WO2012175669A1 - Fluides traceurs a effet memoire pour l'etude d'un gisement petrolier - Google Patents

Fluides traceurs a effet memoire pour l'etude d'un gisement petrolier Download PDF

Info

Publication number
WO2012175669A1
WO2012175669A1 PCT/EP2012/062084 EP2012062084W WO2012175669A1 WO 2012175669 A1 WO2012175669 A1 WO 2012175669A1 EP 2012062084 W EP2012062084 W EP 2012062084W WO 2012175669 A1 WO2012175669 A1 WO 2012175669A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
subsoil
fluorophore
memory effect
fluorescent
Prior art date
Application number
PCT/EP2012/062084
Other languages
English (en)
Inventor
Pascal Perriat
Nicolas Crowther
Matteo Martini
Olivier Tillement
Thomas BRICHART
Nicolas AGENET
Original Assignee
Total Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Sa filed Critical Total Sa
Priority to EP12730898.9A priority Critical patent/EP2723827A1/fr
Priority to US14/128,323 priority patent/US20150001385A1/en
Publication of WO2012175669A1 publication Critical patent/WO2012175669A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/02Prospecting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/11Locating fluid leaks, intrusions or movements using tracers; using radioactivity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/008Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6497Miscellaneous applications

Definitions

  • the field of this invention is that of the exploration and exploitation of oil deposits. More specifically, this invention relates to the development of nanoparticles and tracer fluids containing them, intended to be injected into a well, and collected by inversion of the fluid flow by the same well.
  • the tracer fluids according to the invention have the advantage of producing a fluorescent signal with a memory effect, that is to say a signal modified according to the physicochemical conditions encountered in the medium traversed by the nanoparticles after injection into the subsoil. geological.
  • the analysis of the fluorescent signals in the fluids collected after diffusion makes it possible to deduce information on the characteristics of the oil reservoir.
  • tracers it is well known in the prior art to use tracers to obtain information on a petroleum deposit or more generally on a resource of a geological subsoil, a hydrocarbon deposit, water, gas, oil or oil. Techniques using, for example, tracers with different partition coefficients have been described. The principle is based in particular on chromatography. One of the tracers interacts more specifically with certain fluids contained in the rock, for example, the oil, and its diffusion will be curbed in the presence of oil. By quantifying the diffusion delay with respect to a tracer which interacts little or nothing with its environment (stealth tracer), we deduce the amount of oil contained in the deposit.
  • US Pat. No. 3,623,842 describes a method for measuring oil saturation in the vicinity of a well ("Single Well Tracer Test") of injecting a first tracer. partitioning (water / oil), the latter releasing a stealth tracer after a certain time of diffusion in the porous medium.
  • the Institute for Energy Technology (IFE) website features a power point presentation entitled SIP 2007 - 2009 "New functional tracers based on nanotechnology and radiator generators Department for Reservoir and Exploration Technology” (last modification dated March 7, 2011 ).
  • this paper suggests the use of surface-modified nanoparticles as a tracer for flow control in oilfields and oil wells and in process studies. More precisely, this presentation also describes functionalized tracers capable of emitting a modulated signal depending on the physicochemical conditions traversed.
  • the French patent application FR2867180-A1 describes hybrid nanoparticles comprising, on the one hand, a core consisting of a rare earth oxide, possibly doped with a rare earth or an actinide or a mixture of grounds. rare or a mixture of rare earths and actinide and, secondly, a coating around this core, said coating consisting mainly of polysiloxane functionalized with at least one biological ligand grafted by covalent bonding.
  • the heart may be based Gd 2 0 3 doped with Tb or uranium and the coating of polysiloxane can be obtained by reacting aminopropyltriethoxysilane, a tetraethyl and triethylamine.
  • nanoparticles are used as probes for the detection, monitoring, and quantification of biological systems.
  • fluorescent objects often have a fluorescence closely related to the physicochemical conditions encountered with a very strong possible variation of their emission spectra, their excitation spectra, their emission lifetime or their quantum yields.
  • fluorescein and its derivatives are in turn very sensitive to pH conditions and may have an emission intensity that varies by several orders of magnitude between an acidic and basic pH (N. Clonis, WH Sawyer, " Spectral properties of the prototropic forms of fluorescein in acqueous solution ", J. Fluorescence, 1996, 6, 147).
  • the degradation of the fluorescence signal can nevertheless give information on the medium encountered and could then be used as a "memory effect" signal of the conditions encountered.
  • the inventors have had to develop new tracers having a modified fluorescence detectable by time resolved (related to the lanthanide emission in particular), even in the presence of a strong background related to the organic compounds present in them. different oils.
  • the present invention aims to satisfy at least one of the following objectives: proposing a new method of studying a solid medium, for example a petroleum deposit, by diffusion of a liquid through said solid medium, which is simple to implement and economical;
  • nanoparticles having a memory effect fluorescence signal that is to say whose emission and / or excitation spectrum is modified according to the physico-chemical conditions of the medium through;
  • a new tracer fluid comprising these nanoparticles that can be used in particular in a method for studying a solid medium, for example a petroleum deposit by diffusion of said liquid through said solid medium and recovery by the same well by inversion of the flow.
  • the invention concerns in the first place a method of studying a geological subsoil, such as a petroleum deposit, by diffusion of an injection liquid into said basement, characterized in that it comprises the following steps:
  • o injection liquid is injected into the subsoil to be studied, comprising nanoparticles:
  • at least a portion of which consists of a heart and, where appropriate, a matrix coating the heart;
  • the matrix comprises at least one or more fluorescent entities capable (s) to produce at least one memory effect fluorescence signal, i.e. a signal fluorescence irreversibly modified according to the physicochemical conditions encountered in the subsoil;
  • the injected injection liquid is collected at different times following the injection period
  • the nanoparticles comprises
  • At least one organic fluorophore At least one organic fluorophore, and
  • the combination of the two types of fluorophores being chosen so that the nanoparticle produces at least one memory effect fluorescence signal.
  • the invention also relates to a tracer fluid that can be used in particular in the process according to the invention, and characterized in that it comprises nanoparticles:
  • the matrix comprises at least one organic fluorophore and at least one organometallic fluorophore
  • the combination of the two types of fluorophores being chosen so that the nanoparticle produces at least one memory effect fluorescence signal, said signal being detectable by time resolved fluorescence.
  • the nanoparticles are capable of emitting at least one memory effect fluorescence signal, and at least one stable fluorescence signal, that is to say which does not vary as a function of the physicochemical conditions. encountered or whose variation is not irreversible.
  • the studied subsoil e.g. rocks
  • the studied subsoil may be of varied geological nature.
  • it is a question of studying a hydrocarbon underground deposit, and more particularly a petroleum deposit.
  • it involves measuring the proportion of oil and water around a well as well as characterizing the physicochemical properties such as pH or redox potential.
  • They have a mean diameter of between 20 and 200 nm; They are capable of forming a stable colloidal suspension in a saline medium;
  • the core and / or, where appropriate, the matrix comprise at least one or more fluorescent entities capable of producing at least one memory effect fluorescence signal, that is to say a modified fluorescence signal irreversibly depending on the physico-chemical conditions encountered in the subsoil.
  • These nanoparticles are detectable, that is to say that one can identify their presence or not in the medium beyond a certain concentration and that one can even quantify their concentration as soon as they are present in the middle.
  • nanoparticles are capable of forming a stable colloidal suspension in a saline medium, which sediments little. For example, this suspension shows no precipitation or agglomeration over time, e.g. after 6 months at room temperature.
  • the core of the nanoparticles contains at least one material chosen from the group comprising: semiconductors, noble metals (eg Au, Ag, Pt), fluorides, vanadates or oxides of earths rare and their mixtures and / or alloys; preferably a lanthanide; their alloys and mixtures thereof and, more preferably still, a lanthanide chosen from the subgroup consisting of: Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb, and their mixtures and / or alloys .
  • noble metals eg Au, Ag, Pt
  • fluorides vanadates or oxides of earths rare and their mixtures and / or alloys
  • a lanthanide their alloys and mixtures thereof and, more preferably still, a lanthanide chosen from the subgroup consisting of: Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb, and their mixtures and / or alloys .
  • the nanoparticles furthermore contain a preferably transparent matrix chosen from the group of materials comprising: silicas, polysiloxanes, aluminas, zirconiums, aluminates, aluminophosphates, metal oxides (for example ⁇ 2 , ZnO, CeO 2 , Fe 2 0 3, ...) and their mixtures and / or alloys, this matrix including therein and / or thereon:
  • luminescent entities selected from the group consisting of rare earth semiconductors, oxides, fluorides or vanadates, organic fluorescent molecules (preferably fluorescein and / or rhodamine), transition metal ions, rare earths, whether bound to complexing molecules and / or to molecules for improving their absorption and their mixtures and / or alloys, ii. optionally other entities allowing a modification of the luminescence properties and chosen from the group comprising: noble metal particles and their mixtures and / or alloys; iii. and the mixtures of these entities (i) and (ii).
  • the nanoparticles preferably have a matrix functionalized on the surface, that is to say which comprises R radicals grafted, preferably covalently, preferably based on silane Si-R bonds at the surface and issued from:
  • hydrophilic compounds preferably hydrophilic organic compounds, with molar masses of less than 5000 g / mol and more preferably less than 450 g / mol, preferably chosen from organic compounds comprising at least one of the following functions: : alcohol, carboxylic acid, amine, amide, ester, ether-oxide, sulphonate, phosphonate and phosphinate, and the mixtures of these hydrophilic compounds possibly charged,
  • neutral hydrophilic compounds preferably a polyalkylene glycol, more preferably a polyethylene glycol, diethylene-triamine pentaacetic acid (DTP A), dithiol DTP A (DTDTPA) or a succinic acid, and mixtures of these neutral hydrophilic compounds,
  • the matrix may comprise, if appropriate, other materials chosen from the group consisting of silicas, aluminas, zirconiums, aluminates, aluminophosphates, metal oxides, or metals (example: Fe, Cu, Ni , Co ...) passivated at the surface by a layer of the oxidized metal or other oxide and their mixtures and alloys.
  • said nanoparticles comprise:
  • the matrix of the nanoparticles comprises radicals -R grafted at a rate
  • the solid medium to be studied namely for example the geological subsoil (eg rocks) containing the oil reservoir and, on the other hand, the nanoparticles
  • the nanoparticles according to the invention have an average diameter of preferably between 20 nm and 100 nm, for example between 20 nm and 50 nm.
  • the nanoparticles according to the invention have a polydispersity index of less than 0.3, preferably less than 0.2, for example less than 0.1.
  • the size distribution of the nanoparticles is for example measured using a commercial particle size analyzer, such as a Malvern Zeta sizer Nano-S granulometer based on the PCS (Photon Correlation Spectroscopy). This distribution is characterized by a mean diameter and a polydispersity index.
  • a commercial particle size analyzer such as a Malvern Zeta sizer Nano-S granulometer based on the PCS (Photon Correlation Spectroscopy). This distribution is characterized by a mean diameter and a polydispersity index.
  • mean diameter means the harmonic mean of the diameters of the particles.
  • the polydispersity index refers to the width of the size distribution derived from the cumulant analysis according to ISO 13321: 1996.
  • an essential characteristic of the study method according to the invention lies in the use of nanoparticles capable of producing a memory effect signal.
  • the term "fluorescent signal with a memory effect” is used, a signal whose characteristics, for example the fluorescence intensity of the emission spectrum, the excitation spectrum, the emission lifetime, or the quantum yields, are irreversibly modified according to certain physico-chemical conditions encountered in the subsoil traversed.
  • the nature and / or intensity of the alteration of the fluorescent signal makes it possible to deduce certain physicochemical conditions from the environment traversed.
  • the physico-chemical conditions studied include, for example, the temperature of the subsoil, the pH, the hydrocarbon content or the redox potential of the subsoil traversed.
  • use will be made of nanoparticles comprising at least one or more fluorescent entities making it possible to produce at least one memory effect fluorescence signal and one or more fluorescent entities producing a stable signal, that is to say, unlike the memory effect, a signal that is not irreversibly modified depending on the physicochemical conditions encountered.
  • At least a part of the nanoparticles comprises:
  • the combination of the two types of fluorophores being chosen so that the nanoparticle produces at least one memory effect fluorescence signal.
  • an organic fluorophore that can be used, in combination with an organometallic fluorophore, to obtain a fluorescent signal with a memory effect
  • fluorescein for example fluorescein isothiocyanate FITC
  • rhodamine for example Rhodamine B isothiocyanate RBITC
  • other fluorescent species that have emission spectra in the same area as fluorescein or rhodamine, for example products with the trade names Alexa Fluor, Cy Dyes, Atto, FluoProbes.
  • the organometallic fluorophores of the nanoparticles are chosen from vanadates or oxides of rare earths, or mixtures thereof.
  • they are chosen from lanthanides, their alloys and their mixtures, linked to complexing molecules.
  • the organometallic fluorophores are detectable by time-resolved fluorescence. Lanthanides linked to complexing molecules are then particularly preferred.
  • the metals of the lanthanide series include atomic number elements from 57 (lanthanum) to 71 (lutetium).
  • lanthanides will be selected from the group consisting of: Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb and mixtures and / or alloys thereof, linked to complexing molecules, and preferably europium and terbium.
  • complexing molecules or "chelating agent” is meant any molecule capable of forming with a metal agent, a complex comprising at least two coordination bonds.
  • a complexing agent having a coordination of at least 6, for example at least 8, and a dissociation constant of the complex, pKd, greater than 10 and preferably greater than 15, with a lanthanide, will be chosen. .
  • dissociation constant pKd is understood to mean the measurement of the equilibrium between the ions in the complexed state by the ligands and those free dissociated in the solvent. Precisely, it is less the logarithm in the base of the dissociation product (- log (Kd)), defined as the equilibrium constant of the reaction which translates the transition from the complexed state to the ionic state.
  • complexing agents are preferably polydentate chelating molecules chosen from families of polyamine-type polycarboxylic acid molecules and having a high potential number of coordination sites, preferably greater than 6, such as certain macrocycles.
  • DOTA or 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, of the following formula, will be chosen:
  • cyclic agent an organic molecule, comprising at least one aromatic ring or heterocycle, preferably selected from benzene, pyridine or their derivatives, and capable of amplifying the fluorescent signal emitted by the organometallic fluorophore and / or the organic fluorophore, for example a complexing agent bound to lanthanide.
  • cyclic agents interesting if they are characterized by a high absorbance, are used in particular to amplify the fluorescent signal emitted by the fluorophores (antenna effect by transfer of the excitation of the agent towards the fluorophore).
  • the cyclic agent may be grafted covalently either directly to the polysiloxanes of the matrix or to the organometallic and / or organic fluorophore.
  • the organometallic fluorophores consisting of a lanthanide with a complexing agent are grafted to the polysiloxanes of the matrix of the nanoparticles covalently via an amide function.
  • Organic fluorophore and organometallic fluorophore contained in the same nanoparticle are chosen so as to produce a fluorescence signal with a memory effect, preferably detectable by fluorescence in time resolved.
  • the nanoparticles comprise at least one organic fluorophore chosen from fluorescein or one of its derivatives and at least one organometallic fluorophore chosen from europium (Eu) or terbium (Tb), linked to a complexing agent.
  • the nanoparticles comprise at least one organic fluorophore chosen from rhodamine or one of its derivatives, and at least one organometallic fluorophore selected from Eu or Tb, linked to a complexing agent.
  • the injection liquid may comprise a mixture of nanoparticles, each type of nanoparticle being characterized by the emission of one or more specific fluorescence signals, and in that said emitted signals by each type of nanoparticles are detectable by multiplex detection means.
  • the multiplex detection makes it possible to analyze several fluorescence signals (characterized for example by different wavelengths) in parallel on the same sample. Also, fluorescent entities of different emission and / or excitation wavelengths will be used according to each type of nanoparticle.
  • the injection liquid comprises at least two types of nanoparticles which are distinguished by their hydrophilic / lipophilic balance and / or their zeta potential, so that some nanoparticles have a fluorescent signal delayed relative to the other part of the nanoparticles because of their interaction with the subsoil.
  • nanoparticles interacting with certain rocks of the subsoil will see their memory effect signal more strongly modulated compared to the nanoparticles interacting little or not at all with these same rocks.
  • Nanoparticles that can be used in the process of the invention and their preparation are presented in the Examples below.
  • the injection liquid is injected and collected in the same well (the injection well and the production well are identical) by reversing the flow of the injected liquid.
  • At least one fluorescence detection is carried out in time resolved, that is to say triggered the detection with delay (eg a few microseconds) after an excitation pulse on one or more fluorescent entities contained in the nanoparticle and likely to emit a "stable" signal, that is to say which has not been irreversibly modulated according to the physicochemical conditions encountered.
  • the fluorescent signal (s) with memory effect is measured, preferably as a function of the time following the injection, again, preferably by time resolved fluorescence.
  • the method of the invention makes it possible to obtain information on the temperature variations experienced by the tracer fluid in the subsoil traversed.
  • the pH variations are deduced in the subsoil traversed.
  • the rate of exposure to certain hydrocarbons is deduced therefrom.
  • the invention relates to an injection liquid (or tracer fluid) in a petroleum reservoir that can be used in particular in the process defined above, characterized in that it comprises nanoparticles:
  • the matrix comprises at least one organic fluorophore and at least one organometallic fluorophore
  • the combination of the two types of fluorophores being chosen so that the nanoparticle produces at least a memory effect fluorescence signal, said signal being detectable by time resolved fluorescence.
  • this liquid comprises water and nanoparticles (or mixture of nanoparticles) as defined above.
  • the invention relates to a new use of the nanoparticles as defined above as tracers in injection waters of a petroleum deposit intended for the study of said deposit by diffusion of these injection waters. through this deposit, in particular to evaluate the volumes of oil in reserve in the deposit.
  • FIG. 1 shows the emission spectra of the three solutions according to Preparation 1, brought to room temperature with the excitation wavelength 330 nm (FIG La), and 395 nm (FIG Ib) measured with a delay of 0.1 ms and an acquisition time of 5 ms
  • FIG. 2 shows the emission spectrum of the three solutions according to Preparation 3 brought back to ambient temperature with excitation wavelength 285 nm (delay 0.1 ms, acquisition time 5 ms).
  • FIG. 3 shows the emission spectrum of the two solutions according to Preparation 2 brought back to ambient temperature with excitation wavelength 330 nm (delay 0.1 ms, acquisition time 5 ms).
  • FIG. 4 shows the emission spectrum of the three solutions according to Preparation 4 brought back to ambient temperature with the excitation wavelength 285 nm (delay
  • FIG. 5 shows the excitation spectrum at a fixed emission for europium at 615 nm of the three solutions according to Preparation 1 at different pH (0.1 ms delay, 5 ms acquisition time).
  • FIG. 6 shows the excitation spectrum at a fixed emission for europium at 615 nm of the two nanoparticle solutions according to Preparation 1 in the DEG and a DEG / water mixture (delay 0.1 ms, acquisition time 5 ms).
  • FIG. 7 shows the excitation spectrum of the three colloid solutions prepared according to Preparation 1 brought to room temperature with the emission wavelength of 615 nm, 0.1 ms delay, 5 ms acquisition time.
  • Preparation 1 Colloidal solution of nanoparticles with a gold core and a silica matrix encapsulating fluorescein-derived organic fluorophores and europium (DTPA) complexes.
  • DTPABA diethylenetriaminepentaaceticbisanhydride
  • APTES 0.065 ml of triethylamine
  • DMSO dimethylsulfoxide
  • EuCl 3 , 6H 2 O 200 mg of EuCl 3 , 6H 2 O
  • FITC fluorescein isothiocyanate
  • APTES (3-aminopropyl) triethoxysilane
  • the polymerization reaction of the silica is completed by the addition of 0.800 ml of NH 4 OH after 10 minutes.
  • the microemulsion is left stirring for 24 h at room temperature.
  • silane-gluconamide N- (3-Triethoxysilylpropyl) gluconamide
  • ethanol aqueous ethanol
  • 190 ⁇ l of Silane-gluconamide is again added to the solution still stirring at room temperature.
  • microemulsion is destabilized in a separatory funnel by adding a mixture of 250 ml of distilled water and 250 ml of isopropanol. The solution is allowed to settle at least 15 minutes and the lower phase containing the particles is recovered.
  • the colloidal solution recovered is then placed in a 300 kDa VIVASPIN® tangential filtration system and centrifuged at 4000 rpm until a purification rate of greater than 500 is obtained.
  • the solution thus obtained is then filtered at 0.2 ⁇ and diluted by 5 in DEG (diethylene glycol).
  • DEG diethylene glycol
  • the solution obtained is composed of particles of average size 50.25 nm and polydispersity index 0.091 with very good colloidal stability in a salty aqueous medium (up to 100 g of salts / L)
  • Preparation 2 Colloidal solution of nanoparticles with a gold core and a silica matrix encapsulating organic fluorophores derived from rhodamine B and complexes (DTPA) of europium.
  • the synthesis is similar to that described for Preparation 1 with the difference that the 20 mg of fluorescein isothiocyanate is replaced by 20 mg of rhodamine B isothiocyanate (RBITC). The rest of the synthesis is identical.
  • the solution thus obtained is composed of particles having a mean size of 48 nm and a polydispersity index of 0.072.
  • Preparation 3 Colloidal solution of nanoparticles with a gold core and a silica matrix encapsulating organic fluorophores derived from fluorescein and complexes (DTPA) of terbium.
  • the synthesis is similar to that described for Preparation 1 except that the 200 mg of EuCl 3 , 6H 2 O are replaced by 200 mg of TbCl 3 , 6H 2 0. The rest of the synthesis is identical.
  • the solution thus obtained is composed of particles of average size 43 nm and polydispersity index 0.069.
  • Preparation 4 Colloidal solution of nanoparticles with a gold core and a silica matrix encapsulating organic fluorophores derived from rhodamine B and complexes (DTPA) of terbium.
  • the synthesis is similar to that described for Preparation 1 with the difference that the 20 mg of fluorescein isothiocyanate is replaced by 20 mg of rhodamine B isothiocyanate (RBITC) and that the 200 mg of EuCl 3 , 6H 2 0 is replaced by 200 mg of mg of TbCl 3 , 6H 2 0.
  • RBITC rhodamine B isothiocyanate
  • the solution thus obtained is composed of particles of average size 46 nm and polydispersity index 0.073.
  • FIG. 1 shows the emission spectrum of the three solutions brought back to room temperature with excitation wavelength 330 nm (Fig. La), and 395 nm (Fig. Lb).
  • the luminescence curves (Fig. La) show a clear increase in the emission intensity of the particles (peak at 615 nm, specific for europium) in relation to the heat treatment time at 80 ° C. when the excitation is performed at 330 nm, while at 395 nm no variation is observed (Fig. lb).
  • the ratio of the emission peaks between these different excitations can thus serve as probes to measure the exposure time of the particles at the temperature 80 ° C.
  • Example 3 Detection of a fluorescent signal with memory effect as a function of the temperature of the environment using nanoparticles according to Preparation 2
  • FIG. 3 shows the emission spectrum of the two solutions brought back to ambient temperature with 330 nm excitation wavelength.
  • the luminescence curves show a clear decrease in the emission intensity of the particles (peak at 550 nm, specific for terbium) in relation to the heat treatment time at 80 ° C.
  • the intensity of the emission peaks can therefore be used as probes to measure the exposure time of the particles at the temperature 80 ° C, with a decrease in the intensity as a function of the exposure time.
  • Example 4 Detection of a fluorescent signal with memory effect as a function of the temperature of the environment using nanoparticles according to Preparation 4
  • FIG. 4 shows the emission spectrum of the three solutions brought to room temperature with excitation wavelength 285 nm.
  • the luminescence curves show a clear decrease in the emission intensity of the particles (peak at 550 nm, specific for terbium) in relation to the heat treatment time at 80 ° C.
  • the intensity of the emission peaks can therefore be used as probes to measure the exposure time of the particles at the temperature 80 ° C, with a decrease in the intensity as a function of the exposure time.
  • the luminescence curves show a clear increase in the excitation spectrum of the particles in relation to the increase in pH.
  • the intensity of the emission peaks (or excitation) can therefore be used as probes to measure the exposure pH of the particles.
  • the luminescence curves show a clear degradation of the excitation spectrum of the particles in relation to the increasing water content.
  • the intensity of emission peaks (or excitation) can therefore be used as probes to measure the rate of exposure of particles to different water contents.
  • FIG. 7 shows the excitation spectrum of the three solutions brought back to ambient temperature with the emission wavelength of 615 nm.
  • the luminescence curves show a clear variation in the excitation intensity of the 330 nm component of the particles in relation to the temperature of the treatment.
  • the intensity of the excitation peaks can therefore serve as probes for measuring the exposure temperature of the particles, with a decrease in the intensity as a function of the exposure temperature.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Le domaine de cette invention est celui de l'exploration et de l'exploitation de gisements pétroliers. Plus précisément, cette invention concerne la mise au point de nanoparticules et de fluides traceurs les contenant, destinés à être injecté dans un puits, et recueillis par inversion du flux du fluide par le même puits. Les fluides traceurs selon l'invention ont l'avantage de produire un signal fluorescent à effet mémoire, c'est-à-dire un signal modifié en fonction des conditions physicochimiques rencontrées dans le milieu traversé par les nanoparticules après injection dans le sous-sol géologique. L'analyse des signaux fluorescents dans les fluides recueillis après diffusion permet d'en déduire des informations sur les caractéristiques du gisement pétrolier.

Description

FLUIDES TRACEURS A EFFET MEMOIRE POUR L'ETUDE D'UN GISEMENT PETROLIER
Le domaine de cette invention est celui de l'exploration et de l'exploitation de gisements pétroliers. Plus précisément, cette invention concerne la mise au point de nanoparticules et de fluides traceurs les contenant, destinés à être injecté dans un puits, et recueillis par inversion du flux du fluide par le même puits.
Les fluides traceurs selon l'invention ont l'avantage de produire un signal fluorescent à effet mémoire, c'est-à-dire un signal modifié en fonction des conditions physicochimiques rencontrées dans le milieu traversé par les nanoparticules après injection dans le sous-sol géologique. L'analyse des signaux fluorescents dans les fluides recueillis après diffusion permet d'en déduire des informations sur les caractéristiques du gisement pétrolier. ARRIERE PLAN TECHNOLOGIQUE
Il est bien connu dans l'art antérieur d'utiliser des traceurs pour obtenir des informations sur un gisement pétrolier ou plus généralement sur une ressource d'un sous-sol géologique, un gisement d'hydrocarbure, eau, gaz, huile ou pétrole. Des techniques utilisant par exemple des traceurs avec des coefficients de partition différents ont été décrites. Le principe est fondé notamment sur la chromatographie. L'un des traceurs interagit plus spécifiquement avec certains fluides contenus dans la roche, par exemple, l'huile, et sa diffusion sera freinée en présence d'huile. En quantifiant le retard de diffusion par rapport à un traceur qui interagit peu ou pas du tout avec son environnement (traceur furtif), on en déduit la quantité d'huile contenue dans le gisement.
Ces méthodes d'analyse peuvent être conduites à partir d'un seul puits (« Single Well Tracer Test ») ou de deux puits, comprenant un puits d'injection et un puits de production. Concernant l'état de la technique propre à de tels traceurs pour des eaux d'injection (fluide de traçage) permettant de sonder des gisements pétroliers par diffusion entre un puits d'injection et un puits de production, on peut citer les brevets US 4,231,426-B1 et 4,299,709-Bl qui divulguent des fluides traceurs aqueux comprenant de 0,01 à 10 % en poids d'un sel de nitrate associé à un agent bactéricide.
Le brevet US 3 623 842 décrit une méthode de mesure d'une saturation en huile au voisinage d'un puits (« Single Well Tracer Test ») consistant à injecter un premier traceur partitionnant (eau/huile), celui-ci libérant un traceur furtif après un certain temps de diffusion dans le milieu poreux.
Le site de "Institute for Energy Technology" (IFE) met en ligne une présentation power point intitulée SIP 2007 - 2009 « New functional tracers based on nanotechnology and radiotracer generators Department for Réservoir and Exploration Technology » (dernière modification en date du 7 mars 2011). En particulier, ce document suggère l'utilisation de nanoparticules modifiées en surface, à titre de traceur pour le contrôle des flux dans des gisements pétroliers et des puits de pétrole et dans des études de procédés. Plus précisément encore, cette présentation décrit également des traceurs fonctionnalisés capables d'émettre un signal modulé en fonction des conditions physico-chimiques traversées.
Dans un tout autre domaine, la demande de brevet français FR2867180-A1 décrit des nanoparticules hybrides comprenant, d'une part, un cœur constitué d'un oxyde de terre rare, éventuellement dopé avec une terre rare ou un actinide ou un mélange de terres rares ou bien un mélange de terres rares et d'actinide et, d'autre part, un enrobage autour de ce cœur, ledit enrobage étant constitué majoritairement de polysiloxane fonctionnalisé par au moins un ligand biologique greffé par liaison covalente. Le cœur peut être à base Gd203 dopé par du Tb ou par de l'uranium et l'enrobage de polysiloxane peut être obtenu en faisant réagir un aminopropyltriéthoxysilane, un tétraéthylsilicate et de la triéthylamine.
Ces nanoparticules sont utilisées en tant que sondes pour la détection, le suivi, et la quantification de systèmes biologiques.
On connaît par ailleurs une dizaine de familles de molécules adaptées et validées actuellement comme traceur pour eaux d'injection dans des gisements pétroliers. Ces familles de molécules sont par exemple les acides benzoïques fluorés ou les acides naphtalènes sulfoniques.
Il est également connu que les objets fluorescents ont souvent une fluorescence étroitement liées aux conditions physicochimiques rencontrées avec une très forte variation possible de leurs spectres d'émission, leurs spectres d'excitation, leur durée de vie d'émission ou leurs rendements quantiques.
Par exemple, certains composés présentent une émission ou une durée de vie d'émission (temps de déclin de fluorescence) fortement dépendante de la température et sont ainsi utilisés en mesure délocalisée de température (J. Lakowicz, « Principles of fluorescence spectroscopy », Springer 2006, page 216).
D'autres composés comme la fiuorescéine et ses dérivées sont quant à eux très sensibles aux conditions de pH et peuvent avoir une intensité d'émission qui varie de plusieurs ordre de grandeur entre un pH acide et basique (N. Clonis, W.H. Sawyer, « Spectral properties of the prototropic forms of fluorescein in acqueous solution », J. Fluorescence, 1996, 6, 147).
Ces variations peuvent être irréversibles ou réversibles en fonction des composés. Si l'utilisation de composés fluorescents comme traceur est connue, l'utilisation de la modification de fluorescence "irréversible" est généralement considérée comme un inconvénient pour l'interprétation des courbes de traçage et des quantifications.
Or, la dégradation du signal de fluorescence peut néanmoins donner des informations sur le milieu rencontré et pourrait alors être utilisé comme signal à "effet mémoire" des conditions rencontrées.
Dans le domaine biologique, quelques essais de modification de fluorescence liés à des effets mémoires ont été proposés : ils sont en relation avec la rencontre d'une biomolécule ou d'une cellule spécifique. On peut citer par exemple la demande de brevet US2010/0272651, il y est suggéré d'utiliser des traceurs fluorescents en relation avec des indicateurs pour la détermination de pharmacocinétiques ou biodistributions particulières au sein d'organismes. Néanmoins, à ce jour, l'utilisation de signaux à « effet mémoire » dans le domaine pétrolier n'a jamais été décrite ni même suggérée.
De fait, les inventeurs ont du mettre au point de nouveaux traceurs présentant une fluorescence modifiée détectable par temps résolu (lié à l'émission de lanthanide en particulier), même en présence d'un fort bruit de fond lié aux composés organiques présents dans les différentes huiles.
PROBLEME TECHNIQUE ET OBJECTIFS A ATTEINDRE Dans ce contexte, la présente invention vise à satisfaire au moins l'un des objectifs suivants: proposer un nouveau procédé d'étude d'un milieu solide, par exemple un gisement pétrolier, par diffusion d'un liquide au travers dudit milieu solide, qui soit simple à mettre en œuvre et économique ;
remédier aux inconvénients des traceurs pour eaux d'injection de gisements pétroliers selon l'art antérieur ;
fournir des nanoparticules présentant un signal de fluorescence à effet mémoire, c'est-à-dire dont le spectre d'émission et/ou d'excitation est modifié en fonction des conditions physico-chimiques du milieu traversé ;
fournir un nouveau fluide traceur comprenant ces nanoparticules utilisables notamment dans un procédé d'étude d'un milieu solide, par exemple un gisement pétrolier par diffusion dudit liquide au travers dudit milieu solide et récupération par le même puits par inversion du flux.
BREVE DESCRIPTION DE L'INVENTION
Ces objectifs, parmi d'autres, sont atteints par l'invention qui concerne en premier lieu un procédé d'étude d'un sous-sol géologique, tel qu'un gisement pétrolier, par diffusion d'un liquide d'injection dans ledit sous-sol, caractérisé en ce qu'il comprend les étapes suivantes:
o on injecte, dans le sous-sol à étudier, un liquide d'injection comprenant des nanoparticules:
de diamètre moyen compris entre 20 et 200 nm;
aptes à former une suspension colloïdale stable en milieu salin;
dont une partie au moins est constituée d'un cœur et, le cas échéant d'une matrice enrobant le cœur;
et, dont le cœur et/ou, le cas échéant, la matrice, comprennent au moins une ou plusieurs entités fluorescentes susceptible(s) de produire au moins un signal de fluorescence à effet mémoire, c'est-à- dire un signal de fluorescence modifié de manière irréversible en fonction des conditions physico-chimiques rencontrées dans le sous- sol ;
o on recueille le liquide d'injection ayant diffusé, à différents temps suivant la période d'injection;
o et on détecte le ou les signaux fluorescents à effet mémoire émis par les nanoparticules en fonction du temps, l'analyse du ou des signaux fluorescents à effet mémoire détectés permettant d'en déduire des informations sur les conditions physico -chimiques du sous-sol géologique étudié, par exemple du gisement pétrolier. Dans un mode de réalisation préféré du procédé selon l'invention, au moins une partie des nanoparticules comprend
• au moins un fluorophore organique, et,
« au moins un fluorophore organométallique,
la combinaison des deux types de fluorophores étant choisie de sorte à ce que la nanoparticule produise au moins un signal de fluorescence à effet mémoire.
L'invention concerne également un fluide traceur utilisable notamment dans le procédé selon l'invention, et caractérisé en ce qu'il comprend des nanoparticules :
• de diamètre moyen compris entre 20 et 200 nm;
• aptes à former une suspension colloïdale stable en milieu salin;
• dont une partie au moins est constituée d'un cœur et, le cas échéant d'une matrice enrobant le cœur;
• et, dont le cœur et/ou, le cas échéant, la matrice, comprend au moins un fluorophore organique et au moins un fluorophore organométallique, la combinaison des deux types de fluorophores étant choisie de sorte à ce que la nanoparticule produise au moins un signal de fluorescence à effet mémoire, ledit signal étant détectable par fluorescence en temps résolu.
Dans un mode de réalisation spécifique, les nanoparticules sont capables d'émettre au moins un signal de fluorescence à effet mémoire, et au moins un signal de fluorescence stable, c'est-à-dire qui ne varie pas en fonction des conditions physico-chimiques rencontrés ou dont la variation n'est pas irréversible.
DESCRIPTION DETAILLEE DE L'INVENTION
Pj.Ç.Ç.éd.é d [étude d'un sous-sol. géologique
Le sous-sol étudié (e.g. des roches) peut être de nature géologique variée. De préférence, il s'agit d'étudier un gisement sous-terrain d'hydrocarbures, et plus particulièrement un gisement pétrolier. Il s'agit en particulier de mesurer la proportion de pétrole et d'eau aux abords d'un puits ainsi que d'en caractériser les propriétés physico-chimiques tels que le pH ou le potentiel redox. Les nanoparticules:
Les fluides d'injection utilisés dans le procédé selon l'invention comprennent des nanoparticules avec les caractéristiques suivantes :
• elles présentent un diamètre moyen compris entre 20 et 200 nm; • elles sont aptes à former une suspension colloïdale stable en milieu salin;
• elles ont une partie au moins constituée d'un cœur et, le cas échéant d'une matrice enrobant le cœur;
• le cœur et/ou, le cas échéant, la matrice, comprennent au moins une ou plusieurs entités fluorescentes susceptible(s) de produire au moins un signal de fluorescence à effet mémoire, c'est-à-dire un signal de fluorescence modifié de manière irréversible en fonction des conditions physico-chimiques rencontrées dans le sous- sol. Ces nanoparticules sont détectables, c'est-à-dire que l'on peut identifier leur présence ou non dans le milieu au-delà d'une certaine concentration et que l'on peut même quantifier leur concentration dès lors qu'elles sont présentes dans le milieu.
Ces nanoparticules sont aptes à former une suspension colloïdale stable en milieu salin, qui sédimente peu. Par exemple, cette suspension ne présente pas de précipitation ou d'agglomération avec le temps, e.g. après 6 mois à température ambiante.
Suivant une modalité avantageuse de ce procédé, le cœur des nanoparticules contient au moins un matériau choisi dans le groupe comprenant : les semi-conducteurs, les métaux nobles (e.g. Au, Ag, Pt), les fluorures, les vanadates ou les oxydes de terres rares et leurs mélanges et/ou alliages; de préférence un lanthanide ; leurs alliages et leurs mélanges, et, plus préférentiellement encore, un lanthanide choisi dans le sous-groupe constitué par : Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm et Yb, et leurs mélanges et/ou alliages. Le cas échéant, les nanoparticules contiennent en outre, une matrice de préférence transparente, choisie dans le groupe de matériaux comprenant: silices, polysiloxanes, alumines, zircones, aluminates, aluminophosphates, oxydes métalliques (par exemple ΤΊΟ2, ZnO, Ce02, Fe203, ...) et leurs mélanges et/ou alliages, cette matrice incluant en son sein et/ou à sa surface:
i. des entités luminescentes choisies dans le groupe comprenant : les semiconducteurs, les oxydes, les fluorures ou les vanadates de terres rares, les molécules fluorescentes organiques (de préférence la fluorescéine et/ou la rhodamine), les ions de métaux de transition, les ions de terres rares liés ou non à des molécules complexantes et/ou à des molécules permettant d'améliorer leur absorption et leurs mélanges et/ou alliages, ii. éventuellement d'autres entités permettant une modification des propriétés de luminescence et choisies dans le groupe comprenant : particules de métal noble et leurs mélanges et/ou alliages; iii. et les mélanges de ces entités (i) et (ii).
Les nanoparticules ont de préférence, une matrice fonctionnalisée à la surface, c'est à dire qui comporte des radicaux R greffés, de préférence par covalence, de préférence à base de liaisons silanes Si-R en surface et issus:
i. de composés hydrophiles éventuellement chargés, de préférence des composés organiques hydrophiles, de masses molaires inférieures à 5 000 g/mol et, mieux encore inférieures à 450 g/mol, de préférence choisis parmi les composés organiques comportant au moins l'une des fonctions suivantes: alcool, acide carboxylique, aminé, amide, ester, éther-oxyde, sulfonate, phosphonate et phosphinate, et les mélanges de ces composés hydrophiles éventuellement chargés,
ii. de composés hydrophiles neutres, de préférence un polyalkylèneglycol, plus préférentiellement encore un polyéthylèneglycol, acide Diéthylène- TriaminePentaAcétique (DTP A), DTP A dithiolé (DTDTPA) ou un acide succinique, et les mélanges de ces composés hydrophiles neutres,
iii. d'un ou plusieurs composés, de préférence de polymères, hydrophobes; iv. ou de leurs mélanges. La matrice peut comprendre le cas échéant, d'autres matériaux, choisis dans le groupe constitué par les silices, les alumines, les zircones, les aluminates, les aluminophosphates, les oxydes métalliques, ou encore les métaux (exemple : Fe, Cu, Ni, Co...) passivés en surface par une couche du métal oxydé ou d'un autre oxyde et leurs mélanges et alliages. Dans un mode de réalisation particulier, lesdites nanoparticules comprennent :
- un cœur constitué d'un métal noble ou d'un alliage de métaux nobles,
- une matrice comprenant (i) des polysiloxanes, (ii) un fluorophore organique, et (iii) un fluorophore organométallique, lesdits fluorophores étant liés de manière covalente aux polysiloxanes, ladite matrice étant fonctionnalisée à sa surface pour former des liaisons silanes Si-R, lesdits radicaux -R étant constitués pour au moins 50%, de préférence au moins 75%, de composés hydrophiles neutres ou chargés, de préférence parmi des polyéthers ou des polyols, ou leurs mélanges. Avantageusement, la matrice des nanoparticules comporte des radicaux -R greffés à raison
2 2 d'au moins un radical R pour 10 nm de surface et de préférence au moins un pour 1 nm . Pour contrôler les interactions entre, d'une part, le milieu solide à étudier, à savoir par exemple le sous-sol géologique (e.g. roches) contenant le gisement pétrolier et, d'autre part, les nanoparticules, il est possible selon une disposition avantageuse de l'invention, d'ajuster la balance hydrophile lipophile et/ou le potentiel zêta de la matrice des nanoparticules en fonction du sous-sol à étudier.
Pour ce faire, par exemple, soit on prévoit une même charge de surface pour les nanoparticules et les roches du milieu solide, afin de créer une répulsion et limiter les interactions, soit on module les charges respectives pour que les nanoparticules et les roches du milieu solide interagissent de façon contrôlée et/ou spécifiques par rapport à certaines roches.
Les nanoparticules selon l'invention ont un diamètre moyen de préférence compris entre 20 nm et 100 nm, par exemple, compris entre 20 nm et 50 nm. Dans un mode de réalisation avantageux, les nanoparticules selon l'invention ont un indice de polydispersité inférieur à 0,3, de préférence inférieur à 0,2, par exemple inférieur à 0,1.
La distribution de taille des nanoparticules est par exemple mesurée à l'aide d'un granulomètre commercial, tel qu'un granulomètre Malvern Zêta sizer Nano-S basé sur la PCS (Photon Corrélation Spectroscopy). Cette distribution est caractérisée par un diamètre moyen et un indice de polydispersité.
Au sens de l'invention, par « diamètre moyen » on entend la moyenne harmonique des diamètres des particules. L'indice de polydispersité fait référence à la largeur de la distribution en taille dérivant de l'analyse des cumulants selon la norme ISO 13321 : 1996.
Une caractéristique essentielle du procédé d'étude selon l'invention réside dans l'utilisation de nanoparticules capables de produire un signal à effet mémoire. Au sens de l'invention, on parle de signal fluorescent à effet mémoire, un signal dont les caractéristiques, par exemple l'intensité de fluorescence du spectre d'émission, du spectre d'excitation, la durée de vie d'émission ou les rendements quantiques, sont modifiées de manière irréversible en fonction de certaines conditions physico-chimiques rencontrées dans le sous-sol traversé. Ainsi, la nature et/ou l'intensité de l'altération du signal fluorescent permet d'en déduire certaines conditions physico-chimiques de l'environnement traversé. Les conditions physico-chimiques étudiées incluent par exemple, la température du sous- sol, le pH, la teneur en hydrocarbure ou encore le potentiel redox du sous-sol traversé. Dans un mode de réalisation avantageux, on utilisera des nanoparticules comprenant au moins une ou plusieurs entités fluorescentes permettant de produire au moins un signal de fluorescence à effet mémoire et une ou plusieurs entités fluorescente produisant un signal stable, c'est-à-dire, au contraire de l'effet mémoire, un signal qui n'est pas modifié de manière irréversible en fonction des conditions physico-chimiques rencontrées. A titre d'exemples d'entités fluorescentes produisant un signal stable, on peut citer les lanthanides ou d'autres entités dont la luminescence n'est pas sensible à l'environnent local du fait que les orbitales f mises en jeu sont peu disponibles pour interagir avec les éléments présents dans leur sphère de coordination et donc modifier leur propriétés de luminescence. Dans un mode de réalisation préféré de l'invention, au moins une partie des nanoparticules comprend :
i. au moins un fluorophore organique, et,
ii. au moins un fluorophore organométallique,
la combinaison des deux types de fluorophores étant choisie de sorte à ce que la nanoparticule produise au moins un signal de fluorescence à effet mémoire.
Il est connu que le signal de fluorescence de certains fluorophores organiques est modifié de manière irréversible en fonction des conditions physico-chimiques rencontrées par le traceur portant des fluorophores, et notamment en fonction du pH, de la température, et/ou du potentiel redox.
A titre d'exemple de fluorophore organique susceptible d'être utilisé, en combinaison avec un fluorophore organométallique, pour obtenir un signal fluorescent à effet mémoire, on peut citer la fluorescéine (par exemple fluorescéine isothiocyanate FITC), la rhodamine (par exemple Rhodamine B isothiocyanate RBITC) ou d'autres entités fluorescentes qui ont des spectres d'émission dans la même zone que la fluorescéine ou la rhodamine, par exemple les produits avec les dénominations commerciales Alexa Fluor, Cy Dyes, Atto, FluoProbes. De préférence, les fluorophores organométalliques des nanoparticules sont choisis parmi les vanadates ou les oxydes de terres rares, ou leurs mélanges. Dans un mode de réalisation spécifique, ils sont choisis parmi les lanthanides, leurs alliages et leurs mélanges, liés à des molécules complexantes. Dans un mode de réalisation préféré, les fiuorophores organométalliques sont détectables par fluorescence résolue dans le temps. Les lanthanides liés à des molécules complexantes sont alors particulièrement préférés.
Les métaux de la série des lanthanides comprennent les éléments de numéros atomiques de 57 (lanthane) à 71 (lutécium). Par exemple, on choisira les lanthanides dans le groupe constitué par : Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm et Yb et leurs mélanges et/ou alliages, liés à des molécules complexantes, et de préférence l'europium et le terbium.
Par « molécules complexantes » ou « agent chélatant », on entend toute molécule capable de former avec un agent métallique, un complexe comprenant au moins deux liaisons de coordination. Dans un mode de réalisation préféré, on choisira un agent complexant ayant une coordinance d'au moins 6, par exemple au moins 8, et une constante de dissociation du complexe, pKd, supérieure à 10 et de préférence supérieur à 15, avec un lanthanide.
Au sens de l'invention, par constante de dissociation pKd, on entend la mesure de l'équilibre entre les ions à l'état complexé par les ligands et ceux libres dissociés dans le solvant. Précisément, c'est moins le logarithme en base 10 du produit de dissociation (- log(Kd)), défini comme la constante d'équilibre de la réaction qui traduit le passage de l'état complexés à l'état ionique. De tels agents complexants sont de préférence des molécules chélatantes polydentates choisies parmi les familles de molécules de type polyamines, polyacides carboxyliques et possédant un nombre de site potentiel de coordination élevée de préférence supérieur à 6, comme certains macrocycles. Dans un mode de réalisation plus préféré, on choisira le DOTA, ou acide 1,4,7,10- tétraazacyclododécane-l,4,7,10-tétraacétique, de formule suivante :
Figure imgf000011_0001
ou l'un de ses dérivés.
Par « agent cyclique », on entend une molécule organique, comportant au moins un cycle ou hétérocycle aromatique, de préférence choisi parmi le benzène, la pyridine ou leurs dérivés, et susceptibles d'amplifier le signal fluorescent émis par le fluorophore organométallique et/ou le fluorophore organique, par exemple un agent complexant lié au lanthanide. Ces agents cycliques, intéressants s'ils sont caractérisés par une forte absorbance sont utilisés en particulier pour amplifier le signal fluorescent émis par les fluorophores (effet d'antenne par transfert de l'excitation de l'agent vers le fluorophore).
L'agent cyclique peut être greffé de manière covalente soit directement aux polysiloxanes de la matrice, soit au fluorophore organométallique et/ou organique. Dans un mode de réalisation spécifique, les fluorophores organométalliques constitués d'un lanthanide avec un agent complexant sont greffés aux polysiloxanes de la matrice des nanoparticules de manière covalente via une fonction amide.
Fluorophore organique et fluorophore organométallique contenues dans une même nanoparticule sont choisis de sorte à produire un signal de fluorescence à effet mémoire, de préférence détectable par fluorescence en temps résolu.
Dans un mode de réalisation plus particulièrement préféré, les nanoparticules comprennent au moins un fluorophore organique choisi parmi la f uorescéine ou l'un de ses dérivés et au moins un fluorophore organométallique choisi parmi l'europium (Eu) ou le terbium (Tb), lié à un agent complexant.
Dans un autre mode de réalisation préféré, les nanoparticules comprennent au moins un fluorophore organique choisi parmi la rhodamine ou l'un de ses dérivés, et au moins un fluorophore organométallique choisi parmi Eu ou Tb, lié à un agent complexant.
Afin de multiplier les informations sur l'environnement étudié, le liquide d'injection peut comprendre un mélange de nanoparticules, chaque type de nanoparticules étant caractérisé par l'émission d'un ou plusieurs signaux de fluorescence spécifiques, et en ce que lesdits signaux émis par chaque type de nanoparticules sont détectables par des moyens de détection multiplex. La détection multiplex permet d'analyser plusieurs signaux de fluorescence (caractérisées par exemple par des longueurs d'ondes différentes) en parallèle sur le même échantillon. Aussi, on utilisera des entités fluorescentes de longueurs d'onde d'émission et/ou d'excitation différentes selon chaque type de nanoparticules.
D'autres signaux émis par les nanoparticules peuvent également être détectés en parallèle, et par exemple des signaux détectables par analyse chimique, par ICP et/ou par analyse magnétique (température de transition magnétique, par exemple de Curie ou de Néel). Afin d'augmenter encore le niveau d'information susceptible d'être recueilli, le liquide d'injection comprend au moins deux types de nanoparticules qui se distinguent par leur balance hydrophile/lipophile et/ou leur potentiel zêta, de sorte qu'une partie des nanoparticules présente un signal fluorescent retardé par rapport à l'autre partie des nanoparticules du fait de leur interaction avec le sous-sol. Ainsi, par exemple, des nanoparticules interagissant avec certaines roches du sous-sol verront leur signal à effet mémoire plus fortement modulé par rapport aux nanoparticules interagissant peu ou pas du tout avec ces mêmes roches.
Des nanoparticules utilisables dans le procédé de l'invention et de leur préparation sont présentées dans les Exemples ci-dessous.
Méthodologie
Dans une application préférée du procédé selon l'invention, on injecte le liquide d'injection et on le recueille dans le même puits (le puits d'injection et le puits de production sont identiques) par inversion du flux du liquide injecté.
Suivant une modalité remarquable du procédé selon l'invention, préalablement à l'analyse du liquide ayant diffusé, on concentre celui-ci, de préférence par fïltration ou dialyse, et, plus préférentiellement encore, par fïltration tangentielle et de préférence par utilisation de membrane de seuils de coupures inférieurs à 300 kDa
On peut mesurer la quantité de traceur dans le liquide ayant diffusé, par détection par fluorescence et/ou par analyse chimique et/ou par ICP et/ou par analyse magnétique (température de transition magnétique, par exemple de Curie ou de Néel).
Suivant une variante pour la mesure de la quantité de traceur dans le liquide ayant diffusé, on procède au moins à une détection par fluorescence en temps résolu, c'est-à-dire enclenchée la détection avec retard (e.g. quelques microsecondes) après une impulsion d'excitation sur une ou plusieurs entités fluorescentes contenues dans la nanoparticule et susceptible d'émettre un signal « stable », c'est-à-dire qui n'a pas été modulé de manière irréversible en fonction des conditions physico-chimiques rencontrées.
On mesure le ou les signaux fluorescents à effet mémoire, de préférence en fonction du temps suivant l'injection, là encore, de préférence par fluorescence en temps résolu. En comparant le ou les signaux obtenus en fonction du temps par rapport à un signal stable, on en déduit les modifications induites par les conditions physico-chimiques rencontrées lors de la diffusion du liquide d'injection au voisinage du puits.
Dans un mode de réalisation particulier, le procédé de l'invention permet d'obtenir des informations sur les variations de température subies par le fluide traceur dans le sous-sol traversé. Dans un autre mode de réalisation particulier, on en déduit les variations de pH dans le sous-sol traversé. Dans un autre mode de réalisation particulier, on en déduit le taux d'exposition à certains hydrocarbures.
Liguide . d'injection, ..(eaux)... pour.. l'étude.. d'un . milieu . solide,.. à. savoir ..e.g....un., gisement pétrolier
Selon un autre de ses objets, l'invention concerne un liquide d'injection (ou fluide traceur) dans un gisement pétrolier utilisable notamment dans le procédé défini supra, caractérisé en ce qu'il comprend des nanoparticules :
• de diamètre moyen compris entre 20 et 200 nm;
· aptes à former une suspension colloïdale stable en milieu salin;
• dont une partie au moins est constituée d'un cœur et, le cas échéant d'une matrice enrobant le cœur;
• et, dont le cœur et/ou, le cas échéant, la matrice, comprend au moins un fluorophore organique et au moins un f uorophore organométallique, la combinaison des deux types de fluorophores étant choisie de sorte à ce que la nanoparticule produise au moins un signal de fluorescence à effet mémoire, ledit signal étant détectable par fluorescence en temps résolu.
Avantageusement, ce liquide comprend de l'eau et des nanoparticules (ou mélange de nanoparticules) telles que définies ci-dessus. Ui .atiQn des. nQpartiçules
Selon un autre de ses objets, l'invention concerne une nouvelle utilisation des nanoparticules telles que définies ci-dessus comme traceurs dans des eaux d'injection d'un gisement pétrolier destinées à l'étude dudit gisement par diffusion de ces eaux d'injection au travers dudit gisement, en vue notamment d'évaluer les volumes de pétrole en réserve dans le gisement. Selon une autre application, par exemple dans des méthodes d'exploration ou de prospection incluant la fracturation hydraulique, on peut cartographier l'historique de température des nanoparticules après diffusion au voisinage d'un puits d'injection puis en déduire la présence d'une ou plusieurs lignes de fracturation. EXEMPLES.
Description des figures
♦ La figure 1 montre les spectres d'émission des trois solutions selon la préparation 1 ramenées à température ambiante avec comme longueur d'onde excitation 330 nm (Fig. la), et 395 nm (Fig. lb) mesurés avec un délai de 0.1 ms et un temps d'acquisition 5 ms
♦ La figure 2 montre le spectre d'émission des trois solutions selon la préparation 3 ramenées à température ambiante avec comme longueur d'onde excitation 285 nm (délai 0,1 ms, temps d'acquisition 5 ms). ♦ La figure 3 montre le spectre d'émission des deux solutions selon la préparation 2 ramenées à température ambiante avec comme longueur d'onde excitation 330 nm, (délai 0,1 ms, temps d'acquisition 5 ms).
♦ La figure 4 montre le spectre d'émission des trois solutions selon la préparation 4 ramenées à température ambiante avec comme longueur d'onde excitation 285 nm, (délai
0,1 ms, temps d'acquisition 5 ms).
♦ La figure 5 montre le spectre d'excitation à une émission fixée pour l'europium à 615 nm des trois solutions selon la préparation 1 à différents pH (délai 0,1 ms, temps d'acquisition 5 ms). ♦ La figure 6 montre le spectre d'excitation à une émission fixée pour l'europium à 615 nm des deux solutions de nanoparticules selon la préparation 1 dans le DEG et un mélange DEG/eau (délai 0,1 ms, temps d'acquisition 5 ms). ♦ La figure 7 montre le spectre d'excitation des trois solutions de colloïdes préparées selon la préparation 1 ramenées à température ambiante avec comme longueur d'onde d'émission de 615 nm, délai 0,1 ms, temps d'acquisition 5 ms.
Préparation 1. Solution colloïdale de nanoparticules avec un cœur d'or et une matrice de silice encapsulant des fluorophores organiques dérivés de fluorescéine et des complexes (DTPA) d'europium.
Dans une bouteille de 10 mL, 200 mg d'acide diéthylènetriamine- pentaacétiquebisanhydride (DTPABA), 0,130 mL d' APTES et 0,065 mL de triéthylamine sont introduits avec 4 mL de DMSO (diméthylsulfoxyde) sous agitation vigoureuse. Après 24 heures, 200 mg d'EuCl3,6H20 est ajouté et le mélange est agité pendant 48 heures Dans une bouteille de 2,5 mL, 20 mg de FITC (fluorescéine isothiocyanate) sont introduits avec 0,5 mL d'APTES ((3-aminopropyl)triéthoxysilane) sous agitation vigoureuse. On homogénéise à température ambiante pendant 30 minutes. Dans un ballon de 500 mL, 36 mL de Triton X-100 (tensioactif), 36 mL de n-hexanol (co-tensioactif), 150 mL de cyclohexane (huile) et 21 mL de solution aqueuse contenant 9 mL de HAuCl4- 3H20 à 16,7 mM, 9 mL de MES (Sodium 2-mercaptoéthanesulfonate) à 32,8 mM et 3 mL de NaBH4 à 412 mM sont introduits sous agitation vigoureuse. Après 5 minutes, 0,400 mL de solution contenant la fluorescéine est ajoutée dans la microémulsion avec 1 mL de la solution contenant le complexe d'europium. Ensuite, 0,200 mL d'APTES et 1,5 mL de TEOS (tetraéthylorthosilicate) sont également ajoutés à la microémulsion.
La réaction de polymérisation de la silice est complétée par l'addition de 0,800 mL de NH4OH après 10 minutes. On laisse la micromémulsion sous agitation pendant 24 h à température ambiante.
Ensuite, 190 de Silane-gluconamide (N-(3-Triéthoxysilylpropyl)gluconamide) à 50% dans l'éthanol est ajouté à la microémulsion sous agitation à température ambiante. Après 24 h, 190 μΐ, de Silane-gluconamide sont à nouveau ajoutés à la solution toujours sous agitation à température ambiante.
Après 24 h, la microémulsion est déstabilisée dans une ampoule à décanter par ajout d'un mélange de 250 mL d'eau distillée et 250 mL d'isopropanol. La solution est laissée à décanter au moins 15 minutes et la phase inférieure contenant les particules est récupérée.
La solution colloïdale récupérée est ensuite placée dans un système de fïltration tangentielle VIVASPIN® à 300 kDa et centrifugée à 4000 tr/min jusqu'à obtention d'un taux de purification supérieur à 500.
La solution ainsi obtenue est alors filtrée à 0,2 μιη et diluée par 5 dans du DEG (diéthylèneglycol). La solution obtenue est composée de particules de taille moyenne 50,25 nm et d'indice de polydispersité 0,091 à très bonne stabilité colloïdale en milieu aqueux salé (jusqu'à 100 g de sels/L)
Préparation 2 : Solution colloïdale de nanoparticules avec un cœur d'or et une matrice de silice encapsulant des fluorophores organiques dérivées de rhodamine B et des complexes (DTPA) d'europium.
La synthèse est similaire à celle décrite pour la préparation 1 à la différence que les 20 mg de fluorescéine isothiocyanate sont remplacées par 20 mg de rhodamine B isothiocyanate (RBITC). Le reste de la synthèse est identique. La solution ainsi obtenue est composée de particules de taille moyenne 48 nm et d'indice de polydispersité 0,072.
Préparation 3 : Solution colloïdale de nanoparticules avec un cœur d'or et une matrice de silice encapsulant des fluorophores organiques dérivées de fluorescéine et des complexes (DTPA) de terbium. La synthèse est similaire à celle décrite pour la préparation 1 à la différence que les 200 mg d'EuCl3,6H20 sont remplacés par 200 mg de TbCl3,6H20. Le reste de la synthèse est identique. La solution ainsi obtenue est composée de particules de taille moyenne 43 nm et d'indice de polydispersité 0,069. Préparation 4 : Solution colloïdale de nanoparticules avec un cœur d'or et une matrice de silice encapsulant des fluorophores organiques dérivées de rhodamine B et des complexes (DTPA) de terbium.
La synthèse est similaire à celle décrite pour la préparation 1 à la différence que les 20 mg de fluorescéine isothiocyanate sont remplacés par 20 mg de rhodamine B isothiocyanate (RBITC) et que les 200 mg d'EuCl3,6H20 sont remplacés par 200 mg de TbCl3,6H20. Le reste de la synthèse est identique. La solution ainsi obtenue est composée de particules de taille moyenne 46 nm et d'indice de polydispersité 0,073.
Résultats
Exemple 1 : Détection d'un signal fluorescent à effet mémoire en fonction de la température de l'environnement utilisant des nanoparticules selon la préparation 1
Trois échantillons de 10 mL de solutions colloïdales de nanoparticules obtenus selon la préparation 1 sont chauffés à 80°C respectivement pendant 0, 1 et 72 heures. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'émissions en particuliers ceux en temps résolus. La figure 1 montre le spectre d'émission des trois solutions ramenées à température ambiante avec comme longueur d'onde excitation 330 nm (Fig. la), et 395 nm (Fig. lb). Les courbes de luminescence (fîg. la) montrent une nette augmentation de l'intensité d'émission des particules (pic à 615 nm, spécifique de l'europium) en relation avec le temps de traitement thermique à 80°C lorsque l'excitation est réalisée à 330 nm, alors qu'à 395 nm aucune variation n'est observée (fîg. lb). Le rapport des pics d'émissions entre ces différentes excitations peut donc servir de sondes pour mesurer le temps d'exposition des particules à la température 80°C.
Exemple 2 : Détection d'un signal fluorescent à effet mémoire en fonction de la température de l'environnement utilisant des nanoparticules selon la préparation 3
Trois échantillons de 10 mL de solutions colloïdales de nanoparticules obtenus selon la préparation 3 sont chauffés à 80°C respectivement 0, 1 et 72 h. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'émissions en particuliers ceux en temps résolus. La figure 2 montre le spectre d'émission des trois solutions ramenées à température ambiante avec comme longueur d'onde excitation 285 nm. Les courbes de luminescence montrent une nette augmentation de l'intensité d'émission des particules (pic à 550 nm, spécifique du terbium) en relation avec le temps de traitement thermique à 80°C. L'intensité des pics d'émissions peut donc servir de sondes pour mesurer le temps d'exposition des particules à la température 80°C, avec une augmentation de l'intensité en fonction du temps d'exposition.
Exemple 3 : Détection d'un signal fluorescent à effet mémoire en fonction de la température de l'environnement utilisant des nanoparticules selon la préparation 2
Deux échantillons de 10 mL de solutions colloïdales de nanoparticules obtenus selon la préparation 2 sont chauffés à 80°C respectivement 0 et 1 h. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'émissions en particuliers ceux en temps résolus. La figure 3 montre le spectre d'émission des deux solutions ramenées à température ambiante avec comme longueur d'onde excitation 330 nm. Les courbes de luminescence montrent une nette diminution de l'intensité d'émission des particules (pic à 550 nm, spécifique du terbium) en relation avec le temps de traitement thermique à 80°C. L'intensité des pics d'émissions peut donc servir de sondes pour mesurer le temps d'exposition des particules à la température 80°C, avec une diminution de l'intensité en fonction du temps d'exposition.
Exemple 4 : Détection d'un signal fluorescent à effet mémoire en fonction de la température de l'environnement utilisant des nanoparticules selon la préparation 4
Trois échantillons de 10 mL de solutions colloïdales de nanoparticules obtenus selon la préparation 4 sont chauffés à 80°C respectivement 0, 1 et 72 h. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'émissions en particuliers ceux en temps résolus. La figure 4 montre le spectre d'émission des trois solutions ramenées à température ambiante avec comme longueur d'onde excitation 285 nm. Les courbes de luminescence montrent une nette diminution de l'intensité d'émission des particules (pic à 550 nm, spécifique du terbium) en relation avec le temps de traitement thermique à 80°C. L'intensité des pics d'émissions peut donc servir de sondes pour mesurer le temps d'exposition des particules à la température 80°C, avec une diminution de l'intensité en fonction du temps d'exposition.
Exemple 5 : Détection d'un signal fluorescent à effet mémoire en fonction du pH de l'environnement utilisant des nanoparticules selon la préparation 1 Trois échantillons de 1 mL de solutions colloïdales de nanoparticules sont obtenus selon la préparation 1 et dispersés dans 10 mL de solution aqueuse ramenée par un mélange soude/acide chlorhydrique à un pH respectivement de 1, 5 et 12. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'émissions en particuliers ceux en temps résolus. La figure 5 montre le spectre d'excitation à une émission fixée pour l'europium à 615 nm des trois solutions à ces différents pH ambiante.
Les courbes de luminescence montrent une nette augmentation du spectre d'excitation des particules en relation avec l'augmentation de pH. L'intensité des pics d'émissions (ou excitation) peut donc servir de sondes pour mesurer le pH d'exposition des particules.
Exemple 6 : Détection d'un signal fluorescent à effet mémoire en fonction de la nature su fluide de l'environnement utilisant des nanoparticules selon la préparation 1
Deux échantillons de 5 mL de solutions colloïdales de nanoparticules sont obtenus selon la préparation 1 et dispersées respectivement dans 5 mL d'eau et dans 5 mL de DEC Les deux solutions sont ensuite chauffées à 80°C pendant 3 jours. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'excitations en particuliers ceux en temps résolus. La figure 6 montre le spectre d'excitation à une émission fixée pour l'europium à 615 nm des deux solutions.
Les courbes de luminescence montrent une nette dégradation du spectre d'excitation des particules en relation avec la teneur croissante en eau. L'intensité des pics d'émissions (ou excitation) peut donc servir de sondes pour mesurer le taux d'exposition des particules à des teneurs en eau différents.
Exemple 7: Détection d'un signal fluorescent à effet mémoire en fonction des variations de température de l'environnement utilisant des nanoparticules selon la préparation 1
Trois échantillons de 1 mL de solutions colloïdales de nanoparticules obtenus selon la préparation 1 sont mélangées à 9 mL d'eau sont chauffés pendant 1 h à respectivement 60, 80 et 100°C. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'excitation en particuliers ceux en temps résolus. La figure 7 montre le spectre d'excitation des trois solutions ramenées à température ambiante avec comme longueur d'onde d'émission de 615 nm. Les courbes de luminescence montrent une nette variation de l'intensité d'excitation de la composante à 330 nm des particules en relation avec la température du traitement. L'intensité des pics d'excitation peut donc servir de sondes pour mesurer la température d'exposition des particules, avec une diminution de l'intensité en fonction de la température d'exposition.

Claims

REVENDICATIONS
1. Procédé d'étude d'un sous-sol géologique, tel qu'un gisement pétrolier, par diffusion d'un liquide d'injection dans ledit sous-sol, caractérisé en ce qu'il comprend les étapes suivantes:
• on injecte, dans le sous-sol à étudier, un liquide d'injection comprenant des nanoparticules:
o de diamètre moyen compris entre 20 et 200 nm;
o aptes à former une suspension colloïdale stable en milieu salin;
o dont une partie au moins est constituée d'un cœur et, le cas échéant d'une matrice enrobant le cœur;
o et, dont le cœur et/ou, le cas échéant, la matrice, comprennent au moins une ou plusieurs entités fluorescentes susceptibles de produire au moins un signal de fluorescence à effet mémoire, c'est-à-dire un signal de fluorescence modifié en fonction des conditions physico -chimiques rencontrées dans le sous-sol ;
• on recueille le liquide d'injection ayant diffusé, à différents temps suivant la période d'injection;
· et on détecte le ou les signaux fluorescents à effet mémoire émis par les nanoparticules en fonction du temps, l'analyse du ou des signaux fluorescents à effet mémoire détectés permettant d'en déduire des informations sur les conditions physico -chimiques du sous-sol géologique étudié, par exemple du gisement pétrolier.
2. Procédé selon la revendication 1, caractérisé en ce que le liquide d'injection est recueilli par le puits d'injection en inversant le flux du fluide après injection et diffusion. 3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'au moins une partie des nanoparticules comprend
i. au moins un fluorophore organique, et,
ii. au moins un fluorophore organométallique,
la combinaison des deux types de fluorophores étant choisie de sorte à ce que la nanoparticule produise au moins un signal de fluorescence à effet mémoire. Procédé selon la revendication 3, caractérisé en ce que le fiuorophore organométallique est choisi parmi les ions de terres rares liés à un agent complexant, de préférence parmi les lanthanides liés à un agent complexant.
Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit liquide d'injection comprend un mélange de nanoparticules, chaque type de nanoparticules étant caractérisé par l'émission d'un ou plusieurs signaux fluorescents spécifiques, et en ce que lesdits signaux émis par chaque type de nanoparticules sont détectables par des moyens de détection multiplex.
Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le ou les signaux fluorescents à effet mémoire sont détectés par fluorescence en temps résolu.
Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la matrice des nanoparticules comporte des radicaux R greffés par covalence à base de liaisons silanes Si-R en surface et issus:
i. de composés hydrophiles chargés, de préférence des composés organiques hydrophiles de masses molaires inférieures à 5 000 g/mol et, mieux encore inférieures à 450 g/mol, de préférence choisies parmi les composés organiques comportant au moins l'une des fonctions suivantes: alcool, acide carboxylique, aminé, amide, ester, éther-oxyde, sulfonate, phosphonate et phosphinate, et les mélanges de ces composés hydrophiles chargés,
ii. de composés hydrophiles neutres, de préférence un polyalkylèneglycol, plus préférentiellement encore un polyéthylèneglycol, acide DiéthylèneTriamine-PentaAcétique (DTP A), DTP A dithiolé (DTDTPA) ou un acide succinique, et les mélanges de ces composés hydrophiles neutres,
iii. d'un ou plusieurs composés hydrophobes;
iv. ou de leurs mélanges.
Procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce que le liquide d'injection comprend au moins deux types de nanoparticules qui se distinguent par leur balance hydrophile/lipophile et/ou leur potentiel zêta, de sorte qu'une partie des nanoparticules présente un signal fluorescent retardé par rapport à l'autre partie des nanoparticules du fait de leur interaction avec le sous-sol. Procédé selon la revendication 8, caractérisé en ce qu'au moins une partie des nanoparticules a une balance hydrophile/lipophile et/ou le potentiel zêta ajusté de sorte à ne pas interagir avec le milieu du sous-sol dans lequel elles diffusent et au moins une autre partie des nanoparticules a une balance hydrophile/lipophile et/ou un potentiel zêta ajusté de sorte à interagir avec des roches spécifiques du sous-sol.
10. Fluide traceur utilisable notamment dans le procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend des nanoparticules :
• de diamètre moyen compris entre 20 et 200 nm;
• aptes à former une suspension colloïdale stable en milieu salin;
• dont une partie au moins est constituée d'un cœur et, le cas échéant d'une matrice enrobant le cœur;
• et, dont le cœur et/ou, le cas échéant, la matrice, comprend au moins un fluorophore organique et au moins un fluorophore organométallique, la combinaison des deux types de fluorophores étant choisie de sorte à ce que la nanoparticule produise au moins un signal de fluorescence à effet mémoire, ledit signal étant détectable par fluorescence en temps résolu.
11. Fluide traceur selon la revendication 10, caractérisé en ce que ledit fluorophore organométallique est choisi parmi les ions de terres rares liés à un agent complexant.
12. Fluide traceur selon la revendication 11, caractérisé en ce que les ions de terres rares sont choisis dans le groupe des lanthanides constitués par Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm et Yb et leurs mélanges et/ou alliages.
13. Fluide traceur selon l'une quelconque des revendications 10 à 12, caractérisé en qu'au moins une partie des nanoparticules comprend au moins un fluorophore organique choisi parmi la fluorescéine et au moins un fluorophore organométallique comprenant un lanthanide choisi parmi l'europium ou le terbium, ledit lanthanide étant lié à un agent complexant.
14. Fluide traceur selon l'une quelconque des revendications 10 à 12, caractérisé en qu'au moins une partie des nanoparticules comprend au moins un fluorophore organique choisi parmi la rhodamine ou l'un de ses dérivés et au moins un fluorophore organométallique choisi parmi l'europium ou le terbium lié à un agent complexant.
15. Fluide traceur selon l'une quelconque des revendications 10 à 14, caractérisé en ce que l'agent complexant est choisi dans le groupe constitué par le DTP A, le
DOTA et leurs dérivés.
16. Utilisation d'un fluide traceur selon l'une quelconque des revendications 10 à 15, dans l'étude d'un gisement d'hydrocarbure, par exemple un gisement pétrolier.
17. Utilisation d'un fluide traceur selon l'une quelconque des revendications 10 à 15, dans un procédé d'exploration ou de prospection d'un gisement d'hydrocarbure comprenant une étape de fracturation hydraulique, pour la cartographie des lignes de fractures.
PCT/EP2012/062084 2011-06-22 2012-06-22 Fluides traceurs a effet memoire pour l'etude d'un gisement petrolier WO2012175669A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12730898.9A EP2723827A1 (fr) 2011-06-22 2012-06-22 Fluides traceurs a effet memoire pour l'etude d'un gisement petrolier
US14/128,323 US20150001385A1 (en) 2011-06-22 2012-06-22 Memory effect tracer fluids for the study of an oil reservoir

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1155515A FR2976967B1 (fr) 2011-06-22 2011-06-22 Fluides traceurs a effet memoire pour l'etude d'un gisement petrolier
FR1155515 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012175669A1 true WO2012175669A1 (fr) 2012-12-27

Family

ID=46420138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/062084 WO2012175669A1 (fr) 2011-06-22 2012-06-22 Fluides traceurs a effet memoire pour l'etude d'un gisement petrolier

Country Status (4)

Country Link
US (1) US20150001385A1 (fr)
EP (1) EP2723827A1 (fr)
FR (1) FR2976967B1 (fr)
WO (1) WO2012175669A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168483A3 (fr) * 2013-04-07 2015-05-07 Resman As Procédé de détection de flux d'entrée de puits de gaz
CN113605883A (zh) * 2021-09-22 2021-11-05 北京永源思科技发展有限公司 一种剩余油饱和度解析的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175045A (ja) * 2014-03-17 2015-10-05 株式会社神戸製鋼所 構造材用アルミニウム合金板
US11280717B2 (en) * 2016-11-07 2022-03-22 Applied Materials, Inc. Methods and apparatus for detection and analysis of nanoparticles from semiconductor chamber parts
WO2018093789A1 (fr) 2016-11-15 2018-05-24 Al Olayan Abeer Mohammad Saleh Matériaux d'épaississement par cisaillement à base de nanoparticules
US10480313B2 (en) * 2017-06-19 2019-11-19 Baker Hughes, A Ge Company, Llc Multicolor fluorescent silica nanoparticles as tracers for production and well monitoring
CN109667574B (zh) * 2017-10-13 2022-07-22 中国石油化工股份有限公司 一种多段压裂用金属离子示踪剂及其应用
DE102018105394A1 (de) * 2018-03-08 2019-09-12 Karlsruher Institut für Technologie Analysepartikel und Verfahren zur Quantifizierung von porösen Materialien
US10502040B1 (en) 2018-06-15 2019-12-10 Baker Hughes, A Ge Company, Llc Upconverting nanoparticles as tracers for production and well monitoring
RU2685600C1 (ru) * 2018-07-20 2019-04-22 Общество с ограниченной ответственностью "ГеоСплит" Способ определения внутрискважинных притоков флюида при многоступенчатом гидроразрыве пласта
GB201813976D0 (en) * 2018-08-28 2018-10-10 Johnson Matthey Plc Method of monitoring a fluid and use of a tracer for monitoring a fluid
CN111257967A (zh) * 2020-01-13 2020-06-09 苏州星烁纳米科技有限公司 油田示踪剂及油田示踪的方法
US11773715B2 (en) 2020-09-03 2023-10-03 Saudi Arabian Oil Company Injecting multiple tracer tag fluids into a wellbore
MX2023004558A (es) * 2020-10-21 2023-07-10 Eni Spa Trazadores multifuncionales para analisis de yacimientos petroleros.
US11660595B2 (en) 2021-01-04 2023-05-30 Saudi Arabian Oil Company Microfluidic chip with multiple porosity regions for reservoir modeling
US11534759B2 (en) 2021-01-22 2022-12-27 Saudi Arabian Oil Company Microfluidic chip with mixed porosities for reservoir modeling
US11952279B2 (en) 2021-08-23 2024-04-09 Saudi Arabian Oil Company Modified carbon nanomaterials as tracers for reservoir monitoring
US12000278B2 (en) 2021-12-16 2024-06-04 Saudi Arabian Oil Company Determining oil and water production rates in multiple production zones from a single production well
US11859452B2 (en) 2022-04-08 2024-01-02 Baker Hughes Oilfield Operations Llc Wet connect system and method
CN115419398B (zh) * 2022-10-13 2024-05-03 西南石油大学 一种荧光测定产液剖面的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623842A (en) 1969-12-29 1971-11-30 Exxon Research Engineering Co Method of determining fluid saturations in reservoirs
US4231426A (en) 1979-05-09 1980-11-04 Texaco Inc. Method of using tracer fluids for enhanced oil recovery
US4299709A (en) 1979-05-09 1981-11-10 Texaco Inc. Tracer fluids for enhanced oil recovery
FR2867180A1 (fr) 2004-03-02 2005-09-09 Univ Claude Bernard Lyon Nanoparticules hybrides comprenant un coeur de ln203 porteuses de ligands biologiques et leur procede de preparation
WO2007102023A1 (fr) * 2006-03-06 2007-09-13 Johnson Matthey Plc Procédé et appareil de traçage
FR2922106A1 (fr) * 2007-10-16 2009-04-17 Univ Claude Bernard Lyon I Eta Utilisation de nanoparticules a base de lanthanides comme agents radiosensibilisants.
US20100272651A1 (en) 2009-04-22 2010-10-28 Tufts University Method for assessing potential for tumor development and metastasis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623842A (en) 1969-12-29 1971-11-30 Exxon Research Engineering Co Method of determining fluid saturations in reservoirs
US4231426A (en) 1979-05-09 1980-11-04 Texaco Inc. Method of using tracer fluids for enhanced oil recovery
US4299709A (en) 1979-05-09 1981-11-10 Texaco Inc. Tracer fluids for enhanced oil recovery
FR2867180A1 (fr) 2004-03-02 2005-09-09 Univ Claude Bernard Lyon Nanoparticules hybrides comprenant un coeur de ln203 porteuses de ligands biologiques et leur procede de preparation
WO2007102023A1 (fr) * 2006-03-06 2007-09-13 Johnson Matthey Plc Procédé et appareil de traçage
FR2922106A1 (fr) * 2007-10-16 2009-04-17 Univ Claude Bernard Lyon I Eta Utilisation de nanoparticules a base de lanthanides comme agents radiosensibilisants.
US20100272651A1 (en) 2009-04-22 2010-10-28 Tufts University Method for assessing potential for tumor development and metastasis

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"New functional tracers based on nanotechnology and radiotracer generators Department for Reservoir and Exploration Technology", SIP 2007 - 2009, 7 March 2011 (2011-03-07)
INSTITUE FOR ENERGY TECHNOLOGY: "New functional tracers based on nanotechnology and radiotracer generators", INTERNET CITATION, 17 September 2007 (2007-09-17), pages 1 - 23, XP002588385, Retrieved from the Internet <URL:http://www.ife.no/departments/reservoir_and_exploration_tech/files/nanostrategi-rele2007-2009/fss_download/Attachmentfile> [retrieved on 20100714] *
J. LAKOWICZ: "Principles of fluorescence spectroscopy", 2006, SPRINGER, pages: 216
N. CLONIS; W.H. SAWYER: "Spectral properties of the prototropic forms of fluorescein in acqueous solution", J. FLUORESCENCE, vol. 6, 1996, pages 147

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168483A3 (fr) * 2013-04-07 2015-05-07 Resman As Procédé de détection de flux d'entrée de puits de gaz
US10030507B2 (en) 2013-04-07 2018-07-24 Resman As Gas well inflow detection method
CN113605883A (zh) * 2021-09-22 2021-11-05 北京永源思科技发展有限公司 一种剩余油饱和度解析的方法
CN113605883B (zh) * 2021-09-22 2024-05-31 北京永源思科技发展有限公司 一种剩余油饱和度解析的方法

Also Published As

Publication number Publication date
EP2723827A1 (fr) 2014-04-30
FR2976967B1 (fr) 2015-05-01
FR2976967A1 (fr) 2012-12-28
US20150001385A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
WO2012175669A1 (fr) Fluides traceurs a effet memoire pour l&#39;etude d&#39;un gisement petrolier
EP2813287A2 (fr) Nanotraceurs pour le marquage d&#39;eaux d&#39;injection de champs pétroliers
WO2011076874A1 (fr) Utilisation de nanoparticules pour le marquage d&#39;eaux d&#39;injection de champs petroliers
CA2558033C (fr) Nanoparticules hybrides comprenant un coeur de ln2o3 porteuses de ligands biologiques et leur procede de preparation
Crawford et al. Materials for the photoluminescent sensing of rare earth elements: challenges and opportunities
Bhattacharyya et al. Quantum dots and carbon dots based fluorescent sensors for TB biomarkers detection
US20070264719A1 (en) Partially passivated quantum dots, process for making, and sensors therefrom
EP2839323A2 (fr) Nano-capteurs fluorescents servant à caractériser les réservoirs de pétrole et de gaz
Agenet et al. Fluorescent nanobeads: a first step toward intelligent water tracers
SA519410853B1 (ar) جسيمات سيليكا بحجم النانو متألقة فلوريًا ومتعددة الألوان في صورة مواد تتبع لمراقبة الإنتاج والبئر
US20130315835A1 (en) Silica nanoparticles doped with multiple dyes featuring highly efficient energy transfer and tunable stokes-shift
EP3298100A1 (fr) Procede d&#39;exploitation d&#39;une formation souterraine par injection d&#39;un fluide comprenant un additif marque par un nano-cristal semi-conducteur luminescent
WO2014091144A2 (fr) Traceurs fluorescents pour le marquage d&#39;eaux d&#39;injection de champs petroliers
Zou et al. Ultrasensitive turn-off fluorescence detection of iodide using carbon dots/gold nanocluster as fluorescent nanoprobe
Pazini et al. Synthesis of core-shell fluorescent silica nanoparticles with opposite surface charges for transport studies of nanofluids in porous media
EP3234061B1 (fr) Nano-inhibiteurs
Irgibayeva et al. Study of the effect of the introduction of Tris (bipyridine) ruthenium (II) chloride into silicon dioxide particles by spectrofluorometry methods
OA16798A (en) Tracer fluids with a memory effect for the study of an oil deposit.
Murugesan et al. Multicolor Fluorescent Silica Nanoparticles as Tracers for Production and Well Monitoring
EP3446116B1 (fr) Méthode de dosage d&#39;additifs utilisés pour la récupération assistée du pétrole et du gaz de schiste
OA16688A (fr)
Manhat Understanding the emission from semiconductor nanoparticles
Lechevallier Synthesis and characterization of lanthanide-based luminescent nanoparticles: toward new bio-labels
Wegner Förster Resonance Energy Transfer from Terbium Complexes to Quantum Dots for Multiplexed Homogeneous Immunoassays and Molecular Rulers
Zhu et al. Study on the interaction between cadmium sulphide nanoparticles and proteins by resonance Rayleigh scattering spectra

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12730898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012730898

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14128323

Country of ref document: US