WO2011135943A1 - Optical path correcting device, interferometer, and fourier-transform spectroscopic analyzer - Google Patents

Optical path correcting device, interferometer, and fourier-transform spectroscopic analyzer Download PDF

Info

Publication number
WO2011135943A1
WO2011135943A1 PCT/JP2011/056332 JP2011056332W WO2011135943A1 WO 2011135943 A1 WO2011135943 A1 WO 2011135943A1 JP 2011056332 W JP2011056332 W JP 2011056332W WO 2011135943 A1 WO2011135943 A1 WO 2011135943A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
piezoelectric element
rotation
rotating member
path correction
Prior art date
Application number
PCT/JP2011/056332
Other languages
French (fr)
Japanese (ja)
Inventor
明 小坂
悟 広瀬
吉宏 原
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011525763A priority Critical patent/JP4888614B2/en
Publication of WO2011135943A1 publication Critical patent/WO2011135943A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0202Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means

Definitions

  • the present invention relates to an optical path correction device that corrects an optical path of light reflected by a reflection mirror by rotating a rotation member that supports the reflection mirror, an interferometer including the optical path correction device, and an interferometer And a Fourier transform spectroscopic analyzer (also referred to as a Fourier transform spectrometer).
  • the infrared light emitted from the light source is divided into two directions, a fixed mirror and a moving mirror, by a beam splitter, and the fixed mirror and the moving mirror respectively.
  • a configuration is adopted in which the light reflected and returned is combined into one optical path by the beam splitter.
  • the moving mirror is moved back and forth (in the direction of the optical axis of the incident light), the optical path difference between the two divided beams changes, so the intensity of the combined light changes according to the amount of movement of the moving mirror.
  • Interference light (interferogram). A spectral distribution of incident light can be obtained by Fourier transforming the interferogram.
  • the spectral accuracy (resolution) of FTIR depends on the amount of movement of the moving mirror. The larger the amount of movement, the higher the resolution. However, the larger the amount of movement of the moving mirror, the higher the translation of the moving mirror. Since a relative inclination (angle difference) is generated between the reflected light from the movable mirror and the reflected light from the fixed mirror, the contrast of the interference fringes is reduced. It is necessary to correct the optical path.
  • Patent Document 1 for example, as shown in FIG. 15, the fixed mirror 101 is fixed to a fixing base (not shown) via the center leg 102, and the back surface of the fixed mirror 101 (on the side fixed by the center leg 102). 2), two sets of springs 103 and piezoelectric elements 104 are arranged at positions facing each other with the center leg 102 in between. The direction connecting the spring 103 and the piezoelectric element 104 is orthogonal to each other between the sets.
  • each piezoelectric element 104 expands and contracts, so that the fixed mirror 101 swings (rotates) vertically and horizontally with the connection position with the center leg 102 as a fulcrum.
  • the optical path of the light reflected by the fixed mirror 101 can be corrected.
  • JP-A-64-59019 see page 2, upper right column, line 10 to lower left column, line 5, line 3, etc.
  • the interferometer not only the slight inclination of the moving mirror during measurement (translation), but also the positional deviation of the optical element due to the environmental temperature change during use and the change over time are corrected. For this purpose, it is necessary that the rotation angle of the fixed mirror be increased. In addition, since downsizing of the interferometer is required due to the recent portability of equipment, it is necessary that the rotation angle of the fixed mirror can be increased with a small configuration.
  • the piezoelectric element 104 is located away from the center leg 102, and as shown in FIG. 16A, the rotation center P of the fixed mirror 101 and the piezoelectric element 104 are extended.
  • the position Q of the apparent power point is separated.
  • the apparent force point position Q is the position of the force point when the piezoelectric element 104 is considered to be equivalent to pressing the fixed mirror 101 at one point when the piezoelectric element 104 is extended. Is deviated from the center of the end surface (contact surface with the fixed mirror 101) of the piezoelectric element 104, but it can be considered as the center of the end surface for convenience.
  • the piezoelectric element 104 is arranged close to the center leg 102, the rotation center P of the fixed mirror 101 and the apparent force point position Q of the piezoelectric element 104 approach each other. It is considered that the fixed mirror 101 can be greatly rotated with respect to a certain extension amount of the piezoelectric element 104.
  • the apparent force point position Q cannot be brought closer to the rotation center P of the fixed mirror 101 any more. The optical path of the reflected light cannot be corrected over a wide angle range by further rotating the fixed mirror 101 with respect to a certain extension amount of the piezoelectric element 104.
  • the piezoelectric element 104 is thinned to reduce the area of the end face of the piezoelectric element 104, the apparent force point position Q of the piezoelectric element 104 is made closer to the rotation center P than in the case of FIG.
  • the piezoelectric element 104 is thinned, it is difficult to ensure its strength. Therefore, even if the piezoelectric element 104 is not thinned (in a state where the strength of the piezoelectric element 104 is ensured), it is necessary to increase the rotation angle of the fixed mirror 101 to correct the optical path of the reflected light.
  • the present invention has been made to solve the above-described problems, and its purpose is to increase the rotation angle of the reflecting mirror while ensuring the strength of a displacement member such as a piezoelectric element with a small configuration.
  • An object of the present invention is to provide an optical path correction apparatus capable of correcting the optical path of reflected light in a wide angle range, an interferometer including the optical path correction apparatus, and a Fourier transform spectroscopic analysis apparatus including the interferometer.
  • An optical path correction apparatus is an optical path correction apparatus that corrects an optical path of light, and includes a reflection mirror and a support surface that supports the reflection mirror, and is a rotation member that can rotate around a rotation center.
  • a displacement member that is provided on the opposite side to the reflection mirror with respect to the rotation member, and that can be expanded and contracted in a direction in which the distance from the rotation member changes, and an end surface perpendicular to the expansion and contraction direction of the displacement member
  • a connecting member that connects the rotating member, and the connecting member has an action region that transmits expansion / contraction of the displacement member to the turning member when viewed from the extension / contraction direction. Is characterized in that it is narrower than the end surface perpendicular to the direction of expansion and contraction of the displacement member and corresponds to a partial region near the center of rotation on the end surface.
  • the connecting member is interposed via the action region when the displacement member is extended.
  • the rotating member can be largely rotated. Accordingly, the rotation angle of the rotating member can be increased without increasing the extension amount using a large displacement member, and a large correction range of the optical path of the light reflected by the reflecting mirror can be ensured. As a result, the optical path of the reflected light can be corrected in a wide angle range while having a small configuration.
  • the optical path of the reflected light can be corrected while ensuring the strength of the displacement member.
  • FIG. 1 is a plan view illustrating a schematic configuration of an optical path correction apparatus according to Embodiment 2.
  • FIG. 1 is explanatory drawing which shows the electrical connection relationship of the piezoelectric element of the said optical path correction apparatus, and a voltage application part
  • (b) is explanatory drawing which shows the waveform of the voltage applied to two piezoelectric elements. It is. It is a side view which shows the attitude
  • position of the rotation member of the said optical path correction apparatus. 6 is a plan view illustrating a schematic configuration of an optical path correction apparatus according to Embodiment 2.
  • (A) is a side view which shows the attitude
  • (b) is after the voltage application to each piezoelectric element of the said optical path correction apparatus.
  • It is a side view which shows the attitude
  • It is a bottom view from the piezoelectric element side of the rotating member.
  • (A) is a top view which shows the other example of arrangement
  • (b) is explanatory drawing which shows the waveform of the voltage applied to the said piezoelectric element.
  • (A) is a side view of the said optical path correction apparatus
  • (b) is a side view which shows the other example of the said optical path correction apparatus.
  • FIG. 1 is an explanatory diagram schematically showing a schematic configuration of a Fourier transform spectroscopic analyzer.
  • This apparatus includes an interferometer 1, a calculation unit 2, and an output unit 3.
  • the interferometer 1 is composed of a two-optical path branching Michelson interferometer, the details of which will be described later.
  • the computing unit 2 performs sampling, A / D conversion, and Fourier transform of the signal output from the interferometer 1 to generate a spectrum indicating the light intensity for each wave number (1 / wavelength).
  • the output unit 3 outputs (for example, displays) the spectrum generated by the calculation unit 2.
  • details of the interferometer 1 will be described.
  • the interferometer 1 has a spectroscopic optical system 11, a reference optical system 21, and an optical path correction device 31.
  • the optical path correction device 31 corrects the optical path of the light reflected by the reflection mirror based on the inclination of the light between the two optical paths detected by the signal processing unit 26 described later of the reference optical system 21.
  • the detailed configuration will be described later.
  • the spectroscopic optical system 11 includes a spectroscopic light source 12, a collimating optical system 13, a BS (beam splitter) 14, a fixed mirror 15, a moving mirror 16, a condensing optical system 17, a spectroscopic detector 18, and a driving mechanism. 19. Note that the positional relationship between the fixed mirror 15 and the movable mirror 16 with respect to the BS 14 may be reversed.
  • the spectral light source 12 is a spectral light source, and emits infrared light, for example.
  • the collimating optical system 13 converts the light from the spectral light source 12 into parallel light and guides it to the BS 14.
  • the BS 14 separates incident light, that is, light emitted from the spectral light source 12 into two lights, which are guided to the fixed mirror 15 and the movable mirror 16 and reflected by the fixed mirror 15 and the movable mirror 16, respectively. Each light is combined and emitted as interference light, and is composed of, for example, a half mirror.
  • the condensing optical system 17 condenses the light synthesized and emitted by the BS 14 and guides it to the spectroscopic detector 18.
  • the spectroscopic detector 18 receives the interference light incident from the BS 14 via the condensing optical system 17 and detects an interferogram (interference pattern, interference fringe).
  • the drive mechanism 19 translates the movable mirror 16 so that the difference (optical path length difference) between the optical path of the light reflected by the fixed mirror 15 and the optical path of the light reflected by the movable mirror 16 changes.
  • a parallel leaf spring type drive mechanism For example, a parallel leaf spring type drive mechanism.
  • FIG. 2A is a cross-sectional view illustrating a schematic configuration of the drive mechanism 19, and FIGS. 2B and 2C are cross-sectional views illustrating the drive unit 45 of the drive mechanism 19 in an enlarged manner.
  • the drive mechanism 19 arranges the leaf springs 41 and 42 in parallel, and arranges two rigid bodies 43 and 44 between the two leaf springs 41 and 42 so as to be separated from each other.
  • the movable mirror 16 is formed on the surface on the 43 side, and the drive unit 45 is arranged on the surface on the rigid body 44 side.
  • the driving unit 45 is constituted by a piezoelectric element, for example.
  • This piezoelectric element has a structure in which a piezoelectric material PZT (lead zirconate titanate) 46 is sandwiched between electrodes 47 and 48.
  • PZT lead zirconate titanate
  • the leaf spring portion 41 is deformed so as to protrude upward (see FIG. 2B).
  • the movable mirror 16 is displaced downward together with the rigid body 43 (see FIG. 2A).
  • the PZT 46 is contracted by applying a voltage having a reverse polarity to the electrodes 47 and 48, the leaf spring portion 41 is deformed so as to protrude downward (see FIG. 2C).
  • the movable mirror 16 is displaced upward together with the rigid body 43 (see FIG. 2A).
  • the leaf spring portion 41 can be bent and deformed, and the movable mirror 16 together with the rigid body 43 has a vibration amplitude W.
  • the drive mechanism 19 may be configured not only with the parallel leaf spring type drive mechanism described above but also with an electromagnetic drive mechanism using, for example, a VCM (voice coil motor).
  • VCM voice coil motor
  • the light emitted from the spectral light source 12 is converted into parallel light by the collimating optical system 13 and then separated into two light beams by transmission and reflection at the BS 14.
  • One of the separated light beams is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15.
  • Each of the separated light beams returns to the original optical path and is superposed by the BS 14, and the sample S is irradiated as interference light.
  • the sample S is irradiated with light while the moving mirror 16 is continuously moved by the drive mechanism 19, and the difference in optical path length from the BS 14 to each mirror (moving mirror 16, fixed mirror 15) is an integer of the wavelength. When it is doubled, the intensity of the superimposed light becomes maximum.
  • the intensity of the superimposed light changes.
  • the light transmitted through the sample S is collected by the condensing optical system 17 and enters the spectroscopic detector 18 where it is detected as an interferogram.
  • an interferogram obtained by sampling the detection signal from the spectroscopic detector 18 is A / D converted and Fourier transformed to generate a spectrum indicating the light intensity for each wave number.
  • the above spectrum is output (for example, displayed) by the output unit 3, and the characteristics (material, structure, component amount, etc.) of the sample S can be analyzed based on this spectrum.
  • the reference optical system 21 shares part of the configuration with the above-described spectroscopic optical system 11, and in addition to the collimating optical system 13, the BS 14, the fixed mirror 15, the movable mirror 16, and the condensing optical system 17 described above.
  • the reference light source 22, the optical path synthesis mirror 23, the optical path separation mirror 24, the reference detector 25, and the signal processing unit 26 are included.
  • the reference light source 22 is a light source for detecting the position of the movable mirror 16 and generating a timing signal for sampling in the arithmetic unit 2, and is composed of, for example, a semiconductor laser that emits red light.
  • the optical path combining mirror 23 transmits the light from the spectral light source 12 and reflects the light from the reference light source 22, thereby combining the optical paths of these lights into the same optical path.
  • the optical path separation mirror 24 transmits the light emitted from the spectroscopic light source 11 and incident via the BS 14, and reflects the light emitted from the reference light source 22 and incident via the BS 14. Separate the light path.
  • the reference detector 25 detects light (interference light) emitted from the reference light source 22 and incident on the optical path separation mirror 24 via the BS 14 and reflected there.
  • the reference detector 25 includes, for example, a quadrant sensor. .
  • the signal processing unit 26 generates a signal indicating the sampling timing in the calculation unit 2 based on the intensity of the interference light detected by the reference detector 25. Since the generation of this signal can be performed by a known method, the description thereof is omitted here.
  • the signal processing unit 26 determines the inclination of the light between the two optical paths (the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16 based on the intensity of the interference light detected by the reference detector 25. Relative slope) is detected.
  • the four light receiving areas of the reference detector 25 are assumed to be E1 to E4 counterclockwise, and the light spot D of the interference light is located at the center of the entire light receiving area.
  • the sum of the light intensities detected in the light receiving areas E1 and E2 is A1
  • the sum of the light intensities detected in the light receiving areas E3 and E4 is A2
  • the change in the intensity A1 and A2 over time is shown. Assuming that the signals shown in FIG.
  • the light inclination (relative inclination direction and amount of inclination) between the two optical paths based on these signals.
  • the light is inclined between the two optical paths by an angle corresponding to the phase difference ⁇ in the direction in which the light receiving regions E1 and E2 and the light receiving regions E3 and E4 are aligned (vertical direction in FIG. 3).
  • shaft of FIG. 4 is shown by the relative value.
  • the light emitted from the reference light source 22 is reflected by the optical path combining mirror 23, is incident on the BS 14 via the collimating optical system 13, and is split into two light beams there.
  • One light beam separated by the BS 14 is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15.
  • Each light beam returns to the original optical path and is superimposed on the BS 14, and is irradiated to the sample S as interference light.
  • the light transmitted through the sample S enters the optical path separation mirror 24 through the condensing optical system 17, is reflected there, and enters the reference detector 25.
  • the signal processing unit 26 detects the inclination of light between the two optical paths based on the intensity of the interference light detected by the reference detector 25.
  • the optical path correction device 31 Based on the detection result of the signal processing unit 26, the optical path correction device 31 adjusts the attitude of the fixed mirror 15 (the angle with respect to the BS 14) so as to eliminate the inclination of the light between the two optical paths. The optical path of the reflected light is corrected.
  • optical path correction device 31 Details of the optical path correction device 31 will be described.
  • the optical path correction device 31 will be described with reference to a comparative example while giving two examples.
  • FIG. 5A is a plan view illustrating a schematic configuration of the optical path correction device 31 according to the first embodiment
  • FIG. 5B is a side view of the optical path correction device 31.
  • the fixed mirror 15 is not shown for convenience.
  • the optical path correction device 31 includes a fixed mirror 15 as a reflection mirror, a rotating member 51, a piezoelectric element 52, and a connecting member 56.
  • Rotating member 51 is composed of a first cylindrical portion 51a having a circular end surface as a supporting surface 51a 1 for supporting the fixed mirror 15, rotatable in the A-A 'direction about the rotational center P Is provided.
  • the first cylindrical portion 51 a is made of, for example, metal (stainless steel or the like), and the diameter thereof is substantially the same as the diameter of the fixed mirror 15.
  • the piezoelectric element 52 is a displacement member that expands and contracts in the direction BB ′ in which the distance from the rotation member 51 changes in a direction corresponding to the direction AA ′ in which the rotation member 51 rotates by voltage application.
  • the rotating member 51 is provided on the opposite side of the fixed mirror 15.
  • the piezoelectric element 52 is stretchable direction only in some areas 52S 1 of the perpendicular end surface 52S, and is connected to the second cylindrical portion 57 to be described later of adhesive 53 (see FIG. 8) connected through a member 56 .
  • the region of the rotating member 51 that faces the end surface 52S of the piezoelectric element 52 is divided into a first region 51R 1 that is closer to the rotation center P and a second region 51R 2 that is farther from the rotation center P.
  • the piezoelectric element 52 presses the first region 51R 1 of the rotating member 51 via the connecting member 56 in the partial region 52S 1 of the end surface 52S during expansion due to voltage application, thereby rotating the rotating member. 51 can be rotated.
  • FIG. 6 is a bottom view of the rotating member 51 from the piezoelectric element 52 side.
  • the first region 51R 1 and the second region 51R 2 will be described in more detail.
  • the first region 51R 1 is of the areas 51R, is connected to the end face of the connecting member 56 (second cylindrical portion 57) 6 (the hatched portion in FIG. 6), which is closer to the rotation center P of the rotation member 51 (see FIG. 5B) than the center axis C along the expansion / contraction direction passing through the center of the end face 52S of the piezoelectric element 52. It is a close area.
  • the second region 51R 2 is a remaining region of the region 51R (a region obtained by subtracting the first region 51R 1 ). In this way, the region 51R is divided into a first region 51R 1 closer to the rotation center P and a second region 51R 2 farther from the rotation center P.
  • a plurality of (four in this embodiment) piezoelectric elements 52 are provided as described above in order to press different regions of the rotating member 51.
  • the expansion / contraction direction of each of the piezoelectric elements 52a to 52d corresponds to the rotation direction of the rotation member 51.
  • Direction) and the rotation direction (AA ′ direction) of the rotation member 51 correspond to each other.
  • the piezoelectric element 52 a and the piezoelectric element 52 c, and the piezoelectric element 52 b and the piezoelectric element 52 d are disposed opposite to an axis passing through the rotation center P of the rotation member 51.
  • Each piezoelectric element 52 is fixed to a fixed base 54 made of a metal such as stainless steel via an epoxy adhesive on the entire end surface opposite to the rotating member 51.
  • the manner of pressing the rotating member 51 by the expansion and contraction of the piezoelectric element 52 described above can be said to be common to all the piezoelectric elements 52a to 52d. Accordingly, the first region 51R 1 and the second region 51R 2 of the rotating member 51 described above are provided corresponding to the piezoelectric elements 52a to 52d, and the piezoelectric elements 52a to 52d are connected to the connecting member when extended.
  • the rotating member 51 is rotated by pressing the corresponding first region 51R 1 via 56.
  • FIG. 7A shows an electrical connection relationship between the piezoelectric element 52 and the voltage application unit 55.
  • the piezoelectric elements 52a to 52d are connected to the voltage application units 55a to 55d through power supply lead wires, respectively. Accordingly, it is possible to control the voltage application for each of the piezoelectric elements 52a to 52d, and thereby it is possible to individually expand and contract each of the piezoelectric elements 52a to 52d.
  • the connecting member 56 connects the end surface 52S of the piezoelectric element 52 (part of the region 52S 1 here) and the rotating member 51, and includes a second cylindrical portion 57 and an adhesive 53.
  • the second cylindrical portion 57 is made of, for example, metal (stainless steel or the like), has a smaller diameter than the first cylindrical portion 51a as the rotating member 51, and is coaxial with the first cylindrical portion 51a on an axis passing through the rotation center P. It is connected to.
  • Four square columnar piezoelectric elements 52 (52a to 52d) arranged in a bundle with a minute gap are fixed to the end surface of the second cylindrical portion 57 opposite to the rotating member 51. .
  • the radius of the second cylindrical portion 57 is set to approximately half the length of one side of the cross section of the piezoelectric element 52.
  • the adhesive 53 connects a partial region 52S 1 of the end surface 52S of the piezoelectric element 52 and the second cylindrical portion 57.
  • the connection part (connection part) by the adhesive 53 is an important part in determining the characteristics of the optical path correction device 31, and in this embodiment, the adhesive has an epoxy adhesive having a relatively high Young's modulus and an appropriate elasticity. Epoxy / modified silicone adhesives having the above are appropriately selected according to specifications. Further, since the thickness of the adhesive 53 is also important, it is desirable that spherical plastic beads having a uniform diameter are mixed with the adhesive 53. In this embodiment, as the adhesive 53, an epoxy adhesive mixed with plastic beads having a diameter of 30 ⁇ m was used.
  • the fixed mirror 15 is rotated by applying a voltage having an opposite phase to the opposing piezoelectric element 52. That is, when the fixed mirror 15 is rotated about the y-axis in FIG. 7A, a voltage whose phase is shifted by 180 ° is applied to the piezoelectric element 52a and the piezoelectric element 52c by the voltage application unit 55a and the voltage application unit 55c.
  • FIG. 7B shows a waveform (52a (s)) of the voltage applied to the piezoelectric element 52a and a waveform (52c (s)) of the voltage applied to the piezoelectric element 52c, respectively.
  • a voltage of + v (V) is applied to the piezoelectric element 52a and a voltage of ⁇ v (V) is applied to the piezoelectric element 52c.
  • FIG. 8 is a side view of the optical path correction device 31 and is a side view showing the posture of the rotating member 51 at time T0 (when no voltage is applied) and at time T1.
  • the illustration of the piezoelectric element 52b is omitted for convenience. Since a voltage of + v (V) is applied to the piezoelectric element 52a, the piezoelectric element 52a extends by d (mm) (displacement of d (+)). On the other hand, since a voltage of ⁇ v (V) is applied to the piezoelectric element 52c, the piezoelectric element 52c contracts by d (mm) (displacement of d ( ⁇ )).
  • the piezoelectric element 52a presses the rotating member 51 via the connecting member 56, and the rotating member 51 as a whole rotates around the rotation center P with the rotation angle around the y axis while supporting the fixed mirror 15. It rotates by ⁇ (°). Note that the rotation center P when the rotation member 51 rotates is determined by the mechanical relationship of the constituent members.
  • the rotation member 51 can be rotated about the rotation center P around the rotation axis P with the rotation member 51 supporting the fixed mirror 15 based on the same principle as the rotation about the y-axis.
  • + v (V) and -v (V) voltages are applied to each piezoelectric element with GND as a boundary.
  • V 0 (V) is applied as an offset voltage in a steady state.
  • a voltage larger than the voltage V 0 (for example, +2 (V)) and a voltage smaller than the voltage V 0 (for example, 0 (V)) are applied to each piezoelectric element with the voltage V 0 as a boundary. You may do it.
  • FIG. 9 is a plan view showing a schematic configuration of an optical path correction apparatus of a comparative example.
  • FIG. 10 is a side view of the optical path correction device of the comparative example.
  • time T0 when no voltage is applied
  • time It is a side view which shows the attitude
  • the piezoelectric element 52b is not shown for convenience.
  • the diameter of the connecting member 56 (second cylindrical portion 57) is set to be equal to or larger than the diameter of the opening of the cylindrical member containing the bundled four piezoelectric elements 52a to 52d.
  • the piezoelectric element 52 is bonded to the second cylindrical portion 57 via the adhesive 53 over the entire end surface 52S perpendicular to the expansion / contraction direction.
  • the configuration is the same as that of the first embodiment.
  • a voltage whose phase is shifted by 180 ° may be applied to the piezoelectric element 52a and the piezoelectric element 52c.
  • the piezoelectric element 52a extends by d ′ (mm) (displacement of d ′ (+)), and the piezoelectric element 52c has d ′ (mm). Shrinks only (displacement of d ′ ( ⁇ )).
  • d ′ (+) ⁇ d (+) and d ′ ( ⁇ ) ⁇ d ( ⁇ ), and the rotation angle ⁇ ′ of the rotation member 51 in the comparative example is the same as that in the first embodiment. It becomes smaller than the rotation angle ⁇ of the moving member 51. This is considered to be due to the following reasons.
  • the piezoelectric element 52 is bonded to the second cylindrical portion 57 of the connecting member 56 over the entire end surface S1, and since the bonding area is larger than that of the first embodiment, the load applied to the piezoelectric element 52 when extended. As a result, the displacement amount of the piezoelectric element 52 is reduced, and the rotation angle is reduced. Further, in the configuration of the comparative example, the distance from the rotation center P to the apparent force point position Q when the piezoelectric element 52 applies a force to the rotation member 51 is larger than that in the first embodiment. The ratio (efficiency) for converting the displacement of the element 52 into the inclination of the rotation member 51 is reduced, and the rotation angle is reduced.
  • the apparent force point position Q is the force point when the piezoelectric element 52 is considered to be equivalent to pressing the second cylindrical portion 57 at one point via the adhesive 53 when the piezoelectric element 52 is extended. Although it is a position and, strictly speaking, it is deviated from the center of the contact surface of the adhesive 53 with the second cylindrical portion 57, it can be considered to be the center of the contact surface for convenience.
  • the simulation was performed under the same conditions except for the bonding area between the piezoelectric element 52 and the second cylindrical portion 57. As a result, in the first example, the rotation was about twice that of the comparative example. A corner was obtained.
  • the piezoelectric element 52 presses the second cylindrical portion 57 via the adhesive 53 in the partial region 52S 1 close to the rotation center P, not the entire end surface 52S.
  • the second cylindrical portion 57 presses the rotating member 51.
  • the expansion / contraction of the piezoelectric element 52 is transmitted to the rotating member 51 when viewed from the expansion / contraction direction of the piezoelectric element 52.
  • the region is referred to as an action region 56a.
  • Active area 56a at this time is narrower than the end surface 52S of the piezoelectric element 52, and, located in the corresponding positional relationship between the partial regions 52S 1 near the rotation center P of the end face 52S, the second cylindrical portion 57 times
  • the end surface that contacts the moving member 51 (the end surface connected to the first cylindrical portion 51 a) is closer to the rotation center P than the center axis C.
  • the rotation angle of the rotation member 51 is increased without increasing the extension amount by using a large piezoelectric element, and the correction range (reflection angle adjustment range) of the optical path of the reflected light at the fixed mirror 15 is increased. It can be secured greatly. As a result, the optical path of the reflected light can be corrected in a wide angle range while having a small configuration. Further, the apparent force point position Q can be brought closer to the rotation center P without making the piezoelectric element 52 thinner, so that the optical path of the reflected light can be corrected while ensuring the strength of the piezoelectric element 52. it can.
  • the spectral detector is obtained by the optical path correction in the optical path correction device 31. It is possible to prevent the contrast of the interference fringes of the interference light detected at 18 from decreasing. Therefore, the spectroscopic analysis based on the spectrum obtained by the Fourier transform in the calculation unit 2 can be performed with high accuracy, and the resolution can be improved by increasing the amount of movement of the movable mirror 16.
  • the first region 51R 1 of the rotation member 51 is a region closer to the rotation center P than the central axis C passing through the center of the end surface 52S of the piezoelectric element 52, and therefore the piezoelectric element 52 is interposed via the connecting member 56.
  • the rotating member 51 and the piezoelectric element 52 are connected by an adhesive 53 having elasticity, when the piezoelectric element 52 is extended, the rotating member 51 is pressed and rotated using the elasticity of the adhesive 53. The rotating member 51 can be efficiently rotated.
  • a plurality of piezoelectric elements 52 are provided, and the above-described action area 56 a of the connecting member 56 transmits the respective expansion and contraction of the plurality of piezoelectric elements 52 to the rotating member 51.
  • the above-described action area 56 a of the connecting member 56 transmits the respective expansion and contraction of the plurality of piezoelectric elements 52 to the rotating member 51.
  • the voltage application unit 55 applies a voltage having an opposite phase to the piezoelectric elements 52 and 52 (for example, the piezoelectric elements 52a and 52c) arranged to face each other, the rotating member 51 due to the extension of the one piezoelectric element 52a.
  • the rotation of the rotation member 51 is facilitated by the release of the pressure due to the contraction of the other piezoelectric element 52 c, so that the rotation of the rotation member 51 is compared with the configuration in which the rotation member 51 is rotated only by extension of one piezoelectric element 52.
  • the moving angle can be doubled.
  • the piezoelectric element 52 is used as the displacement member.
  • the displacement member is configured by a magnetostrictive element that expands and contracts or elastically deforms by the action of a magnetic force. May be.
  • the four piezoelectric elements 52 are used as the displacement members. However, only one piezoelectric element 52 may be used and the rotation member 51 may be rotated only in one direction. For example, in the configuration shown in FIG. 5A, instead of the four piezoelectric elements 52, one piezoelectric element 52 and three supports (things that do not expand and contract like a piezoelectric element) rotate. It is good also as a structure which rotates the member 51.
  • FIG. 5A instead of the four piezoelectric elements 52, one piezoelectric element 52 and three supports (things that do not expand and contract like a piezoelectric element) rotate. It is good also as a structure which rotates the member 51.
  • FIG. 11 is a plan view illustrating a schematic configuration of the optical path correction device 31 according to the second embodiment.
  • FIG. 12A is a side view of the optical path correction device 31 according to the second embodiment, and is a side view showing the posture of the rotating member 51 before voltage application to the piezoelectric elements 52a and 52c.
  • FIG. 12B is a side view of the optical path correction device 31 according to the second embodiment, and is a side view showing the posture of the rotating member 51 after voltage application to the piezoelectric elements 52a and 52c.
  • FIG. 12B shows a case where the piezoelectric element 52a is expanded by applying a voltage while the piezoelectric element 52c is contracted.
  • the rotating member 51 is configured by a mirror support base that supports the fixed mirror 15. 12A and 12B, the size of the fixed mirror 15 is larger than the size of the rotating member 51, but may be smaller than the size of the rotating member 51.
  • the piezoelectric element 52 rotates the rotating member 51 by pressing the rotating member 51 via the connecting member 58 when extended. More specifically, when the region of the rotation member 51 facing the end surface 52S is divided into a first region 51R 1 closer to the rotation center P and a second region 51R 2 farther from the rotation center P, The piezoelectric element 52 rotates the rotating member 51 by pressing the first region 51R 1 of the rotating member 51 via the connecting member 58 when the piezoelectric element 52 is extended by applying a voltage.
  • the first area 51R 1 is the same as the first embodiment in that the first area 51R 1 is an area closer to the rotation center P than the center axis C passing through the center of the end face 52S of the piezoelectric element 52.
  • the method of pressing the rotating member 51 as described above is common to all the piezoelectric elements 52.
  • FIG. 13 is a bottom view of the rotating member 51 from the piezoelectric element 52a side.
  • FIG. 13 shows the positional relationship between the first region 51R 1 , the second region 51R 2 , and the central axis C in the region 51R, where the region of the rotating member 51 facing the end surface 52S of the piezoelectric element 52a is 51R. Street.
  • the piezoelectric element 52 presses a part of the first region 51R 1 via the connecting member 58. However, the entire first region 51R 1 may be pressed.
  • the connecting member 58 includes a pedestal portion 59 and a pressing member 60.
  • the pedestal portion 59 is fixed to at least a part of the end surface 52S of the piezoelectric element 52 via an epoxy adhesive. That is, the pedestal portion 59 may be fixed to the entire end surface 52S of the piezoelectric element 52, or may be fixed to a part of the end surface 52S.
  • the pedestal portion 59 is a fan-shaped plate-like member in which the shape of the rotating member 51 is projected onto the end face 52S of the piezoelectric element 52.
  • the pressing member 60 is connected to the pedestal portion 59 to transmit the pressing force from the pedestal portion 59 and has elasticity.
  • the pressing member 60 is located closer to the rotation center P of the rotation member 51 than the center of the pedestal portion 59 and is connected to the rotation member 51.
  • a plurality of (for example, four) piezoelectric elements 52 are provided, and a connecting member 58 is provided corresponding to each piezoelectric element 52 (52a to 52d).
  • the rotating member 51 and the connecting member 58 can be formed as an integrally molded product of resin, for example.
  • This integrally molded product is a member in which four pressing members 60 extend like a leg from a disk-shaped rotating member 51, and a fan-shaped pedestal portion 59 is provided at each of the tips of the pressing members 60. Since the cross-sectional area of the pressing member 60 is small, elasticity necessary for deformation can be provided.
  • the piezoelectric element 52a when the piezoelectric element 52a is extended by applying a voltage, the piezoelectric element 52a presses and rotates the rotating member 51 via the connecting member 58. At the same time, the piezoelectric element 52c disposed opposite to the piezoelectric element 52a is contracted by voltage application, so that the pressing of the rotating member 51 by the piezoelectric element 52c is released. The rotation is promoted, and the rotation member 51 rotates more greatly.
  • the connecting member 58 is configured by the pedestal portion 59 and the pressing member 60 as in the present embodiment
  • the pressing member 60 is positioned closer to the rotation center P of the rotation member 51 than the center of the pedestal portion 59. Therefore, the position Q of the apparent force point acting on the rotating member 51 via the pedestal 59 and the pressing member 60 when the piezoelectric element 52 is extended is surely located on the rotating center P side. Can be approached. Therefore, even in the configuration of the present embodiment, the rotation angle of the fixed mirror 15 supported by the rotation member 51 can be increased, and the optical path correction of the reflected light can be performed in a wide angle range.
  • an area for transmitting expansion / contraction of the piezoelectric element 52 to the rotating member 51 when viewed from the expansion / contraction direction of the piezoelectric element 52 is an action area 60 a.
  • the action region 60a has a fan-shaped cross section. If the thickness of the pressing member 60 changes midway, the action region 60a corresponds to the thinnest cross section (the cross section having the smallest area when viewed from the expansion / contraction direction of the piezoelectric element 52). Will do.
  • Active area 60a is narrower than the end surface 52S of the piezoelectric element 52, and located at corresponding positions related partial regions 52S 1 and close to the rotation center P of the end face 52S, the end surface in contact with the rotating member 51, It is at a position closer to the rotation center P than the central axis C. Therefore, when the piezoelectric element 52 is extended, the pressing member 60 can press the first region 51R 1 that is the region on the rotation center P side of the rotating member 51 by the action region 60a. The member 51 can be greatly rotated. Therefore, it can be said that the optical path of the reflected light can be corrected in a wide angle range by increasing the rotation angle of the fixed mirror 15 supported by the rotation member 51.
  • a partial region 52S 1 of the end surface 52S of the piezoelectric element 52 corresponds to a contact region with the connecting member 56 (adhesive 53), whereas in the second embodiment, one region 52S1 The region 52S 1 of the part does not correspond to the contact region with the connecting member 58 (pedestal part 59). That is, the partial region 52S 1 may be a partial region that is narrower than the end surface 52S and close to the rotation center P on the end surface 52S, and whether or not it corresponds to the contact region with the connecting member 58. Unrelated.
  • FIG. 14A is a plan view showing another arrangement example of the piezoelectric elements 52 as displacement members.
  • three piezoelectric elements 52 may be used.
  • the three piezoelectric elements 52a, 52b, and 52c are arranged so as to be positioned on the vertices of an equilateral triangle, and each piezoelectric element 52 is expanded and contracted, whereby the rotating member and the x-axis direction and the y-direction are The fixed mirror can be rotated.
  • FIG. 14B shows the waveforms (52a (s), 52b (S), 52c (s)) of the voltages applied to the three piezoelectric elements 52a, 52b, and 52c by the voltage application unit 55, respectively.
  • a voltage having the same phase is applied to the two piezoelectric elements 52a and 52b, and a voltage having an opposite phase to the above is applied to the remaining one piezoelectric element 52c.
  • the moving member can be rotated around the x-axis in FIG. In the example of FIG.
  • the rotating member is applied to the y-axis of FIG. 14A by applying voltages having opposite phases to the piezoelectric elements 52a and 52b but not applying a voltage to the piezoelectric element 52c. It can be rotated around. Furthermore, by adjusting the phase of the voltage applied to the three piezoelectric elements 52a, 52b, and 52c and combining the rotation around the x axis and the y axis, it becomes possible to realize an arbitrary swing motion, It becomes possible to rotate the rotating member and the fixed mirror in an arbitrary direction.
  • the amount of deformation increases in the following cases.
  • (1) The length of the member along the direction of the applied force is long.
  • (2) The area of the member cross section orthogonal to the direction of the applied force is small.
  • (3) The Young's modulus of the member is small.
  • the member to be deformed is a “beam”, the amount of deformation (bending) increases in the following cases. (4) The area of the member cross section along the direction of the applied force is small. (5) The distance from the fulcrum to the power point is long. (6) The Young's modulus of the member is small.
  • Example 1 due to the effects of (2) and (3), the adhesive 53 is largely deformed relative to other members.
  • Example 2 the effects of (1) and (2) Due to the effect, the pressing member 60 is largely deformed relative to other members. When the piezoelectric element is extended, these members are deformed, whereby the force in the extending direction of the piezoelectric element can be efficiently converted into the force in the rotating direction of the rotating member, and the rotating member can be rotated.
  • the optical path correction device, the interferometer, and the Fourier transform spectroscopic analysis device described in the present embodiment can be expressed as follows, thereby producing the following effects.
  • the optical path correction apparatus is an optical path correction apparatus that corrects an optical path of light, and includes a reflection mirror and a support surface that supports the reflection mirror, and is capable of rotating about a rotation center.
  • a connecting member that connects the rotating member, and the connecting member has an action region that transmits expansion / contraction of the displacement member to the rotating member when viewed from the expansion / contraction direction.
  • the region is configured to be narrower than an end surface perpendicular to the expansion / contraction direction of the displacement member and correspond to a partial region near the rotation center on the end surface.
  • the rotation member when the displacement member (for example, a piezoelectric element or a magnetostrictive element) is extended, the rotation member is rotated by pressing the rotation member via the connecting member.
  • the reflection mirror for example, a fixed mirror of the interferometer supported by the rotation member rotates, and the optical path of the light reflected by the reflection mirror is corrected.
  • the connecting member has an action region for transmitting expansion / contraction of the displacement member to the rotating member.
  • This action area corresponds to a partial area that is narrower than the end face perpendicular to the expansion and contraction direction of the displacement member and close to the center of rotation on the end face.
  • the correction range (reflection angle adjustment range) of the optical path of the light reflected by the reflection mirror is increased by increasing the rotation angle of the rotation member without increasing the extension amount using a large displacement member. Can be secured.
  • the optical path of the reflected light can be corrected in a wide angle range while having a small configuration.
  • the rotating member can be largely rotated while the displacement member is configured to be thick, the optical path of the reflected light can be corrected while ensuring the strength of the displacement member.
  • an area of the rotating member that faces an end surface perpendicular to the expansion / contraction direction of the displacement member is a first area closer to the rotation center of the rotation member and the rotation center.
  • the connecting member may press the first region of the rotating member by the action region when the displacement member is extended.
  • the connecting member presses the first area close to the rotation center of the rotation member by the action area when the displacement member is extended, so that the effect of largely rotating the rotation member can be obtained with certainty.
  • the action region has an end surface contacting the rotating member of the connecting member, and a central axis along an expansion / contraction direction passing through a center of an end surface perpendicular to the expansion / contraction direction of the displacement member.
  • it may be at a position close to the rotation center.
  • the action area of the connecting member can press the area (for example, the first area) close to the rotation center of the rotation member, thereby increasing the rotation member. It can be rotated.
  • the rotating member has a first cylindrical portion having a circular end surface as the support surface, and the connecting member has a smaller diameter than the first cylindrical portion, A second cylindrical portion connected coaxially with the first cylindrical portion along an axis passing through the rotation center, the partial region on the end surface perpendicular to the expansion and contraction direction of the displacement member, and the second cylindrical portion are connected.
  • the second columnar part may have the action region on an end face connected to the first columnar part.
  • the cylindrical part (first cylindrical part) of the rotating member and the cylindrical part (second cylindrical part) of the connecting member are connected coaxially, and the above-described partial region of the displacement member and the second cylindrical part are bonded with an adhesive.
  • the second columnar part can press and rotate the first columnar part via the action region of the end surface connected to the first columnar part.
  • the adhesive may have elasticity.
  • the connecting member is positioned on a side closer to the rotation center than the center of the pedestal portion, a pedestal portion fixed to at least a part of an end surface perpendicular to the expansion / contraction direction of the displacement member.
  • the pedestal portion and the rotating member are connected to each other, and a pressing member to which a pressing force from the pedestal portion is transmitted when the displacement member is extended is provided. You may have the said action
  • the pressing member has an action area on the end surface connected to the turning member, and therefore the pressing member presses the turning member through the action area. Accordingly, the rotating member can be largely rotated regardless of the size of the pedestal portion.
  • the pressing member may have elasticity.
  • the pressing member when the displacement member is extended, the pressing member is pressed and elastically deformed through the pedestal portion, so that the force in the extending direction of the displacement member is efficiently converted into the force in the direction of rotating the rotating member,
  • the rotating member can be rotated.
  • a plurality of the displacement members may be provided, and the action region of the connection member may transmit the respective expansion and contraction of the plurality of displacement members to the rotation member.
  • the action area of the connecting member transmits individual expansion / contraction of the plurality of displacement members to the rotation member, whereby the rotation member can be rotated in a direction corresponding to the expansion / contraction of each displacement member. That is, the rotation direction of the rotation member can be changed according to the expansion and contraction of each displacement member, and the optical path (reflection direction) of the reflected light at the reflection mirror can be changed reliably.
  • each of the plurality of displacement members is composed of a piezoelectric element that expands and contracts by applying a voltage, and a voltage applying unit that applies voltages having phases opposite to each other to at least two piezoelectric elements. It may be provided.
  • one piezoelectric element presses the rotating member via the connecting member due to its extension, while the other piezoelectric element passes through the connecting member due to its contraction. Release the pressing of all the rotating members. Accordingly, it is possible to promote the rotation by removing the force in the direction that prevents the rotation due to the extension of one of the piezoelectric elements. As a result, the rotation range (rotation angle) of the rotation member can be expanded and the rotation direction (reflected light) compared to a configuration in which the rotation member is rotated only by extension of one piezoelectric element. Can be increased.
  • the two piezoelectric elements to which voltages having phases opposite to each other are applied by the voltage application unit may be disposed opposite to an axis passing through the rotation center of the rotation member. .
  • the interferometer of this embodiment separates the light from the light source and guides it to the movable mirror and the fixed mirror, combines the light reflected by the movable mirror and the fixed mirror, and guides it to the detector as interference light
  • the reflection mirror provided with the optical path correction device of the present embodiment described above and supported by the rotating member of the optical path correction device may be the fixed mirror.
  • the optical path correction device of the present invention Even when the amount of movement of the movable mirror is increased, the translational property of the movable mirror is lost, and even when a relative inclination occurs in each light that travels along the two optical paths and enters the detector, the optical path correction device of the present invention
  • the fixed mirror rotates and the optical path of the light reflected by the fixed mirror is corrected. Thereby, it can suppress that the contrast of the interference fringe of the interference light detected with a detector falls.
  • the Fourier transform spectroscopic analyzer of this embodiment may include the above-described interferometer of this embodiment and a calculation unit that Fourier transforms an interferogram obtained by the detector of the interferometer.
  • the interferometer of this embodiment even if the translation of the moving mirror is lost when the moving amount of the moving mirror is increased, the interference of the interference light detected by the detector is corrected by the optical path correction in the optical path correction device. It can suppress that the contrast of a fringe falls. Therefore, it is possible to accurately perform spectroscopic analysis based on the spectrum obtained by the Fourier transform in the calculation unit. That is, it is possible to improve the resolution by increasing the amount of movement of the movable mirror.
  • the optical path correction apparatus of the present invention is used for an apparatus that needs to correct the optical path of reflected light at a reflection mirror, such as a laser apparatus or an optical scanning apparatus having a reflection optical system, in addition to an interferometer and a Fourier transform spectroscopic analysis apparatus. Is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

Disclosed is an optical path correcting device (31) which has a reflecting mirror, a rotating member (51), a piezoelectric element (52) as a displacement member, and a connecting member (56). The rotating member (51) has a supporting surface (51a1) that supports the reflecting mirror, and the rotating member can rotate with the rotating center (P) at the center. The piezoelectric element (52) is provided on the side opposite to the reflecting mirror with respect to the rotating member (51), and the piezoelectric element can expand/contract in the direction wherein the distance between the rotating member (51) and the piezoelectric element changes. The connecting member (56) connects together an end surface (52S), which is perpendicular to the expanding/contracting direction of the piezoelectric element (52), and the rotating member (51). The connecting member (56) has, when viewed from the expanding/contracting direction, an operating region (56a), which transmits the expansion/contraction of the piezoelectric element (52) to the rotating member (51). The operating region (56a) is narrower than the end surface (52S) of the piezoelectric element (52), and the operating region corresponds to a partial region (52S1) of the end surface (52S), said partial region being close to the rotating center (P) of the end surface.

Description

光路補正装置、干渉計およびフーリエ変換分光分析装置Optical path correction device, interferometer, and Fourier transform spectroscopic analysis device
 本発明は、反射ミラーを支持する回動部材を回動させて、反射ミラーで反射される光の光路を補正する光路補正装置と、その光路補正装置を備えた干渉計と、その干渉計を備えたフーリエ変換分光分析装置(フーリエ変換分光器とも称する)とに関するものである。 The present invention relates to an optical path correction device that corrects an optical path of light reflected by a reflection mirror by rotating a rotation member that supports the reflection mirror, an interferometer including the optical path correction device, and an interferometer And a Fourier transform spectroscopic analyzer (also referred to as a Fourier transform spectrometer).
 FTIR(Fourier Transform Infrared Spectroscopy)に利用されるマイケルソン2光束干渉計では、光源から発した赤外光をビームスプリッタで固定鏡および移動鏡の2方向に分割し、その固定鏡および移動鏡でそれぞれ反射して戻ってきた光を上記ビームスプリッタで1つの光路に合成するという構成を採用している。移動鏡を前後に(入射光の光軸方向に)移動させると、分割された2光束の光路差が変化するため、合成された光はその移動鏡の移動量に応じて光の強度が変化する干渉光(インターフェログラム)となる。このインターフェログラムをフーリエ変換することにより、入射光のスペクトル分布を求めることができる。 In the Michelson two-beam interferometer used for FTIR (Fourier Transform Infrared Spectroscopy), the infrared light emitted from the light source is divided into two directions, a fixed mirror and a moving mirror, by a beam splitter, and the fixed mirror and the moving mirror respectively. A configuration is adopted in which the light reflected and returned is combined into one optical path by the beam splitter. When the moving mirror is moved back and forth (in the direction of the optical axis of the incident light), the optical path difference between the two divided beams changes, so the intensity of the combined light changes according to the amount of movement of the moving mirror. Interference light (interferogram). A spectral distribution of incident light can be obtained by Fourier transforming the interferogram.
 このようなFTIRにおいて高い性能を発揮するには、干渉計での干渉効率を最良に保つことが望ましい。そのためには、固定鏡および移動鏡とビームスプリッタとの角度関係をそれぞれ一定に保つ必要がある。つまり、FTIRの分光精度(分解能)は、移動鏡の移動量に応じたものとなり、移動量が大きいほど高分解能となるが、移動鏡の移動量が大きいと、移動鏡の並進性を保つことが困難となり、移動鏡での反射光と固定鏡での反射光とで相対的な傾き(角度差)が生じて干渉縞のコントラストが低下するため、上記傾きが無くなるように一方の反射光の光路を補正することが必要となる。 In order to exhibit high performance in such FTIR, it is desirable to maintain the best interference efficiency with the interferometer. For this purpose, it is necessary to keep the angular relationship between the fixed mirror and the movable mirror and the beam splitter, respectively. In other words, the spectral accuracy (resolution) of FTIR depends on the amount of movement of the moving mirror. The larger the amount of movement, the higher the resolution. However, the larger the amount of movement of the moving mirror, the higher the translation of the moving mirror. Since a relative inclination (angle difference) is generated between the reflected light from the movable mirror and the reflected light from the fixed mirror, the contrast of the interference fringes is reduced. It is necessary to correct the optical path.
 そこで、例えば特許文献1では、図15に示すように、固定鏡101を中心脚102を介して固定台(図示せず)に固定するとともに、固定鏡101の裏面(中心脚102による固定側の面)において、中心脚102を挟んで対向する位置に、バネ103と圧電素子104とを2組配置している。バネ103と圧電素子104とを結ぶ方向は、各組間で互いに直交している。この構成では、各圧電素子104に電圧を印加すると、各圧電素子104が伸縮することによって、固定鏡101が中心脚102との接続位置を支点として上下左右に揺動(回動)する。これにより、固定鏡101で反射される光の光路を補正することが可能となる。 Therefore, in Patent Document 1, for example, as shown in FIG. 15, the fixed mirror 101 is fixed to a fixing base (not shown) via the center leg 102, and the back surface of the fixed mirror 101 (on the side fixed by the center leg 102). 2), two sets of springs 103 and piezoelectric elements 104 are arranged at positions facing each other with the center leg 102 in between. The direction connecting the spring 103 and the piezoelectric element 104 is orthogonal to each other between the sets. In this configuration, when a voltage is applied to each piezoelectric element 104, each piezoelectric element 104 expands and contracts, so that the fixed mirror 101 swings (rotates) vertically and horizontally with the connection position with the center leg 102 as a fulcrum. As a result, the optical path of the light reflected by the fixed mirror 101 can be corrected.
特開昭64-59019号公報(第2頁右上欄第10行目~左下欄第5行目、第3図等参照)JP-A-64-59019 (see page 2, upper right column, line 10 to lower left column, line 5, line 3, etc.)
 ところで、干渉計には、測定中(並進時)の移動鏡の微妙な傾きのみならず、使用時の環境温度変化や経時的変化に起因する光学素子の位置ずれもあるため、これらを補正するためには固定鏡の回動角を増大し得る構成であることが必要である。加えて、近年の機器のポータブル化により、干渉計にも小型化が求められているため、小型の構成で固定鏡の回動角を増大し得る構成であることが必要である。 By the way, in the interferometer, not only the slight inclination of the moving mirror during measurement (translation), but also the positional deviation of the optical element due to the environmental temperature change during use and the change over time are corrected. For this purpose, it is necessary that the rotation angle of the fixed mirror be increased. In addition, since downsizing of the interferometer is required due to the recent portability of equipment, it is necessary that the rotation angle of the fixed mirror can be increased with a small configuration.
 ところが、特許文献1の構成では、圧電素子104は、中心脚102から離れた位置にあり、図16(a)に示すように、固定鏡101の回動中心Pと、圧電素子104の伸長時の見掛け上の力点の位置Qとが離れている。なお、見掛け上の力点の位置Qとは、圧電素子104の伸長時に、圧電素子104が固定鏡101を1点で押圧したのと等価と考えられるときの力点の位置のことであり、厳密には、圧電素子104の端面(固定鏡101との接触面)の中心とはずれているが、便宜的に上記端面の中心と考えても差し支えはない。回動中心Pと見掛け上の力点Qとの距離が離れるほど、圧電素子104の一定の伸長量に対して固定鏡101の回動角が低下するため、図16(a)の位置関係では、固定鏡101の回動角を大きく確保しているとは言えない。 However, in the configuration of Patent Document 1, the piezoelectric element 104 is located away from the center leg 102, and as shown in FIG. 16A, the rotation center P of the fixed mirror 101 and the piezoelectric element 104 are extended. The position Q of the apparent power point is separated. The apparent force point position Q is the position of the force point when the piezoelectric element 104 is considered to be equivalent to pressing the fixed mirror 101 at one point when the piezoelectric element 104 is extended. Is deviated from the center of the end surface (contact surface with the fixed mirror 101) of the piezoelectric element 104, but it can be considered as the center of the end surface for convenience. As the distance between the rotation center P and the apparent force point Q increases, the rotation angle of the fixed mirror 101 decreases with respect to a certain extension amount of the piezoelectric element 104. Therefore, in the positional relationship of FIG. It cannot be said that a large rotation angle of the fixed mirror 101 is secured.
 そこで、図16(b)に示すように、圧電素子104を中心脚102に近づけて配置すれば、固定鏡101の回動中心Pと圧電素子104の見掛け上の力点の位置Qとが近づくため、圧電素子104の一定の伸長量に対して固定鏡101を大きく回動させることができると考えられる。しかし、特許文献1のように、圧電素子104の端面全体が固定鏡101と接している構成では、見掛け上の力点の位置Qを固定鏡101の回動中心Pにこれ以上近づけることができないため、圧電素子104の一定の伸長量に対して固定鏡101をさらに大きく回動させて、広い角度範囲で反射光の光路を補正することができない。 Therefore, as shown in FIG. 16B, if the piezoelectric element 104 is arranged close to the center leg 102, the rotation center P of the fixed mirror 101 and the apparent force point position Q of the piezoelectric element 104 approach each other. It is considered that the fixed mirror 101 can be greatly rotated with respect to a certain extension amount of the piezoelectric element 104. However, in the configuration in which the entire end face of the piezoelectric element 104 is in contact with the fixed mirror 101 as in Patent Document 1, the apparent force point position Q cannot be brought closer to the rotation center P of the fixed mirror 101 any more. The optical path of the reflected light cannot be corrected over a wide angle range by further rotating the fixed mirror 101 with respect to a certain extension amount of the piezoelectric element 104.
 なお、圧電素子104を細くして圧電素子104の端面の面積自体を小さくすれば、圧電素子104の見掛け上の力点の位置Qを図16(b)の場合よりもさらに回動中心Pに近づけることができるとも考えられるが、圧電素子104を細くするとその強度を確保することが困難になる。したがって、圧電素子104を細くしなくても(圧電素子104の強度を確保した状態で)、固定鏡101の回動角を増大させて反射光の光路を補正することが必要となる。 If the piezoelectric element 104 is thinned to reduce the area of the end face of the piezoelectric element 104, the apparent force point position Q of the piezoelectric element 104 is made closer to the rotation center P than in the case of FIG. However, if the piezoelectric element 104 is thinned, it is difficult to ensure its strength. Therefore, even if the piezoelectric element 104 is not thinned (in a state where the strength of the piezoelectric element 104 is ensured), it is necessary to increase the rotation angle of the fixed mirror 101 to correct the optical path of the reflected light.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、小型の構成で、圧電素子などの変位部材の強度を確保しながら、反射ミラーの回動角を増大させて広い角度範囲で反射光の光路を補正することができる光路補正装置と、その光路補正装置を備えた干渉計と、その干渉計を備えたフーリエ変換分光分析装置とを提供することにある。 The present invention has been made to solve the above-described problems, and its purpose is to increase the rotation angle of the reflecting mirror while ensuring the strength of a displacement member such as a piezoelectric element with a small configuration. An object of the present invention is to provide an optical path correction apparatus capable of correcting the optical path of reflected light in a wide angle range, an interferometer including the optical path correction apparatus, and a Fourier transform spectroscopic analysis apparatus including the interferometer.
 本発明の光路補正装置は、光の光路を補正する光路補正装置であって、反射ミラーと、前記反射ミラーを支持する支持面を有し、回動中心を中心として回動可能な回動部材と、前記回動部材に対して前記反射ミラーとは反対側に設けられ、前記回動部材との間隔が変化する方向に伸縮可能な変位部材と、前記変位部材の伸縮方向に垂直な端面と前記回動部材とを連結する連結部材とを備え、前記連結部材は、前記伸縮方向から見たときに、前記変位部材の伸縮を前記回動部材に伝達する作用領域を有し、前記作用領域は、前記変位部材の伸縮方向に垂直な端面よりも狭く、かつ、前記端面における前記回動中心に近い部分的な領域と対応していることを特徴としている。 An optical path correction apparatus according to the present invention is an optical path correction apparatus that corrects an optical path of light, and includes a reflection mirror and a support surface that supports the reflection mirror, and is a rotation member that can rotate around a rotation center. A displacement member that is provided on the opposite side to the reflection mirror with respect to the rotation member, and that can be expanded and contracted in a direction in which the distance from the rotation member changes, and an end surface perpendicular to the expansion and contraction direction of the displacement member A connecting member that connects the rotating member, and the connecting member has an action region that transmits expansion / contraction of the displacement member to the turning member when viewed from the extension / contraction direction. Is characterized in that it is narrower than the end surface perpendicular to the direction of expansion and contraction of the displacement member and corresponds to a partial region near the center of rotation on the end surface.
 本発明によれば、強度を確保できるように変位部材を太く構成したままで、変位部材自体を回動中心に近い位置に配置した場合でも、変位部材の伸長時に、連結部材が作用領域を介して回動部材を大きく回動させることができる。これにより、大型の変位部材を用いて伸長量を大きくすることなく、回動部材の回動角を増大させて、反射ミラーで反射される光の光路の補正範囲を大きく確保することができる。その結果、小型の構成でありながら、広い角度範囲で反射光の光路補正を行うことができる。しかも、変位部材を太く構成したままで上記の効果を得ることができるので、変位部材の強度を確保しながら、反射光の光路を補正することができる。 According to the present invention, even when the displacement member itself is arranged at a position close to the center of rotation while the displacement member is configured to be thick so as to ensure strength, the connecting member is interposed via the action region when the displacement member is extended. Thus, the rotating member can be largely rotated. Accordingly, the rotation angle of the rotating member can be increased without increasing the extension amount using a large displacement member, and a large correction range of the optical path of the light reflected by the reflecting mirror can be ensured. As a result, the optical path of the reflected light can be corrected in a wide angle range while having a small configuration. In addition, since the above effect can be obtained with the displacement member configured to be thick, the optical path of the reflected light can be corrected while ensuring the strength of the displacement member.
本発明の実施の一形態のフーリエ変換分光分析装置の概略の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the outline of the Fourier-transform spectroscopy analyzer of one Embodiment of this invention. (a)は、上記フーリエ変換分光分析装置の干渉計の移動鏡を駆動する駆動機構の概略の構成を示す断面図であり、(b)および(c)は、上記駆動機構の駆動部を拡大して示す断面図である。(A) is sectional drawing which shows the schematic structure of the drive mechanism which drives the movable mirror of the interferometer of the said Fourier-transform spectroscopy analyzer, (b) and (c) expand the drive part of the said drive mechanism. It is sectional drawing shown. 上記干渉計の参照検出器の概略の構成を示す平面図である。It is a top view which shows the structure of the outline of the reference detector of the said interferometer. 上記参照検出器での検出結果に基づいて出力される位相信号を示す説明図である。It is explanatory drawing which shows the phase signal output based on the detection result in the said reference detector. (a)は、実施例1の光路補正装置の概略の構成を示す平面図であり、(b)は、上記光路補正装置の側面図である。(A) is a top view which shows the schematic structure of the optical path correction apparatus of Example 1, (b) is a side view of the said optical path correction apparatus. 上記光路補正装置の回動部材の圧電素子側からの底面図である。It is a bottom view from the piezoelectric element side of the rotation member of the said optical path correction apparatus. (a)は、上記光路補正装置の圧電素子と電圧印加部との電気的な接続関係を示す説明図であり、(b)は、2つの圧電素子に印加される電圧の波形を示す説明図である。(A) is explanatory drawing which shows the electrical connection relationship of the piezoelectric element of the said optical path correction apparatus, and a voltage application part, (b) is explanatory drawing which shows the waveform of the voltage applied to two piezoelectric elements. It is. 上記光路補正装置の回動部材の姿勢を示す側面図である。It is a side view which shows the attitude | position of the rotation member of the said optical path correction apparatus. 比較例の光路補正装置の概略の構成を示す平面図である。It is a top view which shows the schematic structure of the optical path correction apparatus of a comparative example. 上記光路補正装置の回動部材の姿勢を示す側面図である。It is a side view which shows the attitude | position of the rotation member of the said optical path correction apparatus. 実施例2の光路補正装置の概略の構成を示す平面図である。6 is a plan view illustrating a schematic configuration of an optical path correction apparatus according to Embodiment 2. FIG. (a)は、上記光路補正装置の各圧電素子への電圧印加前の回動部材の姿勢を示す側面図であり、(b)は、上記光路補正装置の各圧電素子への電圧印加後の回動部材の姿勢を示す側面図である。(A) is a side view which shows the attitude | position of the rotation member before the voltage application to each piezoelectric element of the said optical path correction apparatus, (b) is after the voltage application to each piezoelectric element of the said optical path correction apparatus. It is a side view which shows the attitude | position of a rotation member. 上記回動部材の圧電素子側からの底面図である。It is a bottom view from the piezoelectric element side of the rotating member. (a)は、圧電素子の他の配置例を示す平面図であり、(b)は、上記圧電素子に印加される電圧の波形を示す説明図である。(A) is a top view which shows the other example of arrangement | positioning of a piezoelectric element, (b) is explanatory drawing which shows the waveform of the voltage applied to the said piezoelectric element. 従来の光路補正装置の概略の構成を示す底面図である。It is a bottom view which shows the structure of the outline of the conventional optical path correction apparatus. (a)は、上記光路補正装置の側面図であり、(b)は、上記光路補正装置の他の例を示す側面図である。(A) is a side view of the said optical path correction apparatus, (b) is a side view which shows the other example of the said optical path correction apparatus.
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。 An embodiment of the present invention will be described below with reference to the drawings.
 〔フーリエ変換分光分析装置の構成〕
 図1は、フーリエ変換分光分析装置の概略の構成を模式的に示す説明図である。この装置は、干渉計1と、演算部2と、出力部3とを有して構成されている。干渉計1は、2光路分岐型のマイケルソン干渉計で構成されているが、その詳細については後述する。演算部2は、干渉計1から出力される信号のサンプリング、A/D変換およびフーリエ変換を行い、波数(1/波長)ごとの光の強度を示すスペクトルを生成する。出力部3は、演算部2にて生成されたスペクトルを出力(例えば表示)する。以下、干渉計1の詳細について説明する。
[Configuration of Fourier transform spectrometer]
FIG. 1 is an explanatory diagram schematically showing a schematic configuration of a Fourier transform spectroscopic analyzer. This apparatus includes an interferometer 1, a calculation unit 2, and an output unit 3. The interferometer 1 is composed of a two-optical path branching Michelson interferometer, the details of which will be described later. The computing unit 2 performs sampling, A / D conversion, and Fourier transform of the signal output from the interferometer 1 to generate a spectrum indicating the light intensity for each wave number (1 / wavelength). The output unit 3 outputs (for example, displays) the spectrum generated by the calculation unit 2. Hereinafter, details of the interferometer 1 will be described.
 干渉計1は、分光光学系11と、参照光学系21と、光路補正装置31とを有している。なお、光路補正装置31は、参照光学系21の後述する信号処理部26にて検出された2光路間での光の傾きに基づいて、反射ミラーで反射される光の光路を補正するものであるが、その詳細な構成については後述する。 The interferometer 1 has a spectroscopic optical system 11, a reference optical system 21, and an optical path correction device 31. The optical path correction device 31 corrects the optical path of the light reflected by the reflection mirror based on the inclination of the light between the two optical paths detected by the signal processing unit 26 described later of the reference optical system 21. However, the detailed configuration will be described later.
 分光光学系11は、分光光源12と、コリメート光学系13と、BS(ビームスプリッタ)14と、固定鏡15と、移動鏡16と、集光光学系17と、分光検出器18と、駆動機構19とを備えている。なお、BS14に対する固定鏡15と移動鏡16との位置関係は、逆であってもよい。 The spectroscopic optical system 11 includes a spectroscopic light source 12, a collimating optical system 13, a BS (beam splitter) 14, a fixed mirror 15, a moving mirror 16, a condensing optical system 17, a spectroscopic detector 18, and a driving mechanism. 19. Note that the positional relationship between the fixed mirror 15 and the movable mirror 16 with respect to the BS 14 may be reversed.
 分光光源12は、分光用の光源であり、例えば赤外光を出射する。コリメート光学系13は、分光光源12からの光を平行光に変換してBS14に導く。BS14は、入射光、すなわち、分光光源12から出射された光を2つの光に分離して、それぞれを固定鏡15および移動鏡16に導くとともに、固定鏡15および移動鏡16にて反射された各光を合成し、干渉光として出射するものであり、例えばハーフミラーで構成されている。集光光学系17は、BS14にて合成されて出射された光を集光して分光検出器18に導く。分光検出器18は、BS14から集光光学系17を介して入射する上記干渉光を受光してインターフェログラム(干渉パターン、干渉縞)を検出する。 The spectral light source 12 is a spectral light source, and emits infrared light, for example. The collimating optical system 13 converts the light from the spectral light source 12 into parallel light and guides it to the BS 14. The BS 14 separates incident light, that is, light emitted from the spectral light source 12 into two lights, which are guided to the fixed mirror 15 and the movable mirror 16 and reflected by the fixed mirror 15 and the movable mirror 16, respectively. Each light is combined and emitted as interference light, and is composed of, for example, a half mirror. The condensing optical system 17 condenses the light synthesized and emitted by the BS 14 and guides it to the spectroscopic detector 18. The spectroscopic detector 18 receives the interference light incident from the BS 14 via the condensing optical system 17 and detects an interferogram (interference pattern, interference fringe).
 駆動機構19は、固定鏡15にて反射される光の光路と、移動鏡16にて反射される光の光路との差(光路長の差)が変化するように、移動鏡16を平行移動させる移動機構であり、例えば平行板ばね式の駆動機構で構成されている。 The drive mechanism 19 translates the movable mirror 16 so that the difference (optical path length difference) between the optical path of the light reflected by the fixed mirror 15 and the optical path of the light reflected by the movable mirror 16 changes. For example, a parallel leaf spring type drive mechanism.
 ここで、図2(a)は、駆動機構19の概略の構成を示す断面図であり、図2(b)および図2(c)は、駆動機構19の駆動部45を拡大して示す断面図である。駆動機構19は、板ばね部41・42を平行配置するとともに、2つの板ばね部41・42の間で2つの剛体43・44を互いに離間して配置し、一方の板ばね部41の剛体43側の表面に移動鏡16を形成し、剛体44側の表面に駆動部45を配置して構成されている。 2A is a cross-sectional view illustrating a schematic configuration of the drive mechanism 19, and FIGS. 2B and 2C are cross-sectional views illustrating the drive unit 45 of the drive mechanism 19 in an enlarged manner. FIG. The drive mechanism 19 arranges the leaf springs 41 and 42 in parallel, and arranges two rigid bodies 43 and 44 between the two leaf springs 41 and 42 so as to be separated from each other. The movable mirror 16 is formed on the surface on the 43 side, and the drive unit 45 is arranged on the surface on the rigid body 44 side.
 駆動部45は、例えば圧電素子で構成されている。この圧電素子は、圧電材料であるPZT(チタン酸ジルコン酸鉛)46を電極47・48で挟持した構造となっている。例えば、電極47・48への電圧印加によってPZT46が伸びたときには、板ばね部41が上に凸となるように変形する(図2(b)参照)。この場合、剛体43とともに移動鏡16が下方に変位する(図2(a)参照)。一方、電極47・48への上記とは逆極性の電圧印加によってPZT46が縮んだときには、板ばね部41が下に凸となるように変形する(図2(c)参照)。この場合、剛体43とともに移動鏡16が上方に変位する(図2(a)参照)。このように、電極47・48に正または負の電圧を印加し、PZT46を水平方向に伸縮させることにより、板ばね部41を曲げ変形させることができ、剛体43とともに移動鏡16を振動振幅Wで変位(振動、共振)させることができる。つまり、移動鏡16を平行移動(並進)させることができる。 The driving unit 45 is constituted by a piezoelectric element, for example. This piezoelectric element has a structure in which a piezoelectric material PZT (lead zirconate titanate) 46 is sandwiched between electrodes 47 and 48. For example, when the PZT 46 is extended by applying a voltage to the electrodes 47 and 48, the leaf spring portion 41 is deformed so as to protrude upward (see FIG. 2B). In this case, the movable mirror 16 is displaced downward together with the rigid body 43 (see FIG. 2A). On the other hand, when the PZT 46 is contracted by applying a voltage having a reverse polarity to the electrodes 47 and 48, the leaf spring portion 41 is deformed so as to protrude downward (see FIG. 2C). In this case, the movable mirror 16 is displaced upward together with the rigid body 43 (see FIG. 2A). In this way, by applying a positive or negative voltage to the electrodes 47 and 48 and causing the PZT 46 to expand and contract in the horizontal direction, the leaf spring portion 41 can be bent and deformed, and the movable mirror 16 together with the rigid body 43 has a vibration amplitude W. Can be displaced (vibration, resonance). That is, the movable mirror 16 can be translated (translated).
 なお、駆動機構19は、上述した平行板ばね式の駆動機構のみならず、例えばVCM(ボイスコイルモータ)を用いた電磁式の駆動機構で構成されてもよい。 The drive mechanism 19 may be configured not only with the parallel leaf spring type drive mechanism described above but also with an electromagnetic drive mechanism using, for example, a VCM (voice coil motor).
 上記の構成において、分光光源12から出射された光は、コリメート光学系13によって平行光に変換された後、BS14での透過および反射によって2光束に分離される。分離された一方の光束は移動鏡16で反射され、他方の光束は固定鏡15で反射され、それぞれ元の光路を逆戻りしてBS14で重ね合わせられ、干渉光として試料Sに照射される。このとき、駆動機構19によって移動鏡16を連続的に移動させながら試料Sに光が照射されるが、BS14から各ミラー(移動鏡16、固定鏡15)までの光路長の差が波長の整数倍のときは、重ね合わされた光の強度は最大となる。一方、移動鏡16の移動によって2つの光路長に差が生じている場合には、重ね合わされた光の強度に変化が生じる。試料Sを透過した光は、集光光学系17にて集光されて分光検出器18に入射し、そこでインターフェログラムとして検出される。 In the above configuration, the light emitted from the spectral light source 12 is converted into parallel light by the collimating optical system 13 and then separated into two light beams by transmission and reflection at the BS 14. One of the separated light beams is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15. Each of the separated light beams returns to the original optical path and is superposed by the BS 14, and the sample S is irradiated as interference light. At this time, the sample S is irradiated with light while the moving mirror 16 is continuously moved by the drive mechanism 19, and the difference in optical path length from the BS 14 to each mirror (moving mirror 16, fixed mirror 15) is an integer of the wavelength. When it is doubled, the intensity of the superimposed light becomes maximum. On the other hand, when there is a difference between the two optical path lengths due to the movement of the movable mirror 16, the intensity of the superimposed light changes. The light transmitted through the sample S is collected by the condensing optical system 17 and enters the spectroscopic detector 18 where it is detected as an interferogram.
 演算部2では、分光検出器18からの検出信号をサンプリングして得られるインターフェログラムをA/D変換およびフーリエ変換することにより、波数ごとの光の強度を示すスペクトルが生成される。上記のスペクトルは、出力部3にて出力(例えば表示)され、このスペクトルに基づき、試料Sの特性(材料、構造、成分量など)を分析することが可能となる。 In the calculation unit 2, an interferogram obtained by sampling the detection signal from the spectroscopic detector 18 is A / D converted and Fourier transformed to generate a spectrum indicating the light intensity for each wave number. The above spectrum is output (for example, displayed) by the output unit 3, and the characteristics (material, structure, component amount, etc.) of the sample S can be analyzed based on this spectrum.
 次に、参照光学系21について説明する。参照光学系21は、上記した分光光学系11と構成を一部共有しており、上述したコリメート光学系13と、BS14と、固定鏡15と、移動鏡16と、集光光学系17に加えて、参照光源22と、光路合成ミラー23と、光路分離ミラー24と、参照検出器25と、信号処理部26とを有している。 Next, the reference optical system 21 will be described. The reference optical system 21 shares part of the configuration with the above-described spectroscopic optical system 11, and in addition to the collimating optical system 13, the BS 14, the fixed mirror 15, the movable mirror 16, and the condensing optical system 17 described above. The reference light source 22, the optical path synthesis mirror 23, the optical path separation mirror 24, the reference detector 25, and the signal processing unit 26 are included.
 参照光源22は、移動鏡16の位置を検出したり、演算部2でのサンプリングのタイミング信号を生成するための光源であり、例えば赤色光を発光する半導体レーザで構成されている。光路合成ミラー23は、分光光源12からの光を透過させ、参照光源22からの光を反射させることにより、これらの光の光路を同一光路に合成する。一方、光路分離ミラー24は、分光光源11から出射されてBS14を介して入射する光を透過させ、参照光源22から出射されてBS14を介して入射する光を反射させることにより、これらの光の光路を分離する。 The reference light source 22 is a light source for detecting the position of the movable mirror 16 and generating a timing signal for sampling in the arithmetic unit 2, and is composed of, for example, a semiconductor laser that emits red light. The optical path combining mirror 23 transmits the light from the spectral light source 12 and reflects the light from the reference light source 22, thereby combining the optical paths of these lights into the same optical path. On the other hand, the optical path separation mirror 24 transmits the light emitted from the spectroscopic light source 11 and incident via the BS 14, and reflects the light emitted from the reference light source 22 and incident via the BS 14. Separate the light path.
 参照検出器25は、参照光源22から出射されてBS14を介して光路分離ミラー24に入射し、そこで反射された光(干渉光)を検出するものであり、例えば4分割センサで構成されている。 The reference detector 25 detects light (interference light) emitted from the reference light source 22 and incident on the optical path separation mirror 24 via the BS 14 and reflected there. The reference detector 25 includes, for example, a quadrant sensor. .
 信号処理部26は、参照検出器25にて検出された干渉光の強度に基づいて、演算部2でのサンプリングのタイミングを示す信号を生成する。なお、この信号の生成は、公知の手法によって行うことができるため、ここではその説明を省略する。 The signal processing unit 26 generates a signal indicating the sampling timing in the calculation unit 2 based on the intensity of the interference light detected by the reference detector 25. Since the generation of this signal can be performed by a known method, the description thereof is omitted here.
 また、信号処理部26は、参照検出器25にて検出された干渉光の強度に基づいて、2光路間での光の傾き(固定鏡15での反射光と移動鏡16での反射光との相対的な傾き)を検出する。例えば、図3に示すように、参照検出器25の4つの受光領域を反時計回りにE1~E4とし、全体の受光領域の中心に干渉光の光スポットDが位置しているものとする。受光領域E1・E2で検出された光の強度の和をA1とし、受光領域E3・E4で検出された光の強度の和をA2としたときに、時間経過に対する強度A1・A2の変化を示す位相信号として、図4に示す信号が得られたとすると、これらの信号に基づいて2光路間での光の傾き(相対的な傾き方向および傾き量)を検出することができる。この例では、受光領域E1・E2と受光領域E3・E4とが並ぶ方向(図3では上下方向)に位相差Δに対応する角度だけ、2光路間で光の傾きが生じていることになる。なお、図4の縦軸の強度は相対値で示している。 Further, the signal processing unit 26 determines the inclination of the light between the two optical paths (the reflected light from the fixed mirror 15 and the reflected light from the movable mirror 16 based on the intensity of the interference light detected by the reference detector 25. Relative slope) is detected. For example, as shown in FIG. 3, the four light receiving areas of the reference detector 25 are assumed to be E1 to E4 counterclockwise, and the light spot D of the interference light is located at the center of the entire light receiving area. When the sum of the light intensities detected in the light receiving areas E1 and E2 is A1, and the sum of the light intensities detected in the light receiving areas E3 and E4 is A2, the change in the intensity A1 and A2 over time is shown. Assuming that the signals shown in FIG. 4 are obtained as phase signals, it is possible to detect the light inclination (relative inclination direction and amount of inclination) between the two optical paths based on these signals. In this example, the light is inclined between the two optical paths by an angle corresponding to the phase difference Δ in the direction in which the light receiving regions E1 and E2 and the light receiving regions E3 and E4 are aligned (vertical direction in FIG. 3). . In addition, the intensity | strength of the vertical axis | shaft of FIG. 4 is shown by the relative value.
 上記の構成において、参照光源22から出射された光は、光路合成ミラー23にて反射され、コリメート光学系13を介してBS14に入射し、そこで2光束に分離される。BS14にて分離された一方の光束は移動鏡16で反射され、他方の光束は固定鏡15で反射され、それぞれ元の光路を逆戻りしてBS14で重ね合わせられ、干渉光として試料Sに照射される。試料Sを透過した光は、集光光学系17を介して光路分離ミラー24に入射し、そこで反射されて参照検出器25に入射する。信号処理部26は、参照検出器25にて検出された干渉光の強度に基づいて、2光路間での光の傾きを検出する。光路補正装置31は、信号処理部26での検出結果に基づいて、2光路間での光の傾きを無くすべく、固定鏡15の姿勢(BS14に対する角度)を調整して、固定鏡15での反射光の光路を補正することになる。 In the above configuration, the light emitted from the reference light source 22 is reflected by the optical path combining mirror 23, is incident on the BS 14 via the collimating optical system 13, and is split into two light beams there. One light beam separated by the BS 14 is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15. Each light beam returns to the original optical path and is superimposed on the BS 14, and is irradiated to the sample S as interference light. The The light transmitted through the sample S enters the optical path separation mirror 24 through the condensing optical system 17, is reflected there, and enters the reference detector 25. The signal processing unit 26 detects the inclination of light between the two optical paths based on the intensity of the interference light detected by the reference detector 25. Based on the detection result of the signal processing unit 26, the optical path correction device 31 adjusts the attitude of the fixed mirror 15 (the angle with respect to the BS 14) so as to eliminate the inclination of the light between the two optical paths. The optical path of the reflected light is corrected.
 〔光路補正装置の詳細について〕
 次に、光路補正装置31の詳細について説明する。ここでは、光路補正装置31として2つの実施例を挙げながら、比較例も参照して説明する。
[Details of optical path correction device]
Next, details of the optical path correction device 31 will be described. Here, the optical path correction device 31 will be described with reference to a comparative example while giving two examples.
 (実施例1)
 図5(a)は、実施例1の光路補正装置31の概略の構成を示す平面図であり、図5(b)は、光路補正装置31の側面図である。なお、図5(a)では、便宜上、固定鏡15の図示を省略している。光路補正装置31は、反射ミラーとしての固定鏡15と、回動部材51と、圧電素子52と、連結部材56とを有して構成されている。
Example 1
FIG. 5A is a plan view illustrating a schematic configuration of the optical path correction device 31 according to the first embodiment, and FIG. 5B is a side view of the optical path correction device 31. In FIG. 5A, the fixed mirror 15 is not shown for convenience. The optical path correction device 31 includes a fixed mirror 15 as a reflection mirror, a rotating member 51, a piezoelectric element 52, and a connecting member 56.
 回動部材51は、固定鏡15を支持する支持面51a1として円形の端面を有する第1円柱部51aで構成されており、回動中心Pを中心としてA-A’方向に回動可能に設けられている。第1円柱部51aは、例えば金属(ステンレス等)で構成されており、その直径は、固定鏡15の直径と概ね同じである。 Rotating member 51 is composed of a first cylindrical portion 51a having a circular end surface as a supporting surface 51a 1 for supporting the fixed mirror 15, rotatable in the A-A 'direction about the rotational center P Is provided. The first cylindrical portion 51 a is made of, for example, metal (stainless steel or the like), and the diameter thereof is substantially the same as the diameter of the fixed mirror 15.
 圧電素子52は、電圧印加によって、回動部材51が回動するA-A’方向と対応する方向であって、回動部材51との間隔が変化するB-B’方向に伸縮する変位部材であり、回動部材51に対して固定鏡15とは反対側に設けられている。この圧電素子52は、伸縮方向に垂直な端面52Sの一部の領域52S1でのみ、接着剤53(図8参照)を介して連結部材56の後述する第2円柱部57と連結されている。これにより、圧電素子52の端面52Sと対向する回動部材51の領域を、回動中心Pにより近い第1の領域51R1と、回動中心Pからより遠い第2の領域51R2とに分割したとき、圧電素子52は、電圧印加による伸長時に、端面52Sの一部の領域52S1で、連結部材56を介して回動部材51の第1の領域51R1を押圧して、回動部材51を回動させることが可能となる。 The piezoelectric element 52 is a displacement member that expands and contracts in the direction BB ′ in which the distance from the rotation member 51 changes in a direction corresponding to the direction AA ′ in which the rotation member 51 rotates by voltage application. The rotating member 51 is provided on the opposite side of the fixed mirror 15. The piezoelectric element 52 is stretchable direction only in some areas 52S 1 of the perpendicular end surface 52S, and is connected to the second cylindrical portion 57 to be described later of adhesive 53 (see FIG. 8) connected through a member 56 . Thus, the region of the rotating member 51 that faces the end surface 52S of the piezoelectric element 52 is divided into a first region 51R 1 that is closer to the rotation center P and a second region 51R 2 that is farther from the rotation center P. In this case, the piezoelectric element 52 presses the first region 51R 1 of the rotating member 51 via the connecting member 56 in the partial region 52S 1 of the end surface 52S during expansion due to voltage application, thereby rotating the rotating member. 51 can be rotated.
 ここで、図6は、回動部材51の圧電素子52側からの底面図である。第1の領域51R1および第2の領域51R2についてさらに詳しく説明する。回動部材51において、圧電素子52の端面52Sと対向する領域を51Rとすると、第1の領域51R1は、領域51Rのうちで、連結部材56(第2円柱部57)の端面と連結される領域(図6の斜線部分)であり、圧電素子52の端面52Sの中心を通る伸縮方向に沿った中心軸Cよりも回動部材51の回動中心P(図5(b)参照)に近い領域となっている。一方、第2の領域51R2は、領域51Rの残りの領域(第1の領域51R1を差し引いた領域)である。このようにして、領域51Rは、回動中心Pにより近い第1の領域51R1と、回動中心Pからより遠い第2の領域51R2とに分割されている。 Here, FIG. 6 is a bottom view of the rotating member 51 from the piezoelectric element 52 side. The first region 51R 1 and the second region 51R 2 will be described in more detail. At the pivot member 51, when the end surface 52S facing the region of the piezoelectric element 52 and 51R, the first region 51R 1 is of the areas 51R, is connected to the end face of the connecting member 56 (second cylindrical portion 57) 6 (the hatched portion in FIG. 6), which is closer to the rotation center P of the rotation member 51 (see FIG. 5B) than the center axis C along the expansion / contraction direction passing through the center of the end face 52S of the piezoelectric element 52. It is a close area. On the other hand, the second region 51R 2 is a remaining region of the region 51R (a region obtained by subtracting the first region 51R 1 ). In this way, the region 51R is divided into a first region 51R 1 closer to the rotation center P and a second region 51R 2 farther from the rotation center P.
 また、圧電素子52は、回動部材51の異なる領域を押圧するために、上述のように複数(本実施例では4本)設けられている。各圧電素子52a~52dの伸縮方向は、回動部材51の回動方向とそれぞれ対応しているが、図5(b)では、一例として、圧電素子52a・52cの伸縮方向(B-B’方向)と、回動部材51の回動方向(A-A’方向)とが対応していることを示している。圧電素子52aと圧電素子52c、圧電素子52bと圧電素子52dは、回動部材51の回動中心Pを通る軸に対して対向配置されている。各圧電素子52は、回動部材51とは反対側の端面全体で、エポキシ接着剤を介して、ステンレス等の金属からなる固定台54に固着されている。 In addition, a plurality of (four in this embodiment) piezoelectric elements 52 are provided as described above in order to press different regions of the rotating member 51. The expansion / contraction direction of each of the piezoelectric elements 52a to 52d corresponds to the rotation direction of the rotation member 51. In FIG. 5B, for example, the expansion / contraction direction (BB ′) of the piezoelectric elements 52a and 52c. Direction) and the rotation direction (AA ′ direction) of the rotation member 51 correspond to each other. The piezoelectric element 52 a and the piezoelectric element 52 c, and the piezoelectric element 52 b and the piezoelectric element 52 d are disposed opposite to an axis passing through the rotation center P of the rotation member 51. Each piezoelectric element 52 is fixed to a fixed base 54 made of a metal such as stainless steel via an epoxy adhesive on the entire end surface opposite to the rotating member 51.
 なお、上述した圧電素子52の伸縮による回動部材51の押圧の仕方は、全ての圧電素子52a~52dに共通して言える。したがって、上述した回動部材51の第1の領域51R1および第2の領域51R2は、各圧電素子52a~52dに対応して設けられ、各圧電素子52a~52dは、伸長時に、連結部材56を介して、対応する第1の領域51R1を押圧することによって回動部材51を回動させることになる。 The manner of pressing the rotating member 51 by the expansion and contraction of the piezoelectric element 52 described above can be said to be common to all the piezoelectric elements 52a to 52d. Accordingly, the first region 51R 1 and the second region 51R 2 of the rotating member 51 described above are provided corresponding to the piezoelectric elements 52a to 52d, and the piezoelectric elements 52a to 52d are connected to the connecting member when extended. The rotating member 51 is rotated by pressing the corresponding first region 51R 1 via 56.
 また、上記した圧電素子52は、電圧印加部55と接続されている。ここで、図7(a)は、圧電素子52と電圧印加部55との電気的な接続関係を示している。各圧電素子52a~52dは、電源供給用のリード線を介して各電圧印加部55a~55dとそれぞれ接続されている。したがって、各圧電素子52a~52dごとに電圧印加を制御することが可能であり、これによって、各圧電素子52a~52dを個別に伸縮させることが可能となっている。 Further, the above-described piezoelectric element 52 is connected to the voltage application unit 55. Here, FIG. 7A shows an electrical connection relationship between the piezoelectric element 52 and the voltage application unit 55. The piezoelectric elements 52a to 52d are connected to the voltage application units 55a to 55d through power supply lead wires, respectively. Accordingly, it is possible to control the voltage application for each of the piezoelectric elements 52a to 52d, and thereby it is possible to individually expand and contract each of the piezoelectric elements 52a to 52d.
 連結部材56は、圧電素子52の端面52S(ここではその一部の領域52S1)と回動部材51とを連結するものであり、第2円柱部57と、接着剤53とで構成されている。第2円柱部57は、例えば金属(ステンレス等)で構成されており、回動部材51としての第1円柱部51aよりも小径で、回動中心Pを通る軸で第1円柱部51aと同軸に連結されている。第2円柱部57における回動部材51とは反対側の端面には、微小な間隙を介して束ねられて配置される四角柱状の4本の圧電素子52(52a~52d)が固着されている。第2円柱部57の半径は、概ね圧電素子52の断面の1辺の長さの半分に設定されている。 The connecting member 56 connects the end surface 52S of the piezoelectric element 52 (part of the region 52S 1 here) and the rotating member 51, and includes a second cylindrical portion 57 and an adhesive 53. Yes. The second cylindrical portion 57 is made of, for example, metal (stainless steel or the like), has a smaller diameter than the first cylindrical portion 51a as the rotating member 51, and is coaxial with the first cylindrical portion 51a on an axis passing through the rotation center P. It is connected to. Four square columnar piezoelectric elements 52 (52a to 52d) arranged in a bundle with a minute gap are fixed to the end surface of the second cylindrical portion 57 opposite to the rotating member 51. . The radius of the second cylindrical portion 57 is set to approximately half the length of one side of the cross section of the piezoelectric element 52.
 接着剤53は、圧電素子52の端面52Sの一部の領域52S1と、第2円柱部57とを連結するものである。接着剤53による接続部分(連結部分)は、光路補正装置31の特性を決める上で重要な部分であり、本実施例では、接着剤としては比較的ヤング率の大きいエポキシ接着剤や適度な弾性を有するエポキシ・変成シリコーン接着剤等が仕様に沿った形で適宜選択されている。また、接着剤53の厚さも重要であるため、径の揃った球形のプラスチックビーズが接着剤53に混合されていることが望ましい。本実施例では、接着剤53として、直径30μmのプラスチックビーズを混合したエポキシ接着剤を用いた。 The adhesive 53 connects a partial region 52S 1 of the end surface 52S of the piezoelectric element 52 and the second cylindrical portion 57. The connection part (connection part) by the adhesive 53 is an important part in determining the characteristics of the optical path correction device 31, and in this embodiment, the adhesive has an epoxy adhesive having a relatively high Young's modulus and an appropriate elasticity. Epoxy / modified silicone adhesives having the above are appropriately selected according to specifications. Further, since the thickness of the adhesive 53 is also important, it is desirable that spherical plastic beads having a uniform diameter are mixed with the adhesive 53. In this embodiment, as the adhesive 53, an epoxy adhesive mixed with plastic beads having a diameter of 30 μm was used.
 次に、光路補正装置31の動作について説明する。
 固定鏡15の回動は、対向する圧電素子52に逆位相の電圧を印加することで行う。すなわち、固定鏡15を図7(a)のy軸回りに回動させる場合は、電圧印加部55aおよび電圧印加部55cにより、圧電素子52aおよび圧電素子52cに位相が180°ずれた電圧を印加する。図7(b)は、圧電素子52aに印加される電圧の波形(52a(s))と、圧電素子52cに印加される電圧の波形(52c(s))とをそれぞれ示している。例えば時刻T1においては、圧電素子52aには+v(V)の電圧が、圧電素子52cには-v(V)の電圧が印加されていることがわかる。
Next, the operation of the optical path correction device 31 will be described.
The fixed mirror 15 is rotated by applying a voltage having an opposite phase to the opposing piezoelectric element 52. That is, when the fixed mirror 15 is rotated about the y-axis in FIG. 7A, a voltage whose phase is shifted by 180 ° is applied to the piezoelectric element 52a and the piezoelectric element 52c by the voltage application unit 55a and the voltage application unit 55c. To do. FIG. 7B shows a waveform (52a (s)) of the voltage applied to the piezoelectric element 52a and a waveform (52c (s)) of the voltage applied to the piezoelectric element 52c, respectively. For example, at time T1, it can be seen that a voltage of + v (V) is applied to the piezoelectric element 52a and a voltage of −v (V) is applied to the piezoelectric element 52c.
 図8は、光路補正装置31の側面図であって、時刻T0(電圧無印加時)と時刻T1での回動部材51の姿勢を示す側面図である。なお、図8では、便宜上、圧電素子52bの図示を省略している。圧電素子52aには+v(V)の電圧が印加されているので、圧電素子52aはd(mm)だけ伸びる(d(+)の変位)。一方、圧電素子52cには-v(V)の電圧が印加されているので、圧電素子52cはd(mm)だけ縮む(d(-)の変位)。これにより、圧電素子52aは、連結部材56を介して回動部材51を押圧し、回動部材51全体が固定鏡15を支持したまま、回動中心Pを中心としてy軸回りに回動角θ(°)だけ回動する。なお、回動部材51が回動するときの回動中心Pは、構成部材の力学関係によって決まる。 FIG. 8 is a side view of the optical path correction device 31 and is a side view showing the posture of the rotating member 51 at time T0 (when no voltage is applied) and at time T1. In FIG. 8, the illustration of the piezoelectric element 52b is omitted for convenience. Since a voltage of + v (V) is applied to the piezoelectric element 52a, the piezoelectric element 52a extends by d (mm) (displacement of d (+)). On the other hand, since a voltage of −v (V) is applied to the piezoelectric element 52c, the piezoelectric element 52c contracts by d (mm) (displacement of d (−)). As a result, the piezoelectric element 52a presses the rotating member 51 via the connecting member 56, and the rotating member 51 as a whole rotates around the rotation center P with the rotation angle around the y axis while supporting the fixed mirror 15. It rotates by θ (°). Note that the rotation center P when the rotation member 51 rotates is determined by the mechanical relationship of the constituent members.
 一方、固定鏡15をx軸回りに回動させる場合は、圧電素子52bと圧電素子52dとに位相が180°ずれた電圧を印加すればよい。これにより、y軸回りのときと同様の原理により、回動部材51が固定鏡15を支持したまま、回動中心Pを中心としてx軸回りに回動させることができる。 On the other hand, when the fixed mirror 15 is rotated around the x axis, a voltage whose phase is shifted by 180 ° may be applied to the piezoelectric element 52b and the piezoelectric element 52d. Accordingly, the rotation member 51 can be rotated about the rotation center P around the rotation axis P with the rotation member 51 supporting the fixed mirror 15 based on the same principle as the rotation about the y-axis.
 以上では、固定鏡15および回動部材51をy軸回りおよびx軸回りに回動させる場合を示したが、これらy軸およびx軸回りの回動を組み合わせることで、任意の首振り運動を実現することが可能である。 In the above, the case where the fixed mirror 15 and the rotation member 51 are rotated about the y axis and the x axis has been shown. However, by combining these rotations about the y axis and the x axis, any swing motion can be performed. It is possible to realize.
 なお、ここでは、GNDを境に+v(V)と-v(V)の電圧を各圧電素子に印加しているが、別の方法として、定常状態でオフセット電圧としてV0(V)を印加しておき、その電圧V0を境に、電圧V0よりも大きい電圧(例えば+2(V))と、電圧V0よりも小さい電圧(例えば0(V))とを各圧電素子に印加するようにしてもよい。 In this example, + v (V) and -v (V) voltages are applied to each piezoelectric element with GND as a boundary. Alternatively, V 0 (V) is applied as an offset voltage in a steady state. A voltage larger than the voltage V 0 (for example, +2 (V)) and a voltage smaller than the voltage V 0 (for example, 0 (V)) are applied to each piezoelectric element with the voltage V 0 as a boundary. You may do it.
 (比較例)
 図9は、比較例の光路補正装置の概略の構成を示す平面図である。また、図10は、比較例の光路補正装置の側面図であって、図7(b)と同じ電圧を圧電素子52a・52cにそれぞれ印加した場合における、時刻T0(電圧無印加時)と時刻T1での回動部材51の姿勢を示す側面図である。なお、図10では、便宜上、圧電素子52bの図示を省略している。
(Comparative example)
FIG. 9 is a plan view showing a schematic configuration of an optical path correction apparatus of a comparative example. FIG. 10 is a side view of the optical path correction device of the comparative example. When the same voltage as that in FIG. 7B is applied to the piezoelectric elements 52a and 52c, time T0 (when no voltage is applied) and time It is a side view which shows the attitude | position of the rotation member 51 in T1. In FIG. 10, the piezoelectric element 52b is not shown for convenience.
 比較例の光路補正装置では、連結部材56(第2円柱部57)の直径が、束ねられた4本の圧電素子52a~52dを内包する円筒部材の開口部の直径以上に設定されている。そして、圧電素子52が、伸縮方向に垂直な端面52Sの全体で、接着剤53を介して第2円柱部57と接着されている。これ以外については、実施例1の構成と同じである。 In the optical path correction device of the comparative example, the diameter of the connecting member 56 (second cylindrical portion 57) is set to be equal to or larger than the diameter of the opening of the cylindrical member containing the bundled four piezoelectric elements 52a to 52d. The piezoelectric element 52 is bonded to the second cylindrical portion 57 via the adhesive 53 over the entire end surface 52S perpendicular to the expansion / contraction direction. Other than this, the configuration is the same as that of the first embodiment.
 実施例1と同様に、固定鏡をy軸回りに回動させる場合は、圧電素子52aと圧電素子52cとに位相が180°ずれた電圧を印加すればよい。図7(b)と同じ電圧を圧電素子52a・52cにそれぞれ印加した場合、圧電素子52aはd’(mm)だけ伸び(d’(+)の変位)、圧電素子52cはd’(mm)だけ縮む(d’(-)の変位)。ただし、d’(+)<d(+)、かつ、d’(-)<d(-)、となり、比較例での回動部材51の回動角θ’は、実施例1での回動部材51の回動角θよりも小さくなる。これは、以下の理由によるものと考えられる。 As in the first embodiment, when the fixed mirror is rotated about the y-axis, a voltage whose phase is shifted by 180 ° may be applied to the piezoelectric element 52a and the piezoelectric element 52c. When the same voltage as that in FIG. 7B is applied to the piezoelectric elements 52a and 52c, the piezoelectric element 52a extends by d ′ (mm) (displacement of d ′ (+)), and the piezoelectric element 52c has d ′ (mm). Shrinks only (displacement of d ′ (−)). However, d ′ (+) <d (+) and d ′ (−) <d (−), and the rotation angle θ ′ of the rotation member 51 in the comparative example is the same as that in the first embodiment. It becomes smaller than the rotation angle θ of the moving member 51. This is considered to be due to the following reasons.
 比較例の構成では、圧電素子52が端面S1全体で連結部材56の第2円柱部57と接着されており、実施例1に比べて、接着面積が大きいため、伸長時に圧電素子52に掛かる負荷が大きくなり、その結果、圧電素子52の変位量が小さくなって、回動角が小さくなる。また、比較例の構成では、回動中心Pから、圧電素子52が回動部材51に力を与えるときの見掛け上の力点の位置Qまでの距離が、実施例1よりも大きくなるため、圧電素子52の変位を回動部材51の傾きに変換する割合(効率)が小さくなり、回動角が小さくなる。なお、見掛け上の力点の位置Qとは、圧電素子52の伸長時に、圧電素子52が接着剤53を介して第2円柱部57を1点で押圧したのと等価と考えられるときの力点の位置のことであり、厳密には、接着剤53における第2円柱部57との接触面の中心とはずれているが、便宜的に上記接触面の中心と考えても差し支えはない。比較例と実施例1とにおいて、圧電素子52と第2円柱部57との接着面積以外の条件を全く等しくしてシミュレーションを行った結果、実施例1では、比較例の2倍程度の回動角が得られた。 In the configuration of the comparative example, the piezoelectric element 52 is bonded to the second cylindrical portion 57 of the connecting member 56 over the entire end surface S1, and since the bonding area is larger than that of the first embodiment, the load applied to the piezoelectric element 52 when extended. As a result, the displacement amount of the piezoelectric element 52 is reduced, and the rotation angle is reduced. Further, in the configuration of the comparative example, the distance from the rotation center P to the apparent force point position Q when the piezoelectric element 52 applies a force to the rotation member 51 is larger than that in the first embodiment. The ratio (efficiency) for converting the displacement of the element 52 into the inclination of the rotation member 51 is reduced, and the rotation angle is reduced. The apparent force point position Q is the force point when the piezoelectric element 52 is considered to be equivalent to pressing the second cylindrical portion 57 at one point via the adhesive 53 when the piezoelectric element 52 is extended. Although it is a position and, strictly speaking, it is deviated from the center of the contact surface of the adhesive 53 with the second cylindrical portion 57, it can be considered to be the center of the contact surface for convenience. In the comparative example and the first example, the simulation was performed under the same conditions except for the bonding area between the piezoelectric element 52 and the second cylindrical portion 57. As a result, in the first example, the rotation was about twice that of the comparative example. A corner was obtained.
 なお、4本の圧電素子52の端面52S全体の面積の合計が、実施例1における圧電素子52と第2円柱部57との接着面積と同じ面積を有する、細い圧電素子を用いることにより、理論上は、実施例1に近い回動量を得ることができると考えられる。しかし、その場合は、素子面積の減少による強度不足や押圧力の発生力不足、あるいは圧電素子の作製上の課題(加工ばらつきの相対的増加等)が発生するため、好ましくない。 It should be noted that the use of thin piezoelectric elements in which the total area of the entire end faces 52S of the four piezoelectric elements 52 has the same area as the adhesion area between the piezoelectric elements 52 and the second cylindrical portion 57 in the first embodiment is theoretical. It is considered that the amount of rotation close to that in Example 1 can be obtained. However, such a case is not preferable because insufficient strength due to a decrease in the element area, insufficient force to generate a pressing force, or problems in manufacturing a piezoelectric element (such as a relative increase in processing variation) may occur.
 以上のように、本実施例では、圧電素子52が端面52Sの全体ではなく、回動中心Pに近い一部の領域52S1で、接着剤53を介して第2円柱部57を押圧し、第2の円柱部57が回動部材51を押圧する。これにより、圧電素子52自体を回動中心Pに近い位置に配置した場合でも、見掛け上の力点の位置Qを、圧電素子52の端面52Sの中心よりもさらに回動中心P側に近づけることができる。つまり、見掛け上の力点の位置Qを、図16(b)の位置よりも回動中心P側にさらに近づけることができる。その結果、第2円柱部57が回動部材51の回動中心P側の第1の領域51R1を押圧して、回動部材51を大きく回動させることができる。 As described above, in this embodiment, the piezoelectric element 52 presses the second cylindrical portion 57 via the adhesive 53 in the partial region 52S 1 close to the rotation center P, not the entire end surface 52S. The second cylindrical portion 57 presses the rotating member 51. Thereby, even when the piezoelectric element 52 itself is arranged at a position close to the rotation center P, the apparent force point position Q can be made closer to the rotation center P side than the center of the end surface 52S of the piezoelectric element 52. it can. That is, the apparent force point position Q can be made closer to the rotation center P side than the position of FIG. As a result, the second cylindrical portion 57 can press the first region 51R 1 on the rotation center P side of the rotation member 51, and the rotation member 51 can be largely rotated.
 また、図5(b)、図6および図8に示すように、第2円柱部57において、圧電素子52の伸縮方向から見たときに、圧電素子52の伸縮を回動部材51に伝達する領域を作用領域56aとする。このときの作用領域56aは、圧電素子52の端面52Sよりも狭く、かつ、端面52Sにおける回動中心Pに近い部分的な領域52S1と対応した位置関係にあり、第2円柱部57の回動部材51と接触する端面(第1円柱部51aと連結される端面)において、中心軸Cよりも回動中心Pに近い位置にある。したがって、圧電素子52の伸長時、つまり、圧電素子52が端面52S1で第2円柱部57を押圧したとき、第2円柱部57は、作用領域56aによって回動部材51の回動中心P側の領域である第1の領域51R1を押圧することができ、これによって、回動部材51を大きく回動させることができるとも言える。 Further, as shown in FIGS. 5B, 6, and 8, in the second cylindrical portion 57, the expansion / contraction of the piezoelectric element 52 is transmitted to the rotating member 51 when viewed from the expansion / contraction direction of the piezoelectric element 52. The region is referred to as an action region 56a. Active area 56a at this time is narrower than the end surface 52S of the piezoelectric element 52, and, located in the corresponding positional relationship between the partial regions 52S 1 near the rotation center P of the end face 52S, the second cylindrical portion 57 times The end surface that contacts the moving member 51 (the end surface connected to the first cylindrical portion 51 a) is closer to the rotation center P than the center axis C. Accordingly, when extension of the piezoelectric element 52, that is, when the piezoelectric element 52 presses the second cylindrical portion 57 at the end face 52S 1, second cylindrical portion 57, the rotational center P side of the rotating member 51 by the action region 56a it is possible to press the first region 51R 1 is a region, thereby, it can be said that it is possible to largely rotate the rotating member 51.
 したがって、大型の圧電素子を用いて伸長量を大きくすることなく、回動部材51の回動角を増大させて、固定鏡15での反射光の光路の補正範囲(反射角の調整範囲)を大きく確保することができる。その結果、小型の構成でありながら、広い角度範囲で反射光の光路補正を行うことができる。また、圧電素子52を細くすることなく、見掛け上の力点の位置Qを回動中心P側に近づけることができるので、圧電素子52の強度を確保しながら、反射光の光路を補正することができる。 Therefore, the rotation angle of the rotation member 51 is increased without increasing the extension amount by using a large piezoelectric element, and the correction range (reflection angle adjustment range) of the optical path of the reflected light at the fixed mirror 15 is increased. It can be secured greatly. As a result, the optical path of the reflected light can be corrected in a wide angle range while having a small configuration. Further, the apparent force point position Q can be brought closer to the rotation center P without making the piezoelectric element 52 thinner, so that the optical path of the reflected light can be corrected while ensuring the strength of the piezoelectric element 52. it can.
 よって、図1で示したフーリエ変換分光分析装置において、移動鏡16の移動量を増大させたときに移動鏡16の並進性が崩れても、光路補正装置31での光路補正により、分光検出器18で検出される干渉光の干渉縞のコントラストが低下するのを抑えることができる。したがって、演算部2でのフーリエ変換によって得られるスペクトルに基づく分光分析を精度よく行うことができ、移動鏡16の移動量を増大させて分解能を向上させることが可能となる。 Therefore, in the Fourier transform spectroscopic analyzer shown in FIG. 1, even if the translation of the movable mirror 16 is lost when the movement amount of the movable mirror 16 is increased, the spectral detector is obtained by the optical path correction in the optical path correction device 31. It is possible to prevent the contrast of the interference fringes of the interference light detected at 18 from decreasing. Therefore, the spectroscopic analysis based on the spectrum obtained by the Fourier transform in the calculation unit 2 can be performed with high accuracy, and the resolution can be improved by increasing the amount of movement of the movable mirror 16.
 特に、回動部材51の第1の領域51R1は、圧電素子52の端面52Sの中心を通る中心軸Cよりも回動中心Pに近い領域であるので、圧電素子52が連結部材56を介して回動部材51の第1の領域51R1を押圧することによって、回動部材51の回動角を確実に増大させることができる。 In particular, the first region 51R 1 of the rotation member 51 is a region closer to the rotation center P than the central axis C passing through the center of the end surface 52S of the piezoelectric element 52, and therefore the piezoelectric element 52 is interposed via the connecting member 56. By pressing the first region 51R 1 of the rotation member 51, the rotation angle of the rotation member 51 can be reliably increased.
 また、回動部材51と圧電素子52とを、弾性を有する接着剤53で連結しているので、圧電素子52の伸長時に、接着剤53の弾性を利用して回動部材51を押圧、回動させることができ、回動部材51を効率よく回動させることができる。 In addition, since the rotating member 51 and the piezoelectric element 52 are connected by an adhesive 53 having elasticity, when the piezoelectric element 52 is extended, the rotating member 51 is pressed and rotated using the elasticity of the adhesive 53. The rotating member 51 can be efficiently rotated.
 また、圧電素子52は複数設けられており、連結部材56の上記した作用領域56aは、複数の圧電素子52の個々の伸縮を回動部材51に伝達する。これにより、任意の圧電素子52を伸縮させることによって、任意の首振り運動を実現することが可能となり、固定鏡15での反射光の光路を確実に変えることができる。 Further, a plurality of piezoelectric elements 52 are provided, and the above-described action area 56 a of the connecting member 56 transmits the respective expansion and contraction of the plurality of piezoelectric elements 52 to the rotating member 51. As a result, it is possible to realize an arbitrary swing motion by expanding and contracting the arbitrary piezoelectric element 52, and the optical path of the reflected light at the fixed mirror 15 can be reliably changed.
 また、対向配置された圧電素子52・52(例えば圧電素子52a・52c)に対して、電圧印加部55が逆位相の電圧を印加することにより、一方の圧電素子52aの伸長による回動部材51の回動が、他方の圧電素子52cの収縮による押圧の解除によって助長されるので、1つの圧電素子52の伸長のみによって回動部材51を回動させる構成に比べて、回動部材51の回動角を2倍にすることができる。 Further, when the voltage application unit 55 applies a voltage having an opposite phase to the piezoelectric elements 52 and 52 (for example, the piezoelectric elements 52a and 52c) arranged to face each other, the rotating member 51 due to the extension of the one piezoelectric element 52a. The rotation of the rotation member 51 is facilitated by the release of the pressure due to the contraction of the other piezoelectric element 52 c, so that the rotation of the rotation member 51 is compared with the configuration in which the rotation member 51 is rotated only by extension of one piezoelectric element 52. The moving angle can be doubled.
 なお、実施例1では、変位部材として圧電素子52を用いた例について説明したが、これに限定されるわけではなく、例えば、磁力の作用によって伸縮あるいは弾性変形する磁歪素子で変位部材を構成してもよい。 In the first embodiment, the example in which the piezoelectric element 52 is used as the displacement member has been described. However, the present invention is not limited to this example. For example, the displacement member is configured by a magnetostrictive element that expands and contracts or elastically deforms by the action of a magnetic force. May be.
 また、実施例1では、変位部材として4つの圧電素子52を用いているが、圧電素子52を1つだけ用い、回動部材51を1方向にのみ回動させる構成としてもよい。例えば、図5(a)で示した構成においては、4つの圧電素子52の代わりに、1つの圧電素子52と、3つの支持体(圧電素子のように伸縮しないもの)とを用いて回動部材51を回動させる構成としてもよい。 In the first embodiment, the four piezoelectric elements 52 are used as the displacement members. However, only one piezoelectric element 52 may be used and the rotation member 51 may be rotated only in one direction. For example, in the configuration shown in FIG. 5A, instead of the four piezoelectric elements 52, one piezoelectric element 52 and three supports (things that do not expand and contract like a piezoelectric element) rotate. It is good also as a structure which rotates the member 51. FIG.
 (実施例2)
 図11は、実施例2の光路補正装置31の概略の構成を示す平面図である。図12(a)は、実施例2の光路補正装置31の側面図であって、圧電素子52a・52cへの電圧印加前の回動部材51の姿勢を示す側面図である。図12(b)は、実施例2の光路補正装置31の側面図であって、圧電素子52a・52cへの電圧印加後の回動部材51の姿勢を示す側面図である。なお、図12(b)では、電圧印加によって圧電素子52aを伸長させる一方、圧電素子52cを収縮させた場合を示している。
(Example 2)
FIG. 11 is a plan view illustrating a schematic configuration of the optical path correction device 31 according to the second embodiment. FIG. 12A is a side view of the optical path correction device 31 according to the second embodiment, and is a side view showing the posture of the rotating member 51 before voltage application to the piezoelectric elements 52a and 52c. FIG. 12B is a side view of the optical path correction device 31 according to the second embodiment, and is a side view showing the posture of the rotating member 51 after voltage application to the piezoelectric elements 52a and 52c. FIG. 12B shows a case where the piezoelectric element 52a is expanded by applying a voltage while the piezoelectric element 52c is contracted.
 本実施例の光路補正装置31では、回動部材51は、固定鏡15を支持するミラー支持台で構成されている。なお、図12(a)(b)では、固定鏡15のサイズは回動部材51のサイズよりも大きくなっているが、回動部材51のサイズ以下であってもよい。 In the optical path correction device 31 of the present embodiment, the rotating member 51 is configured by a mirror support base that supports the fixed mirror 15. 12A and 12B, the size of the fixed mirror 15 is larger than the size of the rotating member 51, but may be smaller than the size of the rotating member 51.
 圧電素子52は、伸長時に連結部材58を介して回動部材51を押圧することによって回動部材51を回動させる。より詳しくは、端面52Sと対向する回動部材51の領域を、回動中心Pにより近い第1の領域51R1と、回動中心Pからより遠い第2の領域51R2とに分割したとき、圧電素子52は、電圧印加による伸長時に、連結部材58を介して回動部材51の第1の領域51R1を押圧して、回動部材51を回動させる。なお、第1の領域51R1が、圧電素子52の端面52Sの中心を通る中心軸Cよりも回動中心Pに近い領域である点は、実施例1と同じである。また、上記のような回動部材51の押圧の仕方は、全ての圧電素子52に共通している。 The piezoelectric element 52 rotates the rotating member 51 by pressing the rotating member 51 via the connecting member 58 when extended. More specifically, when the region of the rotation member 51 facing the end surface 52S is divided into a first region 51R 1 closer to the rotation center P and a second region 51R 2 farther from the rotation center P, The piezoelectric element 52 rotates the rotating member 51 by pressing the first region 51R 1 of the rotating member 51 via the connecting member 58 when the piezoelectric element 52 is extended by applying a voltage. The first area 51R 1 is the same as the first embodiment in that the first area 51R 1 is an area closer to the rotation center P than the center axis C passing through the center of the end face 52S of the piezoelectric element 52. The method of pressing the rotating member 51 as described above is common to all the piezoelectric elements 52.
 図13は、回動部材51の圧電素子52a側からの底面図である。圧電素子52aの端面52Sと対向する回動部材51の領域を51Rとしたとき、領域51Rにおける第1の領域51R1、第2の領域51R2、中心軸Cの位置関係は、図13に示す通りである。なお、本実施例では、圧電素子52が連結部材58を介して第1の領域51R1の一部を押圧しているが、第1の領域51R1の全体を押圧するようにしてもよい。 FIG. 13 is a bottom view of the rotating member 51 from the piezoelectric element 52a side. FIG. 13 shows the positional relationship between the first region 51R 1 , the second region 51R 2 , and the central axis C in the region 51R, where the region of the rotating member 51 facing the end surface 52S of the piezoelectric element 52a is 51R. Street. In the present embodiment, the piezoelectric element 52 presses a part of the first region 51R 1 via the connecting member 58. However, the entire first region 51R 1 may be pressed.
 ここで、上記の連結部材58は、台座部59と、押圧部材60とで構成されている。台座部59は、圧電素子52の端面52Sの少なくとも一部とエポキシ接着剤を介して固定される。つまり、台座部59は、圧電素子52の端面52Sの全体と固定されていてもよいし、端面52Sの一部と固定されていてもよい。本実施例では、台座部59は、回動部材51の形状を圧電素子52の端面52Sに投影したような扇形の板状部材となっている。押圧部材60は、台座部59と連結されて台座部59からの押圧力が伝達されるものであり、弾性を有している。押圧部材60は、台座部59の中心よりも回動部材51の回動中心Pに近い側に位置して回動部材51と連結されている。なお、本実施例でも、圧電素子52は複数(例えば4つ)設けられており、各圧電素子52(52a~52d)に対応して連結部材58が設けられているものとする。 Here, the connecting member 58 includes a pedestal portion 59 and a pressing member 60. The pedestal portion 59 is fixed to at least a part of the end surface 52S of the piezoelectric element 52 via an epoxy adhesive. That is, the pedestal portion 59 may be fixed to the entire end surface 52S of the piezoelectric element 52, or may be fixed to a part of the end surface 52S. In the present embodiment, the pedestal portion 59 is a fan-shaped plate-like member in which the shape of the rotating member 51 is projected onto the end face 52S of the piezoelectric element 52. The pressing member 60 is connected to the pedestal portion 59 to transmit the pressing force from the pedestal portion 59 and has elasticity. The pressing member 60 is located closer to the rotation center P of the rotation member 51 than the center of the pedestal portion 59 and is connected to the rotation member 51. In this embodiment, a plurality of (for example, four) piezoelectric elements 52 are provided, and a connecting member 58 is provided corresponding to each piezoelectric element 52 (52a to 52d).
 回動部材51と連結部材58とは、例えば樹脂の一体成型品として形成することが可能である。この一体成型品は、円盤状の回動部材51から4本の押圧部材60が脚のように延び、それら押圧部材60の先端のそれぞれに扇状の台座部59を備えた部材となる。押圧部材60の断面積が小さいことにより、変形に必要な弾性を与えることができる。 The rotating member 51 and the connecting member 58 can be formed as an integrally molded product of resin, for example. This integrally molded product is a member in which four pressing members 60 extend like a leg from a disk-shaped rotating member 51, and a fan-shaped pedestal portion 59 is provided at each of the tips of the pressing members 60. Since the cross-sectional area of the pressing member 60 is small, elasticity necessary for deformation can be provided.
 上記の構成においては、電圧印加によって圧電素子52aを伸長させると、圧電素子52aは連結部材58を介して回動部材51を押圧し、回動させる。このとき、同時に、電圧印加によって、圧電素子52aと対向配置された圧電素子52cを収縮させることにより、圧電素子52cによる回動部材51の押圧が解除されるため、圧電素子52aの伸長による上記の回動が助長され、回動部材51は、より大きく回動することになる。 In the above configuration, when the piezoelectric element 52a is extended by applying a voltage, the piezoelectric element 52a presses and rotates the rotating member 51 via the connecting member 58. At the same time, the piezoelectric element 52c disposed opposite to the piezoelectric element 52a is contracted by voltage application, so that the pressing of the rotating member 51 by the piezoelectric element 52c is released. The rotation is promoted, and the rotation member 51 rotates more greatly.
 本実施例のように、連結部材58を台座部59と押圧部材60とで構成した場合、押圧部材60が台座部59の中心よりも回動部材51の回動中心Pに近い側に位置して回動部材51と連結されているので、圧電素子52の伸長時に台座部59および押圧部材60を介して回動部材51に作用する見掛け上の力点の位置Qを回動中心P側に確実に近づけることができる。したがって、本実施例の構成であっても、回動部材51で支持された固定鏡15の回動角を増大させて、広い角度範囲で反射光の光路補正を行うことができる。 When the connecting member 58 is configured by the pedestal portion 59 and the pressing member 60 as in the present embodiment, the pressing member 60 is positioned closer to the rotation center P of the rotation member 51 than the center of the pedestal portion 59. Therefore, the position Q of the apparent force point acting on the rotating member 51 via the pedestal 59 and the pressing member 60 when the piezoelectric element 52 is extended is surely located on the rotating center P side. Can be approached. Therefore, even in the configuration of the present embodiment, the rotation angle of the fixed mirror 15 supported by the rotation member 51 can be increased, and the optical path correction of the reflected light can be performed in a wide angle range.
 また、図11および図12(a)に示すように、押圧部材60において、圧電素子52の伸縮方向から見たときに、圧電素子52の伸縮を回動部材51に伝達する領域を作用領域60aとする。本実施形態における押圧部材60は、円柱をその軸方向に沿って4等分した形状であるため、作用領域60aは扇形の断面となる。もし仮に押圧部材60の太さが途中で変化している場合には、作用領域60aはその最も細い部分の断面(圧電素子52の伸縮方向から見たときに、最も面積が小さい断面)と対応することになる。 Further, as shown in FIGS. 11 and 12A, in the pressing member 60, an area for transmitting expansion / contraction of the piezoelectric element 52 to the rotating member 51 when viewed from the expansion / contraction direction of the piezoelectric element 52 is an action area 60 a. And Since the pressing member 60 in the present embodiment has a shape obtained by dividing a cylinder into four equal parts along its axial direction, the action region 60a has a fan-shaped cross section. If the thickness of the pressing member 60 changes midway, the action region 60a corresponds to the thinnest cross section (the cross section having the smallest area when viewed from the expansion / contraction direction of the piezoelectric element 52). Will do.
 作用領域60aは、圧電素子52の端面52Sよりも狭く、かつ、端面52Sにおける回動中心Pに近い部分的な領域52S1と対応した位置関係にあり、回動部材51と接触する端面において、中心軸Cよりも回動中心Pに近い位置にある。したがって、圧電素子52の伸長時、押圧部材60は、作用領域60aによって回動部材51の回動中心P側の領域である第1の領域51R1を押圧することができ、これによって、回動部材51を大きく回動させることができる。したがって、このことからも、回動部材51で支持された固定鏡15の回動角を増大させて、広い角度範囲で反射光の光路補正を行うことができると言える。 Active area 60a is narrower than the end surface 52S of the piezoelectric element 52, and located at corresponding positions related partial regions 52S 1 and close to the rotation center P of the end face 52S, the end surface in contact with the rotating member 51, It is at a position closer to the rotation center P than the central axis C. Therefore, when the piezoelectric element 52 is extended, the pressing member 60 can press the first region 51R 1 that is the region on the rotation center P side of the rotating member 51 by the action region 60a. The member 51 can be greatly rotated. Therefore, it can be said that the optical path of the reflected light can be corrected in a wide angle range by increasing the rotation angle of the fixed mirror 15 supported by the rotation member 51.
 なお、実施例1では、圧電素子52の端面52Sの一部の領域52S1は、連結部材56(接着剤53)との接触領域と対応しているのに対して、実施例2では、一部の領域52S1は、連結部材58(台座部59)との接触領域とは対応していない。つまり、一部の領域52S1は、端面52Sよりも狭く、かつ、端面52Sにおける回動中心Pに近い部分的な領域であればよく、連結部材58との接触領域と対応するか否かとは無関係である。 In the first embodiment, a partial region 52S 1 of the end surface 52S of the piezoelectric element 52 corresponds to a contact region with the connecting member 56 (adhesive 53), whereas in the second embodiment, one region 52S1 The region 52S 1 of the part does not correspond to the contact region with the connecting member 58 (pedestal part 59). That is, the partial region 52S 1 may be a partial region that is narrower than the end surface 52S and close to the rotation center P on the end surface 52S, and whether or not it corresponds to the contact region with the connecting member 58. Unrelated.
 〔圧電素子の他の配置例〕
 図14(a)は、変位部材としての圧電素子52の他の配置例を示す平面図である。このように、用いる圧電素子52は3個であってもよい。この場合、3つの圧電素子52a・52b・52cを正三角形の頂点上に位置するように配置し、各圧電素子52を伸縮させることによって、x軸方向およびy方向のいずれにも回動部材および固定鏡を回動させることができる。
[Other arrangement examples of piezoelectric elements]
FIG. 14A is a plan view showing another arrangement example of the piezoelectric elements 52 as displacement members. As described above, three piezoelectric elements 52 may be used. In this case, the three piezoelectric elements 52a, 52b, and 52c are arranged so as to be positioned on the vertices of an equilateral triangle, and each piezoelectric element 52 is expanded and contracted, whereby the rotating member and the x-axis direction and the y-direction are The fixed mirror can be rotated.
 つまり、図14(b)は、電圧印加部55によって3つの圧電素子52a・52b・52cに印加される電圧の波形(52a(s)、52b(S)、52c(s))をそれぞれ示している。図14(a)の配置の場合、2つの圧電素子52a・52bには同位相の電圧を印加し、残りの1つの圧電素子52cには上記とは逆位相の電圧を印加することにより、回動部材を図14(a)のx軸回りに回動させることができる。なお、図14(b)の例では、時刻T1においては、圧電素子52a・52bには+v(V)の電圧が印加されており、圧電素子52cには-v(V)の電圧が印加されていることから、圧電素子52aと圧電素子52c、圧電素子52bと圧電素子52cとで、互いに逆位相の電圧が印加されていることがわかる。 That is, FIG. 14B shows the waveforms (52a (s), 52b (S), 52c (s)) of the voltages applied to the three piezoelectric elements 52a, 52b, and 52c by the voltage application unit 55, respectively. Yes. In the case of the arrangement shown in FIG. 14A, a voltage having the same phase is applied to the two piezoelectric elements 52a and 52b, and a voltage having an opposite phase to the above is applied to the remaining one piezoelectric element 52c. The moving member can be rotated around the x-axis in FIG. In the example of FIG. 14B, at time T1, a voltage of + v (V) is applied to the piezoelectric elements 52a and 52b, and a voltage of −v (V) is applied to the piezoelectric element 52c. Therefore, it can be seen that voltages having opposite phases are applied to each other between the piezoelectric element 52a and the piezoelectric element 52c, and between the piezoelectric element 52b and the piezoelectric element 52c.
 また、図示はしないが、圧電素子52a・52bに互いに逆位相の電圧を印加する一方、圧電素子52cには電圧を印加しないようにすることで、回動部材を図14(a)のy軸回りに回動させることが可能となる。さらに、3つの圧電素子52a・52b・52cに印加される電圧の位相を調整し、x軸回りおよびy軸回りの回動を組み合わせることで、任意の首振り運動を実現することが可能となり、任意の方向に回動部材および固定鏡を回動させることが可能となる。 Further, although not shown in the drawing, the rotating member is applied to the y-axis of FIG. 14A by applying voltages having opposite phases to the piezoelectric elements 52a and 52b but not applying a voltage to the piezoelectric element 52c. It can be rotated around. Furthermore, by adjusting the phase of the voltage applied to the three piezoelectric elements 52a, 52b, and 52c and combining the rotation around the x axis and the y axis, it becomes possible to realize an arbitrary swing motion, It becomes possible to rotate the rotating member and the fixed mirror in an arbitrary direction.
 したがって、互いに逆位相の電圧が印加される圧電素子52は、回動部材の回動中心Pを通る軸、すなわち、図14(a)のx軸およびy軸に垂直な軸に対して、互いに対向配置されていなくてもよいと言える。そして、図14(b)に示すように、少なくとも2つの圧電素子52(例えば圧電素子52a・52c)に対して逆位相の電圧を印加すれば、一方の圧電素子52(例えば圧電素子52c)の収縮により、他方の圧電素子52(例えば圧電素子52a)の伸長による回動を妨げる方向の力を取り除いて、上記回動を助長することができる。その結果、1つの圧電素子52の伸長のみによって回動部材を回動させる構成に比べて、回動部材の回動範囲(回動角)を広げることができるとともに、回動可能な方向(反射光が偏向される面)を増やすことができる。 Therefore, the piezoelectric elements 52 to which voltages having phases opposite to each other are applied to each other with respect to an axis passing through the rotation center P of the rotation member, that is, an axis perpendicular to the x axis and the y axis in FIG. It can be said that it does not need to be opposed. Then, as shown in FIG. 14B, when a voltage having an opposite phase is applied to at least two piezoelectric elements 52 (for example, the piezoelectric elements 52a and 52c), one piezoelectric element 52 (for example, the piezoelectric element 52c) By the contraction, a force in a direction that prevents the rotation due to the extension of the other piezoelectric element 52 (for example, the piezoelectric element 52a) is removed, and the rotation can be promoted. As a result, the rotation range (rotation angle) of the rotation member can be increased and the rotation direction (reflection) compared to a configuration in which the rotation member is rotated only by extension of one piezoelectric element 52. The surface on which the light is deflected) can be increased.
 〔部材の変形(撓み)について〕
 圧電素子が力を発生すると、弾性を有する部材、すなわち、実施例1の接着剤53、実施例2の押圧部材60は全て変形するが、その変形量は、基本的には「はりの曲げ、ねじり」や「柱の引張、圧縮」の式に則って決まり、主に部材の形状とヤング率とによって決まる。
[About deformation (deflection) of members]
When the piezoelectric element generates force, the elastic member, that is, the adhesive 53 of Example 1 and the pressing member 60 of Example 2 are all deformed, but the amount of deformation is basically “bending of the beam, It is determined according to the formulas of “twist” and “column tension / compression”, and is mainly determined by the shape and Young's modulus of the member.
 例えば、変形する部材が「柱」であれば、以下の場合に変形量(圧縮、引張)が大きくなる。
 (1)加わる力の方向に沿った部材の長さが長い。
 (2)加わる力の方向と直交する部材断面の面積が小さい。
 (3)部材のヤング率が小さい。
For example, if the member to be deformed is a “column”, the amount of deformation (compression, tension) increases in the following cases.
(1) The length of the member along the direction of the applied force is long.
(2) The area of the member cross section orthogonal to the direction of the applied force is small.
(3) The Young's modulus of the member is small.
 また、変形する部材が「はり」であれば、以下の場合に変形量(曲げ)が大きくなる。
 (4)加わる力の方向に沿った部材断面の面積が小さい。
 (5)支点から力点までの距離が長い。
 (6)部材のヤング率が小さい。
If the member to be deformed is a “beam”, the amount of deformation (bending) increases in the following cases.
(4) The area of the member cross section along the direction of the applied force is small.
(5) The distance from the fulcrum to the power point is long.
(6) The Young's modulus of the member is small.
 実施例1の場合は、(2)および(3)の効果により、他の部材に比べて相対的に接着剤53が大きく変形し、実施例2の場合は、(1)および(2)の効果により、他の部材に比べて相対的に押圧部材60が大きく変形する。圧電素子の伸長時には、これらの部材が変形することにより、圧電素子の伸長方向の力を回動部材の回動方向の力に効率よく変換して回動部材を回動させることができる。 In the case of Example 1, due to the effects of (2) and (3), the adhesive 53 is largely deformed relative to other members. In the case of Example 2, the effects of (1) and (2) Due to the effect, the pressing member 60 is largely deformed relative to other members. When the piezoelectric element is extended, these members are deformed, whereby the force in the extending direction of the piezoelectric element can be efficiently converted into the force in the rotating direction of the rotating member, and the rotating member can be rotated.
 以上、本実施形態で説明した光路補正装置、干渉計およびフーリエ変換分光分析装置は、以下のように表現することができ、これによって以下の作用効果を奏する。 As described above, the optical path correction device, the interferometer, and the Fourier transform spectroscopic analysis device described in the present embodiment can be expressed as follows, thereby producing the following effects.
 本実施形態の光路補正装置は、光の光路を補正する光路補正装置であって、反射ミラーと、前記反射ミラーを支持する支持面を有し、回動中心を中心として回動可能な回動部材と、前記回動部材に対して前記反射ミラーとは反対側に設けられ、前記回動部材との間隔が変化する方向に伸縮可能な変位部材と、前記変位部材の伸縮方向に垂直な端面と前記回動部材とを連結する連結部材とを備え、前記連結部材は、前記伸縮方向から見たときに、前記変位部材の伸縮を前記回動部材に伝達する作用領域を有し、前記作用領域は、前記変位部材の伸縮方向に垂直な端面よりも狭く、かつ、前記端面における前記回動中心に近い部分的な領域と対応している構成である。 The optical path correction apparatus according to the present embodiment is an optical path correction apparatus that corrects an optical path of light, and includes a reflection mirror and a support surface that supports the reflection mirror, and is capable of rotating about a rotation center. A member, a displaceable member provided on the opposite side of the rotating member with respect to the rotating member and capable of expanding and contracting in a direction in which a distance between the rotating member and the rotating member changes, and an end surface perpendicular to the expanding and contracting direction of the moving member And a connecting member that connects the rotating member, and the connecting member has an action region that transmits expansion / contraction of the displacement member to the rotating member when viewed from the expansion / contraction direction. The region is configured to be narrower than an end surface perpendicular to the expansion / contraction direction of the displacement member and correspond to a partial region near the rotation center on the end surface.
 上記の構成によれば、変位部材(例えば圧電素子、磁歪素子)の伸長時には、連結部材を介して回動部材が押圧されることにより、回動部材が回動する。これにより、回動部材で支持された反射ミラー(例えば干渉計の固定鏡)が回動し、反射ミラーで反射される光の光路が補正される。 According to the above configuration, when the displacement member (for example, a piezoelectric element or a magnetostrictive element) is extended, the rotation member is rotated by pressing the rotation member via the connecting member. Thereby, the reflection mirror (for example, a fixed mirror of the interferometer) supported by the rotation member rotates, and the optical path of the light reflected by the reflection mirror is corrected.
 ここで、連結部材は、変位部材の伸縮を回動部材に伝達する作用領域を有している。この作用領域は、変位部材の伸縮方向に垂直な端面よりも狭く、かつ、上記の端面における回動中心に近い部分的な領域と対応している。これにより、強度を確保できるように変位部材を太く構成したままで、変位部材自体を回動中心に近い位置に配置した場合でも、変位部材の伸長時に、連結部材が作用領域を介して回動部材を押圧することによって、回動部材を大きく回動させることができる。 Here, the connecting member has an action region for transmitting expansion / contraction of the displacement member to the rotating member. This action area corresponds to a partial area that is narrower than the end face perpendicular to the expansion and contraction direction of the displacement member and close to the center of rotation on the end face. As a result, even when the displacement member itself is arranged thicker to ensure strength and the displacement member itself is arranged at a position close to the rotation center, the connecting member rotates through the action region when the displacement member is extended. By pressing the member, the rotating member can be largely rotated.
 したがって、大型の変位部材を用いて伸長量を大きくすることなく、回動部材の回動角を増大させて、反射ミラーで反射される光の光路の補正範囲(反射角の調整範囲)を大きく確保することができる。その結果、小型の構成でありながら、広い角度範囲で反射光の光路補正を行うことができる。また、変位部材を太く構成したままで、回動部材を大きく回動させることができるので、変位部材の強度を確保しながら、反射光の光路を補正することができる。 Accordingly, the correction range (reflection angle adjustment range) of the optical path of the light reflected by the reflection mirror is increased by increasing the rotation angle of the rotation member without increasing the extension amount using a large displacement member. Can be secured. As a result, the optical path of the reflected light can be corrected in a wide angle range while having a small configuration. Further, since the rotating member can be largely rotated while the displacement member is configured to be thick, the optical path of the reflected light can be corrected while ensuring the strength of the displacement member.
 本実施形態の光路補正装置において、前記変位部材の伸縮方向に垂直な端面と対向する前記回動部材の領域を、前記回動部材の回動中心により近い第1の領域と、前記回動中心からより遠い第2の領域とに分割したとき、前記連結部材は、前記変位部材の伸長時に、前記作用領域によって前記回動部材の前記第1の領域を押圧してもよい。 In the optical path correction device according to the present embodiment, an area of the rotating member that faces an end surface perpendicular to the expansion / contraction direction of the displacement member is a first area closer to the rotation center of the rotation member and the rotation center. When divided into a second region farther from the second region, the connecting member may press the first region of the rotating member by the action region when the displacement member is extended.
 連結部材が、変位部材の伸長時に、作用領域によって回動部材の回動中心に近い第1の領域を押圧することにより、回動部材を大きく回動させる効果を確実に得ることができる。 The connecting member presses the first area close to the rotation center of the rotation member by the action area when the displacement member is extended, so that the effect of largely rotating the rotation member can be obtained with certainty.
 本実施形態の光路補正装置において、前記作用領域は、前記連結部材の前記回動部材と接触する端面において、前記変位部材の伸縮方向に垂直な端面の中心を通る伸縮方向に沿った中心軸よりも、前記回動中心に近い位置にあってもよい。 In the optical path correction device according to the present embodiment, the action region has an end surface contacting the rotating member of the connecting member, and a central axis along an expansion / contraction direction passing through a center of an end surface perpendicular to the expansion / contraction direction of the displacement member. Alternatively, it may be at a position close to the rotation center.
 この構成では、変位部材の伸長時に、連結部材の作用領域が、回動部材の回動中心に近い領域(例えば第1の領域)を押圧することが可能となり、これによって、回動部材を大きく回動させることができる。 In this configuration, when the displacement member is extended, the action area of the connecting member can press the area (for example, the first area) close to the rotation center of the rotation member, thereby increasing the rotation member. It can be rotated.
 本実施形態の光路補正装置において、前記回動部材は、前記支持面として円形の端面を有する第1円柱部を有しており、前記連結部材は、前記第1円柱部よりも小径で、前記回動中心を通る軸で前記第1円柱部と同軸に連結される第2円柱部と、前記変位部材の伸縮方向に垂直な端面における前記部分的な領域と、前記第2円柱部とを連結する接着剤とを有しており、前記第2円柱部は、前記第1円柱部と連結される端面に、前記作用領域を有していてもよい。 In the optical path correction apparatus according to the present embodiment, the rotating member has a first cylindrical portion having a circular end surface as the support surface, and the connecting member has a smaller diameter than the first cylindrical portion, A second cylindrical portion connected coaxially with the first cylindrical portion along an axis passing through the rotation center, the partial region on the end surface perpendicular to the expansion and contraction direction of the displacement member, and the second cylindrical portion are connected. The second columnar part may have the action region on an end face connected to the first columnar part.
 回動部材の円柱部(第1円柱部)と連結部材の円柱部(第2円柱部)とを同軸で連結し、変位部材の上記した部分的な領域と第2円柱部とを接着剤で連結した構成では、第2円柱部は、第1円柱部と連結される端面の作用領域を介して、第1円柱部を押圧し、回動させることができる。 The cylindrical part (first cylindrical part) of the rotating member and the cylindrical part (second cylindrical part) of the connecting member are connected coaxially, and the above-described partial region of the displacement member and the second cylindrical part are bonded with an adhesive. In the connected configuration, the second columnar part can press and rotate the first columnar part via the action region of the end surface connected to the first columnar part.
 本実施形態の光路補正装置において、前記接着剤は、弾性を有していてもよい。 In the optical path correction device of this embodiment, the adhesive may have elasticity.
 この構成では、変位部材の伸長時に、接着剤が弾性変形するため、変位部材の伸長方向の力を回動部材を回動させる方向の力に効率よく変換して、回動部材を回動させることができる。 In this configuration, since the adhesive is elastically deformed when the displacement member is extended, the force in the extending direction of the displacement member is efficiently converted into the force in the direction of rotating the rotating member to rotate the rotating member. be able to.
 本実施形態の光路補正装置において、前記連結部材は、前記変位部材の伸縮方向に垂直な端面の少なくとも一部と固定される台座部と、前記台座部の中心よりも前記回動中心側に位置して、前記台座部と前記回動部材とを連結し、前記変位部材の伸長時に前記台座部からの押圧力が伝達される押圧部材とを有しており、前記押圧部材は、前記回動部材と連結される端面に、前記作用領域を有していてもよい。 In the optical path correction device according to the present embodiment, the connecting member is positioned on a side closer to the rotation center than the center of the pedestal portion, a pedestal portion fixed to at least a part of an end surface perpendicular to the expansion / contraction direction of the displacement member. The pedestal portion and the rotating member are connected to each other, and a pressing member to which a pressing force from the pedestal portion is transmitted when the displacement member is extended is provided. You may have the said action | operation area | region in the end surface connected with a member.
 連結部材が台座部と押圧部材とを有する構成において、押圧部材が、回動部材と連結される端面に作用領域を有しているので、押圧部材が作用領域を介して回動部材を押圧することにより、台座部の大きさに関係なく、回動部材を大きく回動させることができる。 In the configuration in which the connecting member has the pedestal portion and the pressing member, the pressing member has an action area on the end surface connected to the turning member, and therefore the pressing member presses the turning member through the action area. Accordingly, the rotating member can be largely rotated regardless of the size of the pedestal portion.
 本実施形態の光路補正装置において、前記押圧部材は、弾性を有していてもよい。 In the optical path correction device of this embodiment, the pressing member may have elasticity.
 この場合、変位部材の伸長時に、押圧部材が台座部を介して押圧されて弾性変形するため、変位部材の伸長方向の力を回動部材を回動させる方向の力に効率よく変換して、回動部材を回動させることができる。 In this case, when the displacement member is extended, the pressing member is pressed and elastically deformed through the pedestal portion, so that the force in the extending direction of the displacement member is efficiently converted into the force in the direction of rotating the rotating member, The rotating member can be rotated.
 本実施形態の光路補正装置において、前記変位部材は、複数設けられており、前記連結部材の前記作用領域は、前記複数の変位部材の個々の伸縮を前記回動部材に伝達してもよい。 In the optical path correction device of the present embodiment, a plurality of the displacement members may be provided, and the action region of the connection member may transmit the respective expansion and contraction of the plurality of displacement members to the rotation member.
 連結部材の作用領域が、複数の変位部材の個々の伸縮を回動部材に伝達することにより、各変位部材の伸縮に応じた方向に回動部材を回動させることができる。つまり、各変位部材の伸縮に応じて、回動部材の回動方向を変えることができ、反射ミラーでの反射光の光路(反射方向)を確実に変えることができる。 The action area of the connecting member transmits individual expansion / contraction of the plurality of displacement members to the rotation member, whereby the rotation member can be rotated in a direction corresponding to the expansion / contraction of each displacement member. That is, the rotation direction of the rotation member can be changed according to the expansion and contraction of each displacement member, and the optical path (reflection direction) of the reflected light at the reflection mirror can be changed reliably.
 本実施形態の光路補正装置において、前記複数の変位部材は、電圧印加によって伸縮する圧電素子でそれぞれ構成されており、少なくとも2つの圧電素子に対して互いに逆位相の電圧を印加する電圧印加部が設けられていてもよい。 In the optical path correction apparatus according to the present embodiment, each of the plurality of displacement members is composed of a piezoelectric element that expands and contracts by applying a voltage, and a voltage applying unit that applies voltages having phases opposite to each other to at least two piezoelectric elements. It may be provided.
 2つの圧電素子に逆位相の電圧が印加されると、一方の圧電素子は、その伸長によって連結部材を介して回動部材を押圧するが、他方の圧電素子は、その収縮によって連結部材を介しての回動部材の押圧を解除する。これにより、一方の圧電素子の伸長による回動を妨げる方向の力を取り除いて、上記回動を助長することができる。その結果、1つの圧電素子の伸長のみによって回動部材を回動させる構成に比べて、回動部材の回動範囲(回動角)を広げることができるとともに、回動可能な方向(反射光が偏向される面)を増やすことができる。 When voltages having opposite phases are applied to the two piezoelectric elements, one piezoelectric element presses the rotating member via the connecting member due to its extension, while the other piezoelectric element passes through the connecting member due to its contraction. Release the pressing of all the rotating members. Accordingly, it is possible to promote the rotation by removing the force in the direction that prevents the rotation due to the extension of one of the piezoelectric elements. As a result, the rotation range (rotation angle) of the rotation member can be expanded and the rotation direction (reflected light) compared to a configuration in which the rotation member is rotated only by extension of one piezoelectric element. Can be increased.
 本実施形態の光路補正装置において、前記電圧印加部によって互いに逆位相の電圧が印加される2つの圧電素子は、前記回動部材の回動中心を通る軸に対して対向配置されていてもよい。 In the optical path correction device according to the present embodiment, the two piezoelectric elements to which voltages having phases opposite to each other are applied by the voltage application unit may be disposed opposite to an axis passing through the rotation center of the rotation member. .
 この場合は、対向配置された一方の圧電素子の伸長によって回動部材が回動する方向と同じ方向に、他方の圧電素子の収縮による回動の助長が働くので、1つの圧電素子の伸長のみによって回動部材を回動させる構成に比べて、回動部材の回動範囲を2倍にできる。 In this case, rotation of one piezoelectric element is facilitated by contraction of the other piezoelectric element in the same direction as the rotation of the rotating member due to extension of one of the opposingly arranged piezoelectric elements. As compared with the configuration in which the rotating member is rotated, the rotation range of the rotating member can be doubled.
 本実施形態の干渉計は、光源からの光を分離して移動鏡および固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を合成し、干渉光として検出器に導く干渉計であって、上述した本実施形態の光路補正装置を備え、前記光路補正装置の前記回動部材で支持される前記反射ミラーは、前記固定鏡であってもよい。 The interferometer of this embodiment separates the light from the light source and guides it to the movable mirror and the fixed mirror, combines the light reflected by the movable mirror and the fixed mirror, and guides it to the detector as interference light The reflection mirror provided with the optical path correction device of the present embodiment described above and supported by the rotating member of the optical path correction device may be the fixed mirror.
 移動鏡の移動量を増大させたときに移動鏡の並進性が崩れ、2光路を進行して検出器に入射する各光に相対的な傾きが生じた場合でも、本発明の光路補正装置によって固定鏡が回動し、固定鏡で反射される光の光路が補正される。これにより、検出器で検出される干渉光の干渉縞のコントラストが低下するのを抑えることができる。 Even when the amount of movement of the movable mirror is increased, the translational property of the movable mirror is lost, and even when a relative inclination occurs in each light that travels along the two optical paths and enters the detector, the optical path correction device of the present invention The fixed mirror rotates and the optical path of the light reflected by the fixed mirror is corrected. Thereby, it can suppress that the contrast of the interference fringe of the interference light detected with a detector falls.
 本実施形態のフーリエ変換分光分析装置は、上記した本実施形態の干渉計と、前記干渉計の前記検出器で得られるインターフェログラムをフーリエ変換する演算部とを備えていてもよい。 The Fourier transform spectroscopic analyzer of this embodiment may include the above-described interferometer of this embodiment and a calculation unit that Fourier transforms an interferogram obtained by the detector of the interferometer.
 本実施形態の干渉計によれば、移動鏡の移動量を増大させたときに移動鏡の並進性が崩れても、光路補正装置での光路補正により、検出器で検出される干渉光の干渉縞のコントラストが低下するのを抑えることができる。したがって、演算部でのフーリエ変換によって得られるスペクトルに基づく分光分析を精度よく行うことができる。つまり、移動鏡の移動量を増大させて分解能を向上させることが可能となる。 According to the interferometer of this embodiment, even if the translation of the moving mirror is lost when the moving amount of the moving mirror is increased, the interference of the interference light detected by the detector is corrected by the optical path correction in the optical path correction device. It can suppress that the contrast of a fringe falls. Therefore, it is possible to accurately perform spectroscopic analysis based on the spectrum obtained by the Fourier transform in the calculation unit. That is, it is possible to improve the resolution by increasing the amount of movement of the movable mirror.
 本発明の光路補正装置は、干渉計やフーリエ変換分光分析装置のほかに、例えば反射光学系を有するレーザ機器や光学走査装置など、反射ミラーでの反射光の光路の補正が必要な装置に利用可能である。 The optical path correction apparatus of the present invention is used for an apparatus that needs to correct the optical path of reflected light at a reflection mirror, such as a laser apparatus or an optical scanning apparatus having a reflection optical system, in addition to an interferometer and a Fourier transform spectroscopic analysis apparatus. Is possible.
   1   干渉計
   2   演算部
  12   分光光源
  15   固定鏡(反射ミラー)
  16   移動鏡
  18   分光検出器
  31   光路補正装置
  51   回動部材
  51a  第1円柱部(回動部材)
  51R  第1の領域
  51R1  第1の領域
  51R2  第2の領域
  52   圧電素子(変位部材)
  52a  圧電素子(変位部材)
  52b  圧電素子(変位部材)
  52c  圧電素子(変位部材)
  52d  圧電素子(変位部材)
  52S  端面
  52S1  領域
  53   接着剤(連結部材)
  55   電圧印加部
  55a  電圧印加部
  55b  電圧印加部
  55c  電圧印加部
  55d  電圧印加部
  56   連結部材
  56a  作用領域
  57   第2円柱部(連結部材)
  58   連結部材
  59   台座部(連結部材)
  60   押圧部材(連結部材)
  60a  作用領域
   C   中心軸
   P   回動中心
DESCRIPTION OF SYMBOLS 1 Interferometer 2 Calculation part 12 Spectral light source 15 Fixed mirror (reflection mirror)
16 Moving mirror 18 Spectral detector 31 Optical path correction device 51 Rotating member 51a First cylindrical portion (rotating member)
51R 1st area | region 51R 1 1st area | region 51R 2 2nd area | region 52 Piezoelectric element (displacement member)
52a Piezoelectric element (displacement member)
52b Piezoelectric element (displacement member)
52c Piezoelectric element (displacement member)
52d Piezoelectric element (displacement member)
52S End face 52S 1 area 53 Adhesive (connecting member)
55 voltage application part 55a voltage application part 55b voltage application part 55c voltage application part 55d voltage application part 56 connection member 56a action area 57 second cylindrical part (connection member)
58 connecting member 59 pedestal (connecting member)
60 Pressing member (connecting member)
60a Action area C Center axis P Center of rotation

Claims (12)

  1.  光の光路を補正する光路補正装置であって、
     反射ミラーと、
     前記反射ミラーを支持する支持面を有し、回動中心を中心として回動可能な回動部材と、
     前記回動部材に対して前記反射ミラーとは反対側に設けられ、前記回動部材との間隔が変化する方向に伸縮可能な変位部材と、
     前記変位部材の伸縮方向に垂直な端面と前記回動部材とを連結する連結部材とを備え、
     前記連結部材は、前記伸縮方向から見たときに、前記変位部材の伸縮を前記回動部材に伝達する作用領域を有し、
     前記作用領域は、前記変位部材の伸縮方向に垂直な端面よりも狭く、かつ、前記端面における前記回動中心に近い部分的な領域と対応していることを特徴とする光路補正装置。
    An optical path correction device for correcting an optical path of light,
    A reflective mirror,
    A rotation member having a support surface for supporting the reflection mirror and rotatable about a rotation center;
    A displacement member that is provided on the opposite side to the reflecting mirror with respect to the rotating member, and that can be expanded and contracted in a direction in which the interval with the rotating member changes;
    A connecting member for connecting the end surface perpendicular to the expansion and contraction direction of the displacement member and the rotating member;
    The connecting member has an action region that transmits expansion / contraction of the displacement member to the rotating member when viewed from the expansion / contraction direction;
    The optical path correction device according to claim 1, wherein the action area is narrower than an end face perpendicular to an expansion / contraction direction of the displacement member and corresponds to a partial area near the rotation center on the end face.
  2.  前記変位部材の伸縮方向に垂直な端面と対向する前記回動部材の領域を、前記回動部材の回動中心により近い第1の領域と、前記回動中心からより遠い第2の領域とに分割したとき、
     前記連結部材は、前記変位部材の伸長時に、前記作用領域によって前記回動部材の前記第1の領域を押圧することを特徴とする請求項1に記載の光路補正装置。
    The region of the rotating member facing the end surface perpendicular to the expansion / contraction direction of the displacement member is divided into a first region closer to the rotation center of the rotation member and a second region farther from the rotation center. When divided,
    The optical path correction device according to claim 1, wherein the connecting member presses the first region of the rotating member by the action region when the displacement member is extended.
  3.  前記作用領域は、前記連結部材の前記回動部材と接触する端面において、前記変位部材の伸縮方向に垂直な端面の中心を通る伸縮方向に沿った中心軸よりも、前記回動中心に近い位置にあることを特徴とする請求項1または2に記載の光路補正装置。 The action area is closer to the rotation center than the center axis along the expansion / contraction direction passing through the center of the end surface perpendicular to the expansion / contraction direction of the displacement member at the end surface of the connecting member that contacts the rotation member. The optical path correction apparatus according to claim 1, wherein the optical path correction apparatus is provided.
  4.  前記回動部材は、前記支持面として円形の端面を有する第1円柱部を有しており、
     前記連結部材は、
     前記第1円柱部よりも小径で、前記回動中心を通る軸で前記第1円柱部と同軸に連結される第2円柱部と、
     前記変位部材の伸縮方向に垂直な端面における前記部分的な領域と、前記第2円柱部とを連結する接着剤とを有しており、
     前記第2円柱部は、前記第1円柱部と連結される端面に、前記作用領域を有していることを特徴とする請求項1から3のいずれかに記載の光路補正装置。
    The rotating member has a first cylindrical portion having a circular end surface as the support surface,
    The connecting member is
    A second cylindrical part having a smaller diameter than the first cylindrical part and connected coaxially with the first cylindrical part at an axis passing through the rotation center;
    An adhesive that connects the partial region on the end surface perpendicular to the expansion and contraction direction of the displacement member and the second cylindrical portion;
    4. The optical path correction device according to claim 1, wherein the second cylindrical portion has the action region on an end face connected to the first cylindrical portion. 5.
  5.  前記接着剤は、弾性を有していることを特徴とする請求項4に記載の光路補正装置。 The optical path correction device according to claim 4, wherein the adhesive has elasticity.
  6.  前記連結部材は、
     前記変位部材の伸縮方向に垂直な端面の少なくとも一部と固定される台座部と、
     前記台座部の中心よりも前記回動中心側に位置して、前記台座部と前記回動部材とを連結し、前記変位部材の伸長時に前記台座部からの押圧力が伝達される押圧部材とを有しており、
     前記押圧部材は、前記回動部材と連結される端面に、前記作用領域を有していることを特徴とする請求項1から3のいずれかに記載の光路補正装置。
    The connecting member is
    A pedestal portion fixed to at least a part of an end surface perpendicular to the expansion and contraction direction of the displacement member;
    A pressing member that is positioned closer to the rotation center than the center of the pedestal, connects the pedestal and the rotation member, and transmits a pressing force from the pedestal when the displacement member is extended; Have
    4. The optical path correction device according to claim 1, wherein the pressing member has the action area on an end surface connected to the rotating member. 5.
  7.  前記押圧部材は、弾性を有していることを特徴とする請求項6に記載の光路補正装置。 The optical path correction device according to claim 6, wherein the pressing member has elasticity.
  8.  前記変位部材は、複数設けられており、
     前記連結部材の前記作用領域は、前記複数の変位部材の個々の伸縮を前記回動部材に伝達することを特徴とする請求項1から7のいずれかに記載の光路補正装置。
    A plurality of the displacement members are provided,
    The optical path correction device according to claim 1, wherein the action region of the connecting member transmits individual expansion and contraction of the plurality of displacement members to the rotating member.
  9.  前記複数の変位部材は、電圧印加によって伸縮する圧電素子でそれぞれ構成されており、
     少なくとも2つの圧電素子に対して互いに逆位相の電圧を印加する電圧印加部が設けられていることを特徴とする請求項8に記載の光路補正装置。
    Each of the plurality of displacement members is composed of a piezoelectric element that expands and contracts by voltage application,
    9. The optical path correction device according to claim 8, further comprising a voltage application unit that applies voltages having opposite phases to at least two piezoelectric elements.
  10.  前記電圧印加部によって互いに逆位相の電圧が印加される2つの圧電素子は、前記回動部材の回動中心を通る軸に対して対向配置されていることを特徴とする請求項9に記載の光路補正装置。 The two piezoelectric elements to which voltages having phases opposite to each other are applied by the voltage application unit are arranged to face each other with respect to an axis passing through a rotation center of the rotation member. Optical path correction device.
  11.  光源からの光を分離して移動鏡および固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を合成し、干渉光として検出器に導く干渉計であって、
     請求項1から10のいずれかに記載の光路補正装置を備え、
     前記光路補正装置の前記回動部材で支持される前記反射ミラーは、前記固定鏡であることを特徴とする干渉計。
    An interferometer that separates light from a light source and guides it to a movable mirror and a fixed mirror, combines each light reflected by the movable mirror and the fixed mirror, and guides it to a detector as interference light,
    An optical path correction device according to any one of claims 1 to 10,
    The interferometer, wherein the reflection mirror supported by the rotating member of the optical path correction device is the fixed mirror.
  12.  請求項11に記載の干渉計と、
     前記干渉計の前記検出器で得られるインターフェログラムをフーリエ変換する演算部とを備えていることを特徴とするフーリエ変換分光分析装置。
    An interferometer according to claim 11;
    A Fourier transform spectroscopic analyzer, comprising: an arithmetic unit that performs Fourier transform on an interferogram obtained by the detector of the interferometer.
PCT/JP2011/056332 2010-04-28 2011-03-17 Optical path correcting device, interferometer, and fourier-transform spectroscopic analyzer WO2011135943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011525763A JP4888614B2 (en) 2010-04-28 2011-03-17 Optical path correction device, interferometer, and Fourier transform spectroscopic analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010103037 2010-04-28
JP2010-103037 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011135943A1 true WO2011135943A1 (en) 2011-11-03

Family

ID=44861264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056332 WO2011135943A1 (en) 2010-04-28 2011-03-17 Optical path correcting device, interferometer, and fourier-transform spectroscopic analyzer

Country Status (2)

Country Link
JP (1) JP4888614B2 (en)
WO (1) WO2011135943A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172902A1 (en) * 2011-06-14 2012-12-20 コニカミノルタホールディングス株式会社 Posture adjusting device, michelson interferometer, and fourier transform spectroscopic analysis device
JP2013110886A (en) * 2011-11-22 2013-06-06 Konica Minolta Holdings Inc Posture correction device, michelson interferometer, and fourier transformation spectroscopic analysis device
WO2018041240A1 (en) * 2016-08-31 2018-03-08 Beijing Supersonic Technology Co., Ltd. Piezoelectric actuator, deformable mirror and method for manufacturing deformable mirror
JP2020506437A (en) * 2016-11-23 2020-02-27 ブリックフェルト ゲゼルシャフト ミット ベシュレンクテル ハフツング MEMS scanning module for optical scanner
WO2020152772A1 (en) * 2019-01-22 2020-07-30 株式会社島津製作所 Michelson interferometer
CN112352185A (en) * 2018-06-27 2021-02-09 微软技术许可有限责任公司 Adjusting the resonant frequency of a scanning mirror

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459019A (en) * 1987-08-29 1989-03-06 Shimadzu Corp Fourier transformation type spectrophotometer
JP2002328315A (en) * 2001-04-27 2002-11-15 Nec Corp Mirror driving mechanism
JP2005043407A (en) * 2003-07-22 2005-02-17 Ricoh Co Ltd Wave front aberration correction mirror and optical pickup
JP2006154765A (en) * 2004-10-27 2006-06-15 Matsushita Electric Ind Co Ltd Mirror element and mirror array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459019A (en) * 1987-08-29 1989-03-06 Shimadzu Corp Fourier transformation type spectrophotometer
JP2002328315A (en) * 2001-04-27 2002-11-15 Nec Corp Mirror driving mechanism
JP2005043407A (en) * 2003-07-22 2005-02-17 Ricoh Co Ltd Wave front aberration correction mirror and optical pickup
JP2006154765A (en) * 2004-10-27 2006-06-15 Matsushita Electric Ind Co Ltd Mirror element and mirror array

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172902A1 (en) * 2011-06-14 2012-12-20 コニカミノルタホールディングス株式会社 Posture adjusting device, michelson interferometer, and fourier transform spectroscopic analysis device
JP2013110886A (en) * 2011-11-22 2013-06-06 Konica Minolta Holdings Inc Posture correction device, michelson interferometer, and fourier transformation spectroscopic analysis device
WO2018041240A1 (en) * 2016-08-31 2018-03-08 Beijing Supersonic Technology Co., Ltd. Piezoelectric actuator, deformable mirror and method for manufacturing deformable mirror
JP2019535223A (en) * 2016-08-31 2019-12-05 ベイジン スーパーソニック テクノロジー カンパニー リミテッドBeijing Supersonic Technology Co., Ltd. Piezoelectric actuator, deformable mirror, and method of manufacturing deformable mirror
JP2020506437A (en) * 2016-11-23 2020-02-27 ブリックフェルト ゲゼルシャフト ミット ベシュレンクテル ハフツング MEMS scanning module for optical scanner
CN112352185A (en) * 2018-06-27 2021-02-09 微软技术许可有限责任公司 Adjusting the resonant frequency of a scanning mirror
CN112352185B (en) * 2018-06-27 2022-12-02 微软技术许可有限责任公司 Adjusting the resonant frequency of a scanning mirror
WO2020152772A1 (en) * 2019-01-22 2020-07-30 株式会社島津製作所 Michelson interferometer

Also Published As

Publication number Publication date
JP4888614B2 (en) 2012-02-29
JPWO2011135943A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP4888614B2 (en) Optical path correction device, interferometer, and Fourier transform spectroscopic analysis device
Chai et al. Review of MEMS based Fourier transform spectrometers
US10914939B2 (en) MEMS reflector system
WO2012056776A1 (en) Method for correcting tilt in spectroscope
JP5944876B2 (en) Distance measuring device using laser light
JP5666955B2 (en) Optical deflector
JP2008503732A (en) Lamella grating interferometer based on silicon technology
JP2013222122A (en) Wavelength variable interference filter, optical filter device, optical module and electronic apparatus
WO2005085125A1 (en) Micro actuator and device having micro actuator
CN101320126A (en) Two-sided reflection movable mirror interferometer
KR20080038051A (en) Optical element holding unit, its adjustment method, and exposure appartus having the same
JP5454687B2 (en) Interferometer and Fourier transform spectrometer
JP5522260B2 (en) Translation mechanism, Michelson interferometer, and Fourier transform spectrometer
JP2022144257A (en) Optical deflector, image projector, head-up display, laser head lamp, head mount display, distance measuring device, and mobile body
WO2012002839A1 (en) Static fourier spectrometer
JPWO2009044542A1 (en) Encoder
CN101251420A (en) Novel double-movable-mirror interferometer
JP5309441B2 (en) Two-dimensional optical scanning device
JP2008111891A (en) Device for holding optical element and exposure apparatus equipped with the same
JP2018097227A (en) Stationary mirror, interferometer, and fourier transformation spectro-photometer
JP2022143323A (en) Movable device, image projector, head-up display, laser head lamp, head-mount display, distance measuring device, and mobile body
JP2018009909A (en) Fourier transform type spectrometer
KR101017554B1 (en) Vibration actuator
US20230221546A1 (en) Optical scanning device and control method thereof
JP2018005201A (en) Actuator device and actuator system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011525763

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774727

Country of ref document: EP

Kind code of ref document: A1