WO2013000233A1 - 一种超材料和超材料天线 - Google Patents

一种超材料和超材料天线 Download PDF

Info

Publication number
WO2013000233A1
WO2013000233A1 PCT/CN2011/082310 CN2011082310W WO2013000233A1 WO 2013000233 A1 WO2013000233 A1 WO 2013000233A1 CN 2011082310 W CN2011082310 W CN 2011082310W WO 2013000233 A1 WO2013000233 A1 WO 2013000233A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
arc
refractive index
angle
point
Prior art date
Application number
PCT/CN2011/082310
Other languages
English (en)
French (fr)
Inventor
刘若鹏
季春霖
岳玉涛
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110176781.6A external-priority patent/CN102810751B/zh
Priority claimed from CN201110176783.5A external-priority patent/CN102810752B/zh
Priority claimed from CN201110176770.8A external-priority patent/CN102810750B/zh
Priority claimed from CN201110178661.XA external-priority patent/CN102800976B/zh
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Priority to ES11855258.7T priority Critical patent/ES2574406T3/es
Priority to EP11855258.7A priority patent/EP2728669B1/en
Priority to US13/522,969 priority patent/US9142892B2/en
Publication of WO2013000233A1 publication Critical patent/WO2013000233A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material

Definitions

  • This invention relates to the field of electromagnetics and, more particularly, to a metamaterial and metamaterial antenna.
  • a spherical wave radiated from a point source located at a focus of a lens is refracted by a lens to become a plane wave.
  • the convergence of the lens is achieved by the diffraction of the spherical shape of the lens.
  • the spherical wave emitted from the radiator 30 is concentrated by the spherical lens 40 and then emitted as a plane wave.
  • the lens antenna has at least the following technical problems:
  • the spherical lens 40 is bulky and cumbersome, which is disadvantageous for miniaturization; the spherical lens 40 has a large dependence on the shape and requires relatively accurate The directional propagation of the antenna is realized; the electromagnetic wave reflection interference and loss are relatively serious, and the electromagnetic energy is reduced.
  • the jump of the refractive index of most lens antennas is along a straight line that is perpendicular to the surface of the lens, resulting in greater refraction, diffraction, and reflection of electromagnetic waves as they pass through the lens, severely affecting lens performance.
  • the technical problem to be solved by the present invention is to provide a high-performance metamaterial and metamaterial antenna for the defects of the prior art which are large in refractive, diffractive and reflective, and poor in metamaterial properties.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a metamaterial, and setting an angle between a line connecting the radiation source and a point on the first surface of the metamaterial and a line perpendicular to the metamaterial to be 0,
  • the angle uniquely corresponds to a curved surface in the metamaterial, and the refractive index of each point on the curved surface corresponding to the angle is the same; the refractive index of the metamaterial gradually decreases with the increase of the angle 0; After passing through the metamaterial, it is emitted in parallel on the second surface of the metamaterial.
  • the metamaterial includes at least one metamaterial sheet, each sheet layer comprising a sheet-like substrate and a plurality of artificial microstructures attached to the substrate.
  • each of the artificial microstructures is a planar or three-dimensional structure having a geometric pattern composed of at least one wire.
  • each of the artificial microstructures has a "work" shape, a "ten” shape, and a snowflake shape.
  • each point (X, y) on the included angle and the parabolic arc satisfies the following
  • the bus bar of the curved surface is an elliptical arc
  • the straight line passing through the center of the first surface of the metamaterial and perpendicular to the metamaterial is an abscissa axis to pass the super
  • the line of the center of the first surface of the material and parallel to the first surface is the ordinate axis
  • the elliptic equation of the elliptical arc is:
  • the center of the ellipse where the elliptical arc is located is located on the second surface, and the coordinates are (d, c ).
  • the angle of refraction of the point on the first surface corresponding to the angle 0 is , and the refractive index of the point is satisfied:
  • the distance from the radiation source to the metamaterial is the thickness of the metamaterial; ⁇ is the maximum refractive index of the metamaterial.
  • an intersection of a perpendicular line connecting the radiation source with a point on the first surface of the metamaterial and a second surface of the metamaterial is a center of the circular arc segment
  • a perpendicular line segment between the intersection point and a point on the first surface of the metamaterial is the radius of the arc segment.
  • an impedance matching layer is disposed on both sides of the metamaterial.
  • the present invention also provides a metamaterial antenna comprising a metamaterial and a radiation source disposed at a focus of the metamaterial; a line connecting the radiation source to a point on the first surface of the metamaterial and a line perpendicular to the metamaterial
  • the angle between the two is 0, the angle 0 uniquely corresponds to a curved surface in the metamaterial, and the refractive index of each of the unique surfaces of the angle 0 is the same; the refractive index of the metamaterial varies with the angle
  • the increase of 0 gradually decreases; electromagnetic waves are emitted in parallel along the second surface of the metamaterial after passing through the metamaterial.
  • the refractive index distribution of the curved surface satisfies:
  • the metamaterial includes at least one metamaterial sheet, each sheet including a sheet-like substrate and a plurality of artificial microstructures attached to the substrate.
  • the bus bar of the curved surface is an elliptical arc
  • the straight line passing through the center of the first surface of the metamaterial and perpendicular to the metamaterial is an abscissa axis to pass the
  • the line of the center of the first surface of the metamaterial and parallel to the first surface is the ordinate axis
  • the elliptic equation of the elliptical arc is:
  • a straight line passing through a center of the first surface of the metamaterial and perpendicular to the metamaterial is an abscissa axis to pass through a center of the first surface of the metamaterial and parallel to The straight line of the first surface is an ordinate axis
  • the technical solution of the present invention has the following beneficial effects: the hopping of the refractive index of the metamaterial is designed to be curved, thereby greatly reducing the refraction, diffraction and reflection effects at the transition, and alleviating the problems caused by mutual interference, thereby making Metamaterials and metamaterial antennas offer superior performance.
  • 1 is a schematic view showing a concentrated spherical electromagnetic wave of a conventional spherical shape
  • FIG. 2 is a schematic view of a super-material converging electromagnetic wave according to an embodiment of the invention
  • FIG. 3 is a schematic view showing the shape of a curved surface uniquely corresponding to an angle 0 in the metamaterial 10 shown in FIG. 2;
  • FIG. 4 is a side view showing the metamaterial 10 in FIG.
  • Figure 5 is a schematic view showing the bus bar m of the curved surface Cm shown in Figure 3 as a parabolic arc;
  • Figure 6 is a schematic view showing the change in refractive index of Figure 5;
  • Figure 7 is a schematic diagram of the coordinates of the parabolic arc of Figure 5;
  • Figure 8 is a refractive index profile of the metamaterial shown in Figure 5 on the yx plane
  • Figure 9 is a schematic view showing the bus bar m of the curved surface Cm shown in Figure 3 as an elliptical arc;
  • Fig. 10 is a schematic view showing the structure of the arc when the bus bar m of the curved surface Cm shown in Fig. 3 is an arc;
