WO2012176907A1 - オキシフルオロライト系正極活物質の製造方法およびオキシフルオロライト系正極活物質 - Google Patents

オキシフルオロライト系正極活物質の製造方法およびオキシフルオロライト系正極活物質 Download PDF

Info

Publication number
WO2012176907A1
WO2012176907A1 PCT/JP2012/066071 JP2012066071W WO2012176907A1 WO 2012176907 A1 WO2012176907 A1 WO 2012176907A1 JP 2012066071 W JP2012066071 W JP 2012066071W WO 2012176907 A1 WO2012176907 A1 WO 2012176907A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
feof
active material
fef
Prior art date
Application number
PCT/JP2012/066071
Other languages
English (en)
French (fr)
Inventor
岡田 重人
鮎子 喜多條
秀行 小松
ディ ゴチェヴァ イリーナ
久仁子 智原
山木 準一
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to CN201280030992.1A priority Critical patent/CN103718352B/zh
Priority to KR1020137033270A priority patent/KR20140024920A/ko
Priority to US14/128,470 priority patent/US9312538B2/en
Priority to JP2013521648A priority patent/JP5991680B2/ja
Priority to EP12802330.6A priority patent/EP2725643B1/en
Publication of WO2012176907A1 publication Critical patent/WO2012176907A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/10Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/24Oxygen compounds of fluorine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the technical field of non-aqueous electrolyte secondary batteries, and particularly relates to a novel manufacturing method and a novel cathode active material for efficiently producing a cathode active material for a non-aqueous electrolyte secondary battery at low cost.
  • non-aqueous electrolyte secondary batteries using non-aqueous electrolyte are actively used as secondary batteries that can simultaneously achieve high voltage and energy density. It has been studied.
  • a positive electrode active material made of fluoride or oxide is widely used.
  • FeF 3 see Non-Patent Document 1
  • Fe 2 O 3 see Non-Patent Document 2
  • FeF 3 has a high average discharge voltage of about 1.7 V with respect to the lithium negative electrode and shows a theoretical capacity of 712 mAh / g (theoretical energy density 1210 mWh / g) in a three-electron reaction, whereas Fe 2 O 3 Although the average discharge voltage is about 1V, the theoretical capacity is 1007 mAh / g (theoretical energy density 1006 mWh / g) in a 6-electron reaction. Compared to these FeF 3 and Fe 2 O 3 , FeOF has an average discharge voltage of about 1.4 V and a theoretical capacity of 885 mAh / g in a three-electron reaction.
  • the integrated value that is, the energy density that can be used as a battery is 1239 mWh / g, which is the highest of these. Therefore, as an interesting positive electrode active material having these significant features, a positive electrode active material made of FeOF, which is an oxyfluorolite-based iron compound containing both a fluorine element and an oxygen element, has attracted attention.
  • a positive electrode active material composed of an oxyfluorolite-based iron compound a material containing lithium element is disclosed (see Patent Document 1), but there are few examples using FeOF as a positive electrode active material.
  • FeOF is synthesized from a compound containing its constituent elements by solid-phase firing, which is generally used conventionally, damage to the heating furnace and FeOF itself will be caused. Therefore, FeOF is synthesized by solid-phase firing. So far, no reports have been reported.
  • a positive electrode active material mainly composed of FeOF that is used in a nonaqueous electrolyte secondary battery and has excellent charge / discharge characteristics is not found.
  • Non-Patent Document 3 As an alternative to solid-phase firing for obtaining FeOF as a positive electrode active material, for example, an ion exchange method in which the chlorine element of FeOCl is replaced with a fluorine element (see Non-Patent Document 3), or silicon containing in an oxygen atmosphere compound (FeSiF 6 ⁇ 6H 2 O) thermal decomposition method using a thermal decomposition (see non-Patent Document 4) have been proposed. In addition to this, a method of obtaining a single crystal of FeOF under high temperature and high pressure simply to obtain FeOF (see Non-Patent Document 5) is found.
  • Non-patent Document 4 when producing FeOF as a positive electrode active material by using a thermal decomposition method (Non-patent Document 4), there is a problem that the production cost increases because the synthesis time requires a long time of 10 hours or more. Furthermore, for a synthesis product obtained, it is generated oxygen element and fluorine element mixing ratio sparse oxy fluoro lights (FeO x F 2? X) (0 ⁇ x ⁇ 1), until it produced a pure FeOF Has not reached. Further, the raw material FeSiF 6 remains in the composite as an impurity, and the performance as an electrode is degraded. For example, as shown also from the experimental results of discharge capacity with respect to the number of cycles shown in FIG.
  • the discharge capacity decreases as the number of cycles increases, it remains at the maximum at about 380 mAh / g at the maximum.
  • Non-patent Document 5 iron oxide Fe 2 O 3 and iron fluoride FeF 3 are used as starting materials, but fluorine atoms derived from fluorine atoms contained in the raw materials are volatilized. In order to prevent this, an extremely high gas pressure of 6 GPa (60 kbar) is required, which is not very suitable for mass production. Further, this method is exclusively for the production of a single crystal of FeOF, and no mention is made as to whether or not the single crystal FeOF is used as a positive electrode active material for a non-aqueous electrolyte secondary battery. There is also no proven data regarding battery properties as a material.
  • the present invention has been proposed in order to solve the above-described problems, and can be easily manufactured in a shorter time than a conventional method, and a positive electrode active material mainly composed of FeOF having a sufficient charge-discharge capacity. And a positive electrode active material mainly composed of FeOF.
  • the present inventors have newly found a method for producing a positive electrode active material mainly composed of FeOF suitable for a secondary battery using a non-aqueous electrolyte and a positive electrode active material mainly composed of FeOF. It was. Furthermore, it has been found that a non-aqueous electrolyte secondary battery with high operational stability can be constructed by selecting a negative electrode active material and combining it with a positive electrode active material mainly composed of FeOF.
  • a method for producing a positive electrode active material containing FeOF as a main component in which both iron oxide Fe 2 O 3 and iron fluoride FeF 3 are mixed in a solid state, and an inert gas atmosphere is used.
  • a method for producing a positive electrode active material is provided, which includes a step of melting and quenching at the same time.
  • a positive electrode active material characterized in that FeOF is 50% or more and the balance is FeOF composed mainly of iron fluoride FeF 3 and / or iron oxide Fe 2 O 3. Is done.
  • Fe 2 O 3: FeF 3 1: shows the XRD pattern results and discharge-charge result of the positive electrode active material composed mainly of FeOF produced according to the present invention the raw material molar ratio of 2.33.
  • Fe 2 O 3: FeF 3 1: shows a 2.33 volume relationship to the current density of the positive electrode active material FeOF a main component produced by the present invention the raw material molar ratio, and capacity relationship to the number of cycles.
  • a positive electrode active material mainly composed of FeOF can be produced by mixing iron oxide and iron fluoride together in a solid state and melting and quenching in an inert gas atmosphere. That is, by mixing iron oxide and iron fluoride as raw materials and melting and quenching in an inert gas atmosphere, fluorine is combined with solid iron oxide as much as possible, and the target oxygen element and fluorine A product containing the positive electrode active material FeOF containing the element is obtained.
  • the target positive electrode active material is produced by melt quenching (method). That is, the target FeOF is obtained by cooling as quickly as possible so that the constituent components (particularly fluorine) are not volatilized from the state in which the raw iron oxide and iron fluoride are melted and mixed. To obtain a product containing as a main component.
  • melt quenching various types of conventionally known melting (heating) means and quenching means can be used in combination.
  • a known melting method such as a high frequency induction heating method or an arc melting method can be used.
  • a known quenching method such as a single roll quenching method, a twin roll quenching method, an atomizing quenching method, or a splat quenching method can be used.
  • the above-described known melting method and quenching method may be combined. Good.
  • the raw material metal previously charged in the reaction vessel is melted with an induction coil, and then the molten raw metal is injected from the melting nozzle onto the surface of the single roll.
  • the product can be obtained by rapid cooling at The heating temperature may be a temperature at which the raw iron oxide melts (for example, 1300 ° C.).
  • the melting and quenching treatment according to the present invention is cooled as quickly as possible to suppress desorption due to vaporization of fluorine from the raw material metal.
  • the high-frequency induction heating / single roll quenching apparatus used in the present invention includes a quartz tube 1 and a crucible 2 with a pilot hole placed inside the quartz tube 1 as shown in FIG.
  • a copper tube coil 3 made of copper wound around the quartz tube 1 and a copper roll 4 as a solid cooling medium can be used.
  • a raw material is put into a crucible 2 with a prepared hole placed inside a quartz tube 1, and a raw material metal falling from the prepared hole of the crucible with a prepared hole is induction-heated by a copper tube coil 3 (indicated by A in the figure). And the induction-heated raw material metal becomes a glass ribbon-like sample B and is rapidly cooled by coming into contact with a copper roll 4 as a metal water-cooled roll.
  • the melting and quenching treatment according to the present invention is generally performed in an inert gas atmosphere such as nitrogen gas or argon gas, but it is preferable to use argon gas for ease of handling.
  • an inert gas atmosphere such as nitrogen gas or argon gas, but it is preferable to use argon gas for ease of handling.
  • the conditions of the melt quenching process such as the processing time, the rotation speed of the metal water cooling roll (copper roll), the induction heating speed, the cooling speed, etc., are analyzed and confirmed by XRD etc. What is necessary is just to determine so that the crystal
  • FeOF which is a main component of the positive electrode active material for a non-aqueous electrolyte secondary battery is generated by the following reaction.
  • FeOF can be obtained by setting the ratio of iron fluoride FeF 3 and iron oxide Fe 2 O 3 as raw materials to a stoichiometric ratio (equal molar ratio).
  • fluorine has the property of being easily vaporized and desorbed from iron fluoride during melting and quenching, so that the ratio of iron fluoride to iron oxide is more fluorine than the stoichiometric ratio. It is preferable to make it.
  • the ratio depends on the melting (heating) means and quenching means employed and the experimental conditions.
  • the molar ratio of iron fluoride to iron oxide is 1 (stoichiometric ratio) or more but preferably 10 or less.
  • iron fluoride is excessively added, the initial discharge capacity of the obtained positive electrode active material tends to decrease.
  • a positive electrode active material that is produced by, for example, the above-described method and mainly contains FeOF. According to the finding of the present inventor, if 50% or more of FeOF is contained as a main component, even if the balance is iron fluoride (FeF 3 ) and / or iron oxide (Fe 2 O 3 ) What has sufficient battery characteristics as a positive electrode active material for water electrolyte secondary batteries is obtained. As described above, from the viewpoint of increasing the energy density that can be used as a battery, the higher the content of FeOF, the better the battery characteristics. Therefore, 60% or more is preferable, but it is excellent even if it is not 100%. A positive electrode active material exhibiting battery characteristics has been obtained. That is, according to the embodiment of the present invention, FeOF is 50% or more, preferably 60% or more, 99% or less, particularly preferably 96% or less, and the balance is FeF 3 and / or Fe 2 O 3. A positive electrode active material is provided.
  • the positive electrode active material of the present invention containing FeOF as a main component has an intensity ratio of the diffraction peak of FeOF (110) plane to (101) plane of 2 or more in X-ray diffraction measurement using CuK ⁇ rays.
  • the intensity ratio of the diffraction peak which is also characterized by this, is preferably 2 or more and 20 or less, more preferably 2 or more and 10 or less.
  • the positive electrode active material mainly composed of FeOF according to the present invention as described above has a charge / discharge characteristic whose initial discharge capacity is approximately 900 mAh / g, which is almost equal to the theoretical capacity (see the examples described later).
  • the positive electrode active material mainly composed of FeOF according to the present invention may be used as it is as a positive electrode of a non-aqueous electrolyte secondary battery.
  • a composite with a known conductive material is used. It may be formed.
  • the cathode active material mainly composed of FeOF according to the present invention is carbon coated by pulverizing and mixing together with carbon fine particles in an inert gas atmosphere.
  • the carbon fine particles furnace black, channel black, acetylene black, thermal black, and the like can be used, but acetylene black is preferred because of its high conductivity when used as an electrode.
  • the inert gas nitrogen gas, argon gas, or the like can be used.
  • argon gas can be used.
  • Specific means applied to the pulverization / mixing at the time of carbon coating are not particularly limited, and various means conventionally used for the purpose of pulverization / mixing of solid substances can be applied, A ball mill is preferable, and among these, a planetary ball mill is preferable because the raw materials can be sufficiently pulverized and mixed.
  • a positive electrode active material mainly composed of FeOF for a nonaqueous electrolyte secondary battery a secondary battery positive electrode including the positive electrode active material, and a secondary battery in which the negative electrode is combined with the positive electrode.
  • the positive electrode active material described above is used.
  • the active material powder is mixed with a known binder such as polyethylene, if necessary, and a known conductive material such as acetylene black, if necessary, and the resulting mixed powder is made of stainless steel or the like. It can be pressure-molded on the support or filled into a metal container.
  • An example of such a positive electrode is a pellet electrode.
  • a pellet electrode as shown in FIG.1 (b), it can be comprised from the pellet electrode 10a, the spacer 11a, the coin cell container (lower lid) 12, and the nickel mesh 13 made from nickel, for example.
  • the pellet electrode 10a can have a thickness of 10 mm, for example.
  • the spacer 11 a mounts the nickel mesh 13, and the pellet electrode 10 a is mounted on the nickel mesh 13.
  • the positive electrode of the present invention can also be produced by a method such as applying a slurry obtained by mixing the mixed powder with an organic solvent such as toluene onto a metal substrate such as aluminum, nickel, stainless steel, or copper. Can do.
  • An example of such a positive electrode is a coated electrode.
  • the application electrode for example, as shown in FIG. 1 (c), the application electrode 10 b, a spacer 11 b, and a coin cell container (lower lid) 12 can be configured.
  • the coating electrode 10b can have an electrode diameter of 10 mm, for example.
  • the spacer 11b the coating electrode 10b is spot-welded in the center part of the upper surface.
  • a lithium compound or an alloy thereof can be used as the negative electrode (negative electrode active material) used in combination with the above positive electrode.
  • the negative electrode may be manufactured by a known method, for example, by the same method as described above in relation to the positive electrode. That is, for example, if necessary, the negative electrode active material powder is mixed with the known binder described above and, if necessary, the known conductive material, and then the mixed powder is formed into a sheet. Then, this may be pressure-bonded to a conductor network (current collector) such as stainless steel or copper. Moreover, for example, it can also be produced by applying a slurry obtained by mixing the above mixed powder with the above-mentioned known organic solvent on a metal substrate such as copper.
  • a conductor network current collector
  • those used for known nonaqueous electrolyte secondary batteries can be used as components.
  • the following can be illustrated.
  • the electrolytic solution usually contains an electrolyte and a solvent.
  • the solvent of the electrolytic solution is not particularly limited as long as it is non-aqueous, for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines, Esters, amides, phosphate ester compounds and the like can be used.
  • Examples of these include 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, ethylene carbonate (EC), vinylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, ⁇ Butyrolactone, dimethylformamide, dimethyl carbonate (DMC), diethyl carbonate, sulfolane, ethyl methyl carbonate, 1,4-dioxane, 4-methyl-2-pentanone, 1,3-dioxolane, 4-methyl-1,3-dioxolane , Diethyl ether, sulfolane, methyl sulfolane, propionitrile, benzonitrile, butyronitrile, valeronitrile, 1,2-dichloroethane, trimethyl phosphate, triethyl phosphate, etc. . These can be used by 1 type (s)
  • an electrolyte substance capable of performing migration for lithium ions in the negative electrode active material to electrochemically react with the positive electrode active material or the positive electrode active material and the negative electrode active material in the solvent for example, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiC (SO 2 CF 3) 3, LiN (SO 3 CF 3) can be used 2 or the like, can be used LiPF 6, for example.
  • non-aqueous electrolyte secondary battery conventionally known various materials can be used for elements such as a separator, a battery case, and other structural materials, and there is no particular limitation. What is necessary is just to assemble the non-aqueous electrolyte secondary battery which concerns on this invention according to a well-known method using said battery element.
  • the shape of the battery is not particularly limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
  • Example 1 Iron oxide Fe 2 O 3 ( Soekawa Rika ) and iron fluoride FeF 3 ( Soekawa Rika ) were used as starting materials for the synthesis of a positive electrode active material mainly composed of FeOF by the melt quenching method .
  • the starting material was weighed in a glove box so that Fe 2 O 3 and FeF 3 were in a molar ratio of 1: 2.33 (Fe 2 O 3 : FeF 3 ), and thoroughly mixed in an agate mortar.
  • the mixed precursor starting material is put into a platinum crucible with a pilot hole (height 50 mm, hole diameter 12 mm) until the height is about 1/3, and then the platinum crucible is put into a quartz tube (height about 100 mm, The inner wall having a diameter of about 15 mm and a gap (wall spacing) of about 1 mm were introduced into the quartz tube and set in a single roll melting and quenching apparatus. The air inside the quartz tube was deaerated for about 10 minutes to a pressure of 10.sup.- 3 torr and then sealed as an argon gas atmosphere. Inductively heated and heated to about 1300 ° C.
  • the obtained positive electrode active material sample was subjected to X-ray diffraction measurement (using Rigaku TTRIII) using CuK ⁇ rays. (As a result of the measurement)
  • the result obtained by the XRD diffraction measurement is shown in FIG.
  • the sample was assigned to the previously reported FeOF of the space group P4 2 / mnm (rutile tetragonal structure). From this result, it was shown that FeOF was synthesized by the melt quenching method.
  • the charge / discharge measurement mode was CCV mode.
  • the measurement conditions were such that the theoretical capacity for 1Li desorption was 1 C rate for the current density for charging and discharging in 1 hour, the current density was 0.2 mA / cm 2 , and the voltage range was 1.3 V to 4.0 V.
  • FIG. 2B shows the results of the charge / discharge characteristics in the first cycle and the second cycle. From the results in the figure, it was shown that the discharge capacity reached 404 mAh / g.
  • FIG. 3A shows the results of FeOF current density and discharge capacity for lithium metal. From the result of FIG. 9A, it was shown that 350 mAh / g was maintained even when the current density was 1/4 C (horizontal axis 0.25 in the figure). Furthermore, the same figure (b) shows the result of the charging / discharging capacity
  • 6B are the results of charge / discharge capacity and voltage (2) measured by 1 Li constant current discharge (constant current 60 mA / g; current density 0.11 mA / cm 2 ), respectively.
  • the results of the charge / discharge capacity measured at 0.0 to 4.0 V) are shown. From these results, a constant capacity was maintained even after 10 cycles without any decrease in capacity due to charge / discharge. It was shown that.
  • Example 2 Synthesis of Positive Electrode Active Material with FeOF as Main Component at Different Raw Material Ratios
  • the X-ray diffraction measurement was performed on the positive electrode active material sample obtained by changing the melting time from Example 1 with a melting time of 45 seconds.
  • compositions and calculation of intensity ratio of diffraction peak were calculated from the results of X-ray diffraction measurement using the above-described CuK ⁇ ray. That is, the composition (%) of FeOF and the remaining components (FeF 3 and Fe 2 O 3 ) in the obtained positive electrode active material sample was determined when the obtained positive electrode active material sample was measured by X-ray diffraction using CuK ⁇ rays. It calculated from the intensity ratio (peak height ratio) of the main peak derived from each of the appearing FeOF, FeF 3 and Fe 2 O 3 (see Table 1 described later).
  • the intensity ratio of the diffraction peaks is based on the intensity ratio (peak height ratio) of the main peak derived from each of the (110) plane and (101) plane of FeOF that appears when X-ray diffraction measurement is performed using CuK ⁇ rays. It calculated (refer Table 2 mentioned later).
  • the XRD measurement result (chart) of the obtained positive electrode active material sample is shown.
  • the peak indicated by a is the main peak derived from FeF 3
  • the peak indicated by b is the main peak derived from Fe 2 O 3
  • the peak indicated by c Is the main peak derived from the (110) plane of FeOF
  • the peak indicated by d is the main peak derived from the (101) plane of FeOF.
  • the main component is FeOF, which has a high intensity ratio of the diffraction peak of (110) face to (101) face of FeOF and is 2 or more. It was found that a positive electrode active material was obtained.
  • Example 4B when the melting time of Example 1 was changed to 45 seconds, the raw material iron oxide Fe 2 O 3 that did not remain in Example 1 tends to remain in the product. there were. For this reason, it turned out that it is suitable for the experimental conditions of Example 1 that the melting time is 40 seconds.
  • FIG. 5B shows that the initial discharge capacity has reached about 800 mAh / g, and that a positive electrode active material mainly composed of FeOF having a sufficient quality as a positive electrode of a secondary battery is obtained. It was. In particular, it was found that the discharge curve was flat at 3.2 V, which is an insertion potential derived from FeF 3, and 2.5 V, which is an insertion potential derived from FeOF. From this, it was found that an unprecedented positive electrode active material having both excellent characteristics of FeF 3 and FeOF can be obtained.
  • the positive electrode active material according to the present invention containing FeOF as a main component and the balance being iron fluoride FeF 3 and / or iron oxide Fe 2 O 3 exhibits extremely good battery characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 短時間で簡便に製造することができ、十分な放充電容量を有するFeOFを主成分とする正極活物質の製造技術およびFeOFを主成分とする正極活物質を提供する。 FeOFを主成分とする正極活物質の製造方法は、酸化鉄Feとフッ化鉄FeFとを共に固体状態で混合し、不活性ガス雰囲気下で溶融急冷する工程を含む。FeOFを主成分とする正極活物質は、FeOFが50%以上であり、残部がフッ化鉄FeFおよび/または酸化鉄Feから成る。

Description

オキシフルオロライト系正極活物質の製造方法およびオキシフルオロライト系正極活物質
 本発明は、非水電解質二次電池の技術分野に属し、特に、非水電解質二次電池用の正極活物質を低コストで効率よく製造する新規な製造方法および新規な正極活物質に関する。
 近年、電気自動車用搭載電源やスマートグリッド等への応用を目指して、大容量且つ経済的な大型のリチウムイオン二次電池の開発が求められている。このような中、高い電圧とエネルギー密度を同時に達成できる二次電池として、非水電解液(電解質を有機溶媒等の非水溶媒に溶かした電解液)を用いる非水電解質二次電池が盛んに研究されている。
 非水電解質二次電池の正極としてはフッ化物または酸化物から成る正極活物質が広く使用されている。例えば、鉄をベースにした低コストで安全性の高いFeF(非特許文献1参照)やFe(非特許文献2参照)が、リチウムイオン二次電池用の正極活物質として提案されている。
 FeFはリチウム負極に対して約1.7Vという高い平均放電電圧を有し、3電子反応で712mAh/gの理論容量(理論エネルギー密度1210mWh/g)を示すのに対し、Feは平均放電電圧こそ1Vどまりであるが、6電子反応で理論容量は1007mAh/g(理論エネルギー密度1006mWh/g)もの値を示す。これらFeFおよびFeに対して、FeOFは、平均放電電圧約1.4V、理論容量は3電子反応で885mAh/gというこれらの中間の値であるが、平均放電電圧と理論容量の積算値、すなわち電池として利用可能なエネルギー密度はこれらのうちで最も高い1239mWh/gとなる。そのため、これらの有意な特徴を併せ持つ興味深い正極活物質として、フッ素元素と酸素元素を共に含有するオキシフルオロライト系の鉄化合物であるFeOFから成る正極活物質が注目されている。
 オキシフルオロライト系の鉄化合物から成る正極活物質としては、リチウム元素を含有するものが開示されている(特許文献1参照)が、FeOFを正極活物質とする例は少ない。特に、FeOFをその構成元素を含む化合物から従来より一般的に用いられているような固相焼成で合成すると、加熱炉およびFeOF自体への損傷を招いてしまうため、FeOFを固相焼成で合成するという報告例はこれまでのところ見当たらない。さらに、非水電解質二次電池に用いられ、充放電特性に優れたFeOFを主成分とする正極活物質は見当たらない。正極活物質としてのFeOFを得るための固相焼成に代替する方法として、例えば、FeOClの塩素元素をフッ素元素に置換するイオン交換法(非特許文献3参照)や、酸素雰囲気下でのケイ素含有化合物(FeSiF・6HO)の熱分解を用いる熱分解法(非特許文献4参照)が提案されている。この他に、単にFeOFを得るために高温高圧下でFeOFの単結晶を得る方法(非特許文献5参照)が見出される。
特開2009?64707号公報
F.Badway, F.Cosandey, N.Pereira, G.G.Amatucci, Journal of The Electrochemical Society, 150(10) A1318-A1327(2003). Hao Liu, Guoxiu Wang, Jinsoo Park, Jiazhao Wang, Huakun Liu, and Chao Zhang, Electrochimica Acta 54,(2009) 1733-1736. Nadir Recham, Lydia Laffont-Dantras, Michel Armand & Jean-Marie Tarascon, ECS Meeting Abstracts 802, 594 (2008). N.Pereira, F.Badway, M.Wartelsky, S.Gunn, G.G.Amatucci, Journal of The Electrochemical Society, 156(6) A407-A416(2009). Marcus Vlasse, Jean Claude Massies, Gerard Demazeau, Journal of Solid State Chemistry, 2(8) 109-113(1973).
 しかし、イオン交換法(非特許文献3)を用いて正極活物質としてのFeOFを製造する場合には、合成時間に10時間以上という長時間を要することから製造コストが高くなるという課題がある。さらに、得られる合成物については、原料であるLiFeOClが不純物として残留してしまい、歪んだルチル相のFeOF(a≒b≒4.65Å、c=3.046Å)が生成されてしまう。このような不純物の残留により電極としての性能が低下し、電気化学特性も約2.5Vの電圧値(対Li:Li)においてFeOFの理論容量の高々80%に止まっている。
 また、熱分解法(非特許文献4)を用いて正極活物質としてのFeOFを製造する場合にも、合成時間に10時間以上という長時間を要することから製造コストが高くなるという課題がある。さらに、得られる合成物については、酸素元素とフッ素元素の配合比率がまばらなオキシフルオロライト(FeO2?x)(0<x<1)が生成され、純粋なFeOFを製造できるまでには至っていない。また、原料であるFeSiFが不純物として合成物に残留してしまい、電極としての性能が低下してしまう。例えば、非特許文献4のFigure6に示されるサイクル数に対する放充電容量の実験結果(対金属Li;1.5?4.5V;定電流50mA/g;60℃)からも示されるように、一般式FeO2?xが純粋なFeOFに最も近いケース(250℃、8時間の焼成;c=3.03Å)の場合であっても、上記不純物FeSiFの残留により電極としての性能が低下しており、放充電容量は、サイクル数が増加するとともに低下する一方で、最大でも初回の380mAh/g程度に止まっている。
 また、高温高圧法(非特許文献5)でFeOFを製造する場合は、酸化鉄Feとフッ化鉄FeFを出発原料とするが、原料に含まれるフッ素原子由来のフッ素ガスが揮発することを防ぐために、6GPa(60kbar)という極めて高いガス圧が要求され、とても量産に向くものではない。さらに当該方法は専らFeOFの単結晶の作製を目的とするものであり、単結晶FeOFを非水電解質二次電池の正極活物質として使用することの当否については何ら言及されておらず、正極活物質としての電池特性に関して立証されたデータも示されていない。
 本発明は、上記課題を解決するために提案されたものであり、従来の方法よりも短時間で簡便に製造することができ、十分な放充電容量を有するFeOFを主成分とする正極活物質の製造技術およびFeOFを主成分とする正極活物質を提供することにある。
 本発明者らは、鋭意研究の結果、非水電解液を用いる二次電池に好適なFeOFを主成分とする正極活物質を製造する方法ならびにFeOFを主成分とする正極活物質を新たに見出した。さらに、負極活物質を選択して、このFeOFを主成分とする正極活物質と組み合わせることにより、稼動安定性の高い非水電解質二次電池を構築できることを見出した。
 すなわち、本発明に従えば、FeOFを主成分とする正極活物質の製造方法であって、酸化鉄Feとフッ化鉄FeFとを共に固体状態で混合し、不活性ガス雰囲気下で溶融急冷する工程を含むことを特徴とする正極活物質の製造方法が提供される。さらに、本発明に従えば、FeOFが50%以上であり、残部がフッ化鉄FeFおよび/または酸化鉄Feから成るFeOFを主成分とすることを特徴とする正極活物質も提供される。
本発明に係る高周波誘導加熱/単ロール急冷装置装置、ペレット電極、および塗布電極の概略図を示す。 Fe:FeF=1:2.33の原料モル比で本発明により製造されたFeOFを主成分とする正極活物質のXRDパターン結果と放充電結果を示す。 Fe:FeF=1:2.33の原料モル比で本発明により製造されたFeOFを主成分とする正極活物質の電流密度に対する容量の関係、およびサイクル数に対する容量の関係を示す。 Fe:FeF=1:1.86、1:2.13、1:2.33、1:5、1:10の原料モル比で本発明により製造されたFeOFを主成分とする正極活物質のXRDパターン結果を示す。 Fe:FeF=1:1.86、1:2.13、1:2.33、1:10の原料モル比で本発明により製造されたFeOFを主成分とする正極活物質の放充電結果を示す。
 本発明に従えば、酸化鉄とフッ化鉄とを共に固体状態で混合し、不活性ガス雰囲気下で溶融急冷することによりFeOFを主成分とする正極活物質を製造することができる。すなわち、原料となる酸化鉄とフッ化鉄とを混合して不活性ガス雰囲気下で溶融急冷することにより、フッ素を可及的に固体状態の酸化鉄と結合させ、目的となる酸素元素およびフッ素元素を含む正極活物質FeOFを含有する生成物を得る。
 このように、不活性ガス雰囲気下で溶融急冷することにより、気化しやすいフッ素を含むフッ化鉄を酸化鉄と溶融状態で結合させ、目的となる酸素元素およびフッ素元素を含む正極活物質FeOFを得ることができる。
 本発明に従えば、溶融急冷(法)により目的の正極活物質を製造する。すなわち、原料
となる酸化鉄とフッ化鉄とが溶融して混合している状態から、構成成分(特にフッ素)の
揮散がないように可及的速やかに冷却を行うことにより、目的となるFeOFを主成分とする生成物を得る。このような溶融急冷には、従来から知られている各種の溶融(加熱)手段と急冷手段とを組み合わせて用いることができる。
 例えば、溶融手段としては、高周波誘導加熱法またはアーク溶解法等の公知の溶解法を使用することができる。急冷手段としては、単ロール急冷法、双ロール急冷法、アトマイズ急冷法またはスプラット急冷法等の公知の急冷法を使用することができる。このうち特に、本発明の目的を達成するのに好ましいのは、高周波誘導加熱/単ロール急冷を使用することであるが、この他、上記に示した公知の溶解法および急冷法を組み合わせてもよい。
 例えば、高周波誘導加熱/単ロール急冷を使用する場合には、反応容器に予め投入された原料金属を誘導コイルで溶融した後、溶融された原料金属を溶融ノズルから単ロール表面上に射出することで急冷して生成物を得ることができる。加熱温度としては、原料の酸化鉄が溶融する温度(例えば1300℃)であればよい。本発明に係る溶融急冷処理は、生成物の純度を高める観点から、特に、原料金属からのフッ素の気化による脱離を抑制するために、可及的速やかに冷却する。このような操作により、本発明に従えば、目的とするFeOFを主成分とする生成物を極めて短時間(一般的には1分以内、例えば40秒)に生成することができる。
 一例として、本発明で用いられる高周波誘導加熱/単ロール急冷装置は、図1(a)に示すように、石英管1と、石英管1の内部に載置された下穴付き坩堝2と、石英管1の周囲を巻く銅製の銅チューブコイル3と、固体冷却媒体としての銅ロール4とから構成することができる。
 石英管1の内部に載置された下穴付き坩堝2の中に原料を入れ、下穴付き坩堝の下穴から落下する原料金属が銅チューブコイル3により誘導加熱(図中のAで示される)され、この誘導加熱された原料金属がガラスリボン状試料Bとなって金属製水冷ロールとしての銅ロール4に接触することにより急冷される。
 本発明に従う溶融急冷処理は、一般に、窒素ガスやアルゴンガスのような不活性ガス雰囲気下で行うが、取扱いの容易さからアルゴンガスを用いることが好ましい。
 溶融急冷処理の条件、例えば、処理時間、金属製水冷ロール(銅ロール)の回転速度、誘導加熱速度、冷却速度などは、XRDなどにより生成物を分析・確認して、可及的に不純物が少なく且つ目的の正極活物質の結晶が多く生成し得るように定めればよい。
 本発明に従えば、以下の反応により、非水電解質二次電池用の正極活物質の主成分となるFeOFが生成されるものと考えられる。
〔化1〕
Fe+FeF→ 3FeOF
 かくして、本発明に従えば、原料となるフッ化鉄FeFと酸化鉄Feの割合を化学量論比(等モル比)とすることによりFeOFを得ることができる。しかしながら、実際には、溶融急冷の際にフッ素が、フッ化鉄から気化して脱離しやすい性質をもつため、フッ化鉄と酸化鉄の割合は、化学量論比よりもフッ素過剰となるようにすることが好ましい。その割合は、採用する溶融(加熱)手段と急冷手段およびその実験条件に依る。例えば、実施例に示すような、高周波誘導加熱/単ロール急冷を用いて溶融急冷を行った場合は、酸化鉄に対するフッ化鉄のモル比(フッ化鉄/酸化鉄)は、酸化鉄に対するフッ化鉄のモル比(フッ化鉄/酸化鉄)を、1(化学量論比)以上であるが10以下とすることが好ましい。但し、フッ化鉄を過剰に入れ過ぎた場合には、得られた正極活物質の初回の放電容量が低下する傾向がある。
 さらに、本発明に従えば、例えば上述の方法によって製造され、FeOFを主成分とする正極活物質が提供される。本発明者が見出したところによれば、FeOFを主成分として50%以上含有していれば残部がフッ化鉄(FeF)および/または酸化鉄(Fe)であっても、非水電解質二次電池用正極活物質として充分な電池特性を有するものが得られる。前述したように、電池として利用可能なエネルギー密度を増大させるという観点から、FeOFの含有量が多い程、電池特性が良好になるので、60%以上が好ましいが、100%でなくても優れた電池特性を発揮する正極活物質が得られている。すなわち、本発明の態様に従えば、FeOFが50%以上、好ましくは60%以上であって、99%以下、特に好ましくは96%以下であり、残部がFeFおよび/またはFeから成る正極活物質が提供され。
 さらに、FeOFを主成分とする本発明の正極活物質は、CuKα線を用いるX線回折測定において、FeOFの(110)面の(101)面に対する回折ピークの強度比が2以上となっていることによっても特徴づけられる、当該回折ピークの強度比は、好ましくは2以上20以下であり、より好ましくは2以上10以下である。
 如上の本発明に係るFeOFを主成分とする正極活物質は、初回の放電容量が900mAh/gものほぼ理論容量に匹敵する放充電特性を有するものである(後述の実施例参照)。
 本発明に係るFeOFを主成分とする正極活物質は、非水電解質二次電池の正極としてそのまま用いてもよいが、電極のレート特性を向上させるために、公知の導電材との複合体を形成させてもよい。
 すなわち、本発明に従えば、レート特性を向上させる観点から、本発明に係るFeOFを主成分とする正極活物質を、不活性ガス雰囲気下で炭素微粒子と共に粉砕・混合することにより、カーボンコートすることができる。該炭素微粒子としては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック等を使用することができるが、電極として使用する際の導電性の高さからアセチレンブラックが好適である。不活性ガスとしては、窒素ガスやアルゴンガス等を用いることができ、例えば、アルゴンガスを用いることができる。
 カーボンコートの際の粉砕・混合に適用される具体的手段は、特に限定されるものではなく、固形物質の粉砕・混合の目的で従来から用いられている各種の手段が適用可能であるが、好ましいのは、ボールミルであり、そのうち特に、原料を充分に粉砕・混合することができる点から遊星型ボールミル(planetary ball milling)を用いることが好ましい。
 本発明に従えば、非水電解質二次電池用のFeOFを主成分とする正極活物質、該正極活物質を含む二次電池正極、および該正極に負極を組み合わせた二次電池が提供される。
 本発明に従う正極を作製する際には、上記の正極活物質を用いるほかは公知の電極の作製方法に従えばよい。例えば、上記活物質の粉末を必要に応じてポリエチレン等の公知の結着材、さらに必要に応じてアセチレンブラック等の公知の導電材と混合した後、得られた混合粉末をステンレス鋼製等の支持体上に圧着成形したり、金属製容器に充填したりすることができる。このような正極の例として、ペレット電極がある。ペレット電極としては、例えば、図1(b)に示すように、ペレット電極10aと、スペーサー11aと、コインセル容器(下蓋)12と、ニッケル製のニッケルメッシュ13とから構成することができる。ペレット電極10aは、例えば、10mmの厚さとすることができる。スペーサー11aは、ニッケルメッシュ13を載置し、このニッケルメッシュ13上にペレット電極10aを載置する。
 また、例えば、上記混合粉末をトルエン等の有機溶剤と混合して得られたスラリーをアルミニウム、ニッケル、ステンレス、銅等の金属基板上に塗布する等の方法によっても本発明の正極を作製することができる。このような正極の例として、塗布電極がある。塗布電極としては、例えば、図1(c)に示すように、塗布電極10bと、スペーサー11bと、コインセル容器(下蓋)12とから構成することができる。塗布電極10bは、例えば、10mmの電極径とすることができる。スペーサー11bは、上面中央部に塗布電極10bがスポット溶接される。
 以上の正極と組み合わせて用いられる負極(負極活物質)としては、リチウムの化合物またはその合金などを用いることができる。
 負極の作製は公知の方法に従えばよく、例えば、正極に関連して上述した方法と同様にして作製することができる。すなわち、例えば、負極活物質の粉末を必要に応じて、既述 の公知の結着材、さらに必要に応じて、既述の公知の導電材と混合した後、この混合粉末をシート状に成形し、これをステンレス、銅等の導電体網(集電体)に圧着すればよい。また、例えば、上記混合粉末を既述の公知の有機溶剤と混合して得られたスラリーを銅等の金属基板上に塗布することにより作製することもできる。
 その他の構成要素としては、公知の非水電解質二次電池に使用されるものを構成要素として使用できる。例えば、以下のものが例示できる。
 電解液は通常、電解質及び溶媒を含む。電解液の溶媒としては、非水系であれば特に制限されず、例えば、カーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができる。これらの例としては、1,2?ジメトキシエタン、1,2?ジエトキシエタン、テトラヒドロフラン、2?メチルテトラヒドロフラン、エチレンカーボネート(EC)、ビニレンカーボネート、メチルホルメート、ジメチルスルホキシド、プロピレンカーボネート、アセトニトリル、γ?ブチロラクトン、ジメチルホルムアミド、ジメチルカーボネート(DMC)、ジエチルカーボネート、スルホラン、エチルメチルカーボネート、1,4?ジオキサン、4?メチル?2?ペンタノン、1,3?ジオキソラン、4?メチル?1,3?ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2?ジクロロエタン、リン酸トリメチル、リン酸トリエチル等を挙げることができる。これらは1種または2種以上で用いることができ、例えば、ジメチルカーボネート(DMC)およびエチレンカーボネート(EC)を使用することができる。
 電解液に含まれる電解質としては、上記の溶媒に、負極活物質中のリチウムイオンが、上記正極活物質又は正極活物質及び負極活物質と電気化学反応するための移動を行うことができる電解質物質、例えば、LiClO、LiPF、LiBF、LiCFSO、LiAsF、LiB(C、LiCl、LiBr、CHSOLi、CFSOLi、LiN(SOCF、LiN(SO、LiC(SOCF、LiN(SOCF等を使用することができ、例えばLiPFを使用することができる。
 本発明に係る非水電解質二次電池は、セパレータ、電池ケース他、構造材料等の要素についても従来公知の各種材料を使用することができ、特に制限はない。本発明に係る非水電解質二次電池は、上記の電池要素を用いて公知の方法に従って組み立てればよい。この場合、電池形状についても特に制限されることはなく、例えば円筒状、角型、コイン型等種々の形状、サイズを適宜採用することができる。
 以下に、本発明の特徴をさらに具体的に示すために実施例を記すが、本発明は以下の実施例によって制限されるものではない。
(実施例1)
溶融急冷法によるFeOFを主成分とする正極活物質の合成
 出発物質には、酸化鉄Fe(添川理化学)とフッ化鉄FeF3 (添川理化学)を使用した。出発物質はグローブボックス内で、FeとFeFがモル比で1:2.33(Fe:FeF)になるよう秤量し、瑪瑙乳鉢により充分に混合した。混合した前駆体出発物質は下穴付き白金坩堝(高さ50 mm, 穴直径12 mm)の高さ約1/3となるまで入れた後、当該白金坩堝を石英管(高さ約100 mm, 直径約15 mm)の内壁と約1mmのギャップ(壁間隔)で、石英管の内部に導入し、単ロール溶融急冷装置にセットした。石英管内部の空気を約10分間脱気して圧力を10?3torrとした後、アルゴンガス雰囲気として封鎖した。誘導加熱し、約5秒間で約1300℃(石英管の長手方向に長さ15mmで石英管の周囲に巻かれたチューブコイルの隙間から石英管に光を照射することで測定)に昇温させた。この温度を約40秒間維持した。原料が溶融した後に上記下穴から滴下したのを見計らって、アルゴンガスを石英管に約1分間追加注入し、2000rpmで回転する銅ロール上に上記下穴から射出させてガラスリボン状のサンプルを得た。試料の大気暴露を避けるため、得られたサンプルはグローブボックス内で瑪瑙乳鉢を用いて粉末状にして正極活物質とした。なお、試料の合成における大気暴露は単ロール急冷装置への白金坩堝の設置およびその後の試料回収時のみとした。
XRD測定
(測定の方法)
 得られた正極活物質サンプルをCuKα線を用いてX線回折測定(リガクTTRIIIを使用)した。
(測定の結果)
 XRD回折測定により得られた結果を図2(a)に示す。サンプルは、既に報告されている空間群P4/mnm(ルチル型正方晶系構造)のFeOFに帰属された。この結果から、溶融急冷法によってFeOFが合成されたことが示された。
電極の作製
 溶融急冷により得られた正極活物質サンプルを瑪瑙乳鉢で粉砕後、重量比でFeOF:アセチレンブラック:PTFE結着剤を70:25:5で秤量し、f10mmディスク(約30mg)に収納してペレットに成型して正極とした。この正極に、リチウム金属を負極として、電解液に1 mol dm-3 ヘキサフルオロリン酸リチウム/エチレンカーボネート+ジメチルカーボネート[LiPF6 / EC+DMC(体積比EC:DMC=1:1)]を用いてステンレス製の2032型コインセル(直径20×3.2mm)を作成し、以下の放充電試験を行った。
充放電試験
 充放電測定モードはCCVモードで行った。測定条件は、1Li脱離の理論容量を1時間で充放電する電流密度を1Cレートとし、電流密度0.2 mA/cm2、電圧範囲1.3 V?4.0 Vで行った。第1サイクルと第2サイクルにおける放充電特性の結果を図2(b)に示す。同図の結果から、放電能力は404mAh/gに達したことが示された。
 図3(a)に、リチウム金属に対するFeOFの電流密度と放電容量の結果を示す。同図(a)の結果から、電流密度が1/4C(図中の横軸0.25)の場合にも350mAh/gを維持していることが示された。さらに、同図(b)に、電圧ごとに測定した充放電容量の結果を、サイクル数を横軸にして示す。同図(b)中の(A)電圧(1.3?4.0V)で測定した充放電容量の結果から、FeOFの放電容量は、FeOFあたり1.8Liに相当する550mAh/gに達しており、さらに10サイクル経過後も、431mAh/gを維持していることが示された。また、同図(b)における(B)および(C)は、それぞれ1Li定電流放電(定電流60mA/g;電流密度0.11mA/cm)で測定した充放電容量の結果および電圧(2.0?4.0V)で測定した充放電容量の結果を示したものであるが、これらの結果から、10サイクル経過後も、放充電によって容量が低下することなく一定の容量が維持されたことが示された。
(実施例2)
異なる原料比でのFeOFを主成分とする正極活物質の合成
 上述の実施例1と原料のモル比を変えて正極活物質を作製した。すなわち、FeとFeFのモル比を変えて(具体的には、酸化鉄Fe:フッ化鉄FeF=(1:2.13)、(1:1.86)、(1:5)、(1:10)を選定)秤量し、上記の実施例1と同様の手順でFeOFを主成分とする正極活物質を作製した。
 また、実施例1と溶融時間を変えて、45秒の溶融時間で得られた正極活物質サンプルに対してもX線回折測定を行った
組成の算出および回折ピークの強度比の算出
(算出の方法)
 得られた正極活物質サンプルの組成および回折ピークの強度比は、上述のCuKα線を用いたX線回折測定の結果から算出した。
 すなわち、得られた正極活物質サンプルにおけるFeOFおよび残部成分(FeFおよびFe)の組成(%)は、得られた正極活物質サンプルをCuKα線を用いてX線回折測定した際に現れるFeOF、FeFおよびFeのそれぞれに由来するメインピークの強度比(ピークハイト比)から算出した(後述の表1参照)。
 また、回折ピークの強度比については、CuKα線を用いてX線回折測定した際に現れるFeOFの(110)面および(101)面のそれぞれに由来するメインピークの強度比(ピークハイト比)から算出した(後述の表2参照)。
 上述したXRD測定結果(チャート)を、実施例1の結果(原料の組成比が酸化鉄Fe:フッ化鉄FeF=1:2.33の場合)を含めて図4(a)に示す。また、図4(b)には、原料の組成比が酸化鉄Fe:フッ化鉄FeF=(1:2.33)、(1:1.86)で溶融時間を45秒にした場合に得られた正極活物質サンプルのXRD測定結果(チャート)を示す。
 図中、横軸の2θの値について、aで示されるピークがFeFに由来するメインピークであり、bで示されるピークがFeに由来するメインピークであり、cで示されるピークがFeOFの(110)面に由来するメインピークであり、dで示されるピークがFeOFの(101)面に由来するメインピークである。例えば、図4(a)から、原料の組成比がFe:FeF=1:10の場合については、FeOF、FeFおよびFeのそれぞれに由来するメインピークの強度比(ピークハイト比)がFeF:Fe:FeOF=a:b:c=4:0:6となっていることから、その組成比については、FeOFが60%でありFeFが40%であると算出した。また、図4(a)から、当該原料の組成比の場合について、FeOFの(110)面および(101)面のそれぞれに由来するメインピークの強度比(ピークハイト比)は、FeOF(110):FeOF(101)=5.9:1を算出した。
(算出の結果)
 上述のように、得られたFeOFを主成分とする正極活物質に含まれる各成分の組成(%)について、XRD回折測定により算出した以下の結果が得られた。
Figure JPOXMLDOC01-appb-T000001
 上記の結果から、原料の組成比が酸化鉄Fe:フッ化鉄FeF=1:1.86の場合の生成物にFeの存在が認められた。また、この組成比(酸化鉄Fe:フッ化鉄FeF=1:1.86)よりもフッ化鉄FeFの配合割合を増やした場合には、生成物にFeの存在は認められなかった。このことから、化学量論比よりも過剰のフッ化鉄FeFを配合することによって、酸化鉄Feの残存が抑制されたものと考えられる。
 さらに、上述のように、得られたFeOFを主成分とする正極活物質におけるFeOFの(110)面の(101)面に対する回折ピークの強度比から以下の結果が得られた。
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、本発明によれば、CuKα線を用いるX線回折測定において、FeOFの(110)面の(101)面に対する回折ピークの強度比が高く2以上であるFeOFを主成分とする正極活物質が得られたことがわかった。
 また、図4(b)から、実施例1の溶融時間を45秒に変えた場合には、実施例1では残存しなかった原料の酸化鉄Feが、生成物に残存する傾向があった。このため、実施例1の実験条件に関しては溶融時間が40秒であることが好適であることがわかった。
充放電試験
 得られた正極活物質について実施例1と同様に充放電試験を実施した。その結果を図5に示す。
 先ず、酸化鉄Fe:フッ化鉄FeF=(1:1.86)、(1:2.13)、(1:2.33)から得られた正極活物質に関して、1.3V?4.0V(0.2mA/cm、1 M LiPF6、 EC:DMC=1:1)の放充電特性を図5(a)に示す。同図から、いずれの原料の場合においても二次電池の正極として十分な品質のFeOFを主成分とする正極活物質が得られている。
 また、酸化鉄Fe:フッ化鉄FeF=1:10から得られた正極活物質に関して、0.7V?4.0V(10mA/g(0.035mA/cm)、1 M LiPF6、 EC:DMC=1:1)の放充電特性を、図5(b)に示す。同図(b)から、初回の放電容量が800mAh/g近傍まで到達しており、二次電池の正極として十分な品質のFeOFを主成分とする正極活物質が得られていることが示された。特にFeF由来のインサーション電位である3.2VとFeOF由来のインサーション電位である2.5Vで放充電曲線が平坦となっていることがわかった。このことから、FeFとFeOFの優れた特性を併せ持つ従来に無い正極活物質が得られることがわかった。
 上記図5(a)に示した正極活物質のうち、最も良好な結果を示した酸化鉄Fe:フッ化鉄FeF=1:2.33から得られた正極活物質に関しては、さらに、0.7V?4.0V(10mA/g(0.035mA/cm)、1 M LiPF6、 EC:DMC=1:1)における放充電特性を確認した結果を図5(c)に示す。同図(c)から、上述した同図(b)の場合(原料が酸化鉄Fe:フッ化鉄FeF=(1:10)の場合)と比較して、さらに優れた初回の放電容量900mAh/g(ほぼ理論容量に匹敵)という驚くべき放充電特性が得られたことが分かった。
 以上のように、FeOFを主成分とし、残部がフッ化鉄FeFおよび/または酸化鉄Feから成る本発明に係る正極活物質は、極めて良好な電池特性を示すことがわかった。
1 石英管
2 下穴付き坩堝
3 銅チューブコイル
4 銅ロール
10a ペレット電極
10b 塗布電極
11a スペーサー
11b スペーサー
12 コインセル容器(下蓋)
13 ニッケルメッシュ

Claims (4)

  1. FeOFを主成分とする正極活物質の製造方法であって、酸化鉄Feとフッ化鉄FeFとを共に固体状態で混合し、不活性ガス雰囲気下で溶融急冷する工程を含むことを特徴とする正極活物質の製造方法。
  2. 高周波誘導加熱と単ロール急冷を用いて溶融急冷を行い、酸化鉄Feに対するフッ化鉄FeFのモル比を1以上10以下とすることを特徴とする請求項1に記載の正極活物質の製造方法。
  3. FeOFが50%以上であり、残部がフッ化鉄FeFおよび/または酸化鉄Feから成るFeOFを主成分とすることを特徴とする正極活物質。
  4. FeOFが50%以上であり、残部がフッ化鉄FeFおよび/または酸化鉄Feから成り、CuKα線を用いるX線回折測定において、FeOFの(110)面の(101)面に対する回折ピークの強度比が2以上である、FeOFを主成分とすることを特徴とする正極活物質。
PCT/JP2012/066071 2011-06-22 2012-06-22 オキシフルオロライト系正極活物質の製造方法およびオキシフルオロライト系正極活物質 WO2012176907A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280030992.1A CN103718352B (zh) 2011-06-22 2012-06-22 氟氧化物系正极活性物质的制造方法及氟氧化物系正极活性物质
KR1020137033270A KR20140024920A (ko) 2011-06-22 2012-06-22 옥시플루오로라이트계 양극 활물질의 제조 방법 및 옥시플루오로라이트계 양극 활물질
US14/128,470 US9312538B2 (en) 2011-06-22 2012-06-22 Method for producing iron oxyfluoride positive electrode active substance and iron oxyflouride positive electrode active substance
JP2013521648A JP5991680B2 (ja) 2011-06-22 2012-06-22 オキシフルオロライト系正極活物質の製造方法およびオキシフルオロライト系正極活物質
EP12802330.6A EP2725643B1 (en) 2011-06-22 2012-06-22 Method for producing iron oxyfluoride positive electrode active substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-138850 2011-06-22
JP2011138850 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012176907A1 true WO2012176907A1 (ja) 2012-12-27

Family

ID=47422734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066071 WO2012176907A1 (ja) 2011-06-22 2012-06-22 オキシフルオロライト系正極活物質の製造方法およびオキシフルオロライト系正極活物質

Country Status (6)

Country Link
US (1) US9312538B2 (ja)
EP (1) EP2725643B1 (ja)
JP (1) JP5991680B2 (ja)
KR (1) KR20140024920A (ja)
CN (1) CN103718352B (ja)
WO (1) WO2012176907A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220203A (ja) * 2013-05-10 2014-11-20 国立大学法人九州大学 ナトリウムイオン電池用の正極活物質およびその製造方法
EP2973800A4 (en) * 2013-03-13 2016-10-05 Quantumscape Corp IRON, FLUOROUS AND SULFUR COMPOUNDS FOR CATHODES
US10326135B2 (en) 2014-08-15 2019-06-18 Quantumscape Corporation Doped conversion materials for secondary battery cathodes
US10511012B2 (en) 2012-07-24 2019-12-17 Quantumscape Corporation Protective coatings for conversion material cathodes
JPWO2019004288A1 (ja) * 2017-06-30 2020-04-23 株式会社村田製作所 非水系二次電池用の正極活物質、およびそれを用いた非水系二次電池
US11764398B1 (en) * 2022-04-29 2023-09-19 Toyota Motor Engineering & Manufacturing North America, Inc. Inorganic precursors for ionic conductors

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282882B (zh) * 2014-09-26 2017-01-11 江苏华东锂电技术研究院有限公司 正极复合材料及其制备方法
US20210249654A1 (en) * 2018-06-13 2021-08-12 Yadong Liu Fast charge feof cathode for lithium ion batteries
CN111129423B (zh) * 2018-10-30 2021-08-06 深圳市比亚迪锂电池有限公司 一种锂离子电池负极材料及其制备方法、锂离子电池负极和锂离子电池
CN110508299B (zh) * 2019-09-03 2022-04-19 北京邮电大学 一种迅速升温制备二维局域氧化的过渡族金属氟化物催化剂方法
CN112542581A (zh) * 2019-09-20 2021-03-23 华中科技大学 一种电化学过程制备预锂化剂的方法
CN113871591B (zh) * 2021-09-24 2023-04-11 中国科学院过程工程研究所 一种铁基电极材料及其制备方法和应用
WO2023184274A1 (zh) * 2022-03-30 2023-10-05 宁德新能源科技有限公司 正极活性材料、电化学装置和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955200A (ja) * 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> 非水電解質電池
JP2009064707A (ja) 2007-09-07 2009-03-26 Panasonic Corp 非水電解液二次電池用活物質及びそれを用いた電池
WO2009143324A1 (en) * 2008-05-23 2009-11-26 Rutgers, The State University Iron oxyfluoride electrodes for electochemcial energy storage
WO2010114104A1 (ja) * 2009-04-03 2010-10-07 旭硝子株式会社 リン酸鉄リチウム粒子の製造方法および二次電池の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365269A (en) * 1964-09-14 1968-01-23 Du Pont Ferromagnetic metal oxyfluorides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955200A (ja) * 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> 非水電解質電池
JP2009064707A (ja) 2007-09-07 2009-03-26 Panasonic Corp 非水電解液二次電池用活物質及びそれを用いた電池
WO2009143324A1 (en) * 2008-05-23 2009-11-26 Rutgers, The State University Iron oxyfluoride electrodes for electochemcial energy storage
WO2010114104A1 (ja) * 2009-04-03 2010-10-07 旭硝子株式会社 リン酸鉄リチウム粒子の製造方法および二次電池の製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
F. BADWAY; F. COSANDEY; N. PEREIRA; G.G. AMATUCCI, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 150, no. 10, 2003, pages A1318 - A1327
H. LIU; G. WANG; J. PARK; J. WANG; H. LIU; C. ZHANG, E/ECTROCHIMICA ACTA, vol. 54, 2009, pages 1733 - 1736
M. VLASSE; J. C. MASSIES; G. DEMAZEAU, JOURNAL OF SOLID STATE CHEMISTRY, vol. 2, no. 8, 1973, pages 109 - 113
N. PEREIRA; F.B ADWAY; M. WARTELSKY; S. GUNN; G.G. AMATUCCI, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 156, no. 6, 2009, pages A407 - A416
N. RECHAM; L. LAFFONT-DANTRAS; M. ARMAND; J. -M. TARASCON, ECS MEETING ABSTRACTS, vol. 802, 2008, pages 594
See also references of EP2725643A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10511012B2 (en) 2012-07-24 2019-12-17 Quantumscape Corporation Protective coatings for conversion material cathodes
EP2973800A4 (en) * 2013-03-13 2016-10-05 Quantumscape Corp IRON, FLUOROUS AND SULFUR COMPOUNDS FOR CATHODES
US9786905B2 (en) 2013-03-13 2017-10-10 Quantumscape Corporation Iron, fluorine, sulfur compounds for battery cell cathodes
JP2014220203A (ja) * 2013-05-10 2014-11-20 国立大学法人九州大学 ナトリウムイオン電池用の正極活物質およびその製造方法
US10326135B2 (en) 2014-08-15 2019-06-18 Quantumscape Corporation Doped conversion materials for secondary battery cathodes
JPWO2019004288A1 (ja) * 2017-06-30 2020-04-23 株式会社村田製作所 非水系二次電池用の正極活物質、およびそれを用いた非水系二次電池
JP7047841B2 (ja) 2017-06-30 2022-04-05 株式会社村田製作所 非水系二次電池用の正極活物質、およびそれを用いた非水系二次電池
US11764398B1 (en) * 2022-04-29 2023-09-19 Toyota Motor Engineering & Manufacturing North America, Inc. Inorganic precursors for ionic conductors

Also Published As

Publication number Publication date
US9312538B2 (en) 2016-04-12
JP5991680B2 (ja) 2016-09-14
CN103718352B (zh) 2016-12-14
EP2725643A1 (en) 2014-04-30
JPWO2012176907A1 (ja) 2015-02-23
EP2725643B1 (en) 2019-01-02
CN103718352A (zh) 2014-04-09
KR20140024920A (ko) 2014-03-03
US20140291573A1 (en) 2014-10-02
EP2725643A4 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5991680B2 (ja) オキシフルオロライト系正極活物質の製造方法およびオキシフルオロライト系正極活物質
JP7288059B2 (ja) シリコン酸素複合負極材料、その調製方法及びリチウムイオン電池
EP2768051B1 (en) Silicon-based composite and method for manufacturing same
JP5099737B2 (ja) 電極活物質及びその製造方法ならびに非水電解質二次電池
KR101531451B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및, 리튬 이온 이차 전지 및 캐패시터
CN111180692B (zh) 一种用于电池的负极活性材料及其制备方法
JP2007534118A (ja) リチウムイオン電池に使用するための負電極材料中のナノスケールシリコン粒子
JP2005317512A (ja) 非水電解質電池
KR20110111433A (ko) 리튬실리케이트계 화합물의 제조 방법, 이 제조 방법에 의해 얻어진 리튬실리케이트계 화합물로 이루어진 리튬 이온 이차 전지용 정극 활물질, 상기 화합물을 포함하는 리튬 이차 전지용 정극 및 리튬 이차 전지
JP2008226463A (ja) リチウム二次電池、正極活物質被覆用粒子の製造方法およびリチウム二次電池の製造方法
JP2007335325A (ja) 非水電解質二次電池用正極活物質及び電池
KR20070086541A (ko) 전극 활성 물질의 제조 방법
JP5497177B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
KR20130088483A (ko) 이차 전지용 음극 활물질 및 이를 포함하는 이차 전지
JP2009064732A (ja) 電極活物質およびそれを用いたリチウム二次電池
JP5662485B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
EP2762449B1 (en) Method of manufacturing a silicon oxide-carbon composite
WO2011030486A1 (ja) 珪素酸化物およびリチウムイオン二次電池用負極材
JP5721171B2 (ja) 電極活物質およびその製造方法
JP3624417B2 (ja) 負極活物質及びその製造方法、並びに非水電解質電池
CA2543721C (en) Electroactive material and use thereof
JP2012204307A (ja) 正極活物質およびその製造方法
KR101423652B1 (ko) 이차 전지용 음극 활물질 및 그 제조 방법
JP2004185881A (ja) 非水電解質電池用電極材料、電極及び非水電解質電池
JP7178278B2 (ja) 蓄電デバイス用負極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802330

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20137033270

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013521648

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012802330

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14128470

Country of ref document: US