WO2013001715A1 - Sputtering device - Google Patents

Sputtering device Download PDF

Info

Publication number
WO2013001715A1
WO2013001715A1 PCT/JP2012/003529 JP2012003529W WO2013001715A1 WO 2013001715 A1 WO2013001715 A1 WO 2013001715A1 JP 2012003529 W JP2012003529 W JP 2012003529W WO 2013001715 A1 WO2013001715 A1 WO 2013001715A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
magnetic circuit
target
circuit unit
magnet
Prior art date
Application number
PCT/JP2012/003529
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 英和
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to CN201280031791.3A priority Critical patent/CN103649365B/en
Priority to KR1020147002252A priority patent/KR101608603B1/en
Priority to JP2013522703A priority patent/JP5792812B2/en
Publication of WO2013001715A1 publication Critical patent/WO2013001715A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Definitions

  • the present invention relates to a sputtering apparatus including a magnetron cathode, and more particularly to a sputtering apparatus including a magnetron cathode in which a magnetic circuit unit swings.
  • Magnetron cathodes for sputtering equipment.
  • a magnetron cathode having a magnet on the back side of a flat target is often used.
  • Magnetron cathodes can be classified from two viewpoints: shape and operation of the magnetic circuit unit.
  • shape of the magnetron cathode is determined by the shape of the target attached to the magnetron cathode, and can be roughly divided into a substantially circular shape and a substantially rectangular shape.
  • Circular magnetron cathodes are often used for round objects such as semiconductors and magnetic disks.
  • rectangular magnetron cathodes are often used for rectangular objects such as displays and solar cells. From the viewpoint of the operation of the magnetic circuit unit, the magnetic circuit unit is roughly classified into a fixed type and a swinging type. The reason why the magnetic circuit unit is swung is to improve the utilization efficiency of the target and extend its life, and to reduce dust generation from the target by eliminating the non-erosion region.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a sputtering apparatus that slows the etching speed of a portion that is easily eroded and has good target utilization efficiency.
  • the sputtering apparatus of the present invention includes a vacuum vessel, a substrate holder disposed inside the vacuum vessel and capable of holding a substrate to be film-formed, a target mounting surface capable of mounting a target facing the substrate holder, and A magnetron cathode having a magnetic circuit unit capable of swinging in a first direction parallel to the target mounting surface, the magnetic circuit unit including a first unit having a magnet pair arranged in a direction parallel to the first direction; The second unit has a magnet pair disposed in a direction intersecting the first direction, and the second unit has a longer swing distance than the first unit.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a sputtering apparatus provided with a magnetron cathode 1 according to the present invention.
  • the sputtering apparatus has a chamber 2, a magnetron cathode 1, and a substrate holder 10 as main components.
  • the sputtering apparatus includes a power source 12 for applying power necessary for the sputtering film forming process to the target back plate 4.
  • a target back plate 4 to which the target 3 is bonded is attached to the chamber 2 (vacuum container) via an insulator 5.
  • the insulator 5 is a member that electrically insulates the chamber 2 and the target back plate 4.
  • the chamber 2, the target back plate 4, and the insulator 5 constitute a processing chamber 6 that can be evacuated.
  • the target back plate 4 has a target mounting surface to which the target 3 is bonded by bonding.
  • the target mounting surface is formed as a smooth surface facing the substrate holder 10.
  • the target 3 is a film forming material and is bonded to the target mounting surface of the target back plate 4 as described above.
  • a magnetic circuit unit 11 is arranged on the back side of the target back plate 4 (that is, the second surface side of the first surface of the target back plate 4 on the target 3 side and the second surface opposite to the first surface). . Further, on the back side of the target back plate 4, a rocking device for reciprocating the magnetic circuit unit 11 is provided at least in the X direction (first direction) parallel to the target mounting surface. The swing device will be described later with reference to FIG.
  • a substrate holder 10 that can hold the substrate 9 so as to face the target 3 is provided inside the chamber 2.
  • An exhaust device such as an exhaust pump is connected to the exhaust port 7 of the chamber 2 via a conductance valve (not shown).
  • a gas introduction system 8 having a flow rate controller (MFC) or the like is connected to the chamber 2 as process gas introduction means.
  • Process gas is supplied from the gas introduction system 8 at a predetermined flow rate.
  • a rare gas such as argon (Ar) or a simple substance or a mixed gas containing nitrogen (N 2) can be used.
  • the magnetic circuit unit 11 is disposed on the back side of the target back plate 4 that functions as a vacuum partition, but a partition plate is provided at a position between the target back plate 4 and the magnetic circuit unit 11.
  • the partition plate may be a vacuum partition.
  • the magnetic circuit unit 11 includes, for example, a plate A (A1, A2), a center magnet B (B1, B2), and an outer peripheral magnet C (C1, C2).
  • the magnetron cathode 1 includes, for example, a magnetic circuit unit 11, a swing device, and a target back plate 4.
  • FIG. 2A is a schematic plan view of the magnetic circuit unit 11 according to the present embodiment
  • FIG. 2B is an enlarged view of an end portion (E portion of FIG. 2A) of the magnetic circuit unit 11.
  • a central magnet B (B1, B2) composed of permanent magnets and an outer peripheral magnet C (C1, C2) are arranged apart from each other. It arrange
  • the center magnet B and the outer periphery magnet C are magnetized in a direction substantially perpendicular to the paper surface, and the magnetization directions of the center magnet B and the outer periphery magnet C are opposite to each other.
  • an endless magnetic tunnel is formed between the center magnet B and the outer peripheral magnet C.
  • the magnetic tunnel is formed on the substrate side of the target mounting surface. More specifically, a stable magnetron discharge is possible by forming a magnetic tunnel on the surface side of the target disposed on the target mounting surface.
  • the center magnet B1 and the outer peripheral magnet C1 form a magnet pair in the X direction (first direction), and the short side portion of the central magnet B2 and the outer peripheral magnet C2 Forms a magnet pair in the Y direction.
  • the outer peripheral magnet C1 is disposed on both sides in the X direction of the central magnet B1, the central magnet B1 forms a magnet pair with the outer peripheral magnet C1 on both sides in the X direction.
  • the short side portion of the outer peripheral magnet C ⁇ b> 2 is a short side portion of the rectangular outer peripheral magnet C, and in particular, is a portion of the outer peripheral magnet C ⁇ b> 2 located in the longitudinal direction of the center magnet B.
  • the shape of the center magnet B and the outer peripheral magnet C is not limited to an axial shape and a rectangular shape.
  • the shape of the end unit 112 may be a curved shape or a polygon such as a triangle.
  • the center magnet B and the outer periphery magnet C can also be comprised by combining many small magnets. In this case, the magnet pair of the center magnet B2 and the outer peripheral magnet C2 has a portion formed in a direction deviating from the Y direction.
  • the magnetic circuit unit 11 is divided into a straight line unit 111 and an end unit 112 at a position D shown in FIG.
  • the straight line unit 111 (first unit) includes a plate (outer magnet C1) that occupies most of the long side portion of the outer peripheral magnet C and a portion (center magnet B1) that occupies most of the long side portion of the central magnet B. It is arranged on A1.
  • the end unit 112 (second unit) is configured by arranging a short side portion (outer peripheral magnet C2) of the outer peripheral magnet C and a short side portion (central magnet B2) of the central magnet B on the plate A2. .
  • the short side portions are arranged on both sides in the long side direction of the linear unit 111 (that is, one end side and the other end side of the linear unit 111).
  • the swing direction of the magnetic circuit unit 11 includes the X direction in FIG.
  • the X direction is a direction orthogonal to the long side portion of the rectangular outer peripheral magnet C.
  • the magnetron cathode 1 is configured such that the swing distance of the linear unit 111 and the swing distance of the end unit 112 of the magnetic circuit unit 11 can be set independently.
  • FIGS. 3 to 5 are plan views illustrating the swinging state of the swinging device and the magnetic circuit unit, and are schematic views of the magnetron cathode 1 as viewed from above the sputtering device.
  • the configuration and operation of the swing device will be described with reference to FIGS.
  • the target 3 is indicated by a broken line in FIGS.
  • FIG. 3 shows the case where the magnetic circuit unit 11 is in the center of the movable range in the X direction.
  • Nuts 113a and 113b are respectively attached to the linear unit 111 and the end units 112 arranged on both sides thereof, and the linear unit 111 and the end unit 112 are respectively connected to the screw shaft 114a via the nuts 113a and 113b. , 114b.
  • the screw shafts 114a and 114b are connected to motors 115a and 115b, respectively.
  • the screw shafts 114a and 114b are rotated (forward / reverse) by the motors 115a and 115b. That is, the nuts 113a and 113b and the screw shafts 114a and 114b constitute a ball screw mechanism.
  • the straight line unit 111 and the end unit 112 swing in the X direction as the screw shafts 114a and 114b rotate. Further, since the linear unit 111 and the end unit 112 are driven by different motors 115a and 115b, the linear unit 111 and the end unit 112 are operated by causing the motors 115a and 115b to perform different rotational operations. Can be swung at different rocking distances.
  • the linear unit 111 and the end unit 112 of the magnetic circuit unit 11 are at the left end and the right end of the movable range in the X direction, respectively.
  • the linear unit 111 and the end unit 112 can be oscillated at different oscillating distances. Therefore, the oscillating distance of the end unit 112 is set to the oscillating distance of the linear unit 111. It can be longer than that. Further, according to the above-described configuration, the swing distance between the linear unit 111 and the end unit 112 can be simply performed by changing the motor control.
  • a mechanism using a ball screw is employed as the swinging device in the X direction.
  • the effect of the present invention does not depend on the specific configuration of the rocking device, other structures can be employed as the rocking device.
  • the oscillating device there is only one oscillating power, and an apparatus for changing the gear ratio via a gear in a power transmission path from the motive power to the linear unit 111 and the end unit 112. Can be considered.
  • the oscillating power is one, and a crank provided on each of the linear unit 111 and the end unit 112 is provided. A device that makes the crank disk different is conceivable.
  • a configuration using a rack and pinion or an eccentric cam can be considered.
  • FIGS. 6 to 8 are respectively planes illustrating the position and shape of the plasma ring 14 when the magnetic circuit unit 11 is at the center, the left swing end, and the right swing end of the magnetron cathode 1 in the X direction.
  • FIG. 10 and 11 the moving distance of the plasma ring in the portion corresponding to the ends arranged on both sides of the straight portion of the magnetron cathode 1 is the moving distance of the plasma ring in the portion corresponding to the straight portion. Longer than that. This is because the moving distance (moving range) of the end unit 112 is larger than the moving distance (moving range) of the linear unit 111.
  • a large moving distance means that the moving speed is fast, which contributes to the flattening (uniformization) of the distribution of the etching speed in the moving range.
  • the movement of the magnetic circuit unit 11 it becomes possible to slow down the etching speed of the target at the end in the long side direction of the magnetron cathode 1, or to flatten (uniformize) the distribution of the etching speed.
  • the use efficiency of the target can be improved and the life can be extended.
  • the magnetic circuit unit 11 is composed of a plurality of units, and the distribution range of the plurality of units is individually determined to flatten (uniformize) the distribution of the etching speed of the target. , The utilization efficiency of the target can be improved.
  • FIGS. 9 to 11 are cross-sectional views illustrating the swing state of the magnetic circuit unit attached to the magnetron cathode 31 according to the second embodiment.
  • the configuration and operation of the magnetron cathode 31 will be described with reference to FIGS.
  • FIG. 9 shows a case where the magnetic circuit unit 11 (111, 112) is at the center of the movement range in the Y direction.
  • members, arrangements, and the like are assigned the same reference numerals as in the first embodiment, and detailed descriptions thereof are omitted.
  • the magnetron cathode 31 of the present embodiment has an oscillating device (second oscillating device) in the Y direction (see FIG. 9) parallel to the target mounting surface, in addition to the X oscillating device (first oscillating device) described above.
  • the Y-direction oscillating device is configured to oscillate the entire X-direction oscillating device that supports the magnetic circuit unit 11 in the Y direction, and includes a support plate 117 that supports the X-direction oscillating device, and a support plate.
  • a ball screw mechanism that swings 117 in the Y direction is provided as a main component.
  • the Y direction is orthogonal to the X direction, but is not limited to a configuration in which the Y direction and the X direction are orthogonal.
  • the support plate 117 is a member that supports the X-direction swing device, and the magnetic circuit unit 11 (111, 112) is attached to the X-direction swing device.
  • the ball screw mechanism has a nut 118 and a screw shaft 119 as main components.
  • the nut 118 is attached to the support plate 117, and the screw shaft 119 and the motor 120 connected to the screw shaft 119 are attached to the chamber 2 side.
  • the screw shaft 119 rotates (forward / reverse) by the power of the motor 120.
  • the support plate 117 connected to the screw shaft 119 via the nut 118 swings in the Y direction as the screw shaft 119 rotates.
  • the film forming apparatus using the magnetron cathode 31 of the present embodiment it is possible to slow the etching speed of the end portion in the long side direction of the magnetron cathode 31, improving the use efficiency of the target and extending the life. be able to.
  • the entire magnetic circuit unit 11 also swings in the Y direction, so that the etching speed at the end portion in the long side direction of the cathode is slower than the magnetron cathode 1 of the first embodiment. be able to.
  • the magnetron cathode 31 of the present embodiment described above is configured such that the entire magnetic circuit unit 11 swings the same distance in the Y direction, and the swinging distances of the linear unit 111 and the end unit 112 differ from each other in the X direction.
  • the entire magnetic circuit unit 11 may be swung in the X direction at the same swing distance, and the swing distances of the linear unit 111 and the end unit 112 may be different from each other in the Y direction.
  • the two end units 112 are arranged separately from the linear unit 111 in the Y direction, and the end unit 112 is larger than the linear unit 111 at the swing end in the Y direction. It can be considered to be a moving configuration.
  • an X-direction swinging device is connected to the support plate.
  • FIGS. 12, 13 and 14 are plan views showing the shape of the erosion 15 of the target when the magnetic circuit unit 11 is at the center of the operating range in the X direction, the left swing end, and the right swing end, respectively.
  • the erosion shape was simulated from the position of the plasma ring 14. At this time, the erosion was assumed to follow a Gaussian distribution in the cross-sectional direction across the ring of the plasma ring 14.
  • the erosion 15 corresponding to the shape of the plasma ring 14 of FIGS. 6-8 is drawn. That is, when the magnetic circuit unit 11 is positioned at the left and right swing ends, the shape of the erosion 15 is obtained under the condition that the end unit 112 is positioned outside the linear unit 111 in the X direction.
  • FIG. 15 shows the result of simulating the shape of the erosion 16 formed on the target 4 by performing sputtering while swinging the magnetic circuit unit 11.
  • the rocking distance in the X direction of the magnetic circuit unit 11 is ⁇ 55 mm for the linear unit 111 and ⁇ 70 mm for the end unit 112.
  • the swing distance of the magnetic circuit unit 11 in the Y direction is ⁇ 25 mm.
  • the dimensions of the cathode are 300 mm300 ⁇ 920 mm.
  • the utilization efficiency of the target 4 was 50.0%.
  • reference numerals 16 a, 16 b, and 16 c are attached according to the depth of the erosion 16.
  • Reference numeral 16c indicates the deepest erosion place.
  • the target utilization rate is a ratio of the amount of the target 3 as a whole when the portion with the deepest erosion reaches the target back plate 4.
  • FIG. 16 17, and 18 are plan views showing the shape of the erosion 18 when the integral magnetic circuit unit is at the center of the X-direction movement range of the magnetron cathode, the left swing end, and the right swing end, respectively. Show.
  • the erosion shape was simulated from the position of the plasma ring 15. At this time, the erosion 18 was assumed to follow a Gaussian distribution in the cross-sectional direction across the ring of the plasma ring 15.
  • FIG. 19 shows the result of simulating the shape of the erosion 19 formed on the target 4 by performing sputtering while swinging the integrated magnetic circuit unit.
  • the rocking distance in the X direction of the integral magnetic circuit unit was ⁇ 55 mm
  • the rocking distance in the Y direction was ⁇ 25 mm.
  • the dimensions of the cathode are 300 mm300 ⁇ 920 mm.
  • reference numerals 19 a, 19 b and 19 c are attached according to the difference in depth of the erosion 19.
  • Reference numeral 19c indicates a place where the erosion is deepest.
  • the usage efficiency of target 4 in this simulation was calculated to be 39.9%. Note that the utilization efficiency of the target 4 in the actually measured erosion was 39.3%.
  • the measurement of the utilization efficiency of the target 4 was performed by determining the volume of the measured erosion. Erosion was measured using a three-dimensional measuring instrument equipped with a laser displacement sensor. When comparing the simulation result of FIG. 19 with the simulation result of the embodiment shown in FIG. 15, the embodiment has a smaller difference in erosion depth between the vicinity of the end portion and the straight portion than the comparative example, and the use efficiency of the target is high. I understand that.

Abstract

Provided is a sputtering device that reduces etching speed in readily eroded portions and that has a good utilization efficiency of a target. A rectangular magnetic circuit unit (11) mounted on a magnetron cathode (31) is configured so that the oscillation distance is different between a linear unit (111) composed of a rectangular magnet on the long side portion and an end part unit (112) having a magnet on the short side portion. The oscillation distance of the end part unit (112) is greater than that of the linear unit (111) in the X direction parallel to the target-mounting surface.

Description

スパッタ装置Sputtering equipment
 本発明は、マグネトロンカソードを備えるスパッタ装置に係り、特に磁気回路ユニットが揺動するマグネトロンカソードを備えるスパッタ装置に関する。 The present invention relates to a sputtering apparatus including a magnetron cathode, and more particularly to a sputtering apparatus including a magnetron cathode in which a magnetic circuit unit swings.
 スパッタ装置のカソードには様々なものがある。これらの中で、平板状のターゲットの背面側に磁石を有するマグネトロンカソードが多く使われている。マグネトロンカソードは形状及び磁気回路ユニットの動作という二つの観点から分類できる。ここで、マグネトロンカソードの形状はマグネトロンカソードに取り付けられるターゲットの形状によって定まり、略円形と略矩形に大別できる。 There are various cathodes for sputtering equipment. Among these, a magnetron cathode having a magnet on the back side of a flat target is often used. Magnetron cathodes can be classified from two viewpoints: shape and operation of the magnetic circuit unit. Here, the shape of the magnetron cathode is determined by the shape of the target attached to the magnetron cathode, and can be roughly divided into a substantially circular shape and a substantially rectangular shape.
 円形のマグネトロンカソードは半導体や磁気ディスクなど、被成膜物が円形のもの向けに多く用いられる。一方、矩形のマグネトロンカソードはディスプレイや太陽電池など、被成膜物が矩形のもの向けに多く用いられている。磁気回路ユニットの動作の観点からは、磁気回路ユニットが固定のものと揺動するものとに大別される。磁気回路ユニットを揺動させる理由は、ターゲットの利用効率を良くし寿命を長くするため、また、非エロージョン領域を無くすことによりターゲットからの発塵を低減するためである。 Circular magnetron cathodes are often used for round objects such as semiconductors and magnetic disks. On the other hand, rectangular magnetron cathodes are often used for rectangular objects such as displays and solar cells. From the viewpoint of the operation of the magnetic circuit unit, the magnetic circuit unit is roughly classified into a fixed type and a swinging type. The reason why the magnetic circuit unit is swung is to improve the utilization efficiency of the target and extend its life, and to reduce dust generation from the target by eliminating the non-erosion region.
 マグネトロンカソードが矩形であり、磁気回路ユニットが揺動するマグネトロンカソードにおいては、マグネトロンカソードの長辺方向における端部の食刻速度が速いため、ターゲット利用効率が悪く寿命が短いという課題があり、この課題に対して様々な提案がなされている。その一つとして、磁石ユニットに高透磁率の磁気シャントを配置し、マグネトロンカソードの長辺方向端部の漏洩磁束密度を低くして、食刻速度を遅くする方法がある(例えば、特許文献1参照)。 In the magnetron cathode in which the magnetron cathode is rectangular and the magnetic circuit unit oscillates, the etching speed of the end portion in the long side direction of the magnetron cathode is fast, so there is a problem that the target utilization efficiency is low and the life is short. Various proposals have been made for the issues. As one of the methods, there is a method in which a magnetic shunt having a high magnetic permeability is disposed in a magnet unit, the leakage magnetic flux density at the end portion in the long side direction of the magnetron cathode is lowered, and the etching speed is lowered (for example, Patent Document 1). reference).
特開2010-111915号公報JP 2010-1111915 A
 しかしながら、磁石ユニットに磁気シャントを配置し食刻速度を遅くする方法には限界がある。なぜなら、マグネトロン放電は磁力により電子を拘束することにより成立しているからである。マグネトロンカソードの長辺方向端部の漏洩磁束密度を低くすることは、この箇所での電子の拘束力を弱めることと同義である。漏洩磁束密度を低くしすぎると電子を拘束出来なくなり、無終端のプラズマリングが形成できなくなる。すなわち、マグネトロン放電が形成可能な漏洩磁束密度の下限における食刻速度の下限が、この方法によるターゲットの利用効率・寿命の改善の限界となる。 However, there is a limit to the method of slowing the etching speed by arranging a magnetic shunt on the magnet unit. This is because magnetron discharge is established by restraining electrons by magnetic force. Lowering the leakage magnetic flux density at the end portion in the long side direction of the magnetron cathode is synonymous with weakening the binding force of electrons at this location. If the leakage magnetic flux density is too low, electrons cannot be restrained, and an endless plasma ring cannot be formed. In other words, the lower limit of the etching speed at the lower limit of the leakage magnetic flux density that can form the magnetron discharge is the limit for improving the utilization efficiency and life of the target by this method.
 本発明は上記課題に鑑みてなされたものであり、エロージョンされやすい部分の食刻速度を遅くし、ターゲットの利用効率が良好なスパッタ装置を提供することにある。 The present invention has been made in view of the above problems, and it is an object of the present invention to provide a sputtering apparatus that slows the etching speed of a portion that is easily eroded and has good target utilization efficiency.
 本発明のスパッタ装置は、真空容器と、真空容器の内部に配置され、成膜処理される基板を保持可能な基板ホルダーと、基板ホルダーに対向してターゲットを取り付け可能なターゲット取付け面、及び、ターゲット取付け面に平行な第1方向に揺動可能な磁気回路ユニットを有するマグネトロンカソードと、を備え、磁気回路ユニットは、第1方向と平行な方向に配置された磁石対を有する第1ユニットと、第1方向と交わる方向に配置された磁石対を有する第2ユニットを有し、第2ユニットは、第1ユニットよりも揺動距離が長いことを特徴とする。 The sputtering apparatus of the present invention includes a vacuum vessel, a substrate holder disposed inside the vacuum vessel and capable of holding a substrate to be film-formed, a target mounting surface capable of mounting a target facing the substrate holder, and A magnetron cathode having a magnetic circuit unit capable of swinging in a first direction parallel to the target mounting surface, the magnetic circuit unit including a first unit having a magnet pair arranged in a direction parallel to the first direction; The second unit has a magnet pair disposed in a direction intersecting the first direction, and the second unit has a longer swing distance than the first unit.
 本発明によればターゲット全体でより均一なエロージョンを実現できる。そのため、ターゲットの利用効率が良く、ターゲット寿命の長いスパッタ装置を提供することができる。 According to the present invention, more uniform erosion can be realized over the entire target. Therefore, it is possible to provide a sputtering apparatus with high target utilization efficiency and a long target life.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の第1の実施形態に係るマグネトロンカソードを備えたスパッタ装置の断面図である。 本発明の第1の実施形態に係るマグネトロンカソードの磁気回路ユニットの平面図である。 本発明の第1の実施形態に係るマグネトロンカソードの磁気回路ユニットの拡大図である。 本発明の第1の実施形態に係る揺動装置と磁気回路ユニットの揺動状態を示す平面図である。 本発明の第1の実施形態に係る揺動装置と磁気回路ユニットの揺動状態を示す平面図である。 本発明の第1の実施形態に係る揺動装置と磁気回路ユニットの揺動状態を示す平面図である。 本発明の第1の実施形態にマグネトロンカソードによって生じるプラズマリングとターゲットの位置関係を示す平面図である。 本発明の第1の実施形態にマグネトロンカソードによって生じるプラズマリングとターゲットの位置関係を示す平面図である。 本発明の第1の実施形態にマグネトロンカソードによって生じるプラズマリングとターゲットの位置関係を示す平面図である。 本発明の第2の実施形態に係る揺動装置と磁気回路ユニットの揺動状態を示す断面図である。 本発明の第2の実施形態に係る揺動装置と磁気回路ユニットの揺動状態を示す断面図である。 本発明の第2の実施形態に係る揺動装置と磁気回路ユニットの揺動状態を示す断面図である。 本発明の第2の実施形態に係る磁気回路ユニットのX方向の揺動範囲の中央にあるときのエロージョンの形状を表す平面図である。 本発明の第2の実施形態に係る磁気回路ユニットのX方向の揺動範囲の左端にあるときのエロージョンの形状を表す平面図である。 本発明の第2の実施形態に係る磁気回路ユニットのX方向の揺動範囲の右端にあるときのエロージョンの形状を表す平面図である。 本発明の第2の実施形態に係る磁気回路ユニットを揺動させながらスパッタリングを行うことによってターゲットに形成されるエロージョンの形状をシミュレーションした結果を示す図である。 比較例に係る磁気回路ユニットのX方向の揺動範囲の中央にあるときのエロージョンの形状を表す平面図である。 比較例に係る磁気回路ユニットのX方向の稼動範囲の左端にあるときのエロージョンの形状を表す平面図である。 比較例に係る磁気回路ユニットのX方向の稼動範囲の右端にあるときのエロージョンの形状を表す平面図である。 比較例に係る磁気回路ユニットを揺動させながらスパッタリングを行うことによってターゲットに形成されるエロージョンの形状をシミュレーションした結果を示す図である。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
It is sectional drawing of the sputtering device provided with the magnetron cathode which concerns on the 1st Embodiment of this invention. It is a top view of the magnetic circuit unit of the magnetron cathode which concerns on the 1st Embodiment of this invention. It is an enlarged view of the magnetic circuit unit of the magnetron cathode which concerns on the 1st Embodiment of this invention. It is a top view which shows the rocking | fluctuation state of the rocking | swiveling apparatus which concerns on the 1st Embodiment of this invention, and a magnetic circuit unit. It is a top view which shows the rocking | fluctuation state of the rocking | swiveling apparatus which concerns on the 1st Embodiment of this invention, and a magnetic circuit unit. It is a top view which shows the rocking | fluctuation state of the rocking | swiveling apparatus which concerns on the 1st Embodiment of this invention, and a magnetic circuit unit. It is a top view which shows the positional relationship of the plasma ring and target which arise with the magnetron cathode in the 1st Embodiment of this invention. It is a top view which shows the positional relationship of the plasma ring and target which arise with the magnetron cathode in the 1st Embodiment of this invention. It is a top view which shows the positional relationship of the plasma ring and target which arise with the magnetron cathode in the 1st Embodiment of this invention. It is sectional drawing which shows the rocking | fluctuation state of the rocking | fluctuation apparatus which concerns on the 2nd Embodiment of this invention, and a magnetic circuit unit. It is sectional drawing which shows the rocking | fluctuation state of the rocking | fluctuation apparatus which concerns on the 2nd Embodiment of this invention, and a magnetic circuit unit. It is sectional drawing which shows the rocking | fluctuation state of the rocking | fluctuation apparatus which concerns on the 2nd Embodiment of this invention, and a magnetic circuit unit. It is a top view showing the shape of erosion when it exists in the center of the rocking | fluctuation range of the X direction of the magnetic circuit unit which concerns on the 2nd Embodiment of this invention. It is a top view showing the shape of erosion when it exists in the left end of the rocking | fluctuation range of the X direction of the magnetic circuit unit which concerns on the 2nd Embodiment of this invention. It is a top view showing the shape of erosion when it exists in the right end of the rocking | fluctuation range of the X direction of the magnetic circuit unit which concerns on the 2nd Embodiment of this invention. It is a figure which shows the result of having simulated the shape of the erosion formed in a target by performing sputtering, rocking | fluctuating the magnetic circuit unit which concerns on the 2nd Embodiment of this invention. It is a top view showing the shape of erosion when it exists in the center of the rocking | fluctuation range of the X direction of the magnetic circuit unit which concerns on a comparative example. It is a top view showing the shape of erosion when it exists in the left end of the operating range of the X direction of the magnetic circuit unit which concerns on a comparative example. It is a top view showing the shape of erosion when it exists in the right end of the operating range of the X direction of the magnetic circuit unit which concerns on a comparative example. It is a figure which shows the result of having simulated the shape of the erosion formed in a target by performing sputtering, rocking | fluctuating the magnetic circuit unit which concerns on a comparative example.
 以下、図面を参照して本発明の実施形態を詳細に説明する。本発明はこれに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種種の変更が可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to this, and various changes can be made without departing from the spirit of the present invention.
(第1の実施形態)
 図1は、本発明に係わるマグネトロンカソード1を備えたスパッタ装置の概略構成を示す模式図である。図1に示すように、スパッタ装置は、チャンバ2、マグネトロンカソード1、基板ホルダー10を主要な構成要素として有している。また、スパッタ装置は、ターゲット裏板4に対してスパッタ成膜処理に必要な電力を印加するための電源12を備えている。チャンバ2(真空容器)には、ターゲット3が接合されたターゲット裏板4が絶縁体5を介して取り付けられている。絶縁体5は、チャンバ2とターゲット裏板4を電気的に絶縁する部材である。チャンバ2、ターゲット裏板4、絶縁体5により、真空排気可能な処理室6が構成されている。
(First embodiment)
FIG. 1 is a schematic diagram showing a schematic configuration of a sputtering apparatus provided with a magnetron cathode 1 according to the present invention. As shown in FIG. 1, the sputtering apparatus has a chamber 2, a magnetron cathode 1, and a substrate holder 10 as main components. Further, the sputtering apparatus includes a power source 12 for applying power necessary for the sputtering film forming process to the target back plate 4. A target back plate 4 to which the target 3 is bonded is attached to the chamber 2 (vacuum container) via an insulator 5. The insulator 5 is a member that electrically insulates the chamber 2 and the target back plate 4. The chamber 2, the target back plate 4, and the insulator 5 constitute a processing chamber 6 that can be evacuated.
 ターゲット裏板4は、ターゲット3がボンディングにより接合されるターゲット取付け面を有する。ターゲット取付け面は基板ホルダー10に対向する平滑な面として形成されている。ターゲット3は成膜材料であり、上述のようにターゲット裏板4のターゲット取り付け面にボンディングされている。ターゲット裏板4の背面側(即ち、ターゲット裏板4のターゲット3側の第1面とその反対側の第2面のうち第2面の側)には、磁気回路ユニット11が配置されている。また、ターゲット裏板4の背面側には、少なくともターゲット取付け面に平行なX方向(第1方向)に、磁気回路ユニット11を往復運動させる揺動装置が設けられている。揺動装置については図3に基づいて後述する。 The target back plate 4 has a target mounting surface to which the target 3 is bonded by bonding. The target mounting surface is formed as a smooth surface facing the substrate holder 10. The target 3 is a film forming material and is bonded to the target mounting surface of the target back plate 4 as described above. A magnetic circuit unit 11 is arranged on the back side of the target back plate 4 (that is, the second surface side of the first surface of the target back plate 4 on the target 3 side and the second surface opposite to the first surface). . Further, on the back side of the target back plate 4, a rocking device for reciprocating the magnetic circuit unit 11 is provided at least in the X direction (first direction) parallel to the target mounting surface. The swing device will be described later with reference to FIG.
 チャンバ2の内部には、基板9をターゲット3に対向するように保持できる基板ホルダー10が設けられている。チャンバ2の排気口7には、不図示のコンダクタンスバルブ等を介して排気ポンプ等の排気装置が接続されている。チャンバ2には、プロセスガスの導入手段として、流量制御器(MFC)などを備えたガス導入系8が接続されている。ガス導入系8からプロセスガスを所定の流量で供給する。プロセスガスとしては、例えば、アルゴン(Ar)等の希ガスや、窒素(N2)等を含む単体または混合ガスを用いることができる。 A substrate holder 10 that can hold the substrate 9 so as to face the target 3 is provided inside the chamber 2. An exhaust device such as an exhaust pump is connected to the exhaust port 7 of the chamber 2 via a conductance valve (not shown). A gas introduction system 8 having a flow rate controller (MFC) or the like is connected to the chamber 2 as process gas introduction means. Process gas is supplied from the gas introduction system 8 at a predetermined flow rate. As the process gas, for example, a rare gas such as argon (Ar) or a simple substance or a mixed gas containing nitrogen (N 2) can be used.
 本実施形態においては、真空隔壁としての機能するターゲット裏板4の背面側に磁気回路ユニット11が配置されているが、ターゲット裏板4と磁気回路ユニット11との間の位置に仕切り板を設け、仕切り板を真空隔壁とする構成であってもよい。磁気回路ユニット11は、例えば、板A(A1,A2)と、中心磁石B(B1,B2)と、外周磁石C(C1,C2)とを含む。マグネトロンカソード1は、例えば、磁気回路ユニット11と、揺動装置と、ターゲット裏板4とを含む。 In the present embodiment, the magnetic circuit unit 11 is disposed on the back side of the target back plate 4 that functions as a vacuum partition, but a partition plate is provided at a position between the target back plate 4 and the magnetic circuit unit 11. The partition plate may be a vacuum partition. The magnetic circuit unit 11 includes, for example, a plate A (A1, A2), a center magnet B (B1, B2), and an outer peripheral magnet C (C1, C2). The magnetron cathode 1 includes, for example, a magnetic circuit unit 11, a swing device, and a target back plate 4.
 図2Aは本実施形態に係る磁気回路ユニット11の概略平面図、図2Bは磁気回路ユニット11の端部(図2AのE部分)の拡大図である。板A(A1,A2)の上に、永久磁石から構成された中心磁石B(B1,B2)と外周磁石C(C1,C2)とが互いに離間して配置されている。軸状の中心磁石Bを矩形の外周磁石Cが取り囲むように配置されている。中心磁石Bと外周磁石Cは紙面に対して略垂直方向に着磁されており、中心磁石Bと外周磁石Cの着磁方向は互いに逆になっている。このため、中心磁石Bと外周磁石Cとの間に無終端の磁気トンネルが形成される。磁気トンネルはターゲット取付け面の基板側に形成される。より具体的にはターゲット取付け面に配置されたターゲットの表面側に磁気トンネルが形成されることで安定したマグネトロン放電が可能となっている。 FIG. 2A is a schematic plan view of the magnetic circuit unit 11 according to the present embodiment, and FIG. 2B is an enlarged view of an end portion (E portion of FIG. 2A) of the magnetic circuit unit 11. On the plate A (A1, A2), a central magnet B (B1, B2) composed of permanent magnets and an outer peripheral magnet C (C1, C2) are arranged apart from each other. It arrange | positions so that the rectangular outer periphery magnet C may surround the axial center magnet B. FIG. The center magnet B and the outer periphery magnet C are magnetized in a direction substantially perpendicular to the paper surface, and the magnetization directions of the center magnet B and the outer periphery magnet C are opposite to each other. For this reason, an endless magnetic tunnel is formed between the center magnet B and the outer peripheral magnet C. The magnetic tunnel is formed on the substrate side of the target mounting surface. More specifically, a stable magnetron discharge is possible by forming a magnetic tunnel on the surface side of the target disposed on the target mounting surface.
 磁気トンネルが形成される一対の磁石を磁石対とすると、中心磁石B1と外周磁石C1はX方向(第1方向)に磁石対を形成しており、中心磁石B2と外周磁石C2の短辺部分はY方向に磁石対を形成している。外周磁石C1は中心磁石B1のX方向の両側に配置されているため、中心磁石B1はX方向の両側の外周磁石C1とそれぞれ磁石対を形成している。ここで、外周磁石C2の短辺部分とは、矩形状の外周磁石Cの短辺部分のことであり、特に、中心磁石Bの長手方向に位置する外周磁石C2の部分である。 When a pair of magnets in which a magnetic tunnel is formed is a magnet pair, the center magnet B1 and the outer peripheral magnet C1 form a magnet pair in the X direction (first direction), and the short side portion of the central magnet B2 and the outer peripheral magnet C2 Forms a magnet pair in the Y direction. Since the outer peripheral magnet C1 is disposed on both sides in the X direction of the central magnet B1, the central magnet B1 forms a magnet pair with the outer peripheral magnet C1 on both sides in the X direction. Here, the short side portion of the outer peripheral magnet C <b> 2 is a short side portion of the rectangular outer peripheral magnet C, and in particular, is a portion of the outer peripheral magnet C <b> 2 located in the longitudinal direction of the center magnet B.
 なお、中心磁石Bと外周磁石Cの形状は軸状と矩形に限定されるものではない。例えば、外周磁石Cは端部ユニット112の形状を湾曲形状や三角形などの多角形にしてもよく。また、小型の磁石を多数組み合わせて中心磁石Bや外周磁石Cを構成することもできる。この場合、中心磁石B2と外周磁石C2の磁石対はY方向とはずれた方向に形成された部分を有する。 In addition, the shape of the center magnet B and the outer peripheral magnet C is not limited to an axial shape and a rectangular shape. For example, in the outer peripheral magnet C, the shape of the end unit 112 may be a curved shape or a polygon such as a triangle. Moreover, the center magnet B and the outer periphery magnet C can also be comprised by combining many small magnets. In this case, the magnet pair of the center magnet B2 and the outer peripheral magnet C2 has a portion formed in a direction deviating from the Y direction.
 また、磁気回路ユニット11は、図2に示すDの箇所で、直線部ユニット111と端部ユニット112とに分割されている。直線部ユニット111(第1ユニット)は、外周磁石Cの長辺部分の多くを占める部分(外周磁石C1)と、中心磁石Bの長辺部分の多くを占める部分(中心磁石B1)とが板A1上に配置されて構成されている。端部ユニット112(第2ユニット)は、外周磁石Cの短辺部分(外周磁石C2)と、中心磁石Bの短辺部分(中心磁石B2)とが板A2上に配置されて構成されている。 Further, the magnetic circuit unit 11 is divided into a straight line unit 111 and an end unit 112 at a position D shown in FIG. The straight line unit 111 (first unit) includes a plate (outer magnet C1) that occupies most of the long side portion of the outer peripheral magnet C and a portion (center magnet B1) that occupies most of the long side portion of the central magnet B. It is arranged on A1. The end unit 112 (second unit) is configured by arranging a short side portion (outer peripheral magnet C2) of the outer peripheral magnet C and a short side portion (central magnet B2) of the central magnet B on the plate A2. .
 短辺部分は、直線部ユニット111の長辺方向の両側(即ち、直線部ユニット111の一端部側と他端部側)に配置されている。磁気回路ユニット11の揺動方向は、図2中のX方向を含む。ここで、X方向は、矩形の外周磁石Cの長辺部分に直交する方向である。また、マグネトロンカソード1は、磁気回路ユニット11の直線部ユニット111の揺動距離と端部ユニット112の揺動距離とをそれぞれ独立して設定できるように構成されている。 The short side portions are arranged on both sides in the long side direction of the linear unit 111 (that is, one end side and the other end side of the linear unit 111). The swing direction of the magnetic circuit unit 11 includes the X direction in FIG. Here, the X direction is a direction orthogonal to the long side portion of the rectangular outer peripheral magnet C. The magnetron cathode 1 is configured such that the swing distance of the linear unit 111 and the swing distance of the end unit 112 of the magnetic circuit unit 11 can be set independently.
 図3~5は揺動装置と磁気回路ユニットの揺動状態を例示する平面図であり、スパッタ装置の上方からマグネトロンカソード1を見た模式図である。図3~5に基づいて揺動装置の構成・動作を説明する。なお、磁気回路ユニット11の位置をわかりやすく示すため、図3~5中ではターゲット3を破線で示した。 3 to 5 are plan views illustrating the swinging state of the swinging device and the magnetic circuit unit, and are schematic views of the magnetron cathode 1 as viewed from above the sputtering device. The configuration and operation of the swing device will be described with reference to FIGS. For easy understanding of the position of the magnetic circuit unit 11, the target 3 is indicated by a broken line in FIGS.
 図3は磁気回路ユニット11がX方向の可動範囲の中央にある場合を示す。直線部ユニット111とその両側に配置された端部ユニット112のそれぞれにナット113a,113bが取り付けられており、直線部ユニット111と端部ユニット112はそれぞれ、ナット113a,113bを介してねじ軸114a,114bに接続されている。それぞれのねじ軸114a,114bは、モータ115a,115bにそれぞれ接続されている。ねじ軸114a,114bはモータ115a,115bによって回転(正転・反転)される。すなわち、ナット113a,113bとねじ軸114a,114bとでボールねじ機構が構成されている。直線部ユニット111と端部ユニット112は、ねじ軸114a,114bの回転に伴いX方向に揺動する。また、直線部ユニット111と端部ユニット112とは互いに異なるモータ115a,115bによって駆動されるため、モータ115aとモータ115bとに互いに異なる回転動作をさせることにより、直線部ユニット111と端部ユニット112とを互いに異なる揺動距離で揺動させることが可能である。 FIG. 3 shows the case where the magnetic circuit unit 11 is in the center of the movable range in the X direction. Nuts 113a and 113b are respectively attached to the linear unit 111 and the end units 112 arranged on both sides thereof, and the linear unit 111 and the end unit 112 are respectively connected to the screw shaft 114a via the nuts 113a and 113b. , 114b. The screw shafts 114a and 114b are connected to motors 115a and 115b, respectively. The screw shafts 114a and 114b are rotated (forward / reverse) by the motors 115a and 115b. That is, the nuts 113a and 113b and the screw shafts 114a and 114b constitute a ball screw mechanism. The straight line unit 111 and the end unit 112 swing in the X direction as the screw shafts 114a and 114b rotate. Further, since the linear unit 111 and the end unit 112 are driven by different motors 115a and 115b, the linear unit 111 and the end unit 112 are operated by causing the motors 115a and 115b to perform different rotational operations. Can be swung at different rocking distances.
 図4、5はそれぞれ、磁気回路ユニット11の直線部ユニット111と端部ユニット112がX方向の可動範囲の左端及び右端にある場合を示している。上述のように、直線部ユニット111と端部ユニット112とを互いに異なる揺動距離で揺動させることが可能であるので、端部ユニット112の揺動距離を直線部ユニット111の揺動距離に比べて長くすることができる。また、上述の構成によれば、直線部ユニット111と端部ユニット112の揺動距離をモータの制御の変更のみで行うことができるため簡便である。 4 and 5 show cases where the linear unit 111 and the end unit 112 of the magnetic circuit unit 11 are at the left end and the right end of the movable range in the X direction, respectively. As described above, the linear unit 111 and the end unit 112 can be oscillated at different oscillating distances. Therefore, the oscillating distance of the end unit 112 is set to the oscillating distance of the linear unit 111. It can be longer than that. Further, according to the above-described configuration, the swing distance between the linear unit 111 and the end unit 112 can be simply performed by changing the motor control.
 上述の実施形態においては、X方向への揺動装置としてボールねじを用いた機構を採用した。しかしながら、本発明の効果は揺動装置の具体的な構成には依存しないため、揺動装置として、他の構造を採用することができる。
他の揺動装置の構成としては、揺動の動力は一つであり、動力から直線部ユニット111や端部ユニット112に至るまでの動力伝達経路においてギアを介し、それらのギア比を変える装置が考えられる。さらに他の揺動装置の構成としては、揺動の動力は一つであり、直線部ユニット111と端部ユニット112の夫々に設けられたクランクを備え、直線部ユニット111と端部ユニット112のクランク円盤を異なるものにする装置が考えられる。さらに他の揺動装置の構成としては、ラックアンドピニオンや偏芯カムを用いた構成が考えられる。
In the above-described embodiment, a mechanism using a ball screw is employed as the swinging device in the X direction. However, since the effect of the present invention does not depend on the specific configuration of the rocking device, other structures can be employed as the rocking device.
As another configuration of the oscillating device, there is only one oscillating power, and an apparatus for changing the gear ratio via a gear in a power transmission path from the motive power to the linear unit 111 and the end unit 112. Can be considered. As another configuration of the oscillating device, the oscillating power is one, and a crank provided on each of the linear unit 111 and the end unit 112 is provided. A device that makes the crank disk different is conceivable. As another configuration of the oscillating device, a configuration using a rack and pinion or an eccentric cam can be considered.
 図6~8はそれぞれ、磁気回路ユニット11がマグネトロンカソード1のX方向の移動範囲の中央、同左の揺動端、同右の揺動端にあるときのプラズマリング14の位置と形状を例示する平面図である。図10、11から明らかであるように、マグネトロンカソード1の直線部分の両側に配置された端部に対応する部分におけるプラズマリングの移動距離は、直線部分に対応する部分におけるプラズマリングの移動距離に比べて長い。端部ユニット112の移動距離(移動範囲)が直線部ユニット111の移動距離(移動範囲)よりも大きいためである。ここで、移動距離(移動範囲)が大きいことは、移動スピードが速いことを意味し、これは移動範囲における食刻速度の分布の平坦化(均一化)に寄与する。この磁気回路ユニット11の動きによって、マグネトロンカソード1の長辺方向の端部におけるターゲットの食刻速度を遅くすること、あるいは、食刻速度の分布を平坦化(均一化)することが可能となり、ターゲットの利用効率を良くし寿命を長くすることができる。 FIGS. 6 to 8 are respectively planes illustrating the position and shape of the plasma ring 14 when the magnetic circuit unit 11 is at the center, the left swing end, and the right swing end of the magnetron cathode 1 in the X direction. FIG. As apparent from FIGS. 10 and 11, the moving distance of the plasma ring in the portion corresponding to the ends arranged on both sides of the straight portion of the magnetron cathode 1 is the moving distance of the plasma ring in the portion corresponding to the straight portion. Longer than that. This is because the moving distance (moving range) of the end unit 112 is larger than the moving distance (moving range) of the linear unit 111. Here, a large moving distance (moving range) means that the moving speed is fast, which contributes to the flattening (uniformization) of the distribution of the etching speed in the moving range. By the movement of the magnetic circuit unit 11, it becomes possible to slow down the etching speed of the target at the end in the long side direction of the magnetron cathode 1, or to flatten (uniformize) the distribution of the etching speed. The use efficiency of the target can be improved and the life can be extended.
 以上のように、磁気回路ユニット11を複数のユニットで構成し、該複数のユニットの移動範囲(揺動範囲)を個別に定めることによってターゲットの食刻速度の分布を平坦化(均一化)し、ターゲットの利用効率を向上させることができる。 As described above, the magnetic circuit unit 11 is composed of a plurality of units, and the distribution range of the plurality of units is individually determined to flatten (uniformize) the distribution of the etching speed of the target. , The utilization efficiency of the target can be improved.
(第2の実施形態)
 図9~11は第2の実施形態に係るマグネトロンカソード31に取り付けられた磁気回路ユニットの揺動状態を例示する断面図である。図9~11に基づいてマグネトロンカソード31の構成・動作を説明する。図9は、磁気回路ユニット11(111、112)がY方向の移動範囲の中央にあるときを示している。なお、以下の各実施の形態において、第1の実施形態と同様部材、配置等には同一符号を付してその詳細な説明を省略する。
(Second Embodiment)
9 to 11 are cross-sectional views illustrating the swing state of the magnetic circuit unit attached to the magnetron cathode 31 according to the second embodiment. The configuration and operation of the magnetron cathode 31 will be described with reference to FIGS. FIG. 9 shows a case where the magnetic circuit unit 11 (111, 112) is at the center of the movement range in the Y direction. In the following embodiments, members, arrangements, and the like are assigned the same reference numerals as in the first embodiment, and detailed descriptions thereof are omitted.
 本実施形態のマグネトロンカソード31は、上述のX方向の揺動装置(第1揺動装置)に加えて、ターゲット取り付け面に平行なY方向(図9参照)の揺動装置(第2揺動装置)を合わせて備えている点で第1の実施形態と異なっている。Y方向の揺動装置は、磁気回路ユニット11を支持するX方向の揺動装置全体を、Y方向に揺動させる構成であり、X方向の揺動装置を支持する支持板117と、支持板117をY方向に揺動させるボールねじ機構とを主要な構成要素として備えている。本実施形態においてY方向はX方向と直交しているが、Y方向とX方向が直交する構成に限定されない。 The magnetron cathode 31 of the present embodiment has an oscillating device (second oscillating device) in the Y direction (see FIG. 9) parallel to the target mounting surface, in addition to the X oscillating device (first oscillating device) described above. This is different from the first embodiment in that it is provided with a device. The Y-direction oscillating device is configured to oscillate the entire X-direction oscillating device that supports the magnetic circuit unit 11 in the Y direction, and includes a support plate 117 that supports the X-direction oscillating device, and a support plate. A ball screw mechanism that swings 117 in the Y direction is provided as a main component. In the present embodiment, the Y direction is orthogonal to the X direction, but is not limited to a configuration in which the Y direction and the X direction are orthogonal.
 支持板117は、X方向の揺動装置を支持する部材であり、X方向の揺動装置には磁気回路ユニット11(111、112)が取り付けられている。ボールねじ機構は、ナット118とねじ軸119を主要な構成要素として有している。ナット118は支持板117に取り付けられており、ねじ軸119及びねじ軸119に接続されたモータ120はチャンバ2側に取り付けられている。モータ120の動力により、ねじ軸119は回転(正転・反転)する。ナット118を介してねじ軸119に連結されている支持板117は、ねじ軸119の回転動作に伴いY方向に揺動する。 The support plate 117 is a member that supports the X-direction swing device, and the magnetic circuit unit 11 (111, 112) is attached to the X-direction swing device. The ball screw mechanism has a nut 118 and a screw shaft 119 as main components. The nut 118 is attached to the support plate 117, and the screw shaft 119 and the motor 120 connected to the screw shaft 119 are attached to the chamber 2 side. The screw shaft 119 rotates (forward / reverse) by the power of the motor 120. The support plate 117 connected to the screw shaft 119 via the nut 118 swings in the Y direction as the screw shaft 119 rotates.
 本実施形態のマグネトロンカソード31を用いた成膜装置によれば、マグネトロンカソード31の長辺方向の端部の食刻速度を遅くすることが可能となり、ターゲットの利用効率を良くし寿命を長くすることができる。本実施形態のマグネトロンカソード31は、磁気回路ユニット11の全体がY方向にも揺動するため、第1の実施形態のマグネトロンカソード1よりもカソードの長辺方向端部の食刻速度を遅くすることができる。 According to the film forming apparatus using the magnetron cathode 31 of the present embodiment, it is possible to slow the etching speed of the end portion in the long side direction of the magnetron cathode 31, improving the use efficiency of the target and extending the life. be able to. In the magnetron cathode 31 of this embodiment, the entire magnetic circuit unit 11 also swings in the Y direction, so that the etching speed at the end portion in the long side direction of the cathode is slower than the magnetron cathode 1 of the first embodiment. be able to.
 上述の本実施形態のマグネトロンカソード31は、Y方向に磁気回路ユニット11の全体が同じ距離揺動し、X方向では直線部ユニット111と端部ユニット112の揺動距離が互いに異なる構成である。しかしながら、X方向に磁気回路ユニット11の全体が同じ揺動距離で揺動し、Y方向で直線部ユニット111と端部ユニット112の揺動距離が互いに異なるように構成することもできる。この場合、2つの端部ユニット112を直線部ユニット111からY方向にそれぞれ離間させて配置しておき、Y方向の揺動端において直線部ユニット111よりも端部ユニット112が大きくY方向に揺動する構成とすることが考えられる。この場合は支持板に連結されるのはX方向の揺動装置である。 The magnetron cathode 31 of the present embodiment described above is configured such that the entire magnetic circuit unit 11 swings the same distance in the Y direction, and the swinging distances of the linear unit 111 and the end unit 112 differ from each other in the X direction. However, the entire magnetic circuit unit 11 may be swung in the X direction at the same swing distance, and the swing distances of the linear unit 111 and the end unit 112 may be different from each other in the Y direction. In this case, the two end units 112 are arranged separately from the linear unit 111 in the Y direction, and the end unit 112 is larger than the linear unit 111 at the swing end in the Y direction. It can be considered to be a moving configuration. In this case, an X-direction swinging device is connected to the support plate.
(実施例)
 上述の第2の実施形態のマグネトロンカソード31を用いて、端部ユニット112の揺動距離を直線部ユニット111の揺動距離よりも長く設定した実施例について説明する。図12、13、14にそれぞれ、磁気回路ユニット11がX方向の稼動範囲の中央、同左の揺動端、同右の揺動端にあるときのターゲットのエロージョン15の形状を表す平面図を示す。エロージョンの形状はプラズマリング14の位置からシミュレーションした。このとき、エロージョンは、プラズマリング14のリングを横切る断面方向においてガウス分布に従うものとした。
(Example)
An example in which the swing distance of the end unit 112 is set to be longer than the swing distance of the linear unit 111 using the magnetron cathode 31 of the second embodiment described above will be described. FIGS. 12, 13 and 14 are plan views showing the shape of the erosion 15 of the target when the magnetic circuit unit 11 is at the center of the operating range in the X direction, the left swing end, and the right swing end, respectively. The erosion shape was simulated from the position of the plasma ring 14. At this time, the erosion was assumed to follow a Gaussian distribution in the cross-sectional direction across the ring of the plasma ring 14.
 なお図12~14においては、図6~8のプラズマリング14の形状に対応させたエロージョン15を描いた。すなわち、磁気回路ユニット11が左右の揺動端に位置しているとき、直線部ユニット111よりも端部ユニット112がX方向の外側に位置する条件でのエロージョン15の形状とした。 12-14, the erosion 15 corresponding to the shape of the plasma ring 14 of FIGS. 6-8 is drawn. That is, when the magnetic circuit unit 11 is positioned at the left and right swing ends, the shape of the erosion 15 is obtained under the condition that the end unit 112 is positioned outside the linear unit 111 in the X direction.
 図15は、磁気回路ユニット11を揺動させながらスパッタリングを行うことによってターゲット4に形成されるエロージョン16の形状をシミュレーションした結果を示している。図15のシミュレーションにおいて、磁気回路ユニット11のX方向の揺動距離は、直線部ユニット111を±55mm、端部ユニット112を±70mmとした。また、磁気回路ユニット11のY方向の揺動距離は±25mmである。なお、カソードの寸法は、300mm × 920mmである。このシミュレーション結果において、ターゲット4の利用効率は50.0%であった。図15中でエロージョン16の深さに応じて符号16a,16b,16cを付した。符号16cが最もエロージョンの深い場所を示している。なお、ターゲット利用率は、エロージョンが最も深い部分がターゲット裏板4に達したときのターゲット3全体の使用量の割合である。 FIG. 15 shows the result of simulating the shape of the erosion 16 formed on the target 4 by performing sputtering while swinging the magnetic circuit unit 11. In the simulation of FIG. 15, the rocking distance in the X direction of the magnetic circuit unit 11 is ± 55 mm for the linear unit 111 and ± 70 mm for the end unit 112. The swing distance of the magnetic circuit unit 11 in the Y direction is ± 25 mm. The dimensions of the cathode are 300 mm300 × 920 mm. In this simulation result, the utilization efficiency of the target 4 was 50.0%. In FIG. 15, reference numerals 16 a, 16 b, and 16 c are attached according to the depth of the erosion 16. Reference numeral 16c indicates the deepest erosion place. The target utilization rate is a ratio of the amount of the target 3 as a whole when the portion with the deepest erosion reaches the target back plate 4.
(比較例)
 本比較例では、端部ユニット111と直線部ユニット112とに分割されていない磁気回路ユニット(一体の磁気回路ユニット)について説明する。図16、17、18にそれぞれ、一体の磁気回路ユニットがマグネトロンカソードのX方向の移動範囲の中央、同左の揺動端、同右の揺動端にあるときのエロージョン18の形状を表す平面図を示す。エロージョンの形状はプラズマリング15の位置からシミュレーションした。このとき、エロージョン18は、プラズマリング15のリングを横切る断面方向においてガウス分布に従うものとした。
(Comparative example)
In this comparative example, a magnetic circuit unit (integrated magnetic circuit unit) that is not divided into the end unit 111 and the linear unit 112 will be described. 16, 17, and 18 are plan views showing the shape of the erosion 18 when the integral magnetic circuit unit is at the center of the X-direction movement range of the magnetron cathode, the left swing end, and the right swing end, respectively. Show. The erosion shape was simulated from the position of the plasma ring 15. At this time, the erosion 18 was assumed to follow a Gaussian distribution in the cross-sectional direction across the ring of the plasma ring 15.
 図19は、一体の磁気回路ユニットを揺動させながらスパッタリングを行うことによってターゲット4に形成されるエロージョン19の形状をシミュレーションした結果を示している。図19のシミュレーションにおいて、一体の磁気回路ユニットのX方向の揺動距離は±55mm、Y方向の揺動距離は±25mmとした。なお、カソードの寸法は、300mm × 920mmである。図19中でエロージョン19の深さの違いに応じて符号19a,19b,19cを付した。符号19cが最もエロージョンの深い場所を示している。 FIG. 19 shows the result of simulating the shape of the erosion 19 formed on the target 4 by performing sputtering while swinging the integrated magnetic circuit unit. In the simulation of FIG. 19, the rocking distance in the X direction of the integral magnetic circuit unit was ± 55 mm, and the rocking distance in the Y direction was ± 25 mm. The dimensions of the cathode are 300 mm300 × 920 mm. In FIG. 19, reference numerals 19 a, 19 b and 19 c are attached according to the difference in depth of the erosion 19. Reference numeral 19c indicates a place where the erosion is deepest.
 このシミュレーションにおけるターゲット4の利用効率は39.9%と算出された。なお、実測されたエロージョンにおけるターゲット4の利用効率は39.3%であった。ターゲット4の利用効率の実測は、実測されたエロージョンの体積を求めることにより行った。エロージョンはレーザ変位センサを備えた三次元測定器を用いて測定された。図19のシミュレーション結果を、図15に示した実施例のシミュレーション結果と比較すると、実施例は比較例に比べて端部付近と直線部分のエロージョン深さの差が小さく、ターゲットの利用効率が高いことがわかる。 The usage efficiency of target 4 in this simulation was calculated to be 39.9%. Note that the utilization efficiency of the target 4 in the actually measured erosion was 39.3%. The measurement of the utilization efficiency of the target 4 was performed by determining the volume of the measured erosion. Erosion was measured using a three-dimensional measuring instrument equipped with a laser displacement sensor. When comparing the simulation result of FIG. 19 with the simulation result of the embodiment shown in FIG. 15, the embodiment has a smaller difference in erosion depth between the vicinity of the end portion and the straight portion than the comparative example, and the use efficiency of the target is high. I understand that.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2011年6月30日提出の日本国特許出願特願2011-145708を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2011-145708 filed on June 30, 2011, the entire contents of which are incorporated herein by reference.
X,Y 揺動方向
1、31 マグネトロンカソード
2 チャンバ
3 ターゲット
4 ターゲット裏板
5 絶縁体
6 処理室
7 排気口
8 ガス導入系
9 基板
10 基板ホルダー
11 磁気回路ユニット
12 電源
14 プラズマリング
15,16,18,19 エロージョン
A,A1,A2 板
B,B1,B2 中心磁石
C,C1,C2 外周磁石
111 直線部ユニット
112 端部ユニット
113a,113b,118 ナット
114a,114b,119 ねじ軸
115a,115b,120 モータ
117 支持板
X, Y Oscillation directions 1, 31 Magnetron cathode 2 Chamber 3 Target 4 Target back plate 5 Insulator 6 Processing chamber 7 Exhaust port 8 Gas introduction system 9 Substrate 10 Substrate holder 11 Magnetic circuit unit 12 Power supply 14 Plasma rings 15, 16 18, 19 Erosion A, A1, A2 Plate B, B1, B2 Center magnet C, C1, C2 Outer magnet 111 Linear unit 112 End unit 113a, 113b, 118 Nut 114a, 114b, 119 Screw shaft 115a, 115b, 120 Motor 117 support plate

Claims (5)

  1.  真空容器と、
     前記真空容器の内部に配置され、成膜処理される基板を保持可能な基板ホルダーと、
     前記基板ホルダーに対向してターゲットを取り付け可能なターゲット取付け面、及び、前記ターゲット取付け面に平行な第1方向に揺動可能な磁気回路ユニットを有するマグネトロンカソードと、を備え、
     前記磁気回路ユニットは、前記第1方向と平行な方向に配置された磁石対を有する第1ユニットと、前記第1方向と交わる方向に配置された磁石対を有する第2ユニットを有し、
     前記第2ユニットは、前記第1ユニットよりも揺動距離が長いことを特徴とするスパッタ装置。
    A vacuum vessel;
    A substrate holder disposed inside the vacuum vessel and capable of holding a substrate to be film-formed;
    A target mounting surface capable of mounting a target facing the substrate holder, and a magnetron cathode having a magnetic circuit unit swingable in a first direction parallel to the target mounting surface,
    The magnetic circuit unit includes a first unit having a magnet pair arranged in a direction parallel to the first direction, and a second unit having a magnet pair arranged in a direction intersecting the first direction,
    The sputtering apparatus according to claim 1, wherein the second unit has a longer swing distance than the first unit.
  2.  前記磁気回路ユニットは、2つの矩形の外周磁石と、前記2つの外周磁石の間に配置された中心磁石とを含み、
     前記第1方向は、前記2つの外周磁石の前記矩形の長辺方向に直交し、且つ前記ターゲット取り付け面に平行な方向であり、
     前記第2ユニットは、前記外周磁石の前記矩形の短辺部分を構成することを特徴とする請求項1に記載のスパッタ装置。
    The magnetic circuit unit includes two rectangular outer magnets and a central magnet disposed between the two outer magnets,
    The first direction is a direction orthogonal to the long side direction of the rectangle of the two outer peripheral magnets and parallel to the target mounting surface,
    The sputtering apparatus according to claim 1, wherein the second unit constitutes the rectangular short side portion of the outer peripheral magnet.
  3.  前記第2ユニットの前記第1方向における揺動距離は、前記第1ユニットの前記第1方向における揺動距離よりも長いことを特徴とする請求項1又は2に記載のスパッタ装置。 3. The sputtering apparatus according to claim 1, wherein a swing distance of the second unit in the first direction is longer than a swing distance of the first unit in the first direction.
  4.  前記磁気回路ユニットは、前記第1方向に直交する第2方向にも揺動可能であることを特徴とする請求項1乃至3のいずれか1項に記載のスパッタ装置。 The sputtering apparatus according to any one of claims 1 to 3, wherein the magnetic circuit unit can swing in a second direction orthogonal to the first direction.
  5.  真空容器と、
     前記真空容器の内部において基板を保持する基板ホルダーと、
     前記基板ホルダーに対向してターゲットを取り付け可能なターゲット取付け面、及び、揺動可能な磁気回路ユニットを有するマグネトロンカソードと、を備え、
     前記磁気回路ユニットは、磁石対を有する第1ユニットと、磁石対を有する第2ユニットとを含み、
     前記第1ユニットの揺動範囲と前記第2ユニットとの揺動範囲とが互いに異なることを特徴とするスパッタ装置。
    A vacuum vessel;
    A substrate holder for holding a substrate inside the vacuum vessel;
    A target mounting surface to which a target can be mounted facing the substrate holder, and a magnetron cathode having a swingable magnetic circuit unit,
    The magnetic circuit unit includes a first unit having a magnet pair and a second unit having a magnet pair;
    A sputtering apparatus, wherein a swing range of the first unit and a swing range of the second unit are different from each other.
PCT/JP2012/003529 2011-06-30 2012-05-30 Sputtering device WO2013001715A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280031791.3A CN103649365B (en) 2011-06-30 2012-05-30 Sputter equipment
KR1020147002252A KR101608603B1 (en) 2011-06-30 2012-05-30 Sputtering device
JP2013522703A JP5792812B2 (en) 2011-06-30 2012-05-30 Sputtering equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011145708 2011-06-30
JP2011-145708 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013001715A1 true WO2013001715A1 (en) 2013-01-03

Family

ID=47423647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003529 WO2013001715A1 (en) 2011-06-30 2012-05-30 Sputtering device

Country Status (4)

Country Link
JP (1) JP5792812B2 (en)
KR (1) KR101608603B1 (en)
CN (1) CN103649365B (en)
WO (1) WO2013001715A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018129A (en) * 2013-12-16 2014-09-03 湘潭宏大真空技术股份有限公司 Cathode device for vacuum coating production line
CN104120392A (en) * 2013-04-23 2014-10-29 亚威科股份有限公司 Magnet unit and sputtering apparatus having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025572A (en) * 1996-07-11 1998-01-27 Hitachi Ltd Magnetron sputtering system
JPH11350129A (en) * 1998-06-10 1999-12-21 Hitachi Ltd Magnetron sputtering apparatus
JP2000212739A (en) * 1999-01-27 2000-08-02 Sharp Corp Magnetron sputtering device
JP2001164362A (en) * 1999-12-06 2001-06-19 Ulvac Japan Ltd Planar magnetron sputtering system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2617439B2 (en) * 1991-10-18 1997-06-04 アネルバ株式会社 Sputtering equipment
US5399253A (en) * 1992-12-23 1995-03-21 Balzers Aktiengesellschaft Plasma generating device
JP3798039B2 (en) * 1994-11-12 2006-07-19 キヤノンアネルバ株式会社 Magnetron cathode electrode of sputtering equipment
CN101250687A (en) * 2008-03-26 2008-08-27 合肥工业大学 Rectangle plane magnetron sputtering cathode
JP5386329B2 (en) * 2009-12-09 2014-01-15 株式会社アルバック Magnet unit and sputtering apparatus for magnetron sputtering electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025572A (en) * 1996-07-11 1998-01-27 Hitachi Ltd Magnetron sputtering system
JPH11350129A (en) * 1998-06-10 1999-12-21 Hitachi Ltd Magnetron sputtering apparatus
JP2000212739A (en) * 1999-01-27 2000-08-02 Sharp Corp Magnetron sputtering device
JP2001164362A (en) * 1999-12-06 2001-06-19 Ulvac Japan Ltd Planar magnetron sputtering system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120392A (en) * 2013-04-23 2014-10-29 亚威科股份有限公司 Magnet unit and sputtering apparatus having the same
CN104018129A (en) * 2013-12-16 2014-09-03 湘潭宏大真空技术股份有限公司 Cathode device for vacuum coating production line

Also Published As

Publication number Publication date
KR20140027524A (en) 2014-03-06
JP5792812B2 (en) 2015-10-14
JPWO2013001715A1 (en) 2015-02-23
KR101608603B1 (en) 2016-04-01
CN103649365B (en) 2016-10-05
CN103649365A (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5192549B2 (en) Sputtering apparatus and sputtering method
TWI421363B (en) Magnetron sputtering method
JP5873557B2 (en) Sputtering apparatus and magnet unit
JP2009299184A (en) Magnetic field generating apparatus, magnetic field generating method, sputtering apparatus, and method of manufacturing device
JP2009174061A (en) Magnetron sputtering apparatus
KR101264991B1 (en) Magnetron sputtering apparatus and sputtering method
JP2008184625A (en) Sputtering method and sputtering device
JP5792812B2 (en) Sputtering equipment
JP6542466B2 (en) Deposition apparatus and deposition method
JP5873276B2 (en) Magnet unit and magnetron sputtering system
KR102257920B1 (en) Film formation method and film formation apparatus
JP2007204811A (en) Magnet structure for magnetron sputtering apparatus and cathode electrode unit, and magnetron sputtering apparatus, and method for using magnet structure
JP2013209690A (en) Sputtering apparatus
JP2009287046A (en) Sputtering method and sputtering system
JP2009046714A (en) Film deposition system and film deposition method
US20090000943A1 (en) Magnetron sputtering apparatus and manufacturing method for structure of thin film
JP2002069637A (en) Magnetron sputtering device
JP2023057218A (en) Magnetron sputtering apparatus cathode unit and magnetron sputtering apparatus
JP2013057095A (en) Magnetron sputter cathode
JP2020033624A (en) Film deposition apparatus, film deposition method and method for manufacturing electronic device
CN117044403A (en) Cathode unit for magnetron sputtering device and magnetron sputtering device
JP2018095939A (en) Magnetron sputtering device, and production method for semiconductor device
JP2006283057A (en) Sputtering apparatus
JP2007254898A (en) Electromagnet unit
JP2008179861A (en) Magnetron sputtering apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147002252

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12804537

Country of ref document: EP

Kind code of ref document: A1