  • Fig. 11 is a refractive index distribution diagram of the metamaterial of Fig. 9 on the yx plane.
  • FIG. 2 is a schematic diagram of a super-material converging electromagnetic wave according to an embodiment of the present invention, the super material 10 being disposed opposite to the electromagnetic wave propagation direction of the radiation source.
  • the refractive index of electromagnetic waves is proportional to the proportional relationship.
  • the electromagnetic waves When a beam of electromagnetic waves propagates from one medium to another, the electromagnetic waves will refract.
  • the refractive index distribution inside the material is not uniform, the electromagnetic waves will By deflecting the position with a relatively large refractive index, by designing the electromagnetic parameters of each point in the metamaterial, the refractive index distribution of the metamaterial can be adjusted to achieve the purpose of changing the propagation path of the electromagnetic wave.
  • the electromagnetic wave diverging in the form of a spherical wave emitted from the radiation source 20 can be converted into an electromagnetic wave in the form of a plane wave suitable for long-distance transmission by designing the refractive index distribution of the metamaterial 10.
  • FIG. 3 is a schematic view showing the shape of a curved surface uniquely corresponding to an angle 0 in the metamaterial 10 shown in FIG.
  • the angle between the line connecting the radiation source 20 and the point on the first surface A of the metamaterial 10 to the line L passing through the center 0 of the first surface A of the metamaterial 10 and perpendicular to the metamaterial 10 is
  • the angle 0 uniquely corresponds to a curved surface Cm in the metamaterial 10, and the angle corresponding to each of the curved surfaces Cm is uniquely folded.
  • the firing rates are all the same; the refractive index of the metamaterial 10 gradually decreases as the angle 0 increases; the electromagnetic waves pass through the metamaterial and are emitted in parallel on the second surface B of the metamaterial.
  • the busbar of the surface Cm is an arc m
  • the curved surface Cm is formed by rotating the m straight line around L.
  • Figure 4 shows a side view of the metamaterial 10.
  • the thickness of the metamaterial 10 is shown in Figure d
  • L represents a straight line perpendicular to the metamaterial.
  • the side cross-sectional view of the curved surface with the same refractive index is two arcs, symmetrically distributed with respect to L.
  • the arc shown by the dashed line is the busbar of a virtual curved surface within the metamaterial 10.
  • the virtual surface inside the metamaterial is also explained.
  • FIG. 5 is a schematic view showing a bus bar m of the curved surface Cm shown in FIG. 3 as a parabolic arc.
  • the angle between the line connecting the radiation source and the point 01 on the first surface of the metamaterial and the line L passing through the center 0 of the first surface and perpendicular to the metamaterial 10 is a corresponding parabolic arc of ml.
  • the refractive index of each point on the virtual surface rotated by the parabolic arc ml is the same.
  • the angle between the line connecting the point 02 and the line L on the first surface of the super-material and the super-material is: the corresponding parabolic arc is m2, and the refraction of each point on the virtual surface rotated by the parabolic arc ml The rates are the same.
  • the refractive index distribution of the virtual surface satisfies: ⁇ ( ⁇ as shown in Figure 6
  • arc length of the busbar of the virtual surface (parabolic arc m)
  • F is the distance from the radiation source 20 to the metamaterial 10
  • wmax is the maximum refractive index of the metamaterial.
  • the arc length of the parabolic arc m satisfies:
  • the preset decimal number such as 0.0001 ⁇ can guarantee the ratio when the angle is close to 0 convergence.
  • the straight line L passing through the center 0 of the surface of the metamaterial 10 and perpendicular to the metamaterial 10 is the abscissa axis, and passes through the line of the metamaterial 10 I - the center 0 of the surface and parallel to the first surface.
  • the 2d(F + x) - x 2 angle uniquely corresponds to a surface in the metamaterial.
  • the surface is rotated by the bus bar m around the L (X axis), and the angle 0 uniquely corresponds to each point on the surface.
  • the refractive indices are all the same.
  • Metamaterials can be used to convert electromagnetic waves emitted by a radiation source into plane waves. Its refractive index decreases from w max to w min as the angle 0 increases, as shown in FIG. 7 .
  • the arc shown by the dashed line is the busbar of a virtual surface in the metamaterial, and the refractive index on the same surface is the same. It can be understood that the metamaterial provided by the present invention can also be applied to the case where plane waves converge to the focus, that is, the reversible scene in FIG.
  • the structure of the metamaterial itself does not need to be changed, and it is only necessary to place the radiation source on the B side of the second surface, and the principle is the same at this time, but the radiation source in the definition of 0 should be on the side of the first surface A and located at The location of the virtual radiation source for the metamaterial focus.
  • Various application scenarios that are performed by applying the principles of the present invention are within the scope of the present invention.
  • a plurality of artificial microstructures are disposed in the metamaterial, and the plurality of artificial microstructures cause the refractive index of the metamaterial to gradually decrease as the angle increases.
  • Multiple artificial microstructures have the same geometry and artificial micro-junctions The size of the structure gradually decreases as the angle increases.
  • the units with the same refractive index are connected into a line, and the density of the line is used to indicate the size of the refractive index.
  • the refractive index distribution of the metamaterial conforming to all the above relationships is as shown in FIG.
  • the busbar of the surface Cm can also be other curved shapes, such as but not limited to elliptical arcs, which are exemplified below.
  • the bus bar of the curved surface Cm shown in FIG. 3 is an elliptical arc m, and the curved surface Cm is formed by rotating an elliptical arc m straight line around L.
  • a side cross-sectional view of a curved surface having the same refractive index is a two-stage elliptical arc distributed symmetrically with respect to L.
  • the elliptical arc shown by the dashed line is the busbar of a virtual curved surface in the metamaterial 10.
  • the virtual surface inside the metamaterial is also explained.
  • the angle between the line of the radiation source and the point 01 on the first surface of the metamaterial in Fig. 5 and the line L passing through the center 0 of the first surface and perpendicular to the metamaterial 10 is the corresponding elliptical arc.
  • the refractive index of each of the virtual surfaces rotated by the elliptical arc ml is the same.
  • the angle between the line connecting the point of the radiation source and the first surface of the metamaterial and the line L is, the corresponding elliptical arc is m2, and the refraction of each part on the virtual surface formed by the rotation of the elliptical arc m2
  • the rates are the same.
  • the refractive index distribution of the virtual surface satisfies: ⁇ ( ⁇ Figure 6
  • S the arc length of the busbar of the virtual surface (elliptical arc m)
  • F is the distance from the radiation source 20 to the metamaterial 10
  • is the thickness of the metamaterial 10
  • w max is the maximum refractive index of the metamaterial.
  • the line L passing through the center 0 of the first surface of the metamaterial 10 and perpendicular to the metamaterial 10 is the abscissa axis
  • the line passing through the center 0 of the first surface of the metamaterial 10 and parallel to the first surface is the ordinate axis.
  • the angle between the line connecting the source with a point 0' on the A-plane and the X-axis is:
  • the coordinates are (d, c.
  • O tan
  • the angle 0 uniquely corresponds to a curved surface in the metamaterial, and the curved surface is rotated by the bus bar m around the L (X axis), and the angle 0 uniquely corresponds to the same refractive index at each point on the curved surface.
  • the arc shown in Figure 4 is a circular arc segment, and its structural schematic is shown in Figure 10.
  • the arc segment shown by the dashed line in Figure 10 is the busbar of a curved surface in the metamaterial.
  • the virtual surface inside the metamaterial (actually does not exist, just for convenience of description, virtual A surface is also illustrated.
  • the intersection of the perpendicular line connecting the radiation source with the point on the first surface A of the metamaterial and the second surface B of the metamaterial 10 is the center of the arc segment, and the intersection between the intersection point and the point on the first surface A of the metamaterial
  • the vertical line segment is the radius of the arc segment.
  • the center of the metamaterial has the largest refractive index.
  • the angle between the connection between the radiation source and the point C' on the first surface A of the metamaterial is such that the intersection of the perpendicular line connecting the radiation source with the point C' and the other side of the metamaterial is 0 3 , super
  • the busbar of the corresponding curved surface in the material is m3; m3 is a circular arc segment rotated by 0 3 as the center and 3 as the radius.
  • Figure 10 shows the bus arc segments ml, m2 corresponding to the two virtual surfaces in the metamaterial.
  • the angle corresponding to the arc segment ml is, corresponding to the point A' on the first surface of the metamaterial, and the intersection of the perpendicular line of the radiation source and the point A' with the other side of the metamaterial 10 is Q, outside the virtual surface
  • the busbar of the surface is ml; ml is the arc segment rotated by the radius of ( ⁇ is the center of the circle.
  • the angle corresponding to the arc segment m2 is corresponding to the point B' on the first surface, the radiation source and the point
  • the intersection of the perpendicular line of B' and the second surface B of the metamaterial 10 is 0 2
  • the busbar of the outer surface of the virtual curved surface is m2 ;
  • m2 is an arc rotated by a radius of ⁇ 3 ⁇ 4
  • the arc segments ml, m2, m3 are symmetrically distributed with respect to L.
  • the angle between the line connecting the radiation source and the point D' on the first surface A and the line perpendicular to the metamaterial 10 is 0, and the angle 0 is in the range of [0, the refractive index of the metamaterial satisfies with the change of 0:
  • s is the distance from the radiation source to the metamaterial 10; is the thickness of the metamaterial 10; wmax is the maximum refractive index of the metamaterial.
  • the angle 0 uniquely corresponds to a curved surface in the metamaterial, and the refractive index of each point on the curved surface corresponding to the angle 0 is the same.
  • the angle between the line connecting the radiation source and a point on the first surface A and the line perpendicular to the metamaterial 10 is 0, and the connection between the radiation source and the point on the first surface A is vertical.
  • the intersection of the line and the second surface B of the metamaterial is 0 ⁇
  • the bus line m is a circular arc segment rotated by a radius of 0 ⁇ .
  • the angle 0 uniquely corresponds to a curved surface in the metamaterial, and the curved surface is rotated by the bus bar m around L, and the index of the angle 0 uniquely corresponds to the same refractive index at each point on the curved surface.
  • Metamaterials can be used to convert electromagnetic waves emitted by the radiation source into plane waves. Its refractive index increases from U salt to w min as the angle increases.
  • Metamaterials can be used to convert electromagnetic waves emitted by a radiation source into plane waves. Its refractive index decreases from w max to w min as the angle 0 increases, as shown in FIG.
  • the elliptical arc shown by the solid line on the ellipse is the busbar of a virtual surface in the metamaterial, and the refractive index on the same surface is the same.
  • the metamaterial provided by the present invention can also be applied to the case where plane waves converge to the focus, that is, the reversible scene in FIG. Super material The structure of the material itself does not need to be changed.
  • the metamaterial can be designed as a plurality of metamaterial sheets, each of which includes a sheet-like substrate and a plurality of artificial microstructures or manhole structures attached to the substrate.
  • the overall refractive index distribution needs to satisfy or approximately satisfy the above formula, so that the refractive index distribution on the same curved surface is the same, and the bus bar of the curved surface is designed as an elliptical arc or a parabolic arc.
  • each of the artificial microstructures is a planar or three-dimensional structure having a geometric pattern composed of a wire, such as, but not limited to, a "ten" shape, a flat snowflake shape, a solid snowflake shape.
  • the wire may be a copper wire or a silver wire which may be attached to the substrate by etching, plating, drilling, photolithography, electron engraving or ion etching.
  • the plurality of artificial microstructures in the metamaterial causes the refractive index of the metamaterial to decrease as the angle ⁇ increases.
  • the refractive index distribution of the metamaterial can be adjusted by rationally designing the topological pattern of the artificial microstructure and the arrangement of the artificial microstructures of different sizes in the electromagnetic wave concentrating element, thereby realizing the divergence of the spherical wave form.
  • the electromagnetic wave is converted into an electromagnetic wave in a planar form.
  • the units with the same refractive index are connected into a line, and the density of the line is used to indicate the refractive index.
  • the refractive index distribution of the metamaterial conforming to all the above relationships is as shown in FIG.
  • parabolic arc and the elliptical arc are exemplified in detail above.
  • the present invention is also applicable to other kinds of curves, such as irregular curves.
  • the case where the principle of the refractive index distribution of the present invention is satisfied is included in the protection.
  • the present invention also provides a metamaterial antenna.
  • the metamaterial antenna includes a metamaterial 10 and a radiation source 20 disposed at a focus of the metamaterial 10.
  • the specific structure and refractive index of the metamaterial 10 are as described above. As described in the text, it will not be described here.
  • the metamaterial described above may be the shape shown in Fig. 3, and of course it may be made into other needs.
  • the shape is, for example, a ring shape or the like, as long as it satisfies the refractive index change rule described above.
  • an impedance matching layer can be disposed on both sides of the metamaterial.
  • an impedance matching layer For the content of the impedance matching layer, refer to the prior art document, and details are not described herein again.
  • the hopping of the refractive index of the metamaterial of the present invention is designed to be curved, thereby greatly reducing the effects of diffraction, diffraction and reflection at the transition, and alleviating the problems caused by mutual interference, so that the metamaterial has more excellent performance.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明涉及一种超材料和超材料天线,相对设置于辐射源的电磁波传播方向上,设辐射源与所述超材料第一表面上一点的连线与垂直于超材料的直线之间的夹角为θ,夹角θ唯一对应所述超材料内的一曲面,且夹角θ唯一对应的曲面上每一处的折射率均相同;所述超材料的折射率随着夹角θ的增大逐渐减小;电磁波经过所述超材料后在所述超材料的第二表面平行射出。通过将超材料的折射率的跳变设计为曲面状,从而大大减少跳变处的折射、衍射和反射效应,减轻了互相干涉带来的问题,使得超材料和超材料天线具有更加优异的性能。

Description

一种超材料和超材料天线
【技术领域】
本发明涉及电磁领域, 更具体地说, 涉及一种超材料和超材料天线。
【背景技术】
在常规的光学器件中, 利用透镜能使位于透镜焦点上的点光源辐射出的球 面波经过透镜折射后变为平面波。 目前透镜的汇聚是依靠透镜的球面形状的折 射来实现, 如图 1所示, 辐射器 30发出的球面波经过球形的透镜 40汇聚后以 平面波射出。 发明人在实施本发明过程中, 发现透镜天线至少存在如下技术问 题: 球形透镜 40的体积大而且笨重, 不利于小型化的使用; 球形透镜 40对于 形状有很大的依赖性, 需要比较精准才能实现天线的定向传播; 电磁波反射干 扰和损耗比较严重, 电磁能量减少。 而且, 多数透镜天线的折射率的跳变是沿 一条简单的且垂直于透镜表面的直线, 导致电磁波经过透镜时的折射、 衍射和 反射较大, 严重影响透镜性能。
【发明内容】
本发明要解决的技术问题在于, 针对现有技术的上述折射、 衍射和反射较 大、 超材料性能差的缺陷, 提供一种高性能的超材料和超材料天线。
本发明解决其技术问题所采用的技术方案是: 构造一种超材料, 设辐射源 与所述超材料第一表面上一点的连线与垂直于超材料的直线之间的夹角为 0, 夹角 唯一对应所述超材料内的一曲面, 且夹角 唯一对应的曲面上每一处的 折射率均相同; 所述超材料的折射率随着夹角 0的增大逐渐减小; 电磁波经过 所述超材料后在所述超材料的第二表面平行射出。
在本 面的折射率分布满足: η{θ)
Figure imgf000003_0001
S(0) l cos0 其中 为所述曲面的母线的弧长, F为所述辐射源到所述超材料的距 , d为所述超材料的厚度; wmax为所述超材料的最大折射率。 在本发明所述的超材料中, 所述超材料包括至少一个超材料片层, 每个片 层包括片状的基板和附着在所述基板上的多个人造微结构。
在本发明所述的超材料中, 每个所述人造微结构为由至少一根金属丝组成 的具有几何图案的平面或立体结构。
在本发明所述的超材料中, 每个所述人造微结构为"工"字形、 "十"字形、 雪花状。
在本发明所述的超材料中, 所述曲面的母线为抛物线弧时, 所述抛物线弧 的弧长 满足: = Θ
Itan^l + ^ 其中, 为预设小数。 在本发明所述的超材料中, 以经过所述超材料第一表面的中心且垂直于所 述超材料的直线为横坐标轴, 以经过所述超材料第一表面的中心且平行于所述 第一表面的 轴, 所述抛物线弧所在的抛物线方程为: y(x) = + Λ: + )。
Figure imgf000004_0001
在本发明所述的超材料中, 夹角 与抛物线弧上每一点 (X , y) 满足如下
Figure imgf000004_0002
在本发明所述的超材料中, 所述曲面的母线为椭圆弧时, 以经过所述超材 料第一表面的中心且垂直于所述超材料的直线为横坐标轴, 以经过所述超材料 第一表面的中心且平行于所述第一表面的直线为纵坐标轴, 所述椭圆弧所在的 椭圆方程为:
Figure imgf000004_0003
且上式中的 a、 b、 c满足如下关系:
Figure imgf000005_0001
sin b d
ln2(9) - sm2(9) a1 F tanO - c 在本发明所述的超材料中, 所述椭圆弧所在的椭圆的中心位于所述第二表 面上, 坐标为 (d, c)。
在本发明所述的超材料中,夹角 0所对应的第一表面上的点的折射角为 , 该点的折射率为 满足:
sin^
η{θ) = 。
sin^' 在本发明所述的超材料中, 所述曲面的母线为圆弧时, 所述曲面的折射率 分布满足:
Figure imgf000005_0002
其中, 为所述辐射源到所述超材料的距离; ^为所述超材料的厚度; η 为所述超材料的最大折射率。
在本发明所述的超材料中, 其中所述辐射源与所述超材料第一表面上一点 的连线的垂线与所述超材料第二表面的交点为所述圆弧段的圆心, 所述交点与 超材料第一表面上一点之间的垂线段为所述圆弧段的半径。
在本发明所述的超材料中, 所述超材料两侧设置有阻抗匹配层。
本发明还提供一种超材料天线, 包括超材料和设置在所述超材料焦点上的 辐射源; 设辐射源与所述超材料第一表面上一点的连线与垂直于超材料的直线 之间的夹角为 0, 夹角 0唯一对应所述超材料内的一曲面, 且夹角 0唯一对应 的曲面上每一处的折射率均相同; 所述超材料的折射率随着夹角 0的增大逐渐 减小; 电磁波经过所述超材料后在所述超材料的第二表面平行射出。
在本发明所述的超材料天线中, 所述曲面的折射率分布满足:
^(1 - " l- ) + nmaxd
S(0) l cos 其中 为所述抛物线弧的弧长, F为所述辐射源到所述超材料的距离, d 为所述超材料的厚度; 为所述超材料的最大折射率。
在本发明所述的超材料天线中, 所述超材料包括至少一个超材料片层, 每 个片层包括片状的基板和附着在所述基板上的多个人造微结构。
在本发明所述的超材料天线中, 所述曲面的母线为椭圆弧时, 以经过所述 超材料第一表面的中心且垂直于所述超材料的直线为横坐标轴, 以经过所述超 材料第一表面的中心且平行于所述第一表面的直线为纵坐标轴, 所述椭圆弧所 在的椭圆方程为:
Figure imgf000006_0001
且上式中的 a、 b、 c满足如下关系:
Figure imgf000006_0002
ln2(9) - sm2(9) a1 F tanO - c 在本发明所述的超材料天线中, 所述曲面的母线为抛物线弧时, 所述抛 线弧的弧长 满足: = Θ
Itan^l + ^ 其中, 为预设小数。 在本发明所述的超材料天线中, 以经过所述超材料第一表面的中心且垂直 于所述超材料的直线为横坐标轴, 以经过所述超材料第一表面的中心且平行于 所述第一表面的直线为纵坐标轴,
所述抛 抛物线方程为: y(x) = + Λ: + )。
Figure imgf000006_0003
实施本发明的技术方案, 具有以下有益效果: 将超材料的折射率的跳变设 计为曲面状, 从而大大减少跳变处的折射、 衍射和反射效应, 减轻了互相干涉 带来的问题, 使得超材料和超材料天线具有更加优异的性能。 【附图说明】
下面将结合附图及实施例对本发明作进一歩说明, 附图中:
图 1是现有的球面形状的透镜汇聚电磁波的示意图;
图 2是依据本发明一实施例的超材料汇聚电磁波的示意图;
图 3是图 2所示的超材料 10内一夹角 0唯一对应的一曲面的形状示意图; 图 4示出了图 3中的的超材料 10的侧视图;
图 5是图 3所示的曲面 Cm的母线 m为抛物线弧的示意图;
图 6是图 5的折射率变化的示意图;
图 7是图 5的抛物线弧的坐标示意图;
图 8是图 5所示的超材料在 yx平面上的折射率分布图;
图 9是图 3所示的曲面 Cm的母线 m为椭圆弧的示意图;
图 10是图 3所示的曲面 Cm的母线 m为圆弧时, 圆弧的构造示意图; 图 11是图 9的超材料在 yx平面上的折射率分布图。
【具体实施方式】
图 2是依据本发明一实施例的超材料汇聚电磁波的示意图, 超材料 10相对 设置于辐射源的电磁波传播方向上。
作为公知常识我们可知, 电磁波的折射率与 成正比关系, 当一束电磁 波由一种介质传播到另外一种介质时, 电磁波会发生折射, 当物质内部的折射 率分布非均匀时, 电磁波就会向折射率比较大的位置偏折, 通过设计超材料中 每一点的电磁参数, 就可对超材料的折射率分布进行调整, 进而达到改变电磁 波的传播路径的目的。 根据上述原理可以通过设计超材料 10的折射率分布使从 辐射源 20发出的球面波形式发散的电磁波转变成适于远距离传输的平面波形式 的电磁波。
图 3是图 2所示的超材料 10内一夹角 0唯一对应的一曲面的形状示意图。 如图所示, 设辐射源 20与超材料 10第一表面 A上一点的连线与经过超材料 10 第一表面 A的中心 0且垂直于超材料 10的直线 L之间的夹角为 , 夹角 0唯 一对应超材料 10内的一曲面 Cm, 且夹角 唯一对应的曲面 Cm上每一处的折 射率均相同; 超材料 10的折射率随着夹角 0的增大逐渐减小; 电磁波经过所述 超材料后在超材料的第二表面 B平行射出。
如图 3所示, 曲面 Cm的母线为弧线 m, 曲面 Cm由 m直线绕 L旋转而成。 图 4示出了超材料 10的侧视图。超材料 10的厚度如图 d所示, L表示垂直于超 材料的直线。 折射率相同的曲面的侧视截面图为两段弧线, 相对于 L对称分布。 虚线所示的弧线为超材料 10内一虚拟曲面的母线。 为了更清楚地描述相同曲面 上的折射率相同, 对超材料内部的虚拟曲面 (实际不存在, 只是为了描述方便, 虚拟出的一个曲面) 也进行阐述。
图 5是图 3所示的曲面 Cm的母线 m为抛物线弧的示意图。 如图所示, 辐 射源与超材料第一表面上一点 01 的连线与经过第一表面中心 0且垂直于超材 料 10的直线 L之间的夹角为 ,对应的抛物线弧为 ml ,该抛物线弧 ml旋转而 成的虚拟曲面上每一处的折射率均相同。 同理, 辐射源与超材料第一表面上一 点 02 的连线与直线 L之间的夹角为 , 对应的抛物线弧为 m2, 该抛物线弧 ml旋转而成的虚拟曲面上每一处的折射率均相同。 虚拟曲面的折射率分布满足: η(θ 如图 6所
Figure imgf000008_0001
示, 其中 为虚拟曲面的母线 (抛物线弧 m) 的弧长, F为辐射源 20到超材 料 10的距离, 为超材料 10的厚度; wmax为超材料的最大折射率。 抛物线弧 m的弧长 满足:
Figure imgf000008_0002
其中, 为预设小数, 比如 0.0001 ^可以保证在夹角 接近 0的时候比值
Figure imgf000008_0003
收敛。
如图 7所示, 以经过超材料 10 表面的中心 0且垂直于超材料 10的直 线 L为横坐标轴,以经过超材料 10 I -表面的中心 0且平行于第一表面的直线 为纵坐标轴, 辐射源与 A面上某一点 O'的连线与 x轴的夹角为 , 夹角 与抛 物线弧 m上每一点 (X , y) 满足如下关系式:
Figure imgf000009_0001
假设抛物线弧 m所在抛物线的方程为 = + + c。 该抛物线经过点 ( 0, tan ^ ) , 即 (O) = c = tan 。 为了使得经过超材料后电磁波平行射出, 则需使电磁波经过超材料第二表面 B时抛物线弧的切线是与 X轴平行的, 即保 证 (ί ) = 0。 由于 ( ) = 2αχ + 6, 因此 W) = 2i¾ + 6 = 0。 另外还要保证电 磁波到达超材料第一表面 A时, 电磁波沿着夹角 对应的切线方向传播, 因此 = tan^ 。 由 以 上 几 个 条 件 可 得 到 抛 物 线 的 方 程 为
[x) = tane(-^-x2 + x + F) , 由此可得夹角 0与抛物线弧 m上每一点 (x, y)
Figure imgf000009_0002
的关系式^ , = tan
2d(F + x) - x2 夹角 唯一对应超材料内的一曲面, 该曲面就是由母线 m绕 L ( X轴) 旋 转而来的, 夹角 0唯一对应的该曲面上每一处的折射率均相同。
超材料可用于将辐射源发射的电磁波转换为平面波。 其折射率随着夹角 0 的增大从 wmax减小到 wmin, 如图 7所示。虚线所示的弧线为超材料内一虚拟曲面 的母线, 相同曲面上的折射率相同。 可以理解的是, 本发明提供的超材料还可 应用在平面波汇聚到焦点的情况, 也即图 2 中的可逆情景。 超材料本身的构造 无需改变, 只需将辐射源放置在第二表面 B—侧即可, 而此时的原理一样, 但 是 0的定义中的辐射源就应该是处于第一表面 A侧且位于超材料焦点的虚拟辐 射源位置。 只要是应用本发明的原理而进行的各种应用场景都属于本发明的保 护范围。
在超材料内设有多个人造微结构, 多个人造微结构使得超材料的折射率随 着夹角 的增大逐渐减小。 多个人造微结构具有相同的几何形状, 且人造微结 构的尺寸随着夹角的增大逐渐减小。
为了更直观的表示超材料片层在 xy面上折射率折射率分布规律, 将折射率 相同的单元连成一条线, 并用线的疏密来表示折射率的大小, 线越密折射率越 大, 则符合以上所有关系式的超材料的折射率分布如图 8所示。
曲面 Cm 的母线还可以是其他曲线状, 例如但不限于椭圆弧, 下面以此为 例进行阐述。
如图 3所示的曲面 Cm的母线为椭圆弧 m, 曲面 Cm由椭圆弧 m直线绕 L 旋转而成。折射率相同的曲面的侧视截面图为两段椭圆弧, 相对于 L对称分布。 虚线所示的椭圆弧为超材料 10内一虚拟曲面的母线。 为了更清楚地描述相同曲 面上的折射率相同, 对超材料内部的虚拟曲面 (实际不存在, 只是为了描述方 便, 虚拟出的一个曲面) 也进行阐述。 对于椭圆弧而言, 图 5 中辐射源与超材 料第一表面上一点 01的连线与经过第一表面中心 0且垂直于超材料 10的直线 L之间的夹角为 , 对应的椭圆弧为 ml , 该椭圆弧 ml旋转而成的虚拟曲面上 每一处的折射率均相同。 同理, 辐射源与超材料第一表面上一点 02的连线与直 线 L之间的夹角为 , 对应的椭圆弧为 m2, 该椭圆弧 m2旋转而成的虚拟曲面 上每一处的折射率均相同。 虚拟曲面的折射率分布满足: η(θ 图 6 中
Figure imgf000010_0001
S( 为虚拟曲面的母线 (椭圆弧 m) 的弧长, F为辐射源 20到超材料 10的距 离, ^为超材料 10的厚度; wmax为超材料的最大折射率。 如图 9所示, 以经过超材料 10第一表面的中心 0且垂直于超材料 10的直 线 L为横坐标轴,以经过超材料 10第一表面的中心 0且平行于第一表面的直线 为纵坐标轴, 辐射源与 A面上某一点 0'的连线与 X轴的夹角为 。 椭圆上实线 所示的椭圆弧 m所在的椭圆方程为: = 1,椭圆的中心位于第
Figure imgf000010_0002
二表面 B上, 坐标为 (d, c 该椭圆经过点 (O^tan ), 即 O) = tan , 代入椭圆公式可得 。为了使得经过超材料后电磁波平行射
Figure imgf000010_0003
出, 则需使电磁波经过超材料第二表面 B时椭圆弧的切线是与 x轴平行的, 即 保证 (ί ) = 0。 由于椭圆上任一点 (X , y) 处的切线方程为 ,
Figure imgf000011_0001
由此可得满足 ( ) = 0。 夹角 Θ所对应的第一表面 A上的点 0'的折射角为 θ,,该点的折射率为 η(θ), 根据斯奈尔定律可知: "( = "^ 。 电磁波到达超材料 10第一表面 Α时, 电 磁波沿着折射角 对应的切线方向传播(如图 9所示), 也就是说在椭圆弧 m无 限接近 0'的位置处满足 (0+) = tan ^, 由此可得如下关系式:
Figure imgf000011_0002
夹角 0唯一对应超材料内的一曲面, 该曲面就是由母线 m绕 L ( X轴) 旋 转而来的, 夹角 0唯一对应的该曲面上每一处的折射率均相同。 夹角 0取值范 围为 [0, 、。 可以理解的是, 当椭圆中的 a=b时, 椭圆就变为真正的圆; 而对应的椭圆 弧就变为圆弧, 曲面就是圆弧绕 L ( X轴) 旋转而成的曲面。
当曲面的母线为圆弧时, 图 4所示的弧线为圆弧段, 其构造示意图如图 10 所示。 图 10中虚线所示的圆弧段为超材料内一曲面的母线, 为了更清楚地描述 相同曲面上的折射率相同, 对超材料内部的虚拟曲面 (实际不存在, 只是为了 描述方便, 虚拟出的一个曲面) 也进行阐述。 其中辐射源与超材料第一表面 A 上一点的连线的垂线与超材料 10第二表面 B的交点为圆弧段的圆心,所述交点 与超材料第一表面 A上一点之间的垂线段为所述圆弧段的半径。 超材料的中心 处折射率最大。
辐射源与超材料第一表面 A上一点 C'的连线与 L之间的夹角为 ,辐射源 与点 C'的连线的垂线 与超材料的另一面的交点是 03,超材料内对应曲面的母 线为 m3 ; m3是以 03为圆心、 3为半径旋转而来的圆弧段。 为了更清楚地描述 相同曲面上的折射率相同, 对超材料内部的虚拟曲面也进行阐述。 图 10示出了 超材料内 2个虚拟曲面对应的母线圆弧段 ml、 m2。圆弧段 ml对应的夹角为 , 对应超材料第一表面上点 A',辐射源与点 A'的连线的垂线 ^与超材料 10的另一 面的交点是 Q, 该虚拟曲面外表面的母线为 ml ; ml是以 (^为圆心、 为半径 旋转而来的圆弧段。 同理, 圆弧段 m2对应的夹角为 , 对应第一表面上点 B', 辐射源与点 B'的连线的垂线 与超材料 10的第二表面 B的交点是 02, 该虚拟 曲面外表面的母线为 m2; m2是以 <¾为圆心、 ^为半径旋转而来的圆弧段。 如 图 5所示, 圆弧段 ml、 m2、 m3相对于 L对称分布。
对于第一表面 A上任一点 D'而言, 设辐射源与第一表面 A上点 D'的连线 与垂直于超材料 10的直线之间的夹角为 0, 夹角 0取值范围为 [0, 超材料 的折射率 随着 0的变化规律满足:
、 sin<9 , ,
dx 6> cos °
其中, s为辐射源到超材料 10的距离; 为超材料 10的厚度; wmax为所述 超材料的最大折射率。 夹角 0唯一对应超材料内的一曲面, 且夹角 0唯一对应 的曲面上每一处的折射率均相同。
如图 10所示, 辐射源与第一表面 A上某一点的连线与垂直于超材料 10的 直线之间的夹角为 0, 辐射源与第一表面 A上该点的连线的垂线 与超材料的 第二表面 B的交点是 0Μ,母线 m是以 0为圆心、 为半径旋转而来的圆弧段。 夹角 0唯一对应超材料内的一曲面, 该曲面就是由母线 m绕 L旋转而来的, 夹 角 0唯一对应的该曲面上每一处的折射率均相同。
超材料可用于将所述辐射源发射的电磁波转换为平面波。 其折射率随着夹 角的增大从 U咸小到 wmin
超材料可用于将辐射源发射的电磁波转换为平面波。 其折射率随着夹角 0 的增大从 wmax减小到 wmin, 如图 10所示。 椭圆上实线所示的椭圆弧段为超材料 内一虚拟曲面的母线, 相同曲面上的折射率相同。 可以理解的是, 本发明提供 的超材料还可应用在平面波汇聚到焦点的情况, 也即图 2 中的可逆情景。 超材 料本身的构造无需改变, 只需将辐射源放置在第二表面 B—侧即可, 而此时的 原理一样, 但是 0的定义中的辐射源就应该是处于第一表面 A侧且位于超材料 焦点的虚拟辐射源位置。 只要是应用本发明的原理而进行的各种应用场景都属 于本发明的保护范围。
超材料在实际的结构设计时, 可以设计为多个超材料片层, 每个片层包括 片状的基板和附着在所述基板上的多个人造微结构或人造孔结构。 多个超材料 片层结合在一起后整体的折射率分布需要满足或近似满足上述公式, 使得在同 一曲面上的折射率分布相同, 曲面的母线设计为椭圆弧或抛物线弧。 当然, 在 实际设计时, 可能设计成精确的椭圆弧或抛物线弧比较困难, 可以根据需要设 计为近似的椭圆弧、 抛物线弧或者阶梯状, 具体的精确程度可依据需要来选择。 随着技术的不断进歩, 设计的方式也会不断更新, 可能会有更好的超材料设计 工艺来实现本发明提供的折射率排布。
对于人造微结构来说, 每个所述人造微结构为由金属丝组成的具有几何图 案的平面或立体结构, 例如但不限于 "十"字形、 平面雪花状、 立体雪花状。 金属丝可以为铜丝或银丝, 可通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻 的方法附着在基板上。 超材料内多个人造微结构使得超材料的折射率随着夹角 Θ的增大而减小。 在入射电磁波确定的情况下, 通过合理设计人造微结构的拓 扑图案和不同尺寸的人造微结构在电磁波汇聚元件内的排布, 就可以调整超材 料的折射率分布, 进而实现球面波形式发散的电磁波转变为平面形式的电磁波。
为了更直观的表示超材料片层在 yx面上折射率折射率分布规律, 将折射率 相同的单元连成一条线, 并用线的疏密来表示折射率的大小, 线越密折射率越 大, 则符合以上所有关系式的超材料的折射率分布如图 11所示。
上文以抛物线弧和椭圆弧为例进行了详细阐述, 作为非限制性例子, 本发 明还可以适用于其他种类的曲线, 例如不规则的曲线。 满足本发明折射率分布 原理的情况都包含在保护之列。
本发明还提供一种超材料天线, 如图 2和图 3所示, 超材料天线包括超材 料 10和设置在超材料 10焦点上的辐射源 20,超材料 10的具体结构和折射率变 化如上文所述, 此处不再赘述。
前文所述的超材料可以是图 3 所示的形状, 当然也可以制作成是其他需要 的形状例如圆环状等, 只要是能够满足前文所述的折射率变化规律即可。
在实际应用时, 为了使得超材料的性能更好, 减少反射, 可以再超材料两 侧均设置阻抗匹配层。 关于阻抗匹配层的内容可参见现有技术资料, 此处不再 赘述。
本发明在超材料的折射率的跳变设计为曲面状, 从而大大减少跳变处的折 射、 衍射和反射效应, 减轻了互相干涉带来的问题, 使得超材料具有更加优异 的性能。
上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述 的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本 领域的普通技术人员在本发明的启示下, 在不脱离本发明宗旨和权利要求所保 护的范围情况下, 还可做出很多形式, 这些均属于本发明的保护之内。

Claims

权 利 要 求
1、 一种超材料, 其特征在于, 相对设置于辐射源的电磁波传播方向上, 设 辐射源与所述超材料第一表面上一点的连线与垂直于超材料的直线之间的夹角 为 Θ , 夹角 唯一对应所述超材料内的一曲面, 且夹角 唯一对应的曲面上每 一处的折射率均相同; 所述超材料的折射率随着夹角 0的增大逐渐减小; 电磁 波经过所述超材料后在所述超材料的第二表面平行射出。
2、 根据权利要求 1所述的超材料, 其特征在于, 所述曲面的折射率分布满 足:
Figure imgf000015_0001
其中 为所述曲面的母线的弧长, F为所述辐射源到所述超材料的距 , d为所述超材料的厚度; wmax为所述超材料的最大折射率。
3、 根据权利要求 2所述的超材料, 其特征在于, 所述超材料包括至少 -水 超材料片层, 每个片层包括片状的基板和附着在所述基板上的多个人造微结构。
4、 根据权利要求 3所述的超材料, 其特征在于, 每个所述人造微结构为具 有几何图案的平面或立体结构。
5、根据权利要求 4所述的超材料,其特征在于,每个所述人造微结构为 "十" 字形、 雪花状。
6、 根据权利要求 2所述的超材料, 其特征在于, 所述曲面的母线为抛物线 弧时, 所述抛物线弧的弧长 满足: = Θ
Itan^l + ^ 其中, 为预设小数。
7、 根据权利要求 2~6任一项所述的超材料, 其特征在于, 以经过所述超材 料第一表面的中心且垂直于所述超材料的直线为横坐标轴, 以经过所述超材料 第一表面的中心且平行于所述第一表面的直线为纵坐标轴, 所述抛物线弧所在 的抛物线方程为: y(x) = + Λ: + )。
Figure imgf000016_0001
8、 根据权利要求 7所述的超材料, 其特征在于, :角 Θ与抛物线弧上每- 点 (X, y) 满足如下关系式:
Figure imgf000016_0002
9、 根据权利要求 2所述的超材料, 其特征在于, 所述曲面的母线为椭圆弧 时, 以经过所述超材料第一表面的中心且垂直于所述超材料的直线为横坐标轴, 以经过所述超材料第一表面的中心且平行于所述第一表面的直线为纵坐标轴, 所述椭圆弧所在的椭圆方程为:
Figure imgf000016_0003
且上式中的 a、 b、 c满足如下关系:
Figure imgf000016_0004
10、 根据权利要求 9所述的超材料, 其特征在于 所述椭圆弧所在的椭圆 的中心位于所述第二表面上, 坐标为 (d, c
11、 根据权利要求 9所述的超材料, 其特征在于
面上的点的折射角为 0', 该点的折射率为 满足:
sin^
η{θ) =
sin^'
12、 根据权利要求 1 所述的超材料, 其特征在于, 所述曲面的母线为圆弧 时, 所述曲面的折射率分布满足:
S
η{θ)
ά θ 其中, 为所述辐射源到所述超材料的距离; ^为所述超材料的厚度; 为所述超材料的最大折射率。
13、 根据权利要求 12所述的超材料, 其特征在于, 其中所述辐射源与所述 超材料第一表面上一点的连线的垂线与所述超材料第二表面的交点为所述圆弧 段的圆心, 所述交点与超材料第一表面上一点之间的垂线段为所述圆弧段的半 径。
14、 根据权利要求 12所述的超材料, 其特征在于, 所述超材料两侧设置有 阻抗匹配层。
15、 一种超材料天线, 其特征在于, 包括超材料和设置在所述超材料焦点 上的辐射源; 设辐射源与所述超材料第一表面上一点的连线与垂直于超材料的 直线之间的夹角为 0, 夹角 0唯一对应所述超材料内的一曲面, 且夹角 0唯一 对应的曲面上每一处的折射率均相同; 所述超材料的折射率随着夹角 0的增大 逐渐减小; 电磁波经过所述超材料后在所述超材料的第二表面平行射出。
16、 根据权利要求 15所述的超材料天线, 其特征在于, 所述曲面的折射率 分布满足: η{θ) = F( -" l—) + nmaxd
COS& 其中 为所述曲面的母线的弧长, F为所述辐射源到所述超材料的距离, d为所述超材料的厚度; wmax为所述超材料的最大折射率。
17、 根据权利要求 16所述的超材料天线, 其特征在于, 所述超材料包括至 少一个超材料片层, 每个片层包括片状的基板和附着在所述基板上的多个人造 微结构。
18、 根据权利要求 16所述的超材料天线, 其特征在于, 所述曲面的母线为 椭圆弧时, 以经过所述超材料第一表面的中心且垂直于所述超材料的直线为横 坐标轴, 以经过所述超材料第一表面的中心且平行于所述第一表面的直线为纵 坐标轴, 所述椭圆弧所在的椭圆方程为:
Figure imgf000017_0001
且上式中的 a、 b、 c满足如下关系:
Figure imgf000018_0001
ln2(9)-sm2(9) a1 FtanO-c
19、 根据权利要求 16所述的超材料天线, 其特征在于, 所述曲面的母线为 i线弧时, 所述抛物线弧的弧长 满足: = Θ
Itan^l + ^ 其中, 为预设小数。
20、 根据权利要求 19所述的超材料天线, 其特征在于, 以经过所述超材料 一表面的中心且垂直于所述超材料的直线为横坐标轴, 以经过所述超材料第 表面的中心且平行于所述第一表面的直线为纵坐标轴,
所述抛 抛物线方程为: y(x) = + Λ: + )。
Figure imgf000018_0002
PCT/CN2011/082310 2011-06-28 2011-11-16 一种超材料和超材料天线 WO2013000233A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES11855258.7T ES2574406T3 (es) 2011-06-28 2011-11-16 Metamaterial y antena de metamaterial
EP11855258.7A EP2728669B1 (en) 2011-06-28 2011-11-16 Metamaterial and metamaterial antenna
US13/522,969 US9142892B2 (en) 2011-06-28 2011-11-16 Metamaterial and metamaterial antenna

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201110176770.8 2011-06-28
CN201110176781.6A CN102810751B (zh) 2011-06-28 2011-06-28 一种超材料和超材料天线
CN201110176783.5 2011-06-28
CN201110176781.6 2011-06-28
CN201110176783.5A CN102810752B (zh) 2011-06-28 2011-06-28 一种超材料和超材料天线
CN201110176770.8A CN102810750B (zh) 2011-06-28 2011-06-28 超材料和超材料天线
CN201110178661.X 2011-06-29
CN201110178661.XA CN102800976B (zh) 2011-06-29 2011-06-29 一种超材料和超材料天线

Publications (1)

Publication Number Publication Date
WO2013000233A1 true WO2013000233A1 (zh) 2013-01-03

Family

ID=47423414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082310 WO2013000233A1 (zh) 2011-06-28 2011-11-16 一种超材料和超材料天线

Country Status (3)

Country Link
EP (1) EP2728669B1 (zh)
ES (1) ES2574406T3 (zh)
WO (1) WO2013000233A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016906A1 (zh) * 2011-07-29 2013-02-07 深圳光启高等理工研究院 人工复合材料和人工复合材料天线
KR102570123B1 (ko) * 2017-02-21 2023-08-23 삼성전자 주식회사 위상 보상 렌즈 안테나 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006023195A2 (en) * 2004-07-23 2006-03-02 The Regents Of The University Of California Metamaterials
US20070014006A1 (en) * 2005-06-20 2007-01-18 Riken Optical material, optical device fabricated therefrom, and method for fabricating the same
CN101459270A (zh) * 2008-12-12 2009-06-17 清华大学 可调谐全介质多频段各向同性零折射平板透镜及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225668A (en) * 1991-06-06 1993-07-06 The United States Of America As Represented By The Secretary Of The Navy Photonic electromagnetic field sensor apparatus
US7397055B2 (en) * 2005-05-02 2008-07-08 Raytheon Company Smith-Purcell radiation source using negative-index metamaterial (NIM)
US8094378B2 (en) * 2008-10-23 2012-01-10 Purdue Research Foundation Planar lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006023195A2 (en) * 2004-07-23 2006-03-02 The Regents Of The University Of California Metamaterials
US20070014006A1 (en) * 2005-06-20 2007-01-18 Riken Optical material, optical device fabricated therefrom, and method for fabricating the same
CN101459270A (zh) * 2008-12-12 2009-06-17 清华大学 可调谐全介质多频段各向同性零折射平板透镜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHOU, HANG ET AL.: "A Novel High-Directivity Microstrip Patch Antenna Based on Zero-Index Metamaterial.", IEEE ANTENNA AND WIRELESS PROPAGATION LETTERS., vol. 8, 2009, pages 538 - 541, XP011330960 *
ZHOU, HANG ET AL.: "Improvement of the Horn Antenna's Wave-front Phase Using Zero-index Metamaterial", JOURNAL OF AIR FORCE ENGINEERING UNIVERSITY, vol. 11, no. 6, December 2010 (2010-12-01), pages 70 - 74, XP008171522 *

Also Published As

Publication number Publication date
ES2574406T3 (es) 2016-06-17
EP2728669A4 (en) 2015-02-18
EP2728669A1 (en) 2014-05-07
EP2728669B1 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2012159425A1 (zh) 基于超材料的天线及超材料面板
WO2012171299A1 (zh) 阻抗匹配元件、超材料面板、汇聚元件及天线
WO2013060118A1 (zh) 一种混合透反射微波天线及通讯装置
WO2012155471A1 (zh) 基于超材料的天线和超材料面板的工作波长的生成方法
CN103094701B (zh) 一种平板透镜及具有该透镜的透镜天线
WO2023279384A1 (zh) 减反膜、电磁波透射结构及减反膜的制备方法
WO2013000233A1 (zh) 一种超材料和超材料天线
JP2024069354A (ja) 周波数選択反射板および通信中継システム
WO2012155475A1 (zh) 电磁波分束器
US9142892B2 (en) Metamaterial and metamaterial antenna
CN102800976B (zh) 一种超材料和超材料天线
WO2013004063A1 (zh) 人工复合材料和人工复合材料天线
WO2013016918A1 (zh) 人工复合材料和人工复合材料天线
WO2013016906A1 (zh) 人工复合材料和人工复合材料天线
US9142891B2 (en) Man-made composite material and man-made composite material antenna
WO2011012066A1 (zh) 利用抛物面镜的多光源汇聚系统
US8902507B2 (en) Man-made composite material and man-made composite material antenna
US9099788B2 (en) Man-made composite material and man-made composite material antenna
CN102904058A (zh) 一种超材料
CN103036063B (zh) 一种透镜天线
CN102904056B (zh) 人工复合材料和人工复合材料天线
CN117317612A (zh) 一种基于超表面的龙伯透镜及其制备方法
CN102810751A (zh) 一种超材料和超材料天线
CN102810752A (zh) 一种超材料和超材料天线
WO2013013466A1 (zh) 后馈式雷达天线

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011855258

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13522969

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE