WO2012174701A1 - 带电磁加热水口的中间包 - Google Patents
带电磁加热水口的中间包 Download PDFInfo
- Publication number
- WO2012174701A1 WO2012174701A1 PCT/CN2011/075929 CN2011075929W WO2012174701A1 WO 2012174701 A1 WO2012174701 A1 WO 2012174701A1 CN 2011075929 W CN2011075929 W CN 2011075929W WO 2012174701 A1 WO2012174701 A1 WO 2012174701A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brick
- plug
- annular
- electromagnetic heating
- inductor
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/14—Closures
- B22D41/16—Closures stopper-rod type, i.e. a stopper-rod being positioned downwardly through the vessel and the metal therein, for selective registry with the pouring opening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/005—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
- B22D41/01—Heating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/50—Pouring-nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/15—Tapping equipment; Equipment for removing or retaining slag
- F27D3/1509—Tapping equipment
- F27D3/1536—Devices for plugging tap holes, e.g. plugs stoppers
Definitions
- This invention relates to a tundish for multi-stream continuous casting production in the field of iron and steel metallurgy, and more particularly to a tundish with an electromagnetic heating nozzle, which has a tundish insulation, heating and waterproofing. The mouth is frozen and the tundish cast with low superheat is realized.
- BACKGROUND OF THE INVENTION With the continuous improvement of the quality of steel products, the continuous use of tundish as an indispensable link between steelmaking and continuous casting of steelmaking has attracted more and more people's attention, and has been carried out successively.
- the heating techniques of the existing tundish include: traditional tundish steel liquid surface gas heating method, tundish arc heating method, medium-clad steel surface liquid plasma heating method and tundish electromagnetic induction heating method, and the like.
- the conventional gas heating method has low thermal efficiency (about 30 to 40%), slow heating rate, and poor effect;
- the arc heating method has complicated electrode arrangement, and the electrode consumption and the carbonation effect on the molten steel;
- the plasma heating method is the same as the former It is faster than heating, high efficiency (60 ⁇ 70%), and non-polluting. It is one of the most widely used methods, but it is the same as the above two heating methods, although it prevents the molten steel from freezing in the tundish. It has a positive effect, but it has little effect on the problem of slow cooling and easy freezing of the new tundish, unless higher superheat is used.
- Another method in the prior art is the tundish in the tundish.
- the molten pool below the water filling port is connected with the molten pool above the nozzle flow by a transverse passage, and the electromagnetic liquid flowing through the passage is heated by electromagnetic induction heating method on the passage, and the heating efficiency is high (90 to 98%).
- the method is to heat the whole molten metal in the tundish, and the control of the nozzle flow temperature is not obvious.
- An object of the present invention is to provide a tundish with an electromagnetic heating nozzle to overcome the disadvantages of low heating efficiency of the conventional tundish, poor independent control of the temperature of each casting stream, and unfavorable overall reduction of superheat of molten steel; At the beginning of the pouring, the nozzle is easy to freeze and the problem of excessive superheat in the past is avoided.
- Another object of the present invention is to provide a tundish with an electromagnetic heating nozzle, which can independently control the flow temperature of each nozzle, improve the heating efficiency, realize the "constant temperature casting, low superheat production" of the continuous casting production, and stabilize and improve the product quality.
- Another object of the present invention is to provide a tundish with an electromagnetic heating nozzle which has the characteristics of simple structure, good handling performance and convenient maintenance.
- the object of the present invention is achieved by a tundish with an electromagnetic heating nozzle, wherein the tundish is composed of a package body, a cover and an electromagnetic heating nozzle; the bottom of the package body is provided with a through hole; and the electromagnetic heating nozzle is disposed at
- the electromagnetic heating nozzle is composed of a plug-type nozzle and an electromagnetic heating device disposed outside the plug-type nozzle, and the inner wall of the electromagnetic heating device and the plug of the plug-type nozzle Enclosing an annular cavity to form an electromagnetic induction heating annular molten pool, the annular molten pool is located at the junction of the plug-type head brick of the plug-type nozzle and the concave brick of the plug rod, thereby controlling the electromagnetic heating device
- the molten steel in the annular molten pool is heated to prevent the nozzle from freezing under low superheat, thereby controlling the temperature of the molten steel flowing in the nozzle.
- the electromagnetic heating device is composed of a water-cooled induction coil, an inductor inner tank and an inductor housing;
- the inductor inner tank is a cylindrical structure concentrically arranged with the plug-type nozzle, The diameter of the inner hole is larger than the outer diameter of the plug rod, and an annular bottom brick is arranged between the inner liner of the inductor and the concave brick of the plug rod, and the top surface of the annular bottom brick is flush with the top surface of the concave brick of the plug rod to form an annular molten pool.
- the bottom of the inductor, the height of the inner liner of the inductor is greater than the height of the annular bottom brick, and the annular molten pool is formed by the plug brick, the concave brick of the plug, the annular bottom brick and the inner liner; the water cooling induction coil is fixed on the induction coil The middle of the outer side of the inner liner.
- the outer ring of the water-cooled induction coil is provided with a plurality of magnetizers, and an insulating and insulating plate is disposed between the outer side of the magnetizer and the inner wall of the inductor casing; at the bottom and the top of the magnetizer Insulated pad is provided.
- an adjustment pad ring is disposed between the annular bottom brick and the upper side of the bottom of the inductor housing; a gap is provided between the outer surface of the annular bottom brick and the inner liner of the inductor The gap is filled with a refractory filler.
- the inductor housing is formed by an annular housing and an end cover fixedly connected to the bottom thereof, and the end cover is provided with a through hole, and the plug-type nozzle is disposed in the through hole;
- the side wall of the annular casing is provided with a cable outlet of a water-cooled induction coil; a plurality of adjusting bolts are arranged at the bottom of the inductor casing and at the lower side of the insulating pad at the bottom of the magnetizer.
- the package body includes a steel structural shell, a heat insulating layer, and a half in order from the outside to the inside.
- the permanent layer and the working layer are lining structure; the refractory ring sealing brick and the nozzle connecting flange are arranged around the lower side of the through hole at the bottom of the package body.
- the heat insulating layer of the inclusion body is made of an insulating refractory fiber cotton as an additive, a refractory cement as a binder, and a refractory particle as a aggregate;
- the semi-permanent layer is knotted The material is knotted and perfused;
- the working layer is made of formed refractory brick;
- the refractory annular sealing brick is prefabricated by carbon brick material;
- the nozzle connecting flange is welded on the bottom steel structure shell.
- the cover includes a steel structure frame, a heat-resistant steel plate is disposed at a position one third of a thickness of the steel structure frame, and the heat-resistant steel plate is provided with a plurality of vent holes. ; a plurality of steel claws are welded on the upper and lower surfaces of the heat-resistant steel plate; heat-insulating knots are arranged on the upper and lower sides of the heat-resistant steel plate; the refractory insulating cotton is disposed at the bottom of the cover and fixed by the steel claws to the steel structure .
- the object of the present invention can also be achieved by an electromagnetic heating nozzle composed of a plug-type nozzle and an electromagnetic heating device provided on the outside of the plug-type nozzle, the inner wall and the plug-type of the electromagnetic heating device
- An annular cavity is formed between the plugs of the nozzle to form an electromagnetic induction heating annular molten pool, and the annular molten pool is located at a joint of the plug-type brick of the plug-type nozzle and the concave brick of the plug rod, thereby
- the molten steel in the annular molten pool is heated by controlling the electromagnetic heating device to prevent the nozzle from freezing, thereby controlling the temperature of the molten steel flowing in the nozzle.
- the electromagnetic heating device is composed of a water-cooled induction coil, an inductor inner tank and an inductor housing;
- the inductor inner tank is a cylindrical structure concentrically arranged with the plug-type nozzle, The diameter of the inner hole is larger than the outer diameter of the plug rod, and an annular bottom brick is arranged between the inner liner of the inductor and the concave brick of the plug rod, and the top surface of the annular bottom brick is flush with the top surface of the concave brick of the plug rod to form an annular molten pool.
- the bottom of the inductor, the height of the inner liner of the inductor is greater than the height of the annular bottom brick, and the annular molten pool is formed by the plug brick, the concave brick of the plug, the annular bottom brick and the inner liner; the water cooling induction coil is fixed on the induction coil The middle of the outer side of the inner liner.
- the outer ring of the water-cooled induction coil is provided with a plurality of magnetizers, and an insulating and insulating plate is disposed between the outer side of the magnetizer and the inner wall of the inductor casing; at the bottom and the top of the magnetizer Insulated pad is provided.
- an adjustment pad ring is disposed between the annular bottom brick and the upper side of the bottom of the inductor housing; a gap is provided between the outer surface of the annular bottom brick and the inner liner of the inductor The gap is filled with a refractory filler.
- the inductor housing is formed by an annular housing and an end cover fixedly connected to the bottom thereof, and the end cover is provided with a through hole, and the plug-type nozzle is disposed in the through hole;
- the side wall of the annular casing is provided with a cable outlet of a water-cooled induction coil; a plurality of adjusting bolts are arranged at the bottom of the inductor casing and at the lower side of the insulating pad at the bottom of the magnetizer.
- the tundish with the electromagnetic heating nozzle of the present invention is a special water-cooled induction heating nozzle installed at the bottom of the package body, and the tundish capable of independently controlling the temperature of the nozzle flow is formed by the principle of induction heating; the present invention can be One or more electromagnetic heating nozzles are installed at the bottom of the package to form an intermediate temperature that can independently control the temperature of each nozzle.
- the tundish of the invention has high heating efficiency, and can independently control the electric power of each pouring flow, adjust the temperature of each flowing steel, effectively control the optimal casting temperature, and can directly heat lower without affecting other normal nozzles.
- Figure 2 Schematic diagram of the tundish with electromagnetic heating nozzle of the present invention.
- Figure 3 Schematic diagram 1 of the structure of the inclusion body in the present invention.
- Figure 4 Schematic diagram 2 of the structure of the inclusion body in the present invention.
- Figure 5 is a schematic view of the structure of the cover of the present invention.
- Figure 6 is a schematic view of the structure of the cover of the present invention.
- Figure 7 Schematic diagram 3 of the structure of the cover in the present invention.
- Fig. 8A is a first assembly step of the electromagnetic heating nozzle of the present invention.
- Fig. 8B is a second assembly step of the electromagnetic heating nozzle of the present invention.
- Fig. 8C is a third assembly step of the electromagnetic heating nozzle of the present invention.
- Fig. 8D is a fourth assembly step of the electromagnetic heating nozzle of the present invention.
- Figure 9 is a schematic view showing the initial stage of power transmission and heating of the tundish with electromagnetic heating nozzle of the present invention.
- the present invention provides an electromagnetic heating nozzle 3 which is composed of a plug-type nozzle 31 and an electromagnetic heating device 32 which is disposed outside the plug-type nozzle 31, and the electromagnetic heating device 32
- the inner wall and the stopper rod 311 of the plug-type nozzle 31 enclose an annular cavity 33 to constitute an electromagnetic induction heating annular molten pool, and the annular molten pool 33 is located at the plug-type head brick 312 of the plug-type nozzle 31.
- the present invention also provides a tundish 100 with the electromagnetic heating nozzle 3, wherein the tundish 100 is composed of an enclosure 1, a cover 2 and the electromagnetic heating nozzle 3; the enclosure 1 The bottom is provided with a through hole 11; electromagnetic plus The hot water port 3 is disposed below the portion of the through hole 11 at the bottom of the package body.
- the molten steel in the annular molten pool 33 is heated by controlling the electromagnetic heating device 32 to prevent the nozzle from freezing, thereby controlling the temperature of the molten steel flowing in the nozzle.
- the tundish with the electromagnetic heating nozzle of the present invention is provided with a special water-cooled induction electromagnetic heating nozzle at the bottom of the package body, and the intermediate package capable of independently controlling the temperature of the nozzle flow is formed by the electromagnetic heating principle;
- One or more electromagnetic heating nozzles are installed at the bottom of the package body to form a tundish capable of independently controlling the temperature of each nozzle flow;
- the tundish of the present invention has high heating efficiency, and can independently control the flow of each pouring flow to adjust the flow.
- the temperature of the molten steel can effectively control the optimal casting temperature. It can directly heat the nozzle of lower temperature without affecting other normal nozzles, eliminate the blockage of the nozzle, realize the casting of low superheat and improve the quality of the slab.
- the invention can be widely used in steel.
- Continuous casting production especially multi-stream continuous casting billet production, especially the production of multi-flow large-section and super-large section continuous casting billet; its temperature control is accurate, controllability is high, and operating cost is low, which can significantly improve product quality and reduce Cost of production.
- the electromagnetic heating device 32 is composed of a water-cooled induction coil 321 , an inductor liner 322 and an inductor case 323 ;
- the inductor liner 322 is a plug-type nozzle 31 is a concentrically arranged cylindrical structure, the inner diameter of the inner liner 322 of the inductor is 322 larger than the outer diameter of the stopper 311, and an annular bottom brick 324 is disposed between the inner liner 322 and the concave brick 313.
- the top surface of the bottom brick 324 is flush with the top surface of the concave bar 313 to form the bottom of the annular molten pool 33.
- the height of the inductor inner 322 is greater than the height of the annular bottom brick 324 to form the side wall of the annular molten pool 33 (when electromagnetic After the heating nozzle 3 is installed at the bottom of the package body, the side wall of the annular molten pool 33 should also include the side wall of the through hole 11 and the inner wall of the member between the electromagnetic heating nozzle 3 and the bottom of the package body 1). 312.
- the plug-shaped concave brick 313, the annular bottom brick 324 and the inductor inner liner 322 constitute the annular molten pool 33; the water-cooled induction coil 321 is fixedly disposed in the middle of the outer side surface of the inductor inner tank 322.
- a plurality of magnetizers 325 are disposed on the outer ring of the water-cooled induction coil 321 , and an insulating and insulating plate 326 is disposed between the outer side of the magnetizer 325 and the inner wall of the inductor housing 323 .
- An insulating spacer 327 is provided on the top.
- an adjustment pad 328 is disposed between the annular bottom brick 324 and the upper side of the bottom of the inductor housing 323, and the adjustment pad ring 328 can be used to adjust the annular bottom brick 324 in the inductor liner.
- the position inside the 322; the inductor liner 322 is prefabricated by a high temperature refractory material (such as a high alumina refractory material), and the inner and outer surfaces of the inductor liner 322 are cylindrical surfaces, and the inner surface of the inner liner 322 of the inductor is upper.
- the inductor housing 323 may be a groove-shaped housing having a through hole 3231 at the bottom; as another embodiment in this embodiment, as shown in FIG. 1 , in order to facilitate electromagnetic heating of the nozzle 3 At the bottom of the through hole 11
- the sensor housing 323 can also be formed by an annular housing 3232 and its bottom end of the fixed end cover 3233, the end cover 3233 is provided with the perforation 3231, the plug-type nozzle 31 through the perforation 3231;
- the side wall of the annular casing 3232 is provided with a cable outlet 3234 of a water-cooled induction coil; a plurality of adjusting bolts 3235 are disposed at the bottom of the inductor casing and on the lower side of the insulating pad 327 at the bottom of the magnetizer 325.
- the magnetizer 325 is fixed within the inductor housing 323 by adjusting the bolt 3235.
- the magnetizer 325 and the water-cooled induction coil 321 are both connected to the inductor case 323 by means of insulation and fixing; the magnetizer 325, the water-cooled induction coil 321, and the inductor case 323 are insulated from each other.
- the plug-type nozzle 31 includes a water inlet 314 and an intrusive water outlet 315, and the axis of the water inlet 314 and the bottom of the package are transparent.
- the axis of the hole 11 is coincident; the water inlet 314 and the intrusive water outlet 315 are connected by a typical detachable manner; the cover 2 is provided with a plug hole 21 corresponding to the through hole 11 , and the stopper 311
- the plug buck tile 312 at the bottom of the plug 311 is pressed against the inner hole of the plug concave brick 313 at the top of the water inlet 314 by a contact sealing connection.
- the water inlet 314 is sealed, and the opening degree between the plug brick 312 and the inner hole of the plug brick 313 is opened to control and adjust the flow rate of the molten steel.
- a refractory ring sealing brick 12 and a nozzle connecting flange 13 are arranged around the lower side of the through hole bottom hole 11; the inductor housing 323 is assembled by a flange.
- the bolt is connected to the nozzle connection flange 13 of the package body; the end cover 3233 connects the inductor liner 322 and the annular bottom brick 324 connected to the inductor liner 322, the plug bar concave brick 313, and the water outlet through the end cap bolt. 314.
- the immersed drain 315, the plug wand brick 312, the stopper rod 311 and the like are integrally connected with the intermediate bag body; the bottom and the top of the magnetizer 325 are respectively supported by the insulating pad 327, and the insulating pad 327 at the top thereof is provided. It is flush with the upper surface of the inductor liner 322 and is in contact with the refractory annular sealing brick 12 of the enclosure.
- the package body comprises a steel structure outer casing 14, a heat insulating layer 15, a semi-permanent layer 16, and a working layer lining 17 in order from the outside to the inside;
- the wall 18 has a slag discharge port 19 at the rear of the package body;
- the inclusion body heat insulation layer 15 is made of an insulating refractory fiber cotton as an additive, a refractory cement as a binder, and a refractory granule as a preform.
- the heat insulation is good, the strength is high, the gas permeability is good, and the masonry is convenient;
- the semi-permanent layer 16 is formed by knotting and kneading;
- the working layer lining 17 is made of the formed refractory brick, and the formed refractory brick can be High aluminum brick, clay brick, magnesia carbon brick, etc., have the characteristics that the inner lining is not easy to fall off, the steel liquid is lightly polluted, and the multiple repairing is convenient;
- the slag blocking wall 18 and the slag discharging port 19 are traditional slag walls and Slag discharge material and structure.
- the refractory ring sealing brick 12 is prefabricated by a carbonaceous brick material; the working layer 17 at the through hole 11 of the package body and the refractory ring sealing brick 12 installed below, the inductor liner 322 and the annular bottom brick 324.
- the plug-shaped concave brick 313 constitutes an annular molten pool; the nozzle connecting flange 13 is welded to the bottom steel structural shell 14.
- the cover 2 includes a steel structure frame. 22, a steel heat-resistant steel plate 23 is disposed at a position 1/3 of the thickness of the bottom surface of the steel structure frame 22, the heat-resistant steel plate 23 is preferably heat-resistant stainless steel, and the heat-resistant steel plate 23 and the steel structure frame 22 are welded or riveted, and the heat-resistant steel plate is used.
- 23 is provided with a plurality of venting holes 231 having a diameter of 20 to 80 mm. The venting holes 231 facilitate moisture escaping, reduce the weight of the steel structure without reducing rigidity and strength, and weld on the upper and lower surfaces of the heat-resistant steel plate 23.
- the cover 2 is further provided with a ladle opening 26 through which the ladle nozzle 4 is inserted.
- the tundish of the present invention When the tundish of the present invention is used, as shown in FIG. 9, (1) firstly, the assembled and baked tundish with electromagnetic heating nozzle is placed on the casting site (located above the continuous casting machine), and the metal is contained. The ladle of the liquid is placed above the tundish, and the ladle 4 is inserted into the perforation 26 of the ladle; (2) Check and confirm that all the plug-type nozzles are closed; (3) Open the ladle 4 to fill the slag pool The slag and the liquid are separated by the slag blocking wall 18, and the slag is discharged through the slag discharging port 19, and the pure molten metal flows into the through hole 181 on the slag blocking wall 18 to have four (1 to 4 flow) electromagnetic heating nozzles 3 In the middle bag, enter the annular molten pool 33 between the electromagnetic heating device and the plug rod above each pouring steel flow; (4) simultaneously send power to the four electromagnetic heating nozzles 3, to avoid the metal liquid in the annular
- the electromagnetic heating nozzle Due to the use of the electromagnetic heating nozzle, the possibility of freezing the plug rod of the low temperature molten steel is eliminated, and conditions for casting under lower superheat are created, which creates favorable conditions for exerting the electromagnetic stirring effect of the crystallizer and improving the quality of the continuous casting billet;
- the use of the independent electromagnetic heating device can realize independent power feeding and heating for the low-temperature casting flow on both sides, and can not send electricity or send electricity to the casting flow with higher central temperature, and the water-cooled inductor coil can also flow the casting flow without power transmission. Can play a role in assisting cooling.
- the tundish with the electromagnetic heating nozzle of the present invention has at least the following advantages:
- the package body adopts a special insulation layer, a knotted perfusion semi-permanent layer and a three-layer structure of the working layer which can be easily built many times, the insulation of the package is greatly improved, the thermal insulation performance is greatly improved, and the maintenance and repair are more convenient;
- the working layer of the inclusion body can be made of standard shaped refractory bricks of suitable materials according to the needs of the steel grade, the inner lining has less pollution to the molten steel and is not easy to fall off;
- Electromagnetically heated heating chamber the annular molten pool is located at the most easily frozen part of the nozzle, so that the two are organically integrated into one body, so that the heated portion acts just at the easy-to-freeze nozzle, so that the nozzle can be even at a very low temperature. Open smoothly;
- the electromagnetic heating nozzle is located at the lowest point of the bottom of the package, the temperature of the molten metal in the molten pool at the initial stage of the pouring is increased, the fluidity is enhanced, and the effect of removing the scum and purifying the molten metal is also achieved;
- the fixed sealing is integrated; 10. Since the electromagnetic heating device of each casting flow can be used independently, the single-feed heating operation for the low-temperature casting flow is realized.
- the water-cooled inductor coil has a function of assisting the cooling of the casting stream while not feeding the casting stream at a higher temperature.
- the assembly process of the electromagnetic heating nozzle is described below, as shown in Figs. 8A to 8D, (1) First, the intermediate package body 1 after the natural air drying is placed on the assembly site; (2) then the water is cooled. The induction coil 321, the magnetizer 325, and the upper and lower insulating pads 327 are assembled together; (3) the insulating and insulating plate 326 is added and fixed at a portion in contact with the inductor case 323; (4) the assembled induction coil 321 The magnetizer 325, the upper and lower insulating pads 327 are mounted together with the insulating and insulating plate 326 into the fabricated inductor housing 323; (5) preliminary mounting adjustment bolts 3235; (6) mounting the sensor housing 323 to The nozzle connector flange 13 below the intermediate bag body 1 is tightened; (7) the adjusting bolt 3235 is adjusted to compact the upper insulating pad 327 and the ladle refractory ring sealing brick 12; (8) assembling the plug bar concave shape The brick 313 and the water in
- the tundish with the electromagnetic heating nozzle can make the temperature control of the continuous casting injection flow easier; completely eliminate the freezing accident of the nozzle; make the casting of the low superheat degree easier to realize; It's easier.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Abstract
一种带电磁加热水口的中间包(100),是通过在包体(1)底部安装了特殊的电磁加热水口(3),形成能调整和控制水口流温度的中间包(100);根据需要可在包底安装一个或多个电磁加热水口(3),形成能够独立控制每个水口流温度的中间包(100);该中间包(100)加热效率高,能对各浇注流温度独立调整和控制,实现最佳浇铸温度、杜绝水口堵塞,达到低过热度浇铸、提高铸坯质量的目的;该中间包(100)可广泛用于冶金连铸生产,特别是多流、多流大断面、超大断面连铸坯的生产;其温度控制准确、可控性高、运行成本低;可显著提高产品质量,降低生产成本。
Description
带电磁加热水口的中间包 技术领域 本发明是关于钢铁冶金领域中一种用于多流连铸生产的中间包,尤其涉及一种带电磁 加热水口的中间包, 具有中间包保温、 加热、 防水口冻结、 实现低过热度浇铸的中间包。 背景技术 随着社会需求对钢材质量的不断提高,连铸用中间包作为炼钢间断出钢和连铸连续铸 造之间必不可少的环节, 越来越引起人们的高度重视, 相继开展了对中间包流场、 温度场 的研究, 发现随着连铸坯断面的不断扩大, 连铸流数的不断增加, 中间包规格增大, 中间 包内温度的均匀性差异越大, 各流之间的差异及控制难度也越大; 为了避免低温区水口冻 结, 传统技术多采用提高中间包整体过热度的方法, 结果使得整个连铸生产很大程度上是 在较高过热度条件下运行, 不仅能耗高、 生产成本降不下来, 而且结晶器电磁搅拌的形核 能力降低, 造成铸件中心疏松、 缩孔增多, 制约了产品质量的提高; 为此, 国内外对中间 包的加热、 保温技术的研究上升到了较高高度。
现有中间包的加热技术包括: 传统中间包钢液面煤气加热法、 中间包电弧加热法、 中 间包钢液面等离子加热法和中间包电磁感应加热法等等。
其中, 传统煤气加热方法热效率低 (约为 30〜40%)、 加热速度慢、 效果较差; 电弧 加热方法其电极布置复杂, 且电极消耗和对钢水有增碳作用; 等离子加热方法与前者相比 加热速度快、 效率高(60〜70%)、 无污染, 是目前应用最广的方法之一, 但与前述两种加 热方法同属于表面加热方法, 虽然对防止钢液在中间包冻结起到了积极作用, 但是, 对使 用的新中间包降温快、 水口易冻结等问题的解决作用不大, 除非采用较高的过热度; 现有 技术中的又一种方法,是在中间包的钢水包水口下方的熔池与水口流上方的熔池间用一个 横向通道连通, 在这个通道上采用电磁感应加热方法将流经通道的金属液加热, 该方法加 热效率高(90〜98%), 但安装维护不便, 该方法是对中间包内整体金属液进行加热, 同样 对水口流温度的控制不明显。
鉴于现有中间包保温加热技术中, 在对各浇铸流温度控制上存在的不足, 本发明人凭 借多年的相关设计和制造经验, 提出一种带电磁加热水口的中间包, 以克服现有技术的缺 陷。
发明内容 本发明的目的在于提供一种带电磁加热水口的中间包, 以克服传统中间包加热效率 低、 对各浇铸流温度独立控制能力差、 不利整体降低钢液过热度等不足; 解决新包开浇初 期水口易冻结以及以往为避免冻结控制过高的过热度等问题。
本发明的另一目的在于提供一种带电磁加热水口的中间包, 能独立控制各水口流温 度, 提高加热效率, 实现连铸生产 "恒温浇铸、 低过热度生产", 稳定和提高产品质量。
本发明的又一目的在于提供一种带电磁加热水口的中间包, 其具有结构简单、操控性 能好、 维护方便的特点。
本发明的目的是这样实现的, 一种带电磁加热水口的中间包, 所述中间包由包体、 包 盖和电磁加热水口构成; 所述包体底部设有透孔; 电磁加热水口设于包体底部透孔部位的 下方; 该电磁加热水口由塞杆式水口和环设于塞杆式水口外侧的电磁加热装置构成, 所述 电磁加热装置的内壁与塞杆式水口的塞棒之间围成了一个环形腔体以构成电磁感应加热 的环形熔池, 该环形熔池位于塞杆式水口的塞棒馒头砖与塞棒凹形砖的结合处, 由此, 通 过控制电磁加热装置对环形熔池内钢液进行加热, 防止低过热度情况下水口冻结, 进而控 制水口流的钢液温度。
在本发明的一较佳实施方式中, 所述电磁加热装置由水冷感应线圈、 感应器内胆及感 应器壳体构成; 感应器内胆为与塞杆式水口同心设置的筒状结构, 其内孔直径大于塞棒外 径, 在感应器内胆与塞棒凹形砖之间设有环形底砖, 所述环形底砖顶面与塞棒凹形砖顶面 齐平构成了环形熔池的底部, 感应器内胆高度大于环形底砖的高度, 由塞棒馒头砖、 塞棒 凹形砖、环形底砖和感应器内胆构成所述环形熔池; 水冷感应线圈固定盘设于感应器内胆 的外侧面中部。
在本发明的一较佳实施方式中, 水冷感应线圈外侧环设有多个导磁体, 所述导磁体外 侧与感应器壳体内壁之间设有绝缘隔热板; 在导磁体的底部和顶部设有绝缘垫板。
在本发明的一较佳实施方式中,所述环形底砖与感应器壳体的底部上侧面之间设有调 整垫环; 所述环形底砖外侧面与感应器内胆之间设有间隙, 所述间隙由耐火填料填充。
在本发明的一较佳实施方式中,所述感应器壳体由一环形外壳及其底部固定连接的端 盖构成, 端盖上设有穿孔, 所述塞杆式水口穿设于该穿孔; 所述环形外壳的侧壁设有水冷 感应线圈的电缆出口;在感应器壳体的底部且位于导磁体底部的绝缘垫板下侧设有多个调 整螺栓。
在本发明的一较佳实施方式中, 所述包体由外向内依次包括钢结构外壳、 绝热层、 半
永久层和工作层包衬结构; 包体底部透孔下侧周围设有耐火圆环密封砖和水口连接法兰。 在本发明的一较佳实施方式中, 所述包体绝热层由绝热耐火纤维棉作为添加料、 由耐 火水泥作粘结剂、 由耐火料颗粒作骨料预制而成; 半永久层由打结料打结灌注而成; 工作 层由成型耐火砖砌筑而成; 耐火圆环密封砖采用碳质砖类材料预制而成; 所述水口连接法 兰焊接在包底钢结构外壳上。
在本发明的一较佳实施方式中, 所述包盖包括有钢结构框架, 在钢结构框架距底面厚 度三分之一位置设置一层耐热钢板, 耐热钢板上设有多个透气孔; 在耐热钢板上、 下表面 焊有多个钢爪; 在耐热钢板上、 下两侧设有保温打结料; 耐火绝热棉设置在包盖底部并由 钢爪将其与钢结构固定。
本发明的目的还可以这样实现, 一种电磁加热水口, 该电磁加热水口由塞杆式水口和 环设于塞杆式水口外侧的电磁加热装置构成,所述电磁加热装置的内壁与塞杆式水口的塞 棒之间围成了一个环形腔体以构成电磁感应加热的环形熔池,该环形熔池位于塞杆式水口 的塞棒馒头砖与塞棒凹形砖的结合处, 由此, 通过控制电磁加热装置对环形熔池内钢液进 行加热, 防止水口冻结, 进而控制水口流的钢液温度。
在本发明的一较佳实施方式中, 所述电磁加热装置由水冷感应线圈、 感应器内胆及感 应器壳体构成; 感应器内胆为与塞杆式水口同心设置的筒状结构, 其内孔直径大于塞棒外 径, 在感应器内胆与塞棒凹形砖之间设有环形底砖, 所述环形底砖顶面与塞棒凹形砖顶面 齐平构成了环形熔池的底部, 感应器内胆高度大于环形底砖的高度, 由塞棒馒头砖、 塞棒 凹形砖、环形底砖和感应器内胆构成所述环形熔池; 水冷感应线圈固定盘设于感应器内胆 的外侧面中部。
在本发明的一较佳实施方式中, 水冷感应线圈外侧环设有多个导磁体, 所述导磁体外 侧与感应器壳体内壁之间设有绝缘隔热板; 在导磁体的底部和顶部设有绝缘垫板。
在本发明的一较佳实施方式中,所述环形底砖与感应器壳体的底部上侧面之间设有调 整垫环; 所述环形底砖外侧面与感应器内胆之间设有间隙, 所述间隙由耐火填料填充。
在本发明的一较佳实施方式中,所述感应器壳体由一环形外壳及其底部固定连接的端 盖构成, 端盖上设有穿孔, 所述塞杆式水口穿设于该穿孔; 所述环形外壳的侧壁设有水冷 感应线圈的电缆出口;在感应器壳体的底部且位于导磁体底部的绝缘垫板下侧设有多个调 整螺栓。
由上所述, 本发明带电磁加热水口的中间包, 是在包体底部安装了特殊的水冷感应加 热水口, 利用感应加热原理形成能够独立控制水口流温度的中间包; 本发明可以根据需要 在包体底部安装一个或多个电磁加热水口, 形成能够独立控制每一个水口流温度的中间
包; 本发明的中间包加热效率高, 能够分别对各浇注流进行独立送电控制, 调整各流钢水 温度, 有效控制最佳浇铸温度, 在不影响其他正常水口情况下, 能直接加热较低温度的水 口, 杜绝水口堵塞, 实现低过热度浇铸, 提高铸坯质量; 该发明可广泛用于钢厂连铸生产, 特别是多流连铸坯生产, 尤其是多流大断面、 超大断面连铸坯的生产; 其温度控制准确、 可控性高、 运行成本低, 可显著提高产品质量、 降低生产成本。 附图说明 以下附图仅旨在于对本发明做示意性说明和解释, 并不限定本发明的范围。 其中: 图 1 : 为本发明中电磁加热水口的结构示意图。
图 2: 为本发明带电磁加热水口的中间包结构示意图。
图 3: 为本发明中包体的结构示意图一。
图 4: 为本发明中包体的结构示意图二。
图 5 : 为本发明中包盖的结构示意图一。
图 6: 为本发明中包盖的结构示意图二。
图 7: 为本发明中包盖的结构示意图三。
图 8A: 为本发明中电磁加热水口的装配步骤图一。
图 8B: 为本发明中电磁加热水口的装配步骤图二。
图 8C: 为本发明中电磁加热水口的装配步骤图三。
图 8D: 为本发明中电磁加热水口的装配步骤图四。
图 9: 为本发明带电磁加热水口的中间包送电加热初期示意图。 具体实施方式 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图说明本发明的 具体实施方式。
如图 1所示, 本发明提出一种电磁加热水口 3, 该电磁加热水口 3 由塞杆式水口 31 和环设于塞杆式水口 31外侧的电磁加热装置 32构成, 所述电磁加热装置 32的内壁与塞 杆式水口 31的塞棒 311之间围成了一个环形腔体 33以构成电磁感应加热的环形熔池,该 环形熔池 33位于塞杆式水口 31的塞棒馒头砖 312与塞棒凹形砖 313的结合处。
如图 2所示, 本发明还提出一种带有上述电磁加热水口 3的中间包 100, 所述中间包 100由包体 1、 包盖 2和前述电磁加热水口 3构成; 所述包体 1底部设有透孔 11 ; 电磁加
热水口 3设于包体底部透孔 1 1部位的下方; 由此, 通过控制电磁加热装置 32对环形熔池 33内钢液进行加热, 防止水口冻结, 进而控制水口流的钢液温度。
由上所述, 本发明带电磁加热水口的中间包, 是在包体底部安装了特殊的水冷感应电 磁加热水口, 利用电磁加热原理形成能够独立控制水口流温度的中间包; 本发明可以根据 需要在包体底部安装一个或多个电磁加热水口,形成能够独立控制每一个水口流温度的中 间包; 本发明的中间包加热效率高, 能够分别对各浇注流进行独立送电控制, 调整各流钢 水温度, 有效控制最佳浇铸温度, 在不影响其他正常水口情况下, 能直接加热较低温度的 水口, 杜绝水口堵塞, 实现低过热度浇铸, 提高铸坯质量; 该发明可广泛用于钢厂连铸生 产, 特别是多流连铸坯生产, 尤其是多流大断面、 超大断面连铸坯的生产; 其温度控制准 确、 可控性高、 运行成本低, 可显著提高产品质量、 降低生产成本。
进一步, 如图 1所示, 在本实施方式中, 所述电磁加热装置 32由水冷感应线圈 321、 感应器内胆 322及感应器壳体 323构成; 感应器内胆 322为与塞杆式水口 31同心设置的 筒状结构, 感应器内胆 322的内孔直径大于塞棒 311的外径, 在感应器内胆 322与塞棒凹 形砖 313之间设有环形底砖 324, 所述环形底砖 324顶面与塞棒凹形砖 313顶面齐平构成 了环形熔池 33的底部, 感应器内胆 322高度大于环形底砖 324的高度以构成环形熔池 33 的侧壁 (当电磁加热水口 3安装于包体底部后, 环形熔池 33的侧壁还应包括包体透孔 11 的侧壁以及电磁加热水口 3与包体 1底部之间的构件内壁), 由塞棒馒头砖 312、 塞棒凹 形砖 313、环形底砖 324和感应器内胆 322构成了所述环形熔池 33 ; 水冷感应线圈 321固 定盘设于感应器内胆 322的外侧面中部。
如图 1所示, 水冷感应线圈 321外侧环设有多个导磁体 325, 所述导磁体 325外侧与 感应器壳体 323内壁之间设有绝缘隔热板 326 ; 在导磁体 325的底部和顶部设有绝缘垫板 327。
进一步, 在本实施方式中, 所述环形底砖 324与感应器壳体 323的底部上侧面之间设 有调整垫环 328, 该调整垫环 328可用于调整环形底砖 324在感应器内胆 322内的位置; 感应器内胆 322由高温耐火材料(如高铝质等耐火材料)预制而成,感应器内胆 322的内、 外表面均为圆柱面, 感应器内胆 322内表面上部与环形底砖 324外表面紧密接触; 感应器 内胆 322内表面下部直径比上部直径大,感应器内胆 322内表面下部与环形底砖 324外表 面形成 10〜50mm的间隙, 所述间隙由耐火填料 329填充, 由耐火填料 329将感应器内胆 322与环形底砖 324连接密封为一体。
在本实施方式中, 所述感应器壳体 323可为底部设有穿孔 3231的凹槽形壳体; 作为 本实施方式中的另一实施例, 如图 1所示, 为了方便电磁加热水口 3在包体透孔 11底部
的安装, 感应器壳体 323也可由一环形外壳 3232及其底部固定连接的端盖 3233构成, 端 盖 3233上设有所述穿孔 3231,所述塞杆式水口 31穿设于该穿孔 3231 ;所述环形外壳 3232 的侧壁设有水冷感应线圈的电缆出口 3234; 在感应器壳体的底部且位于导磁体 325底部 的绝缘垫板 327下侧设有多个调整螺栓 3235。 通过调整螺栓 3235使导磁体 325在感应器 壳体 323内得以固定。 在本实施方式中, 导磁体 325、 水冷感应线圈 321均采用绝缘固定 方式连接到感应器壳体 323上; 导磁体 325、 水冷感应线圈 321、 感应器壳体 323三者间 均彼此绝缘。
进一步, 如图 1、 图 2所示, 在本实施方式中, 所述塞杆式水口 31包括有上水口 314 和侵入式下水口 315, 所述上水口 314的轴线与所述包体底部透孔 11的轴线重合; 上水 口 314与侵入式下水口 315采用典型的可装卡方式连接; 所述包盖 2上设有与包体透孔 11对应的塞棒穿孔 21, 所述塞棒 311穿过塞棒穿孔 21, 如图 1所示, 塞棒 311底部的塞 棒馒头砖 312采用接触式密封连接方式抵压在上水口 314顶部的塞棒凹形砖 313的内孔 上, 以将上水口 314封设, 通过开启塞棒馒头砖 312与塞棒凹形砖 313内孔间的开口度, 起到控制和调整钢液流量的作用。
如图 3、 图 4所示, 在本实施方式中, 所述包体底部透孔 11下侧周围设有耐火圆环 密封砖 12和水口连接法兰 13; 感应器壳体 323通过法兰装配螺栓与包体的水口连接法兰 13连接到一起; 端盖 3233通过端盖螺栓将感应器内胆 322及与感应器内胆 322相连的环 形底砖 324、塞棒凹形砖 313、上水口 314、浸入式下水口 315、塞棒馒头砖 312、塞棒 311 等构件与中间包包体连为一体; 导磁体 325的底部和顶部分别由绝缘垫板 327支撑, 其顶 部的绝缘垫板 327与感应器内胆 322上平面齐平, 并与包体的耐火圆环密封砖 12相接。
如图 3、 图 4所示, 在本实施方式中, 所述包体由外向内依次包括钢结构外壳 14、 绝 热层 15、 半永久层 16和工作层包衬 17结构; 包体内设有挡渣墙 18, 包体后部设有排渣 口 19; 所述包体绝热层 15由绝热耐火纤维棉作为添加料、 由耐火水泥作粘结剂、 由耐火 料颗粒作骨料预制而成, 具有绝热性好、 强度高、 透气性好、 砌筑方便特点; 半永久层 16由打结料打结灌注而成; 工作层包衬 17由成型耐火砖砌筑而成, 所述成型耐火砖可为 高铝砖、 粘土砖、 镁碳砖等, 具有内衬不易脱落、 对钢液污染轻、 多次修砌方便等特点; 所述挡渣墙 18、 排渣口 19为传统典型挡渣墙和排渣口材料和结构。
所述耐火圆环密封砖 12采用碳质砖类材料预制而成; 由包体底部透孔 11处的工作层 17与下方安装的耐火圆环密封砖 12、 感应器内胆 322以及环形底砖 324、塞棒凹形砖 313 构成环形熔池; 所述水口连接法兰 13焊接在包底钢结构外壳 14上。
进一步, 如图 5、 图 6、 图 7所示, 在本实施方式中, 所述包盖 2包括有钢结构框架
22, 在钢结构框架 22距底面厚度 1/3位置设置一层耐热钢板 23, 该耐热钢板 23优选耐 热不锈钢, 耐热钢板 23与钢结构框架 22间采用焊接或铆接, 耐热钢板 23上设有多个直 径在 20〜80mm的透气孔 231, 所述透气孔 231便于潮气冒出, 在不降低刚度、 强度的同 时减轻钢结构的重量; 在耐热钢板 23上、 下表面焊有多个钢爪 232; 在耐热钢板 23上、 下两侧设有保温打结料 24, 所述保温打结料 24由绝热耐火纤维棉作为添加料、 由耐火水 泥作粘结剂、 由耐火砖粒作骨料灌注打结为一体, 其具有水泥的刚性、 保温材料的保温性 和比重轻等特点;耐火绝热棉 25设置在包盖底部并由钢爪 232将其与钢结构框架 22固定。 所述包盖 2上还设有钢包水口穿孔 26, 钢包水口 4穿设于该穿孔 26中。
本发明的中间包在使用时, 如图 9所示, (1 )首先将组装和烘烤好的带电磁加热水口 的中间包放置到浇铸场地 (置于连铸机上方), 将盛有金属液的钢包至于中间包上方, 将 钢包水口 4伸进钢包水口穿孔 26内; (2 )检查并确认所有塞棒式水口处于关闭状态; (3 ) 打开钢包水口 4, 使钢液充满挡渣池, 经挡渣墙 18实现渣、 液分离, 熔渣经排渣口 19排 出, 纯净的金属液由挡渣墙 18上的透孔 181流入布有四个 (1〜4流) 电磁加热水口 3的 中间包内, 进入各浇钢流上方电磁加热装置与塞棒间的环形熔池 33; ( 4) 同时给四个电 磁加热水口 3送电, 避免环形熔池 33内的金属液特别是靠近塞棒馒头砖处的金属液被冻 结, 进入电磁加热装置与塞棒间环形熔池 33的金属液, 经电磁加热装置加热后温度升高, 同时一同被加热了的杂质随被加热的金属液在上浮过程得到排除,在避免塞棒冻结的同时 起到了浮渣排渣作用; (5 )分别打开四流的各塞棒水口完成引锭; (6 )根据各流实际浇铸 温度, 调整电磁加热水口 3送电功率 (逐渐减小 2流、 3流送电功率, 同时根据需要调整 和加大 1流、 4流送电功率), 保证 1〜4流相对一致和稳定的浇铸温度。 由于电磁加热水 口的使用, 杜绝了低温钢液冻结塞棒的可能, 为更低过热度下浇铸创造了条件, 对发挥结 晶器电磁搅拌效果、提高连铸坯质量创造了有利条件; 各浇铸流的独立电磁加热装置的使 用,可实现对两侧低温浇铸流独立送电加热,对中部温度较高的浇铸流可不送电或少送电, 同时水冷感应器线圈对不送电的浇铸流还可起到辅助降温的作用。
由上所述, 本发明带电磁加热水口的中间包, 至少具有下列优点:
1. 由于包体采用了特殊绝热层、 打结灌注半永久层和可多次修砌便利的工作层三层 结构方式, 使包体绝热、 保温性能大大提高、 修砌维护更加方便;
2. 由于包体工作层可以根据钢种的需要, 选用合适材质的标准成型耐火砖砌筑, 因 此, 内衬对钢液造成的污染更低, 且不易脱落;
3. 由于包体水口处预制耐火圆环密封砖及水口连接法兰的使用, 使得包体砌筑与电 磁加热水口的密封连接、 更换、 维护变得更加方便;
4. 由于包盖采用钢结构框架与轻质耐火绝热打结料复合而成, 在钢结构框架距底面 1/3位置设置了一层耐热钢板, 使得其结构轻便、 刚度、 结构强度更高、 绝热保温效果更 好、 安全性更高;
5. 由于使用了电磁加热水口, 彻底杜绝了低温钢液冻结塞棒的可能, 可实现低过热 度状态下的浇铸, 为提高连铸坯质量创造了有利条件;
6. 由于电磁加热水口巧妙地运用了包底耐火圆环密封砖、 感应器内胆、 塞棒环形底 砖、 塞棒凹形砖、 塞棒馒头砖、 塞棒围成的环形熔池, 构成了电磁加热的受热腔体, 该环 形熔池位于水口最易冻结部位, 使两者有机结合为一体, 使被加热部位恰好作用于易冻结 水口处, 使水口即使在很低的温度下也能顺利打开;
7. 由于电磁加热水口位于包底最低处, 开浇初期被加热了的熔池金属液温度升高, 流动性增强, 同时还起到了浮渣去杂、 净化金属液的功效;
8. 由于感应器内胆、 塞棒环形底砖采用预制件与预留填充槽内浇灌耐火料相结合的 修砌安装方式, 解决了部件整体特性、 可更换维护性和密封等问题;
9. 由于调整垫环、 环形绝缘垫板、 调整螺栓的配合使用, 使固定密封融为一体; 10.由于各浇铸流的电磁加热装置可独立使用,实现了对低温铸流单独送电加热操作; 水冷感应器线圈对较高温度的浇铸流在不送电的同时还有对浇铸流辅助降温的作用。
下面对该电磁加热水口的装配过程作出描述, 如图 8A〜8D所示, (1 ) 首先, 将砌筑 好自然风干后的中间包包体 1放置到装配场地;(2 )然后将水冷感应线圈 321、导磁体 325、 上下绝缘垫板 327组装到一起; (3 )在与感应器壳体 323相接触的部位添加并固定绝缘隔 热板 326; ( 4) 将组装好的感应线圈 321、 导磁体 325、 上下绝缘垫板 327连同绝缘隔热 板 326—起安装到制作好的感应器壳体 323内; (5 ) 初步安装调整螺栓 3235; ( 6 ) 将感 应器壳体 323安装到中间包包体 1下方的水口连接法兰 13上把紧;(7 )调整调整螺栓 3235 使上绝缘垫板 327与钢包耐火圆环密封砖 12压实压紧; (8 ) 组装塞棒凹形砖 313和上水 口 314到环形底砖 324内 (之间用耐火泥浆粘接到一起); ( 9 ) 将组装好的环形底砖 324 装入感应器内胆 322内, 用塞棒调整垫环 328初步固定两者相对位置后在感应器内胆 322 与环形底砖 324之间填充塞棒耐火填料 329; ( 10 ) 安装端面盖板 3233, 把紧端盖螺栓, 使感应器内胆 322与钢包耐火圆环密封砖 12压实压紧; (11 ) 安装浸入式下水口 315、 塞 棒 311 ; ( 12 ) 加盖包盖 2, 即可进行生产前的烘烤加热了。
电磁加热水口的更换与维护步骤如下:
( 1 ) 首先将待维护的中间包放置到维修维护场地; (2 ) 检查中间包内无残存高温钢 渣及金属液; (3 )卸下装配螺栓, 将电磁加热水口及其内部部件一并从包体底部连接法兰
上取下, 可以对电磁加热水口及其内部部件进行更换操作; (4)卸下端面盖板上的端盖螺 栓, 可以将感应器内胆及内胆内部件与电磁加热装置分离更换或维修, 还可以对感应线圈 和导磁体进行更换维护; (5)分离感应器内胆内的塞棒环形底砖、 塞棒凹形砖、 塞棒耐火 填料、 塞棒调整垫环、 上水口等构件, 根据需要进行更换维修; (6) 更换后, 按中间包电 磁加热水口的装配步骤进行装配复原即可。
另外, 也可以不卸下装配螺栓, 直接卸下端面盖板上的端盖螺栓, 在线更换和维护各 部件 (不再赘述)。
综上所述, 本发明带电磁加热水口的中间包, 能够使连铸注流温度控制变得更容易; 彻底杜绝了水口冻结事故; 使低过热度浇铸更易实现; 使控制连铸质量提高变得更容易。
以上所述仅为本发明示意性的具体实施方式, 并非用以限定本发明的范围。任何本领 域的技术人员, 在不脱离本发明的构思和原则的前提下所作出的等同变化与修改, 均应属 于本发明保护的范围。
Claims
1、 一种带电磁加热水口的中间包, 该中间包由包体、 包盖和电磁加热水口构成; 其 特征在于: 所述包体底部设有透孔; 电磁加热水口设于包体底部透孔部位的下方; 该电磁 加热水口由塞杆式水口和环设于塞杆式水口外侧的电磁加热装置构成,所述电磁加热装置 的内壁与塞杆式水口的塞棒之间围成了一个环形腔体以构成电磁感应加热的环形熔池,该 环形熔池位于塞杆式水口的塞棒馒头砖与塞棒凹形砖的结合处,通过控制电磁加热装置对 环形熔池内钢液进行的加热, 防止水口冻结, 进而控制水口流的钢液温度。
2、 如权利要求 1所述的带电磁加热水口的中间包, 其特征在于: 所述电磁加热装置 由水冷感应线圈、 感应器内胆及感应器壳体构成; 感应器内胆为与塞杆式水口同心设置的 筒状结构, 其内孔直径大于塞棒外径, 在感应器内胆与塞棒凹形砖之间设有环形底砖, 所 述环形底砖顶面与塞棒凹形砖顶面齐平构成了环形熔池的底部,感应器内胆高度大于环形 底砖的高度, 由塞棒馒头砖、 塞棒凹形砖、 环形底砖和感应器内胆构成所述环形熔池; 水 冷感应线圈固定盘设于感应器内胆的外侧面中部。
3、 如权利要求 2所述的带电磁加热水口的中间包, 其特征在于: 水冷感应线圈外侧 环设有多个导磁体, 所述导磁体外侧与感应器壳体内壁之间设有绝缘隔热板; 在导磁体的 底部和顶部设有绝缘垫板。
4、 如权利要求 2所述的带电磁加热水口的中间包, 其特征在于: 所述环形底砖与感 应器壳体的底部上侧面之间设有调整垫环;所述环形底砖外侧面与感应器内胆之间设有间 隙, 所述间隙由耐火填料填充。
5、 如权利要求 3所述的带电磁加热水口的中间包, 其特征在于: 所述感应器壳体由 一环形外壳及其底部固定连接的端盖构成, 端盖上设有穿孔, 所述塞杆式水口穿设于该穿 孔; 所述环形外壳的侧壁设有水冷感应线圈的电缆出口; 在感应器壳体的底部且位于导磁 体底部的绝缘垫板下侧设有多个调整螺栓。
6、 如权利要求 1所述的带电磁加热水口的中间包, 其特征在于: 所述包体由外向内 依次包括钢结构外壳、 绝热层、 半永久层和工作层包衬结构; 包体底部透孔下侧周围设有 耐火圆环密封砖和水口连接法兰。
7、 如权利要求 6所述的带电磁加热水口的中间包, 其特征在于: 所述包体绝热层由 绝热耐火纤维棉作为添加料、 由耐火水泥作粘结剂、 由耐火料颗粒作骨料预制而成; 半永 久层由打结料打结灌注而成; 工作层由成型耐火砖砌筑而成; 耐火圆环密封砖采用碳质砖 类材料预制而成; 所述水口连接法兰焊接在包底钢结构外壳上。
8、 如权利要求 1所述的带电磁加热水口的中间包, 其特征在于: 所述包盖包括有钢 结构框架, 在钢结构框架距底面厚度三分之一位置设置一层耐热钢板, 耐热钢板上设有多 个透气孔; 在耐热钢板上、下表面焊有多个钢爪; 在耐热钢板上、下两侧设有保温打结料; 耐火绝热棉设置在包盖底部并由钢爪将其与钢结构固定。
9、 一种电磁加热水口, 其特征在于: 该电磁加热水口由塞杆式水口和环设于塞杆式 水口外侧的电磁加热装置构成,所述电磁加热装置的内壁与塞杆式水口的塞棒之间围成了 一个环形腔体以构成电磁感应加热的环形熔池,该环形熔池位于塞杆式水口的塞棒馒头砖 与塞棒凹形砖的结合处, 由此, 通过控制电磁加热装置对环形熔池内钢液进行加热, 防止 水口冻结, 进而控制水口流的钢液温度。
10、 如权利要求 9所述的电磁加热水口, 其特征在于: 所述电磁加热装置由水冷感应 线圈、 感应器内胆及感应器壳体构成; 感应器内胆为与塞杆式水口同心设置的筒状结构, 其内孔直径大于塞棒外径, 在感应器内胆与塞棒凹形砖之间设有环形底砖, 所述环形底砖 顶面与塞棒凹形砖顶面齐平构成了环形熔池的底部, 感应器内胆高度大于环形底砖的高 度, 由塞棒馒头砖、 塞棒凹形砖、 环形底砖和感应器内胆构成所述环形熔池; 水冷感应线 圈固定盘设于感应器内胆的外侧面中部。
11、 如权利要求 10所述的电磁加热水口, 其特征在于: 水冷感应线圈外侧环设有多 个导磁体, 所述导磁体外侧与感应器壳体内壁之间设有绝缘隔热板; 在导磁体的底部和顶 部设有绝缘垫板。
12、 如权利要求 10所述的电磁加热水口, 其特征在于: 所述环形底砖与感应器壳体 的底部上侧面之间设有调整垫环; 所述环形底砖外侧面与感应器内胆之间设有间隙, 所述 间隙由耐火填料填充。
13、 如权利要求 11所述的电磁加热水口, 其特征在于: 所述感应器壳体由一环形外 壳及其底部固定连接的端盖构成, 端盖上设有穿孔, 所述塞杆式水口穿设于该穿孔; 所述 环形外壳的侧壁设有水冷感应线圈的电缆出口;在感应器壳体的底部且位于导磁体底部的 绝缘垫板下侧设有多个调整螺栓。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/075929 WO2012174701A1 (zh) | 2011-06-20 | 2011-06-20 | 带电磁加热水口的中间包 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/075929 WO2012174701A1 (zh) | 2011-06-20 | 2011-06-20 | 带电磁加热水口的中间包 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012174701A1 true WO2012174701A1 (zh) | 2012-12-27 |
Family
ID=47421968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/075929 WO2012174701A1 (zh) | 2011-06-20 | 2011-06-20 | 带电磁加热水口的中间包 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012174701A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604598A (en) * | 1969-07-09 | 1971-09-14 | United States Steel Corp | Outlet passage construction for teeming vessels |
US5236180A (en) * | 1991-08-21 | 1993-08-17 | Instituto Mexicano De Investigaciones Siderurgicas | Water cooling in induction heating furnaces |
JPH06269920A (ja) * | 1993-03-19 | 1994-09-27 | Ube Ind Ltd | 樋式給湯方法および装置 |
CN1810417A (zh) * | 2006-02-21 | 2006-08-02 | 赫冀成 | 一种带有加热出钢装置的钢包及其出钢方法 |
WO2007024703A1 (en) * | 2005-08-19 | 2007-03-01 | Advanced Metals Technology Company, Llc | Induction powered ladle bottom nozzle |
-
2011
- 2011-06-20 WO PCT/CN2011/075929 patent/WO2012174701A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604598A (en) * | 1969-07-09 | 1971-09-14 | United States Steel Corp | Outlet passage construction for teeming vessels |
US5236180A (en) * | 1991-08-21 | 1993-08-17 | Instituto Mexicano De Investigaciones Siderurgicas | Water cooling in induction heating furnaces |
JPH06269920A (ja) * | 1993-03-19 | 1994-09-27 | Ube Ind Ltd | 樋式給湯方法および装置 |
WO2007024703A1 (en) * | 2005-08-19 | 2007-03-01 | Advanced Metals Technology Company, Llc | Induction powered ladle bottom nozzle |
CN1810417A (zh) * | 2006-02-21 | 2006-08-02 | 赫冀成 | 一种带有加热出钢装置的钢包及其出钢方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102228986B (zh) | 带电磁加热水口的中间包 | |
CN101791682B (zh) | 超大型特厚板矩形锭坯的制造装置 | |
CN206143232U (zh) | 一种高炉出铁沟主沟水冷器件 | |
CN202106027U (zh) | 带电磁加热水口的中间包 | |
CN202490919U (zh) | 一种电磁感应水冷切缝式结晶器作为锭模的装置 | |
CN207188781U (zh) | 带真空的钢水漏底包 | |
CN200974116Y (zh) | 连铸中间包浸入式水口高效烘烤装置 | |
CN102179491B (zh) | 一种连铸中间包盖用吹氩预制件 | |
WO2012174701A1 (zh) | 带电磁加热水口的中间包 | |
CN109341339A (zh) | 一种底铸式感应悬浮冷坩埚及浇注方法 | |
CN206677142U (zh) | 一种铝棒生产用低能耗热顶铸造系统 | |
CN209214341U (zh) | 一种底铸式感应悬浮冷坩埚 | |
CN100516744C (zh) | 矿热炉用下料柱及其制造方法 | |
CN106367551A (zh) | 一种高炉出铁沟主沟水冷器件及安装使用方法 | |
CN207239098U (zh) | 三流φ160mm紫铜/黄铜水平连续铸造机组 | |
CN109570459A (zh) | 一种用于连铸铜管的连铸结晶器 | |
CN201644709U (zh) | 超大型特厚板矩形锭坯的制造装置 | |
CN202270967U (zh) | 中间包防絮流透气上水口 | |
CN104668521B (zh) | 低压铸造熔池装置 | |
CN103743235A (zh) | 一种无芯气压保温浇注炉 | |
CN208303846U (zh) | 一种铝合金铸造装置 | |
CN110296602A (zh) | 一种便于材料取出的熔铝炉燃烧装置 | |
CN206305395U (zh) | 一种浇注大型钢锭的保温帽 | |
CN101879590B (zh) | 一种连铸中间包浸入式水口在线烘烤装置及烘烤方法 | |
CN208276139U (zh) | 一种非晶带材一体式喷带包 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11868018 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11868018 Country of ref document: EP Kind code of ref document: A1 |