WO2012172978A1 - Solar tracking device and solar power generating device - Google Patents

Solar tracking device and solar power generating device Download PDF

Info

Publication number
WO2012172978A1
WO2012172978A1 PCT/JP2012/063898 JP2012063898W WO2012172978A1 WO 2012172978 A1 WO2012172978 A1 WO 2012172978A1 JP 2012063898 W JP2012063898 W JP 2012063898W WO 2012172978 A1 WO2012172978 A1 WO 2012172978A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
sun
solar
hole
tracking device
Prior art date
Application number
PCT/JP2012/063898
Other languages
French (fr)
Japanese (ja)
Inventor
基大 田中
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Publication of WO2012172978A1 publication Critical patent/WO2012172978A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to a solar tracking device and a solar power generation device including the solar tracking device.
  • ⁇ Devices that use solar energy are known.
  • An example of such a device is a solar power generation device.
  • the solar power generation device there is a type that tracks the sun according to the movement of the sun in order to increase the power generation efficiency.
  • a solar power generation apparatus having a panel (solar panel) with a solar cell attached to the surface
  • a solar power generation device also referred to as a solar thermal power generation device
  • the sunlight is accurately collected in one place by rotating the reflector. It is preferable to adjust the angle of the reflecting mirror.
  • any photovoltaic power generation apparatus it is necessary to accurately identify the position of the sun and adjust the angle of the panel (or reflecting mirror).
  • JP-A-2006-245519 discloses a solar power generation apparatus having a solar panel.
  • Japanese Patent Laid-Open No. 2006-245519 is referred to as Patent Document 1.
  • the solar power generation device of Patent Literature 1 includes an angle sensor (solar tracking device) for detecting the angle of the solar panel with respect to the sun.
  • the angle sensor of patent document 1 is comprised by the 2nd plate arrange
  • Each of the first plate and the second plate is provided with one through hole.
  • the through hole of the first plate and the through hole of the second plate are located on a substantially straight line.
  • the angle sensor of Patent Document 1 is attached to the solar panel so that the first plate is parallel to the solar panel.
  • Patent Document 1 when the sunlight that has passed through the through hole of the first plate passes through the through hole of the second plate, it is determined that the solar panel is orthogonal to the sun.
  • the technology of Patent Document 1 makes the solar panel orthogonal to the sun by adjusting the angle of the angle sensor so that sunlight passes through both the through hole of the first plate and the through hole of the second plate.
  • Sunlight that has passed through the through hole of the first plate travels toward the second plate while spreading.
  • the area of sunlight that hits the surface of the second plate is larger than the area of the through hole of the first plate, depending on the sun's viewing diameter and the distance between the first plate and the second plate. Therefore, in the case of the solar tracking device of Patent Document 1, even if the first plate is not orthogonal to the sun, sunlight that has passed through the through hole of the first plate may pass through the through hole of the second plate. That is, in the technique of Patent Document 1, even if the solar panel is determined to be orthogonal to the sun, the solar panel may not actually be orthogonal to the sun. In the technique of Patent Document 1, the accuracy of specifying the position of the sun is not high.
  • the present specification provides a technique for accurately identifying the position of the sun.
  • the solar tracking device disclosed in this specification includes a detection unit and a driving device.
  • the detection unit includes a first plate and a second plate.
  • the first plate has a through hole.
  • the second plate is disposed at a position facing the first plate and has at least two light receiving portions.
  • the drive device adjusts the angle of the detection unit.
  • at least two light receiving portions are arranged inside a circle having a radius R 2 calculated by the following equation 1 with the intersection of the center line of the through hole and the second plate as the center.
  • R 1 is the radius of the through hole
  • L is the distance between the first plate and the second plate
  • A is the visual diameter of the sun.
  • R 2 R 1 + L ⁇ tan (A / 2) (Formula 1)
  • “disposed at a position where the first plate and the second plate face each other” includes a surface on which the through hole of the first plate is formed and a light receiving portion of the second plate. It means that the surface is parallel. Therefore, when the first plate is orthogonal to the sun, the second plate is also orthogonal to the sun.
  • the “center line of the through hole” means a straight line that passes through the center of the through hole and is orthogonal to the first plate.
  • the “distance between the first plate and the second plate” refers to the surface of the first plate on the second plate side (hereinafter sometimes referred to as the back surface of the first plate) and the first plate of the second plate.
  • a circle of radius R 2 which is calculated by the formula 1, when the first plate is perpendicular to the sun, equivalent to bounds of the sunlight passing through the through-hole of the first plate strikes the surface of the second plate To do.
  • the sunlight that has passed through the through hole of the first plate travels while spreading and reaches the second plate.
  • two or more light receiving portions are provided inside the circle having the radius R 2 calculated by the above formula 1. Therefore, when the 1st plate is orthogonal to the sun, sunlight strikes all the light-receiving parts. If the first plate deviates from an angle perpendicular to the sun, the light will not hit any of the light receiving portions.
  • the angle of the detection unit is adjusted using a driving device. If sunlight hits all the light receiving parts, it is determined that the first plate (detection unit) is orthogonal to the sun.
  • the solar tracking device described above can compensate for the spread of sunlight that has passed through the first plate and can accurately identify the position of the sun.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. It is a figure explaining arrangement
  • the state which the sunlight detection unit is orthogonal to the sun is shown.
  • the state which the sunlight detection unit is not orthogonal to the sun is shown.
  • deviated from the angle orthogonal to the sun is shown (1).
  • deviated from the angle orthogonal to the sun is shown (2).
  • a method for detecting sunlight that has reached the light receiving section will be described (1).
  • a method for detecting sunlight that has reached the light receiving part is shown (2). It is a figure for demonstrating the method to correct
  • All the light receiving parts may be arranged at equal intervals on the circumference of a circle centering on the intersection of the center line of the through hole of the first plate and the second plate. It should be noted that the position where the light receiving unit is disposed is sufficient if it is inside the circle of radius R 2 calculated from Equation 1. However, by arranging the light receiving portions at equal intervals on the circumference of the circle centered on the intersection point, the first plate is orthogonal to the sun no matter which direction the first plate is displaced from the position orthogonal to the sun. It can be judged that it is not. That is, the detection accuracy of the detection unit does not depend on the direction of deviation from the sun.
  • the sun tracking device may further include a controller for controlling the driving device.
  • the controller that controls the drive device when the light amount difference between the light receiving units exceeds a predetermined range, commands to adjust the angle of the detection unit until the light amount difference between the light receiving units is within the predetermined range.
  • the value may be output to the driving device.
  • a slight deviation in the angle of the detection unit with respect to the sun can be corrected by setting the difference in the amount of light between the light receiving portions within a predetermined range (for example, zero).
  • the light receiving unit may be arranged at a symmetrical (line symmetric or point symmetric) position about the intersection of the center line of the first through hole and the second plate.
  • the detection unit may include two second plates (an upper second plate and a lower second plate).
  • the upper second plate and the lower second plate are arranged at positions facing each other with a slight distance.
  • a second through hole is formed in the upper second plate, and an optical sensor is disposed on the lower second plate. When the two second plates are viewed in plan, the second through hole may overlap with the optical sensor.
  • the solar power generation apparatus may include a solar cell on the surface of the panel.
  • the sunlight detection unit may be fixed to the panel so that the first plate is parallel to the surface of the panel.
  • the driving device for driving the panel may be a driving device for driving the sunlight detection unit.
  • a solar power generation device including a solar tracking device is disclosed.
  • the solar power generation device has high power generation efficiency because the solar panel can accurately track the sun by the solar tracking device.
  • the driving device 5 rotates the panel support shaft 3 in the arrow X direction and the arrow Y direction with respect to the support column 8. Therefore, the panel 2 can rotate with respect to the support column 8 in the arrow X direction and the arrow Y direction.
  • the solar power generation device 100 can rotate around two axes. In the solar power generation device 100, the position of the sun is specified using the solar light detection unit 10, and the driving device 5 adjusts the angle of the panel 2.
  • the drive device 5 that drives the panel 2 also functions as a drive device for the sunlight detection unit 10.
  • the solar tracking device 15 is configured by the sunlight detection unit 10 and the driving device 5.
  • the angle of the panel 2 is changed according to the movement of the sun.
  • the panel 2 always rotates so as to be orthogonal to the sun according to a predetermined operation program. Since the orbit of the sun is known in advance, the operation pattern of the panel 2 is also stored in the program in advance.
  • the sun tracking device 15 is used to correct the difference between the angle of the panel 2 determined in the program and the actual angle of the panel 2. For example, it is used when calibrating an initial program when the solar power generation apparatus 100 is assembled or correcting a change in the angle of the panel 2 over time. Alternatively, the sun tracking device 15 can correct the angle of the panel 2 in real time during operation of the panel 2 and can be used so that the panel 2 is always orthogonal to the sun.
  • the sunlight detection unit 10 includes a first plate 12 and a second plate 18.
  • the first plate 12 and the second plate 18 are fixed to both ends of the hollow body 16.
  • the first plate 12 is disposed at a position facing the second plate 18.
  • the first plate 12 and the second plate 18 are arranged in parallel via the body 16.
  • the first plate 12 and the second plate 18 are separated by the length L of the body 16. More precisely, the back surface of the first plate 12 and the surface of the second plate 18 are separated by a length L (see FIG. 3).
  • One first through hole 14 is formed in the first plate 12.
  • Four light receiving portions 20 are arranged on the second plate 18.
  • FIG. 4 is a plan view of the second plate 18.
  • the light receiving portion 20 is a through hole formed in the second plate 18.
  • the through hole formed in the second plate 18 may be referred to as the second through hole 20.
  • a point 22 shown in FIG. 4 is an intersection of the center line C14 of the first through hole 14 and the second plate 18.
  • the center line C ⁇ b> 14 is a straight line that passes through the center of the first through hole 14 and is orthogonal to the first plate 12.
  • the first through-hole 14 is a pin hole of radius R 1.
  • the four second through holes 20 are formed at equal intervals on the circumference of a circle 24 having a radius r with the point 22 as the center. More precisely, the center of the second through hole 20 is located on the circumference of the circle 24. It can also be expressed that the four second through holes (light receiving portions) 20 are formed at point-symmetric positions separated by a distance r with the point 22 as the center.
  • Each of the second through holes 20 is inscribed in a circle 26 having a radius R 2 centered on the point 22. Precisely, the center of the second through hole 20 is located inside a circle 26 having a radius R 2 centered on the point 22. Radius r is smaller than the radius R 2. It will be described later radius R 2.
  • FIG. 5 shows a state in which the sunlight detection unit 10 is orthogonal to the sun 30.
  • the first plate 12 and the second plate 18 are orthogonal to the sun 30.
  • the sunlight 32 that has passed through the first through-hole 14 proceeds while spreading in the sunlight detection unit 10 (inside the body 16) by an amount corresponding to the visual diameter A of the sun, and the second plate 18 is reached.
  • the “sun's visual diameter” is an angle of the apparent diameter of the sun and is generally between 32′32 ′′ and 31′28 ′′.
  • the range of sunlight 32 that strikes the surface of the second plate 18 is the inside of a circle having a diameter of 2 ⁇ R 2 .
  • the radius R 2 is the radius of the sunlight 32 that hits the surface of the second plate 18.
  • the circle 26 is a range of sunlight 32 that hits the second plate 18 when the sunlight detection unit 10 is orthogonal to the sun 30.
  • the circle 26 may be referred to as a reference range 26.
  • the radius R 2 is obtained by geometric calculation and can be expressed by the following formula 1.
  • R 1 is the radius of the first through hole 14
  • L is the distance between the first plate and the second plate
  • A is the visual diameter of the sun. If 32 ′ is adopted as the viewing diameter A, it can correspond to almost all places on the earth.
  • R 2 R 1 + L ⁇ tan (A / 2) (Formula 1)
  • the four second through holes 20 are formed inside the circle 26 having the radius R 2 (see FIG. 4). More precisely, the four second through holes 20 are inscribed in the circle 26. Therefore, when the sunlight detection unit 10 is orthogonal to the sun 30, the sunlight 32 passes through all the second through holes 20 and reaches the back side of the second plate 18. Thereby, when the sunlight 32 has passed all the 2nd through-holes 20, it can be judged that the sunlight detection unit 10 is orthogonal to the sun 30.
  • the sunlight 32 passes through any one of the four second through holes 20. There is. In FIG. 6, the sunlight 32 passes through the second through hole 20a and does not pass through the second through hole 20b. In the sunlight detection unit 10, when the sunlight 32 does not pass through any of the four second through holes 20, it is determined that the sunlight detection unit 10 is not orthogonal to the sun 30.
  • the four second through holes (light receiving portions) 20 are formed at equal intervals on the circumference of the circle 24 centered on the point 22 (see FIG. 4). reference). Therefore, it is possible to detect the “direction” in which the sunlight detection unit 10 is deviated from the position orthogonal to the sun.
  • the solar power generation device 100 can make the solar light detection unit 10 (panel 2) orthogonal to the sun by the second drive device 4.
  • the solar tracking device 15 when the sunlight 32 does not hit only the through-hole 20a, the solar tracking device 15 is shifted in the X direction from the position where the sunlight detection unit 10 (panel 2) is orthogonal to the sun. Can be detected. Based on the measurement result of the solar tracking device 15, the solar power generation device 100 can make the solar light detection unit 10 (panel 2) orthogonal to the sun by the first drive device 6. When the panel 2 is deviated from an angle orthogonal to the sun, the sun tracking device 15 can detect the direction of deviation and correct the deviation.
  • FIG. 9 shows one implementation form of the sunlight detection unit.
  • the solar light detection unit 10a shown in FIG. 9 includes two second plates 18 (an upper second plate 18a and a lower second plate 18b).
  • the second through hole 20 is formed in the upper second plate 18a, and the optical sensor 40 is disposed in the lower second plate 18b.
  • the optical sensor 40 is a sensor that measures a received light amount (light intensity), and is, for example, a phototransistor.
  • the optical sensor 40 is disposed at a position corresponding to the second through hole 20. In other words, the second through hole 20 overlaps the optical sensor 40 when the second plate 18 is viewed in plan.
  • two optical sensors 40 are shown in the drawing, there is an optical sensor corresponding to the second through hole that does not appear in the cross section of FIG. 9. That is, the same number of photosensors 40 as the number of second through holes 20 are arranged in the sunlight detection unit 10a.
  • FIG. 10 shows another embodiment of the solar light detection unit.
  • the optical sensor 40 is the light receiving unit 20 itself.
  • the position where the optical sensor 40 is disposed may be the same as the position of the second through hole 20 in the above-described embodiment (sunlight detection unit 10).
  • the angle of the panel 2 can be corrected in real time during the operation of the panel 2 using the detection signal.
  • the light amounts detected by the optical sensors 40a to 40d are different.
  • the amount of light detected by the optical sensors 40b and 40c is large, the amount of light detected by the optical sensor 40a is medium, and the amount of light detected by the optical sensor 40d is small (almost zero).
  • the light amount data detected by the optical sensors 40a to 40d is input from the sunlight detection unit 10 to the controller 50 (see FIG. 12).
  • the controller 50 determines that the sunlight detection unit 10 (panel 2) is slightly shifted in the X direction from the light amount data of the optical sensors 40a and 40b.
  • the controller 50 determines that the sunlight detection unit 10 has shifted
  • the controller 50 calculates an angle at which the difference between the light amounts of the optical sensors 40a to 40d becomes almost zero, and outputs a command value for adjusting the angle of the sunlight detection unit 10 to the driving device 5.
  • the panel 2 is always orthogonal to the sun, and the power generation efficiency can be increased.
  • the number of light receiving parts is not limited to four.
  • two light receiving sections 20 may be provided as shown in FIG.
  • the two light receiving units 20 may be disposed within the reference range 26 centered on the point 22, or three light receiving units 20 may be provided as shown in FIG. 14.
  • the plurality of light receiving portions are arranged within the reference range 26 centered on the intersection point 22 and at equal intervals on the circumference centered on the intersection point 22.
  • the center of the light receiving unit may be located on the boundary of the reference range 26. That is, the radius r of the circle 24 in which the light receiving unit is disposed may be the same as the radius R 2 of the reference range 26.
  • the solar tracking device in which the solar light detection unit is directly fixed to the panel has been described. Therefore, the drive device that rotates the panel is also the drive device that rotates the sunlight detection unit.
  • the drive device that rotates the sunlight detection unit may be different from the drive device that rotates the panel. In this case, the freedom degree of the place which fixes a sunlight detection unit increases.
  • the above-described solar tracking device can also be used in a solar power generation device that concentrates sunlight on a collector using a reflecting mirror.
  • the reflecting mirror is not orthogonal to the sun. Therefore, the solar tracking device (sunlight detection unit) is not directly fixed to the reflecting mirror.
  • a solar tracking device is installed separately from the reflector, and the position of the sun is specified by making the solar tracking device orthogonal to the sun. By accurately identifying the position of the sun, the reflector can be directed to the sun at an appropriate angle relative to the position.

Abstract

The solar tracking device is equipped with a detector unit and a drive device. The detector unit includes a first plate having a through-hole, and a second plate disposed at a location in opposition to the first plate. The second plate is furnished with at least two photoreceptors. The drive device adjusts the angle of the detector unit. The at least two photoreceptors are disposed to the inside of a circle of a radius (R2) calculated by Formula 1 below, centered on the intersection point of the second plate and the centerline of the through-hole. Formula 1: R2 = R1 + L × tan(A/2), where R1 is the radius of the through-hole, L is the distance between the first plate and the second plate, and A is the apparent diameter of the sun.

Description

太陽追尾装置及び太陽光発電装置Solar tracking device and solar power generation device
 本出願は、2011年6月15日に出願された日本国特許出願第2011-133517号に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により援用されている。本出願は、太陽追尾装置と、その太陽追尾装置を備える太陽光発電装置に関する。 This application claims priority based on Japanese Patent Application No. 2011-133517 filed on June 15, 2011. The entire contents of that application are incorporated herein by reference. The present application relates to a solar tracking device and a solar power generation device including the solar tracking device.
 太陽光のエネルギーを利用する装置が知られている。そのような装置の一例として、太陽光発電装置がある。太陽光発電装置では、発電効率を高くするために、太陽の動きに従って太陽を追尾するタイプがある。例えば、表面に太陽電池が取り付けられたパネル(ソーラーパネル)を有する太陽光発電装置の場合、パネルを回転させることによって、パネルの表面が太陽に直交するようにパネルの角度を調整することが好ましい。反射鏡を利用して太陽光を集光器に集中させる太陽光発電装置(太陽熱発電装置ともいう)の場合、反射鏡を回転させることによって、太陽光が一箇所に正確に集光するように反射鏡の角度を調整することが好ましい。いずれの太陽光発電装置においても、太陽の位置を正確に特定し、パネル(あるいは、反射鏡)の角度を調整することが必要である。 装置 Devices that use solar energy are known. An example of such a device is a solar power generation device. In the solar power generation device, there is a type that tracks the sun according to the movement of the sun in order to increase the power generation efficiency. For example, in the case of a solar power generation apparatus having a panel (solar panel) with a solar cell attached to the surface, it is preferable to adjust the panel angle so that the surface of the panel is orthogonal to the sun by rotating the panel. . In the case of a solar power generation device (also referred to as a solar thermal power generation device) that concentrates sunlight on a condenser using a reflector, the sunlight is accurately collected in one place by rotating the reflector. It is preferable to adjust the angle of the reflecting mirror. In any photovoltaic power generation apparatus, it is necessary to accurately identify the position of the sun and adjust the angle of the panel (or reflecting mirror).
 特開2006-245519号公報には、ソーラーパネルを有する太陽光発電装置が開示されている。以下の説明では、特開2006-245519号公報を、特許文献1と称する。特許文献1の太陽光発電装置は、太陽に対するソーラーパネルの角度を検知するための角度センサ(太陽追尾装置)を備える。特許文献1の角度センサは、第1プレートと、第1プレートに対向する位置に配置されている第2プレートで構成されている。第1プレートと第2プレートには、夫々1個の貫通孔が設けられている。第1プレートの貫通孔と第2プレートの貫通孔は、ほぼ一直線上に位置している。特許文献1の角度センサは、第1プレートがソーラーパネルと平行になるように、ソーラーパネルに取り付けられている。特許文献1の技術では、第1プレートの貫通孔を通過した太陽光が第2プレートの貫通孔を通過している場合に、ソーラーパネルが太陽に直交していると判断する。特許文献1の技術は、太陽光が第1プレートの貫通孔と第2プレートの貫通孔の双方を通過するように角度センサの角度を調整することによって、ソーラーパネルを太陽に直交させる。 JP-A-2006-245519 discloses a solar power generation apparatus having a solar panel. In the following description, Japanese Patent Laid-Open No. 2006-245519 is referred to as Patent Document 1. The solar power generation device of Patent Literature 1 includes an angle sensor (solar tracking device) for detecting the angle of the solar panel with respect to the sun. The angle sensor of patent document 1 is comprised by the 2nd plate arrange | positioned in the position which opposes the 1st plate and 1st plate. Each of the first plate and the second plate is provided with one through hole. The through hole of the first plate and the through hole of the second plate are located on a substantially straight line. The angle sensor of Patent Document 1 is attached to the solar panel so that the first plate is parallel to the solar panel. In the technique of Patent Document 1, when the sunlight that has passed through the through hole of the first plate passes through the through hole of the second plate, it is determined that the solar panel is orthogonal to the sun. The technology of Patent Document 1 makes the solar panel orthogonal to the sun by adjusting the angle of the angle sensor so that sunlight passes through both the through hole of the first plate and the through hole of the second plate.
 第1プレートの貫通孔を通過した太陽光は、広がりながら第2プレートに向かう。第2プレートの表面に当たる太陽光の面積は、太陽の視直径と、第1プレート,第2プレート間の距離とに応じて、第1プレートの貫通孔の面積よりも大きくなる。そのため、特許文献1の太陽追尾装置の場合、第1プレートが太陽に直交していなくても、第1プレートの貫通孔を通過した太陽光が第2プレートの貫通孔を通過することがある。すなわち、特許文献1の技術では、ソーラーパネルが太陽に直交していると判断されている状態であっても、実際にはソーラーパネルが太陽に直交していないことがある。特許文献1の技術では、太陽の位置を特定する精度が高くない。本明細書は、太陽の位置を正確に特定する技術を提供する。 Sunlight that has passed through the through hole of the first plate travels toward the second plate while spreading. The area of sunlight that hits the surface of the second plate is larger than the area of the through hole of the first plate, depending on the sun's viewing diameter and the distance between the first plate and the second plate. Therefore, in the case of the solar tracking device of Patent Document 1, even if the first plate is not orthogonal to the sun, sunlight that has passed through the through hole of the first plate may pass through the through hole of the second plate. That is, in the technique of Patent Document 1, even if the solar panel is determined to be orthogonal to the sun, the solar panel may not actually be orthogonal to the sun. In the technique of Patent Document 1, the accuracy of specifying the position of the sun is not high. The present specification provides a technique for accurately identifying the position of the sun.
 本明細書が開示する太陽追尾装置は、検知ユニットと駆動装置を備える。検知ユニットは、第1プレートと第2プレートを含む。第1プレートは、貫通孔を有する。第2プレートは、第1プレートに対向する位置に配置されており、少なくとも2個の受光部を有する。駆動装置は、検知ユニットの角度を調整する。この太陽追尾装置では、少なくとも2個の受光部が、貫通孔の中心線と第2プレートとの交点を中心とし、下記式1で算出される半径Rの円の内側に配置されている。なお、下記式において、R:貫通孔の半径、L:第1プレートと第2プレートの間の距離、A:太陽の視直径である。
  R=R+L×tan(A/2)・・・(式1)
The solar tracking device disclosed in this specification includes a detection unit and a driving device. The detection unit includes a first plate and a second plate. The first plate has a through hole. The second plate is disposed at a position facing the first plate and has at least two light receiving portions. The drive device adjusts the angle of the detection unit. In this solar tracking device, at least two light receiving portions are arranged inside a circle having a radius R 2 calculated by the following equation 1 with the intersection of the center line of the through hole and the second plate as the center. In the following formula, R 1 is the radius of the through hole, L is the distance between the first plate and the second plate, and A is the visual diameter of the sun.
R 2 = R 1 + L × tan (A / 2) (Formula 1)
 上記の太陽追尾装置において、「第1プレートと第2プレートが対向する位置に配置されている」とは、第1プレートの貫通孔が形成されている面と、第2プレートの受光部を備える面とが平行であることを意味する。そのため、第1プレートが太陽に直交しているときは、第2プレートも太陽に直交する。また、「貫通孔の中心線」とは、貫通孔の中心を通り、第1プレートに直交する直線を意味する。また、「第1プレートと第2プレートの間の距離」とは、第1プレートの第2プレート側の面(以下、第1プレートの裏面と称することがある)と、第2プレートの第1プレート側の面(以下、第2プレートの表面と称することがある)との距離を意味する。上記式1で算出される半径Rの円は、第1プレートが太陽に直交しているときに、第1プレートの貫通孔を通過した太陽光が第2プレートの表面に当たる範囲の境界に相当する。 In the solar tracking device described above, “disposed at a position where the first plate and the second plate face each other” includes a surface on which the through hole of the first plate is formed and a light receiving portion of the second plate. It means that the surface is parallel. Therefore, when the first plate is orthogonal to the sun, the second plate is also orthogonal to the sun. In addition, the “center line of the through hole” means a straight line that passes through the center of the through hole and is orthogonal to the first plate. The “distance between the first plate and the second plate” refers to the surface of the first plate on the second plate side (hereinafter sometimes referred to as the back surface of the first plate) and the first plate of the second plate. It means the distance from the plate side surface (hereinafter sometimes referred to as the surface of the second plate). A circle of radius R 2 which is calculated by the formula 1, when the first plate is perpendicular to the sun, equivalent to bounds of the sunlight passing through the through-hole of the first plate strikes the surface of the second plate To do.
 上記の太陽追尾装置では、第1プレートの貫通孔を通過した太陽光は、広がりながら進み、第2プレートに到達する。第2プレートの表面には、上記式1で算出される半径Rの円の内側に、2個以上の受光部が設けられている。そのため、第1プレートが太陽に直交しているときは、全ての受光部に太陽光が当たる。第1プレートが太陽に直交する角度からずれると、いずれかの受光部に太陽光が当たらなくなる。上記の太陽追尾装置では、いずれかの受光部に太陽光が当たっていない場合、第1プレートが太陽に直交していないと判断する。第1プレートが太陽に直交していない場合、駆動装置を用いて検知ユニットの角度を調整する。全ての受光部に太陽光が当たれば、第1プレート(検知ユニット)が太陽に直交していると判断する。上記の太陽追尾装置は、第1プレートを通過した太陽光の広がりを補償して、精度よく太陽の位置を特定することができる。 In the solar tracking device described above, the sunlight that has passed through the through hole of the first plate travels while spreading and reaches the second plate. On the surface of the second plate, two or more light receiving portions are provided inside the circle having the radius R 2 calculated by the above formula 1. Therefore, when the 1st plate is orthogonal to the sun, sunlight strikes all the light-receiving parts. If the first plate deviates from an angle perpendicular to the sun, the light will not hit any of the light receiving portions. In the above-described solar tracking device, when any of the light receiving units is not exposed to sunlight, it is determined that the first plate is not orthogonal to the sun. When the first plate is not orthogonal to the sun, the angle of the detection unit is adjusted using a driving device. If sunlight hits all the light receiving parts, it is determined that the first plate (detection unit) is orthogonal to the sun. The solar tracking device described above can compensate for the spread of sunlight that has passed through the first plate and can accurately identify the position of the sun.
太陽光発電装置の外観を示す。The external appearance of a solar power generation device is shown. 太陽光検知ユニットの構造を模式的に示す図である。It is a figure which shows the structure of a sunlight detection unit typically. 図2のIII-III線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 受光部の配置を説明する図である。It is a figure explaining arrangement | positioning of a light-receiving part. 太陽光検知ユニットが太陽に直交している状態を示す。The state which the sunlight detection unit is orthogonal to the sun is shown. 太陽光検知ユニットが太陽に直交していない状態を示す。The state which the sunlight detection unit is not orthogonal to the sun is shown. 太陽光検知ユニットが太陽に直交する角度からずれている状態を示す(1)。The state which the sunlight detection unit has shifted | deviated from the angle orthogonal to the sun is shown (1). 太陽光検知ユニットが太陽に直交する角度からずれている状態を示す(2)。The state which the sunlight detection unit has shifted | deviated from the angle orthogonal to the sun is shown (2). 受光部に達した太陽光の検知方法を示す(1)。A method for detecting sunlight that has reached the light receiving section will be described (1). 受光部に達した太陽光の検知方法を示す(2)。A method for detecting sunlight that has reached the light receiving part is shown (2). パネルの角度を補正する方法を説明するための図である。It is a figure for demonstrating the method to correct | amend the angle of a panel. 太陽光発電装置の制御ブロック図である。It is a control block diagram of a solar power generation device. 受光部の配置の他の実施形態を示す図である。It is a figure which shows other embodiment of arrangement | positioning of a light-receiving part. 受光部の配置のさらに他の実施形態を示す図である。It is a figure which shows other embodiment of arrangement | positioning of a light-receiving part.
 以下、本明細書で開示する実施例の技術的特徴の幾つかを記す。なお、以下に記す事項は、各々単独で技術的な有用性を有している。 Hereinafter, some of the technical features of the embodiments disclosed in this specification will be described. The items described below have technical usefulness independently.
 (特徴1)全ての受光部が、第1プレートの貫通孔の中心線と第2プレートとの交点を中心とする円の円周上に等間隔に配置されていてもよい。なお、受光部が配置される位置は、式1から算出される半径Rの円の内側であれば十分である。しかしながら、受光部を上記交点を中心とする円の円周上に等間隔に配置することによって、第1プレートが太陽に直交する位置からどの方向にずれても、第1プレートが太陽に直交していないと判断することができる。すなわち、検知ユニットの検知精度が、太陽からのずれの方向に依存しない。 (Characteristic 1) All the light receiving parts may be arranged at equal intervals on the circumference of a circle centering on the intersection of the center line of the through hole of the first plate and the second plate. It should be noted that the position where the light receiving unit is disposed is sufficient if it is inside the circle of radius R 2 calculated from Equation 1. However, by arranging the light receiving portions at equal intervals on the circumference of the circle centered on the intersection point, the first plate is orthogonal to the sun no matter which direction the first plate is displaced from the position orthogonal to the sun. It can be judged that it is not. That is, the detection accuracy of the detection unit does not depend on the direction of deviation from the sun.
 (特徴2)全ての受光部が、第1プレートの貫通孔の中心線と第2プレートとの交点を中心とし、式1から算出される半径Rの円の円周上に配置されていてもよい。そのような位置に受光部を配置すると、第1プレートが太陽に直交する位置から僅かにずれただけで、いずれかの受光部に太陽光が当たらなくなる。このような太陽追尾装置は、さらに精度よく太陽を追尾することができる。 (Feature 2) all of the light receiving portion, the intersection of the first plate central line and the second plate through hole of the center, have been arranged on the circumference of a circle with a radius R 2 which is calculated from Equation 1 Also good. When the light receiving unit is arranged at such a position, the first plate is slightly shifted from the position orthogonal to the sun, and sunlight does not hit any of the light receiving units. Such a sun tracking device can track the sun more accurately.
 (特徴3)太陽追尾装置が、駆動装置を制御するコントローラをさらに備えていてもよい。 (Feature 3) The sun tracking device may further include a controller for controlling the driving device.
 (特徴4)駆動装置を制御するコントローラは、受光部間の光量の差が所定範囲を超える場合は、受光部間の光量の差が所定範囲内になるまで、検知ユニットの角度を調整する指令値を駆動装置に出力してもよい。各受光部間の光量の差を所定範囲内(例えば、ゼロ)にすることによって、太陽に対する検知ユニットの角度の僅かなずれを修正することができる。 (Characteristic 4) The controller that controls the drive device, when the light amount difference between the light receiving units exceeds a predetermined range, commands to adjust the angle of the detection unit until the light amount difference between the light receiving units is within the predetermined range. The value may be output to the driving device. A slight deviation in the angle of the detection unit with respect to the sun can be corrected by setting the difference in the amount of light between the light receiving portions within a predetermined range (for example, zero).
 (特徴5)受光部が、第1貫通孔の中心線と第2プレートとの交点を中心として、対称(線対称又は点対称)の位置に配置されていてもよい。 (Feature 5) The light receiving unit may be arranged at a symmetrical (line symmetric or point symmetric) position about the intersection of the center line of the first through hole and the second plate.
 (特徴6)検知ユニットは、2枚の第2プレート(上段第2プレートと下段第2プレート)を備えていてもよい。この場合、上段第2プレートと下段第2プレートは、僅かな距離を隔てて対向した位置に配置されている。上段第2プレートには第2貫通孔が形成されており、下段第2プレートには光センサが配置されている。なお、2枚の第2プレートを平面視したときに、第2貫通孔は、光センサとオーバーラップしていてもよい。 (Feature 6) The detection unit may include two second plates (an upper second plate and a lower second plate). In this case, the upper second plate and the lower second plate are arranged at positions facing each other with a slight distance. A second through hole is formed in the upper second plate, and an optical sensor is disposed on the lower second plate. When the two second plates are viewed in plan, the second through hole may overlap with the optical sensor.
 (特徴7)太陽光発電装置は、パネルの表面に太陽電池を備えていてもよい。太陽光検知ユニットは、第1プレートがパネルの表面に平行となるように、パネルに固定されていてもよい。 (Feature 7) The solar power generation apparatus may include a solar cell on the surface of the panel. The sunlight detection unit may be fixed to the panel so that the first plate is parallel to the surface of the panel.
 (特徴8)パネルを駆動する駆動装置が、太陽光検知ユニットを駆動する駆動装置であってもよい。 (Feature 8) The driving device for driving the panel may be a driving device for driving the sunlight detection unit.
 実施例では、太陽追尾装置を備える太陽光発電装置を開示する。その太陽光発電装置は、太陽追尾装置によってソーラーパネルが太陽を正確に追尾することができるので、発電効率が高い。 In the embodiment, a solar power generation device including a solar tracking device is disclosed. The solar power generation device has high power generation efficiency because the solar panel can accurately track the sun by the solar tracking device.
 図1に示す太陽光発電装置100は、支柱8と、支柱8に対して回転するパネル支持シャフト3と、パネル支持シャフト3に固定されているパネル2を備える。太陽光検知ユニット10が、パネル2に固定されている。駆動装置5が、支柱8とパネル支持シャフト3の間に配置されている。駆動装置5は、第1駆動装置6と第2駆動装置4を備える。駆動装置5は、パネル支持シャフト3を、支柱8に対して矢印X方向と矢印Y方向に回転する。よって、パネル2は、支柱8に対して矢印X方向と矢印Y方向に回転することができる。太陽光発電装置100は、2軸の周りを回転することができる。太陽光発電装置100では、太陽光検知ユニット10を用いて太陽の位置を特定し、駆動装置5がパネル2の角度を調整する。 1 includes a support 8, a panel support shaft 3 that rotates with respect to the support 8, and a panel 2 that is fixed to the panel support shaft 3. A sunlight detection unit 10 is fixed to the panel 2. A driving device 5 is disposed between the support column 8 and the panel support shaft 3. The drive device 5 includes a first drive device 6 and a second drive device 4. The driving device 5 rotates the panel support shaft 3 in the arrow X direction and the arrow Y direction with respect to the support column 8. Therefore, the panel 2 can rotate with respect to the support column 8 in the arrow X direction and the arrow Y direction. The solar power generation device 100 can rotate around two axes. In the solar power generation device 100, the position of the sun is specified using the solar light detection unit 10, and the driving device 5 adjusts the angle of the panel 2.
 駆動装置5がパネル2を回転すると、太陽光検知ユニット10が、パネル2とともに回転する。そのため、パネル2を駆動する駆動装置5は、太陽光検知ユニット10の駆動装置としても機能する。別言すると、太陽光検知ユニット10と駆動装置5によって、太陽追尾装置15が構成されているといえる。駆動装置5が太陽光検知ユニット10を太陽に直交する角度に調整すると、パネル2が太陽に直交する。 When the driving device 5 rotates the panel 2, the sunlight detection unit 10 rotates together with the panel 2. Therefore, the drive device 5 that drives the panel 2 also functions as a drive device for the sunlight detection unit 10. In other words, it can be said that the solar tracking device 15 is configured by the sunlight detection unit 10 and the driving device 5. When the drive device 5 adjusts the sunlight detection unit 10 to an angle orthogonal to the sun, the panel 2 is orthogonal to the sun.
 太陽光発電装置100では、太陽の動きに従ってパネル2の角度を変化させる。パネル2は、所定の動作プログラムに従って、常に太陽に直交するように回転する。太陽の軌道は予め分かっているので、パネル2の動作パターンも予めプログラム内に記憶されている。太陽追尾装置15は、プログラム上で定められたパネル2の角度と、実際のパネル2の角度との差異を修正するために使用される。例えば、太陽光発電装置100を組み立てたときの初期プログラムを校正したり、パネル2の角度の経時的な変化を補正したりするときに使用される。あるいは、太陽追尾装置15は、パネル2の動作中にリアルタイムでパネル2の角度を補正し、パネル2を常に太陽に直交させるように使用することもできる。 In the solar power generation device 100, the angle of the panel 2 is changed according to the movement of the sun. The panel 2 always rotates so as to be orthogonal to the sun according to a predetermined operation program. Since the orbit of the sun is known in advance, the operation pattern of the panel 2 is also stored in the program in advance. The sun tracking device 15 is used to correct the difference between the angle of the panel 2 determined in the program and the actual angle of the panel 2. For example, it is used when calibrating an initial program when the solar power generation apparatus 100 is assembled or correcting a change in the angle of the panel 2 over time. Alternatively, the sun tracking device 15 can correct the angle of the panel 2 in real time during operation of the panel 2 and can be used so that the panel 2 is always orthogonal to the sun.
 太陽光検知ユニット10について説明する。図2に示すように、太陽光検知ユニット10は、第1プレート12と、第2プレート18を備える。第1プレート12と第2プレート18は、中空のボディ16の両端に固定されている。第1プレート12は、第2プレート18に対向する位置に配置されている。別言すると、第1プレート12と第2プレート18は、ボディ16を介して平行に配置されている。第1プレート12と第2プレート18は、ボディ16の長さLだけ離れている。より正確には、第1プレート12の裏面と第2プレート18の表面が、長さLだけ離れている(図3を参照)。第1プレート12には、1個の第1貫通孔14が形成されている。第2プレート18には、4個の受光部20が配置されている。 The solar light detection unit 10 will be described. As shown in FIG. 2, the sunlight detection unit 10 includes a first plate 12 and a second plate 18. The first plate 12 and the second plate 18 are fixed to both ends of the hollow body 16. The first plate 12 is disposed at a position facing the second plate 18. In other words, the first plate 12 and the second plate 18 are arranged in parallel via the body 16. The first plate 12 and the second plate 18 are separated by the length L of the body 16. More precisely, the back surface of the first plate 12 and the surface of the second plate 18 are separated by a length L (see FIG. 3). One first through hole 14 is formed in the first plate 12. Four light receiving portions 20 are arranged on the second plate 18.
 図4は、第2プレート18を平面視したものである。図3及び図4に示すように、受光部20は、第2プレート18に形成された貫通孔である。以下の説明では、第2プレート18に形成された貫通孔を、第2貫通孔20と称することがある。図4に示す点22は、第1貫通孔14の中心線C14と第2プレート18との交点である。図3に示す通り、中心線C14は、第1貫通孔14の中心を通り、第1プレート12に直交する直線である。なお、第1貫通孔14は、半径Rのピンホールである。 FIG. 4 is a plan view of the second plate 18. As shown in FIGS. 3 and 4, the light receiving portion 20 is a through hole formed in the second plate 18. In the following description, the through hole formed in the second plate 18 may be referred to as the second through hole 20. A point 22 shown in FIG. 4 is an intersection of the center line C14 of the first through hole 14 and the second plate 18. As shown in FIG. 3, the center line C <b> 14 is a straight line that passes through the center of the first through hole 14 and is orthogonal to the first plate 12. The first through-hole 14 is a pin hole of radius R 1.
 図4に示すように、4個の第2貫通孔20は、点22を中心とする半径rの円24の円周上に等間隔に形成されている。より正確にいうと、第2貫通孔20の中心が、円24の円周上に位置している。4個の第2貫通孔(受光部)20は、点22を中心として、距離rだけ離れた点対称の位置に形成されていると表現することもできる。夫々の第2貫通孔20は、点22を中心とする半径Rの円26に内接している。正確には、第2貫通孔20の中心は、点22を中心とする半径Rの円26の内側に位置している。半径rは、半径Rよりも小さい。半径Rについては後述する。 As shown in FIG. 4, the four second through holes 20 are formed at equal intervals on the circumference of a circle 24 having a radius r with the point 22 as the center. More precisely, the center of the second through hole 20 is located on the circumference of the circle 24. It can also be expressed that the four second through holes (light receiving portions) 20 are formed at point-symmetric positions separated by a distance r with the point 22 as the center. Each of the second through holes 20 is inscribed in a circle 26 having a radius R 2 centered on the point 22. Precisely, the center of the second through hole 20 is located inside a circle 26 having a radius R 2 centered on the point 22. Radius r is smaller than the radius R 2. It will be described later radius R 2.
 図5は、太陽光検知ユニット10が太陽30に直交している状態を示す。この場合、第1プレート12及び第2プレート18は、太陽30に直交する。図5に示すように、第1貫通孔14を通過した太陽光32は、太陽の視直径Aに相当する分だけ、太陽光検知ユニット10内(ボディ16内)で広がりながら進み、第2プレート18に達する。「太陽の視直径」とは、太陽の見かけの直径を、角度で表したものであり、概ね32′32″~31′28″の間である。第2プレート18の表面に当たる太陽光32の範囲は、直径が2×Rの円の内側である。上記半径Rは、第2プレート18の表面に当たる太陽光32の半径である。また、円26は、太陽光検知ユニット10が太陽30に直交しているときの、第2プレート18に当たる太陽光32の範囲である。以下の説明では、円26を、基準範囲26と称することがある。半径Rは、幾何学的な計算により得られ、下記式1で表すことができる。下記式1において、R:第1貫通孔14の半径、L:第1プレートと第2プレートとの距離、A:太陽の視直径である。視直径Aとして32′を採用すれば、地球上のほぼ全ての場所に対応することができる。
  R=R+L×tan(A/2)・・・(式1)
FIG. 5 shows a state in which the sunlight detection unit 10 is orthogonal to the sun 30. In this case, the first plate 12 and the second plate 18 are orthogonal to the sun 30. As shown in FIG. 5, the sunlight 32 that has passed through the first through-hole 14 proceeds while spreading in the sunlight detection unit 10 (inside the body 16) by an amount corresponding to the visual diameter A of the sun, and the second plate 18 is reached. The “sun's visual diameter” is an angle of the apparent diameter of the sun and is generally between 32′32 ″ and 31′28 ″. The range of sunlight 32 that strikes the surface of the second plate 18 is the inside of a circle having a diameter of 2 × R 2 . The radius R 2 is the radius of the sunlight 32 that hits the surface of the second plate 18. The circle 26 is a range of sunlight 32 that hits the second plate 18 when the sunlight detection unit 10 is orthogonal to the sun 30. In the following description, the circle 26 may be referred to as a reference range 26. The radius R 2 is obtained by geometric calculation and can be expressed by the following formula 1. In the following formula 1, R 1 is the radius of the first through hole 14, L is the distance between the first plate and the second plate, and A is the visual diameter of the sun. If 32 ′ is adopted as the viewing diameter A, it can correspond to almost all places on the earth.
R 2 = R 1 + L × tan (A / 2) (Formula 1)
 上記したように、4個の第2貫通孔20は、半径Rの円26の内側に形成されている(図4を参照)。より正確には、4個の第2貫通孔20は、円26に内接している。そのため、太陽光検知ユニット10が太陽30に直交しているときは、太陽光32は、全ての第2貫通孔20を通過し、第2プレート18の裏側まで届く。これにより、太陽光32が全ての第2貫通孔20を通過している場合、太陽光検知ユニット10が太陽30に直交していると判断することができる。なお、図5には、4個の第2貫通孔20のうち、2個の第2貫通孔20a,20bが表れている。太陽光32は、他の2個の第2貫通孔20も通過している。 As described above, the four second through holes 20 are formed inside the circle 26 having the radius R 2 (see FIG. 4). More precisely, the four second through holes 20 are inscribed in the circle 26. Therefore, when the sunlight detection unit 10 is orthogonal to the sun 30, the sunlight 32 passes through all the second through holes 20 and reaches the back side of the second plate 18. Thereby, when the sunlight 32 has passed all the 2nd through-holes 20, it can be judged that the sunlight detection unit 10 is orthogonal to the sun 30. FIG. In FIG. 5, two second through holes 20 a and 20 b among the four second through holes 20 appear. The sunlight 32 also passes through the other two second through holes 20.
 図6に示すように、太陽光検知ユニット10が太陽30に直交していない場合でも、4個の第2貫通孔20のうちのいずれかの第2貫通孔20を太陽光32が通過することがある。図6では、太陽光32は、第2貫通孔20aを通過しており、第2貫通孔20bを通過していない。太陽光検知ユニット10では、太陽光32が4個の第2貫通孔20のうちのいずれかを通過していない場合、太陽光検知ユニット10が太陽30に直交していないと判断する。 As shown in FIG. 6, even when the sunlight detection unit 10 is not orthogonal to the sun 30, the sunlight 32 passes through any one of the four second through holes 20. There is. In FIG. 6, the sunlight 32 passes through the second through hole 20a and does not pass through the second through hole 20b. In the sunlight detection unit 10, when the sunlight 32 does not pass through any of the four second through holes 20, it is determined that the sunlight detection unit 10 is not orthogonal to the sun 30.
 太陽光検知ユニット10の特徴について詳細に説明する。上記したように、太陽光検知ユニット10では、4個の第2貫通孔(受光部)20が、点22を中心とする円24の円周上に等間隔に形成されている(図4を参照)。そのため、太陽光検知ユニット10が太陽に直交する位置からずれている「向き」をも検出することができる。 The features of the sunlight detection unit 10 will be described in detail. As described above, in the solar light detection unit 10, the four second through holes (light receiving portions) 20 are formed at equal intervals on the circumference of the circle 24 centered on the point 22 (see FIG. 4). reference). Therefore, it is possible to detect the “direction” in which the sunlight detection unit 10 is deviated from the position orthogonal to the sun.
 例えば、図7では、4個の第2貫通孔20(20a~20d)のうち、貫通孔20dにだけ太陽光32が当たっていない。この場合、例えば、太陽光32が、基準範囲26から図1のY方向にずれていることを検知することができる。すなわち、太陽追尾装置15は、図1の太陽光検知ユニット10(パネル2)が、太陽に直交する位置からY方向にずれていることを検知することができる。太陽追尾装置15の計測結果に基づき、太陽光発電装置100は、第2駆動装置4によって、太陽光検知ユニット10(パネル2)を太陽に直交させることができる。 For example, in FIG. 7, of the four second through holes 20 (20a to 20d), only the through holes 20d are not exposed to sunlight 32. In this case, for example, it can be detected that the sunlight 32 is shifted from the reference range 26 in the Y direction of FIG. That is, the sun tracking device 15 can detect that the sunlight detection unit 10 (panel 2) of FIG. 1 is shifted in the Y direction from a position orthogonal to the sun. Based on the measurement result of the solar tracking device 15, the solar power generation device 100 can make the solar light detection unit 10 (panel 2) orthogonal to the sun by the second drive device 4.
 また、図8に示すように、太陽光32が貫通孔20aにだけ当たっていない場合、太陽追尾装置15は、太陽光検知ユニット10(パネル2)が、太陽に直交する位置からX方向にずれていることを検知することができる。太陽追尾装置15の計測結果に基づき、太陽光発電装置100は、第1駆動装置6によって、太陽光検知ユニット10(パネル2)を太陽に直交させることができる。太陽追尾装置15は、パネル2が太陽に直交する角度からずれているときに、ずれの向きを検知し、ずれを補正することができる。 Moreover, as shown in FIG. 8, when the sunlight 32 does not hit only the through-hole 20a, the solar tracking device 15 is shifted in the X direction from the position where the sunlight detection unit 10 (panel 2) is orthogonal to the sun. Can be detected. Based on the measurement result of the solar tracking device 15, the solar power generation device 100 can make the solar light detection unit 10 (panel 2) orthogonal to the sun by the first drive device 6. When the panel 2 is deviated from an angle orthogonal to the sun, the sun tracking device 15 can detect the direction of deviation and correct the deviation.
 図9は、太陽光検知ユニットの一実装形態を示す。図9に示す太陽光検知ユニット10aは、2枚の第2プレート18(上段第2プレート18aと下段第2プレート18b)を備えている。上段第2プレート18aに第2貫通孔20が形成されており、下段第2プレート18bに光センサ40が配置されている。光センサ40は、受光した光量(光の強さ)を計測するセンサであり、例えばフォトトランジスタである。光センサ40は、第2貫通孔20に対応する位置に配置されている。別言すると、第2プレート18を平面視すると、第2貫通孔20は、光センサ40とオーバーラップしている。なお、図面には2つの光センサ40が示されているが、図9の断面には表れていない第2貫通孔に対応する光センサが存在する。すなわち、太陽光検知ユニット10aには、第2貫通孔20の数と同じ数の光センサ40が配置されている。 FIG. 9 shows one implementation form of the sunlight detection unit. The solar light detection unit 10a shown in FIG. 9 includes two second plates 18 (an upper second plate 18a and a lower second plate 18b). The second through hole 20 is formed in the upper second plate 18a, and the optical sensor 40 is disposed in the lower second plate 18b. The optical sensor 40 is a sensor that measures a received light amount (light intensity), and is, for example, a phototransistor. The optical sensor 40 is disposed at a position corresponding to the second through hole 20. In other words, the second through hole 20 overlaps the optical sensor 40 when the second plate 18 is viewed in plan. Although two optical sensors 40 are shown in the drawing, there is an optical sensor corresponding to the second through hole that does not appear in the cross section of FIG. 9. That is, the same number of photosensors 40 as the number of second through holes 20 are arranged in the sunlight detection unit 10a.
 図10は、太陽光検知ユニットの他の実装形態を示す。太陽光検知ユニット10bでは、光センサ40が受光部20そのものである。光センサ40を配置する位置は、上述した実施形態(太陽光検知ユニット10)における第2貫通孔20の位置と同じでよい。 FIG. 10 shows another embodiment of the solar light detection unit. In the sunlight detection unit 10b, the optical sensor 40 is the light receiving unit 20 itself. The position where the optical sensor 40 is disposed may be the same as the position of the second through hole 20 in the above-described embodiment (sunlight detection unit 10).
 光センサ40を用いて太陽光32を検知する場合、その検知信号を利用して、パネル2の動作中にリアルタイムにパネル2の角度を補正することができる。図11に示すように、太陽光32が基準範囲26からずれている場合、光センサ40a~40dが検知する光量は異なる。光センサ40b,40cで検知される光量は大きく、光センサ40aで検知される光量は中程度であり、光センサ40dで検知される光量は小さい(ほぼゼロ)である。光センサ40a~40dが検知した光量データは、太陽光検知ユニット10からコントローラ50に入力される(図12を参照)。コントローラ50は、光センサ40a,40bの光量データより、太陽光検知ユニット10(パネル2)がX方向に僅かにずれていることを判断する。また、コントローラ50は、光センサ40c,40dの光量データに基づいて、太陽光検知ユニット10がY方向に大きくずれていることを判断する。コントローラ50は、光センサ40a~40dの光量の差がほぼゼロになる角度を計算し、駆動装置5に対して、太陽光検知ユニット10の角度を調整する指令値を出力する。パネル2の動作中にパネル2の角度を補正することにより、パネル2が常に太陽に直交し、発電効率を高くすることができる。 When the sunlight 32 is detected using the optical sensor 40, the angle of the panel 2 can be corrected in real time during the operation of the panel 2 using the detection signal. As shown in FIG. 11, when the sunlight 32 deviates from the reference range 26, the light amounts detected by the optical sensors 40a to 40d are different. The amount of light detected by the optical sensors 40b and 40c is large, the amount of light detected by the optical sensor 40a is medium, and the amount of light detected by the optical sensor 40d is small (almost zero). The light amount data detected by the optical sensors 40a to 40d is input from the sunlight detection unit 10 to the controller 50 (see FIG. 12). The controller 50 determines that the sunlight detection unit 10 (panel 2) is slightly shifted in the X direction from the light amount data of the optical sensors 40a and 40b. Moreover, the controller 50 determines that the sunlight detection unit 10 has shifted | deviated largely in the Y direction based on the light quantity data of the optical sensors 40c and 40d. The controller 50 calculates an angle at which the difference between the light amounts of the optical sensors 40a to 40d becomes almost zero, and outputs a command value for adjusting the angle of the sunlight detection unit 10 to the driving device 5. By correcting the angle of the panel 2 during the operation of the panel 2, the panel 2 is always orthogonal to the sun, and the power generation efficiency can be increased.
 受光部の数は4個に限られない。例えば、パネルが1軸の周りを回転するタイプの太陽光発電装置の場合、図13に示すように、受光部20が2個であってもよい。2個の受光部20は、点22を中心とする基準範囲26内に配置されている、あるいは、図14に示すように、受光部20が3個であってもよい。図13、図14のいずれの場合も、複数の受光部が交点22を中心とする基準範囲26内であって、交点22を中心とする円周上に等間隔に配置されている。なお、受光部の中心が、基準範囲26の境界上に位置していてもよい。すなわち、受光部が配置されている円24の半径rが、基準範囲26の半径Rと同じであってもよい。このような構成にすることにより、より精度よく太陽の位置を特定することができる。 The number of light receiving parts is not limited to four. For example, in the case of a solar power generation device in which the panel rotates around one axis, two light receiving sections 20 may be provided as shown in FIG. The two light receiving units 20 may be disposed within the reference range 26 centered on the point 22, or three light receiving units 20 may be provided as shown in FIG. 14. In both cases of FIGS. 13 and 14, the plurality of light receiving portions are arranged within the reference range 26 centered on the intersection point 22 and at equal intervals on the circumference centered on the intersection point 22. Note that the center of the light receiving unit may be located on the boundary of the reference range 26. That is, the radius r of the circle 24 in which the light receiving unit is disposed may be the same as the radius R 2 of the reference range 26. By adopting such a configuration, the position of the sun can be specified with higher accuracy.
 上記実施例では、太陽光検知ユニットがパネルに直接固定されている太陽追尾装置について説明した。そのため、パネルを回転する駆動装置が、太陽光検知ユニットを回転する駆動装置でもある。太陽光検知ユニットを回転する駆動装置は、パネルを回転する駆動装置と別であってもよい。この場合、太陽光検知ユニットを固定する場所の自由度が増す。 In the above embodiment, the solar tracking device in which the solar light detection unit is directly fixed to the panel has been described. Therefore, the drive device that rotates the panel is also the drive device that rotates the sunlight detection unit. The drive device that rotates the sunlight detection unit may be different from the drive device that rotates the panel. In this case, the freedom degree of the place which fixes a sunlight detection unit increases.
 上記の太陽追尾装置は、反射鏡を利用して太陽光を集光器に集中させる太陽光発電装置に使用することもできる。この太陽光発電装置の場合、反射鏡は太陽に直交させない。そのため、太陽追尾装置(太陽光検知ユニット)は、反射鏡に直接固定しない。太陽追尾装置を反射鏡とは別に設置し、太陽追尾装置を太陽に直交させることにより太陽の位置を特定する。太陽の位置を正確に特定することによって、反射鏡を、太陽に位置に対して適切な角度に向けることができる。 The above-described solar tracking device can also be used in a solar power generation device that concentrates sunlight on a collector using a reflecting mirror. In this solar power generation device, the reflecting mirror is not orthogonal to the sun. Therefore, the solar tracking device (sunlight detection unit) is not directly fixed to the reflecting mirror. A solar tracking device is installed separately from the reflector, and the position of the sun is specified by making the solar tracking device orthogonal to the sun. By accurately identifying the position of the sun, the reflector can be directed to the sun at an appropriate angle relative to the position.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時の請求項に記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

Claims (8)

  1.  貫通孔を有する第1プレートと、第1プレートに対向する位置に配置されているとともに少なくとも2個の受光部を有する第2プレートとを含む検知ユニットと、
     検知ユニットの角度を調整する駆動装置と、を備えており、
     少なくとも2個の受光部が、前記貫通孔の中心線と第2プレートとの交点を中心とし、下記式1で算出される半径Rの円の内側に配置されていることを特徴とする太陽追尾装置。
      R=R+L×tan(A/2)・・・(式1)
    ここで、R:貫通孔の半径、L:第1プレートと第2プレートの間の距離、A:太陽の視直径である。
    A detection unit including a first plate having a through-hole, and a second plate disposed at a position facing the first plate and having at least two light receiving portions;
    A drive device for adjusting the angle of the detection unit;
    Solar least two light receiving portions, centered on the intersection of the center line and the second plate of the through hole, characterized in that it is arranged inside the circle of radius R 2 which is calculated by the following formula 1 Tracking device.
    R 2 = R 1 + L × tan (A / 2) (Formula 1)
    Here, R 1 is the radius of the through hole, L is the distance between the first plate and the second plate, and A is the viewing diameter of the sun.
  2.  全ての受光部が、前記交点を中心とする円の円周上に等間隔に配置されていることを特徴とする請求項1に記載の太陽追尾装置。 2. The solar tracking device according to claim 1, wherein all the light receiving units are arranged at equal intervals on a circle around the intersection.
  3.  全ての受光部が、半径Rの円の円周上に配置されていることを特徴とする請求項1又は2に記載の太陽追尾装置。 All of the light receiving portion, the solar tracking device according to claim 1 or 2, characterized in that it is arranged on the circumference of a circle of radius R 2.
  4.  全ての受光部が、半径Rの円に内接していることを特徴とする請求項1又は2に記載の太陽追尾装置。 All of the light receiving portion, the solar tracking device according to claim 1 or 2, characterized in that it is inscribed in a circle of radius R 2.
  5.  夫々の受光部が、前記貫通孔の中心線と第2プレートとの交点を中心として、対称の位置に配置されていることを特徴とする請求項1~4のいずれか一項に記載の太陽追尾装置。 The sun according to any one of claims 1 to 4, wherein each of the light receiving portions is disposed at a symmetric position with respect to an intersection between the center line of the through hole and the second plate. Tracking device.
  6.  第2プレートが、上段第2プレートと、上段第2プレートに対向する位置に配置されている下段第2プレートとを備えており、
     上段第2プレートに第2の貫通孔が設けられており、
     下段第2プレートに光センサが設けられていることを特徴とする請求項1~5のいずれか一項に記載の太陽追尾装置。
    The second plate includes an upper second plate and a lower second plate disposed at a position facing the upper second plate,
    A second through hole is provided in the upper second plate;
    The solar tracking device according to any one of claims 1 to 5, wherein an optical sensor is provided on the lower second plate.
  7.  受光部間の光量の差が所定範囲内となるように駆動装置を制御するコントローラをさらに備えていることを特徴とする請求項1~6のいずれか一項に記載の太陽追尾装置。 The solar tracking device according to any one of claims 1 to 6, further comprising a controller that controls the driving device so that a difference in light quantity between the light receiving units is within a predetermined range.
  8.  請求項1~7のいずれか一項に記載の太陽追尾装置を備える太陽光発電装置。 A solar power generation device comprising the solar tracking device according to any one of claims 1 to 7.
PCT/JP2012/063898 2011-06-15 2012-05-30 Solar tracking device and solar power generating device WO2012172978A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-133517 2011-06-15
JP2011133517A JP2013004684A (en) 2011-06-15 2011-06-15 Solar tracking device and photovoltaic power generator

Publications (1)

Publication Number Publication Date
WO2012172978A1 true WO2012172978A1 (en) 2012-12-20

Family

ID=47356970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063898 WO2012172978A1 (en) 2011-06-15 2012-05-30 Solar tracking device and solar power generating device

Country Status (2)

Country Link
JP (1) JP2013004684A (en)
WO (1) WO2012172978A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223971A (en) * 2015-11-09 2016-01-06 南京信息工程大学 A kind of automatic sun tracker based on optical image security
WO2022219597A1 (en) * 2021-04-16 2022-10-20 S K Radhakrishnan Solar power generation system and method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771676B1 (en) 2015-07-03 2017-08-25 엑센도 주식회사 Solar tracking sensor having double condenser lens
USD813800S1 (en) 2016-03-23 2018-03-27 Sumitomo Electric Industries, Ltd. Concentrator photovoltaic unit
JP6451776B2 (en) * 2017-04-28 2019-01-16 住友電気工業株式会社 Solar power plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767814A (en) * 1980-10-16 1982-04-24 Takashi Mori Sensor for direction of solar light
JPH06229754A (en) * 1993-02-05 1994-08-19 Asahi Glass Co Ltd Sensor and method for tracing solar beam
KR20010060471A (en) * 1999-12-27 2001-07-07 손재익 Sun Tracking Sensor using Photodiode
JP2005003524A (en) * 2003-06-12 2005-01-06 Mitsubishi Jisho Sekkei Inc Sun tracking type sensor
JP2008091670A (en) * 2006-10-03 2008-04-17 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Optical tracking equipment with mixed type tracking controller
JP2009038312A (en) * 2007-08-03 2009-02-19 Shinko Seisakusho Co Ltd Sunlight incident direction sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767814A (en) * 1980-10-16 1982-04-24 Takashi Mori Sensor for direction of solar light
JPH06229754A (en) * 1993-02-05 1994-08-19 Asahi Glass Co Ltd Sensor and method for tracing solar beam
KR20010060471A (en) * 1999-12-27 2001-07-07 손재익 Sun Tracking Sensor using Photodiode
JP2005003524A (en) * 2003-06-12 2005-01-06 Mitsubishi Jisho Sekkei Inc Sun tracking type sensor
JP2008091670A (en) * 2006-10-03 2008-04-17 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Optical tracking equipment with mixed type tracking controller
JP2009038312A (en) * 2007-08-03 2009-02-19 Shinko Seisakusho Co Ltd Sunlight incident direction sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223971A (en) * 2015-11-09 2016-01-06 南京信息工程大学 A kind of automatic sun tracker based on optical image security
WO2022219597A1 (en) * 2021-04-16 2022-10-20 S K Radhakrishnan Solar power generation system and method thereof

Also Published As

Publication number Publication date
JP2013004684A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
WO2012172978A1 (en) Solar tracking device and solar power generating device
US20150136944A1 (en) Sunlight tracking sensor and system
JP4471999B2 (en) Mounting orientation measuring device
CN102636195B (en) Servo motor and manufacture method thereof and manufacturing equipment and scrambler
KR100836870B1 (en) Cylindrial type solar tracking apparatus by photodiode and the photovoltaic driving system using thereof
CN104049354A (en) Method for automatically adjusting coincidence of laser communication telescope azimuth axis and transmitting optical axis
JPWO2013014721A1 (en) Servo motor manufacturing method, servo motor manufacturing apparatus, servo motor, encoder
WO2012077285A1 (en) Heliostat and solar-light condensing system
US20130019920A1 (en) Combination solar cell sun sensor for direct alignment of trackers and closed-loop tracking
KR100893703B1 (en) An apparatus for illuminating sunbeams
CN109916097A (en) A kind of heliostat ultrasonic wave correction system and method
US20150241678A1 (en) Compound optical proxy for sensing and pointing of light sources
TWI444576B (en) Device and method for solar-tracking according to sensor
JP5153953B1 (en) Heliostat and control method thereof
JP2009210280A (en) Azimuth sensor device
CN101114402A (en) Full-station instrument automatically accurate collimating system
CN107977001A (en) A kind of robot and its air navigation aid, system, equipment
EP2646759B1 (en) System for calibrating multiple solar surfaces
KR100967580B1 (en) Apparatus for illuminating sunbeams
KR20130092020A (en) Control mehtod for solar photovaltaic generating system improving generation efficiency
KR20130060382A (en) Sun tracking device usig solar panel
JP2011099629A (en) Sunlight collection system and method of adjusting reflecting mirror of sunlight collection system
KR101647566B1 (en) Sun location tracking type solar generation
CN109542124B (en) Automatic rotation alignment device and method based on solar illumination angle sensing
CN105910758A (en) Measuring mechanism for contact ratio of center of mass and optical center of falling body and measuring method and adjusting method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800461

Country of ref document: EP

Kind code of ref document: A1