (2)膜形成処理部
 膜形成処理部10は、上部電極11、下部電極12、ヒータ13、ヒータ駆動部14、チャンバー15、圧力センサS11および温度センサS12を備える。上部電極11および下部電極12は、チャンバー15の内部で互いに対向するように設けられている。上部電極11は、下部電極12の上方に位置し、制御ボックス30内の高周波電源回路32と電気的に接続されている。
(2) Film Formation Processing Unit The film formation processing unit 10 includes an upper electrode 11, a lower electrode 12, a heater 13, a heater drive unit 14, a chamber 15, a pressure sensor S11, and a temperature sensor S12. The upper electrode 11 and the lower electrode 12 are provided so as to face each other inside the chamber 15. The upper electrode 11 is located above the lower electrode 12 and is electrically connected to the high frequency power supply circuit 32 in the control box 30.
 上部電極11は、上面および下面を有する。上部電極11の上面には1つの開口が形成され、下面には複数の開口が形成されている。上部電極11の内部には、上面側の開口と下面側の複数の開口とを結ぶガス供給経路11iが形成されている。上部電極11の上面側の開口部分に配管p1の一端が接続されている。配管p1の他端はチャンバー15の外側かつ筐体40の内側に位置する。配管p1におけるチャンバー15の外側部分に、後述する複数(本例では3つ)の配管p2,p3,p5の一端が接続される。配管p2,p3,p5を通して配管p1にガスが導かれる。配管p1に導かれたガスは、配管p1の一端から上部電極11のガス供給経路11iを通して上部電極11と下部電極12との間の空間に供給される。 The upper electrode 11 has an upper surface and a lower surface. One opening is formed on the upper surface of the upper electrode 11, and a plurality of openings are formed on the lower surface. Inside the upper electrode 11, a gas supply path 11 i that connects the opening on the upper surface side and the plurality of openings on the lower surface side is formed. One end of the pipe p <b> 1 is connected to the opening on the upper surface side of the upper electrode 11. The other end of the pipe p <b> 1 is located outside the chamber 15 and inside the housing 40. One end of a plurality of (three in this example) pipes p2, p3, and p5 described later is connected to the outer portion of the chamber 15 in the pipe p1. Gas is guided to the pipe p1 through the pipes p2, p3, and p5. The gas guided to the pipe p1 is supplied from one end of the pipe p1 to the space between the upper electrode 11 and the lower electrode 12 through the gas supply path 11i of the upper electrode 11.
 下部電極12は、上面および下面を有する。下部電極12の上面は、膜形成処理時に対象物を載置するステージとして機能する。下部電極12の内部には、ヒータ13が設けられている。ヒータ13は、チャンバー15の外側に設けられたヒータ駆動部14と電気的に接続されている。ヒータ駆動部14は、制御ボックス30内の直流電源回路31と電気的に接続されている。 The lower electrode 12 has an upper surface and a lower surface. The upper surface of the lower electrode 12 functions as a stage on which an object is placed during the film formation process. A heater 13 is provided inside the lower electrode 12. The heater 13 is electrically connected to a heater driving unit 14 provided outside the chamber 15. The heater driving unit 14 is electrically connected to a DC power supply circuit 31 in the control box 30.
 チャンバー15の一側壁には開口16が形成されている。また、その一側壁には、開口16を開閉可能なシャッタ17およびシャッタ17を駆動するシャッタ駆動部18が設けられている。 An opening 16 is formed on one side wall of the chamber 15. A shutter 17 that can open and close the opening 16 and a shutter driving unit 18 that drives the shutter 17 are provided on one side wall.
 筐体40に設けられたシャッタ42およびチャンバー15に設けられたシャッタ17がともに開かれることにより、チャンバー15内の下部電極12上に対象物を載置することが可能になる。また、チャンバー15内から対象物を取り出すことが可能になる。一方、シャッタ42,17がともに閉じられることにより、膜形成処理およびチャンバー15のクリーニングが可能になる。 By opening both the shutter 42 provided in the housing 40 and the shutter 17 provided in the chamber 15, an object can be placed on the lower electrode 12 in the chamber 15. In addition, the object can be taken out from the chamber 15. On the other hand, when both the shutters 42 and 17 are closed, the film forming process and the chamber 15 can be cleaned.
 チャンバー15の底部に排気ポート19が形成されている。排気ポート19には、クリーンルームCR内から機械室MR内に延びる配管p10の一端が接続されている。配管p10の他端は、配管p11における除害装置120よりも上流側の部分(図1の例では、排気装置130と除害装置120との間の部分)に接続されている。それにより、除害装置120は、真空ポンプ110から送られるガス中のHF成分およびその他の所定の有害成分を除去する。 An exhaust port 19 is formed at the bottom of the chamber 15. One end of a pipe p10 extending from the clean room CR to the machine room MR is connected to the exhaust port 19. The other end of the pipe p10 is connected to a part upstream of the abatement device 120 in the pipe p11 (a part between the exhaust device 130 and the abatement device 120 in the example of FIG. 1). Thereby, the abatement apparatus 120 removes the HF component and other predetermined harmful components in the gas sent from the vacuum pump 110.
 機械室MR内で、配管p10には上流から下流に向かって制御バルブv7および真空ポンプ110がこの順で介挿されている。チャンバー15のシャッタ17が閉じられかつ真空ポンプ110が動作している状態で制御バルブv7が開かれると、チャンバー15内の雰囲気が排気ポート19、配管p10および配管p11を通して排気設備190に送られる。それにより、チャンバー15内が減圧される。 In the machine room MR, a control valve v7 and a vacuum pump 110 are inserted in this order from the upstream to the downstream of the pipe p10. When the control valve v7 is opened while the shutter 17 of the chamber 15 is closed and the vacuum pump 110 is operating, the atmosphere in the chamber 15 is sent to the exhaust equipment 190 through the exhaust port 19, the pipe p10 and the pipe p11. Thereby, the inside of the chamber 15 is depressurized.
 チャンバー15には、圧力センサS11および温度センサS12が設けられている。圧力センサS11によりチャンバー15の内部圧力が検出され、温度センサS12により下部電極12の上面の温度が検出される。 The chamber 15 is provided with a pressure sensor S11 and a temperature sensor S12. The internal pressure of the chamber 15 is detected by the pressure sensor S11, and the temperature of the upper surface of the lower electrode 12 is detected by the temperature sensor S12.
 配管p2の他端は、機械室MR内で膜形成用ガス供給源180に接続されている。配管p2には、制御バルブv1が介挿されている。膜形成用ガス供給源180は、膜形成用ガスが貯留されたガスボンベである。膜形成用ガスとしては、例えばSiH4(シラン)ガス、Si2H6(ジシラン)ガス、GeH4(ゲルマン)ガスまたはGe2H4(ジゲルマン)ガス等を用いることができる。 The other end of the pipe p2 is connected to a film forming gas supply source 180 in the machine room MR. A control valve v1 is inserted in the pipe p2. The film forming gas supply source 180 is a gas cylinder in which a film forming gas is stored. As the film forming gas, for example, SiH4 (silane) gas, Si2H6 (disilane) gas, GeH4 (germane) gas, Ge2H4 (digermane) gas, or the like can be used.
 配管p3の他端は配管p4の一端に接続されている。配管p3には、制御バルブv2が介挿されている。配管p4の他端は不活性ガス供給源170に接続されている。不活性ガス供給源170は、不活性ガスが貯留されたガスボンベ、液体ガスタンクあるいは気化器等である。不活性ガスとしては、例えばN2(窒素)ガス、Ar(アルゴン)ガス、He(ヘリウム)ガスまたはXe(キセノン)ガス等を用いることができる。 The other end of the pipe p3 is connected to one end of the pipe p4. A control valve v2 is inserted in the pipe p3. The other end of the pipe p4 is connected to an inert gas supply source 170. The inert gas supply source 170 is a gas cylinder in which an inert gas is stored, a liquid gas tank, a vaporizer, or the like. As the inert gas, for example, N2 (nitrogen) gas, Ar (argon) gas, He (helium) gas, Xe (xenon) gas, or the like can be used.
 配管p4の一端には、さらに配管p6の一端が接続されている。すなわち、本例では、配管p3の他端と配管p4の一端と配管p6の一端とが一点で接続されている。配管p6の他端は、後述する電解槽21の陰極室21bに接続されている。配管p6には制御バルブv4が介挿されている。 One end of the pipe p6 is further connected to one end of the pipe p4. That is, in this example, the other end of the pipe p3, one end of the pipe p4, and one end of the pipe p6 are connected at one point. The other end of the pipe p6 is connected to a cathode chamber 21b of the electrolytic cell 21 described later. A control valve v4 is inserted in the pipe p6.
 配管p5の他端は、後述する電解槽21のガス排出口26に接続されている。配管p5には、制御バルブv3が介挿されている。 The other end of the pipe p5 is connected to a gas outlet 26 of the electrolytic cell 21 described later. A control valve v3 is inserted in the pipe p5.
 (3)フッ素ガス発生部
 フッ素ガス発生部20は、電解槽21を備える。電解槽21は、例えばNi(ニッケル)、モネル、純鉄もしくはステンレス鋼等の金属または合金により形成されている。
(3) Fluorine Gas Generation Unit The fluorine gas generation unit 20 includes an electrolytic cell 21. The electrolytic cell 21 is made of, for example, a metal or alloy such as Ni (nickel), monel, pure iron, or stainless steel.
 電解槽21内には、KF-HF系混合溶融塩からなる電解浴22が形成されている。また、電解槽21に一部浸漬するように、隔壁23が設けられている。隔壁23は、例えばNiまたはモネルからなる。電解槽21内において、隔壁23の一方側に陽極室21aが形成され、他方側に陰極室21bが形成されている。電解浴22上の空間は、隔壁23によって陽極室21aと陰極室21bとで遮断されている。 An electrolytic bath 22 made of a KF-HF mixed molten salt is formed in the electrolytic bath 21. A partition wall 23 is provided so as to be partially immersed in the electrolytic cell 21. The partition wall 23 is made of, for example, Ni or Monel. In the electrolytic cell 21, an anode chamber 21 a is formed on one side of the partition wall 23, and a cathode chamber 21 b is formed on the other side. The space above the electrolytic bath 22 is blocked by the partition wall 23 between the anode chamber 21a and the cathode chamber 21b.
 陽極室21a内で電解浴22に接触するように陽極24が配置され、陰極室21b内で電解浴22に接触するように陰極25が配置されている。陽極24および陰極25は電流供給装置28に電気的に接続されている。電流供給装置28は、さらに制御ボックス30内の直流電源回路31と電気的に接続されている。 The anode 24 is disposed so as to contact the electrolytic bath 22 in the anode chamber 21a, and the cathode 25 is disposed so as to contact the electrolytic bath 22 in the cathode chamber 21b. The anode 24 and the cathode 25 are electrically connected to the current supply device 28. The current supply device 28 is further electrically connected to a DC power supply circuit 31 in the control box 30.
 電流供給装置28によって陽極24と陰極25との間に直流電流が流されることにより、電解浴22中のHF(フッ化水素)の電気分解が行われる。これにより、陽極室21aにおいて主にフッ素ガスが発生し、陰極室21bにおいて主に水素ガスが発生する。 When a direct current is passed between the anode 24 and the cathode 25 by the current supply device 28, electrolysis of HF (hydrogen fluoride) in the electrolytic bath 22 is performed. Thereby, fluorine gas is mainly generated in the anode chamber 21a, and hydrogen gas is mainly generated in the cathode chamber 21b.
 本実施の形態においては、陽極24の表面のうち電解浴22に浸漬される部分の少なくとも一部は、ダイヤモンド構造を有する導電性炭素材料からなる。具体的には、陽極24は、矩形状を有する導電性基板の両面に導電性ダイヤモンドまたは導電性ダイヤモンドライクカーボンからなる被覆層が形成された構成を有する。導電性基板としては、ダイヤモンド、グラファイトまたは非晶質炭素からなる基板を用いることが好ましい。導電性基板としては、Ni(ニッケル)等の金属材料からなる基板を用いてもよい。陰極25の材料としては、例えばNiを用いることが好ましい。なお、陰極25が陽極24と同じ構成を有してもよい。 In the present embodiment, at least a part of the surface of the anode 24 immersed in the electrolytic bath 22 is made of a conductive carbon material having a diamond structure. Specifically, the anode 24 has a configuration in which coating layers made of conductive diamond or conductive diamond-like carbon are formed on both sides of a rectangular conductive substrate. As the conductive substrate, a substrate made of diamond, graphite or amorphous carbon is preferably used. As the conductive substrate, a substrate made of a metal material such as Ni (nickel) may be used. As a material of the cathode 25, for example, Ni is preferably used. Note that the cathode 25 may have the same configuration as the anode 24.
 陽極室21aの上部にガス排出口26が設けられている。上記のように、配管p5の他端がガス排出口26に接続されている。後述するチャンバー15のクリーニング時に、制御バルブv3が開かれることにより陽極室21aで発生するガス(主としてフッ素ガス)がガス排出口26、配管p5、配管p1および上部電極11のガス供給経路11iを通して膜形成処理部10のチャンバー15内に供給される。なお、配管p5には、図1に点線で示すようにミストフィルタ90が介挿されてもよい。この場合、陽極室21aで発生するガスに含まれる塵埃または不純物を除去することができる。それにより、陽極室21aからチャンバー15内に高い純度のフッ素ガスを供給することができる。 A gas discharge port 26 is provided in the upper part of the anode chamber 21a. As described above, the other end of the pipe p <b> 5 is connected to the gas discharge port 26. When cleaning the chamber 15 to be described later, the gas (mainly fluorine gas) generated in the anode chamber 21a by opening the control valve v3 passes through the gas outlet 26, the pipe p5, the pipe p1, and the gas supply path 11i of the upper electrode 11 to form a film. It is supplied into the chamber 15 of the formation processing unit 10. A mist filter 90 may be inserted in the pipe p5 as shown by a dotted line in FIG. In this case, dust or impurities contained in the gas generated in the anode chamber 21a can be removed. Thereby, high purity fluorine gas can be supplied into the chamber 15 from the anode chamber 21a.
 陰極室21bの上部にガス排出口27が設けられている。ガス排出口27には、配管p8の一端が接続される。配管p8の他端は、機械室MRの排気設備190に接続される。機械室MR内で、配管p8には上流から下流に向かって排気装置140およびHF吸着塔150がこの順で介挿されている。排気装置140は、例えばバキュームジェネレータである。チャンバー15のクリーニング時に、排気装置140が動作することにより陰極室21bで発生するガス(主として水素ガス)がHF吸着塔150を通して排気設備190に送られる。HF吸着塔150には吸着剤として例えばソーダライムが充填されている。HF吸着塔150においては、ソーダライムにより陰極室21bで発生するガス中のHF成分が除去される。 A gas discharge port 27 is provided in the upper part of the cathode chamber 21b. One end of a pipe p8 is connected to the gas discharge port 27. The other end of the pipe p8 is connected to the exhaust equipment 190 of the machine room MR. In the machine room MR, the exhaust device 140 and the HF adsorption tower 150 are inserted in this order from the upstream to the downstream in the pipe p8. The exhaust device 140 is, for example, a vacuum generator. When cleaning the chamber 15, the gas (mainly hydrogen gas) generated in the cathode chamber 21 b by the operation of the exhaust device 140 is sent to the exhaust equipment 190 through the HF adsorption tower 150. The HF adsorption tower 150 is filled with, for example, soda lime as an adsorbent. In the HF adsorption tower 150, HF components in the gas generated in the cathode chamber 21b are removed by soda lime.
 電解浴22にHFを供給するための配管p7の一端が電解槽21に接続されている。配管p7の他端は、機械室MRのHF供給源160に接続されている。HF供給源160は、HFが貯留された貯留容器である。配管p7には、制御バルブv5が介挿されている。制御バルブv5が開かれることにより、HF供給源160から電解槽21内にHFが供給される。 One end of a pipe p 7 for supplying HF to the electrolytic bath 22 is connected to the electrolytic cell 21. The other end of the pipe p7 is connected to the HF supply source 160 of the machine room MR. The HF supply source 160 is a storage container in which HF is stored. A control valve v5 is inserted in the pipe p7. By opening the control valve v <b> 5, HF is supplied from the HF supply source 160 into the electrolytic cell 21.
 上記のように、配管p6の他端が陰極室21bに接続されている。配管p6に介挿された制御バルブv4が開かれることにより、不活性ガス供給源170から配管p4,p6を通して陰極室21b内に不活性ガスが供給される。 As described above, the other end of the pipe p6 is connected to the cathode chamber 21b. By opening the control valve v4 inserted in the pipe p6, the inert gas is supplied from the inert gas supply source 170 into the cathode chamber 21b through the pipes p4 and p6.
 機械室MR内では、配管p4と配管p8とをつなぐように配管p9が設けられている。配管p9には制御バルブv6が介挿されている。制御バルブv6が開かれることにより、不活性ガス供給源170から配管p4,p9を通して配管p8内に不活性ガスが供給される。 In the machine room MR, a pipe p9 is provided so as to connect the pipe p4 and the pipe p8. A control valve v6 is inserted in the pipe p9. By opening the control valve v6, the inert gas is supplied from the inert gas supply source 170 through the pipes p4 and p9 into the pipe p8.
 電解槽21には、圧力センサS21,S22および液面センサS23,S24が設けられている。圧力センサS21により陽極室21aの内部圧力が検出され、圧力センサS22により陰極室21bの内部圧力が検出される。また、液面センサS23により陽極室21aにおける電解浴22の液面高さが検出され、液面センサS24により陰極室21bにおける電解浴22の液面高さが検出される。 The electrolytic cell 21 is provided with pressure sensors S21 and S22 and liquid level sensors S23 and S24. The pressure sensor S21 detects the internal pressure of the anode chamber 21a, and the pressure sensor S22 detects the internal pressure of the cathode chamber 21b. Further, the liquid level of the electrolytic bath 22 in the anode chamber 21a is detected by the liquid level sensor S23, and the liquid level of the electrolytic bath 22 in the cathode chamber 21b is detected by the liquid level sensor S24.
 (4)制御系
 図1の制御部33は、CPU(中央演算処理装置)およびメモリまたはマイクロコンピュータを含み、CVD装置1の各構成要素の動作を制御する。
(4) Control System The control unit 33 in FIG. 1 includes a CPU (Central Processing Unit) and a memory or a microcomputer, and controls the operation of each component of the CVD apparatus 1.
 図2は、図1のCVD装置1の制御系を示すブロック図である。図2に示すように、膜形成処理部10の圧力センサS11および温度センサS12の検出結果が制御部33に与えられる。また、フッ素ガス発生部20の圧力センサS21,S22および液面センサS23,S24の検出結果が制御部33に与えられる。 FIG. 2 is a block diagram showing a control system of the CVD apparatus 1 of FIG. As shown in FIG. 2, the detection results of the pressure sensor S11 and the temperature sensor S12 of the film formation processing unit 10 are given to the control unit 33. The detection results of the pressure sensors S21 and S22 and the liquid level sensors S23 and S24 of the fluorine gas generation unit 20 are given to the control unit 33.
 また、制御部33は、ヒータ駆動部14、シャッタ駆動部18,43、電流供給装置28、直流電源回路31、高周波電源回路32、真空ポンプ110、除害装置120、排気装置130,140および制御バルブv1~v7の動作を制御する。 The control unit 33 includes a heater drive unit 14, shutter drive units 18 and 43, a current supply device 28, a DC power supply circuit 31, a high frequency power supply circuit 32, a vacuum pump 110, an abatement device 120, exhaust devices 130 and 140, and a control. The operation of the valves v1 to v7 is controlled.
 (5)CVD装置の動作
 (5-1)膜形成処理時
 膜形成処理前に、作業者は図示しない操作部を操作することにより筐体40のシャッタ42およびチャンバー15のシャッタ17を開き、下部電極12の上面上に対象物を載置する。その後、作業者は、シャッタ17,42を閉じる。
(5) Operation of CVD apparatus (5-1) During film formation process Before the film formation process, the operator opens the shutter 42 of the casing 40 and the shutter 17 of the chamber 15 by operating an operation unit (not shown), An object is placed on the upper surface of the electrode 12. Thereafter, the operator closes the shutters 17 and 42.
 膜形成処理の初期状態では、制御バルブv1~v7は閉じられている。また、ヒータ駆動部14、電流供給装置28および排気装置140は動作していない。一方、真空ポンプ110、除害装置120および排気装置130は動作している。 In the initial state of the film forming process, the control valves v1 to v7 are closed. Further, the heater driving unit 14, the current supply device 28, and the exhaust device 140 are not operating. On the other hand, the vacuum pump 110, the abatement device 120, and the exhaust device 130 are operating.
 膜形成処理が開始されると、真空ポンプ110および制御バルブv7が圧力センサS11の検出結果に基づいて制御部33により制御される。それにより、チャンバー15内の圧力が大気圧よりも低い所定の圧力に調整される。また、直流電源回路31およびヒータ駆動部14が温度センサS12の検出結果に基づいて制御部33により制御される。それにより、ヒータ13が発熱し、下部電極12の上面の温度が所定の温度に調整される。 When the film formation process is started, the vacuum pump 110 and the control valve v7 are controlled by the control unit 33 based on the detection result of the pressure sensor S11. Thereby, the pressure in the chamber 15 is adjusted to a predetermined pressure lower than the atmospheric pressure. Further, the DC power supply circuit 31 and the heater driving unit 14 are controlled by the control unit 33 based on the detection result of the temperature sensor S12. Thereby, the heater 13 generates heat, and the temperature of the upper surface of the lower electrode 12 is adjusted to a predetermined temperature.
 次に、制御バルブv1,v2が開かれる。それにより、膜形成用ガス供給源180の膜形成用ガスが、配管p2,p1および上部電極11のガス供給経路11iを通してチャンバー15内に供給される。また、不活性ガス供給源170の不活性ガスが、配管p4,p3,p1および上部電極11のガス供給経路11iを通してチャンバー15内に供給される。この場合、配管p1内では、膜形成用ガスが不活性ガスにより希釈される。 Next, the control valves v1 and v2 are opened. Thereby, the film forming gas from the film forming gas supply source 180 is supplied into the chamber 15 through the pipes p <b> 2 and p <b> 1 and the gas supply path 11 i of the upper electrode 11. Further, the inert gas from the inert gas supply source 170 is supplied into the chamber 15 through the pipes p4, p3, p1 and the gas supply path 11i of the upper electrode 11. In this case, the film forming gas is diluted with the inert gas in the pipe p1.
 次に、制御バルブv1,v2,v7が閉じられる。または、開度が小さくなるように制御バルブv1,v2が調整される。この状態で、高周波電源回路32が制御され、上部電極11に高周波電圧が印加される。それにより、上部電極11および下部電極12間に高周波プラズマが発生され、対象物の表面に所定の膜が形成される。 Next, the control valves v1, v2, v7 are closed. Alternatively, the control valves v1 and v2 are adjusted so that the opening degree becomes small. In this state, the high frequency power supply circuit 32 is controlled, and a high frequency voltage is applied to the upper electrode 11. Thereby, high frequency plasma is generated between the upper electrode 11 and the lower electrode 12, and a predetermined film is formed on the surface of the object.
 次に、上部電極11への高周波電圧の印加が停止され、制御バルブv2,v7が開かれる。それにより、不活性ガス供給源170の不活性ガスがチャンバー15に供給されるとともに、チャンバー15内の雰囲気が排気ポート19、配管p10、p11を通して排気設備190に送られる。このようにして、チャンバー15内の雰囲気が不活性ガス供給源170の不活性ガスで置換される。 Next, the application of the high frequency voltage to the upper electrode 11 is stopped, and the control valves v2 and v7 are opened. Thereby, the inert gas of the inert gas supply source 170 is supplied to the chamber 15 and the atmosphere in the chamber 15 is sent to the exhaust equipment 190 through the exhaust port 19 and the pipes p10 and p11. In this way, the atmosphere in the chamber 15 is replaced with the inert gas from the inert gas supply source 170.
 その後、制御バルブv7が閉じられる。また、チャンバー15内の圧力が大気圧または筐体40内の圧力に達するまで制御バルブv2が開状態で保持される。最後に、制御バルブv2が閉じられるとともにチャンバー15のシャッタ17および筐体40のシャッタ42が開かれる。この状態で、作業者は、チャンバー15内から膜形成処理後の対象物を取り出す。 Thereafter, the control valve v7 is closed. Further, the control valve v <b> 2 is held open until the pressure in the chamber 15 reaches atmospheric pressure or the pressure in the housing 40. Finally, the control valve v2 is closed and the shutter 17 of the chamber 15 and the shutter 42 of the housing 40 are opened. In this state, the operator takes out the object after the film formation process from the chamber 15.
 (5-2)クリーニング時
 本実施の形態においては、チャンバー15内に高周波プラズマが発生されない状態で、チャンバー15のクリーニングが行われる。チャンバー15のクリーニング前に、作業者は図示しない操作部を操作することにより筐体40のシャッタ42およびチャンバー15のシャッタ17を閉じる。
(5-2) Cleaning In this embodiment, the chamber 15 is cleaned in a state where no high-frequency plasma is generated in the chamber 15. Before cleaning the chamber 15, the operator closes the shutter 42 of the housing 40 and the shutter 17 of the chamber 15 by operating an operation unit (not shown).
 クリーニングの初期状態では、制御バルブv1~v7は閉じられている。また、ヒータ駆動部14、電流供給装置28および排気装置140は動作していない。一方、真空ポンプ110、除害装置120および排気装置130は動作している。 In the initial state of cleaning, the control valves v1 to v7 are closed. Further, the heater driving unit 14, the current supply device 28, and the exhaust device 140 are not operating. On the other hand, the vacuum pump 110, the abatement device 120, and the exhaust device 130 are operating.
 クリーニングが開始されると、制御バルブv2,v3,v4,v6,v7が開かれる。その状態で、電流供給装置28および直流電源回路31が制御部33により制御され、電解槽21内の陽極24と陰極25との間に電流が流される。それにより、電解槽21内の電解浴22が電気分解され、電解槽21内の陽極室21aでフッ素ガスが発生するとともに、陰極室21bで水素ガスが発生する。 When cleaning is started, the control valves v2, v3, v4, v6, v7 are opened. In this state, the current supply device 28 and the DC power supply circuit 31 are controlled by the control unit 33, and a current flows between the anode 24 and the cathode 25 in the electrolytic cell 21. Thereby, the electrolytic bath 22 in the electrolytic cell 21 is electrolyzed, fluorine gas is generated in the anode chamber 21a in the electrolytic cell 21, and hydrogen gas is generated in the cathode chamber 21b.
 このとき、制御バルブv7および真空ポンプ110は、圧力センサS11,S21の検出結果に基づいて制御部33により制御される。それにより、チャンバー15内の圧力が陽極室21a内の圧力よりも低くなるように調整される。この場合、陽極室21a内に発生するフッ素ガスが、ガス排出口26、配管p5,p1および上部電極11のガス供給経路11iを通してチャンバー15内に円滑に導かれる。また、不活性ガス供給源170の不活性ガスが、配管p4,p3,p1および上部電極11のガス供給経路11iを通してチャンバー15内に導かれる。この場合、配管p1内では、フッ素ガスが不活性ガスにより希釈される。 At this time, the control valve v7 and the vacuum pump 110 are controlled by the control unit 33 based on the detection results of the pressure sensors S11 and S21. Thereby, the pressure in the chamber 15 is adjusted to be lower than the pressure in the anode chamber 21a. In this case, the fluorine gas generated in the anode chamber 21 a is smoothly guided into the chamber 15 through the gas discharge port 26, the pipes p 5 and p 1, and the gas supply path 11 i of the upper electrode 11. Further, the inert gas from the inert gas supply source 170 is introduced into the chamber 15 through the pipes p4, p3, p1 and the gas supply path 11i of the upper electrode 11. In this case, the fluorine gas is diluted with the inert gas in the pipe p1.
 上記のように、制御バルブv4が開かれることにより、不活性ガス供給源170の不活性ガスが配管p4,p6を通して陰極室21b内に供給される。それにより、陰極室21b内に供給される不活性ガスの量を調整することにより、陰極室21b内の液面高さを制御することも可能になる。また、陰極室21b内では、発生された水素ガスが不活性ガスで希釈される。それにより、陰極室21b内の水素濃度が爆発限界よりも低い状態で保持される。 As described above, by opening the control valve v4, the inert gas of the inert gas supply source 170 is supplied into the cathode chamber 21b through the pipes p4 and p6. Thereby, the liquid level in the cathode chamber 21b can be controlled by adjusting the amount of the inert gas supplied into the cathode chamber 21b. In the cathode chamber 21b, the generated hydrogen gas is diluted with an inert gas. Thereby, the hydrogen concentration in the cathode chamber 21b is maintained in a state lower than the explosion limit.
 希釈された水素ガスは、排気装置140によりガス排出口27および配管p8を通して排気設備190に送られる。このとき、制御バルブv6が開いているので、配管p8内では、排気設備190に送られる水素ガスが不活性ガスによりさらに希釈される。 The diluted hydrogen gas is sent to the exhaust facility 190 through the gas exhaust port 27 and the pipe p8 by the exhaust device 140. At this time, since the control valve v6 is open, the hydrogen gas sent to the exhaust facility 190 is further diluted with the inert gas in the pipe p8.
 液面センサS23,S24により検出された電解浴22の液面高さが所定値よりも低くなると、制御バルブv5が開かれる。この状態で、HF供給源160のHFが、配管p7を通して電解槽21内に供給される。それにより、電解槽21の液面が一定の高さより低くなることが防止される。 When the liquid level of the electrolytic bath 22 detected by the liquid level sensors S23 and S24 is lower than a predetermined value, the control valve v5 is opened. In this state, HF of the HF supply source 160 is supplied into the electrolytic cell 21 through the pipe p7. Thereby, it is prevented that the liquid level of the electrolytic cell 21 becomes lower than a certain height.
 電解槽21内で電気分解を安定に行うためには、陽極室21aの内部圧力と陰極室21bの内部圧力とが互いに等しい一定の値に保持される必要がある。 In order to perform electrolysis stably in the electrolytic cell 21, the internal pressure of the anode chamber 21a and the internal pressure of the cathode chamber 21b need to be maintained at a constant value equal to each other.
 本例では、制御バルブv3の開度が圧力センサS21の検出結果に基づいて制御部33により制御される。それにより、陽極室21a内の圧力が大気圧に近づくように調整される。また、制御バルブv4の開度が圧力センサS22の検出結果に基づいて制御部33により制御される。それにより、陰極室21b内の圧力が大気圧に近づくように調整される。 In this example, the opening degree of the control valve v3 is controlled by the control unit 33 based on the detection result of the pressure sensor S21. Thereby, the pressure in the anode chamber 21a is adjusted so as to approach the atmospheric pressure. Further, the opening degree of the control valve v4 is controlled by the control unit 33 based on the detection result of the pressure sensor S22. Thereby, the pressure in the cathode chamber 21b is adjusted so as to approach the atmospheric pressure.
 上記のように、陽極室21aおよび陰極室21bの内部圧力は、制御バルブv3,v4の開度が制御されることにより、ともに大気圧に保持されてもよい。 As described above, the internal pressures of the anode chamber 21a and the cathode chamber 21b may be held at atmospheric pressure by controlling the opening degrees of the control valves v3 and v4.
 チャンバー15内では、上部電極11のガス供給経路11iから希釈されたフッ素ガスが供給されるとともに、チャンバー15の内部の雰囲気が排気ポート19を通して真空ポンプ110により排出される。このようにして、チャンバー15内に新たなフッ素ガスが供給されるとともに、チャンバー15内でクリーニングに用いられたフッ素ガスが排出される。それにより、チャンバー15の内部が新たなフッ素ガスにより効率的にクリーニングされる。 In the chamber 15, diluted fluorine gas is supplied from the gas supply path 11 i of the upper electrode 11, and the atmosphere inside the chamber 15 is exhausted by the vacuum pump 110 through the exhaust port 19. In this way, new fluorine gas is supplied into the chamber 15 and fluorine gas used for cleaning in the chamber 15 is discharged. Thereby, the inside of the chamber 15 is efficiently cleaned with new fluorine gas.
 予め定められたクリーニング時間が経過することにより、制御バルブv3,v4,v6が閉じられる。また、電流供給装置28および直流電源回路31の動作が停止され、電気分解が停止される。一方、制御バルブv2,v7が開いた状態で保持される。それにより、不活性ガス供給源170の不活性ガスがチャンバー15に供給されるとともに、チャンバー15内の雰囲気が排気ポート19、配管p10、p11を通して排気設備190に送られる。このようにして、チャンバー15内の雰囲気が不活性ガス供給源170の不活性ガスで置換される。 When the predetermined cleaning time has elapsed, the control valves v3, v4, v6 are closed. Further, the operations of the current supply device 28 and the DC power supply circuit 31 are stopped, and the electrolysis is stopped. On the other hand, the control valves v2 and v7 are held open. Thereby, the inert gas of the inert gas supply source 170 is supplied to the chamber 15 and the atmosphere in the chamber 15 is sent to the exhaust equipment 190 through the exhaust port 19 and the pipes p10 and p11. In this way, the atmosphere in the chamber 15 is replaced with the inert gas from the inert gas supply source 170.
 その後、制御バルブv7が閉じられる。また、チャンバー15内の圧力が大気圧または筐体40内の圧力に達するまで制御バルブv2が開状態で保持される。最後に、制御バルブv2が閉じられるとともにチャンバー15のシャッタ17および筐体40のシャッタ42が開かれる。それにより、チャンバー15のクリーニングが完了する。 Thereafter, the control valve v7 is closed. Further, the control valve v <b> 2 is held open until the pressure in the chamber 15 reaches atmospheric pressure or the pressure in the housing 40. Finally, the control valve v2 is closed and the shutter 17 of the chamber 15 and the shutter 42 of the housing 40 are opened. Thereby, the cleaning of the chamber 15 is completed.
 上記のように、陽極24は、矩形状を有する導電性基板の両面に導電性ダイヤモンドまたは導電性ダイヤモンドライクカーボンからなる被覆層が形成された構成を有する。それにより、陽極24での分極を防止しつつ電解浴22内の電流密度を高くすることが可能である。 As described above, the anode 24 has a configuration in which coating layers made of conductive diamond or conductive diamond-like carbon are formed on both sides of a rectangular conductive substrate. As a result, it is possible to increase the current density in the electrolytic bath 22 while preventing polarization at the anode 24.
 そこで、本実施の形態では、チャンバー15のクリーニング時に電解浴22における陽極24周辺部の電流密度が20A/dm以上1000A/dm以下となるように、陽極24および陰極25間に直流電流が流される。 Therefore, in the present embodiment, a direct current is applied between the anode 24 and the cathode 25 so that the current density around the anode 24 in the electrolytic bath 22 is 20 A / dm 2 or more and 1000 A / dm 2 or less when the chamber 15 is cleaned. Washed away.
 電解浴22における陽極24周辺部の電流密度が20A/dm以上である場合には、小容量の電解浴22で多量のフッ素ガスを発生することができる。それにより、発生したフッ素ガスを貯留設備を経由することなくチャンバー15に供給することができる。また、電解浴22における陽極24周辺部の電流密度が1000A/dm以下である場合には、陽極24の劣化を抑制することができる。したがって、フッ素ガス発生部20の小型化および長寿命化が可能となる。 When the current density around the anode 24 in the electrolytic bath 22 is 20 A / dm 2 or more, a large amount of fluorine gas can be generated in the small-capacity electrolytic bath 22. Thereby, the generated fluorine gas can be supplied to the chamber 15 without going through the storage facility. Further, when the current density around the anode 24 in the electrolytic bath 22 is 1000 A / dm 2 or less, the deterioration of the anode 24 can be suppressed. Therefore, the fluorine gas generation unit 20 can be reduced in size and extended in life.
 なお、チャンバー15のクリーニング時に電解浴22における陽極24周辺部の電流密度は、20A/dm以上500A/dm以下であることが好ましく、30A/dm以上100A/dm以下であることがより好ましい。 The current density around the anode 24 in the electrolytic bath 22 when the chamber 15 is cleaned is preferably 20 A / dm 2 or more and 500 A / dm 2 or less, and more preferably 30 A / dm 2 or more and 100 A / dm 2 or less. More preferred.
 (6)効果
 (6-1)本実施の形態に係るCVD装置1においては、膜形成処理時に、チャンバー15内に対象物が収容された状態で、チャンバー15内に膜形成用ガス供給源180の膜形成用ガスが供給される。それにより、対象物の表面に所定の膜が形成される。
(6) Effects (6-1) In the CVD apparatus 1 according to the present embodiment, the film forming gas supply source 180 is housed in the chamber 15 while the object is housed in the chamber 15 during the film forming process. The film forming gas is supplied. Thereby, a predetermined film is formed on the surface of the object.
 一方、チャンバー15のクリーニング時には、フッ素ガス発生部20の電解槽21内で電解浴22が電気分解されることによりフッ素ガスが発生する。発生したフッ素ガスが、チャンバー15内に供給され、チャンバー15の内壁の付着物が除去される。 On the other hand, when the chamber 15 is cleaned, fluorine gas is generated by electrolysis of the electrolytic bath 22 in the electrolytic cell 21 of the fluorine gas generator 20. The generated fluorine gas is supplied into the chamber 15 and the deposits on the inner wall of the chamber 15 are removed.
 フッ素ガス発生部20においては、陽極24の表面のうち電解浴22に浸漬される部分の少なくとも一部が、ダイヤモンド構造を有する導電性炭素材料により形成される。この場合、陽極24での分極を防止しつつ電解浴22における電流密度を高くすることが可能である。それにより、小型の電解槽21において短時間でチャンバー15の内壁のクリーニングのために十分な量のフッ素ガスを発生することができる。また、電解槽21において発生したフッ素ガスを貯留設備を経由することなくチャンバー15に供給することもできる。さらに、本実施の形態では、共通の制御部33により、対象物の膜形成処理およびチャンバー15の内壁のクリーニングが制御される。これらの結果、クリーニング機能を有するとともに小型化および低コスト化が可能なCVD装置1が実現される。 In the fluorine gas generator 20, at least a part of the surface of the anode 24 immersed in the electrolytic bath 22 is formed of a conductive carbon material having a diamond structure. In this case, the current density in the electrolytic bath 22 can be increased while preventing polarization at the anode 24. Thereby, a sufficient amount of fluorine gas can be generated in the small electrolytic cell 21 for cleaning the inner wall of the chamber 15 in a short time. Moreover, the fluorine gas generated in the electrolytic cell 21 can be supplied to the chamber 15 without going through the storage facility. Further, in the present embodiment, the common control unit 33 controls the film forming process of the object and the cleaning of the inner wall of the chamber 15. As a result, the CVD apparatus 1 that has a cleaning function and can be reduced in size and cost is realized.
 (6-2)本実施の形態では、1つの不活性ガス供給源170からチャンバー15および電解槽21内に不活性ガス供給源170の不活性ガスを供給することができる。この場合、チャンバー15内および電解槽21内にそれぞれ不活性ガスを供給するための不活性ガス供給源170を個別に用意する必要がない。したがって、小型化および低コスト化が実現される。 (6-2) In this embodiment, the inert gas of the inert gas supply source 170 can be supplied from one inert gas supply source 170 into the chamber 15 and the electrolytic cell 21. In this case, it is not necessary to separately prepare the inert gas supply source 170 for supplying the inert gas into the chamber 15 and the electrolytic cell 21. Therefore, downsizing and cost reduction are realized.
 また、不活性ガス供給源170からチャンバー15および電解槽21に至る不活性ガスの供給経路に共通の配管p4を用いると、チャンバー15および電解槽21にそれぞれ不活性ガスを供給するための部材を低減することができる。したがって、CVD装置1の小型化および低コスト化が実現される。  Further, when the common pipe p4 is used for the inert gas supply path from the inert gas supply source 170 to the chamber 15 and the electrolytic cell 21, members for supplying the inert gas to the chamber 15 and the electrolytic cell 21 are provided. Can be reduced. Therefore, size reduction and cost reduction of the CVD apparatus 1 are realized.
 (6-3)上記のように、電解槽21とチャンバー15とが配管P1,P5により接続された場合、電解槽21で発生されるフッ素ガスがガス貯留設備を経由することなくチャンバー15に直接、供給される。したがって、電解槽21とチャンバー15との間にガス貯留設備を設ける必要がないので、CVD装置1の大型化が抑制される。 (6-3) As described above, when the electrolytic cell 21 and the chamber 15 are connected by the pipes P1 and P5, the fluorine gas generated in the electrolytic cell 21 directly enters the chamber 15 without passing through the gas storage facility. Supplied. Therefore, it is not necessary to provide a gas storage facility between the electrolytic cell 21 and the chamber 15, so that the size of the CVD apparatus 1 is suppressed.
 (6-4)チャンバー15のクリーニング時には、制御バルブv7および真空ポンプ110によりチャンバー15内の圧力が陽極室21a内の圧力よりも低くなるように調整される。それにより、電解槽21で発生されるフッ素ガスがガス排出口26および配管p5,p1を通してチャンバー15内に円滑に導かれる。そのため、電解槽21とチャンバー15との間に、フッ素ガスを電解槽21からチャンバー15へ圧送するための構成を設ける必要がない。したがって、CVD装置1の大型化が抑制される。 (6-4) When cleaning the chamber 15, the pressure in the chamber 15 is adjusted to be lower than the pressure in the anode chamber 21a by the control valve v7 and the vacuum pump 110. Thereby, the fluorine gas generated in the electrolytic cell 21 is smoothly guided into the chamber 15 through the gas outlet 26 and the pipes p5 and p1. Therefore, it is not necessary to provide a configuration for pumping fluorine gas from the electrolytic cell 21 to the chamber 15 between the electrolytic cell 21 and the chamber 15. Therefore, the enlargement of the CVD apparatus 1 is suppressed.
 (6-5)除害装置120は、膜形成処理時に真空ポンプ110から送られるガス中の所定の有害成分を除去し、チャンバー15のクリーニング時に真空ポンプ110から送られるガス中のHF成分を除去する。このように、本実施の形態では、膜形成処理およびチャンバー15のクリーニングに対して共通の除害装置120により、CVD装置1を大型化することなく排気ガスの有害成分を除去することができる。 (6-5) The abatement device 120 removes predetermined harmful components in the gas sent from the vacuum pump 110 during the film formation process, and removes HF components in the gas sent from the vacuum pump 110 during the cleaning of the chamber 15 To do. Thus, in the present embodiment, the harmful components of the exhaust gas can be removed without increasing the size of the CVD apparatus 1 by using the common abatement apparatus 120 for the film formation process and the cleaning of the chamber 15.
 (6-6)上記のように、チャンバー15およびフッ素ガス発生部20は、筐体40内に収容される。また、筐体40の内部の雰囲気が排気装置130により排気される。それにより、筐体40の外部にフッ素ガス発生部20により発生したフッ素ガスまたはその他のガスが漏れ出すことが防止される。 (6-6) As described above, the chamber 15 and the fluorine gas generator 20 are accommodated in the housing 40. In addition, the atmosphere inside the housing 40 is exhausted by the exhaust device 130. This prevents the fluorine gas or other gas generated by the fluorine gas generator 20 from leaking outside the housing 40.
 (6-7)膜形成処理後またはチャンバー15のクリーニング後に、チャンバー15内に残留する膜形成用ガスまたはフッ素ガスが不活性ガスで置換される。 (6-7) After forming the film or cleaning the chamber 15, the film forming gas or fluorine gas remaining in the chamber 15 is replaced with an inert gas.
 この場合、膜形成処理およびチャンバー15のクリーニング後に、チャンバー15内が不活性ガスで満たされる。それにより、人体に有害な膜形成用ガスまたはフッ素ガスが、チャンバー15内に残留することが防止される。したがって、膜形成処理およびチャンバー15のクリーニング後に作業者がチャンバー15を開く場合の安全性が確保される。また、膜形成処理後またはクリーニング後のチャンバー15を容易に大気圧に戻すことが可能になる。 In this case, the chamber 15 is filled with an inert gas after the film formation process and the cleaning of the chamber 15. Thereby, film forming gas or fluorine gas harmful to the human body is prevented from remaining in the chamber 15. Therefore, safety is ensured when the operator opens the chamber 15 after the film forming process and the cleaning of the chamber 15. In addition, the chamber 15 after the film forming process or after the cleaning can be easily returned to the atmospheric pressure.
 (6-8)膜形成処理時およびチャンバー15のクリーニング時に、制御バルブv2が制御されることにより、所定量の不活性ガスが配管p1内に供給される。それにより、膜形成処理時に不活性ガスで希釈された膜形成用ガスがチャンバー15内に供給される。また、チャンバー15のクリーニング時に不活性ガスで希釈されたフッ素ガスがチャンバー15内に供給される。このように、CVD装置1を大型化することなく、膜形成用ガスおよびクリーニングに用いるフッ素ガスの濃度を容易に調整することができる。 (6-8) A predetermined amount of inert gas is supplied into the pipe p1 by controlling the control valve v2 during the film formation process and during the cleaning of the chamber 15. Thereby, the film forming gas diluted with the inert gas during the film forming process is supplied into the chamber 15. Further, fluorine gas diluted with an inert gas is supplied into the chamber 15 when the chamber 15 is cleaned. Thus, the concentration of the film forming gas and the fluorine gas used for cleaning can be easily adjusted without increasing the size of the CVD apparatus 1.
 (6-9)チャンバー15のクリーニング時には、不活性ガス供給源170の不活性ガスにより電解槽21内の圧力が調整される。それにより、CVD装置1を大型化することなく、電解槽21において安定した電気分解を行うことができる。また、電解槽21において、不活性ガスは陰極室21b内に供給される。それにより、陰極室21b内の液面高さを制御することも可能である。 (6-9) When the chamber 15 is cleaned, the pressure in the electrolytic cell 21 is adjusted by the inert gas from the inert gas supply source 170. Thereby, stable electrolysis can be performed in the electrolytic cell 21 without increasing the size of the CVD apparatus 1. Further, in the electrolytic cell 21, an inert gas is supplied into the cathode chamber 21b. Thereby, the liquid level in the cathode chamber 21b can be controlled.
 (6-10)また、電解槽21内で発生した水素ガスが不活性ガスで希釈される。水素ガスが希釈されることにより、電解槽21内の水素濃度を爆発限界よりも低い状態に調整することができる。 (6-10) Also, the hydrogen gas generated in the electrolytic cell 21 is diluted with an inert gas. By diluting the hydrogen gas, the hydrogen concentration in the electrolytic cell 21 can be adjusted to be lower than the explosion limit.
 [2]第2の実施の形態
 第2の実施の形態に係るCVD装置について、第1の実施の形態に係るCVD装置1と異なる点を説明する。第2の実施の形態に係るCVD装置は、電解槽21で発生したフッ素ガスをチャンバー15内に導く図1の配管p5に代えて、以下の構成を有する。
[2] Second Embodiment A CVD apparatus according to the second embodiment will be described while referring to differences from the CVD apparatus 1 according to the first embodiment. The CVD apparatus according to the second embodiment has the following configuration instead of the pipe p5 in FIG. 1 that guides the fluorine gas generated in the electrolytic cell 21 into the chamber 15.
 図3は、第2の実施の形態に係るCVD装置の一部を示す構成図である。図3では、主として電解槽21で発生したフッ素ガスをチャンバー15内に導く構成が示される。図3に示すように、本実施の形態では、チャンバー15に取り付けられる配管p1に、図1の配管p5に代えて配管p20が接続される。 FIG. 3 is a configuration diagram showing a part of the CVD apparatus according to the second embodiment. FIG. 3 shows a configuration in which fluorine gas generated mainly in the electrolytic cell 21 is guided into the chamber 15. As shown in FIG. 3, in the present embodiment, a pipe p20 is connected to the pipe p1 attached to the chamber 15 instead of the pipe p5 of FIG.
 配管p20には、複数(本例では4つ)の配管接続部が設けられている。配管p20の複数の配管接続部に配管p21,p22,p23,p25の一端がそれぞれ接続される。 The piping p20 is provided with a plurality (four in this example) of piping connection portions. One ends of the pipes p21, p22, p23, and p25 are connected to the plurality of pipe connection portions of the pipe p20, respectively.
 配管p21には、制御バルブv31が介挿されている。配管p21の他端に配管p29の一端が接続される。配管p29の他端は電解槽21のガス排出口26に接続される。配管p29には、上流から下流に向かってミストフィルタ90および制御バルブv40がこの順で介挿されている。 The control valve v31 is inserted in the piping p21. One end of the pipe p29 is connected to the other end of the pipe p21. The other end of the pipe p29 is connected to the gas outlet 26 of the electrolytic cell 21. In the pipe p29, a mist filter 90 and a control valve v40 are inserted in this order from upstream to downstream.
 配管p22の他端は図1の不活性ガス供給源170に接続される。配管p22には、上流から下流に向かってバキュームジェネレータ61、マスフローコントローラ(MFC:質量流量制御装置)62および制御バルブv32がこの順で介挿されている。バキュームジェネレータ61には、配管p26の一端が接続される。配管p26の他端は配管p29の一端に接続される。配管p26には、制御バルブv33が介挿されている。 The other end of the pipe p22 is connected to the inert gas supply source 170 of FIG. A vacuum generator 61, a mass flow controller (MFC: mass flow control device) 62, and a control valve v32 are interposed in this order from the upstream to the downstream of the pipe p22. One end of a pipe p26 is connected to the vacuum generator 61. The other end of the pipe p26 is connected to one end of the pipe p29. A control valve v33 is inserted in the pipe p26.
 配管p23の他端に切替バルブ72が設けられる。切替バルブ72は、1つの流入ポートと2つの流出ポートを有する。配管p23の他端は、切替バルブ72の一方の流出ポートに接続される。配管p23には、上流から下流に向かってマスフローコントローラ73および制御バルブv34がこの順で介挿されている。切替バルブ72の流入ポートには、配管p24の一端が接続される。配管p24の他端は配管p29の一端に接続される。配管p24には、上流から下流に向かって制御バルブv35および圧送装置71がこの順で介挿されている。圧送装置71としては、例えばベローズポンプを用いることができる。 A switching valve 72 is provided at the other end of the pipe p23. The switching valve 72 has one inflow port and two outflow ports. The other end of the pipe p23 is connected to one outflow port of the switching valve 72. In the pipe p23, a mass flow controller 73 and a control valve v34 are inserted in this order from upstream to downstream. One end of a pipe p24 is connected to the inflow port of the switching valve 72. The other end of the pipe p24 is connected to one end of the pipe p29. In the pipe p24, a control valve v35 and a pressure feeding device 71 are inserted in this order from upstream to downstream. As the pressure feeding device 71, for example, a bellows pump can be used.
 配管p25の他端は配管p29の一端に接続される。このように、本例では、配管p21,p26,p24,p25の他端と配管p29の一端とが一点で接続されている。配管p25には、上流から下流に向かって制御バルブv38、タンク81、制御バルブv37、マスフローコントローラ82および制御バルブv36がこの順で介挿されている。タンク81に配管p27の一端が接続される。配管p27の他端は図1の不活性ガス供給源170に接続される。配管p27には、バルブv39が介挿されている。タンク81と切替バルブ72の他方の流出ポートとをつなぐように配管p28が設けられている。 The other end of the pipe p25 is connected to one end of the pipe p29. Thus, in this example, the other ends of the pipes p21, p26, p24, and p25 and one end of the pipe p29 are connected at one point. In the pipe p25, a control valve v38, a tank 81, a control valve v37, a mass flow controller 82, and a control valve v36 are inserted in this order from upstream to downstream. One end of a pipe p27 is connected to the tank 81. The other end of the pipe p27 is connected to the inert gas supply source 170 of FIG. A valve v39 is inserted in the pipe p27. A pipe p28 is provided so as to connect the tank 81 and the other outflow port of the switching valve 72.
 図3の圧送装置71、切替バルブ72、制御バルブv31~v40およびマスフローコントローラ62,73,82の動作は、それぞれ図1の制御部33により制御される。特に、制御バルブv40の開度は、図1の制御バルブv3と同様に、圧力センサS21の検出結果に基づいて制御部33により制御される。それにより、電解槽21でフッ素ガスが発生する際には、陽極室21a内の圧力が大気圧に近づくように調整される。 The operations of the pressure feeding device 71, the switching valve 72, the control valves v31 to v40, and the mass flow controllers 62, 73, and 82 in FIG. 3 are controlled by the control unit 33 in FIG. In particular, the opening degree of the control valve v40 is controlled by the control unit 33 based on the detection result of the pressure sensor S21, similarly to the control valve v3 of FIG. Thereby, when fluorine gas is generated in the electrolytic cell 21, the pressure in the anode chamber 21a is adjusted so as to approach the atmospheric pressure.
 上記の構成を有するCVD装置1においては、電解槽21によりフッ素ガスが発生される状態で、例えば制御バルブv31が開かれるとともに、制御バルブv32,v33,v34,v35,v36,v37,v38,v39が閉じられる。この場合、制御バルブv40が開かれることにより、電解槽21で発生したフッ素ガスが、配管p29,p21,p20,p1および上部電極11のガス供給経路11iを通してチャンバー15内に導かれる。それにより、高い純度のフッ素ガスでチャンバー15のクリーニングを行うことができる。 In the CVD apparatus 1 having the above-described configuration, for example, the control valve v31 is opened and the control valves v32, v33, v34, v35, v36, v37, v38, v39 in a state where fluorine gas is generated in the electrolytic cell 21. Is closed. In this case, when the control valve v40 is opened, the fluorine gas generated in the electrolytic cell 21 is guided into the chamber 15 through the pipes p29, p21, p20, p1 and the gas supply path 11i of the upper electrode 11. Thereby, the chamber 15 can be cleaned with high-purity fluorine gas.
 また、電解槽21によりフッ素ガスが発生される状態で、例えば制御バルブv32,v33が開かれるとともに、制御バルブv31,v34,v35,v36,v37,v38,v39が閉じられる。また、配管p22に不活性ガスが供給され、配管p22内に不活性ガスの流れが形成される。この場合、制御バルブv40が開かれることにより、電解槽21で発生したフッ素ガスが、バキュームジェネレータ61により配管p29,p26を通して配管p22内に吸引される。配管p22内に吸引されたフッ素ガスは不活性ガスにより希釈される。希釈されたフッ素ガスは、マスフローコントローラ62を通して配管p20に送られ、配管p1および上部電極11のガス供給経路11iを通してチャンバー15内に導かれる。 In the state where fluorine gas is generated in the electrolytic cell 21, for example, the control valves v32, v33 are opened, and the control valves v31, v34, v35, v36, v37, v38, v39 are closed. Further, an inert gas is supplied to the pipe p22, and an inert gas flow is formed in the pipe p22. In this case, when the control valve v40 is opened, the fluorine gas generated in the electrolytic cell 21 is sucked into the pipe p22 by the vacuum generator 61 through the pipes p29 and p26. The fluorine gas sucked into the pipe p22 is diluted with an inert gas. The diluted fluorine gas is sent to the pipe p20 through the mass flow controller 62, and is introduced into the chamber 15 through the pipe p1 and the gas supply path 11i of the upper electrode 11.
 マスフローコントローラ62においては、上流側の配管p22内の圧力と下流側の配管p22内の圧力との間に十分な大きさの差分(例えば50kPa以上の差分)が生じることにより、配管p22を流れる気体の流量が調整される。本例では、チャンバー15のクリーニング時に、チャンバー15内が真空ポンプ110により減圧されることにより、マスフローコントローラ62の下流側の圧力が低下する。このとき、配管p22に不活性ガスが供給されることにより、マスフローコントローラ62の上流側の圧力が上昇する。それにより、上流側の配管p22内の圧力と下流側の配管p22内の圧力との間に十分な大きさの差分が確保される。したがって、所望の流量で希釈されたフッ素ガスをチャンバー15内に供給することにより、適切なクリーニングを行うことができる。 In the mass flow controller 62, a sufficiently large difference (for example, a difference of 50 kPa or more) is generated between the pressure in the upstream pipe p22 and the pressure in the downstream pipe p22, so that the gas flowing through the pipe p22 The flow rate is adjusted. In this example, when the chamber 15 is cleaned, the pressure inside the chamber 15 is reduced by the vacuum pump 110, so that the pressure on the downstream side of the mass flow controller 62 decreases. At this time, the pressure on the upstream side of the mass flow controller 62 is increased by supplying the inert gas to the pipe p22. Thereby, a sufficiently large difference is ensured between the pressure in the upstream pipe p22 and the pressure in the downstream pipe p22. Therefore, appropriate cleaning can be performed by supplying the fluorine gas diluted at a desired flow rate into the chamber 15.
 また、電解槽21によりフッ素ガスが発生される状態で、例えば制御バルブv34,v35が開かれるとともに、制御バルブv31,v32,v33,v36,v37,v38,v39が閉じられる。また、圧送装置71が動作する。さらに、切替バルブ72が配管p24の内部空間と配管p23の内部空間とを連通させ、配管p24の内部空間と配管p28の内部空間とを遮断する。この場合、制御バルブv40が開かれることにより、電解槽21で発生したフッ素ガスが、圧送装置71により配管p29,p24を通して吸引されるとともに加圧されつつ配管p23に供給される。配管p23に供給されるフッ素ガスは、配管p20,p1および上部電極11のガス供給経路11iを通してチャンバー15内に導かれる。 In the state where fluorine gas is generated in the electrolytic cell 21, for example, the control valves v34 and v35 are opened, and the control valves v31, v32, v33, v36, v37, v38 and v39 are closed. Further, the pressure feeding device 71 operates. Furthermore, the switching valve 72 communicates the internal space of the pipe p24 and the internal space of the pipe p23, and shuts off the internal space of the pipe p24 and the internal space of the pipe p28. In this case, when the control valve v40 is opened, the fluorine gas generated in the electrolytic cell 21 is sucked through the pipes p29 and p24 by the pressure feeding device 71 and supplied to the pipe p23 while being pressurized. The fluorine gas supplied to the pipe p23 is guided into the chamber 15 through the pipes p20 and p1 and the gas supply path 11i of the upper electrode 11.
 マスフローコントローラ73においては、マスフローコントローラ62と同様に、上流側の配管p23内の圧力と下流側の配管p23内の圧力との間に十分な大きさの差分が生じることにより、配管p23を流れる気体の流量が調整される。上記のように、チャンバー15のクリーニング時には、チャンバー15内が真空ポンプ110により減圧されることにより、マスフローコントローラ73の下流側の圧力が低下する。このとき、圧送装置71により加圧されたフッ素ガスが配管p23に供給されることにより、マスフローコントローラ73の上流側の圧力が上昇する。それにより、上流側の配管p23内の圧力と下流側の配管p23内の圧力との間に十分な大きさの差分が確保される。したがって、所望の圧力を有する純度の高いフッ素ガスを所望の流量でチャンバー15内に供給することにより、適切なクリーニングを行うことができる。 In the mass flow controller 73, as in the mass flow controller 62, a sufficient difference is generated between the pressure in the upstream pipe p23 and the pressure in the downstream pipe p23, so that the gas flowing through the pipe p23 The flow rate is adjusted. As described above, when the chamber 15 is cleaned, the pressure inside the chamber 15 is reduced by the vacuum pump 110, thereby reducing the pressure on the downstream side of the mass flow controller 73. At this time, the pressure on the upstream side of the mass flow controller 73 is increased by supplying the fluorine gas pressurized by the pressure feeding device 71 to the pipe p23. Thereby, a sufficiently large difference is ensured between the pressure in the upstream pipe p23 and the pressure in the downstream pipe p23. Therefore, appropriate cleaning can be performed by supplying high-purity fluorine gas having a desired pressure into the chamber 15 at a desired flow rate.
 また、電解槽21によりフッ素ガスが発生される状態で、例えば制御バルブv38が開かれるとともに、制御バルブv31,v32,v33,v34,v35,v36,v37,v39が閉じられる。また、切替バルブ72が配管p24の内部空間と配管p23の内部空間とを連通させ、配管p24の内部空間と配管p28の内部空間とを遮断する。 Further, in a state where fluorine gas is generated in the electrolytic cell 21, for example, the control valve v38 is opened, and the control valves v31, v32, v33, v34, v35, v36, v37, v39 are closed. In addition, the switching valve 72 communicates the internal space of the pipe p24 and the internal space of the pipe p23, and shuts off the internal space of the pipe p24 and the internal space of the pipe p28.
 この状態で、タンク81が真空状態にある場合には、制御バルブv40が開かれることにより、電解槽21で発生したフッ素ガスが、配管p29,p25を通してタンク81内に吸引される。それにより、チャンバー15のクリーニングに必要な量のフッ素ガスを予めタンク81内に貯留しておくことができる。 In this state, when the tank 81 is in a vacuum state, the fluorine gas generated in the electrolytic cell 21 is sucked into the tank 81 through the pipes p29 and p25 by opening the control valve v40. Thereby, an amount of fluorine gas necessary for cleaning the chamber 15 can be stored in the tank 81 in advance.
 タンク81内に貯留されたフッ素ガスをチャンバー15のクリーニングに用いる場合には、例えば制御バルブv36,v37を開くとともに、制御バルブv31,v32,v33,v34,v35,v36,v37,v38,v39,v40を閉じる。それにより、タンク81内のフッ素ガスは、チャンバー15内が減圧されることにより、配管p20,p1および上部電極11のガス供給経路11iを通してチャンバー15内に導かれる。 When the fluorine gas stored in the tank 81 is used for cleaning the chamber 15, for example, the control valves v36, v37 are opened and the control valves v31, v32, v33, v34, v35, v36, v37, v38, v39, Close v40. As a result, the fluorine gas in the tank 81 is guided into the chamber 15 through the pipes p20 and p1 and the gas supply path 11i of the upper electrode 11 when the pressure in the chamber 15 is reduced.
 この場合、チャンバー15のクリーニングに必要な量のフッ素ガスが予めタンク81内に貯留されるので、チャンバー15のクリーニング時に十分な量のフッ素ガスをチャンバー15内に供給することができる。 In this case, since an amount of fluorine gas necessary for cleaning the chamber 15 is stored in the tank 81 in advance, a sufficient amount of fluorine gas can be supplied into the chamber 15 when the chamber 15 is cleaned.
 ここで、マスフローコントローラ82においては、マスフローコントローラ62と同様に、上流側の配管p25内の圧力と下流側の配管p25内の圧力との間に十分な大きさの差分が生じることにより、配管p25を流れる気体の流量が調整される。そのため、制御バルブv36,v37を開くのみでは、上流側の配管p25内の圧力と下流側の配管p25内の圧力との間に十分な大きさの差分が生じない場合がある。 Here, in the mass flow controller 82, similarly to the mass flow controller 62, a sufficiently large difference is generated between the pressure in the upstream pipe p 25 and the pressure in the downstream pipe p 25, thereby causing the pipe p 25. The flow rate of the gas flowing through is adjusted. Therefore, only opening the control valves v36 and v37 may not produce a sufficiently large difference between the pressure in the upstream pipe p25 and the pressure in the downstream pipe p25.
 そこで、タンク81からチャンバー15にフッ素ガスを供給する際には、配管p27に不活性ガスを供給するとともに制御バルブv36を開いてもよい。この場合、タンク81内に不活性ガスが供給されることによりタンク81内の圧力が上昇する。このようにして、マスフローコントローラ82の上流側に加圧されたフッ素ガスを供給することができる。それにより、上流側の配管p25内の圧力と下流側の配管p25内の圧力との間に十分な大きさの差分が確保される。また、この場合、タンク81内ではフッ素ガスが不活性ガスにより希釈される。したがって、希釈された不活性ガスの流量がマスフローコントローラ82により調整される。それにより、希釈されたフッ素ガスを所望の流量および所望の濃度でチャンバー15内に供給することが可能になる。その結果、適切なクリーニングを行うことができる。 Therefore, when supplying the fluorine gas from the tank 81 to the chamber 15, the inert gas may be supplied to the pipe p27 and the control valve v36 may be opened. In this case, the pressure in the tank 81 is increased by supplying the inert gas into the tank 81. In this manner, pressurized fluorine gas can be supplied to the upstream side of the mass flow controller 82. Thereby, a sufficiently large difference is ensured between the pressure in the upstream pipe p25 and the pressure in the downstream pipe p25. In this case, the fluorine gas is diluted with an inert gas in the tank 81. Accordingly, the flow rate of the diluted inert gas is adjusted by the mass flow controller 82. Thereby, the diluted fluorine gas can be supplied into the chamber 15 at a desired flow rate and a desired concentration. As a result, appropriate cleaning can be performed.
 上記のように、フッ素ガスを予めタンク81に貯留する際には、電解槽21によりフッ素ガスが発生される状態で、例えば制御バルブv35を開くとともに、制御バルブv31,v32,v33,v34,v35,v36,v37,v38,v39を閉じてもよい。また、切替バルブ72により配管p24の内部空間と配管p23の内部空間とを遮断し、配管p24の内部空間と配管p28の内部空間とを連通させてもよい。さらに、圧送装置71を動作させてもよい。 As described above, when fluorine gas is stored in the tank 81 in advance, for example, the control valve v35 is opened and the control valves v31, v32, v33, v34, v35 are opened in a state where the fluorine gas is generated in the electrolytic cell 21. , V36, v37, v38, v39 may be closed. Alternatively, the internal space of the pipe p24 and the internal space of the pipe p23 may be blocked by the switching valve 72, and the internal space of the pipe p24 and the internal space of the pipe p28 may be communicated. Further, the pressure feeding device 71 may be operated.
 この場合、制御バルブv40が開かれることにより、電解槽21で発生したフッ素ガスが、圧送装置71により配管p29,p24,p28を通してタンク81に供給される。それにより、加圧されたフッ素ガスをタンク81内に貯留することができるので、タンク81の大型化を抑制することができる。 In this case, when the control valve v40 is opened, the fluorine gas generated in the electrolytic cell 21 is supplied to the tank 81 by the pressure feeding device 71 through the pipes p29, p24, and p28. Thereby, since the pressurized fluorine gas can be stored in the tank 81, the enlargement of the tank 81 can be suppressed.
 上記のように、本実施の形態では、切替バルブ72、制御バルブv31~v39およびマスフローコントローラ62,73,82の動作を制御することにより、チャンバー15のクリーニング条件に応じて電解槽21からチャンバー15へのフッ素ガスの供給経路を変更することが可能である。 As described above, in the present embodiment, by controlling the operation of the switching valve 72, the control valves v31 to v39, and the mass flow controllers 62, 73, and 82, the electrolytic cell 21 to the chamber 15 are controlled according to the cleaning conditions of the chamber 15. It is possible to change the supply route of the fluorine gas to.
 [3]他の実施の形態
 (1)上記の実施の形態では、チャンバー15内でCVDにより対象物の表面に膜形成処理が施される。これに限らず、チャンバー15内でCVD以外の方法により対象物の表面に膜形成処理が施されてもよい。例えば、チャンバー15内でスパッタリングによる膜形成処理が行われてもよいし、チャンバー15内でPVD(物理蒸着法)による膜形成処理が行われてもよい。これらの場合においても、上記の例と同じ方法でチャンバー15をクリーニングすることにより、膜形成処理時にチャンバー15の内壁等に付着する不要な膜を除去することができる。
[3] Other Embodiments (1) In the above embodiment, a film forming process is performed on the surface of an object by CVD in the chamber 15. However, the present invention is not limited to this, and a film forming process may be performed on the surface of the object in the chamber 15 by a method other than CVD. For example, a film formation process by sputtering may be performed in the chamber 15, or a film formation process by PVD (physical vapor deposition) may be performed in the chamber 15. Even in these cases, by cleaning the chamber 15 by the same method as in the above example, it is possible to remove an unnecessary film attached to the inner wall or the like of the chamber 15 during the film forming process.
 (2)上記の実施の形態では、シングルチャンバー型のCVD装置1がフッ素ガス発生部20を備える例について説明した。これに限らず、マルチチャンバー型のCVD装置が上記のフッ素ガス発生部20を備えてもよい。この場合、マルチチャンバー型のCVD装置においては、膜形成処理部10が複数のチャンバー15を備える。また、膜形成処理部10およびフッ素ガス発生部20は、さらに筐体40内に収容される。筐体40内で、複数のチャンバー15とフッ素ガス発生部20との間にフッ素ガス供給用の配管が設けられる。 (2) In the above embodiment, the example in which the single chamber type CVD apparatus 1 includes the fluorine gas generation unit 20 has been described. However, the present invention is not limited to this, and a multi-chamber CVD apparatus may include the above-described fluorine gas generation unit 20. In this case, in the multi-chamber type CVD apparatus, the film formation processing unit 10 includes a plurality of chambers 15. The film formation processing unit 10 and the fluorine gas generation unit 20 are further accommodated in the housing 40. In the housing 40, a fluorine gas supply pipe is provided between the plurality of chambers 15 and the fluorine gas generator 20.
 (3)上記の実施の形態では、フッ素ガス発生部20により発生された水素ガスは、不活性ガスにより希釈され、排気される。これに限らず、発生された水素ガスがガスボンベに貯留されてもよい。また、水素ガスを用いて膜形成用ガスを生成することが可能である場合には、陰極室21bに発生された水素ガスが膜形成用ガスの生成に用いられてもよい。このように、フッ素ガス発生部20により発生された水素ガスを再利用するために水素ガスを希釈する必要がない場合には、陰極室21bに不活性ガスが供給されなくてもよい。この場合、電解槽21内の圧力を調整するために、陽極室21aに不活性ガスを供給してもよい。 (3) In the above embodiment, the hydrogen gas generated by the fluorine gas generator 20 is diluted with an inert gas and exhausted. Not limited to this, the generated hydrogen gas may be stored in a gas cylinder. In addition, when it is possible to generate a film forming gas using hydrogen gas, the hydrogen gas generated in the cathode chamber 21b may be used for generating the film forming gas. Thus, when it is not necessary to dilute the hydrogen gas in order to reuse the hydrogen gas generated by the fluorine gas generator 20, the inert gas may not be supplied to the cathode chamber 21b. In this case, in order to adjust the pressure in the electrolytic cell 21, an inert gas may be supplied to the anode chamber 21a.
 (4)上記の実施の形態では、制御ボックス30が筐体40の外側に設けられる。これに限らず、制御ボックス30は、筐体40の外側ではなく筐体40の内側に設けられてもよい。 (4) In the above embodiment, the control box 30 is provided outside the housing 40. Not only this but the control box 30 may be provided inside the housing | casing 40 instead of the outer side of the housing | casing 40. FIG.
 (5)上記の実施の形態では、筐体40の一側壁にシャッタ42およびシャッタ駆動部43が設けられている。これに限らず、筐体40の一側壁にシャッタ42およびシャッタ駆動部43が設けられなくてもよい。この場合、CVD装置1の構成が単純化する。 (5) In the above embodiment, the shutter 42 and the shutter driving unit 43 are provided on one side wall of the housing 40. Not limited to this, the shutter 42 and the shutter driving unit 43 may not be provided on one side wall of the housing 40. In this case, the configuration of the CVD apparatus 1 is simplified.
 (6)上記の実施の形態では、CVD装置1が1つの電解槽21を含み、制御部33は1つの電解槽21に収容された電解浴22の電気分解を制御する。これに限らず、CVD装置1は以下の構成を有してもよい。 (6) In the above embodiment, the CVD apparatus 1 includes one electrolytic cell 21, and the control unit 33 controls the electrolysis of the electrolytic bath 22 accommodated in one electrolytic cell 21. Not limited to this, the CVD apparatus 1 may have the following configuration.
 図4は、他の実施の形態に係るCVD装置の一部を示すブロック図である。図4では、筐体40内に設けられる構成要素が示される。配管の図示は省略する。図4のCVD装置1が図1のCVD装置1と異なる点は、CVD装置1のフッ素ガス発生部20が複数(本例では4つ)の電解槽21を含む点である。各電解槽21には陽極24および陰極25が設けられる。本例の制御部33は、複数の電解槽21にそれぞれ収容された電解浴22の電気分解を制御する。 FIG. 4 is a block diagram showing a part of a CVD apparatus according to another embodiment. In FIG. 4, the components provided in the housing 40 are shown. Illustration of piping is omitted. The CVD apparatus 1 of FIG. 4 is different from the CVD apparatus 1 of FIG. 1 in that the fluorine gas generation unit 20 of the CVD apparatus 1 includes a plurality (four in this example) of electrolytic cells 21. Each electrolytic cell 21 is provided with an anode 24 and a cathode 25. The control unit 33 of this example controls the electrolysis of the electrolytic baths 22 respectively accommodated in the plurality of electrolytic cells 21.
 それにより、チャンバー15のクリーニング時に、4つの電解槽21で発生されるフッ素ガスを1つのチャンバー15内に供給することができる。したがって、クリーニングに必要な量のフッ素ガスをチャンバー15内に短時間で供給することができる。 Thereby, the fluorine gas generated in the four electrolytic cells 21 can be supplied into one chamber 15 when the chamber 15 is cleaned. Accordingly, the fluorine gas necessary for cleaning can be supplied into the chamber 15 in a short time.
 また、上記の構成によれば、フッ素ガス発生部20が複数の電解槽21を有するので、例えば一の電解槽21に不具合が生じた場合に、その一の電解槽21のメンテナンスを行いつつ他の電解槽21から発生するフッ素ガスをチャンバー15内に供給することができる。したがって、CVD装置1の連続運転が可能となる。 Moreover, according to said structure, since the fluorine gas generation | occurrence | production part 20 has the some electrolytic cell 21, when a malfunction arises in one electrolytic cell 21, for example, while performing the maintenance of the one electrolytic cell 21, other Fluorine gas generated from the electrolytic cell 21 can be supplied into the chamber 15. Therefore, continuous operation of the CVD apparatus 1 becomes possible.
 (7)第2の実施の形態では、配管p20と配管p29との間で、フッ素ガスの供給経路として、配管p21および制御バルブv31を含む供給経路と、配管p22,p26、制御バルブv32,v33およびバキュームジェネレータ61を含む供給経路と、配管p23,p24、制御バルブv34,v35、圧送装置71および切替バルブ72を含む供給経路と、配管p25、制御バルブv36~v38およびタンク81を含む供給経路とが並列に設けられるが、本発明はこれに限らない。配管p20と配管p29との間には、上記の複数の供給経路のうちの一部が設けられてもよい。 (7) In the second embodiment, the supply path including the pipe p21 and the control valve v31, the pipes p22 and p26, and the control valves v32 and v33 as the fluorine gas supply path between the pipe p20 and the pipe p29. And a supply path including the vacuum generator 61, a supply path including the pipes p23 and p24, the control valves v34 and v35, the pressure feeding device 71 and the switching valve 72, and a supply path including the pipe p25, the control valves v36 to v38 and the tank 81. Are provided in parallel, but the present invention is not limited to this. A part of the plurality of supply paths may be provided between the pipe p20 and the pipe p29.
 (8)第2の実施の形態に係るCVD装置1においては、配管p21にマスフローコントローラが設けられないが、本発明はこれに限らない。例えば電解槽21で発生されるフッ素ガスが加圧されつつ配管p21に供給される場合には、配管p21にマスフローコントローラが設けられてもよい。それにより、フッ素ガスを所望の流量でチャンバー15内に供給することにより、適切なクリーニングを行うことができる。 (8) In the CVD apparatus 1 according to the second embodiment, the pipe p21 is not provided with a mass flow controller, but the present invention is not limited to this. For example, when the fluorine gas generated in the electrolytic cell 21 is supplied to the pipe p21 while being pressurized, a mass flow controller may be provided in the pipe p21. Accordingly, appropriate cleaning can be performed by supplying fluorine gas into the chamber 15 at a desired flow rate.
 (9)上記の実施の形態では、チャンバー15のクリーニング時にチャンバー15内の上部電極11に高周波電圧が印加されないが、本発明はこれに限らない。チャンバー15のクリーニング時に高周波電源回路32から上部電極11に高周波電圧が印加されてもよい。この場合、上部電極11および下部電極12間に高周波プラズマが発生される。それにより、フッ素ガスが活性化されることにより、クリーニングをより効率的に行うことが可能となる。 (9) In the above embodiment, the high frequency voltage is not applied to the upper electrode 11 in the chamber 15 when the chamber 15 is cleaned, but the present invention is not limited to this. A high frequency voltage may be applied to the upper electrode 11 from the high frequency power supply circuit 32 when the chamber 15 is cleaned. In this case, high-frequency plasma is generated between the upper electrode 11 and the lower electrode 12. As a result, the fluorine gas is activated, whereby cleaning can be performed more efficiently.
 [4]請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各構成要素との対応の例について説明するが、本発明は下記の例に限定されない。
[4] Correspondence relationship between each constituent element of claim and each part of embodiment The following describes an example of the correspondence between each constituent element of the claim and each constituent element of the embodiment. It is not limited to examples.
 上記実施の形態においては、CVD装置1が反応装置の例であり、チャンバー15がチャンバーの例であり、膜形成用ガス供給源180、配管p1,p2および制御バルブv1が膜形成用ガス供給系の例であり、フッ素ガス発生部20、配管p1,p5,p20~p29、制御バルブv3,v31~v40、バキュームジェネレータ61、圧送装置71、切替バルブ72、タンク81およびマスフローコントローラ62,73,82がフッ素ガス供給装置の例であり、不活性ガス供給源170が不活性ガス供給源の例であり、不活性ガス供給源170、配管p1,p3,p4,p6および制御バルブv2,v4が不活性ガス供給系の例である。 In the above embodiment, the CVD apparatus 1 is an example of a reaction apparatus, the chamber 15 is an example of a chamber, the film forming gas supply source 180, the pipes p1 and p2, and the control valve v1 are a film forming gas supply system. Fluorine gas generator 20, pipes p1, p5, p20 to p29, control valves v3, v31 to v40, vacuum generator 61, pumping device 71, switching valve 72, tank 81, and mass flow controllers 62, 73, 82 Is an example of a fluorine gas supply device, an inert gas supply source 170 is an example of an inert gas supply source, an inert gas supply source 170, pipes p1, p3, p4, p6 and control valves v2, v4 are inactive. It is an example of an active gas supply system.
 また、電解浴22が電解浴の例であり、電解槽21が電解槽の例であり、陽極24が陽極の例であり、陰極25が陰極の例である。 Also, the electrolytic bath 22 is an example of an electrolytic bath, the electrolytic cell 21 is an example of an electrolytic cell, the anode 24 is an example of an anode, and the cathode 25 is an example of a cathode.
 また、配管p1,p5,p20~p26,p28,p29がフッ素ガス供給配管の例であり、筐体40が筐体の例であり、排気装置130が排気装置の例であり、制御部33が制御部の例である。 The pipes p1, p5, p20 to p26, p28, and p29 are examples of fluorine gas supply pipes, the casing 40 is an example of a casing, the exhaust device 130 is an example of an exhaust device, and the control unit 33 is It is an example of a control part.
 また、配管p1,p5,p20~p29、制御バルブv3,v31~v40、バキュームジェネレータ61、圧送装置71、切替バルブ72およびタンク81がフッ素ガス供給系の例であり、バキュームジェネレータ61がバキュームジェネレータの例であり、圧送装置71が圧送装置の例であり、タンク81がタンクの例であり、マスフローコントローラ62,73,82が流量調整装置の例である。 The pipes p1, p5, p20 to p29, the control valves v3, v31 to v40, the vacuum generator 61, the pressure feeding device 71, the switching valve 72, and the tank 81 are examples of the fluorine gas supply system, and the vacuum generator 61 is the vacuum generator. For example, the pressure feeding device 71 is an example of a pressure feeding device, the tank 81 is an example of a tank, and the mass flow controllers 62, 73, and 82 are examples of a flow rate adjusting device.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の構成要素を用いることもできる。 As each constituent element in the claims, various other constituent elements having configurations or functions described in the claims can be used.
 本発明は、クリーニングが必要な反応装置に有効に利用することができる。 The present invention can be effectively used for a reactor that requires cleaning.

Claims (15)

  1. チャンバー内でガス反応により対象物の表面に所定の膜を形成する反応装置であって、
     前記ガス反応に用いられる膜形成用ガス供給系と、
     フッ化水素を含む電解浴の電気分解により前記チャンバーの内壁のクリーニングガスとなるフッ素ガスを前記チャンバーに供給するフッ素ガス供給装置と、
     前記膜形成用ガス供給系および前記フッ素ガス供給装置を制御する制御部とを備え、
     前記フッ素ガス供給装置は、
     電解槽と、
     前記電解槽に設けられる陰極および陽極とを有し、
     前記陽極の表面の少なくとも一部は、ダイヤモンド構造を有する導電性炭素材料により形成された、反応装置。
    A reaction apparatus for forming a predetermined film on the surface of an object by gas reaction in a chamber,
    A film forming gas supply system used for the gas reaction;
    A fluorine gas supply device for supplying fluorine gas, which serves as a cleaning gas for the inner wall of the chamber, by electrolysis of an electrolytic bath containing hydrogen fluoride;
    A control unit for controlling the film forming gas supply system and the fluorine gas supply device,
    The fluorine gas supply device
    An electrolytic cell;
    A cathode and an anode provided in the electrolytic cell;
    A reactor in which at least a part of the surface of the anode is formed of a conductive carbon material having a diamond structure.
  2. 前記フッ素ガス供給装置は、前記電解浴の電気分解時に、印加電流密度20A/dm以上1000A/dm以下で電気分解する、請求項1記載の反応装置。 The reaction apparatus according to claim 1, wherein the fluorine gas supply device electrolyzes at an applied current density of 20 A / dm 2 or more and 1000 A / dm 2 or less during electrolysis of the electrolytic bath.
  3. 1つの不活性ガス供給源から、前記チャンバー内および前記電解槽内に不活性ガスが供給されるように構成されている、請求項1または2記載の反応装置。 The reaction apparatus according to claim 1 or 2, wherein an inert gas is supplied from one inert gas supply source into the chamber and the electrolytic cell.
  4. 前記制御部は、前記不活性ガス供給源を含む不活性ガス供給系を制御することにより前記電解槽内の圧力を調整する、請求項3記載の反応装置。 The reaction device according to claim 3, wherein the control unit adjusts the pressure in the electrolytic cell by controlling an inert gas supply system including the inert gas supply source.
  5. 前記制御部は、前記膜の形成およびフッ素ガスによる前記チャンバーのクリーニングのうち少なくとも一方の処理後に、前記チャンバー内に残留する膜形成用ガスまたはフッ素ガスを不活性ガスで置換するように、前記不活性ガス供給源を含む不活性ガス供給系を制御する、請求項3記載の反応装置。 The controller is configured to replace the film forming gas or fluorine gas remaining in the chamber with an inert gas after at least one of the film formation and the chamber cleaning with fluorine gas. The reaction apparatus of Claim 3 which controls the inert gas supply system containing an active gas supply source.
  6.  前記フッ素ガス供給装置は、前記電解槽で発生したフッ素ガスを前記電解槽から前記チャンバーに導くフッ素ガス供給系を含む、請求項1~5のいずれか一項に記載の反応装置。 The reaction apparatus according to any one of claims 1 to 5, wherein the fluorine gas supply device includes a fluorine gas supply system that guides fluorine gas generated in the electrolytic cell from the electrolytic cell to the chamber.
  7.  前記フッ素ガス供給系は、フッ素ガス供給配管を含む、請求項6記載の反応装置。 The reaction apparatus according to claim 6, wherein the fluorine gas supply system includes a fluorine gas supply pipe.
  8.  前記フッ素ガス供給系は、前記フッ素ガス供給配管であり、
     前記フッ素ガス供給配管は、1または複数の弁を含み、前記電解槽で発生したフッ素ガスを前記チャンバー内に直接、供給するように構成されている、請求項7記載の反応装置。
    The fluorine gas supply system is the fluorine gas supply pipe,
    The reaction apparatus according to claim 7, wherein the fluorine gas supply pipe includes one or a plurality of valves, and is configured to supply fluorine gas generated in the electrolytic cell directly into the chamber.
  9.  前記フッ素ガス供給系は、不活性ガスの流れにより前記電解槽からフッ素ガスを吸引し、吸引したフッ素ガスを不活性ガスとともに前記チャンバーに導くバキュームジェネレータを含む、請求項6~8のいずれか一項に記載の反応装置。 9. The fluorine gas supply system includes a vacuum generator that sucks fluorine gas from the electrolytic cell by an inert gas flow and guides the sucked fluorine gas together with the inert gas to the chamber. The reactor according to the item.
  10.  前記フッ素ガス供給系は、前記電解槽で発生したフッ素ガスを前記チャンバーに圧送する圧送装置を含む、請求項6~9のいずれか一項に記載の反応装置。 The reaction apparatus according to any one of claims 6 to 9, wherein the fluorine gas supply system includes a pumping device that pumps the fluorine gas generated in the electrolytic cell to the chamber.
  11.  前記フッ素ガス供給系は、前記電解槽で発生したフッ素ガスを貯留するタンクを含む、請求項6~10のいずれか一項に記載の反応装置。 The reaction apparatus according to any one of claims 6 to 10, wherein the fluorine gas supply system includes a tank for storing fluorine gas generated in the electrolytic cell.
  12.  前記フッ素ガス供給系は、
     前記電解槽で発生したフッ素ガスを貯留するタンクと、
     前記電解槽で発生したフッ素ガスを前記タンクに圧送する圧送装置とを含む、請求項6~9のいずれか一項に記載の反応装置。
    The fluorine gas supply system is
    A tank for storing fluorine gas generated in the electrolytic cell;
    The reaction apparatus according to any one of claims 6 to 9, further comprising a pumping device that pumps fluorine gas generated in the electrolytic cell to the tank.
  13.  前記フッ素ガス供給装置は、前記フッ素ガス供給系を通して前記チャンバー内に流れるフッ素ガスの流量を調整する流量調整装置をさらに含む、請求項6~12のいずれか一項に記載の反応装置。 The reaction apparatus according to any one of claims 6 to 12, wherein the fluorine gas supply device further includes a flow rate adjusting device for adjusting a flow rate of the fluorine gas flowing into the chamber through the fluorine gas supply system.
  14. 前記チャンバーおよび前記フッ素ガス供給装置を収容する筐体と、
     前記筐体内を排気する排気装置とをさらに備える、請求項1~13のいずれか一項に記載の反応装置。
    A housing for housing the chamber and the fluorine gas supply device;
    The reaction device according to any one of claims 1 to 13, further comprising an exhaust device for exhausting the inside of the housing.
  15. 前記フッ素ガス供給装置は、複数の前記電解槽を含み、
     各電解槽には、前記陽極及び前記陰極が設けられ、
     前記制御部は、前記フッ素ガスを前記チャンバー内に供給する時に各電解槽に収容された電解浴において電気分解によりフッ素ガスが発生されるように前記フッ素ガス供給装置を制御する、請求項1~14のいずれか一項に記載の反応装置。
    The fluorine gas supply device includes a plurality of the electrolytic cells,
    Each electrolytic cell is provided with the anode and the cathode,
    The control unit controls the fluorine gas supply device so that fluorine gas is generated by electrolysis in an electrolytic bath accommodated in each electrolytic cell when the fluorine gas is supplied into the chamber. The reaction apparatus according to any one of 14.
PCT/JP2015/001994 2014-04-24 2015-04-09 Reaction device WO2015162868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014090328 2014-04-24
JP2014-090328 2014-04-24

Publications (1)

Publication Number Publication Date
WO2015162868A1 true WO2015162868A1 (en) 2015-10-29

Family

ID=54332049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001994 WO2015162868A1 (en) 2014-04-24 2015-04-09 Reaction device

Country Status (2)

Country Link
TW (1) TW201610209A (en)
WO (1) WO2015162868A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083740A1 (en) * 2006-01-20 2007-07-26 Toyo Tanso Co., Ltd. Electrolytic apparatus for producing fluorine or nitrogen trifluoride
JP2007211261A (en) * 2006-02-07 2007-08-23 Toyo Tanso Kk Semiconductor manufacturing plant
JP2011052314A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Gas supply system
JP2012204694A (en) * 2011-03-25 2012-10-22 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device and substrate processing device
WO2013001800A1 (en) * 2011-06-29 2013-01-03 東洋炭素株式会社 Electrolysis device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083740A1 (en) * 2006-01-20 2007-07-26 Toyo Tanso Co., Ltd. Electrolytic apparatus for producing fluorine or nitrogen trifluoride
JP2007211261A (en) * 2006-02-07 2007-08-23 Toyo Tanso Kk Semiconductor manufacturing plant
JP2011052314A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Gas supply system
JP2012204694A (en) * 2011-03-25 2012-10-22 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device and substrate processing device
WO2013001800A1 (en) * 2011-06-29 2013-01-03 東洋炭素株式会社 Electrolysis device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETSURO TOJO: "Development of electrodes for fluorine gas production and on -site fluorine gas generators", THE ELECTROCHEMICAL SOCIETY OF JAPAN KOEN YOSHISHU DAI 76 KAI TAIKAI, 29 March 2009 (2009-03-29), pages 246 *

Also Published As

Publication number Publication date
TW201610209A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
KR101070666B1 (en) Cleaning method and substrate processing apparatus
KR20240027654A (en) Method and system for in-situ formation of intermediate reactive species
KR101368768B1 (en) Film formation method and apparatus, and storage medium
JP5346904B2 (en) Vertical film forming apparatus and method of using the same
TWI409897B (en) A substrate processing apparatus, and a method of manufacturing the semiconductor device
KR102339755B1 (en) Device and method for exhaust gas purification at a cvd-reactor
JP2009513330A (en) Gas processing method
JP2007299776A (en) Plasma processing apparatus, and plasma processing method
JP2003212517A (en) System and process for supplying gas
JP5886531B2 (en) Film forming method and film forming apparatus
JP6169668B2 (en) Fluorine supply method
JP4584549B2 (en) Fluorine gas generator
JP2019012812A (en) Exhaust facility system
JP2010207771A (en) Apparatus and method of exhaust gas treatment
WO2015162868A1 (en) Reaction device
JP4870536B2 (en) Vapor growth method
WO2010113611A1 (en) Fluorine gas generation device
WO2007083480A1 (en) Plasma processing apparatus and semiconductor element manufactured by such apparatus
TWI551711B (en) Film forming apparatus and method of cleaning film forming apparatus
WO2010113612A1 (en) Fluorine gas generation device
JP5332829B2 (en) Fluorine gas generator
JP2005206911A (en) Semiconductor treatment system, and bubble trap
JP2008081756A (en) Semiconductor fabrication device
JP5004565B2 (en) Thin film production equipment
JP4994424B2 (en) Substrate processing apparatus and method for forming semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP