WO2012172902A1 - Posture adjusting device, michelson interferometer, and fourier transform spectroscopic analysis device - Google Patents
Posture adjusting device, michelson interferometer, and fourier transform spectroscopic analysis device Download PDFInfo
- Publication number
- WO2012172902A1 WO2012172902A1 PCT/JP2012/062279 JP2012062279W WO2012172902A1 WO 2012172902 A1 WO2012172902 A1 WO 2012172902A1 JP 2012062279 W JP2012062279 W JP 2012062279W WO 2012172902 A1 WO2012172902 A1 WO 2012172902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric element
- voltage value
- drive
- posture
- voltage
- Prior art date
Links
- 238000004611 spectroscopical analysis Methods 0.000 title description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 141
- 230000004044 response Effects 0.000 claims abstract description 6
- 230000008602 contraction Effects 0.000 claims description 13
- 238000001228 spectrum Methods 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 description 125
- 238000000926 separation method Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 18
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 101000679735 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L16-A Proteins 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/45—Interferometric spectrometry
- G01J3/453—Interferometric spectrometry by correlation of the amplitudes
- G01J3/4535—Devices with moving mirror
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02055—Reduction or prevention of errors; Testing; Calibration
- G01B9/02062—Active error reduction, i.e. varying with time
- G01B9/02067—Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
- G01B9/02068—Auto-alignment of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02083—Interferometers characterised by particular signal processing and presentation
- G01B9/02084—Processing in the Fourier or frequency domain when not imaged in the frequency domain
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/003—Alignment of optical elements
- G02B7/005—Motorised alignment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N2021/3595—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
Definitions
- the present invention relates to an attitude adjustment device, a Michelson interferometer, and a Fourier transform spectroscopic analyzer, and in particular, an attitude adjustment device that adjusts an optical element to a desired attitude, a Michelson interferometer including the attitude adjustment device, and the same
- the present invention relates to a Fourier transform spectroscopic analyzer equipped with a Michelson interferometer.
- Patent Document 1 discloses an invention relating to a light beam polarizer. This light beam polarizer adjusts the posture of the reflecting mirror using expansion and contraction of the piezoelectric element.
- Patent Document 2 discloses an invention relating to a Fourier transform spectroscopic analyzer. This Fourier transform spectroscopic analyzer adjusts the posture of the fixed mirror using expansion and contraction of a piezoelectric element.
- an attitude adjustment device that adjusts the attitude of an optical element such as a mirror, a lens, or a beam splitter using a piezoelectric element
- the optical element is accurately set to a desired attitude. It is desirable to adjust.
- the present invention relates to an attitude adjustment apparatus capable of accurately and simply adjusting an optical element to a desired attitude, a Michelson interferometer including the attitude adjustment apparatus, and a Fourier transform spectroscopic analysis including the Michelson interferometer.
- An object is to provide an apparatus.
- An attitude adjustment apparatus is an attitude adjustment apparatus that adjusts an optical element to a desired attitude, includes a first piezoelectric element, supports the optical element in a swingable manner, and performs the first adjustment.
- a support unit that changes a posture of the optical element by expansion and contraction of the piezoelectric element; a first drive unit that is connected to the first piezoelectric element and outputs a first drive voltage that expands and contracts the first piezoelectric element; and the optical element
- a posture adjustment signal output unit for outputting a posture adjustment signal for adjusting the posture to a desired posture, and the posture adjustment received from the posture adjustment signal output unit connected to the posture adjustment signal output unit and the first drive unit.
- a control unit that controls a voltage value of the first driving voltage output from the first driving unit in response to a signal, wherein the first piezoelectric element is applied to the first piezoelectric element.
- a first target voltage value of the first drive voltage to be applied to the first piezoelectric element is set, and the control unit further determines that the first drive voltage applied to the first piezoelectric element is a current voltage. The first drive unit is controlled so that the first target voltage value is set after the value is once set to the maximum voltage value or the minimum voltage value.
- the support portion includes a second piezoelectric element that is disposed to face the first piezoelectric element and has the same hysteresis characteristic as the hysteresis characteristic of the first piezoelectric element. Is connected to a second drive unit that outputs a second drive voltage for expanding and contracting the second piezoelectric element, and the control unit is connected to the second drive unit and receives the posture received from the posture adjustment signal output unit.
- the control unit In response to the adjustment signal, the voltage value of the second drive voltage output from the second drive unit is controlled, and when the posture adjustment device adjusts the optical element to a desired posture, the control unit includes: , Setting a second target voltage value of the second drive voltage to be applied to the second piezoelectric element in accordance with the attitude adjustment signal, and further, the control unit applies the second piezoelectric element to the second piezoelectric element
- the second drive voltage is the current power As it will be set to the second target voltage value is once set to the maximum voltage value or the minimum voltage value from the value, and controls the second driving unit.
- the controller is configured so that the first driving voltage applied to the first piezoelectric element is set to the first target voltage value after being temporarily set from the current voltage value to the maximum voltage value.
- the first control unit is controlled, and the control unit further sets the second target after the second drive voltage applied to the second piezoelectric element is temporarily set from the current voltage value to the minimum voltage value.
- the second driving unit is controlled so as to be set to a voltage value, the first driving voltage of the first target voltage value is applied to the first piezoelectric element, and the second driving element is applied to the second piezoelectric element.
- the posture adjustment device adjusts the optical element to a desired posture in a state after the second drive voltage of the target voltage value is applied
- the posture adjustment signal is received from the posture adjustment signal output unit.
- the control unit is applied to the first piezoelectric element. 1 such that the drive voltage and the second driving voltage applied to the second piezoelectric element and are opposite phases to each other, and controls the first driving section and the second drive unit, respectively.
- each of the first drive voltage applied to the first piezoelectric element and the second drive voltage applied to the second piezoelectric element so as to be in opposite phases is the first target voltage value and The voltage value is symmetric about the second target voltage value.
- a Michelson interferometer includes the attitude adjustment device according to the present invention, a movable mirror, a fixed mirror as the optical element, a light source, and light that is emitted from the light source toward the fixed mirror. And a beam splitter that synthesizes the light reflected by each of the fixed mirror and the movable mirror and emits it as interference light, and a detector that detects the interference light. .
- a Fourier transform spectroscopic analyzer based on the present invention includes the Michelson interferometer based on the present invention, a calculation unit that calculates the spectrum of the interference light detected by the detector, and the spectrum obtained by the calculation unit. And an output unit for outputting.
- a posture adjusting device is a posture adjusting device that adjusts an optical element to a desired posture, and is arranged to face the first piezoelectric element and the first piezoelectric element.
- a support portion that includes an element and supports the optical element in a swingable manner, and that changes a posture of the optical element by expansion and contraction of the first and second piezoelectric elements, and is connected to the first piezoelectric element.
- a first driving unit that outputs a first driving voltage for expanding and contracting the first piezoelectric element, and a second driving unit that is connected to the second piezoelectric element and outputs a second driving voltage for expanding and contracting the second piezoelectric element.
- an attitude adjustment signal output unit that outputs an attitude adjustment signal for adjusting the optical element to a desired attitude, the attitude adjustment signal output unit, the first drive unit, and the second drive unit, Posture adjustment signal output Control for controlling the voltage value of the first drive voltage output from the first drive unit and the voltage value of the second drive voltage output from the second drive unit in accordance with the attitude adjustment signal received from And the first piezoelectric element and the second piezoelectric element are applied to the first piezoelectric element and the second piezoelectric element, respectively, and the maximum voltage value of the first driving voltage and the second driving voltage.
- the control unit controls the attitude adjustment.
- a target voltage value of the first drive voltage to be applied to the first piezoelectric element in response to a signal, and a target voltage of the second drive voltage to be applied to the second piezoelectric element in response to the attitude adjustment signal Set the value and Further, the control unit determines that the drive voltage applied to one of the first piezoelectric element and the second piezoelectric element is a current voltage according to a magnitude relationship between the first drive voltage and the second drive voltage.
- the drive voltage applied to the other one is set from the current voltage value to the minimum voltage value, and then set to the other target voltage value of the first piezoelectric element and the second piezoelectric element.
- the first driving unit and the second driving unit are controlled.
- an attitude adjustment apparatus capable of accurately and simply adjusting an optical element to a desired attitude, a Michelson interferometer including the attitude adjustment apparatus, and a Fourier transform including the Michelson interferometer A spectroscopic analyzer can be obtained.
- FIG. 3 is a cross-sectional view schematically showing the overall configuration of the attitude adjustment device in the first embodiment.
- FIG. 3 is a first diagram illustrating a relationship between a driving voltage applied to a piezoelectric element provided in the posture adjustment apparatus according to Embodiment 1 and a displacement amount of the piezoelectric element.
- FIG. 6 is a second diagram illustrating a relationship between a driving voltage applied to a piezoelectric element provided in the posture adjustment apparatus according to Embodiment 1 and a displacement amount of the piezoelectric element.
- FIG. 6 is a third diagram illustrating a relationship between a driving voltage applied to a piezoelectric element provided in the posture adjustment apparatus according to Embodiment 1 and a displacement amount of the piezoelectric element.
- FIG. 3 is a first diagram illustrating a relationship between a driving voltage applied to a piezoelectric element provided in the posture adjustment apparatus according to Embodiment 1 and a displacement amount of the piezoelectric element.
- FIG. 6 is
- FIG. 6 is a fourth diagram showing the relationship between the drive voltage applied to the piezoelectric element provided in the posture adjustment apparatus in Embodiment 1 and the displacement amount of the piezoelectric element.
- FIG. 6 is a diagram illustrating a relationship between a drive voltage applied to a piezoelectric element provided in the posture adjustment apparatus in the modification of the first embodiment and a displacement amount of the piezoelectric element.
- FIG. 6 is a perspective view schematically showing an overall configuration of a posture adjusting apparatus in a second embodiment.
- FIG. 6 is a cross-sectional view schematically showing an overall configuration of a posture adjustment device in a second embodiment.
- FIG. 10 is a diagram illustrating a relationship between a drive voltage applied to a piezoelectric element (second piezoelectric element) provided in the attitude adjustment device according to the second embodiment and a displacement amount of the piezoelectric element.
- FIG. 10 is a diagram illustrating a relationship between a drive voltage applied to a piezoelectric element (second piezoelectric element) provided in an attitude adjustment device according to a modification of the second embodiment and a displacement amount of the piezoelectric element.
- FIG. 6 is a diagram schematically showing a Fourier transform spectroscopic analysis apparatus in a third embodiment. 6 is a front view showing a configuration of a reference detector used in a Michelson interferometer in Embodiment 3.
- FIG. 10 is a plan view showing an attitude adjustment device in a third embodiment.
- FIG. 16 is a cross-sectional view taken along line XVI-XVI in FIG. 15.
- FIG. 10 is a diagram illustrating a relationship between a driving voltage applied to a piezoelectric element (first piezoelectric element) used in the attitude adjustment device according to Embodiment 3 and a displacement amount of the piezoelectric element.
- FIG. 10 is a diagram illustrating a relationship between a driving voltage applied to a piezoelectric element (first piezoelectric element) used in the attitude adjustment device in Embodiment 3 and time.
- FIG. 10 is a diagram showing a relationship between a drive voltage applied to a piezoelectric element (second piezoelectric element) used in the attitude adjustment device in Embodiment 3 and a displacement amount of the piezoelectric element.
- FIG. 10 is a diagram illustrating a relationship between a drive voltage applied to a piezoelectric element (second piezoelectric element) used in the attitude adjustment device in Embodiment 3 and time.
- FIG. 10 is a diagram illustrating a relationship between a drive voltage applied to a piezoelectric element (first piezoelectric element) used in an attitude adjustment device according to a modification of the third embodiment and a displacement amount of the piezoelectric element.
- FIG. 10 is a diagram showing a relationship between a drive voltage applied to a piezoelectric element (second piezoelectric element) used in the attitude adjustment device in Embodiment 3 and a displacement amount of the piezoelectric element.
- FIG. 10 is a diagram illustrating a relationship between a drive voltage applied to a piezoelectric element (second piezoelectric element) used in an attitude adjustment device according to a modification of the third embodiment and a displacement amount of the piezoelectric element.
- FIG. 24 is a diagram in which the vicinity of a point P13 in FIG. 22 and a point P24 in FIG. 23 are enlarged and combined into one figure.
- FIG. 1 is a cross-sectional view schematically showing the overall configuration of the posture adjustment apparatus 1000.
- the attitude adjustment device 1000 adjusts the optical element 200 to a desired attitude.
- the posture adjusting device 1000 includes a support portion 150 that supports the optical element 200 so as to be swingable.
- the support unit 150 includes a piezoelectric element 110 (first piezoelectric element), an elastic support member 154, and a base member 152. One end in the longitudinal direction of each of the piezoelectric element 110 and the elastic support member 154 is fixed to the base member 152.
- the optical element 200 is supported by the other end of each of the piezoelectric element 110 and the elastic support member 154 in the longitudinal direction.
- a drive unit 111 (first drive unit) is connected to the piezoelectric element 110.
- the drive unit 111 outputs a predetermined drive voltage V111 (first drive voltage) that causes the piezoelectric element 110 to expand and contract.
- V111 first drive voltage
- the piezoelectric element 110 to which the drive voltage V111 is applied expands and contracts in the direction of the arrow AR110.
- the optical element 200 is swung in the direction of the arrow AR200 with the elastic support member 154 side as a fulcrum.
- the optical element 200 is changed to a predetermined posture by the expansion and contraction (displacement amount) of the piezoelectric element 110.
- a control unit 160 that performs so-called servo control is connected to the drive unit 111 that outputs the drive voltage V111.
- An attitude adjustment signal output unit 170 is connected to the control unit 160.
- the posture adjustment signal output unit 170 is connected to, for example, an external device (not shown) that detects the posture of the optical element 200, and acquires information related to the posture of the optical element 200 from the device.
- the posture adjustment signal output unit 170 outputs a posture adjustment signal S170 for adjusting the optical element 200 to a desired posture according to the acquired information.
- the control unit 160 controls the voltage value of the drive voltage V111 output from the drive unit 111 in accordance with the posture adjustment signal S170 received from the posture adjustment signal output unit 170.
- a desired posture in the optical element 200 can be obtained.
- the angle of the surface 200S of the optical element 200 can be set to a desired value.
- FIG. 2 is a diagram showing the relationship between the magnitude of the drive voltage V111 applied to the piezoelectric element 110 and the displacement amount X110 of the piezoelectric element 110. As shown in FIG. As shown in FIG. 2, the piezoelectric element 110 has a predetermined hysteresis characteristic.
- the largest voltage value is the maximum voltage value Vmax, and the smallest voltage value is the minimum voltage value Vmin.
- the maximum voltage value Vmax and the minimum voltage value Vmin are both determined by design and the like.
- the displacement amount Xmax is obtained in the piezoelectric element 110.
- the minimum voltage value Vmin is applied to the piezoelectric element 110, the displacement amount Xmin is obtained in the piezoelectric element 110.
- the piezoelectric element 110 has a hysteresis characteristic H110 as shown in FIG. 2 between the maximum voltage value Vmax and the minimum voltage value Vmin.
- the displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmin (point Pmin in FIG. 2) to the displacement amount Xmax (point Pmax in FIG. 2) so as to draw a hysteresis curve indicated by the line L10. .
- the displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmax (point Pmax in FIG. 2) to the displacement amount Xmin (point Pmin in FIG. 2) so as to draw a hysteresis curve indicated by the line L11. .
- the drive voltage V111 applied to the piezoelectric element 110 at a certain time is a voltage value V10.
- the piezoelectric element 110 has the hysteresis characteristic H110
- the piezoelectric element 110 has a displacement amount X10. Is obtained (point P10 in FIG. 3).
- the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction (line L11)
- the displacement amount X11 is obtained in the piezoelectric element 110 (point P11 in FIG. 3).
- the posture adjustment device 1000 starts to operate when the posture adjustment signal S170 is input from the posture adjustment signal output unit 170 (see FIG. 1) to the control unit 160.
- the posture adjustment signal S170 is input from the posture adjustment signal output unit 170 (see FIG. 1) to the control unit 160.
- whether the voltage value V10 is applied to the piezoelectric element 110 in the step-up direction or whether the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction is controlled. It is assumed that it is not stored in the unit 160 or the like.
- Control unit 160 instructs drive unit 111 to output, for example, voltage value V1a (first target voltage value) in accordance with posture adjustment signal S170 received from posture adjustment signal output unit 170. .
- the displacement amount X110 of the piezoelectric element 110 is changed from the displacement amount X11 (point P11 in FIG. 3) to the displacement amount X12b (FIG. 3). It changes so that the hysteresis curve shown by the line L12b is drawn to the middle point P12b).
- the displacement amount X12a and the displacement amount X12b are different values. Even when the drive voltage V111 having the same voltage value V1a is applied to the piezoelectric element 110, the displacement amount of the piezoelectric element 110 obtained after the drive voltage is applied according to the hysteresis (history) of the piezoelectric element 110. X110 will be different.
- the controller 160 determines whether the voltage value V10 is applied to the piezoelectric element 110 in the step-up direction or whether the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction. For example, it is difficult to obtain a desired displacement amount X110 in the piezoelectric element 110.
- the posture adjustment apparatus 1000 adjusts the optical element 200 to a desired posture
- the posture adjustment apparatus 1000 operates as follows.
- control unit 160 that has received posture adjustment signal S170 from posture adjustment signal output unit 170 has drive voltage V111 to be applied to piezoelectric element 110 in accordance with posture adjustment signal S170.
- a voltage value V1a (first target voltage value) is set.
- control unit 160 that receives the posture adjustment signal S170 from the posture adjustment signal output unit 170 sets the voltage after the drive voltage V111 applied to the piezoelectric element 110 is once set from the current voltage value V10 to the maximum voltage value Vmax.
- the drive unit 111 is controlled to be set to the value V1a (first target voltage value).
- the displacement amount X110 of the piezoelectric element 110 is changed from the displacement amount X10 (point P10 in FIG. 5) to the displacement amount Xmax (in FIG. 5). It changes so as to draw a hysteresis curve shown by the line L13a until the point Pmax).
- the drive voltage V111 applied to the piezoelectric element 110 is set from the maximum voltage value Vmax to the voltage value V1a (first target voltage value).
- the displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmax (point Pmax in FIG. 5) to the displacement amount X13 (point P13 in FIG. 5) so as to draw a hysteresis curve indicated by a line L13c.
- the displacement amount X110 of the piezoelectric element 110 is changed from the displacement amount X11 (point P11 in FIG. 5) to the displacement amount Xmax (FIG. 5). It changes so as to draw a hysteresis curve shown by the line L13b until the middle point Pmax).
- the drive voltage V111 applied to the piezoelectric element 110 is set from the maximum voltage value Vmax to the voltage value V1a (first target voltage value).
- the displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmax (point Pmax in FIG. 5) to the displacement amount X13 (point P13 in FIG. 5) so as to draw a hysteresis curve indicated by a line L13c.
- the drive voltage V111 applied to the piezoelectric element 110 is once set from the current voltage value V10 to the maximum voltage value Vmax, and then the voltage value V1a (first target voltage value).
- the displacement amount X110 of the obtained piezoelectric element 110 is the displacement amount X13 (point P13 in FIG. 5).
- the posture adjustment apparatus 1000 can accurately adjust the optical element 200 to a desired posture. It becomes possible. In addition, since there is no need to perform feedback control or the like, according to the posture adjustment apparatus 1000 in the present embodiment, the optical element 200 can be accurately and easily adjusted to a desired posture.
- control unit 160 that receives posture adjustment signal S170 from posture adjustment signal output unit 170
- the drive unit 111 is controlled such that the drive voltage V111 applied to the piezoelectric element 110 is once set from the current voltage value V10 to the minimum voltage value Vmin and then set to the voltage value V1a (first target voltage value). May be.
- the displacement amount X110 of the piezoelectric element 110 is changed from the displacement amount X10 (point P10 in FIG. 6) to the displacement amount Xmin (in FIG. 6). It changes so that the hysteresis curve shown by the line L14a may be drawn to the point Pmin).
- the drive voltage V111 applied to the piezoelectric element 110 is set from the minimum voltage value Vmin to the voltage value V1a (first target voltage value).
- the displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmin (point Pmin in FIG. 6) to the displacement amount X14 (point P14 in FIG. 6) so as to draw a hysteresis curve indicated by a line L14c.
- the displacement amount X110 of the piezoelectric element 110 is changed from the displacement amount X11 (point P11 in FIG. 6) to the displacement amount Xmin (FIG. 6). It changes so that the hysteresis curve shown by line L14b may be drawn to the middle point Pmin).
- the drive voltage V111 applied to the piezoelectric element 110 is set from the minimum voltage value Vmin to the voltage value V1a (first target voltage value).
- the displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmin (point Pmin in FIG. 6) to the displacement amount X14 (point P14 in FIG. 6) so as to draw a hysteresis curve indicated by a line L14c.
- the drive voltage V111 applied to the piezoelectric element 110 is once set from the current voltage value V10 to the minimum voltage value Vmin, and then set to the voltage value V1a (first target voltage value). Regardless of whether the voltage value V10 is applied to the piezoelectric element 110 in the step-up direction or whether the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction.
- the displacement amount X110 of the obtained piezoelectric element 110 is the displacement amount X14 (point P14 in FIG. 6).
- the posture adjustment apparatus 1000 of the present modification can also accurately adjust the optical element 200 to a desired posture. It becomes. Further, since it is not necessary to perform feedback control or the like, the optical element 200 can be accurately and simply adjusted to a desired posture.
- FIG. 7 is a perspective view schematically showing the overall configuration of the attitude adjustment device 2000.
- FIG. 8 is a cross-sectional view schematically showing the overall configuration of the attitude adjustment device 2000.
- the attitude adjustment device 2000 adjusts the optical element 200 to a desired adjustment in the same manner as the attitude adjustment device 1000 (see FIG. 1). This will be specifically described below.
- the posture adjusting device 2000 includes a support portion 150 that supports the optical element 200 so as to be swingable.
- Support portion 150 in the present embodiment includes piezoelectric element 110 (first piezoelectric element), piezoelectric element 120 (second piezoelectric element), and base member 152.
- piezoelectric element 110 first piezoelectric element
- piezoelectric element 120 second piezoelectric element
- base member 152 One end of each of the piezoelectric elements 110 and 120 in the longitudinal direction is fixed to the base member 152.
- the optical element 200 is supported by the other end of each of the piezoelectric elements 110 and 120 in the longitudinal direction.
- the piezoelectric element 110 is configured similarly to the piezoelectric element 110 (see FIG. 1) in the first embodiment described above.
- the piezoelectric element 120 is arranged side by side so as to face the piezoelectric element 110.
- the piezoelectric element 120 has substantially the same hysteresis characteristic H120 (see FIG. 9) as the hysteresis characteristic H110 (see FIG. 2) of the piezoelectric element 110.
- a drive unit 121 (second drive unit) is connected to the piezoelectric element 120.
- the drive unit 121 outputs a predetermined drive voltage V121 (second drive voltage) that causes the piezoelectric element 120 to expand and contract.
- V121 second drive voltage
- the piezoelectric element 120 to which the drive voltage V121 is applied expands and contracts in the direction of the arrow AR120 (see FIG. 8).
- the optical element 200 When the piezoelectric element 110 expands and contracts in the direction of the arrow AR110 and the piezoelectric element 120 expands and contracts in the direction of the arrow AR120, the optical element 200 is swung in the direction of the arrow AR200. The optical element 200 is changed to a predetermined posture by expansion and contraction (displacement amount) of the piezoelectric element 110 and the piezoelectric element 120.
- the drive unit 121 that outputs the drive voltage V121 is connected to the control unit 160 in the same manner as the drive unit 111 that outputs the drive voltage V111.
- the control unit 160 responds to the posture adjustment signal S170 received from the posture adjustment signal output unit 170, and the voltage value of the drive voltage V111 output from the drive unit 111 and the voltage of the drive voltage V121 output from the drive unit 121. Control each value.
- the voltage value of the drive voltage V111 is converted into a displacement amount of the piezoelectric element 110.
- the voltage value of the drive voltage V121 is converted into a displacement amount of the piezoelectric element 120.
- FIG. 9 shows the relationship between the magnitude of the drive voltage V121 applied to the piezoelectric element 120 and the displacement amount X120 of the piezoelectric element 120.
- the piezoelectric element 120 has substantially the same hysteresis characteristic H120 as that of the piezoelectric element 110 (see FIG. 2).
- the piezoelectric element 120 is also operated in the same manner as the piezoelectric element 110 described above (see FIG. 5). Specifically, referring to FIG. 9 (and FIG. 8), control unit 160 that has received posture adjustment signal S170 from posture adjustment signal output unit 170 is applied to piezoelectric element 120 in accordance with posture adjustment signal S170. A voltage value V2a (second target voltage value) of the power drive voltage V121 is set.
- control unit 160 that receives the posture adjustment signal S170 from the posture adjustment signal output unit 170 sets the voltage after the drive voltage V121 applied to the piezoelectric element 120 is once set from the current voltage value V20 to the maximum voltage value Vmax.
- the drive unit 121 is controlled to be set to the value V2a (second target voltage value).
- the displacement amount X120 of the piezoelectric element 120 is changed from the displacement amount X20 (point P20 in FIG. 9) to the displacement amount Xmax (in FIG. 9). It changes so as to draw a hysteresis curve shown by the line L23a until the point Pmax).
- the drive voltage V121 applied to the piezoelectric element 120 is set from the maximum voltage value Vmax to the voltage value V2a (second target voltage value).
- the displacement amount X120 of the piezoelectric element 120 changes from the displacement amount Xmax (point Pmax in FIG. 9) to the displacement amount X23 (point P23 in FIG. 9) so as to draw a hysteresis curve indicated by a line L23c.
- the displacement amount X120 of the piezoelectric element 120 is changed from the displacement amount X21 (point P21 in FIG. 9) to the displacement amount Xmax (FIG. 9). It changes so as to draw the hysteresis curve shown by the line L23b until the middle point Pmax).
- the drive voltage V121 applied to the piezoelectric element 120 is set from the maximum voltage value Vmax to the voltage value V2a (second target voltage value).
- the displacement amount X120 of the piezoelectric element 120 changes from the displacement amount Xmax (point Pmax in FIG. 9) to the displacement amount X23 (point P23 in FIG. 9) so as to draw a hysteresis curve indicated by a line L23c.
- the drive voltage V121 applied to the piezoelectric element 120 is once set from the current voltage value V20 to the maximum voltage value Vmax, and then set to the voltage value V2a (second target voltage value). Regardless of whether the voltage value V20 is applied to the piezoelectric element 120 in the step-up direction or whether the voltage value V20 is applied to the piezoelectric element 120 in the step-down direction.
- the displacement amount X120 of the obtained piezoelectric element 120 is the displacement amount X23 (point P23 in FIG. 9).
- the voltage value V10 is applied to the piezoelectric element 110 in the step-up direction, or the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction. Regardless of whether or not there is, the finally obtained displacement amount X110 of the piezoelectric element 110 is uniquely determined.
- the displacement amount X110 of the piezoelectric element 110 at the voltage value V1a is uniquely determined, and the displacement amount X120 of the piezoelectric element 120 at the voltage value V2a is uniquely determined. It becomes possible.
- the optical element 200 can be accurately adjusted to a desired attitude.
- the posture adjustment apparatus 2000 in the present embodiment it is possible to accurately and easily adjust the optical element 200 to a desired posture.
- control unit 160 that has received posture adjustment signal S170 from posture adjustment signal output unit 170
- the drive unit 121 is controlled such that the drive voltage V121 applied to the piezoelectric element 120 is once set from the current voltage value V20 to the minimum voltage value Vmin and then set to the voltage value V2a (second target voltage value). May be.
- the displacement amount X120 of the piezoelectric element 120 is changed from the displacement amount X20 (point P20 in FIG. 10) to the displacement amount Xmin (in FIG. 10). It changes so that the hysteresis curve shown by the line L24a may be drawn to the point Pmin).
- the drive voltage V121 applied to the piezoelectric element 120 is set from the minimum voltage value Vmin to the voltage value V2a (second target voltage value).
- the displacement amount X120 of the piezoelectric element 120 changes from the displacement amount Xmin (point Pmin in FIG. 10) to the displacement amount X24 (point P24 in FIG. 10) so as to draw a hysteresis curve indicated by a line L24c.
- the displacement amount X120 of the piezoelectric element 120 is changed from the displacement amount X21 (point P21 in FIG. 10) to the displacement amount Xmin (FIG. 10). It changes so that the hysteresis curve shown by the line L24b is drawn to the middle point Pmin).
- the drive voltage V121 applied to the piezoelectric element 120 is set from the minimum voltage value Vmin to the voltage value V2a (second target voltage value).
- the displacement amount X120 of the piezoelectric element 120 changes from the displacement amount Xmin (point Pmin in FIG. 10) to the displacement amount X24 (point P24 in FIG. 10) so as to draw a hysteresis curve indicated by a line L24c.
- the drive voltage V121 applied to the piezoelectric element 120 is once set from the current voltage value V20 to the minimum voltage value Vmin, and then set to the voltage value V2a (second target voltage value). Regardless of whether the voltage value V20 is applied to the piezoelectric element 120 in the step-up direction or whether the voltage value V20 is applied to the piezoelectric element 120 in the step-down direction.
- the displacement amount X120 of the obtained piezoelectric element 120 is the displacement amount X24 (point P24 in FIG. 10).
- the displacement amount X110 of the piezoelectric element 110 at the voltage value V1a is uniquely determined, and the displacement amount X120 of the piezoelectric element 120 at the voltage value V2a is uniquely determined. It becomes possible. Also by the attitude adjustment device 2000 in this modification, the optical element 200 can be accurately and simply adjusted to a desired attitude.
- the drive voltages V111 and V121 applied to the piezoelectric elements 110 and 120 are set from the current voltage value to the target voltage value, the current voltage value is temporarily set from the current voltage value to the maximum voltage value and then set to the target voltage value. The selection of whether the current voltage value is once set to the minimum voltage value and then set to the target voltage value depends on the magnitude relationship of the drive voltages V111 and V121 applied to the piezoelectric elements 110 and 120. It is good to be decided accordingly.
- FIG. 11 is a diagram schematically illustrating Fourier transform spectroscopic analysis apparatus 100 in the third embodiment.
- the Fourier transform spectroscopic analyzer 100 includes a Michelson interferometer 1, a calculation unit 2, and an output unit 3.
- the Michelson interferometer 1 includes a spectroscopic optical system 11, a reference optical system 21, and an attitude adjustment device 30.
- the spectroscopic optical system 11 includes a light source 12, a collimating optical system 13, a beam splitter 14, a fixed mirror 15 (optical element), a moving mirror 16, a condensing optical system 17, a detector 18, and a driving mechanism 60.
- the light source 12 includes a light emitting element such as a lamp, and emits light such as infrared light.
- the light emitted from the light source 12 is introduced into an optical path combining mirror 23 in the reference optical system 21 (details will be described later), and is synthesized with the light emitted from the reference light source 22 (details will be described later).
- the combined light is emitted from the optical path combining mirror 23, converted into parallel light by the collimating optical system 13, and then introduced into the beam splitter 14.
- the beam splitter 14 is composed of a half mirror or the like. The light (incident light) introduced into the beam splitter 14 is divided into two light beams.
- One side of the divided light is irradiated to the fixed mirror 15.
- the light reflected on the surface of the fixed mirror 15 (reflected light) passes through substantially the same optical path as before reflection and is irradiated again on the beam splitter 14.
- the other of the divided lights is irradiated to the movable mirror 16.
- the light (reflected light) reflected on the surface of the movable mirror 16 passes through substantially the same optical path as before reflection and is irradiated again on the beam splitter 14.
- the reflected light from the fixed mirror 15 and the reflected light from the moving mirror 16 are combined (superposed) by the beam splitter 14.
- the movable mirror 16 is reciprocated in the direction of the arrow AR while being kept parallel by the drive mechanism 60. Due to the reciprocating movement of the movable mirror 16, a difference in optical path length occurs between the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16. The reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16 are combined with the beam splitter 14 to form interference light.
- the difference in optical path length changes continuously according to the position of the movable mirror 16.
- the intensity of light as interference light also changes continuously according to the difference in optical path length.
- the difference in optical path length is, for example, an integral multiple of the wavelength of light irradiated from the collimating optical system 13 to the beam splitter 14, the intensity of light as interference light is maximized.
- the sample S is irradiated with the light forming the interference light.
- the light transmitted through the sample S is condensed on the condensing optical system 17.
- the condensed light is introduced into the optical path separation mirror 24 in the reference optical system 21 (details will be described later).
- the detector 18 detects the light emitted from the optical path separation mirror 24 as an interference pattern (interferogram).
- This interference pattern is sent to the calculation unit 2 including a CPU (Central Processing Unit) and the like.
- the computing unit 2 converts the collected (sampled) interference pattern from an analog format to a digital format, and further performs Fourier transform on the converted data.
- the data after the Fourier transform is output to another device through the output unit 3 or displayed on a display or the like. Based on this spectral distribution, the characteristics (eg, material, structure, or amount of components) of the sample S are analyzed.
- the reference optical system 21 includes a collimating optical system 13, a beam splitter 14, a fixed mirror 15, a moving mirror 16, a condensing optical system 17, a reference light source 22, an optical path synthesis mirror 23, an optical path separation mirror 24, a reference detector 25, and a signal.
- a processing unit 26 is included.
- the collimating optical system 13, the beam splitter 14, the fixed mirror 15, the moving mirror 16, and the condensing optical system 17 are common to both the spectroscopic optical system 11 and the reference optical system 21.
- the reference light source 22 is composed of a light emitting element such as a semiconductor laser, and emits light such as red light. As described above, the light emitted from the reference light source 22 is introduced into the optical path combining mirror 23.
- the optical path combining mirror 23 is composed of a half mirror or the like. The light from the light source 12 passes through the optical path combining mirror 23. Light from the reference light source 22 is reflected by the optical path combining mirror 23.
- the light from the light source 12 and the light from the reference light source 22 are emitted from the optical path combining mirror 23 onto the same optical path in a state where they are combined by the optical path combining mirror 23.
- the light emitted from the optical path combining mirror 23 is converted into parallel light by the collimating optical system 13 and then introduced into the beam splitter 14 and split into two light beams.
- one of the divided lights is irradiated on the fixed mirror 15 and again irradiated on the beam splitter 14 as reflected light.
- the other of the divided lights is applied to the movable mirror 16 and is applied again to the beam splitter 14 as reflected light.
- the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16 are combined with the beam splitter 14 to form interference light.
- the sample S is irradiated with the light forming the interference light.
- the light transmitted through the sample S is condensed on the condensing optical system 17.
- the condensed light is introduced into the optical path separation mirror 24 in the reference optical system 21.
- the optical path separation mirror 24 is composed of a half mirror or the like, and the light (incident light) introduced into the optical path separation mirror 24 is divided into two light beams.
- the light emitted from the light source 12 and introduced into the optical path separation mirror 24 through the optical path synthesis mirror 23, the collimating optical system 13, the beam splitter 14, the fixed mirror 15, the movable mirror 16, the sample S, and the condensing optical system 17 The light passes through the separation mirror 24. As described above, this light (interference light) transmitted through the optical path separation mirror 24 is detected by the detector 18.
- the interference pattern of the interference light is sent to a signal processing unit 26 including a CPU and the like.
- the signal processing unit 26 calculates the intensity of the reflected light from the optical path separation mirror 24 based on the collected interference pattern. Based on the intensity of the reflected light from the optical path separation mirror 24, the signal processing unit 26 can generate a signal indicating the sampling timing in the calculation unit 2.
- a signal indicating the sampling timing in the calculation unit 2 can be generated by a known means.
- the signal processing unit 26 tilts the light between the two optical paths (relative tilt between the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16). Can also be calculated. For example, the inclination of light between the two optical paths is calculated as follows.
- the reference detector 25 composed of a four-divided sensor has four light receiving areas E1 to E4.
- the light receiving areas E1 to E4 are adjacent to each other in the counterclockwise direction. Reflected light from the optical path separation mirror 24 is irradiated to the area constituted by the light receiving areas E1 to E4.
- the center of the area constituted by the light receiving areas E1 to E4 and the center of the spot D of the reflected light from the optical path separation mirror 24 are substantially coincident.
- the light receiving areas E1 to E4 detect the intensity of the reflected light applied to each area from the optical path separation mirror 24.
- the intensity of the reflected light from the optical path separation mirror 24 is detected as a phase signal that changes with time, for example, as shown in FIGS. 13 (A) and 13 (B).
- Each horizontal axis of FIG. 13 (A) and FIG. 13 (B) indicates the passage of time (unit: second).
- the vertical axis in FIG. 13A indicates the sum of the light intensity detected by the light receiving area E1 and the light intensity detected by the light receiving area E2 as intensity A1 (relative value).
- the vertical axis in FIG. 13B indicates the sum of the light intensity detected by the light receiving area E3 and the light intensity detected by the light receiving area E4 as intensity A2 (relative value).
- phase difference ⁇ between the intensity A1 and the intensity A2.
- the inclination of the light between the two optical paths is calculated.
- Other phase differences ⁇ can be obtained by other combinations of the light receiving areas E1 to E4 (for example, combinations of the light receiving areas E1 and E4 and the light receiving areas E2 and E3).
- the direction (vector) of the inclination of light between the two optical paths can also be calculated.
- attitude adjustment device 30 Referring to FIG. 11 again, the attitude adjustment device 30 is based on the detection result in the signal processing unit 26 (relative inclination between the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16). 15 (the angle of the surface of the fixed mirror 15 with respect to the beam splitter 14) is adjusted. By this adjustment, the optical path of the reflected light at the fixed mirror 15 is corrected, and the inclination of the light between the two optical paths can be eliminated (or reduced). By providing the attitude adjustment device 30 in the Michelson interferometer 1, it becomes possible to generate interference light with higher accuracy.
- FIG. 14 is a perspective view showing a disassembled state of the attitude adjustment device 30.
- FIG. FIG. 15 is a plan view showing the attitude adjustment device 30.
- 16 is a cross-sectional view taken along the line XVI-XVI in FIG.
- the attitude adjustment device 30 adjusts the attitude of the fixed mirror 15 to a desired attitude. This will be specifically described below.
- the posture adjustment device 30 includes a support portion 150 that supports the fixed mirror 15 in a swingable manner.
- Support portion 150 in the present embodiment includes piezoelectric element 110 (first piezoelectric element), piezoelectric element 120 (second piezoelectric element), piezoelectric element 130, piezoelectric element 140, base member 152, and pedestal 156.
- the piezoelectric elements 110, 120, 130, and 140 have substantially the same hysteresis characteristics, and are arranged in a square shape in plan view (see FIG. 15) so as to face each other.
- the pedestal 156 includes a disk-shaped large-diameter portion 156a and a disk-shaped small-diameter portion 156b.
- One end in the longitudinal direction of each of the piezoelectric elements 110, 120, 130, and 140 is fixed to the base member 152.
- a small diameter portion 156 b of the pedestal 156 is provided on the other end in the longitudinal direction of each of the piezoelectric elements 110, 120, 130, and 140.
- an adhesive 158 is provided between the other end in the longitudinal direction of each of the piezoelectric elements 110, 120, 130, and 140 and the small diameter portion 156b of the pedestal 156.
- the fixed mirror 15 is fixed on the large-diameter portion 156a of the base 156.
- the piezoelectric element 110 is connected to the driving unit 111 (first driving unit).
- the drive unit 111 outputs a predetermined drive voltage V111 (first drive voltage) that causes the piezoelectric element 110 to expand and contract.
- V111 first drive voltage
- the piezoelectric element 110 to which the drive voltage V111 is applied expands and contracts in the direction of the arrow AR110.
- a drive unit 121 (second drive unit) is connected to the piezoelectric element 120.
- the drive unit 121 outputs a predetermined drive voltage V121 (second drive voltage) that causes the piezoelectric element 120 to expand and contract.
- V121 second drive voltage
- the piezoelectric element 120 to which the driving voltage V121 is applied expands and contracts in the direction of the arrow AR120.
- the piezoelectric elements 130 and 140 are configured in the same manner as the piezoelectric elements 110 and 120.
- the piezoelectric elements 130 and 140 function in the same manner as the piezoelectric elements 110 and 120. Only the piezoelectric elements 110 and 120 will be described below.
- the stationary mirror 15 is swung by the expansion and contraction of the piezoelectric element 110 and the expansion and contraction of the piezoelectric element 120.
- the fixed mirror 15 is changed to a predetermined posture by the expansion and contraction (displacement amount) of the piezoelectric elements 110 and 120.
- control unit 160 is connected to the drive unit 111 that outputs the drive voltage V111.
- the controller 160 is also connected to the drive unit 121 that outputs the drive voltage V121.
- An attitude adjustment signal output unit 170 is connected to the control unit 160.
- the posture adjustment signal output unit 170 is connected to the signal processing unit 26 in FIG. 11 and acquires information related to the posture of the fixed mirror 15 from the signal processing unit 26.
- the posture adjustment signal output unit 170 outputs a posture adjustment signal S170 for adjusting the fixed mirror 15 to a desired posture according to the acquired information.
- the control unit 160 responds to the attitude adjustment signal S170 received from the attitude adjustment signal output unit 170, and the voltage value of the drive voltage V111 output from the drive unit 111 and the voltage value of the drive voltage V121 output from the drive unit 121. And control each.
- the voltage value of the drive voltage V111 is converted into a displacement amount of the piezoelectric element 110.
- the voltage value of the drive voltage V121 is converted into a displacement amount of the piezoelectric element 120.
- control unit 160 in the present embodiment is configured so that the drive voltage V111 applied to the piezoelectric element 110 and the drive voltage V121 applied to the piezoelectric element 120 are in opposite phases to each other. 121 is controlled.
- Attitude adjustment operation For example, it is assumed that Fourier transform spectroscopic analysis apparatus 100 (see FIG. 11) in the present embodiment transitions from a startup state or a standby state to an analysis start state. At this time, the posture adjustment device 30 is used to start adjusting the posture of the fixed mirror 15. In the Fourier transform spectroscopic analysis apparatus 100, first, coarse adjustment is performed on the fixed mirror 15, and then fine adjustment is performed on the fixed mirror 15 by so-called servo control. Hereinafter, the rough adjustment and the fine adjustment will be described in order.
- the controller 160 sets the voltage value V1a (first target voltage value) of the drive voltage V111 to be applied to the piezoelectric element 110.
- the voltage value V1a may be a preset value (design value), or may be a value calculated according to the attitude adjustment signal S170 received from the attitude adjustment signal output unit 170.
- control unit 160 controls the drive unit 111 so that the drive voltage V111 applied to the piezoelectric element 110 is temporarily set from the current voltage value V10 to the maximum voltage value Vmax (time T0 in FIG. 19). ⁇ T1).
- a drive voltage V111 having a maximum voltage value Vmax is applied to the piezoelectric element 110 for a predetermined time (time T1 to T2 in FIG. 19).
- the control unit 160 controls the drive unit 111 so that the drive voltage V111 applied to the piezoelectric element 110 is set to the voltage value V1a (time T2 to T3 in FIG. 19).
- the voltage value V10 is applied to the piezoelectric element 110 in the boosting direction, or the voltage value V10 is applied to the piezoelectric element 110. Regardless of whether the voltage is applied in the step-down direction, the finally obtained displacement amount X110 of the piezoelectric element 110 is the displacement amount X13 (point P13 in FIG. 18).
- the rough adjustment indicated by the region RR1 in FIG. 19 is completed. Although details will be described later, fine adjustment indicated by a region RR2 in FIG. 19 is performed on the fixed mirror 15 thereafter.
- the controller 160 sets a voltage value V2a (second target voltage value) of the drive voltage V121 to be applied to the piezoelectric element 120.
- this voltage value V2a is (Formula 1)
- V2a (Vmax + Vmin) ⁇ V1a It is configured to satisfy
- control unit 160 controls the drive unit 121 so that the drive voltage V121 applied to the piezoelectric element 120 is temporarily set from the current voltage value V20 to the minimum voltage value Vmin (from time T0 to time T0 in FIG. 21). T1). A drive voltage V121 having a minimum voltage value Vmin is applied to the piezoelectric element 120 for a predetermined time (time T1 to T2 in FIG. 21). Thereafter, the control unit 160 controls the drive unit 121 so that the drive voltage V121 applied to the piezoelectric element 120 is set to the voltage value V2a (time T2 to T3 in FIG. 21).
- the voltage value V20 is applied to the piezoelectric element 120 in the boosting direction, or the voltage value V20 is the piezoelectric element 120. Regardless of whether the voltage is applied in the step-down direction, the finally obtained displacement amount X120 of the piezoelectric element 120 is the displacement amount X24 (point P24 in FIG. 20).
- the displacement amount X110 of the piezoelectric element 110 becomes the displacement amount X13 (point P13 in FIG. 18), and the displacement amount X120 of the piezoelectric element 120 becomes the displacement amount X24 (point P24 in FIG. 20).
- the posture is changed (rough adjustment is completed).
- the piezoelectric element 110 and the piezoelectric element 120 enable the fixed mirror 15 to be roughly (uniquely) roughly adjusted to a desired posture.
- the signal processing unit 26 that calculates the inclination of the light between the two optical paths based on the intensity of the reflected light from the optical path separation mirror 24 (see FIG. 11) calculates the inclination to the attitude adjustment signal output unit 170.
- a predetermined signal according to the value is sent.
- the posture adjustment signal output unit 170 sends a posture adjustment signal S170 to the control unit 160.
- the piezoelectric element 110 receives the drive voltage V111 from the drive unit 111 controlled by the control unit 160, and is continuously driven so that the inclination of the fixed mirror 15 becomes a desired posture.
- the piezoelectric element 120 receives the drive voltage V121 from the drive unit 121 controlled by the control unit 160, and is continuously driven so that the inclination of the fixed mirror 15 becomes a desired posture.
- the posture adjustment device 30 adjusts the fixed mirror 15 to a desired posture based on the detection result in the signal processing unit 26 (relative inclination between the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16).
- the Interference light can be generated with higher accuracy.
- the voltage value V1a (first target voltage value) of the drive voltage V111 to be applied to the piezoelectric element 110 and the voltage value V2a (second value) of the drive voltage V121 to be applied to the piezoelectric element 120 are described.
- Target voltage value is the maximum voltage value Vmax and the minimum voltage value Vmin.
- the displacement amount X110 of the piezoelectric element 110 becomes the displacement amount X13 in the state after the piezoelectric element 110 is roughly adjusted (point P13 in FIG. 22). ).
- the displacement amount X120 of the piezoelectric element 120 becomes the displacement amount X24 in the state after the piezoelectric element 120 is roughly adjusted (point P24 in FIG. 23). ).
- FIG. 24 is a diagram showing a point P13 in FIG. 22 and a point P24 in FIG.
- the piezoelectric element 110 and the piezoelectric element 120 are servo-controlled between the voltage value V3a and the voltage value V3b around the voltage values V1a and V2a, the above formula is satisfied,
- the slope of the line LA including both turning points of the hysteresis curve of the piezoelectric element 110 and the slope of the line LB including both turning points of the hysteresis curve of the piezoelectric element 120 are the same. Since the displacement amount (expansion / contraction amount) with respect to the applied voltage is substantially the same in the piezoelectric element 110 and the piezoelectric element 120, the posture of the fixed mirror 15 can be stably adjusted.
- each of the drive voltage V111 and the drive voltage V121 applied so as to be in opposite phases to each other is preferably a symmetric voltage value around the voltage values V1a and V2a.
- the oscillating shaft of the fixed mirror 15 is formed just between the piezoelectric element 110 and the piezoelectric element 120.
- the piezoelectric element 110 and the piezoelectric element 120 perform a so-called push-pull operation with respect to the fixed mirror 15.
- the posture of the fixed mirror 15 can be adjusted according to the displacement amount of the piezoelectric element 110 and the displacement amount of the piezoelectric element 120 around the above-described swing axis. As a result, the posture of the fixed mirror 15 can be adjusted more stably.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Automation & Control Theory (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
When a posture adjusting device adjusts an optical element to a predetermined posture, a control unit sets a target voltage value (V1a) of a driving voltage (V111) to be applied to a piezoelectric element in response to a posture adjustment signal. In addition, the control unit controls a driving unit so that the driving voltage (V111) to be applied to the piezoelectric element is once set to the maximum voltage value (Vmax) or the minimum voltage value (Vmin) from a current voltage value (V10) and then set to the target voltage value (V1a). The posture adjusting device can accurately and simply adjust the optical element to a predetermined posture.
Description
本発明は、姿勢調整装置、マイケルソン干渉計、およびフーリエ変換分光分析装置に関し、特に、光学素子を所望の姿勢に調整する姿勢調整装置、その姿勢調整装置を備えたマイケルソン干渉計、およびそのマイケルソン干渉計を備えたフーリエ変換分光分析装置に関する。
The present invention relates to an attitude adjustment device, a Michelson interferometer, and a Fourier transform spectroscopic analyzer, and in particular, an attitude adjustment device that adjusts an optical element to a desired attitude, a Michelson interferometer including the attitude adjustment device, and the same The present invention relates to a Fourier transform spectroscopic analyzer equipped with a Michelson interferometer.
特開昭61-013212号公報(特許文献1)には、光ビーム偏光器に関する発明が開示されている。この光ビーム偏光器は、圧電素子の伸縮を利用して、反射鏡の姿勢を調整する。
Japanese Patent Application Laid-Open No. 61-013212 (Patent Document 1) discloses an invention relating to a light beam polarizer. This light beam polarizer adjusts the posture of the reflecting mirror using expansion and contraction of the piezoelectric element.
特開平01-059019号公報(特許文献2)には、フーリエ変換分光分析装置に関する発明が開示されている。このフーリエ変換分光分析装置は、圧電素子の伸縮を利用して、固定鏡の姿勢を調整する。
Japanese Patent Laid-Open No. 01-059019 (Patent Document 2) discloses an invention relating to a Fourier transform spectroscopic analyzer. This Fourier transform spectroscopic analyzer adjusts the posture of the fixed mirror using expansion and contraction of a piezoelectric element.
上記の文献に開示されている発明のように、ミラー、レンズ、またはビームスプリッターなどの光学素子の姿勢を圧電素子を用いて調整する姿勢調整装置においては、その光学素子を所望の姿勢に正確に調整することが望まれる。
As in the invention disclosed in the above document, in an attitude adjustment device that adjusts the attitude of an optical element such as a mirror, a lens, or a beam splitter using a piezoelectric element, the optical element is accurately set to a desired attitude. It is desirable to adjust.
本発明は、光学素子を所望の姿勢に正確かつ簡便に調整することが可能な姿勢調整装置、その姿勢調整装置を備えたマイケルソン干渉計、およびそのマイケルソン干渉計を備えたフーリエ変換分光分析装置を提供することを目的とする。
The present invention relates to an attitude adjustment apparatus capable of accurately and simply adjusting an optical element to a desired attitude, a Michelson interferometer including the attitude adjustment apparatus, and a Fourier transform spectroscopic analysis including the Michelson interferometer. An object is to provide an apparatus.
本発明のある局面に基づく姿勢調整装置は、光学素子を所望の姿勢に調整する姿勢調整装置であって、第1圧電素子を含み、上記光学素子を揺動可能に支持するとともに、上記第1圧電素子の伸縮によって上記光学素子の姿勢を変化させる支持部と、上記第1圧電素子に接続され、上記第1圧電素子を伸縮させる第1駆動電圧を出力する第1駆動部と、上記光学素子を所望の姿勢に調整するための姿勢調整信号を出力する姿勢調整信号出力部と、上記姿勢調整信号出力部および上記第1駆動部に接続され、上記姿勢調整信号出力部から受けた上記姿勢調整信号に応じて、上記第1駆動部から出力される上記第1駆動電圧の電圧値を制御する制御部と、を備え、上記第1圧電素子は、上記第1圧電素子に印加される上記第1駆動電圧の最大電圧値と最小電圧値との間において形成されるヒステリシス特性を有し、上記姿勢調整装置が上記光学素子を所望の姿勢に調整する際には、上記制御部は、上記姿勢調整信号に応じて上記第1圧電素子に印加されるべき上記第1駆動電圧の第1目標電圧値を設定し、さらに、上記制御部は、上記第1圧電素子に印加される上記第1駆動電圧が、現在の電圧値から上記最大電圧値または上記最小電圧値に一旦設定された後に上記第1目標電圧値に設定されるように、上記第1駆動部を制御する。
An attitude adjustment apparatus according to an aspect of the present invention is an attitude adjustment apparatus that adjusts an optical element to a desired attitude, includes a first piezoelectric element, supports the optical element in a swingable manner, and performs the first adjustment. A support unit that changes a posture of the optical element by expansion and contraction of the piezoelectric element; a first drive unit that is connected to the first piezoelectric element and outputs a first drive voltage that expands and contracts the first piezoelectric element; and the optical element A posture adjustment signal output unit for outputting a posture adjustment signal for adjusting the posture to a desired posture, and the posture adjustment received from the posture adjustment signal output unit connected to the posture adjustment signal output unit and the first drive unit. A control unit that controls a voltage value of the first driving voltage output from the first driving unit in response to a signal, wherein the first piezoelectric element is applied to the first piezoelectric element. Maximum power of one drive voltage Having a hysteresis characteristic formed between a value and a minimum voltage value, and when the posture adjustment device adjusts the optical element to a desired posture, the control unit performs the above-described adjustment according to the posture adjustment signal. A first target voltage value of the first drive voltage to be applied to the first piezoelectric element is set, and the control unit further determines that the first drive voltage applied to the first piezoelectric element is a current voltage. The first drive unit is controlled so that the first target voltage value is set after the value is once set to the maximum voltage value or the minimum voltage value.
好ましくは、上記支持部は、上記第1圧電素子と対向するように配置され且つ上記第1圧電素子の上記ヒステリシス特性と同一のヒステリシス特性を有する第2圧電素子を含み、上記第2圧電素子には、上記第2圧電素子を伸縮させる第2駆動電圧を出力する第2駆動部が接続され、上記制御部は、上記第2駆動部に接続され、上記姿勢調整信号出力部から受けた上記姿勢調整信号に応じて、上記第2駆動部から出力される上記第2駆動電圧の電圧値を制御し、上記姿勢調整装置が上記光学素子を所望の姿勢に調整する際には、上記制御部は、上記姿勢調整信号に応じて上記第2圧電素子に印加されるべき上記第2駆動電圧の第2目標電圧値を設定し、さらに、上記制御部は、上記第2圧電素子に印加される上記第2駆動電圧が、現在の電圧値から上記最大電圧値または上記最小電圧値に一旦設定された後に上記第2目標電圧値に設定されるように、上記第2駆動部を制御する。
Preferably, the support portion includes a second piezoelectric element that is disposed to face the first piezoelectric element and has the same hysteresis characteristic as the hysteresis characteristic of the first piezoelectric element. Is connected to a second drive unit that outputs a second drive voltage for expanding and contracting the second piezoelectric element, and the control unit is connected to the second drive unit and receives the posture received from the posture adjustment signal output unit. In response to the adjustment signal, the voltage value of the second drive voltage output from the second drive unit is controlled, and when the posture adjustment device adjusts the optical element to a desired posture, the control unit includes: , Setting a second target voltage value of the second drive voltage to be applied to the second piezoelectric element in accordance with the attitude adjustment signal, and further, the control unit applies the second piezoelectric element to the second piezoelectric element The second drive voltage is the current power As it will be set to the second target voltage value is once set to the maximum voltage value or the minimum voltage value from the value, and controls the second driving unit.
好ましくは、上記第1目標電圧値をV1aとし、上記第2目標電圧値をV2aとし、上記最大電圧値をVmaxとし、上記最小電圧値をVminとすると、
(式1) V2a=(Vmax+Vmin)-V1a
が満足するように構成され、
上記制御部は、上記第1圧電素子に印加される上記第1駆動電圧が、現在の電圧値から上記最大電圧値に一旦設定された後に上記第1目標電圧値に設定されるように、上記第1駆動部を制御し、さらに、上記制御部は、上記第2圧電素子に印加される上記第2駆動電圧が、現在の電圧値から上記最小電圧値に一旦設定された後に上記第2目標電圧値に設定されるように、上記第2駆動部を制御し、上記第1圧電素子に上記第1目標電圧値の上記第1駆動電圧が印加され、且つ上記第2圧電素子に上記第2目標電圧値の上記第2駆動電圧が印加された後の状態において、上記姿勢調整装置が上記光学素子を所望の姿勢に調整する際には、上記姿勢調整信号出力部から上記姿勢調整信号を受けた上記制御部は、上記第1圧電素子に印加される上記第1駆動電圧と上記第2圧電素子に印加される上記第2駆動電圧とが互いに逆位相となるように、上記第1駆動部および上記第2駆動部をそれぞれ制御する。 Preferably, when the first target voltage value is V1a, the second target voltage value is V2a, the maximum voltage value is Vmax, and the minimum voltage value is Vmin,
(Formula 1) V2a = (Vmax + Vmin) −V1a
Is configured to satisfy
The controller is configured so that the first driving voltage applied to the first piezoelectric element is set to the first target voltage value after being temporarily set from the current voltage value to the maximum voltage value. The first control unit is controlled, and the control unit further sets the second target after the second drive voltage applied to the second piezoelectric element is temporarily set from the current voltage value to the minimum voltage value. The second driving unit is controlled so as to be set to a voltage value, the first driving voltage of the first target voltage value is applied to the first piezoelectric element, and the second driving element is applied to the second piezoelectric element. When the posture adjustment device adjusts the optical element to a desired posture in a state after the second drive voltage of the target voltage value is applied, the posture adjustment signal is received from the posture adjustment signal output unit. The control unit is applied to the first piezoelectric element. 1 such that the drive voltage and the second driving voltage applied to the second piezoelectric element and are opposite phases to each other, and controls the first driving section and the second drive unit, respectively.
(式1) V2a=(Vmax+Vmin)-V1a
が満足するように構成され、
上記制御部は、上記第1圧電素子に印加される上記第1駆動電圧が、現在の電圧値から上記最大電圧値に一旦設定された後に上記第1目標電圧値に設定されるように、上記第1駆動部を制御し、さらに、上記制御部は、上記第2圧電素子に印加される上記第2駆動電圧が、現在の電圧値から上記最小電圧値に一旦設定された後に上記第2目標電圧値に設定されるように、上記第2駆動部を制御し、上記第1圧電素子に上記第1目標電圧値の上記第1駆動電圧が印加され、且つ上記第2圧電素子に上記第2目標電圧値の上記第2駆動電圧が印加された後の状態において、上記姿勢調整装置が上記光学素子を所望の姿勢に調整する際には、上記姿勢調整信号出力部から上記姿勢調整信号を受けた上記制御部は、上記第1圧電素子に印加される上記第1駆動電圧と上記第2圧電素子に印加される上記第2駆動電圧とが互いに逆位相となるように、上記第1駆動部および上記第2駆動部をそれぞれ制御する。 Preferably, when the first target voltage value is V1a, the second target voltage value is V2a, the maximum voltage value is Vmax, and the minimum voltage value is Vmin,
(Formula 1) V2a = (Vmax + Vmin) −V1a
Is configured to satisfy
The controller is configured so that the first driving voltage applied to the first piezoelectric element is set to the first target voltage value after being temporarily set from the current voltage value to the maximum voltage value. The first control unit is controlled, and the control unit further sets the second target after the second drive voltage applied to the second piezoelectric element is temporarily set from the current voltage value to the minimum voltage value. The second driving unit is controlled so as to be set to a voltage value, the first driving voltage of the first target voltage value is applied to the first piezoelectric element, and the second driving element is applied to the second piezoelectric element. When the posture adjustment device adjusts the optical element to a desired posture in a state after the second drive voltage of the target voltage value is applied, the posture adjustment signal is received from the posture adjustment signal output unit. The control unit is applied to the first piezoelectric element. 1 such that the drive voltage and the second driving voltage applied to the second piezoelectric element and are opposite phases to each other, and controls the first driving section and the second drive unit, respectively.
好ましくは、上記第1目標電圧値、上記第2目標電圧値、上記最大電圧値、および、上記最小電圧値は、
(式2) V1a=V2a=(Vmax+Vmin)/2
を満足するように構成される。 Preferably, the first target voltage value, the second target voltage value, the maximum voltage value, and the minimum voltage value are:
(Formula 2) V1a = V2a = (Vmax + Vmin) / 2
It is configured to satisfy
(式2) V1a=V2a=(Vmax+Vmin)/2
を満足するように構成される。 Preferably, the first target voltage value, the second target voltage value, the maximum voltage value, and the minimum voltage value are:
(Formula 2) V1a = V2a = (Vmax + Vmin) / 2
It is configured to satisfy
好ましくは、互いに逆位相となるように上記第1圧電素子に印加される上記第1駆動電圧および上記第2圧電素子に印加される上記第2駆動電圧の各々は、上記第1目標電圧値および上記第2目標電圧値を中心として対称な電圧値である。
Preferably, each of the first drive voltage applied to the first piezoelectric element and the second drive voltage applied to the second piezoelectric element so as to be in opposite phases is the first target voltage value and The voltage value is symmetric about the second target voltage value.
本発明に基づくマイケルソン干渉計は、本発明に基づく上記の姿勢調整装置と、移動鏡と、上記光学素子としての固定鏡と、光源と、上記光源が出射した光を上記固定鏡に向かう光と上記移動鏡に向かう光とに分割するとともに、上記固定鏡および上記移動鏡の各々に反射した光を合成し干渉光として出射するビームスプリッタと、上記干渉光を検出する検出器と、を備える。
A Michelson interferometer according to the present invention includes the attitude adjustment device according to the present invention, a movable mirror, a fixed mirror as the optical element, a light source, and light that is emitted from the light source toward the fixed mirror. And a beam splitter that synthesizes the light reflected by each of the fixed mirror and the movable mirror and emits it as interference light, and a detector that detects the interference light. .
本発明に基づくフーリエ変換分光分析装置は、本発明に基づく上記のマイケルソン干渉計と、上記検出器が検出した上記干渉光のスペクトルを算出する演算部と、上記演算部によって得られた上記スペクトルを出力する出力部と、を備える。
A Fourier transform spectroscopic analyzer based on the present invention includes the Michelson interferometer based on the present invention, a calculation unit that calculates the spectrum of the interference light detected by the detector, and the spectrum obtained by the calculation unit. And an output unit for outputting.
本発明の他の局面に基づく姿勢調整装置は、光学素子を所望の姿勢に調整する姿勢調整装置であって、第1圧電素子および上記第1圧電素子と対向するように配置された第2圧電素子を含み、上記光学素子を揺動可能に支持するとともに、上記第1圧電素子および上記第2圧電素子の伸縮によって上記光学素子の姿勢を変化させる支持部と、上記第1圧電素子に接続され、上記第1圧電素子を伸縮させる第1駆動電圧を出力する第1駆動部と、上記第2圧電素子に接続され、上記第2圧電素子を伸縮させる第2駆動電圧を出力する第2駆動部と、上記光学素子を所望の姿勢に調整するための姿勢調整信号を出力する姿勢調整信号出力部と、上記姿勢調整信号出力部、上記第1駆動部および上記第2駆動部に接続され、上記姿勢調整信号出力部から受けた上記姿勢調整信号に応じて、上記第1駆動部から出力される上記第1駆動電圧の電圧値および上記第2駆動部から出力される上記第2駆動電圧の電圧値を制御する制御部と、を備え、上記第1圧電素子および上記第2圧電素子は、上記第1圧電素子および上記第2圧電素子にそれぞれ印加される上記第1駆動電圧および上記第2駆動電圧の最大電圧値と最小電圧値との間において形成されるヒステリシス特性がほぼ同一となるように構成され、上記姿勢調整装置が上記光学素子を所望の姿勢に調整する際には、上記制御部は、上記姿勢調整信号に応じて上記第1圧電素子に印加されるべき上記第1駆動電圧の目標電圧値と、上記姿勢調整信号に応じて上記第2圧電素子に印加されるべき上記第2駆動電圧の目標電圧値とを設定し、さらに、上記制御部は、上記第1駆動電圧および上記第2駆動電圧の大小関係に応じて、上記第1圧電素子および上記第2圧電素子のうちの一方に印加される駆動電圧が現在の電圧値から上記最大電圧値に一旦設定された後に上記第1圧電素子および上記第2圧電素子のうちの上記一方の上記目標電圧値に設定され、且つ上記第1圧電素子および上記第2圧電素子のうちの他方に印加される駆動電圧が現在の電圧値から上記最小電圧値に一旦設定された後に上記第1圧電素子および上記第2圧電素子のうちの上記他方の上記目標電圧値に設定されるように、上記第1駆動部および上記第2駆動部を制御する。
A posture adjusting device according to another aspect of the present invention is a posture adjusting device that adjusts an optical element to a desired posture, and is arranged to face the first piezoelectric element and the first piezoelectric element. A support portion that includes an element and supports the optical element in a swingable manner, and that changes a posture of the optical element by expansion and contraction of the first and second piezoelectric elements, and is connected to the first piezoelectric element. A first driving unit that outputs a first driving voltage for expanding and contracting the first piezoelectric element, and a second driving unit that is connected to the second piezoelectric element and outputs a second driving voltage for expanding and contracting the second piezoelectric element. And an attitude adjustment signal output unit that outputs an attitude adjustment signal for adjusting the optical element to a desired attitude, the attitude adjustment signal output unit, the first drive unit, and the second drive unit, Posture adjustment signal output Control for controlling the voltage value of the first drive voltage output from the first drive unit and the voltage value of the second drive voltage output from the second drive unit in accordance with the attitude adjustment signal received from And the first piezoelectric element and the second piezoelectric element are applied to the first piezoelectric element and the second piezoelectric element, respectively, and the maximum voltage value of the first driving voltage and the second driving voltage. When the attitude adjustment device adjusts the optical element to a desired attitude, the control unit controls the attitude adjustment. A target voltage value of the first drive voltage to be applied to the first piezoelectric element in response to a signal, and a target voltage of the second drive voltage to be applied to the second piezoelectric element in response to the attitude adjustment signal Set the value and Further, the control unit determines that the drive voltage applied to one of the first piezoelectric element and the second piezoelectric element is a current voltage according to a magnitude relationship between the first drive voltage and the second drive voltage. Is set to the target voltage value of one of the first piezoelectric element and the second piezoelectric element, and is set to the maximum voltage value from a value, and the first piezoelectric element and the second piezoelectric element The drive voltage applied to the other one is set from the current voltage value to the minimum voltage value, and then set to the other target voltage value of the first piezoelectric element and the second piezoelectric element. As described above, the first driving unit and the second driving unit are controlled.
本発明によれば、光学素子を所望の姿勢に正確かつ簡便に調整することが可能な姿勢調整装置、その姿勢調整装置を備えたマイケルソン干渉計、およびそのマイケルソン干渉計を備えたフーリエ変換分光分析装置を得ることができる。
According to the present invention, an attitude adjustment apparatus capable of accurately and simply adjusting an optical element to a desired attitude, a Michelson interferometer including the attitude adjustment apparatus, and a Fourier transform including the Michelson interferometer A spectroscopic analyzer can be obtained.
本発明に基づいた各実施の形態について、以下、図面を参照しながら説明する。各実施の形態の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。各実施の形態の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。
Embodiments according to the present invention will be described below with reference to the drawings. In the description of each embodiment, when referring to the number, amount, or the like, the scope of the present invention is not necessarily limited to the number, amount, or the like unless otherwise specified. In the description of each embodiment, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
[実施の形態1]
(姿勢調整装置1000)
図1を参照して、本実施の形態における姿勢調整装置1000の構成について説明する。図1は、姿勢調整装置1000の全体構成を模式的に示す断面図である。姿勢調整装置1000は、光学素子200を所望の姿勢に調整する。 [Embodiment 1]
(Attitude adjustment device 1000)
With reference to FIG. 1, the structure of the attitude |position adjustment apparatus 1000 in this Embodiment is demonstrated. FIG. 1 is a cross-sectional view schematically showing the overall configuration of the posture adjustment apparatus 1000. The attitude adjustment device 1000 adjusts the optical element 200 to a desired attitude.
(姿勢調整装置1000)
図1を参照して、本実施の形態における姿勢調整装置1000の構成について説明する。図1は、姿勢調整装置1000の全体構成を模式的に示す断面図である。姿勢調整装置1000は、光学素子200を所望の姿勢に調整する。 [Embodiment 1]
(Attitude adjustment device 1000)
With reference to FIG. 1, the structure of the attitude |
姿勢調整装置1000は、光学素子200を揺動可能に支持する支持部150を備える。支持部150は、圧電素子110(第1圧電素子)、弾性支持部材154、およびベース部材152を含む。圧電素子110および弾性支持部材154の各々の長手方向における一方の端部が、ベース部材152に固定される。圧電素子110および弾性支持部材154の各々の長手方向における他方の端部によって、光学素子200が支持される。
The posture adjusting device 1000 includes a support portion 150 that supports the optical element 200 so as to be swingable. The support unit 150 includes a piezoelectric element 110 (first piezoelectric element), an elastic support member 154, and a base member 152. One end in the longitudinal direction of each of the piezoelectric element 110 and the elastic support member 154 is fixed to the base member 152. The optical element 200 is supported by the other end of each of the piezoelectric element 110 and the elastic support member 154 in the longitudinal direction.
圧電素子110には、駆動部111(第1駆動部)が接続される。駆動部111は、圧電素子110を伸縮させる所定の駆動電圧V111(第1駆動電圧)を出力する。駆動電圧V111が印加された圧電素子110は、矢印AR110方向に伸縮する。当該伸縮によって、光学素子200は弾性支持部材154側を支点として、矢印AR200方向に揺動される。光学素子200は、圧電素子110の伸縮(変位量)によって所定の姿勢に変化される。
A drive unit 111 (first drive unit) is connected to the piezoelectric element 110. The drive unit 111 outputs a predetermined drive voltage V111 (first drive voltage) that causes the piezoelectric element 110 to expand and contract. The piezoelectric element 110 to which the drive voltage V111 is applied expands and contracts in the direction of the arrow AR110. By the expansion and contraction, the optical element 200 is swung in the direction of the arrow AR200 with the elastic support member 154 side as a fulcrum. The optical element 200 is changed to a predetermined posture by the expansion and contraction (displacement amount) of the piezoelectric element 110.
駆動電圧V111を出力する駆動部111には、いわゆるサーボ制御を行なう制御部160が接続される。制御部160には、姿勢調整信号出力部170が接続される。姿勢調整信号出力部170は、たとえば光学素子200の姿勢を検出する外部の機器(図示せず)に接続されており、その機器から、光学素子200の姿勢に関する情報を取得する。姿勢調整信号出力部170は、取得した情報に応じて、光学素子200を所望の姿勢に調整するための姿勢調整信号S170を出力する。
A control unit 160 that performs so-called servo control is connected to the drive unit 111 that outputs the drive voltage V111. An attitude adjustment signal output unit 170 is connected to the control unit 160. The posture adjustment signal output unit 170 is connected to, for example, an external device (not shown) that detects the posture of the optical element 200, and acquires information related to the posture of the optical element 200 from the device. The posture adjustment signal output unit 170 outputs a posture adjustment signal S170 for adjusting the optical element 200 to a desired posture according to the acquired information.
制御部160は、姿勢調整信号出力部170から受けた姿勢調整信号S170に応じて、駆動部111から出力される駆動電圧V111の電圧値を制御する。駆動電圧V111の電圧値が圧電素子110の変位量に変換されることによって、光学素子200における所望の姿勢を得ることが可能となる。光学素子200がミラーとして用いられる場合などには、光学素子200の表面200Sの角度は、所望の値に設定されることが可能となる。
The control unit 160 controls the voltage value of the drive voltage V111 output from the drive unit 111 in accordance with the posture adjustment signal S170 received from the posture adjustment signal output unit 170. By converting the voltage value of the drive voltage V111 into the displacement amount of the piezoelectric element 110, a desired posture in the optical element 200 can be obtained. When the optical element 200 is used as a mirror, the angle of the surface 200S of the optical element 200 can be set to a desired value.
図2は、圧電素子110に印加される駆動電圧V111の大きさと圧電素子110の変位量X110との関係を示す図である。図2に示すように、圧電素子110は、所定のヒステリシス特性を有している。
FIG. 2 is a diagram showing the relationship between the magnitude of the drive voltage V111 applied to the piezoelectric element 110 and the displacement amount X110 of the piezoelectric element 110. As shown in FIG. As shown in FIG. 2, the piezoelectric element 110 has a predetermined hysteresis characteristic.
圧電素子110に印加される駆動電圧V111のうち、最も大きな電圧値を最大電圧値Vmaxとし、最も小さな電圧値を最小電圧値Vminとする。最大電圧値Vmaxおよび最小電圧値Vminは、いずれも設計などによって定められる。圧電素子110に最大電圧値Vmaxが印加された場合、圧電素子110においては変位量Xmaxが得られる。圧電素子110に最小電圧値Vminが印加された場合、圧電素子110においては変位量Xminが得られる。圧電素子110は、最大電圧値Vmaxと最小電圧値Vminとの間においては、図2に示すようなヒステリシス特性H110を有している。
Among the drive voltages V111 applied to the piezoelectric element 110, the largest voltage value is the maximum voltage value Vmax, and the smallest voltage value is the minimum voltage value Vmin. The maximum voltage value Vmax and the minimum voltage value Vmin are both determined by design and the like. When the maximum voltage value Vmax is applied to the piezoelectric element 110, the displacement amount Xmax is obtained in the piezoelectric element 110. When the minimum voltage value Vmin is applied to the piezoelectric element 110, the displacement amount Xmin is obtained in the piezoelectric element 110. The piezoelectric element 110 has a hysteresis characteristic H110 as shown in FIG. 2 between the maximum voltage value Vmax and the minimum voltage value Vmin.
たとえば、圧電素子110に印加されている電圧が、最小電圧値Vminから最大電圧値Vmaxに昇圧されたとする。この場合、圧電素子110の変位量X110は、変位量Xmin(図2中の点Pmin)から変位量Xmax(図2中の点Pmax)まで、線L10に示されるヒステリシス曲線を描くように変化する。
For example, it is assumed that the voltage applied to the piezoelectric element 110 is boosted from the minimum voltage value Vmin to the maximum voltage value Vmax. In this case, the displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmin (point Pmin in FIG. 2) to the displacement amount Xmax (point Pmax in FIG. 2) so as to draw a hysteresis curve indicated by the line L10. .
圧電素子110に印加されている電圧が最大電圧値Vmaxから最小電圧値Vminに降圧されたとする。この場合、圧電素子110の変位量X110は、変位量Xmax(図2中の点Pmax)から変位量Xmin(図2中の点Pmin)まで、線L11に示されるヒステリシス曲線を描くように変化する。
Suppose that the voltage applied to the piezoelectric element 110 is stepped down from the maximum voltage value Vmax to the minimum voltage value Vmin. In this case, the displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmax (point Pmax in FIG. 2) to the displacement amount Xmin (point Pmin in FIG. 2) so as to draw a hysteresis curve indicated by the line L11. .
図3を参照して、圧電素子110に対して、ある時点において印加されている駆動電圧V111が、電圧値V10であるとする。上述のとおり、圧電素子110はヒステリシス特性H110を有しているため、電圧値V10が圧電素子110に対して昇圧方向に印加された場合には(線L10)、圧電素子110においては変位量X10が得られている(図3中の点P10)。一方、電圧値V10が圧電素子110に対して降圧方向に印加された場合には(線L11)、圧電素子110においては変位量X11が得られている(図3中の点P11)。
Referring to FIG. 3, it is assumed that the drive voltage V111 applied to the piezoelectric element 110 at a certain time is a voltage value V10. As described above, since the piezoelectric element 110 has the hysteresis characteristic H110, when the voltage value V10 is applied to the piezoelectric element 110 in the boosting direction (line L10), the piezoelectric element 110 has a displacement amount X10. Is obtained (point P10 in FIG. 3). On the other hand, when the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction (line L11), the displacement amount X11 is obtained in the piezoelectric element 110 (point P11 in FIG. 3).
姿勢調整信号出力部170(図1参照)から制御部160に姿勢調整信号S170が入力されることによって、姿勢調整装置1000(図1参照)が動作し始めたとする。この場合において、電圧値V10が圧電素子110に対して昇圧方向に印加されたものであるか、または、電圧値V10が圧電素子110に対して降圧方向に印加されたものであるかが、制御部160等に記憶されていないと仮定する。
Suppose that the posture adjustment device 1000 (see FIG. 1) starts to operate when the posture adjustment signal S170 is input from the posture adjustment signal output unit 170 (see FIG. 1) to the control unit 160. In this case, whether the voltage value V10 is applied to the piezoelectric element 110 in the step-up direction or whether the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction is controlled. It is assumed that it is not stored in the unit 160 or the like.
制御部160(図1参照)は、姿勢調整信号出力部170から受けた姿勢調整信号S170に応じて、たとえば電圧値V1a(第1目標電圧値)を出力するように、駆動部111に指示する。
Control unit 160 (see FIG. 1) instructs drive unit 111 to output, for example, voltage value V1a (first target voltage value) in accordance with posture adjustment signal S170 received from posture adjustment signal output unit 170. .
図4を参照して、電圧値V10が圧電素子110に対して昇圧方向に印加されたものである場合、圧電素子110の変位量X110は、変位量X10(図3中の点P10)から変位量X12a(図3中の点P12a)まで、線L12aに示されるヒステリシス曲線を描くように変化する。
Referring to FIG. 4, when voltage value V10 is applied to piezoelectric element 110 in the boosting direction, displacement amount X110 of piezoelectric element 110 is displaced from displacement amount X10 (point P10 in FIG. 3). It changes so that the hysteresis curve shown by line L12a may be drawn to quantity X12a (point P12a in FIG. 3).
一方、電圧値V10が圧電素子110に対して降圧方向に印加されたものである場合、圧電素子110の変位量X110は、変位量X11(図3中の点P11)から変位量X12b(図3中の点P12b)まで、線L12bに示されるヒステリシス曲線を描くように変化する。
On the other hand, when the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction, the displacement amount X110 of the piezoelectric element 110 is changed from the displacement amount X11 (point P11 in FIG. 3) to the displacement amount X12b (FIG. 3). It changes so that the hysteresis curve shown by the line L12b is drawn to the middle point P12b).
変位量X12aと変位量X12bとは異なる値である。同一の電圧値V1aである駆動電圧V111が圧電素子110に印加された場合であっても、圧電素子110のヒステリシス(履歴)に応じて、駆動電圧の印加の後に得られる圧電素子110の変位量X110は、異なることとなる。
The displacement amount X12a and the displacement amount X12b are different values. Even when the drive voltage V111 having the same voltage value V1a is applied to the piezoelectric element 110, the displacement amount of the piezoelectric element 110 obtained after the drive voltage is applied according to the hysteresis (history) of the piezoelectric element 110. X110 will be different.
したがって、電圧値V10が圧電素子110に対して昇圧方向に印加されたものであるか、または、電圧値V10が圧電素子110に対して降圧方向に印加されたものであるかが、制御部160等に記憶されていない場合などには、圧電素子110における所望の変位量X110を得ることが困難となる。
Therefore, the controller 160 determines whether the voltage value V10 is applied to the piezoelectric element 110 in the step-up direction or whether the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction. For example, it is difficult to obtain a desired displacement amount X110 in the piezoelectric element 110.
(姿勢調整装置1000による姿勢調整方法)
これに対して、本実施の形態における姿勢調整装置1000が光学素子200を所望の姿勢に調整する際には、姿勢調整装置1000は次のように動作する。 (Attitude adjustment method by attitude adjustment device 1000)
On the other hand, when theposture adjustment apparatus 1000 according to the present embodiment adjusts the optical element 200 to a desired posture, the posture adjustment apparatus 1000 operates as follows.
これに対して、本実施の形態における姿勢調整装置1000が光学素子200を所望の姿勢に調整する際には、姿勢調整装置1000は次のように動作する。 (Attitude adjustment method by attitude adjustment device 1000)
On the other hand, when the
図5(および図1)を参照して、姿勢調整信号出力部170から姿勢調整信号S170を受けた制御部160は、姿勢調整信号S170に応じて圧電素子110に印加されるべき駆動電圧V111の電圧値V1a(第1目標電圧値)を設定する。
Referring to FIG. 5 (and FIG. 1), control unit 160 that has received posture adjustment signal S170 from posture adjustment signal output unit 170 has drive voltage V111 to be applied to piezoelectric element 110 in accordance with posture adjustment signal S170. A voltage value V1a (first target voltage value) is set.
さらに、姿勢調整信号出力部170から姿勢調整信号S170を受けた制御部160は、圧電素子110に印加される駆動電圧V111が、現在の電圧値V10から最大電圧値Vmaxに一旦設定された後に電圧値V1a(第1目標電圧値)に設定されるように、駆動部111を制御する。以下、この作用について説明する。
Further, the control unit 160 that receives the posture adjustment signal S170 from the posture adjustment signal output unit 170 sets the voltage after the drive voltage V111 applied to the piezoelectric element 110 is once set from the current voltage value V10 to the maximum voltage value Vmax. The drive unit 111 is controlled to be set to the value V1a (first target voltage value). Hereinafter, this operation will be described.
図5に示すように、圧電素子110に印加される駆動電圧V111が、現在の電圧値V10から最大電圧値Vmaxに一旦設定されたとする。
As shown in FIG. 5, it is assumed that the drive voltage V111 applied to the piezoelectric element 110 is once set from the current voltage value V10 to the maximum voltage value Vmax.
電圧値V10が圧電素子110に対して昇圧方向に印加されたものである場合、圧電素子110の変位量X110は、変位量X10(図5中の点P10)から変位量Xmax(図5中の点Pmax)まで、線L13aに示されるヒステリシス曲線を描くように変化する。
When the voltage value V10 is applied to the piezoelectric element 110 in the boosting direction, the displacement amount X110 of the piezoelectric element 110 is changed from the displacement amount X10 (point P10 in FIG. 5) to the displacement amount Xmax (in FIG. 5). It changes so as to draw a hysteresis curve shown by the line L13a until the point Pmax).
その後、圧電素子110に印加される駆動電圧V111が、最大電圧値Vmaxから電圧値V1a(第1目標電圧値)に設定されたとする。圧電素子110の変位量X110は、変位量Xmax(図5中の点Pmax)から変位量X13(図5中の点P13)まで、線L13cに示されるヒステリシス曲線を描くように変化する。
Thereafter, it is assumed that the drive voltage V111 applied to the piezoelectric element 110 is set from the maximum voltage value Vmax to the voltage value V1a (first target voltage value). The displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmax (point Pmax in FIG. 5) to the displacement amount X13 (point P13 in FIG. 5) so as to draw a hysteresis curve indicated by a line L13c.
一方、電圧値V10が圧電素子110に対して降圧方向に印加されたものである場合、圧電素子110の変位量X110は、変位量X11(図5中の点P11)から変位量Xmax(図5中の点Pmax)まで、線L13bに示されるヒステリシス曲線を描くように変化する。
On the other hand, when the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction, the displacement amount X110 of the piezoelectric element 110 is changed from the displacement amount X11 (point P11 in FIG. 5) to the displacement amount Xmax (FIG. 5). It changes so as to draw a hysteresis curve shown by the line L13b until the middle point Pmax).
その後、圧電素子110に印加される駆動電圧V111が、最大電圧値Vmaxから電圧値V1a(第1目標電圧値)に設定されたとする。圧電素子110の変位量X110は、変位量Xmax(図5中の点Pmax)から変位量X13(図5中の点P13)まで、線L13cに示されるヒステリシス曲線を描くように変化する。
Thereafter, it is assumed that the drive voltage V111 applied to the piezoelectric element 110 is set from the maximum voltage value Vmax to the voltage value V1a (first target voltage value). The displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmax (point Pmax in FIG. 5) to the displacement amount X13 (point P13 in FIG. 5) so as to draw a hysteresis curve indicated by a line L13c.
上記のように、姿勢調整装置1000においては、圧電素子110に印加される駆動電圧V111が、現在の電圧値V10から最大電圧値Vmaxに一旦設定された後に電圧値V1a(第1目標電圧値)に設定される。電圧値V10が圧電素子110に対して昇圧方向に印加されたものであるか、または、電圧値V10が圧電素子110に対して降圧方向に印加されたものであるかに関わらず、最終的に得られる圧電素子110の変位量X110は、変位量X13(図5中の点P13)となる。
As described above, in the attitude adjustment device 1000, the drive voltage V111 applied to the piezoelectric element 110 is once set from the current voltage value V10 to the maximum voltage value Vmax, and then the voltage value V1a (first target voltage value). Set to Regardless of whether the voltage value V10 is applied to the piezoelectric element 110 in the step-up direction or whether the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction. The displacement amount X110 of the obtained piezoelectric element 110 is the displacement amount X13 (point P13 in FIG. 5).
電圧値V1aにおける圧電素子110の変位量X110が一義的に定められることが可能となるため、姿勢調整装置1000(図1参照)においては、光学素子200を所望の姿勢に正確に調整することが可能となる。また、フィードバック制御などを行なう必要が無いため、本実施の形態における姿勢調整装置1000によれば、光学素子200を所望の姿勢に正確且つ簡便に調整することが可能となる。
Since the displacement amount X110 of the piezoelectric element 110 at the voltage value V1a can be uniquely determined, the posture adjustment apparatus 1000 (see FIG. 1) can accurately adjust the optical element 200 to a desired posture. It becomes possible. In addition, since there is no need to perform feedback control or the like, according to the posture adjustment apparatus 1000 in the present embodiment, the optical element 200 can be accurately and easily adjusted to a desired posture.
[実施の形態1の変形例]
図6(および図1)を参照して、姿勢調整装置1000が光学素子200を所望の姿勢に調整する際には、姿勢調整信号出力部170から姿勢調整信号S170を受けた制御部160は、圧電素子110に印加される駆動電圧V111が、現在の電圧値V10から最小電圧値Vminに一旦設定された後に電圧値V1a(第1目標電圧値)に設定されるように、駆動部111を制御してもよい。 [Modification of Embodiment 1]
Referring to FIG. 6 (and FIG. 1), whenposture adjustment apparatus 1000 adjusts optical element 200 to a desired posture, control unit 160 that receives posture adjustment signal S170 from posture adjustment signal output unit 170 The drive unit 111 is controlled such that the drive voltage V111 applied to the piezoelectric element 110 is once set from the current voltage value V10 to the minimum voltage value Vmin and then set to the voltage value V1a (first target voltage value). May be.
図6(および図1)を参照して、姿勢調整装置1000が光学素子200を所望の姿勢に調整する際には、姿勢調整信号出力部170から姿勢調整信号S170を受けた制御部160は、圧電素子110に印加される駆動電圧V111が、現在の電圧値V10から最小電圧値Vminに一旦設定された後に電圧値V1a(第1目標電圧値)に設定されるように、駆動部111を制御してもよい。 [Modification of Embodiment 1]
Referring to FIG. 6 (and FIG. 1), when
図6に示すように、圧電素子110に印加される駆動電圧V111が、現在の電圧値V10から最小電圧値Vminに一旦設定されたとする。
As shown in FIG. 6, it is assumed that the drive voltage V111 applied to the piezoelectric element 110 is once set from the current voltage value V10 to the minimum voltage value Vmin.
電圧値V10が圧電素子110に対して昇圧方向に印加されたものである場合、圧電素子110の変位量X110は、変位量X10(図6中の点P10)から変位量Xmin(図6中の点Pmin)まで、線L14aに示されるヒステリシス曲線を描くように変化する。
When the voltage value V10 is applied to the piezoelectric element 110 in the boosting direction, the displacement amount X110 of the piezoelectric element 110 is changed from the displacement amount X10 (point P10 in FIG. 6) to the displacement amount Xmin (in FIG. 6). It changes so that the hysteresis curve shown by the line L14a may be drawn to the point Pmin).
その後、圧電素子110に印加される駆動電圧V111が、最小電圧値Vminから電圧値V1a(第1目標電圧値)に設定されたとする。圧電素子110の変位量X110は、変位量Xmin(図6中の点Pmin)から変位量X14(図6中の点P14)まで、線L14cに示されるヒステリシス曲線を描くように変化する。
Thereafter, it is assumed that the drive voltage V111 applied to the piezoelectric element 110 is set from the minimum voltage value Vmin to the voltage value V1a (first target voltage value). The displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmin (point Pmin in FIG. 6) to the displacement amount X14 (point P14 in FIG. 6) so as to draw a hysteresis curve indicated by a line L14c.
一方、電圧値V10が圧電素子110に対して降圧方向に印加されたものである場合、圧電素子110の変位量X110は、変位量X11(図6中の点P11)から変位量Xmin(図6中の点Pmin)まで、線L14bに示されるヒステリシス曲線を描くように変化する。
On the other hand, when the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction, the displacement amount X110 of the piezoelectric element 110 is changed from the displacement amount X11 (point P11 in FIG. 6) to the displacement amount Xmin (FIG. 6). It changes so that the hysteresis curve shown by line L14b may be drawn to the middle point Pmin).
その後、圧電素子110に印加される駆動電圧V111が、最小電圧値Vminから電圧値V1a(第1目標電圧値)に設定されたとする。圧電素子110の変位量X110は、変位量Xmin(図6中の点Pmin)から変位量X14(図6中の点P14)まで、線L14cに示されるヒステリシス曲線を描くように変化する。
Thereafter, it is assumed that the drive voltage V111 applied to the piezoelectric element 110 is set from the minimum voltage value Vmin to the voltage value V1a (first target voltage value). The displacement amount X110 of the piezoelectric element 110 changes from the displacement amount Xmin (point Pmin in FIG. 6) to the displacement amount X14 (point P14 in FIG. 6) so as to draw a hysteresis curve indicated by a line L14c.
圧電素子110に印加される駆動電圧V111が、現在の電圧値V10から最小電圧値Vminに一旦設定された後に電圧値V1a(第1目標電圧値)に設定される。電圧値V10が圧電素子110に対して昇圧方向に印加されたものであるか、または、電圧値V10が圧電素子110に対して降圧方向に印加されたものであるかに関わらず、最終的に得られる圧電素子110の変位量X110は、変位量X14(図6中の点P14)となる。
The drive voltage V111 applied to the piezoelectric element 110 is once set from the current voltage value V10 to the minimum voltage value Vmin, and then set to the voltage value V1a (first target voltage value). Regardless of whether the voltage value V10 is applied to the piezoelectric element 110 in the step-up direction or whether the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction. The displacement amount X110 of the obtained piezoelectric element 110 is the displacement amount X14 (point P14 in FIG. 6).
電圧値V1aにおける圧電素子110の変位量X110が一義的に定められることが可能となるため、本変形例の姿勢調整装置1000においても、光学素子200を所望の姿勢に正確に調整することが可能となる。また、フィードバック制御などを行なう必要が無いため、光学素子200を所望の姿勢に正確且つ簡便に調整することが可能となる。
Since the displacement amount X110 of the piezoelectric element 110 at the voltage value V1a can be uniquely determined, the posture adjustment apparatus 1000 of the present modification can also accurately adjust the optical element 200 to a desired posture. It becomes. Further, since it is not necessary to perform feedback control or the like, the optical element 200 can be accurately and simply adjusted to a desired posture.
[実施の形態2]
図7および図8を参照して、本実施の形態における姿勢調整装置2000の構成について説明する。図7は、姿勢調整装置2000の全体構成を模式的に示す斜視図である。図8は、姿勢調整装置2000の全体構成を模式的に示す断面図である。姿勢調整装置2000は、上述の姿勢調整装置1000(図1参照)と同様に、光学素子200を所望の調整に調整する。以下、具体的に説明する。 [Embodiment 2]
With reference to FIGS. 7 and 8, the configuration ofposture adjustment apparatus 2000 in the present embodiment will be described. FIG. 7 is a perspective view schematically showing the overall configuration of the attitude adjustment device 2000. As shown in FIG. FIG. 8 is a cross-sectional view schematically showing the overall configuration of the attitude adjustment device 2000. The attitude adjustment device 2000 adjusts the optical element 200 to a desired adjustment in the same manner as the attitude adjustment device 1000 (see FIG. 1). This will be specifically described below.
図7および図8を参照して、本実施の形態における姿勢調整装置2000の構成について説明する。図7は、姿勢調整装置2000の全体構成を模式的に示す斜視図である。図8は、姿勢調整装置2000の全体構成を模式的に示す断面図である。姿勢調整装置2000は、上述の姿勢調整装置1000(図1参照)と同様に、光学素子200を所望の調整に調整する。以下、具体的に説明する。 [Embodiment 2]
With reference to FIGS. 7 and 8, the configuration of
姿勢調整装置2000は、光学素子200を揺動可能に支持する支持部150を備える。本実施の形態における支持部150は、圧電素子110(第1圧電素子)、圧電素子120(第2圧電素子)、およびベース部材152を含む。圧電素子110および圧電素子120の各々の長手方向における一方の端部が、ベース部材152に固定される。圧電素子110および圧電素子120の各々の長手方向における他方の端部によって、光学素子200が支持される。
The posture adjusting device 2000 includes a support portion 150 that supports the optical element 200 so as to be swingable. Support portion 150 in the present embodiment includes piezoelectric element 110 (first piezoelectric element), piezoelectric element 120 (second piezoelectric element), and base member 152. One end of each of the piezoelectric elements 110 and 120 in the longitudinal direction is fixed to the base member 152. The optical element 200 is supported by the other end of each of the piezoelectric elements 110 and 120 in the longitudinal direction.
圧電素子110は、上述の実施の形態1における圧電素子110(図1参照)と同様に構成される。圧電素子120は、圧電素子110と対向するように並んで配置される。圧電素子120は、圧電素子110のヒステリシス特性H110(図2参照)と略同一のヒステリシス特性H120(図9参照)を有している。
The piezoelectric element 110 is configured similarly to the piezoelectric element 110 (see FIG. 1) in the first embodiment described above. The piezoelectric element 120 is arranged side by side so as to face the piezoelectric element 110. The piezoelectric element 120 has substantially the same hysteresis characteristic H120 (see FIG. 9) as the hysteresis characteristic H110 (see FIG. 2) of the piezoelectric element 110.
圧電素子120には、駆動部121(第2駆動部)が接続される。駆動部121は、圧電素子120を伸縮させる所定の駆動電圧V121(第2駆動電圧)を出力する。駆動電圧V121が印加された圧電素子120は、矢印AR120方向(図8参照)に伸縮する。
A drive unit 121 (second drive unit) is connected to the piezoelectric element 120. The drive unit 121 outputs a predetermined drive voltage V121 (second drive voltage) that causes the piezoelectric element 120 to expand and contract. The piezoelectric element 120 to which the drive voltage V121 is applied expands and contracts in the direction of the arrow AR120 (see FIG. 8).
圧電素子110が矢印AR110方向に伸縮したり、圧電素子120が矢印AR120方向に伸縮したりすることによって、光学素子200は、矢印AR200方向に揺動される。光学素子200は、圧電素子110および圧電素子120の伸縮(変位量)によって所定の姿勢に変化される。
When the piezoelectric element 110 expands and contracts in the direction of the arrow AR110 and the piezoelectric element 120 expands and contracts in the direction of the arrow AR120, the optical element 200 is swung in the direction of the arrow AR200. The optical element 200 is changed to a predetermined posture by expansion and contraction (displacement amount) of the piezoelectric element 110 and the piezoelectric element 120.
ここで、駆動電圧V121を出力する駆動部121は、駆動電圧V111を出力する駆動部111と同様に、制御部160が接続される。制御部160は、姿勢調整信号出力部170から受けた姿勢調整信号S170に応じて、駆動部111から出力される駆動電圧V111の電圧値、および、駆動部121から出力される駆動電圧V121の電圧値をそれぞれ制御する。
Here, the drive unit 121 that outputs the drive voltage V121 is connected to the control unit 160 in the same manner as the drive unit 111 that outputs the drive voltage V111. The control unit 160 responds to the posture adjustment signal S170 received from the posture adjustment signal output unit 170, and the voltage value of the drive voltage V111 output from the drive unit 111 and the voltage of the drive voltage V121 output from the drive unit 121. Control each value.
駆動電圧V111の電圧値は、圧電素子110の変位量に変換される。駆動電圧V121の電圧値は、圧電素子120の変位量に変換される。駆動電圧V111,V121の電圧値が圧電素子110,120の変位量に変換されることによって、光学素子200における所望の姿勢を得ることが可能となる。
The voltage value of the drive voltage V111 is converted into a displacement amount of the piezoelectric element 110. The voltage value of the drive voltage V121 is converted into a displacement amount of the piezoelectric element 120. By converting the voltage values of the drive voltages V111 and V121 into the displacement amounts of the piezoelectric elements 110 and 120, a desired posture in the optical element 200 can be obtained.
図9は、圧電素子120に印加される駆動電圧V121の大きさと圧電素子120の変位量X120との関係を示している。上述のとおり、圧電素子120は、圧電素子110のヒステリシス特性H110(図2参照)と略同一のヒステリシス特性H120を有している。
FIG. 9 shows the relationship between the magnitude of the drive voltage V121 applied to the piezoelectric element 120 and the displacement amount X120 of the piezoelectric element 120. As described above, the piezoelectric element 120 has substantially the same hysteresis characteristic H120 as that of the piezoelectric element 110 (see FIG. 2).
圧電素子120も、上述の圧電素子110の場合(図5参照)と同様に動作される。具体的には、図9(および図8)を参照して、姿勢調整信号出力部170から姿勢調整信号S170を受けた制御部160は、姿勢調整信号S170に応じて圧電素子120に印加されるべき駆動電圧V121の電圧値V2a(第2目標電圧値)を設定する。
The piezoelectric element 120 is also operated in the same manner as the piezoelectric element 110 described above (see FIG. 5). Specifically, referring to FIG. 9 (and FIG. 8), control unit 160 that has received posture adjustment signal S170 from posture adjustment signal output unit 170 is applied to piezoelectric element 120 in accordance with posture adjustment signal S170. A voltage value V2a (second target voltage value) of the power drive voltage V121 is set.
さらに、姿勢調整信号出力部170から姿勢調整信号S170を受けた制御部160は、圧電素子120に印加される駆動電圧V121が、現在の電圧値V20から最大電圧値Vmaxに一旦設定された後に電圧値V2a(第2目標電圧値)に設定されるように、駆動部121を制御する。
Further, the control unit 160 that receives the posture adjustment signal S170 from the posture adjustment signal output unit 170 sets the voltage after the drive voltage V121 applied to the piezoelectric element 120 is once set from the current voltage value V20 to the maximum voltage value Vmax. The drive unit 121 is controlled to be set to the value V2a (second target voltage value).
図9に示すように、圧電素子120に印加される駆動電圧V121が、現在の電圧値V20から最大電圧値Vmaxに一旦設定されたとする。
As shown in FIG. 9, it is assumed that the drive voltage V121 applied to the piezoelectric element 120 is once set from the current voltage value V20 to the maximum voltage value Vmax.
電圧値V20が圧電素子120に対して昇圧方向に印加されたものである場合、圧電素子120の変位量X120は、変位量X20(図9中の点P20)から変位量Xmax(図9中の点Pmax)まで、線L23aに示されるヒステリシス曲線を描くように変化する。
When the voltage value V20 is applied to the piezoelectric element 120 in the boosting direction, the displacement amount X120 of the piezoelectric element 120 is changed from the displacement amount X20 (point P20 in FIG. 9) to the displacement amount Xmax (in FIG. 9). It changes so as to draw a hysteresis curve shown by the line L23a until the point Pmax).
その後、圧電素子120に印加される駆動電圧V121が、最大電圧値Vmaxから電圧値V2a(第2目標電圧値)に設定されたとする。圧電素子120の変位量X120は、変位量Xmax(図9中の点Pmax)から変位量X23(図9中の点P23)まで、線L23cに示されるヒステリシス曲線を描くように変化する。
Thereafter, it is assumed that the drive voltage V121 applied to the piezoelectric element 120 is set from the maximum voltage value Vmax to the voltage value V2a (second target voltage value). The displacement amount X120 of the piezoelectric element 120 changes from the displacement amount Xmax (point Pmax in FIG. 9) to the displacement amount X23 (point P23 in FIG. 9) so as to draw a hysteresis curve indicated by a line L23c.
一方、電圧値V20が圧電素子120に対して降圧方向に印加されたものである場合、圧電素子120の変位量X120は、変位量X21(図9中の点P21)から変位量Xmax(図9中の点Pmax)まで、線L23bに示されるヒステリシス曲線を描くように変化する。
On the other hand, when the voltage value V20 is applied to the piezoelectric element 120 in the step-down direction, the displacement amount X120 of the piezoelectric element 120 is changed from the displacement amount X21 (point P21 in FIG. 9) to the displacement amount Xmax (FIG. 9). It changes so as to draw the hysteresis curve shown by the line L23b until the middle point Pmax).
その後、圧電素子120に印加される駆動電圧V121が、最大電圧値Vmaxから電圧値V2a(第2目標電圧値)に設定されたとする。圧電素子120の変位量X120は、変位量Xmax(図9中の点Pmax)から変位量X23(図9中の点P23)まで、線L23cに示されるヒステリシス曲線を描くように変化する。
Thereafter, it is assumed that the drive voltage V121 applied to the piezoelectric element 120 is set from the maximum voltage value Vmax to the voltage value V2a (second target voltage value). The displacement amount X120 of the piezoelectric element 120 changes from the displacement amount Xmax (point Pmax in FIG. 9) to the displacement amount X23 (point P23 in FIG. 9) so as to draw a hysteresis curve indicated by a line L23c.
上記のように、圧電素子120に印加される駆動電圧V121が、現在の電圧値V20から最大電圧値Vmaxに一旦設定された後に電圧値V2a(第2目標電圧値)に設定される。電圧値V20が圧電素子120に対して昇圧方向に印加されたものであるか、または、電圧値V20が圧電素子120に対して降圧方向に印加されたものであるかに関わらず、最終的に得られる圧電素子120の変位量X120は、変位量X23(図9中の点P23)となる。
As described above, the drive voltage V121 applied to the piezoelectric element 120 is once set from the current voltage value V20 to the maximum voltage value Vmax, and then set to the voltage value V2a (second target voltage value). Regardless of whether the voltage value V20 is applied to the piezoelectric element 120 in the step-up direction or whether the voltage value V20 is applied to the piezoelectric element 120 in the step-down direction. The displacement amount X120 of the obtained piezoelectric element 120 is the displacement amount X23 (point P23 in FIG. 9).
上述(図5参照)のとおり、電圧値V10が圧電素子110に対して昇圧方向に印加されたものであるか、または、電圧値V10が圧電素子110に対して降圧方向に印加されたものであるかに関わらず、最終的に得られる圧電素子110の変位量X110は、一義的に定められる。
As described above (see FIG. 5), the voltage value V10 is applied to the piezoelectric element 110 in the step-up direction, or the voltage value V10 is applied to the piezoelectric element 110 in the step-down direction. Regardless of whether or not there is, the finally obtained displacement amount X110 of the piezoelectric element 110 is uniquely determined.
したがって、姿勢調整装置2000(図8参照)においては、電圧値V1aにおける圧電素子110の変位量X110が一義的に定められ、且つ電圧値V2aにおける圧電素子120の変位量X120が一義的に定められることが可能となる。姿勢調整装置2000においては、光学素子200を所望の姿勢に正確に調整することが可能となる。また、フィードバック制御などを行なう必要が無いため、本実施の形態における姿勢調整装置2000によれば、光学素子200を所望の姿勢に正確且つ簡便に調整することが可能となる。
Therefore, in the attitude adjustment device 2000 (see FIG. 8), the displacement amount X110 of the piezoelectric element 110 at the voltage value V1a is uniquely determined, and the displacement amount X120 of the piezoelectric element 120 at the voltage value V2a is uniquely determined. It becomes possible. In the attitude adjustment device 2000, the optical element 200 can be accurately adjusted to a desired attitude. In addition, since there is no need to perform feedback control or the like, according to the posture adjustment apparatus 2000 in the present embodiment, it is possible to accurately and easily adjust the optical element 200 to a desired posture.
[実施の形態2の変形例]
図10(および図8)を参照して、姿勢調整装置2000が光学素子200を所望の姿勢に調整する際には、姿勢調整信号出力部170から姿勢調整信号S170を受けた制御部160は、圧電素子120に印加される駆動電圧V121が、現在の電圧値V20から最小電圧値Vminに一旦設定された後に電圧値V2a(第2目標電圧値)に設定されるように、駆動部121を制御してもよい。 [Modification of Embodiment 2]
Referring to FIG. 10 (and FIG. 8), whenposture adjustment apparatus 2000 adjusts optical element 200 to a desired posture, control unit 160 that has received posture adjustment signal S170 from posture adjustment signal output unit 170 The drive unit 121 is controlled such that the drive voltage V121 applied to the piezoelectric element 120 is once set from the current voltage value V20 to the minimum voltage value Vmin and then set to the voltage value V2a (second target voltage value). May be.
図10(および図8)を参照して、姿勢調整装置2000が光学素子200を所望の姿勢に調整する際には、姿勢調整信号出力部170から姿勢調整信号S170を受けた制御部160は、圧電素子120に印加される駆動電圧V121が、現在の電圧値V20から最小電圧値Vminに一旦設定された後に電圧値V2a(第2目標電圧値)に設定されるように、駆動部121を制御してもよい。 [Modification of Embodiment 2]
Referring to FIG. 10 (and FIG. 8), when
図10に示すように、圧電素子120に印加される駆動電圧V121が、現在の電圧値V20から最小電圧値Vminに一旦設定されたとする。
As shown in FIG. 10, it is assumed that the drive voltage V121 applied to the piezoelectric element 120 is once set from the current voltage value V20 to the minimum voltage value Vmin.
電圧値V20が圧電素子120に対して昇圧方向に印加されたものである場合、圧電素子120の変位量X120は、変位量X20(図10中の点P20)から変位量Xmin(図10中の点Pmin)まで、線L24aに示されるヒステリシス曲線を描くように変化する。
When the voltage value V20 is applied to the piezoelectric element 120 in the boosting direction, the displacement amount X120 of the piezoelectric element 120 is changed from the displacement amount X20 (point P20 in FIG. 10) to the displacement amount Xmin (in FIG. 10). It changes so that the hysteresis curve shown by the line L24a may be drawn to the point Pmin).
その後、圧電素子120に印加される駆動電圧V121が、最小電圧値Vminから電圧値V2a(第2目標電圧値)に設定されたとする。圧電素子120の変位量X120は、変位量Xmin(図10中の点Pmin)から変位量X24(図10中の点P24)まで、線L24cに示されるヒステリシス曲線を描くように変化する。
Thereafter, it is assumed that the drive voltage V121 applied to the piezoelectric element 120 is set from the minimum voltage value Vmin to the voltage value V2a (second target voltage value). The displacement amount X120 of the piezoelectric element 120 changes from the displacement amount Xmin (point Pmin in FIG. 10) to the displacement amount X24 (point P24 in FIG. 10) so as to draw a hysteresis curve indicated by a line L24c.
一方、電圧値V20が圧電素子120に対して降圧方向に印加されたものである場合、圧電素子120の変位量X120は、変位量X21(図10中の点P21)から変位量Xmin(図10中の点Pmin)まで、線L24bに示されるヒステリシス曲線を描くように変化する。
On the other hand, when the voltage value V20 is applied to the piezoelectric element 120 in the step-down direction, the displacement amount X120 of the piezoelectric element 120 is changed from the displacement amount X21 (point P21 in FIG. 10) to the displacement amount Xmin (FIG. 10). It changes so that the hysteresis curve shown by the line L24b is drawn to the middle point Pmin).
その後、圧電素子120に印加される駆動電圧V121が、最小電圧値Vminから電圧値V2a(第2目標電圧値)に設定されたとする。圧電素子120の変位量X120は、変位量Xmin(図10中の点Pmin)から変位量X24(図10中の点P24)まで、線L24cに示されるヒステリシス曲線を描くように変化する。
Thereafter, it is assumed that the drive voltage V121 applied to the piezoelectric element 120 is set from the minimum voltage value Vmin to the voltage value V2a (second target voltage value). The displacement amount X120 of the piezoelectric element 120 changes from the displacement amount Xmin (point Pmin in FIG. 10) to the displacement amount X24 (point P24 in FIG. 10) so as to draw a hysteresis curve indicated by a line L24c.
上記のように、圧電素子120に印加される駆動電圧V121が、現在の電圧値V20から最小電圧値Vminに一旦設定された後に電圧値V2a(第2目標電圧値)に設定される。電圧値V20が圧電素子120に対して昇圧方向に印加されたものであるか、または、電圧値V20が圧電素子120に対して降圧方向に印加されたものであるかに関わらず、最終的に得られる圧電素子120の変位量X120は、変位量X24(図10中の点P24)となる。
As described above, the drive voltage V121 applied to the piezoelectric element 120 is once set from the current voltage value V20 to the minimum voltage value Vmin, and then set to the voltage value V2a (second target voltage value). Regardless of whether the voltage value V20 is applied to the piezoelectric element 120 in the step-up direction or whether the voltage value V20 is applied to the piezoelectric element 120 in the step-down direction. The displacement amount X120 of the obtained piezoelectric element 120 is the displacement amount X24 (point P24 in FIG. 10).
したがって、上記の実施の形態2の場合と同様に、電圧値V1aにおける圧電素子110の変位量X110が一義的に定められ、且つ電圧値V2aにおける圧電素子120の変位量X120が一義的に定められることが可能となる。本変形例における姿勢調整装置2000によっても、光学素子200を所望の姿勢に正確且つ簡便に調整することが可能となる。圧電素子110,120に印加される駆動電圧V111,V121が現在の電圧値から目標電圧値に設定される際、現在の電圧値から最大電圧値に一旦設定された後に目標電圧値に設定されるか、または、現在の電圧値から最小電圧値に一旦設定された後に目標電圧値に設定されるか、の選択については、圧電素子110,120に印加される駆動電圧V111,V121の大小関係に応じて決められるとよい。
Therefore, similarly to the second embodiment, the displacement amount X110 of the piezoelectric element 110 at the voltage value V1a is uniquely determined, and the displacement amount X120 of the piezoelectric element 120 at the voltage value V2a is uniquely determined. It becomes possible. Also by the attitude adjustment device 2000 in this modification, the optical element 200 can be accurately and simply adjusted to a desired attitude. When the drive voltages V111 and V121 applied to the piezoelectric elements 110 and 120 are set from the current voltage value to the target voltage value, the current voltage value is temporarily set from the current voltage value to the maximum voltage value and then set to the target voltage value. The selection of whether the current voltage value is once set to the minimum voltage value and then set to the target voltage value depends on the magnitude relationship of the drive voltages V111 and V121 applied to the piezoelectric elements 110 and 120. It is good to be decided accordingly.
[実施の形態3]
図11~図21を参照して、実施の形態3について説明する。図11は、実施の形態3におけるフーリエ変換分光分析装置100を模式的に示す図である。 [Embodiment 3]
The third embodiment will be described with reference to FIGS. FIG. 11 is a diagram schematically illustrating Fourier transformspectroscopic analysis apparatus 100 in the third embodiment.
図11~図21を参照して、実施の形態3について説明する。図11は、実施の形態3におけるフーリエ変換分光分析装置100を模式的に示す図である。 [Embodiment 3]
The third embodiment will be described with reference to FIGS. FIG. 11 is a diagram schematically illustrating Fourier transform
(フーリエ変換分光分析装置100・マイケルソン干渉計1)
図11を参照して、まず、フーリエ変換分光分析装置100について説明する。フーリエ変換分光分析装置100は、マイケルソン干渉計1、演算部2、および出力部3を備える。マイケルソン干渉計1は、分光光学系11、参照光学系21、および姿勢調整装置30を含む。 (Fourier transform spectrometer 100 Michelson interferometer 1)
With reference to FIG. 11, first, the Fourier transformspectroscopic analyzer 100 will be described. The Fourier transform spectroscopic analyzer 100 includes a Michelson interferometer 1, a calculation unit 2, and an output unit 3. The Michelson interferometer 1 includes a spectroscopic optical system 11, a reference optical system 21, and an attitude adjustment device 30.
図11を参照して、まず、フーリエ変換分光分析装置100について説明する。フーリエ変換分光分析装置100は、マイケルソン干渉計1、演算部2、および出力部3を備える。マイケルソン干渉計1は、分光光学系11、参照光学系21、および姿勢調整装置30を含む。 (
With reference to FIG. 11, first, the Fourier transform
(分光光学系11)
分光光学系11は、光源12、コリメート光学系13、ビームスプリッタ14、固定鏡15(光学素子)、移動鏡16、集光光学系17、検出器18、および駆動機構60を有する。 (Spectral optical system 11)
The spectroscopicoptical system 11 includes a light source 12, a collimating optical system 13, a beam splitter 14, a fixed mirror 15 (optical element), a moving mirror 16, a condensing optical system 17, a detector 18, and a driving mechanism 60.
分光光学系11は、光源12、コリメート光学系13、ビームスプリッタ14、固定鏡15(光学素子)、移動鏡16、集光光学系17、検出器18、および駆動機構60を有する。 (Spectral optical system 11)
The spectroscopic
光源12は、ランプ等の発光素子から構成され、赤外光等の光を出射する。光源12が出射した光は、参照光学系21(詳細は後述する)における光路合成鏡23に導入され、参照光源22(詳細は後述する)が出射した光と合成される。合成された光は光路合成鏡23から出射され、コリメート光学系13によって平行光に変換された後、ビームスプリッタ14に導入される。ビームスプリッタ14はハーフミラー等から構成される。
ビームスプリッタ14に導入された光(入射光)は2光束に分割される。 Thelight source 12 includes a light emitting element such as a lamp, and emits light such as infrared light. The light emitted from the light source 12 is introduced into an optical path combining mirror 23 in the reference optical system 21 (details will be described later), and is synthesized with the light emitted from the reference light source 22 (details will be described later). The combined light is emitted from the optical path combining mirror 23, converted into parallel light by the collimating optical system 13, and then introduced into the beam splitter 14. The beam splitter 14 is composed of a half mirror or the like.
The light (incident light) introduced into thebeam splitter 14 is divided into two light beams.
ビームスプリッタ14に導入された光(入射光)は2光束に分割される。 The
The light (incident light) introduced into the
分割された光の一方は固定鏡15に照射される。固定鏡15の表面に反射した光(反射光)は、反射前と略同一の光路を通過してビームスプリッタ14に再び照射される。分割された光の他方は移動鏡16に照射される。移動鏡16の表面に反射した光(反射光)は、反射前と略同一の光路を通過してビームスプリッタ14に再び照射される。固定鏡15からの反射光および移動鏡16からの反射光は、ビームスプリッタ14によって合成される(重ね合わせられる)。
One side of the divided light is irradiated to the fixed mirror 15. The light reflected on the surface of the fixed mirror 15 (reflected light) passes through substantially the same optical path as before reflection and is irradiated again on the beam splitter 14. The other of the divided lights is irradiated to the movable mirror 16. The light (reflected light) reflected on the surface of the movable mirror 16 passes through substantially the same optical path as before reflection and is irradiated again on the beam splitter 14. The reflected light from the fixed mirror 15 and the reflected light from the moving mirror 16 are combined (superposed) by the beam splitter 14.
ここで、分割された光の他方が移動鏡16の表面に反射する際、移動鏡16は駆動機構60によって平行を維持した状態で矢印AR方向に往復移動している。移動鏡16の往復移動によって、固定鏡15からの反射光と移動鏡16からの反射光との間には、光路長の差が生じる。固定鏡15からの反射光と移動鏡16からの反射光とは、ビームスプリッタ14に合成されることによって干渉光を形成する。
Here, when the other part of the divided light is reflected on the surface of the movable mirror 16, the movable mirror 16 is reciprocated in the direction of the arrow AR while being kept parallel by the drive mechanism 60. Due to the reciprocating movement of the movable mirror 16, a difference in optical path length occurs between the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16. The reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16 are combined with the beam splitter 14 to form interference light.
移動鏡16の位置に応じて光路長の差は連続的に変化する。光路長の差に応じて干渉光としての光の強度も連続的に変化する。光路長の差が、たとえば、コリメート光学系13からビームスプリッタ14に照射される光の波長の整数倍のとき、干渉光としての光の強度は最大となる。
The difference in optical path length changes continuously according to the position of the movable mirror 16. The intensity of light as interference light also changes continuously according to the difference in optical path length. When the difference in optical path length is, for example, an integral multiple of the wavelength of light irradiated from the collimating optical system 13 to the beam splitter 14, the intensity of light as interference light is maximized.
干渉光を形成した光は試料Sに照射される。試料Sを透過した光は集光光学系17に集光される。集光された光は、参照光学系21(詳細は後述する)における光路分離鏡24に導入される。検出器18は、光路分離鏡24から出射された光を干渉パターン(インターフェログラム)として検出する。この干渉パターンは、CPU(Central Processing Unit)等を含む演算部2に送られる。演算部2は、収集(サンプリング)した干渉パターンをアナログ形式からデジタル形式に変換し、変換後のデータをさらにフーリエ変換する。
The sample S is irradiated with the light forming the interference light. The light transmitted through the sample S is condensed on the condensing optical system 17. The condensed light is introduced into the optical path separation mirror 24 in the reference optical system 21 (details will be described later). The detector 18 detects the light emitted from the optical path separation mirror 24 as an interference pattern (interferogram). This interference pattern is sent to the calculation unit 2 including a CPU (Central Processing Unit) and the like. The computing unit 2 converts the collected (sampled) interference pattern from an analog format to a digital format, and further performs Fourier transform on the converted data.
フーリエ変換によって、試料Sを透過した光(干渉光)の波数(=1/波長)毎の光の強度を示すスペクトル分布が算出される。フーリエ変換後のデータは、出力部3を通して他の機器に出力されたりディスプレイ等に表示されたりする。このスペクトル分布に基づいて、試料Sの特性(たとえば、材料、構造、または成分量)が分析される。
The spectral distribution indicating the light intensity for each wave number (= 1 / wavelength) of the light (interference light) transmitted through the sample S is calculated by Fourier transform. The data after the Fourier transform is output to another device through the output unit 3 or displayed on a display or the like. Based on this spectral distribution, the characteristics (eg, material, structure, or amount of components) of the sample S are analyzed.
(参照光学系21)
参照光学系21は、コリメート光学系13、ビームスプリッタ14、固定鏡15、移動鏡16、集光光学系17、参照光源22、光路合成鏡23、光路分離鏡24、参照検出器25、および信号処理部26を有している。コリメート光学系13、ビームスプリッタ14、固定鏡15、移動鏡16、および集光光学系17は、分光光学系11および参照光学系21の双方の構成として共通している。 (Reference optical system 21)
The referenceoptical system 21 includes a collimating optical system 13, a beam splitter 14, a fixed mirror 15, a moving mirror 16, a condensing optical system 17, a reference light source 22, an optical path synthesis mirror 23, an optical path separation mirror 24, a reference detector 25, and a signal. A processing unit 26 is included. The collimating optical system 13, the beam splitter 14, the fixed mirror 15, the moving mirror 16, and the condensing optical system 17 are common to both the spectroscopic optical system 11 and the reference optical system 21.
参照光学系21は、コリメート光学系13、ビームスプリッタ14、固定鏡15、移動鏡16、集光光学系17、参照光源22、光路合成鏡23、光路分離鏡24、参照検出器25、および信号処理部26を有している。コリメート光学系13、ビームスプリッタ14、固定鏡15、移動鏡16、および集光光学系17は、分光光学系11および参照光学系21の双方の構成として共通している。 (Reference optical system 21)
The reference
参照光源22は、半導体レーザ等の発光素子から構成され、赤色光等の光を出射する。上述のとおり、参照光源22が出射した光は光路合成鏡23に導入される。光路合成鏡23はハーフミラー等から構成される。光源12からの光は光路合成鏡23を透過する。参照光源22からの光は光路合成鏡23に反射される。
The reference light source 22 is composed of a light emitting element such as a semiconductor laser, and emits light such as red light. As described above, the light emitted from the reference light source 22 is introduced into the optical path combining mirror 23. The optical path combining mirror 23 is composed of a half mirror or the like. The light from the light source 12 passes through the optical path combining mirror 23. Light from the reference light source 22 is reflected by the optical path combining mirror 23.
光源12からの光および参照光源22からの光は、光路合成鏡23によって合成された状態で、光路合成鏡23から同一光路上に出射される。光路合成鏡23から出射された光は、コリメート光学系13によって平行光に変換された後、ビームスプリッタ14に導入されて2光束に分割される。
The light from the light source 12 and the light from the reference light source 22 are emitted from the optical path combining mirror 23 onto the same optical path in a state where they are combined by the optical path combining mirror 23. The light emitted from the optical path combining mirror 23 is converted into parallel light by the collimating optical system 13 and then introduced into the beam splitter 14 and split into two light beams.
上述のとおり、分割された光の一方は固定鏡15に照射され、反射光としてビームスプリッタ14に再び照射される。分割された光の他方は移動鏡16に照射され、反射光としてビームスプリッタ14に再び照射される。固定鏡15からの反射光と移動鏡16からの反射光とは、ビームスプリッタ14に合成されることによって干渉光を形成する。
As described above, one of the divided lights is irradiated on the fixed mirror 15 and again irradiated on the beam splitter 14 as reflected light. The other of the divided lights is applied to the movable mirror 16 and is applied again to the beam splitter 14 as reflected light. The reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16 are combined with the beam splitter 14 to form interference light.
上述のとおり、干渉光を形成した光は試料Sに照射される。試料Sを透過した光は集光光学系17に集光される。集光された光は、参照光学系21における光路分離鏡24に導入される。光路分離鏡24はハーフミラー等から構成され、光路分離鏡24に導入された光(入射光)は2光束に分割される。
As described above, the sample S is irradiated with the light forming the interference light. The light transmitted through the sample S is condensed on the condensing optical system 17. The condensed light is introduced into the optical path separation mirror 24 in the reference optical system 21. The optical path separation mirror 24 is composed of a half mirror or the like, and the light (incident light) introduced into the optical path separation mirror 24 is divided into two light beams.
光源12から出射され、光路合成鏡23、コリメート光学系13、ビームスプリッタ14、固定鏡15、移動鏡16、試料S、および集光光学系17を通して光路分離鏡24に導入された光は、光路分離鏡24を透過する。上述のとおり、光路分離鏡24を透過したこの光(干渉光)は、検出器18によって検出される。
The light emitted from the light source 12 and introduced into the optical path separation mirror 24 through the optical path synthesis mirror 23, the collimating optical system 13, the beam splitter 14, the fixed mirror 15, the movable mirror 16, the sample S, and the condensing optical system 17 The light passes through the separation mirror 24. As described above, this light (interference light) transmitted through the optical path separation mirror 24 is detected by the detector 18.
一方、参照光源22から出射され、光路合成鏡23、コリメート光学系13、ビームスプリッタ14、固定鏡15、移動鏡16、試料S、および集光光学系17を通して光路分離鏡24に導入された光は、光路分離鏡24に反射される。光路分離鏡24からの反射光(干渉光)は、4分割センサ等から構成される参照検出器25によって干渉パターンとして検出される。
On the other hand, light emitted from the reference light source 22 and introduced into the optical path separation mirror 24 through the optical path synthesis mirror 23, the collimating optical system 13, the beam splitter 14, the fixed mirror 15, the movable mirror 16, the sample S, and the condensing optical system 17. Is reflected by the optical path separation mirror 24. Reflected light (interference light) from the optical path separation mirror 24 is detected as an interference pattern by a reference detector 25 constituted by a quadrant sensor or the like.
干渉光の干渉パターンは、CPU等を含む信号処理部26に送られる。信号処理部26は、収集した干渉パターンに基づいて光路分離鏡24からの反射光の強度を算出する。信号処理部26は、光路分離鏡24からの反射光の強度に基づいて、演算部2におけるサンプリングのタイミングを示す信号を生成することができる。演算部2におけるサンプリングのタイミングを示す信号は、公知の手段によって生成されることができる。
The interference pattern of the interference light is sent to a signal processing unit 26 including a CPU and the like. The signal processing unit 26 calculates the intensity of the reflected light from the optical path separation mirror 24 based on the collected interference pattern. Based on the intensity of the reflected light from the optical path separation mirror 24, the signal processing unit 26 can generate a signal indicating the sampling timing in the calculation unit 2. A signal indicating the sampling timing in the calculation unit 2 can be generated by a known means.
信号処理部26は、光路分離鏡24からの反射光の強度に基づいて、2光路間における光の傾き(固定鏡15からの反射光と移動鏡16からの反射光との相対的な傾き)を算出することもできる。2光路間における光の傾きは、たとえば以下のように算出される。
Based on the intensity of the reflected light from the optical path separation mirror 24, the signal processing unit 26 tilts the light between the two optical paths (relative tilt between the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16). Can also be calculated. For example, the inclination of light between the two optical paths is calculated as follows.
図12を参照して、4分割センサから構成される参照検出器25は、4つの受光領域E1~E4を有している。受光領域E1~E4は反時計回りに並んで相互に隣接している。受光領域E1~E4によって構成される領域に、光路分離鏡24からの反射光が照射される。受光領域E1~E4によって構成される領域の中心と、光路分離鏡24からの反射光のスポットDの中心とは略一致している。
Referring to FIG. 12, the reference detector 25 composed of a four-divided sensor has four light receiving areas E1 to E4. The light receiving areas E1 to E4 are adjacent to each other in the counterclockwise direction. Reflected light from the optical path separation mirror 24 is irradiated to the area constituted by the light receiving areas E1 to E4. The center of the area constituted by the light receiving areas E1 to E4 and the center of the spot D of the reflected light from the optical path separation mirror 24 are substantially coincident.
受光領域E1~E4は、光路分離鏡24からそれぞれの領域に照射された反射光の強度を検出する。光路分離鏡24からの反射光の強度は、経時的に変化する位相信号として、たとえば図13(A)および図13(B)に示されるように検出される。
The light receiving areas E1 to E4 detect the intensity of the reflected light applied to each area from the optical path separation mirror 24. The intensity of the reflected light from the optical path separation mirror 24 is detected as a phase signal that changes with time, for example, as shown in FIGS. 13 (A) and 13 (B).
図13(A)および図13(B)の各々の横軸は、時間(単位:秒)の経過を示している。図13(A)の縦軸は、受光領域E1が検出した光強度および受光領域E2が検出した光強度の和を強度A1(相対値)として示している。図13(B)の縦軸は、受光領域E3が検出した光強度および受光領域E4が検出した光強度の和を強度A2(相対値)として示している。
Each horizontal axis of FIG. 13 (A) and FIG. 13 (B) indicates the passage of time (unit: second). The vertical axis in FIG. 13A indicates the sum of the light intensity detected by the light receiving area E1 and the light intensity detected by the light receiving area E2 as intensity A1 (relative value). The vertical axis in FIG. 13B indicates the sum of the light intensity detected by the light receiving area E3 and the light intensity detected by the light receiving area E4 as intensity A2 (relative value).
図13(A)および図13(B)に示すように、強度A1と強度A2との間に、位相差Δが生じているとする。位相差Δに基づいて、2光路間での光の傾き(固定鏡15からの反射光と移動鏡16からの反射光との相対的な傾き)が算出される。受光領域E1~E4からなる他の組み合わせ(たとえば受光領域E1,E4と受光領域E2,E3との組合せ)によって、他の位相差Δを得ることができる。上記の位相差Δとこの他の位相差Δとに基づいて、2光路間での光の傾きの方向(ベクトル)を算出することもできる。
As shown in FIGS. 13A and 13B, it is assumed that there is a phase difference Δ between the intensity A1 and the intensity A2. Based on the phase difference Δ, the inclination of the light between the two optical paths (the relative inclination between the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16) is calculated. Other phase differences Δ can be obtained by other combinations of the light receiving areas E1 to E4 (for example, combinations of the light receiving areas E1 and E4 and the light receiving areas E2 and E3). Based on the above phase difference Δ and other phase differences Δ, the direction (vector) of the inclination of light between the two optical paths can also be calculated.
(姿勢調整装置30)
図11を再び参照して、姿勢調整装置30は、信号処理部26における検出結果(固定鏡15からの反射光と移動鏡16からの反射光との相対的な傾き)に基づいて、固定鏡15の姿勢(ビームスプリッタ14に対する固定鏡15の表面の角度)を調整する。当該調整によって、固定鏡15における反射光の光路が補正され、2光路間での光の傾きを無くす(若しくは減少させる)ことが可能となる。姿勢調整装置30がマイケルソン干渉計1内に設けられていることによって、干渉光をより精度高く生成することが可能となる。 (Attitude adjustment device 30)
Referring to FIG. 11 again, theattitude adjustment device 30 is based on the detection result in the signal processing unit 26 (relative inclination between the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16). 15 (the angle of the surface of the fixed mirror 15 with respect to the beam splitter 14) is adjusted. By this adjustment, the optical path of the reflected light at the fixed mirror 15 is corrected, and the inclination of the light between the two optical paths can be eliminated (or reduced). By providing the attitude adjustment device 30 in the Michelson interferometer 1, it becomes possible to generate interference light with higher accuracy.
図11を再び参照して、姿勢調整装置30は、信号処理部26における検出結果(固定鏡15からの反射光と移動鏡16からの反射光との相対的な傾き)に基づいて、固定鏡15の姿勢(ビームスプリッタ14に対する固定鏡15の表面の角度)を調整する。当該調整によって、固定鏡15における反射光の光路が補正され、2光路間での光の傾きを無くす(若しくは減少させる)ことが可能となる。姿勢調整装置30がマイケルソン干渉計1内に設けられていることによって、干渉光をより精度高く生成することが可能となる。 (Attitude adjustment device 30)
Referring to FIG. 11 again, the
図14~図16を参照して、本実施の形態における姿勢調整装置30の構成について詳細に説明する。図14は、姿勢調整装置30の分解した状態を示す斜視図である。図15は、姿勢調整装置30を示す平面図である。図16は、図15中におけるXVI-XVI線に沿った矢視断面図である。姿勢調整装置30は、固定鏡15を姿勢を所望の姿勢に調整する。以下、具体的に説明する。
With reference to FIGS. 14 to 16, the configuration of the attitude adjustment device 30 in the present embodiment will be described in detail. FIG. 14 is a perspective view showing a disassembled state of the attitude adjustment device 30. FIG. FIG. 15 is a plan view showing the attitude adjustment device 30. 16 is a cross-sectional view taken along the line XVI-XVI in FIG. The attitude adjustment device 30 adjusts the attitude of the fixed mirror 15 to a desired attitude. This will be specifically described below.
図14を参照して、姿勢調整装置30は、固定鏡15を揺動可能に支持する支持部150を備える。本実施の形態における支持部150は、圧電素子110(第1圧電素子)、圧電素子120(第2圧電素子)、圧電素子130、圧電素子140、ベース部材152、および台座156を含む。
Referring to FIG. 14, the posture adjustment device 30 includes a support portion 150 that supports the fixed mirror 15 in a swingable manner. Support portion 150 in the present embodiment includes piezoelectric element 110 (first piezoelectric element), piezoelectric element 120 (second piezoelectric element), piezoelectric element 130, piezoelectric element 140, base member 152, and pedestal 156.
圧電素子110,120,130,140は、略同一のヒステリシス特性を有しており、互いに対向するように平面視(図15参照)正方形状に配置される。
The piezoelectric elements 110, 120, 130, and 140 have substantially the same hysteresis characteristics, and are arranged in a square shape in plan view (see FIG. 15) so as to face each other.
図14~図16を参照して、台座156は、円板状の大径部156aおよび円板状の小径部156bから構成される。圧電素子110,120,130,140の各々の長手方向における一方の端部が、ベース部材152に固定される。圧電素子110,120,130,140の各々の長手方向における他方の端部上に、台座156の小径部156bが設けられる。
14 to 16, the pedestal 156 includes a disk-shaped large-diameter portion 156a and a disk-shaped small-diameter portion 156b. One end in the longitudinal direction of each of the piezoelectric elements 110, 120, 130, and 140 is fixed to the base member 152. On the other end in the longitudinal direction of each of the piezoelectric elements 110, 120, 130, and 140, a small diameter portion 156 b of the pedestal 156 is provided.
図16に示すように、圧電素子110,120,130,140の各々の長手方向における他方の端部と台座156の小径部156bとの間には、接着剤158が設けられる。台座156の大径部156a上に、固定鏡15が固着される。
As shown in FIG. 16, an adhesive 158 is provided between the other end in the longitudinal direction of each of the piezoelectric elements 110, 120, 130, and 140 and the small diameter portion 156b of the pedestal 156. The fixed mirror 15 is fixed on the large-diameter portion 156a of the base 156.
上述の実施の形態2の場合と同様に、圧電素子110には、駆動部111(第1駆動部)が接続される。駆動部111は、圧電素子110を伸縮させる所定の駆動電圧V111(第1駆動電圧)を出力する。駆動電圧V111が印加された圧電素子110は、矢印AR110方向に伸縮する。
As in the case of the second embodiment, the piezoelectric element 110 is connected to the driving unit 111 (first driving unit). The drive unit 111 outputs a predetermined drive voltage V111 (first drive voltage) that causes the piezoelectric element 110 to expand and contract. The piezoelectric element 110 to which the drive voltage V111 is applied expands and contracts in the direction of the arrow AR110.
圧電素子120には、駆動部121(第2駆動部)が接続される。駆動部121は、圧電素子120を伸縮させる所定の駆動電圧V121(第2駆動電圧)を出力する。駆動電圧V121が印加された圧電素子120は、矢印AR120方向に伸縮する。
A drive unit 121 (second drive unit) is connected to the piezoelectric element 120. The drive unit 121 outputs a predetermined drive voltage V121 (second drive voltage) that causes the piezoelectric element 120 to expand and contract. The piezoelectric element 120 to which the driving voltage V121 is applied expands and contracts in the direction of the arrow AR120.
圧電素子130,140についても、圧電素子110,120と同様に構成される。圧電素子130,140は、圧電素子110,120と同様に機能する。以下、圧電素子110,120についてのみ説明する。
The piezoelectric elements 130 and 140 are configured in the same manner as the piezoelectric elements 110 and 120. The piezoelectric elements 130 and 140 function in the same manner as the piezoelectric elements 110 and 120. Only the piezoelectric elements 110 and 120 will be described below.
圧電素子110の伸縮および圧電素子120の伸縮によって、固定鏡15は揺動される。固定鏡15は、圧電素子110,120の伸縮(変位量)によって所定の姿勢に変化される。
The stationary mirror 15 is swung by the expansion and contraction of the piezoelectric element 110 and the expansion and contraction of the piezoelectric element 120. The fixed mirror 15 is changed to a predetermined posture by the expansion and contraction (displacement amount) of the piezoelectric elements 110 and 120.
上述の実施の形態2の場合と同様に、駆動電圧V111を出力する駆動部111には、制御部160が接続される。駆動電圧V121を出力する駆動部121にも、制御部160が接続される。制御部160には、姿勢調整信号出力部170が接続される。姿勢調整信号出力部170は、図11における信号処理部26に接続されており、信号処理部26から固定鏡15の姿勢に関する情報を取得する。姿勢調整信号出力部170は、取得した情報に応じて、固定鏡15を所望の姿勢に調整するための姿勢調整信号S170を出力する。
As in the case of the second embodiment described above, the control unit 160 is connected to the drive unit 111 that outputs the drive voltage V111. The controller 160 is also connected to the drive unit 121 that outputs the drive voltage V121. An attitude adjustment signal output unit 170 is connected to the control unit 160. The posture adjustment signal output unit 170 is connected to the signal processing unit 26 in FIG. 11 and acquires information related to the posture of the fixed mirror 15 from the signal processing unit 26. The posture adjustment signal output unit 170 outputs a posture adjustment signal S170 for adjusting the fixed mirror 15 to a desired posture according to the acquired information.
制御部160は、姿勢調整信号出力部170から受けた姿勢調整信号S170に応じて、駆動部111から出力される駆動電圧V111の電圧値と、駆動部121から出力される駆動電圧V121の電圧値とをそれぞれ制御する。
The control unit 160 responds to the attitude adjustment signal S170 received from the attitude adjustment signal output unit 170, and the voltage value of the drive voltage V111 output from the drive unit 111 and the voltage value of the drive voltage V121 output from the drive unit 121. And control each.
駆動電圧V111の電圧値は、圧電素子110の変位量に変換される。駆動電圧V121の電圧値は、圧電素子120の変位量に変換される。駆動電圧V111,V121の電圧値が圧電素子110,120の変位量に変換されることによって、固定鏡15における所望の姿勢を得ることが可能となる。
The voltage value of the drive voltage V111 is converted into a displacement amount of the piezoelectric element 110. The voltage value of the drive voltage V121 is converted into a displacement amount of the piezoelectric element 120. By converting the voltage values of the drive voltages V111 and V121 into the displacement amounts of the piezoelectric elements 110 and 120, it is possible to obtain a desired posture in the fixed mirror 15.
ここで、本実施の形態における制御部160は、圧電素子110に印加される駆動電圧V111と圧電素子120に印加される駆動電圧V121とが互いに逆位相となるように、駆動部111および駆動部121を制御する。
Here, the control unit 160 in the present embodiment is configured so that the drive voltage V111 applied to the piezoelectric element 110 and the drive voltage V121 applied to the piezoelectric element 120 are in opposite phases to each other. 121 is controlled.
図17を参照して、圧電素子110に印加される駆動電圧V111と圧電素子120に印加される駆動電圧V121とが互いに逆位相となることによって、たとえば圧電素子110が伸長している場合は、圧電素子120は収縮することとなる(図17中の白抜き矢印参照)。これにより、固定鏡15は矢印AR15方向に傾く。固定鏡15を所望の姿勢に調整する際、圧電素子110に印加される駆動電圧V111と圧電素子120に印加される駆動電圧V121とが互いに逆位相となることによって、固定鏡15を所望の姿勢に簡便に調整することが可能となる。
Referring to FIG. 17, when drive voltage V111 applied to piezoelectric element 110 and drive voltage V121 applied to piezoelectric element 120 are in opposite phases, for example, when piezoelectric element 110 is extended, The piezoelectric element 120 contracts (see the white arrow in FIG. 17). Thereby, the fixed mirror 15 is inclined in the direction of the arrow AR15. When the fixed mirror 15 is adjusted to a desired posture, the drive voltage V111 applied to the piezoelectric element 110 and the drive voltage V121 applied to the piezoelectric element 120 are in opposite phases, whereby the fixed mirror 15 is moved to the desired posture. It becomes possible to adjust easily.
(姿勢調整動作)
本実施の形態におけるフーリエ変換分光分析装置100(図11参照)が、たとえば、起動時の状態またはスタンバイの状態から、分析開始の状態に遷移するとする。この際、姿勢調整装置30を利用して固定鏡15の姿勢を調整することが開始される。フーリエ変換分光分析装置100においては、固定鏡15に対してまず粗調整が行なわれた後、固定鏡15に対して微調整がいわゆるサーボ制御によって行なわれる。以下、この粗調整および微調整について順に説明する。 (Attitude adjustment operation)
For example, it is assumed that Fourier transform spectroscopic analysis apparatus 100 (see FIG. 11) in the present embodiment transitions from a startup state or a standby state to an analysis start state. At this time, theposture adjustment device 30 is used to start adjusting the posture of the fixed mirror 15. In the Fourier transform spectroscopic analysis apparatus 100, first, coarse adjustment is performed on the fixed mirror 15, and then fine adjustment is performed on the fixed mirror 15 by so-called servo control. Hereinafter, the rough adjustment and the fine adjustment will be described in order.
本実施の形態におけるフーリエ変換分光分析装置100(図11参照)が、たとえば、起動時の状態またはスタンバイの状態から、分析開始の状態に遷移するとする。この際、姿勢調整装置30を利用して固定鏡15の姿勢を調整することが開始される。フーリエ変換分光分析装置100においては、固定鏡15に対してまず粗調整が行なわれた後、固定鏡15に対して微調整がいわゆるサーボ制御によって行なわれる。以下、この粗調整および微調整について順に説明する。 (Attitude adjustment operation)
For example, it is assumed that Fourier transform spectroscopic analysis apparatus 100 (see FIG. 11) in the present embodiment transitions from a startup state or a standby state to an analysis start state. At this time, the
(粗調整)
図18および図19を参照して、フーリエ変換分光分析装置100の駆動を開始した時点(駆動開始時点としての現在)において、電圧値V10の駆動電圧V111が圧電素子110に印加されているとする(図19中における時間T0)。 (Coarse adjustment)
Referring to FIG. 18 and FIG. 19, it is assumed that drive voltage V111 having voltage value V10 is applied topiezoelectric element 110 at the time when drive of Fourier transform spectroscopic analyzer 100 is started (current as the drive start time). (Time T0 in FIG. 19).
図18および図19を参照して、フーリエ変換分光分析装置100の駆動を開始した時点(駆動開始時点としての現在)において、電圧値V10の駆動電圧V111が圧電素子110に印加されているとする(図19中における時間T0)。 (Coarse adjustment)
Referring to FIG. 18 and FIG. 19, it is assumed that drive voltage V111 having voltage value V10 is applied to
制御部160は、圧電素子110に印加されるべき駆動電圧V111の電圧値V1a(第1目標電圧値)を設定する。この電圧値V1aは、予め設定されていた値(設計値)であってもよいし、姿勢調整信号出力部170から受けた姿勢調整信号S170に応じて算出された値であってもよい。
The controller 160 sets the voltage value V1a (first target voltage value) of the drive voltage V111 to be applied to the piezoelectric element 110. The voltage value V1a may be a preset value (design value), or may be a value calculated according to the attitude adjustment signal S170 received from the attitude adjustment signal output unit 170.
さらに、制御部160は、圧電素子110に印加される駆動電圧V111が、現在の電圧値V10から最大電圧値Vmaxに一旦設定されるように、駆動部111を制御する(図19中における時間T0~T1)。圧電素子110には、最大電圧値Vmaxの駆動電圧V111が所定の時間印加される(図19中における時間T1~T2)。その後、制御部160は、圧電素子110に印加される駆動電圧V111が、電圧値V1aに設定されるように駆動部111を制御する(図19中における時間T2~T3)。
Furthermore, the control unit 160 controls the drive unit 111 so that the drive voltage V111 applied to the piezoelectric element 110 is temporarily set from the current voltage value V10 to the maximum voltage value Vmax (time T0 in FIG. 19). ~ T1). A drive voltage V111 having a maximum voltage value Vmax is applied to the piezoelectric element 110 for a predetermined time (time T1 to T2 in FIG. 19). Thereafter, the control unit 160 controls the drive unit 111 so that the drive voltage V111 applied to the piezoelectric element 110 is set to the voltage value V1a (time T2 to T3 in FIG. 19).
上述の実施の形態1(図5参照)の場合と同様に、電圧値V10が圧電素子110に対して昇圧方向に印加されたものであるか、または、電圧値V10が圧電素子110に対して降圧方向に印加されたものであるかに関わらず、最終的に得られる圧電素子110の変位量X110は、変位量X13(図18中の点P13)となる。図19中の領域RR1によって示される粗調整が完了する。詳細は後述されるが、固定鏡15に対しては、この後、図19中の領域RR2によって示される微調整が行なわれる。
As in the first embodiment (see FIG. 5), the voltage value V10 is applied to the piezoelectric element 110 in the boosting direction, or the voltage value V10 is applied to the piezoelectric element 110. Regardless of whether the voltage is applied in the step-down direction, the finally obtained displacement amount X110 of the piezoelectric element 110 is the displacement amount X13 (point P13 in FIG. 18). The rough adjustment indicated by the region RR1 in FIG. 19 is completed. Although details will be described later, fine adjustment indicated by a region RR2 in FIG. 19 is performed on the fixed mirror 15 thereafter.
一方、図20および図21を参照して、フーリエ変換分光分析装置100の駆動を開始した時点(駆動開始時点としての現在)において、電圧値V20の駆動電圧V121が圧電素子120に印加されているとする(図21中における時間T0)。
On the other hand, referring to FIG. 20 and FIG. 21, at the time when driving of Fourier transform spectroscopic analyzer 100 is started (current as the driving start time), drive voltage V121 of voltage value V20 is applied to piezoelectric element 120. (Time T0 in FIG. 21).
制御部160は、圧電素子120に印加されるべき駆動電圧V121の電圧値V2a(第2目標電圧値)を設定する。本実施の形態においては、この電圧値V2aが、
(式1) V2a=(Vmax+Vmin)-V1a
を満足するように構成される。 Thecontroller 160 sets a voltage value V2a (second target voltage value) of the drive voltage V121 to be applied to the piezoelectric element 120. In the present embodiment, this voltage value V2a is
(Formula 1) V2a = (Vmax + Vmin) −V1a
It is configured to satisfy
(式1) V2a=(Vmax+Vmin)-V1a
を満足するように構成される。 The
(Formula 1) V2a = (Vmax + Vmin) −V1a
It is configured to satisfy
さらに、制御部160は、圧電素子120に印加される駆動電圧V121が、現在の電圧値V20から最小電圧値Vminに一旦設定されるように駆動部121を制御する(図21中における時間T0~T1)。圧電素子120には、最小電圧値Vminの駆動電圧V121が所定の時間印加される(図21中における時間T1~T2)。その後、制御部160は、圧電素子120に印加される駆動電圧V121が、電圧値V2aに設定されるように駆動部121を制御する(図21中における時間T2~T3)。
Furthermore, the control unit 160 controls the drive unit 121 so that the drive voltage V121 applied to the piezoelectric element 120 is temporarily set from the current voltage value V20 to the minimum voltage value Vmin (from time T0 to time T0 in FIG. 21). T1). A drive voltage V121 having a minimum voltage value Vmin is applied to the piezoelectric element 120 for a predetermined time (time T1 to T2 in FIG. 21). Thereafter, the control unit 160 controls the drive unit 121 so that the drive voltage V121 applied to the piezoelectric element 120 is set to the voltage value V2a (time T2 to T3 in FIG. 21).
上述の実施の形態2の変形例(図10参照)の場合と同様に、電圧値V20が圧電素子120に対して昇圧方向に印加されたものであるか、または、電圧値V20が圧電素子120に対して降圧方向に印加されたものであるかに関わらず、最終的に得られる圧電素子120の変位量X120は、変位量X24(図20中の点P24)となる。
Similarly to the above-described modification of the second embodiment (see FIG. 10), the voltage value V20 is applied to the piezoelectric element 120 in the boosting direction, or the voltage value V20 is the piezoelectric element 120. Regardless of whether the voltage is applied in the step-down direction, the finally obtained displacement amount X120 of the piezoelectric element 120 is the displacement amount X24 (point P24 in FIG. 20).
圧電素子110の変位量X110が変位量X13(図18中の点P13)となり、且つ圧電素子120の変位量X120が変位量X24(図20中の点P24)となることによって、固定鏡15は所定の姿勢に変化される(粗調整が完了する)。
The displacement amount X110 of the piezoelectric element 110 becomes the displacement amount X13 (point P13 in FIG. 18), and the displacement amount X120 of the piezoelectric element 120 becomes the displacement amount X24 (point P24 in FIG. 20). The posture is changed (rough adjustment is completed).
圧電素子110および圧電素子120によって、固定鏡15は所望の姿勢に正確に(一義的に)粗調整されることが可能となる。
The piezoelectric element 110 and the piezoelectric element 120 enable the fixed mirror 15 to be roughly (uniquely) roughly adjusted to a desired posture.
(微調整)
上述のとおり、粗調整が完了することによって、圧電素子110の変位量X110は変位量X13(図18中の点P13)となり、且つ圧電素子120の変位量X120は変位量X24(図19中の点P24)となる。 (Tweak)
As described above, when the coarse adjustment is completed, the displacement amount X110 of thepiezoelectric element 110 becomes the displacement amount X13 (point P13 in FIG. 18), and the displacement amount X120 of the piezoelectric element 120 becomes the displacement amount X24 (in FIG. 19). Point P24).
上述のとおり、粗調整が完了することによって、圧電素子110の変位量X110は変位量X13(図18中の点P13)となり、且つ圧電素子120の変位量X120は変位量X24(図19中の点P24)となる。 (Tweak)
As described above, when the coarse adjustment is completed, the displacement amount X110 of the
この状態で、光路分離鏡24(図11参照)からの反射光の強度に基づいて、2光路間における光の傾きを算出した信号処理部26は、姿勢調整信号出力部170に対してその算出した値に応じた所定の信号を送る。姿勢調整信号出力部170は、姿勢調整信号S170を制御部160に送る。
In this state, the signal processing unit 26 that calculates the inclination of the light between the two optical paths based on the intensity of the reflected light from the optical path separation mirror 24 (see FIG. 11) calculates the inclination to the attitude adjustment signal output unit 170. A predetermined signal according to the value is sent. The posture adjustment signal output unit 170 sends a posture adjustment signal S170 to the control unit 160.
圧電素子110は、制御部160によって制御される駆動部111からの駆動電圧V111を受けて、固定鏡15の傾きが所望の姿勢となるように連続的に駆動される。圧電素子120は、制御部160によって制御される駆動部121からの駆動電圧V121を受けて、固定鏡15の傾きが所望の姿勢となるように連続的に駆動される。なお、これらについては、圧電素子130,140(図14参照)についても同様である。
The piezoelectric element 110 receives the drive voltage V111 from the drive unit 111 controlled by the control unit 160, and is continuously driven so that the inclination of the fixed mirror 15 becomes a desired posture. The piezoelectric element 120 receives the drive voltage V121 from the drive unit 121 controlled by the control unit 160, and is continuously driven so that the inclination of the fixed mirror 15 becomes a desired posture. The same applies to the piezoelectric elements 130 and 140 (see FIG. 14).
姿勢調整装置30が、信号処理部26における検出結果(固定鏡15からの反射光と移動鏡16からの反射光との相対的な傾き)に基づいて、固定鏡15は所望の姿勢に調整される。干渉光を、より精度高く生成することが可能となる。
The posture adjustment device 30 adjusts the fixed mirror 15 to a desired posture based on the detection result in the signal processing unit 26 (relative inclination between the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16). The Interference light can be generated with higher accuracy.
[実施の形態3の変形例]
上述の実施の形態3において、圧電素子110に印加されるべき駆動電圧V111の電圧値V1a(第1目標電圧値)、および圧電素子120に印加されるべき駆動電圧V121の電圧値V2a(第2目標電圧値)は、最大電圧値Vmaxおよび最小電圧値Vminに対して、
(式2) V1a=V2a=(Vmax+Vmin)/2
を満足するように構成されるとよい。当該構成によれば、微調整時において以下のような効果が得られる。 [Modification of Embodiment 3]
In the above-described third embodiment, the voltage value V1a (first target voltage value) of the drive voltage V111 to be applied to thepiezoelectric element 110 and the voltage value V2a (second value) of the drive voltage V121 to be applied to the piezoelectric element 120 are described. Target voltage value) is the maximum voltage value Vmax and the minimum voltage value Vmin.
(Formula 2) V1a = V2a = (Vmax + Vmin) / 2
It is good to be configured to satisfy According to this configuration, the following effects can be obtained during fine adjustment.
上述の実施の形態3において、圧電素子110に印加されるべき駆動電圧V111の電圧値V1a(第1目標電圧値)、および圧電素子120に印加されるべき駆動電圧V121の電圧値V2a(第2目標電圧値)は、最大電圧値Vmaxおよび最小電圧値Vminに対して、
(式2) V1a=V2a=(Vmax+Vmin)/2
を満足するように構成されるとよい。当該構成によれば、微調整時において以下のような効果が得られる。 [Modification of Embodiment 3]
In the above-described third embodiment, the voltage value V1a (first target voltage value) of the drive voltage V111 to be applied to the
(Formula 2) V1a = V2a = (Vmax + Vmin) / 2
It is good to be configured to satisfy According to this configuration, the following effects can be obtained during fine adjustment.
図22を参照して、上記の式が満足される場合、圧電素子110が粗調整された後の状態において、圧電素子110の変位量X110は、変位量X13となる(図22中の点P13)。
Referring to FIG. 22, when the above expression is satisfied, the displacement amount X110 of the piezoelectric element 110 becomes the displacement amount X13 in the state after the piezoelectric element 110 is roughly adjusted (point P13 in FIG. 22). ).
図23を参照して、上記の式が満足される場合、圧電素子120が粗調整された後の状態において、圧電素子120の変位量X120は、変位量X24となる(図23中の点P24)。
Referring to FIG. 23, when the above equation is satisfied, the displacement amount X120 of the piezoelectric element 120 becomes the displacement amount X24 in the state after the piezoelectric element 120 is roughly adjusted (point P24 in FIG. 23). ).
図24は、図22中の点P13および図23中の点P24をそれぞれ拡大しつつ、1つの図として表した図である。図24に示すように、圧電素子110および圧電素子120が、電圧値V1a,V2aを中心として電圧値V3aおよび電圧値V3bの間でサーボ制御される場合、上記の式が満足されることによって、圧電素子110のヒステリシス曲線の両折り返し点を含むラインLAの傾きと、圧電素子120のヒステリシス曲線の両折り返し点を含むラインLBの傾きとが、互いに同一となる。印加電圧に対する変位量(伸縮量)が圧電素子110および圧電素子120において略同一となるため、固定鏡15の姿勢は安定して調整されることが可能となる。
FIG. 24 is a diagram showing a point P13 in FIG. 22 and a point P24 in FIG. As shown in FIG. 24, when the piezoelectric element 110 and the piezoelectric element 120 are servo-controlled between the voltage value V3a and the voltage value V3b around the voltage values V1a and V2a, the above formula is satisfied, The slope of the line LA including both turning points of the hysteresis curve of the piezoelectric element 110 and the slope of the line LB including both turning points of the hysteresis curve of the piezoelectric element 120 are the same. Since the displacement amount (expansion / contraction amount) with respect to the applied voltage is substantially the same in the piezoelectric element 110 and the piezoelectric element 120, the posture of the fixed mirror 15 can be stably adjusted.
また、互いに逆位相となるように印加される駆動電圧V111および駆動電圧V121の各々は、電圧値V1a,V2aを中心として対称な電圧値であるとよい。換言すると、駆動電圧V111として圧電素子110に印加される電圧値(VA)と、駆動電圧V121として圧電素子120に印加される電圧値(VB)と、電圧値V1a,V2aとの間には、(VA+VB)/2=電圧値V1a=電圧値V2aの関係が常に成立しているとよい。
Further, each of the drive voltage V111 and the drive voltage V121 applied so as to be in opposite phases to each other is preferably a symmetric voltage value around the voltage values V1a and V2a. In other words, between the voltage value (VA) applied to the piezoelectric element 110 as the drive voltage V111, the voltage value (VB) applied to the piezoelectric element 120 as the drive voltage V121, and the voltage values V1a and V2a, It is preferable that the relationship of (VA + VB) / 2 = voltage value V1a = voltage value V2a always holds.
当該構成によれば、圧電素子110および圧電素子120のちょうど間の部分に、固定鏡15の揺動軸が形成される。圧電素子110および圧電素子120は、固定鏡15に対していわゆるpush-pull動作をすることになる。上記の揺動軸を中心として、圧電素子110の変位量と圧電素子120の変位量に応じて、固定鏡15の姿勢は調整されることが可能となる。結果として、固定鏡15の姿勢はさらに安定して調整されることが可能となる。
According to this configuration, the oscillating shaft of the fixed mirror 15 is formed just between the piezoelectric element 110 and the piezoelectric element 120. The piezoelectric element 110 and the piezoelectric element 120 perform a so-called push-pull operation with respect to the fixed mirror 15. The posture of the fixed mirror 15 can be adjusted according to the displacement amount of the piezoelectric element 110 and the displacement amount of the piezoelectric element 120 around the above-described swing axis. As a result, the posture of the fixed mirror 15 can be adjusted more stably.
以上、本発明に基づいた各実施の形態について説明したが、今回開示された各実施の形態はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
As mentioned above, although each embodiment based on this invention was described, each embodiment disclosed this time is an illustration and restrictive at no points. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 マイケルソン干渉計、2 演算部、3 出力部、11 分光光学系、12 光源、13 コリメート光学系、14 ビームスプリッタ、15 固定鏡(光学素子)、16 移動鏡、17 集光光学系、18 検出器、21 参照光学系、22 参照光源、23 光路合成鏡、24 光路分離鏡、25 参照検出器、26 信号処理部、30,1000,2000 姿勢調整装置、60 駆動機構、100 フーリエ変換分光分析装置、110 圧電素子(第1圧電素子)、120 圧電素子(第2圧電素子)、130,140 圧電素子、111 駆動部(第1駆動部)、121 駆動部(第2駆動部)、150 支持部、152 ベース部材、154 弾性支持部材、156 台座、156a 大径部、156b 小径部、158 接着剤、160 制御部、170 姿勢調整信号出力部、200 光学素子、200S 表面、A1,A2 強度、D スポット、E1,E2,E3,E4 受光領域、H110,H120 ヒステリシス特性、L10,L11,L12a,L12b,L13a,L13b,L13c,L14a,L14b,L14c,L23a,L23b,L23c,L24a,L24b,L24c 線、LA,LB ライン、P10,P11,P12a,P12b,P13,P14,P20,P21,P23,P24,Pmin,Pmax 点、RR1,RR2 領域、S 試料、S170 姿勢調整信号、T0,T1,T2,T3 時間、V1a 電圧値(第1目標電圧値)、V2a 電圧値(第2目標電圧値)、V3a,V3b,V10,V20 電圧値、V111 駆動電圧(第1駆動電圧)、V121 駆動電圧(第2駆動電圧)、Vmix 最小電圧値、Vmax 最大電圧値、X10,X11,X12a,X12b,X13,X14,X20,X21,X23,X24,X110,X120,Xmin,Xmax 変位量。
1 Michelson interferometer, 2 computing unit, 3 output unit, 11 spectroscopic optical system, 12 light source, 13 collimating optical system, 14 beam splitter, 15 fixed mirror (optical element), 16 moving mirror, 17 condensing optical system, 18 Detector, 21 reference optical system, 22 reference light source, 23 optical path synthesis mirror, 24 optical path separation mirror, 25 reference detector, 26 signal processing unit, 30, 1000, 2000 attitude adjustment device, 60 drive mechanism, 100 Fourier transform spectroscopic analysis Device, 110 piezoelectric element (first piezoelectric element), 120 piezoelectric element (second piezoelectric element), 130, 140 piezoelectric element, 111 driving part (first driving part), 121 driving part (second driving part), 150 support Part, 152 base member, 154 elastic support member, 156 pedestal, 156a large diameter part, 156b small diameter part, 158 Adhesive, 160 control unit, 170 attitude adjustment signal output unit, 200 optical element, 200S surface, A1, A2 intensity, D spot, E1, E2, E3, E4 light receiving area, H110, H120 hysteresis characteristics, L10, L11, L12a , L12b, L13a, L13b, L13c, L14a, L14b, L14c, L23a, L23b, L23c, L24a, L24b, L24c line, LA, LB line, P10, P11, P12a, P12b, P13, P14, P20, P21, P23 , P24, Pmin, Pmax points, RR1, RR2 region, S sample, S170 attitude adjustment signal, T0, T1, T2, T3 time, V1a voltage value (first target voltage value), V2a voltage value (second target voltage value) ), V3a, V3b, V10, V20 Value, V111 drive voltage (first drive voltage), V121 drive voltage (second drive voltage), Vmix minimum voltage value, Vmax maximum voltage value, X10, X11, X12a, X12b, X13, X14, X20, X21, X23, X24, X110, X120, Xmin, Xmax displacement.
Claims (8)
- 光学素子(200)を所望の姿勢に調整する姿勢調整装置(1000,2000,30)であって、
第1圧電素子(110)を含み、前記光学素子を揺動可能に支持するとともに、前記第1圧電素子の伸縮によって前記光学素子の姿勢を変化させる支持部(150)と、
前記第1圧電素子に接続され、前記第1圧電素子を伸縮させる第1駆動電圧(V111)を出力する第1駆動部(111)と、
前記光学素子を所望の姿勢に調整するための姿勢調整信号(S170)を出力する姿勢調整信号出力部(170)と、
前記姿勢調整信号出力部および前記第1駆動部に接続され、前記姿勢調整信号出力部から受けた前記姿勢調整信号に応じて、前記第1駆動部から出力される前記第1駆動電圧の電圧値を制御する制御部(160)と、を備え、
前記第1圧電素子は、前記第1圧電素子に印加される前記第1駆動電圧の最大電圧値(Vmax)と最小電圧値(Vmin)との間において形成されるヒステリシス特性(H110)を有し、
前記姿勢調整装置(1000,2000,30)が前記光学素子(200)を所望の姿勢に調整する際には、
前記制御部(160)は、前記姿勢調整信号に応じて前記第1圧電素子に印加されるべき前記第1駆動電圧の第1目標電圧値(V1a)を設定し、
さらに、前記制御部(160)は、前記第1圧電素子に印加される前記第1駆動電圧が、現在の電圧値(V10)から前記最大電圧値または前記最小電圧値に一旦設定された後に前記第1目標電圧値に設定されるように、前記第1駆動部を制御する、
姿勢調整装置。 A posture adjusting device (1000, 2000, 30) for adjusting the optical element (200) to a desired posture,
A support portion (150) that includes a first piezoelectric element (110), supports the optical element in a swingable manner, and changes the posture of the optical element by expansion and contraction of the first piezoelectric element;
A first drive unit (111) connected to the first piezoelectric element and outputting a first drive voltage (V111) for expanding and contracting the first piezoelectric element;
An attitude adjustment signal output unit (170) for outputting an attitude adjustment signal (S170) for adjusting the optical element to a desired attitude;
A voltage value of the first drive voltage that is connected to the posture adjustment signal output unit and the first drive unit and that is output from the first drive unit in response to the posture adjustment signal received from the posture adjustment signal output unit. A control unit (160) for controlling
The first piezoelectric element has a hysteresis characteristic (H110) formed between a maximum voltage value (Vmax) and a minimum voltage value (Vmin) of the first drive voltage applied to the first piezoelectric element. ,
When the posture adjustment device (1000, 2000, 30) adjusts the optical element (200) to a desired posture,
The controller (160) sets a first target voltage value (V1a) of the first drive voltage to be applied to the first piezoelectric element according to the attitude adjustment signal,
Further, the control unit (160) may be configured such that the first driving voltage applied to the first piezoelectric element is temporarily set from the current voltage value (V10) to the maximum voltage value or the minimum voltage value. Controlling the first drive unit to be set to a first target voltage value;
Attitude adjustment device. - 前記支持部(150)は、前記第1圧電素子と対向するように配置され且つ前記第1圧電素子の前記ヒステリシス特性と同一のヒステリシス特性(H120)を有する第2圧電素子(120)を含み、
前記第2圧電素子には、前記第2圧電素子を伸縮させる第2駆動電圧(V121)を出力する第2駆動部(121)が接続され、
前記制御部(160)は、前記第2駆動部に接続され、前記姿勢調整信号出力部から受けた前記姿勢調整信号に応じて、前記第2駆動部から出力される前記第2駆動電圧の電圧値を制御し、
前記姿勢調整装置(2000,30)が前記光学素子(200)を所望の姿勢に調整する際には、
前記制御部(160)は、前記姿勢調整信号に応じて前記第2圧電素子に印加されるべき前記第2駆動電圧の第2目標電圧値(V2a)を設定し、
さらに、前記制御部(160)は、前記第2圧電素子に印加される前記第2駆動電圧が、現在の電圧値(V20)から前記最大電圧値または前記最小電圧値に一旦設定された後に前記第2目標電圧値に設定されるように、前記第2駆動部を制御する、
請求項1に記載の姿勢調整装置。 The support portion (150) includes a second piezoelectric element (120) that is disposed to face the first piezoelectric element and has the same hysteresis characteristic (H120) as the hysteresis characteristic of the first piezoelectric element,
A second drive unit (121) that outputs a second drive voltage (V121) for expanding and contracting the second piezoelectric element is connected to the second piezoelectric element,
The control unit (160) is connected to the second drive unit, and the voltage of the second drive voltage output from the second drive unit according to the posture adjustment signal received from the posture adjustment signal output unit. Control the value,
When the posture adjustment device (2000, 30) adjusts the optical element (200) to a desired posture,
The controller (160) sets a second target voltage value (V2a) of the second drive voltage to be applied to the second piezoelectric element according to the attitude adjustment signal,
Further, the control unit (160) may be configured such that the second driving voltage applied to the second piezoelectric element is temporarily set from the current voltage value (V20) to the maximum voltage value or the minimum voltage value. Controlling the second drive unit to be set to a second target voltage value;
The posture adjusting apparatus according to claim 1. - 前記第1目標電圧値をV1aとし、前記第2目標電圧値をV2aとし、前記最大電圧値をVmaxとし、前記最小電圧値をVminとすると、
(式1) V2a=(Vmax+Vmin)-V1a
が満足するように構成され、
前記制御部(160)は、前記第1圧電素子に印加される前記第1駆動電圧が、現在の電圧値から前記最大電圧値に一旦設定された後に前記第1目標電圧値に設定されるように、前記第1駆動部(111)を制御し、
さらに、前記制御部(160)は、前記第2圧電素子に印加される前記第2駆動電圧が、現在の電圧値から前記最小電圧値に一旦設定された後に前記第2目標電圧値に設定されるように、前記第2駆動部(121)を制御し、
前記第1圧電素子に前記第1目標電圧値の前記第1駆動電圧が印加され、且つ前記第2圧電素子に前記第2目標電圧値の前記第2駆動電圧が印加された後の状態において、前記姿勢調整装置が前記光学素子(200)を所望の姿勢に調整する際には、
前記姿勢調整信号出力部から前記姿勢調整信号を受けた前記制御部は、前記第1圧電素子に印加される前記第1駆動電圧と前記第2圧電素子に印加される前記第2駆動電圧とが互いに逆位相となるように、前記第1駆動部(111)および前記第2駆動部(121)をそれぞれ制御する、
請求項2に記載の姿勢調整装置。 When the first target voltage value is V1a, the second target voltage value is V2a, the maximum voltage value is Vmax, and the minimum voltage value is Vmin,
(Formula 1) V2a = (Vmax + Vmin) −V1a
Is configured to satisfy
The controller (160) may set the first drive voltage applied to the first piezoelectric element to the first target voltage value after being temporarily set from the current voltage value to the maximum voltage value. And controlling the first driving unit (111),
Further, the control unit (160) sets the second drive voltage applied to the second piezoelectric element from the current voltage value to the minimum voltage value and then sets the second target voltage value to the second target voltage value. Controlling the second driving part (121),
In a state after the first driving voltage of the first target voltage value is applied to the first piezoelectric element and the second driving voltage of the second target voltage value is applied to the second piezoelectric element, When the posture adjustment device adjusts the optical element (200) to a desired posture,
The control unit that has received the posture adjustment signal from the posture adjustment signal output unit has the first drive voltage applied to the first piezoelectric element and the second drive voltage applied to the second piezoelectric element. Controlling each of the first drive unit (111) and the second drive unit (121) so as to be in opposite phases to each other;
The posture adjusting apparatus according to claim 2. - 前記第1目標電圧値、前記第2目標電圧値、前記最大電圧値、および、前記最小電圧値は、
(式2) V1a=V2a=(Vmax+Vmin)/2
を満足するように構成される、
請求項3に記載の姿勢調整装置。 The first target voltage value, the second target voltage value, the maximum voltage value, and the minimum voltage value are:
(Formula 2) V1a = V2a = (Vmax + Vmin) / 2
Configured to satisfy
The posture adjustment apparatus according to claim 3. - 互いに逆位相となるように前記第1圧電素子に印加される前記第1駆動電圧(V111)および前記第2圧電素子に印加される前記第2駆動電圧(V121)の各々は、前記第1目標電圧値(V1a)および前記第2目標電圧値(V2a)を中心として対称な電圧値である、
請求項4に記載の姿勢調整装置。 Each of the first drive voltage (V111) applied to the first piezoelectric element and the second drive voltage (V121) applied to the second piezoelectric element so as to be in opposite phases to each other is set to the first target. A voltage value symmetrical about the voltage value (V1a) and the second target voltage value (V2a),
The posture adjustment apparatus according to claim 4. - 請求項1から5のいずれかに記載の姿勢調整装置と、
移動鏡と、
前記光学素子(200)としての固定鏡と、
光源と、
前記光源が出射した光を前記固定鏡に向かう光と前記移動鏡に向かう光とに分割するとともに、前記固定鏡および前記移動鏡の各々に反射した光を合成し干渉光として出射するビームスプリッタと、
前記干渉光を検出する検出器と、を備える、
マイケルソン干渉計。 A posture adjusting device according to any one of claims 1 to 5;
A moving mirror,
A fixed mirror as the optical element (200);
A light source;
A beam splitter that divides the light emitted from the light source into light directed toward the fixed mirror and light directed toward the movable mirror, and combines the light reflected on each of the fixed mirror and the movable mirror to emit as interference light; ,
A detector for detecting the interference light,
Michelson interferometer. - 請求項6に記載のマイケルソン干渉計(1)と、
前記検出器が検出した前記干渉光のスペクトルを算出する演算部(2)と、
前記演算部によって得られた前記スペクトルを出力する出力部(3)と、を備える、
フーリエ変換分光分析装置。 Michelson interferometer (1) according to claim 6,
A calculation unit (2) for calculating a spectrum of the interference light detected by the detector;
An output unit (3) for outputting the spectrum obtained by the arithmetic unit,
Fourier transform spectroscopic analyzer. - 光学素子(200)を所望の姿勢に調整する姿勢調整装置(2000,30)であって、
第1圧電素子(110)および前記第1圧電素子と対向するように配置された第2圧電素子(120)を含み、前記光学素子を揺動可能に支持するとともに、前記第1圧電素子および前記第2圧電素子の伸縮によって前記光学素子の姿勢を変化させる支持部(150)と、
前記第1圧電素子に接続され、前記第1圧電素子を伸縮させる第1駆動電圧(V111)を出力する第1駆動部(111)と、
前記第2圧電素子に接続され、前記第2圧電素子を伸縮させる第2駆動電圧(V121)を出力する第2駆動部(121)と、
前記光学素子を所望の姿勢に調整するための姿勢調整信号(S170)を出力する姿勢調整信号出力部(170)と、
前記姿勢調整信号出力部、前記第1駆動部および前記第2駆動部に接続され、前記姿勢調整信号出力部から受けた前記姿勢調整信号に応じて、前記第1駆動部から出力される前記第1駆動電圧の電圧値および前記第2駆動部から出力される前記第2駆動電圧の電圧値を制御する制御部(160)と、を備え、
前記第1圧電素子および前記第2圧電素子は、前記第1圧電素子および前記第2圧電素子にそれぞれ印加される前記第1駆動電圧および前記第2駆動電圧の最大電圧値(Vmax)と最小電圧値(Vmin)との間において形成されるヒステリシス特性(H110,H120)がほぼ同一となるように構成され、
前記姿勢調整装置(2000,30)が前記光学素子(200)を所望の姿勢に調整する際には、
前記制御部(160)は、前記姿勢調整信号に応じて前記第1圧電素子に印加されるべき前記第1駆動電圧の目標電圧値(V1a)と、前記姿勢調整信号に応じて前記第2圧電素子に印加されるべき前記第2駆動電圧の目標電圧値(V2a)とを設定し、
さらに、前記制御部(160)は、前記第1駆動電圧および前記第2駆動電圧の大小関係に応じて、前記第1圧電素子および前記第2圧電素子のうちの一方に印加される駆動電圧が現在の電圧値から前記最大電圧値に一旦設定された後に前記第1圧電素子および前記第2圧電素子のうちの前記一方の前記目標電圧値に設定され、且つ前記第1圧電素子および前記第2圧電素子のうちの他方に印加される駆動電圧が現在の電圧値から前記最小電圧値に一旦設定された後に前記第1圧電素子および前記第2圧電素子のうちの前記他方の前記目標電圧値に設定されるように、前記第1駆動部および前記第2駆動部を制御する、
姿勢調整装置。 A posture adjusting device (2000, 30) for adjusting the optical element (200) to a desired posture,
A first piezoelectric element (110) and a second piezoelectric element (120) disposed so as to face the first piezoelectric element, and supports the optical element in a swingable manner; A support part (150) for changing the posture of the optical element by expansion and contraction of the second piezoelectric element;
A first drive unit (111) connected to the first piezoelectric element and outputting a first drive voltage (V111) for expanding and contracting the first piezoelectric element;
A second drive unit (121) connected to the second piezoelectric element and outputting a second drive voltage (V121) for expanding and contracting the second piezoelectric element;
An attitude adjustment signal output unit (170) for outputting an attitude adjustment signal (S170) for adjusting the optical element to a desired attitude;
The first drive unit connected to the posture adjustment signal output unit, the first drive unit, and the second drive unit, and output from the first drive unit according to the posture adjustment signal received from the posture adjustment signal output unit. A control unit (160) for controlling a voltage value of one driving voltage and a voltage value of the second driving voltage output from the second driving unit,
The first piezoelectric element and the second piezoelectric element are the first driving voltage and the maximum voltage value (Vmax) and the minimum voltage of the second driving voltage applied to the first piezoelectric element and the second piezoelectric element, respectively. The hysteresis characteristics (H110, H120) formed between the values (Vmin) are substantially the same,
When the posture adjustment device (2000, 30) adjusts the optical element (200) to a desired posture,
The control unit (160) is configured to apply a target voltage value (V1a) of the first drive voltage to be applied to the first piezoelectric element according to the posture adjustment signal and the second piezoelectric according to the posture adjustment signal. Setting a target voltage value (V2a) of the second drive voltage to be applied to the element;
Further, the control unit (160) may determine whether the drive voltage applied to one of the first piezoelectric element and the second piezoelectric element is in accordance with the magnitude relationship between the first drive voltage and the second drive voltage. After the current voltage value is once set to the maximum voltage value, the target voltage value is set to the one of the first piezoelectric element and the second piezoelectric element, and the first piezoelectric element and the second voltage value are set. After the drive voltage applied to the other of the piezoelectric elements is once set from the current voltage value to the minimum voltage value, the drive voltage applied to the other target voltage value of the first piezoelectric element and the second piezoelectric element is set. Controlling the first drive unit and the second drive unit to be set;
Attitude adjustment device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011132206 | 2011-06-14 | ||
JP2011-132206 | 2011-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012172902A1 true WO2012172902A1 (en) | 2012-12-20 |
Family
ID=47356897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/062279 WO2012172902A1 (en) | 2011-06-14 | 2012-05-14 | Posture adjusting device, michelson interferometer, and fourier transform spectroscopic analysis device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012172902A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6459019A (en) * | 1987-08-29 | 1989-03-06 | Shimadzu Corp | Fourier transformation type spectrophotometer |
JPH03256375A (en) * | 1990-03-06 | 1991-11-15 | Nec Corp | Driving method of piezoelectric element |
JP2005043407A (en) * | 2003-07-22 | 2005-02-17 | Ricoh Co Ltd | Wave front aberration correction mirror and optical pickup |
WO2011135943A1 (en) * | 2010-04-28 | 2011-11-03 | コニカミノルタホールディングス株式会社 | Optical path correcting device, interferometer, and fourier-transform spectroscopic analyzer |
-
2012
- 2012-05-14 WO PCT/JP2012/062279 patent/WO2012172902A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6459019A (en) * | 1987-08-29 | 1989-03-06 | Shimadzu Corp | Fourier transformation type spectrophotometer |
JPH03256375A (en) * | 1990-03-06 | 1991-11-15 | Nec Corp | Driving method of piezoelectric element |
JP2005043407A (en) * | 2003-07-22 | 2005-02-17 | Ricoh Co Ltd | Wave front aberration correction mirror and optical pickup |
WO2011135943A1 (en) * | 2010-04-28 | 2011-11-03 | コニカミノルタホールディングス株式会社 | Optical path correcting device, interferometer, and fourier-transform spectroscopic analyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5954979B2 (en) | Measuring device with multi-wavelength interferometer | |
US8670126B2 (en) | Optical interference measuring method and optical interference measuring apparatus | |
US20150020244A1 (en) | Beam scanning system | |
JP4909244B2 (en) | Interference measurement device | |
JP5714773B2 (en) | Spectrometer | |
JP4147295B2 (en) | Techniques for obtaining preferred optical alignment in scanning interferometers | |
WO2012172902A1 (en) | Posture adjusting device, michelson interferometer, and fourier transform spectroscopic analysis device | |
JP4884850B2 (en) | Interference measurement device | |
US11326950B2 (en) | Retro-interferometer having active readjustment | |
JP4880519B2 (en) | Interference measurement device | |
WO2012063551A1 (en) | Orientation adjusting mechanism for optical component, michelson interferometer, and fourier transform spectroscopic analysis device | |
JP2013110886A (en) | Posture correction device, michelson interferometer, and fourier transformation spectroscopic analysis device | |
JP2012242280A (en) | Detection system, michelson interferometer, and fourier transformation spectroscopic analyzer | |
JP5797035B2 (en) | Variable spectroscopic element | |
JP2008058968A (en) | Apparatus and method for calibrating change in displacement of reflective parts in diffractive optical modulator | |
JP2004045326A (en) | Interferometer | |
JP2002374033A (en) | Variable wavelength light source device | |
JP2004271365A (en) | Aberration-measuring apparatus, aberration-measuring method, optical head rigging apparatus, and optical head adjusting method | |
JP4377293B2 (en) | Shape measuring device and measuring pressure control method thereof | |
JP2022521573A (en) | Stage system and lithography equipment | |
US20210333148A1 (en) | Measurement apparatus and measurement method | |
WO2011148726A1 (en) | Interferometer, and fourier transform spectrometry device | |
US20230069658A1 (en) | Amplified laser device using a mems mma having tip, tilt and piston capability to both correct a beam profile and steer the amplified beam | |
JPH0784172A (en) | Focusing servo mechanism | |
WO2020174665A1 (en) | Michelson interferometer and fourier transform infrared spectrometer comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12800871 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12800871 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |