WO2012172829A1 - Assembled cell - Google Patents

Assembled cell Download PDF

Info

Publication number
WO2012172829A1
WO2012172829A1 PCT/JP2012/053918 JP2012053918W WO2012172829A1 WO 2012172829 A1 WO2012172829 A1 WO 2012172829A1 JP 2012053918 W JP2012053918 W JP 2012053918W WO 2012172829 A1 WO2012172829 A1 WO 2012172829A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit cell
assembled battery
plate
predetermined temperature
battery according
Prior art date
Application number
PCT/JP2012/053918
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 空
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2012172829A1 publication Critical patent/WO2012172829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an assembled battery in which a plurality of unit cells are stacked.
  • the square batteries are separated from each other by the heat insulating member even in a normal state where the square batteries are not heated abnormally due to overcharge or the like. Therefore, there has been a problem that the assembled battery is increased in size.
  • the present invention has been made in view of such problems of the conventional technology. And the objective is to provide the assembled battery which can achieve size reduction, suppressing the heat transfer between single cells.
  • An assembled battery according to an aspect of the present invention is provided between a plurality of flat unit cells stacked on each other and a plurality of unit cells, and when at least one of the plurality of unit cells reaches a predetermined temperature or higher, a predetermined temperature
  • a separation device for separating the unit cell and the other unit cell from each other is provided.
  • FIG. 1 is a cross-sectional view of an assembled battery according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the cell according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing a modification of the unit cell according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view of the assembled battery showing the operation of the cooling plate according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of an assembled battery showing a first modification of the cooling plate according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of an assembled battery showing a second modification of the cooling plate according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of an assembled battery showing a third modification of the cooling plate according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of an assembled battery showing a fourth modification of the cooling plate according to the first embodiment of the present invention.
  • FIG. 10 is an enlarged cross-sectional view of a fifth modification of the cooling plate according to the first embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of an assembled battery showing a sixth modification of the cooling plate according to the first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of an assembled battery according to the second embodiment of the present invention.
  • FIG. 13 is a plan view of a cooling plate according to the second embodiment of the present invention.
  • FIG. 14 is a plan view showing a high temperature region of the unit cell according to the second embodiment of the present invention.
  • FIG. 15 is a plan view showing a high temperature region in a modification of the unit cell according to the second embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of the assembled battery showing the operation of the cooling plate according to the second embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of an assembled battery according to the present embodiment
  • FIG. 2 is a cross-sectional view of the single battery according to the present embodiment
  • FIG. 3 is a plan view showing a modification of the single battery according to the present embodiment
  • FIG. 1 is a sectional view taken along line IV-IV in FIG.
  • the assembled battery 1 includes a single battery 2, a cooling plate 3, and a module can 4.
  • the unit cell 2 is a flat type battery.
  • a lithium ion secondary battery can be mentioned, for example.
  • the single battery 2 (lithium ion secondary battery) according to the present embodiment will be described in detail.
  • the unit cell 2 includes three positive plates 201, five separators 202, three negative plates 203, a positive electrode tab 204, a negative electrode tab 205, and an upper exterior member 206. And a lower exterior member 207 and an electrolyte (not shown).
  • the positive electrode plate 201, the separator 202, the negative electrode plate 203, and the electrolyte are particularly referred to as a power generation element 208.
  • the positive electrode plate 201 of the power generation element 208 has a positive electrode current collector 201 a extending to the positive electrode tab 204. Furthermore, the positive electrode plate 201 has positive electrode layers 201b and 201c formed on both main surfaces of a part of the positive electrode side current collector 201a.
  • the positive electrode side collector 201a is comprised with the electrochemically stable metal foil, such as aluminum foil, aluminum alloy foil, copper foil, or nickel foil, for example.
  • the positive electrode layers 201b and 201c contain a positive electrode active material, a conductive agent such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene.
  • the positive electrode layers 201b and 201c are formed by applying a mixture of a positive electrode active material, a conductive agent, and an adhesive to both main surfaces of the positive electrode side current collector 201a, and drying and rolling. Yes.
  • the positive electrode active material examples include lithium composite oxides such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and lithium cobaltate (LiCoO 2 ), and lithium chalcogens (S, Se, Te). And the like.
  • the negative electrode plate 203 of the power generation element 208 has a negative electrode side current collector 203 a extending to the negative electrode tab 205. Further, the negative electrode plate 203 has negative electrode layers 203b and 203c formed on both main surfaces of a part of the negative electrode side current collector 203a.
  • the negative electrode side current collector 203a is made of, for example, an electrochemically stable metal foil such as nickel foil, copper foil, stainless steel foil, or iron foil.
  • the negative electrode layers 203b and 203c contain a negative electrode active material that occludes and releases lithium ions of the positive electrode active material, and a binder such as an acrylic resin emulsion.
  • the negative electrode layer is formed by mixing an aqueous dispersion of a styrene butadiene rubber resin powder, which is a precursor of an organic fired body, with the negative electrode active material, drying, and then pulverizing the styrene butadiene carbonized on the carbon particle surfaces.
  • the main material is a rubber support.
  • the negative electrode layers 203b and 203c are formed by apply
  • Examples of the negative electrode active material include amorphous carbon, non-graphitizable carbon, graphitizable carbon, and graphite.
  • amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge / discharge is poor, and the output voltage decreases with the amount of discharge. Therefore, amorphous carbon and non-graphitizable carbon are unsuitable for power supplies for communication equipment and office equipment, but are advantageous because there is no sudden drop in power output for electric vehicles.
  • the separator 202 of the power generation element 208 prevents a short circuit between the positive electrode plate 201 and the negative electrode plate 203, and may have a function of holding an electrolyte.
  • the separator 202 is preferably a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP).
  • PE polyethylene
  • PP polypropylene
  • the separator 202 is not limited to a single-layer film such as polyolefin, but a three-layer structure in which a polypropylene film is sandwiched between polyethylene films, or a laminate of a polyolefin microporous film and an organic nonwoven fabric or the like. It can also be used. Thus, by forming the separator 202 in multiple layers, an overcurrent prevention function, an electrolyte holding function, a shape maintaining (stiffness improvement) function of the separator 202, and the like can be provided.
  • the positive electrode plate 201 and the negative electrode plate 203 are alternately stacked via the separator 202.
  • the three positive plates 201 are respectively connected to the positive tab 204 made of metal foil via the positive current collector 201a.
  • the three negative plates 203 are connected to a negative electrode tab 205 made of metal foil via a negative current collector 203a.
  • the positive electrode plate 201, the separator 202, and the negative electrode plate 203 of the power generation element 208 are not limited to the above number.
  • the power generation element can be constituted by one positive electrode plate, three separators, and one negative electrode plate, and the number of positive electrode plates, separators, and negative electrode plates can be selected as necessary.
  • the material constituting the positive electrode tab 204 and the negative electrode tab 205 is not particularly limited as long as it is an electrochemically stable metal material.
  • the positive electrode tab 204 can be made of an aluminum foil, an aluminum alloy foil, a copper foil, a nickel foil, or the like, similar to the positive electrode side current collector 201a described above.
  • the negative electrode tab 205 can be formed of nickel foil, copper foil, stainless steel foil, iron foil, or the like, similar to the negative electrode current collector 203a described above.
  • the metal foil itself constituting the current collectors 201a and 203a of the positive electrode plate 201 and the negative electrode plate 203 is extended to the positive electrode tab 204 and the negative electrode tab 205, thereby making the positive electrode plate 201 and the negative electrode plate 203 the positive electrode.
  • the tab 204 and the negative electrode tab 205 are directly connected.
  • the current collectors 201a and 203a of the positive electrode plate 201 and the negative electrode plate 203 and the positive electrode tab 204 and the negative electrode tab 205 are connected by a material or a part different from the metal foil constituting the current collectors 201a and 203a. Also good.
  • the positive electrode tab 204 is arranged so as to be led out from the side 21 of the unit cell 2 (the upper exterior member 206 and the lower exterior member 207), and the negative electrode tab 205 is The battery 2 is arranged so as to be derived from the side 22 facing the side 21.
  • the arrangement of the positive electrode tab 204 and the negative electrode tab 205 is not limited to the arrangement shown in FIG.
  • the positive electrode tab 204 and the negative electrode tab 205 may be arranged so as to be led out from the same side 21.
  • the power generation element 208 described above is housed and sealed between an upper exterior member 206 molded in a cup shape as shown in FIG. 2 and a flat lower exterior member 207.
  • the upper exterior member 206 and the lower exterior member 207 according to the present embodiment are each composed of a laminate material (laminate film) composed of an inner resin layer, a metal layer, and an outer resin layer.
  • the inner resin layer of the laminate material can be composed of a resin film excellent in electrolytic solution resistance and heat fusion properties such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer.
  • a resin film excellent in electrolytic solution resistance and heat fusion properties such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer.
  • a metal layer it can comprise with metal foil, such as aluminum, for example.
  • an outer side resin layer it can comprise with the resin film excellent in electrical insulation, such as a polyamide-type resin and a polyester-type resin, for example.
  • these exterior members 206 and 207 enclose part of the electrode tabs 204 and 205 and the power generation element 208. Further, a liquid electrolyte is injected into the space formed by the exterior members 206 and 207. Thereafter, after the space is evacuated, the outer peripheral portions of the exterior members 206 and 207 are heat-sealed by hot pressing. Accordingly, a part of the electrode tabs 204 and 205 and the power generation element 208 are accommodated and sealed between the exterior members 206 and 207.
  • the liquid electrolyte a solution obtained by dissolving a lithium salt such as lithium perchlorate, lithium borofluoride, or lithium hexafluorophosphate in an organic liquid solvent can be used.
  • the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate.
  • the organic liquid solvent is not limited to this, and a mixture of an ester solvent and an ether solvent such as ⁇ -butylactone ( ⁇ -BL) or diethyloxyethane (DEE) can also be used.
  • such four unit cells 2 are stacked and electrically connected to each other.
  • the cooling plate 3 that is a separation device of the present embodiment is a plate-like member having an area that can cover the exterior members 206 and 207 of the unit cell 2. It is interposed between the batteries 2.
  • three cooling plates 3 are provided in the assembled battery 1, but the number of cooling plates 3 is not particularly limited, and can be set as appropriate according to the number of single cells 2.
  • the cooling plate 3 is made of a shape memory alloy that deforms at a predetermined temperature or higher.
  • the cooling plate 3 maintains a flat plate shape at room temperature (25 ° C.). However, as shown in FIG. 5, when the cooling plate 3 reaches a predetermined temperature or more, it is partially bent and deformed into a concavo-convex shape in which convex portions 31 and concave portions 32 are alternately formed.
  • This shape memory alloy is a metal that returns to its original shape when it is deformed below a predetermined temperature (transformation temperature) and is heated above that temperature, and includes, for example, an alloy containing titanium and nickel.
  • the cooling plate 3 is not limited to the shape memory alloy, and for example, a bimetal obtained by integrally bonding a material having a low thermal expansion such as an alloy of nickel and iron and a material having a high thermal expansion such as copper is used. You can also.
  • Such a predetermined temperature can be appropriately set with high accuracy depending on the alloy composition and heat treatment conditions. Thereby, the cooling plate 3 can be accurately deformed at a predetermined temperature assumed at the time of design.
  • the predetermined temperature can be appropriately set depending on the durability of the unit cell used, and can be set to, for example, 50 ° C. to 150 ° C. Further, when the shape memory alloy is an alloy containing titanium and nickel, the predetermined temperature can be set to about 100 ° C., for example.
  • the cooling plate 3 may be made of a shape memory resin such as phenol or formaldehyde and deformed as described above at a predetermined temperature or higher.
  • the cooling plate 3 made of the shape memory alloy or shape memory resin as described above is formed in advance in the above-described uneven shape. And the cooling plate 3 is deform
  • the module can 4 is a member that accommodates the unit cell 2 and the cooling plate 3.
  • the module can 4 is configured to be deformed so as to swell by being pressed from the inside by the unit cell 2 as the cooling plate 3 is deformed.
  • Examples of the material of the module can 4 include stainless steel.
  • FIG. 5 is a sectional view of the assembled battery showing the operation of the cooling plate according to the present embodiment
  • FIGS. 6 to 9 and FIG. 11 are sectional views of the assembled battery showing modifications of the cooling plate according to the embodiment
  • FIG. It is an expanded sectional view of the modification of the cooling plate which concerns on embodiment. 6 to 8 show a state where the cooling plate is deformed
  • FIGS. 9 and 11 show a state of the cooling plate before the deformation.
  • unit cells 2 In a battery pack, if some of the cells abnormally generate heat due to overcharging or the like, this heat is transmitted to the cells adjacent to the generated cells, which may cause abnormalities in normal cells.
  • the four unit cells 2 are represented by unit cells 2A to 2D.
  • a cooling plate 3 made of a shape memory alloy is interposed between each of the cells 2A to 2D. Therefore, the unit cell 2B that has generated heat due to the deformation of the cooling plate 3 is thermally insulated from the other unit cells 2A and 2C.
  • the convex portion 31 and the concave portion 32 are provided. Is deformed into an uneven shape formed alternately. Then, the unit cells 2A and 2B are separated from each other so as to widen the interval between the unit cells 2A and 2B. Thereby, heat transfer from the single battery 2B to the single battery 2A can be suppressed.
  • the cooling plate 3 interposed between the heated unit cell 2B and the normal unit cell 2C is heated by the unit cell 2B to a predetermined temperature or higher, the projections 31 and the recesses 32 are alternately formed. Deform to shape. Then, the unit cells 2B and 2C are separated from each other so as to widen the interval between the unit cells 2B and 2C. Thereby, heat transfer from the single battery 2B to the single battery 2C can be suppressed.
  • the air layer 5 is formed between the single cells 2A and 2B by deforming the cooling plate 3 between the single cells 2A and 2B into an uneven shape.
  • the air cell 5 can also cool the unit cell 2B that has generated heat.
  • the cooling plate 3 between the single cells 2B and 2C is deformed into a concavo-convex shape to form an air layer 5 between the single cells 2B and 2C.
  • the cooling plate 3 is in contact with the unit cell 2B at one end of the recess 32 from the state where the cooling plate 3 is in contact with the unit cell 2B on most of the main surface in accordance with the deformation as described above. To change. As a result, the contact area between the generated unit cell 2 ⁇ / b> B and the cooling plate 3 is narrowed, so heat transfer to the unit cells 2 ⁇ / b> A and 2 ⁇ / b> C via the cooling plate 3 is suppressed.
  • the cooling plate 3 according to the present embodiment is deformed into a shape having a plurality of convex portions 31 and concave portions 32, the stress applied to the cells 2A to 2C is dispersed when the cooling plate 3 is deformed. It has become so. Thereby, damage to the single cells 2A and 2C due to stress concentration on one point of the normal single cells 2A and 2C, for example, bending of the single cells 2A and 2C is suppressed.
  • the cooling plate 3 in the normal state where the unit cell 2B does not generate heat above a predetermined temperature, the cooling plate 3 maintains a flat shape, so that the thickness of the assembled battery 1 as a whole is reduced. Yes. Thereby, size reduction of the assembled battery 1 at the time of normal use is also achieved. This effect is particularly noticeable in electric vehicles equipped with many batteries.
  • the above-described effects can be obtained by interposing the cooling plate 3 between the single cells 2A to 2D. Therefore, the structure for suppressing heat transfer from the unit cell 2B that has abnormally heated to the other unit cells 2A and 2C can be made relatively simple. Thereby, cost reduction of the assembled battery 1 can be achieved.
  • the shape of the cooling plate 3 after the deformation is not particularly limited as long as the unit cell 2B that abnormally generates heat and the unit cells 2A and 2C that sandwich the unit cell 2B can be separated from each other.
  • the deformed cooling plate 3 has a shape having either one of a convex portion 31 protruding from the single cell 2B or a concave portion 32 recessed toward the single cell 2B. There may be.
  • the shape of the cooling plate 3 after the deformation may be an uneven shape in which convex portions 31 having flat vertices and concave portions 32 having a flat bottom surface are alternately formed, as shown in FIG. .
  • the deformed cooling plate may be waved like a sine wave.
  • a long hole 33 and a groove 34 are formed in the cooling plate 3 along the plane direction (perpendicular to the paper surface in the drawing), and air or A cooling medium may be circulated.
  • the cooling medium a solvent used in the electrolytic solution is preferable so as not to react even when mixed with the electrolytic solution.
  • fins 35 may be provided at the ends of the cooling plate 3, and the unit cells 2 may be dissipated through the fins 35.
  • FIG. 12 is a sectional view of the assembled battery according to the present embodiment
  • FIG. 13 is a plan view of the cooling plate according to the present embodiment
  • FIG. 14 is a plan view showing a high temperature region of the unit cell according to the present embodiment
  • FIG. It is a top view which shows the high temperature area
  • the configuration of the cooling plate 6 is different from that of the first embodiment, but other configurations are the same as those of the first embodiment. Only the parts different from the first embodiment will be described below, and the same parts as those of the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted. Also in this embodiment, the four unit cells 2 in the assembled battery 1a are indicated by unit cells 2A to 2D.
  • the cooling plate 6 includes a deformation plate 61 and a main body plate 62 as shown in FIGS.
  • the deformation plate 61 is made of a shape memory alloy or a shape memory resin that deforms at a predetermined temperature or higher, and maintains a flat plate shape at room temperature (25 ° C.).
  • the deformation plate 61 is deformed into a convex shape as shown in FIG.
  • the deformation plate may be configured to be deformed into a concave shape opposite to the above-described convex shape when a predetermined temperature or higher is reached.
  • the predetermined temperature can be appropriately set with high accuracy depending on the alloy composition and heat treatment conditions. .
  • the deformation plate 61 can be accurately deformed at a predetermined temperature assumed at the time of design.
  • the alloy containing titanium and nickel can be mentioned similarly to 1st Embodiment.
  • the predetermined temperature can be set to 50 ° C. to 150 ° C., for example, as in the first embodiment.
  • deformation plates 61 are provided in one cooling plate 6.
  • the number of deformation plates 61 is not particularly limited, and may be three, for example.
  • the main body plate 62 is a plate-like member and is made of a metal such as aluminum that does not deform even when the temperature exceeds a predetermined temperature.
  • the main body plate 62 is formed with four openings 621 for holding the four deformation plates 61, respectively.
  • the number of openings 621 is not particularly limited, and can be set as appropriate according to the number of deformation plates 61.
  • the deformation plate 61 is held in the opening 621 by adhering the inner edge of the opening 621 of the main body plate 62 and the outer edge of the deformation plate 61 with an adhesive.
  • the method for holding the deformation plate 61 is not particularly limited.
  • the deformation plate 61 may be formed on the main body plate 62 so as to be integrally formed with the main body plate 62.
  • the deformation plate 61 is in contact with the high temperature regions 2a to 2d that are at the highest temperature when heat is generated on the surface of the unit cells 2A to 2D. As shown, the cells are stacked between the single cells 2A to 2D.
  • the positions of the high temperature regions 2a to 2d will be briefly described on behalf of the high temperature region 2a of the unit cell 2A.
  • the unit cell 2A has the electrode tabs 204 and 205 on the two sides 21 and 22 facing each other, the high-temperature region 2a tends to flow current in the unit cell 2A and easily accumulate heat.
  • the unit cells 2A to 2D shown in FIG. 12 are also unit cells having electrode tabs on two sides facing each other.
  • the unit cell 2 ⁇ / b> A has the electrode tabs 204 and 205 on the same side 21, the high temperature region 2 a Located in the vicinity.
  • the current easily flows between the electrode tabs 204 and 205 in this vicinity, it is a portion that easily generates heat.
  • FIG. 16 is a cross-sectional view of the assembled battery showing the operation of the cooling plate according to the present embodiment. Also in the present embodiment, as in the first embodiment, the following description will be given on the assumption that the unit cell 2B generates heat above a predetermined temperature among the four unit cells 2A to 2D, as shown in FIG.
  • the deformation plate 61 of the cooling plate 6 is flat as shown in FIG.
  • the plate shape is deformed to a convex shape.
  • the unit cells 2A and 2B are separated from each other so as to widen the interval between the unit cells 2A and 2B. Thereby, it is possible to suppress heat transfer from the unit cell 2B that has abnormally heated to the normal unit cell 2A.
  • the deformation plate 61 of the cooling plate 6 interposed between the single cells 2B and 2C is heated by the single cell 2B to a predetermined temperature or higher, the deformation plate 61 is deformed into a convex shape. Then, the unit cells 2B and 2C are separated from each other so as to widen the interval between the unit cells 2B and 2C. Thereby, heat transfer from the unit cell 2B that has abnormally heated to the normal unit cell 2C can be suppressed.
  • the air plate 5 is formed between the single cells 2A and 2B by deforming the deformation plate 61 between the single cells 2A and 2B into a convex shape.
  • the air cell 5 can also cool the unit cell 2B that has generated heat.
  • deforming the deformation plate 61 between the single cells 2B and 2C into a convex shape and forming an air layer 5 between the single cells 2B and 2C heat transfer from the single cell 2B to the single cell 2C is achieved. While effectively suppressing, it is possible to cool the generated unit cell 2B.
  • the deformed deformed plate 61 is in partial contact with the single cells 2A and 2C, so that the heated single cell 2B is transferred to the single cells 2A and 2C via the deformed plate 61 (cooling plate 6). Heat transfer is effectively suppressed.
  • the cooling plate 6 has a plurality of deformed portions (deformed plates 61). Therefore, when the deformation plate 61 is deformed, damage to the single cells 2A and 2C due to stress concentration on one point of the normal single cells 2A and 2C, that is, bending of the single cells 2A and 2C is suppressed.
  • a shape memory alloy or a shape memory resin is partially provided on the cooling plate 6. Therefore, the assembled battery 1a can be reduced in cost compared to the case where the entire cooling plate 6 is made of a shape memory alloy or a shape memory resin.
  • the deformation plate 61 that is deformed at a predetermined temperature or higher is brought into contact with the high temperature region 2b of the unit cell 2B.
  • the cooling plate 6 (deformation plate 61) maintains a plate-like shape in a normal state where the unit cell 2B does not generate heat above a predetermined temperature. Therefore, the thickness of the assembled battery 1a can be reduced. This makes it possible to reduce the size of the assembled battery 1a during normal use.
  • the effects described above can be obtained by interposing the cooling plate 6 between the single cells 2A to 2D, as in the first embodiment. Therefore, the structure for suppressing heat transfer from the unit cell 2B that has abnormally heated to the other unit cells 2A and 2C can be made relatively simple. Thereby, cost reduction of the assembled battery 1a can be achieved.
  • a cooling medium may be circulated by forming a long hole or groove in the cooling plate 6, or fins may be provided at the end of the cooling plate.
  • the cooling plates 3 and 6 according to the first and second embodiments described above correspond to an example of the separation device and the plate of the present invention.
  • the long hole 33 according to the first embodiment corresponds to an example of the hole of the present invention.
  • the positive electrode tab 204 according to the first and second embodiments corresponds to an example of the first electrode tab of the present invention
  • the negative electrode tab 205 according to the first and second embodiments is the second electrode tab of the present invention. It corresponds to an example.
  • transformation plate 61 which concerns on 2nd Embodiment correspond to an example of the deformation
  • the unit unit is interposed between two adjacent unit cells, and when at least one of the two unit cells reaches a predetermined temperature or higher, the unit cell that has reached the predetermined temperature or higher.
  • a separation device for separating the battery and the other unit cell from each other is provided. Therefore, heat transfer from a single cell that has reached a predetermined temperature or higher to another cell can be suppressed, and when the single cell is below a predetermined temperature, the battery pack can be downsized.

Abstract

This assembled cell (1) is equipped with: a plurality of mutually-stacked flat-type unit cells (2); and separating devices (3) that are interposed between the plurality of unit cells (2), and that when at least one of the plurality of unit cells (2) reaches a predetermined temperature or above, cause mutual separation of the unit cell (2) which is at or above the predetermined temperature, from other unit cells (2). Heat transmission from the unit cell (2) which is at or above the predetermined temperature to the other unit cells (2) can be minimized thereby, and the assembled cell (1) can be more compact when the unit cells (2) are below the predetermined temperature.

Description

組電池Assembled battery
 本発明は、複数の単電池を積層した組電池に関するものである。 The present invention relates to an assembled battery in which a plurality of unit cells are stacked.
 従来、複数の角型電池の間に断熱部材を介装して、断熱部材によって角型電池同士を断熱させた集合電池が知られている(例えば、特許文献1参照)。 Conventionally, there has been known an assembled battery in which a plurality of prismatic batteries are provided with a heat insulating member and the square batteries are insulated from each other by the heat insulating member (for example, see Patent Document 1).
特開2004-362879号公報JP 2004-362879 A
 しかしながら、上記集合電池では、角型電池が過充電等によって異常発熱していない通常の状態においても角型電池同士を断熱部材によって離反させている。そのため、集合電池が大型化してしまうという問題があった。 However, in the above assembled battery, the square batteries are separated from each other by the heat insulating member even in a normal state where the square batteries are not heated abnormally due to overcharge or the like. Therefore, there has been a problem that the assembled battery is increased in size.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、その目的は、単電池間の熱伝達を抑制しつつ、小型化を図ることが可能な組電池を提供することにある。 The present invention has been made in view of such problems of the conventional technology. And the objective is to provide the assembled battery which can achieve size reduction, suppressing the heat transfer between single cells.
 本発明の態様に係る組電池は、相互に積層された複数の扁平型の単電池と、複数の単電池の間に介在し、複数の単電池の少なくとも1つが所定温度以上になると、所定温度以上になった単電池と他の単電池とを相互に離反させる離反装置とを備える。 An assembled battery according to an aspect of the present invention is provided between a plurality of flat unit cells stacked on each other and a plurality of unit cells, and when at least one of the plurality of unit cells reaches a predetermined temperature or higher, a predetermined temperature A separation device for separating the unit cell and the other unit cell from each other is provided.
図1は、本発明の第1実施形態に係る組電池の断面図である。FIG. 1 is a cross-sectional view of an assembled battery according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係る単電池の断面図である。FIG. 2 is a cross-sectional view of the cell according to the first embodiment of the present invention. 図3は、本発明の第1実施形態に係る単電池の変形例を示す平面図である。FIG. 3 is a plan view showing a modification of the unit cell according to the first embodiment of the present invention. 図4は、図1のIV-IV線に沿った断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 図5は、本発明の第1実施形態に係る冷却プレートの作用を示す組電池の断面図である。FIG. 5 is a cross-sectional view of the assembled battery showing the operation of the cooling plate according to the first embodiment of the present invention. 図6は、本発明の第1実施形態に係る冷却プレートの第1変形例を示す組電池の断面図である。FIG. 6 is a cross-sectional view of an assembled battery showing a first modification of the cooling plate according to the first embodiment of the present invention. 図7は、本発明の第1実施形態に係る冷却プレートの第2変形例を示す組電池の断面図である。FIG. 7 is a cross-sectional view of an assembled battery showing a second modification of the cooling plate according to the first embodiment of the present invention. 図8は、本発明の第1実施形態に係る冷却プレートの第3変形例を示す組電池の断面図である。FIG. 8 is a cross-sectional view of an assembled battery showing a third modification of the cooling plate according to the first embodiment of the present invention. 図9は、本発明の第1実施形態に係る冷却プレートの第4変形例を示す組電池の断面図である。FIG. 9 is a cross-sectional view of an assembled battery showing a fourth modification of the cooling plate according to the first embodiment of the present invention. 図10は、本発明の第1実施形態に係る冷却プレートの第5変形例の拡大断面図である。FIG. 10 is an enlarged cross-sectional view of a fifth modification of the cooling plate according to the first embodiment of the present invention. 図11は、本発明の第1実施形態に係る冷却プレートの第6変形例を示す組電池の断面図である。FIG. 11 is a cross-sectional view of an assembled battery showing a sixth modification of the cooling plate according to the first embodiment of the present invention. 図12は、本発明の第2実施形態に係る組電池の断面図である。FIG. 12 is a cross-sectional view of an assembled battery according to the second embodiment of the present invention. 図13は、本発明の第2実施形態に係る冷却プレートの平面図である。FIG. 13 is a plan view of a cooling plate according to the second embodiment of the present invention. 図14は、本発明の第2実施形態に係る単電池の高温領域を示す平面図である。FIG. 14 is a plan view showing a high temperature region of the unit cell according to the second embodiment of the present invention. 図15は、本発明の第2実施形態に係る単電池の変形例における高温領域を示す平面図である。FIG. 15 is a plan view showing a high temperature region in a modification of the unit cell according to the second embodiment of the present invention. 図16は、本発明の第2実施形態に係る冷却プレートの作用を示す組電池の断面図である。FIG. 16 is a cross-sectional view of the assembled battery showing the operation of the cooling plate according to the second embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
[第1実施形態]
 図1は本実施形態に係る組電池の断面図、図2は本実施形態に係る単電池の断面図、図3は本実施形態に係る単電池の変形例を示す平面図、図4は図1のIV-IV線に沿った断面図である。
[First Embodiment]
FIG. 1 is a cross-sectional view of an assembled battery according to the present embodiment, FIG. 2 is a cross-sectional view of the single battery according to the present embodiment, FIG. 3 is a plan view showing a modification of the single battery according to the present embodiment, and FIG. 1 is a sectional view taken along line IV-IV in FIG.
 本実施形態に係る組電池1は、図1に示すように、単電池2と、冷却プレート3と、モジュール缶4とを備えている。単電池2は、図1に示すように、扁平型の電池である。この単電池2としては、例えば、リチウムイオン二次電池を挙げることができる。以下、本実施形態に係る単電池2(リチウムイオン二次電池)について詳細に説明する。 As shown in FIG. 1, the assembled battery 1 according to the present embodiment includes a single battery 2, a cooling plate 3, and a module can 4. As shown in FIG. 1, the unit cell 2 is a flat type battery. As this single battery 2, a lithium ion secondary battery can be mentioned, for example. Hereinafter, the single battery 2 (lithium ion secondary battery) according to the present embodiment will be described in detail.
 この単電池2は、図2に示すように、3枚の正極板201と、5枚のセパレータ202と、3枚の負極板203と、正極タブ204と、負極タブ205と、上部外装部材206と、下部外装部材207と、図示しない電解質とから構成されている。本実施形態では、このうちの正極板201、セパレータ202、負極板203及び電解質を特に発電要素208と称する。 As shown in FIG. 2, the unit cell 2 includes three positive plates 201, five separators 202, three negative plates 203, a positive electrode tab 204, a negative electrode tab 205, and an upper exterior member 206. And a lower exterior member 207 and an electrolyte (not shown). In the present embodiment, the positive electrode plate 201, the separator 202, the negative electrode plate 203, and the electrolyte are particularly referred to as a power generation element 208.
 図2に示すように、発電要素208の正極板201は、正極タブ204まで延びている正極側集電体201aを有している。さらに正極板201は、正極側集電体201aの一部の両主面にそれぞれ形成された正極層201b,201cを有している。 As shown in FIG. 2, the positive electrode plate 201 of the power generation element 208 has a positive electrode current collector 201 a extending to the positive electrode tab 204. Furthermore, the positive electrode plate 201 has positive electrode layers 201b and 201c formed on both main surfaces of a part of the positive electrode side current collector 201a.
 そして、正極側集電体201aは、例えば、アルミニウム箔、アルミニウム合金箔、銅箔又はニッケル箔等の電気化学的に安定した金属箔で構成されている。また、正極層201b,201cは、正極活物質と、カーボンブラック等の導電剤と、ポリ四フッ化エチレンの水性ディスパージョン等の接着剤とを含有している。具体的には、正極層201b,201cは、正極活物質、導電剤及び接着剤を混合したものを、正極側集電体201aの両主面に塗布し、乾燥及び圧延することにより形成されている。当該正極活物質としては、例えば、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)又はコバルト酸リチウム(LiCoO)等のリチウム複合酸化物や、リチウムのカルコゲン(S、Se、Te)化物等を挙げることができる。 And the positive electrode side collector 201a is comprised with the electrochemically stable metal foil, such as aluminum foil, aluminum alloy foil, copper foil, or nickel foil, for example. The positive electrode layers 201b and 201c contain a positive electrode active material, a conductive agent such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene. Specifically, the positive electrode layers 201b and 201c are formed by applying a mixture of a positive electrode active material, a conductive agent, and an adhesive to both main surfaces of the positive electrode side current collector 201a, and drying and rolling. Yes. Examples of the positive electrode active material include lithium composite oxides such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and lithium cobaltate (LiCoO 2 ), and lithium chalcogens (S, Se, Te). And the like.
 また、発電要素208の負極板203は、負極タブ205まで延びている負極側集電体203aを有している。さらに負極板203は、負極側集電体203aの一部の両主面にそれぞれ形成された負極層203b,203cを有している。 Also, the negative electrode plate 203 of the power generation element 208 has a negative electrode side current collector 203 a extending to the negative electrode tab 205. Further, the negative electrode plate 203 has negative electrode layers 203b and 203c formed on both main surfaces of a part of the negative electrode side current collector 203a.
 そして、負極側集電体203aは、例えば、ニッケル箔、銅箔、ステンレス箔又は鉄箔等の電気化学的に安定した金属箔で構成されている。負極層203b,203cは、上記正極活物質のリチウムイオンを吸蔵及び放出する負極活物質と、アクリル樹脂エマルジョン等の結着剤とを含有している。具体的には、負極層は、負極活物質に、有機物焼成体の前駆体たるスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し乾燥させた後に粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料としている。そして、この担持後の負極活物質と結着剤との混合物を負極側集電体203aの一部の両主面に塗布し、乾燥及び圧延することにより、負極層203b,203cを形成する。 The negative electrode side current collector 203a is made of, for example, an electrochemically stable metal foil such as nickel foil, copper foil, stainless steel foil, or iron foil. The negative electrode layers 203b and 203c contain a negative electrode active material that occludes and releases lithium ions of the positive electrode active material, and a binder such as an acrylic resin emulsion. Specifically, the negative electrode layer is formed by mixing an aqueous dispersion of a styrene butadiene rubber resin powder, which is a precursor of an organic fired body, with the negative electrode active material, drying, and then pulverizing the styrene butadiene carbonized on the carbon particle surfaces. The main material is a rubber support. And the negative electrode layers 203b and 203c are formed by apply | coating the mixture of the negative electrode active material and binder after this support to the both main surfaces of a part of negative electrode side collector 203a, and drying and rolling.
 当該負極活物質としては、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素又は黒鉛等を挙げることができる。ここで、負極活物質として非晶質炭素や難黒鉛化炭素を用いると、充放電時における電位の平坦特性に乏しく放電量に伴って出力電圧も低下する。そのため、非晶質炭素や難黒鉛化炭素は、通信機器や事務機器の電源には不向きであるが、電気自動車の電源では急激な出力低下がないので有利である。 Examples of the negative electrode active material include amorphous carbon, non-graphitizable carbon, graphitizable carbon, and graphite. Here, when amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge / discharge is poor, and the output voltage decreases with the amount of discharge. Therefore, amorphous carbon and non-graphitizable carbon are unsuitable for power supplies for communication equipment and office equipment, but are advantageous because there is no sudden drop in power output for electric vehicles.
 発電要素208のセパレータ202は、正極板201と負極板203との短絡を防止するもので、電解質を保持する機能を備えてもよい。そして、このセパレータ202は、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィンから構成される微多孔性膜であることが好ましい。微多孔性膜からなるセパレータは、過電流が流れると、その発熱によって膜の空孔が閉塞され電流を遮断する機能を有する。 The separator 202 of the power generation element 208 prevents a short circuit between the positive electrode plate 201 and the negative electrode plate 203, and may have a function of holding an electrolyte. The separator 202 is preferably a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP). When an overcurrent flows, the separator made of a microporous film has a function of blocking the current by closing the pores of the film due to heat generation.
 なお、本実施形態に係るセパレータ202は、ポリオレフィン等の単層膜のみに限定されず、ポリプロピレン膜をポリエチレン膜で挟持した三層構造や、ポリオレフィン微多孔性膜と有機不織布等を積層したものを用いることもできる。このように、セパレータ202を複層化することで、過電流の防止機能、電解質保持機能及びセパレータ202の形状維持(剛性向上)機能等を付与することができる。 The separator 202 according to this embodiment is not limited to a single-layer film such as polyolefin, but a three-layer structure in which a polypropylene film is sandwiched between polyethylene films, or a laminate of a polyolefin microporous film and an organic nonwoven fabric or the like. It can also be used. Thus, by forming the separator 202 in multiple layers, an overcurrent prevention function, an electrolyte holding function, a shape maintaining (stiffness improvement) function of the separator 202, and the like can be provided.
 以上の発電要素208では、セパレータ202を介して正極板201と負極板203とが交互に積層されている。そして、3枚の正極板201は、正極側集電体201aを介して、金属箔製の正極タブ204にそれぞれ接続されている。また、3枚の負極板203は、負極側集電体203aを介して、金属箔製の負極タブ205にそれぞれ接続されている。なお、発電要素208の正極板201、セパレータ202及び負極板203は、上記の枚数に限定されない。例えば、1枚の正極板、3枚のセパレータ及び1枚の負極板でも発電要素を構成することができ、必要に応じて、正極板、セパレータ及び負極板の枚数を選択することができる。 In the power generation element 208 described above, the positive electrode plate 201 and the negative electrode plate 203 are alternately stacked via the separator 202. The three positive plates 201 are respectively connected to the positive tab 204 made of metal foil via the positive current collector 201a. The three negative plates 203 are connected to a negative electrode tab 205 made of metal foil via a negative current collector 203a. The positive electrode plate 201, the separator 202, and the negative electrode plate 203 of the power generation element 208 are not limited to the above number. For example, the power generation element can be constituted by one positive electrode plate, three separators, and one negative electrode plate, and the number of positive electrode plates, separators, and negative electrode plates can be selected as necessary.
 正極タブ204及び負極タブ205を構成する材料は、電気化学的に安定した金属材料であれば特に限定されない。例えば、正極タブ204を、上述の正極側集電体201aと同様に、アルミニウム箔、アルミニウム合金箔、銅箔又はニッケル箔等で構成することができる。また、負極タブ205については、上述の負極側集電体203aと同様に、ニッケル箔、銅箔、ステンレス箔又は鉄箔等で構成することができる。また、本実施形態では、正極板201及び負極板203の集電体201a,203aを構成する金属箔自体を正極タブ204及び負極タブ205まで延長することにより、正極板201及び負極板203を正極タブ204及び負極タブ205に直接接続している。しかし、正極板201及び負極板203の集電体201a,203aと、正極タブ204及び負極タブ205とを、集電体201a,203aを構成する金属箔とは別の材料や部品により接続してもよい。 The material constituting the positive electrode tab 204 and the negative electrode tab 205 is not particularly limited as long as it is an electrochemically stable metal material. For example, the positive electrode tab 204 can be made of an aluminum foil, an aluminum alloy foil, a copper foil, a nickel foil, or the like, similar to the positive electrode side current collector 201a described above. In addition, the negative electrode tab 205 can be formed of nickel foil, copper foil, stainless steel foil, iron foil, or the like, similar to the negative electrode current collector 203a described above. Further, in the present embodiment, the metal foil itself constituting the current collectors 201a and 203a of the positive electrode plate 201 and the negative electrode plate 203 is extended to the positive electrode tab 204 and the negative electrode tab 205, thereby making the positive electrode plate 201 and the negative electrode plate 203 the positive electrode. The tab 204 and the negative electrode tab 205 are directly connected. However, the current collectors 201a and 203a of the positive electrode plate 201 and the negative electrode plate 203 and the positive electrode tab 204 and the negative electrode tab 205 are connected by a material or a part different from the metal foil constituting the current collectors 201a and 203a. Also good.
 ここで、本実施形態では、図2に示すように、正極タブ204が単電池2(上部外装部材206及び下部外装部材207)の辺21から導出するように配置され、負極タブ205が、単電池2において辺21と対向する辺22から導出するように配置されている。しかし、正極タブ204及び負極タブ205の配置については、図2の配置に限定されない。例えば、図3に示すように、正極タブ204と負極タブ205を、同一の辺21から導出させるように配置してもよい。 Here, in this embodiment, as shown in FIG. 2, the positive electrode tab 204 is arranged so as to be led out from the side 21 of the unit cell 2 (the upper exterior member 206 and the lower exterior member 207), and the negative electrode tab 205 is The battery 2 is arranged so as to be derived from the side 22 facing the side 21. However, the arrangement of the positive electrode tab 204 and the negative electrode tab 205 is not limited to the arrangement shown in FIG. For example, as shown in FIG. 3, the positive electrode tab 204 and the negative electrode tab 205 may be arranged so as to be led out from the same side 21.
 上述した発電要素208は、図2に示すようなカップ状に成型された上部外装部材206と平板状の下部外装部材207との間に収容されて封止されている。本実施形態に係る上部外装部材206及び下部外装部材207は、特に図示しないが、いずれも内側樹脂層、金属層及び外側樹脂層から成るラミネート材(ラミネートフィルム)で構成されている。 The power generation element 208 described above is housed and sealed between an upper exterior member 206 molded in a cup shape as shown in FIG. 2 and a flat lower exterior member 207. Although not specifically shown, the upper exterior member 206 and the lower exterior member 207 according to the present embodiment are each composed of a laminate material (laminate film) composed of an inner resin layer, a metal layer, and an outer resin layer.
 このラミネート材の内側樹脂層としては、例えば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン又はアイオノマー等の耐電解液性及び熱融着性に優れた樹脂フィルムで構成することができる。また金属層としては、例えば、アルミニウム等の金属箔で構成することができる。さらに外側樹脂層としては、例えば、ポリアミド系樹脂やポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムで構成することができる。 The inner resin layer of the laminate material can be composed of a resin film excellent in electrolytic solution resistance and heat fusion properties such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer. Moreover, as a metal layer, it can comprise with metal foil, such as aluminum, for example. Furthermore, as an outer side resin layer, it can comprise with the resin film excellent in electrical insulation, such as a polyamide-type resin and a polyester-type resin, for example.
 そして、これらの外装部材206,207によって、電極タブ204,205の一部と発電要素208を包み込む。さらに、外装部材206,207により形成される空間に、液体電解質を注入する。その後、当該空間を真空状態とした後に、外装部材206,207の外周部分を熱プレスにより熱融着する。これにより、外装部材206,207の間に、電極タブ204,205の一部及び発電要素208が収容されて封止される。 Then, these exterior members 206 and 207 enclose part of the electrode tabs 204 and 205 and the power generation element 208. Further, a liquid electrolyte is injected into the space formed by the exterior members 206 and 207. Thereafter, after the space is evacuated, the outer peripheral portions of the exterior members 206 and 207 are heat-sealed by hot pressing. Accordingly, a part of the electrode tabs 204 and 205 and the power generation element 208 are accommodated and sealed between the exterior members 206 and 207.
 なお、前記液体電解質としては、有機液体溶媒に過塩素酸リチウムやホウフッ化リチウム、六フッ化リン酸リチウム等のリチウム塩を溶解したものを使用することができる。有機液体溶媒としては、プロピレンカーボネート(PC)やエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート等のエステル系溶媒を挙げることができる。なお、有機液体溶媒はこれに限定されることなく、エステル系溶媒に、γ-ブチラクトン(γ-BL)やジエトシキエタン(DEE)等のエーテル系溶媒その他を混合したものを用いることもできる。 As the liquid electrolyte, a solution obtained by dissolving a lithium salt such as lithium perchlorate, lithium borofluoride, or lithium hexafluorophosphate in an organic liquid solvent can be used. Examples of the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate. The organic liquid solvent is not limited to this, and a mixture of an ester solvent and an ether solvent such as γ-butylactone (γ-BL) or diethyloxyethane (DEE) can also be used.
 本実施形態に係る組電池1では、図1に示すように、このような4つの単電池2が相互に積層されて電気的に接続されている。なお、単電池2の数については、複数であれば特に限定されない。 In the assembled battery 1 according to the present embodiment, as shown in FIG. 1, such four unit cells 2 are stacked and electrically connected to each other. In addition, about the number of the single cells 2, if it is plurality, it will not specifically limit.
 本実施形態の離反装置たる冷却プレート3は、図1及び図4に示すように、単電池2の外装部材206,207を覆うことが可能な面積を有する板状の部材であり、複数の単電池2の間に介在している。本実施形態では、組電池1内に3枚の冷却プレート3が設けられているが、冷却プレート3の数については特に限定されず、単電池2の数に応じて適宜設定することができる。 As shown in FIGS. 1 and 4, the cooling plate 3 that is a separation device of the present embodiment is a plate-like member having an area that can cover the exterior members 206 and 207 of the unit cell 2. It is interposed between the batteries 2. In the present embodiment, three cooling plates 3 are provided in the assembled battery 1, but the number of cooling plates 3 is not particularly limited, and can be set as appropriate according to the number of single cells 2.
 本実施形態に係る冷却プレート3は、所定温度以上で変形する形状記憶合金で構成されている。そして、冷却プレート3は、常温時(25℃)では平坦なプレート状の形状を保持する。しかし、図5に示すように、冷却プレート3が所定温度以上になると部分的に屈曲し、凸部31と凹部32が交互に形成された凹凸形状に変形する。 The cooling plate 3 according to the present embodiment is made of a shape memory alloy that deforms at a predetermined temperature or higher. The cooling plate 3 maintains a flat plate shape at room temperature (25 ° C.). However, as shown in FIG. 5, when the cooling plate 3 reaches a predetermined temperature or more, it is partially bent and deformed into a concavo-convex shape in which convex portions 31 and concave portions 32 are alternately formed.
 この形状記憶合金とは、所定温度(変態温度)未満で変形させても、その温度以上に加熱すると元の形状に戻る金属であり、例えば、チタンとニッケルを含む合金を挙げることができる。なお、冷却プレート3は形状記憶合金に限定されることなく、例えば、ニッケルと鉄の合金である熱膨張が低い材料と、銅のような熱膨張が高い材料とを一体に接着したバイメタルを用いることもできる。 This shape memory alloy is a metal that returns to its original shape when it is deformed below a predetermined temperature (transformation temperature) and is heated above that temperature, and includes, for example, an alloy containing titanium and nickel. The cooling plate 3 is not limited to the shape memory alloy, and for example, a bimetal obtained by integrally bonding a material having a low thermal expansion such as an alloy of nickel and iron and a material having a high thermal expansion such as copper is used. You can also.
 また、このような所定温度については、合金組成や熱処理の条件により高い精度で適宜設定することができる。これにより、設計時に想定している所定温度で、正確に冷却プレート3を変形させることができる。この所定温度は、使用する単電池の耐久性により適宜設定することができるが、例えば50℃~150℃とすることができる。また、形状記憶合金がチタンとニッケルを含む合金である場合には、この所定温度を、例えば100℃程度に設定することができる。 Further, such a predetermined temperature can be appropriately set with high accuracy depending on the alloy composition and heat treatment conditions. Thereby, the cooling plate 3 can be accurately deformed at a predetermined temperature assumed at the time of design. The predetermined temperature can be appropriately set depending on the durability of the unit cell used, and can be set to, for example, 50 ° C. to 150 ° C. Further, when the shape memory alloy is an alloy containing titanium and nickel, the predetermined temperature can be set to about 100 ° C., for example.
 なお、冷却プレート3を、フェノール・ホルムアルデヒド等の形状記憶樹脂で構成して、所定温度以上で上記のように変形させてもよい。 The cooling plate 3 may be made of a shape memory resin such as phenol or formaldehyde and deformed as described above at a predetermined temperature or higher.
 本実施形態では、上記のような形状記憶合金や形状記憶樹脂で構成された冷却プレート3を予め上記の凹凸形状に形成しておく。そして、所定温度未満の状態で冷却プレート3を凹凸形状からプレート状に変形させて、単電池2同士の間に介在させている。すなわち、本実施形態では、凹凸形状を記憶させた平坦な冷却プレート3を、単電池2の間に介在させ、所定温度以上になったときに、元の凹凸形状に復元させるようにしている。 In the present embodiment, the cooling plate 3 made of the shape memory alloy or shape memory resin as described above is formed in advance in the above-described uneven shape. And the cooling plate 3 is deform | transformed from uneven | corrugated shape to plate shape in the state below predetermined temperature, and it interposes between the single cells 2. That is, in the present embodiment, the flat cooling plate 3 in which the uneven shape is stored is interposed between the single cells 2 and is restored to the original uneven shape when the temperature reaches a predetermined temperature or higher.
 モジュール缶4は、単電池2及び冷却プレート3を収容する部材である。このモジュール缶4は、冷却プレート3が変形することに伴って、単電池2によって内側から押圧されることで膨らむように変形できるように構成されている。このようなモジュール缶4の材料としては、例えば、ステンレス鋼を挙げることができる。 The module can 4 is a member that accommodates the unit cell 2 and the cooling plate 3. The module can 4 is configured to be deformed so as to swell by being pressed from the inside by the unit cell 2 as the cooling plate 3 is deformed. Examples of the material of the module can 4 include stainless steel.
 次に、本実施形態の組電池1の作用について説明する。図5は、本実施形態に係る冷却プレートの作用を示す組電池の断面図、図6~9及び図11は実施形態に係る冷却プレートの変形例を示す組電池の断面図、図10は本実施形態に係る冷却プレートの変形例の拡大断面図である。なお、図6~図8については、冷却プレートが変形した状態を示し、図9及び図11については、変形前の冷却プレートの状態を示している。 Next, the operation of the assembled battery 1 of this embodiment will be described. FIG. 5 is a sectional view of the assembled battery showing the operation of the cooling plate according to the present embodiment, FIGS. 6 to 9 and FIG. 11 are sectional views of the assembled battery showing modifications of the cooling plate according to the embodiment, and FIG. It is an expanded sectional view of the modification of the cooling plate which concerns on embodiment. 6 to 8 show a state where the cooling plate is deformed, and FIGS. 9 and 11 show a state of the cooling plate before the deformation.
 組電池において、一部の単電池が過充電等によって異常発熱すると、この熱が発熱した単電池と隣接する単電池に伝達されて、正常な単電池にも異常が生じる恐れがある。なお、以下において、4つの単電池2を単電池2A~2Dで示す。 In a battery pack, if some of the cells abnormally generate heat due to overcharging or the like, this heat is transmitted to the cells adjacent to the generated cells, which may cause abnormalities in normal cells. In the following, the four unit cells 2 are represented by unit cells 2A to 2D.
 これに対して、本実施形態では、図5に示すように、形状記憶合金で構成された冷却プレート3を、単電池2A~2Dのそれぞれの間に介在させている。そのため、冷却プレート3の変形によって、発熱した単電池2Bを、他の単電池2A,2Cから熱的に絶縁させている。 In contrast, in the present embodiment, as shown in FIG. 5, a cooling plate 3 made of a shape memory alloy is interposed between each of the cells 2A to 2D. Therefore, the unit cell 2B that has generated heat due to the deformation of the cooling plate 3 is thermally insulated from the other unit cells 2A and 2C.
 詳細に説明すると、本実施形態では、発熱した単電池2B及び正常な単電池2Aの間に介在する冷却プレート3が、単電池2Bにより加熱されて所定温度以上になると、凸部31と凹部32が交互に形成された凹凸形状に変形する。そして、単電池2A,2B間の間隔を広げるように、単電池2A,2Bを相互に離反させる。これにより、単電池2Bから単電池2Aへの熱伝達を抑制可能としている。同様に、発熱した単電池2B及び正常な単電池2Cの間に介在する冷却プレート3が、単電池2Bにより加熱されて所定温度以上になると、凸部31と凹部32が交互に形成された凹凸形状に変形する。そして、単電池2B,2C間の間隔を広げるように、単電池2B,2Cを相互に離反させる。これにより、単電池2Bから単電池2Cへの熱伝達を抑制可能としている。 More specifically, in the present embodiment, when the cooling plate 3 interposed between the generated unit cell 2B and the normal unit cell 2A is heated by the unit cell 2B to a predetermined temperature or higher, the convex portion 31 and the concave portion 32 are provided. Is deformed into an uneven shape formed alternately. Then, the unit cells 2A and 2B are separated from each other so as to widen the interval between the unit cells 2A and 2B. Thereby, heat transfer from the single battery 2B to the single battery 2A can be suppressed. Similarly, when the cooling plate 3 interposed between the heated unit cell 2B and the normal unit cell 2C is heated by the unit cell 2B to a predetermined temperature or higher, the projections 31 and the recesses 32 are alternately formed. Deform to shape. Then, the unit cells 2B and 2C are separated from each other so as to widen the interval between the unit cells 2B and 2C. Thereby, heat transfer from the single battery 2B to the single battery 2C can be suppressed.
 また、本実施形態では、同図に示すように、単電池2A,2Bの間の冷却プレート3を凹凸形状に変形させることで、単電池2A,2B間に空気層5を形成している。これにより、単電池2A,2Bの間の熱抵抗が大きくなるので、単電池2Bから単電池2Aへの熱伝達を効果的に抑制することができる。さらに、このような空気層5によって、発熱した単電池2Bを冷却することも可能となる。同様に、単電池2B,2Cの間の冷却プレート3を凹凸形状に変形させて、単電池2B,2Cの間に空気層5を形成している。これにより、単電池2Bから単電池2Cへの熱伝達を効果的に抑制することができると共に、発熱した単電池2Bを冷却することを可能としている。 Moreover, in this embodiment, as shown in the figure, the air layer 5 is formed between the single cells 2A and 2B by deforming the cooling plate 3 between the single cells 2A and 2B into an uneven shape. Thereby, since the thermal resistance between the single cells 2A and 2B is increased, heat transfer from the single cell 2B to the single cell 2A can be effectively suppressed. Furthermore, the air cell 5 can also cool the unit cell 2B that has generated heat. Similarly, the cooling plate 3 between the single cells 2B and 2C is deformed into a concavo-convex shape to form an air layer 5 between the single cells 2B and 2C. Thereby, heat transfer from the single battery 2B to the single battery 2C can be effectively suppressed, and the generated single battery 2B can be cooled.
 また、冷却プレート3は、上記のように変形することに伴って、主面の大部分で単電池2Bに接触していた状態から、凹部32の一端で部分的に単電池2Bに接触する状態に変化する。これにより、発熱した単電池2Bと冷却プレート3との接触面積が狭くなるので、冷却プレート3を介した単電池2A,2Cへの熱伝達が抑制される。 In addition, the cooling plate 3 is in contact with the unit cell 2B at one end of the recess 32 from the state where the cooling plate 3 is in contact with the unit cell 2B on most of the main surface in accordance with the deformation as described above. To change. As a result, the contact area between the generated unit cell 2 </ b> B and the cooling plate 3 is narrowed, so heat transfer to the unit cells 2 </ b> A and 2 </ b> C via the cooling plate 3 is suppressed.
 また、本実施形態に係る冷却プレート3は、複数の凸部31及び凹部32を有する形状に変形するので、冷却プレート3が変形する際に、単電池2A~2Cに印加される応力が分散されるようになっている。これにより、正常な単電池2A,2Cの1点に応力が集中することによる単電池2A,2Cの損傷、例えば単電池2A,2Cの折れ曲がりが抑制されている。 In addition, since the cooling plate 3 according to the present embodiment is deformed into a shape having a plurality of convex portions 31 and concave portions 32, the stress applied to the cells 2A to 2C is dispersed when the cooling plate 3 is deformed. It has become so. Thereby, damage to the single cells 2A and 2C due to stress concentration on one point of the normal single cells 2A and 2C, for example, bending of the single cells 2A and 2C is suppressed.
 さらに、本実施形態では、単電池2Bが所定温度以上に発熱していない通常の状態においては、冷却プレート3が平坦な形状を維持しているので、組電池1全体の厚さが薄くなっている。これにより、通常使用時の組電池1の小型化も図られている。多くの電池を搭載する電気自動車においては、この効果は特に顕著である。 Furthermore, in the present embodiment, in the normal state where the unit cell 2B does not generate heat above a predetermined temperature, the cooling plate 3 maintains a flat shape, so that the thickness of the assembled battery 1 as a whole is reduced. Yes. Thereby, size reduction of the assembled battery 1 at the time of normal use is also achieved. This effect is particularly noticeable in electric vehicles equipped with many batteries.
 また、本実施形態に係る組電池1では、単電池2A~2Dの間に冷却プレート3を介在させることで上述した効果を奏することができる。そのため、異常発熱した単電池2Bから他の単電池2A,2Cへの熱伝達を抑制するための構造を比較的簡単にすることができる。これにより、組電池1の低コスト化を図ることができる。 Further, in the assembled battery 1 according to the present embodiment, the above-described effects can be obtained by interposing the cooling plate 3 between the single cells 2A to 2D. Therefore, the structure for suppressing heat transfer from the unit cell 2B that has abnormally heated to the other unit cells 2A and 2C can be made relatively simple. Thereby, cost reduction of the assembled battery 1 can be achieved.
 ここで、変形後の冷却プレート3の形状は、異常発熱した単電池2Bと、単電池2Bを挟み込む単電池2A,2Cとを離反させることが可能な形状であれば、特に限定されない。例えば、変形後の冷却プレート3が、図6及び図7に示すように、単電池2Bから突出するような凸部31又は単電池2Bに向って凹んだ凹部32のいずれか一方を有する形状であってもよい。また、変形後の冷却プレート3の形状は、図8に示すように、平坦な頂点を有する凸部31と、平坦な底面を有する凹部32とが交互に形成された凹凸形状であってもよい。また、特に図示しないが、変形後の冷却プレートを正弦波のような波状としてもよい。 Here, the shape of the cooling plate 3 after the deformation is not particularly limited as long as the unit cell 2B that abnormally generates heat and the unit cells 2A and 2C that sandwich the unit cell 2B can be separated from each other. For example, as shown in FIGS. 6 and 7, the deformed cooling plate 3 has a shape having either one of a convex portion 31 protruding from the single cell 2B or a concave portion 32 recessed toward the single cell 2B. There may be. Moreover, the shape of the cooling plate 3 after the deformation may be an uneven shape in which convex portions 31 having flat vertices and concave portions 32 having a flat bottom surface are alternately formed, as shown in FIG. . Although not particularly illustrated, the deformed cooling plate may be waved like a sine wave.
 また、図9及び図10に示すように、冷却プレート3に、平面方向(図中における紙面と垂直方向)に沿った長孔33や溝34を形成し、長孔33又は溝34に空気又は冷却媒体を流通させてもよい。冷却媒体としては電解液と混合しても反応しないよう電解液に使用される溶媒が好ましい。これにより、単電池2が異常発熱した場合だけでなく、単電池2を通常に使用している状態においても、単電池2を冷却することができるため、単電池2の温度上昇を抑制することができる。 Further, as shown in FIGS. 9 and 10, a long hole 33 and a groove 34 are formed in the cooling plate 3 along the plane direction (perpendicular to the paper surface in the drawing), and air or A cooling medium may be circulated. As the cooling medium, a solvent used in the electrolytic solution is preferable so as not to react even when mixed with the electrolytic solution. As a result, not only when the unit cell 2 abnormally generates heat but also when the unit cell 2 is normally used, the unit cell 2 can be cooled, and thus the temperature rise of the unit cell 2 is suppressed. Can do.
 また、図11に示すように、冷却プレート3の端部にフィン35を設けて、フィン35を介して単電池2の放熱を図ってもよい。これにより、単電池2が異常発熱した場合だけでなく、単電池2を通常に使用している状態においても、単電池2を冷却することができるため、単電池2の温度上昇を抑制することができる。 Further, as shown in FIG. 11, fins 35 may be provided at the ends of the cooling plate 3, and the unit cells 2 may be dissipated through the fins 35. As a result, not only when the unit cell 2 abnormally generates heat but also when the unit cell 2 is normally used, the unit cell 2 can be cooled, and thus the temperature rise of the unit cell 2 is suppressed. Can do.
[第2実施形態]
 次に、第2実施形態について説明する。図12は本実施形態に係る組電池の断面図、図13は本実施形態に係る冷却プレートの平面図、図14は本実施形態に係る単電池の高温領域を示す平面図、図15は本実施形態に係る単電池の変形例における高温領域を示す平面図である。
[Second Embodiment]
Next, a second embodiment will be described. 12 is a sectional view of the assembled battery according to the present embodiment, FIG. 13 is a plan view of the cooling plate according to the present embodiment, FIG. 14 is a plan view showing a high temperature region of the unit cell according to the present embodiment, and FIG. It is a top view which shows the high temperature area | region in the modification of the cell which concerns on embodiment.
 本実施形態に係る組電池1aでは、冷却プレート6の構成が第1実施形態と相違するが、それ以外の構成については、第1実施形態と同様である。以下に、第1実施形態と相違する部分についてのみ説明し、第1実施形態と同一の部分については、同一の符号を付して説明を省略する。なお、本実施形態においても、組電池1a内の4つの単電池2を、単電池2A~2Dで示す。 In the assembled battery 1a according to the present embodiment, the configuration of the cooling plate 6 is different from that of the first embodiment, but other configurations are the same as those of the first embodiment. Only the parts different from the first embodiment will be described below, and the same parts as those of the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted. Also in this embodiment, the four unit cells 2 in the assembled battery 1a are indicated by unit cells 2A to 2D.
 本実施形態に係る冷却プレート6は、図12及び図13に示すように、変形プレート61と、本体プレート62とを有している。変形プレート61は、所定温度以上で変形する形状記憶合金又は形状記憶樹脂で構成されており、常温時(25℃)においては平坦なプレート状の形状を保持する。一方、所定温度以上になると、図16に示すように、変形プレート61は凸形状に変形する。なお、特に図示しないが、所定温度以上になったときに、上記の凸形状とは反対の凹形状に変形するように変形プレートを構成してもよい。 The cooling plate 6 according to the present embodiment includes a deformation plate 61 and a main body plate 62 as shown in FIGS. The deformation plate 61 is made of a shape memory alloy or a shape memory resin that deforms at a predetermined temperature or higher, and maintains a flat plate shape at room temperature (25 ° C.). On the other hand, when the temperature exceeds a predetermined temperature, the deformation plate 61 is deformed into a convex shape as shown in FIG. Although not particularly illustrated, the deformation plate may be configured to be deformed into a concave shape opposite to the above-described convex shape when a predetermined temperature or higher is reached.
 本実施形態においても、第1実施形態と同様に、変形プレート61を形状記憶合金で構成する場合には、上記の所定温度については合金組成や熱処理の条件により高い精度で適宜設定することができる。これにより、設計時に想定している所定温度で、正確に変形プレート61を変形させることが可能となる。なお、このような形状記憶合金としては、第1実施形態と同様に、チタンとニッケルを含む合金を挙げることができる。また、上記所定温度は、第1実施形態と同様に、例えば50℃~150℃とすることができる。 Also in the present embodiment, as in the first embodiment, when the deformation plate 61 is made of a shape memory alloy, the predetermined temperature can be appropriately set with high accuracy depending on the alloy composition and heat treatment conditions. . As a result, the deformation plate 61 can be accurately deformed at a predetermined temperature assumed at the time of design. In addition, as such a shape memory alloy, the alloy containing titanium and nickel can be mentioned similarly to 1st Embodiment. In addition, the predetermined temperature can be set to 50 ° C. to 150 ° C., for example, as in the first embodiment.
 本実施形態では、図13に示すように、1枚の冷却プレート6内に、4枚の変形プレート61が設けられている。なお、変形プレート61の数は特に限定されず、例えば3枚であってもよい。 In this embodiment, as shown in FIG. 13, four deformation plates 61 are provided in one cooling plate 6. The number of deformation plates 61 is not particularly limited, and may be three, for example.
 本体プレート62はプレート状の部材であり、所定温度以上になっても変形しないアルミニウム等の金属で構成されている。この本体プレート62には、4枚の変形プレート61をそれぞれ保持する4つの開口621が形成されている。なお、開口621の数については特に限定されず、変形プレート61の数に応じて適宜設定することができる。 The main body plate 62 is a plate-like member and is made of a metal such as aluminum that does not deform even when the temperature exceeds a predetermined temperature. The main body plate 62 is formed with four openings 621 for holding the four deformation plates 61, respectively. The number of openings 621 is not particularly limited, and can be set as appropriate according to the number of deformation plates 61.
 本実施形態では、本体プレート62の開口621の内縁と、変形プレート61の外縁とを接着剤で接着することにより、開口621内に変形プレート61を保持させている。なお、変形プレート61を保持する方法は特に限定されない。例えば、変形プレート61を本体プレート62と一体成形で形成することで、本体プレート62に変形プレート61を保持させてもよい。 In the present embodiment, the deformation plate 61 is held in the opening 621 by adhering the inner edge of the opening 621 of the main body plate 62 and the outer edge of the deformation plate 61 with an adhesive. The method for holding the deformation plate 61 is not particularly limited. For example, the deformation plate 61 may be formed on the main body plate 62 so as to be integrally formed with the main body plate 62.
 以上に説明した本実施形態に係る冷却プレート6は、図12に示すように、単電池2A~2Dの表面の中で発熱した際に最も高温となる高温領域2a~2dに変形プレート61が接触するように、それぞれの単電池2A~2Dの間に積層されている。 In the cooling plate 6 according to the present embodiment described above, as shown in FIG. 12, the deformation plate 61 is in contact with the high temperature regions 2a to 2d that are at the highest temperature when heat is generated on the surface of the unit cells 2A to 2D. As shown, the cells are stacked between the single cells 2A to 2D.
 ここで、この高温領域2a~2dの位置について、単電池2Aの高温領域2aを代表して簡単に説明する。図14に示すように、単電池2Aが互いに対向する2辺21,22にそれぞれ電極タブ204,205を有する場合では、高温領域2aは、単電池2A内において電流が流れやすく、熱がこもり易い中央部分の表面に位置する。なお、図12に示す単電池2A~2Dも、互いに対向する2辺にそれぞれ電極タブを有する単電池であるものとする。 Here, the positions of the high temperature regions 2a to 2d will be briefly described on behalf of the high temperature region 2a of the unit cell 2A. As shown in FIG. 14, in the case where the unit cell 2A has the electrode tabs 204 and 205 on the two sides 21 and 22 facing each other, the high-temperature region 2a tends to flow current in the unit cell 2A and easily accumulate heat. Located on the surface of the central part. Note that the unit cells 2A to 2D shown in FIG. 12 are also unit cells having electrode tabs on two sides facing each other.
 一方、図15に示すように、単電池2Aが同一の辺21に電極タブ204,205を有している場合には、高温領域2aは、同図の平面視において、電極タブ204,205の近傍部分に位置する。なお、この近傍部分についても、電極タブ204,205の間で電流が流れやすいために、発熱し易い部分となっている。 On the other hand, as shown in FIG. 15, when the unit cell 2 </ b> A has the electrode tabs 204 and 205 on the same side 21, the high temperature region 2 a Located in the vicinity. In addition, since the current easily flows between the electrode tabs 204 and 205 in this vicinity, it is a portion that easily generates heat.
 次に、本実施形態に係る組電池1aの作用について説明する。図16は本実施形態に係る冷却プレートの作用を示す組電池の断面図である。本実施形態においても、第1実施形態と同様に、図16に示すように、4つの単電池2A~2Dの中で単電池2Bが所定温度以上に発熱したものとして以下の説明を行う。 Next, the operation of the assembled battery 1a according to this embodiment will be described. FIG. 16 is a cross-sectional view of the assembled battery showing the operation of the cooling plate according to the present embodiment. Also in the present embodiment, as in the first embodiment, the following description will be given on the assumption that the unit cell 2B generates heat above a predetermined temperature among the four unit cells 2A to 2D, as shown in FIG.
 組電池1aでは、単電池2A,2Bの間に介在する冷却プレート6が所定温度以上に発熱した単電池2Bにより加熱されると、図16に示すように、冷却プレート6の変形プレート61が平坦なプレート状から凸形状に変形する。そして、単電池2A,2B間の間隔を広げるように、単電池2A,2Bを相互に離反させる。これにより、異常発熱した単電池2Bから、正常な単電池2Aへの熱伝達を抑制することができる。同様に、単電池2B,2Cの間に介在する冷却プレート6の変形プレート61が、単電池2Bにより加熱されて所定温度以上になると、変形プレート61が凸形状に変形する。そして、単電池2B,2C間の間隔を広げるように、単電池2B,2Cを相互に離反させる。これにより、異常発熱した単電池2Bから正常な単電池2Cへの熱伝達を抑制することができる。 In the assembled battery 1a, when the cooling plate 6 interposed between the single cells 2A and 2B is heated by the single cell 2B that generates heat above a predetermined temperature, the deformation plate 61 of the cooling plate 6 is flat as shown in FIG. The plate shape is deformed to a convex shape. Then, the unit cells 2A and 2B are separated from each other so as to widen the interval between the unit cells 2A and 2B. Thereby, it is possible to suppress heat transfer from the unit cell 2B that has abnormally heated to the normal unit cell 2A. Similarly, when the deformation plate 61 of the cooling plate 6 interposed between the single cells 2B and 2C is heated by the single cell 2B to a predetermined temperature or higher, the deformation plate 61 is deformed into a convex shape. Then, the unit cells 2B and 2C are separated from each other so as to widen the interval between the unit cells 2B and 2C. Thereby, heat transfer from the unit cell 2B that has abnormally heated to the normal unit cell 2C can be suppressed.
 また、本実施形態においても、第1実施形態と同様に、単電池2A,2Bの間の変形プレート61を凸形状に変形させることで、単電池2A,2B間に空気層5を形成する。これにより、単電池2Bから単電池2Aへの熱伝達を効果的に抑制することができる。さらに、このような空気層5によって、発熱した単電池2Bを冷却することも可能となる。同様に、単電池2B,2Cの間の変形プレート61を凸形状に変形させて、単電池2B,2C間に空気層5を形成することで、単電池2Bから単電池2Cへの熱伝達を効果的に抑制すると共に、発熱した単電池2Bを冷却することを可能としている。 Also in the present embodiment, similarly to the first embodiment, the air plate 5 is formed between the single cells 2A and 2B by deforming the deformation plate 61 between the single cells 2A and 2B into a convex shape. Thereby, the heat transfer from the single battery 2B to the single battery 2A can be effectively suppressed. Furthermore, the air cell 5 can also cool the unit cell 2B that has generated heat. Similarly, by deforming the deformation plate 61 between the single cells 2B and 2C into a convex shape and forming an air layer 5 between the single cells 2B and 2C, heat transfer from the single cell 2B to the single cell 2C is achieved. While effectively suppressing, it is possible to cool the generated unit cell 2B.
 また、本実施形態では、変形後の変形プレート61が単電池2A,2Cと部分的に接触するので、発熱した単電池2Bから変形プレート61(冷却プレート6)を介して単電池2A,2Cへ熱伝達されることが効果的に抑制されている。 Further, in the present embodiment, the deformed deformed plate 61 is in partial contact with the single cells 2A and 2C, so that the heated single cell 2B is transferred to the single cells 2A and 2C via the deformed plate 61 (cooling plate 6). Heat transfer is effectively suppressed.
 また、本実施形態においても、第1実施形態と同様に、冷却プレート6が複数の変形部分(変形プレート61)を有している。そのため、変形プレート61が変形する際に、正常な単電池2A,2Cの一点に応力が集中することによる単電池2A,2Cの損傷、つまり単電池2A,2Cの折れ曲がりが抑制されている。 Also in this embodiment, similarly to the first embodiment, the cooling plate 6 has a plurality of deformed portions (deformed plates 61). Therefore, when the deformation plate 61 is deformed, damage to the single cells 2A and 2C due to stress concentration on one point of the normal single cells 2A and 2C, that is, bending of the single cells 2A and 2C is suppressed.
 さらに、本実施形態では、冷却プレート6において部分的に形状記憶合金又は形状記憶樹脂を設けている。そのため、冷却プレート6の全体を形状記憶合金又は形状記憶樹脂で構成した場合と比較して、組電池1aを低コスト化することができる。 Furthermore, in the present embodiment, a shape memory alloy or a shape memory resin is partially provided on the cooling plate 6. Therefore, the assembled battery 1a can be reduced in cost compared to the case where the entire cooling plate 6 is made of a shape memory alloy or a shape memory resin.
 また、本実施形態では、所定温度以上で変形する変形プレート61を、単電池2Bの高温領域2bと接触させている。これにより、単電池2Bの発熱に対して、変形プレート61を敏感に反応させることができるため、異常発熱した単電池2Bから他の単電池2A,2Cへの熱伝達を効果的に抑制することが可能となっている。 In this embodiment, the deformation plate 61 that is deformed at a predetermined temperature or higher is brought into contact with the high temperature region 2b of the unit cell 2B. Thereby, since the deformation plate 61 can be made to react sensitively to the heat generation of the unit cell 2B, heat transfer from the unit cell 2B that has abnormally generated heat to the other unit cells 2A and 2C is effectively suppressed. Is possible.
 また、本実施形態においても、第1実施形態と同様に、単電池2Bが所定温度以上に発熱していない通常の状態においては、冷却プレート6(変形プレート61)がプレート状の形状を維持するので、組電池1a全体の厚さを薄くさせることができる。これにより、通常使用時の組電池1aの小型化を図ることが可能となっている。 Also in this embodiment, similarly to the first embodiment, the cooling plate 6 (deformation plate 61) maintains a plate-like shape in a normal state where the unit cell 2B does not generate heat above a predetermined temperature. Therefore, the thickness of the assembled battery 1a can be reduced. This makes it possible to reduce the size of the assembled battery 1a during normal use.
 また、本実施形態においても、第1実施形態と同様に、単電池2A~2Dの間に冷却プレート6を介在させることで、上述した効果を奏することができる。そのため、異常発熱した単電池2Bから他の単電池2A,2Cへの熱伝達を抑制するための構造を比較的簡単にすることができる。これにより、組電池1aの低コスト化を図ることができる。 Also in the present embodiment, the effects described above can be obtained by interposing the cooling plate 6 between the single cells 2A to 2D, as in the first embodiment. Therefore, the structure for suppressing heat transfer from the unit cell 2B that has abnormally heated to the other unit cells 2A and 2C can be made relatively simple. Thereby, cost reduction of the assembled battery 1a can be achieved.
 また、本実施形態においても、第1実施形態と同様に、冷却プレート6に、長孔や溝を形成して冷却媒体を流通させたり、冷却プレートの端部にフィンを設けてもよい。これにより、単電池2Bが異常発熱した場合のみならず、単電池2Bが正常な状態においても単電池2Bを冷却することができる。そのため、単電池2Bの温度上昇を抑制することができる。 Also in the present embodiment, similarly to the first embodiment, a cooling medium may be circulated by forming a long hole or groove in the cooling plate 6, or fins may be provided at the end of the cooling plate. Thereby, not only when the battery 2B abnormally generates heat, but also when the battery 2B is in a normal state, the battery 2B can be cooled. Therefore, the temperature rise of the unit cell 2B can be suppressed.
 なお、以上に説明した第1及び第2実施形態に係る冷却プレート3,6が本発明の離反装置及びプレートの一例に相当する。また、第1実施形態に係る長孔33が本発明の孔の一例に相当する。さらに、第1及び第2実施形態に係る正極タブ204が本発明の第1の電極タブの一例に相当し、第1及び第2実施形態に係る負極タブ205が本発明の第2の電極タブの一例に相当する。そして、第1実施形態に係る凸部31及び凹部32と、第2実施形態に係る変形プレート61とが本発明の変形部分の一例に相当する。 The cooling plates 3 and 6 according to the first and second embodiments described above correspond to an example of the separation device and the plate of the present invention. The long hole 33 according to the first embodiment corresponds to an example of the hole of the present invention. Furthermore, the positive electrode tab 204 according to the first and second embodiments corresponds to an example of the first electrode tab of the present invention, and the negative electrode tab 205 according to the first and second embodiments is the second electrode tab of the present invention. It corresponds to an example. And the convex part 31 and the recessed part 32 which concern on 1st Embodiment, and the deformation | transformation plate 61 which concerns on 2nd Embodiment correspond to an example of the deformation | transformation part of this invention.
 特願2011-133877号(出願日:2011年6月16日)の全内容は、ここに引用される。 The entire contents of Japanese Patent Application No. 2011-133877 (filing date: June 16, 2011) are cited here.
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 As mentioned above, although the content of the present invention has been described according to the embodiments, the present invention is not limited to these descriptions, and it is obvious to those skilled in the art that various modifications and improvements are possible.
 本発明の組電池では、複数の単電池のうち、隣接する2つの単電池の間に介在し、当該2つの単電池の少なくとも一方が所定温度以上になると、前記所定温度以上になった前記単電池と他の前記単電池とを相互に離反させる離反装置を備えている。そのため、所定温度以上になった単電池から他の単電池への熱伝達を抑制することができると共に、単電池が所定温度未満のときには、組電池の小型化を図ることができる。 In the assembled battery according to the present invention, among the plurality of unit cells, the unit unit is interposed between two adjacent unit cells, and when at least one of the two unit cells reaches a predetermined temperature or higher, the unit cell that has reached the predetermined temperature or higher. A separation device for separating the battery and the other unit cell from each other is provided. Therefore, heat transfer from a single cell that has reached a predetermined temperature or higher to another cell can be suppressed, and when the single cell is below a predetermined temperature, the battery pack can be downsized.
 1,1a 組電池
 2,2A,2B,2C,2D 単電池
 2a,2b 高温領域
 3,6 冷却プレート(離反装置、離反手段)
 31 凸部
 32 凹部
 33 長孔
 34 溝
 35 フィン
 61 変形プレート(変形部分)
 204 正極タブ(電極タブ)
 205 負極タブ(電極タブ)
1, 1a battery pack 2,2A, 2B, 2C, 2D single cell 2a, 2b high temperature region 3,6 cooling plate (separation device, separation means)
31 Convex part 32 Concave part 33 Long hole 34 Groove 35 Fin 61 Deformation plate (deformation part)
204 Positive electrode tab (electrode tab)
205 Negative electrode tab (electrode tab)

Claims (11)

  1.  相互に積層された複数の扁平型の単電池と、
     複数の前記単電池の間に介在し、複数の前記単電池の少なくとも1つが所定温度以上になると、前記所定温度以上になった前記単電池と他の前記単電池とを相互に離反させる離反装置と、
     を備えることを特徴とする組電池。
    A plurality of flat unit cells stacked on each other;
    A separation device that is interposed between the plurality of unit cells and separates the unit cell that has reached the predetermined temperature and the other unit cell from each other when at least one of the plurality of unit cells exceeds a predetermined temperature. When,
    An assembled battery comprising:
  2.  前記離反装置は、複数の前記単電池の少なくとも1つが前記所定温度以上になると、前記所定温度以上となった前記単電池により加熱されることで、前記所定温度以上になった前記単電池と他の前記単電池との間隔を広げるように変形する変形部分を有するプレートを含むことを特徴とする請求項1に記載の組電池。 When at least one of the plurality of unit cells becomes equal to or higher than the predetermined temperature, the separation device is heated by the unit cell that is equal to or higher than the predetermined temperature. The assembled battery according to claim 1, further comprising a plate having a deformed portion that is deformed so as to widen a gap between the single cell and the battery.
  3.  前記変形部分は、前記所定温度以上となった前記単電池により加熱されることで、平坦な形状から凸部又は凹部を有する形状に変形することを特徴とする請求項2に記載の組電池。 3. The assembled battery according to claim 2, wherein the deformed portion is deformed from a flat shape to a shape having a convex portion or a concave portion by being heated by the unit cell having the predetermined temperature or more.
  4.  前記変形部分は、形状記憶合金又は形状記憶樹脂から構成されていることを特徴とする請求項2に記載の組電池。 The assembled battery according to claim 2, wherein the deformed portion is made of a shape memory alloy or a shape memory resin.
  5.  前記変形部分は、チタンとニッケルを含む形状記憶合金から構成されていることを特徴とする請求項2に記載の組電池。 The assembled battery according to claim 2, wherein the deformed portion is made of a shape memory alloy containing titanium and nickel.
  6.  前記プレートには、前記プレートの平面方向に沿って、冷却媒体が流通可能な孔又は溝が形成されていることを特徴とする請求項2乃至5のいずれか一項に記載の組電池。 The assembled battery according to any one of claims 2 to 5, wherein a hole or a groove through which a cooling medium can flow is formed in the plate along the planar direction of the plate.
  7.  前記プレートは、端部にフィンを有していることを特徴とする請求項2乃至5のいずれか一項に記載の組電池。 The assembled battery according to any one of claims 2 to 5, wherein the plate has fins at end portions.
  8.  前記変形部分は、前記単電池の表面の中で最も高温になる高温領域と接していることを特徴とする請求項2乃至5のいずれか一項に記載の組電池。 The assembled battery according to any one of claims 2 to 5, wherein the deformed portion is in contact with a high temperature region that is the highest temperature on the surface of the unit cell.
  9.  前記単電池は、前記単電池の1辺から導出する第1の電極タブと、前記単電池において前記1辺と対向する辺から導出する第2の電極タブと、を有し、
     前記高温領域は、前記単電池の中央部分に位置していることを特徴とする請求項8に記載の組電池。
    The unit cell includes a first electrode tab derived from one side of the unit cell, and a second electrode tab derived from a side opposite to the one side in the unit cell,
    The assembled battery according to claim 8, wherein the high temperature region is located in a central portion of the unit cell.
  10.  前記単電池は、前記単電池の同一の辺から導出する第1及び第2の電極タブを有し、
     前記高温領域は、前記単電池における前記第1及び第2の電極タブの近傍に位置していることを特徴とする請求項8に記載の組電池。
    The unit cell has first and second electrode tabs derived from the same side of the unit cell,
    The assembled battery according to claim 8, wherein the high temperature region is located in the vicinity of the first and second electrode tabs in the unit cell.
  11.  前記プレートは、複数の前記変形部分を有することを特徴とする請求項8乃至10のいずれか一項に記載の組電池。 The assembled battery according to any one of claims 8 to 10, wherein the plate has a plurality of the deformed portions.
PCT/JP2012/053918 2011-06-16 2012-02-20 Assembled cell WO2012172829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011133877A JP2013004294A (en) 2011-06-16 2011-06-16 Battery pack
JP2011-133877 2011-06-16

Publications (1)

Publication Number Publication Date
WO2012172829A1 true WO2012172829A1 (en) 2012-12-20

Family

ID=47356830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053918 WO2012172829A1 (en) 2011-06-16 2012-02-20 Assembled cell

Country Status (3)

Country Link
JP (1) JP2013004294A (en)
TW (1) TW201304248A (en)
WO (1) WO2012172829A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103592A1 (en) * 2012-12-28 2014-07-03 日産自動車株式会社 Battery device
KR101877999B1 (en) * 2012-12-27 2018-07-13 현대자동차주식회사 Apparatus for cooling battery
JPWO2018207608A1 (en) * 2017-05-12 2020-05-21 三洋電機株式会社 Power supply device, vehicle including the same, power storage device, and power supply device separator
DE102020104570A1 (en) 2020-02-21 2021-08-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Battery cell and battery with a battery cell arrangement
US11387502B2 (en) * 2018-01-31 2022-07-12 Panasonic Intellectual Property Management Co., Ltd. Battery module comprising a heat transfer component and a thermal expansion material between cells
CN114982050A (en) * 2020-05-04 2022-08-30 株式会社Lg新能源 Battery module having a fire extinguishing unit containing a fire extinguishing material
CN115051074A (en) * 2022-08-11 2022-09-13 楚能新能源股份有限公司 Battery pack and manufacturing process
WO2023032114A1 (en) * 2021-09-02 2023-03-09 信越ポリマー株式会社 Fire-spread prevention type cell unit, method for manufacturing same, and battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151869A1 (en) * 2014-03-31 2015-10-08 日本電気株式会社 Storage battery unit and storage battery device provided with same
DE102016201604A1 (en) * 2016-02-03 2017-08-03 Robert Bosch Gmbh Battery module with a plurality of battery cells, method for its production and battery
KR101789293B1 (en) 2017-07-13 2017-10-23 주식회사 엘지화학 Battery pack of improved reaction capability to cell temperature rise and fabricating method for the same
KR102446772B1 (en) * 2017-10-13 2022-09-22 에스케이온 주식회사 Battery Module Having Safety Apparatus
KR102557414B1 (en) * 2019-11-05 2023-07-18 주식회사 엘지에너지솔루션 Pressing apparatus for battery cell
CN111725586B (en) * 2020-07-17 2021-08-13 大连理工大学 Lithium ion battery pack heat management device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875327A (en) * 1994-09-06 1996-03-19 Hoshizaki Electric Co Ltd Temperature-sensitive cylinder fixture for temperature type expansion valve
JP2006196230A (en) * 2005-01-11 2006-07-27 Densei Lambda Kk Battery pack
JP2010092833A (en) * 2008-09-09 2010-04-22 Toyota Motor Corp Storage device
JP2010218716A (en) * 2009-03-13 2010-09-30 Sanyo Electric Co Ltd Battery pack
WO2010143408A1 (en) * 2009-06-08 2010-12-16 パナソニック株式会社 Battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875327A (en) * 1994-09-06 1996-03-19 Hoshizaki Electric Co Ltd Temperature-sensitive cylinder fixture for temperature type expansion valve
JP2006196230A (en) * 2005-01-11 2006-07-27 Densei Lambda Kk Battery pack
JP2010092833A (en) * 2008-09-09 2010-04-22 Toyota Motor Corp Storage device
JP2010218716A (en) * 2009-03-13 2010-09-30 Sanyo Electric Co Ltd Battery pack
WO2010143408A1 (en) * 2009-06-08 2010-12-16 パナソニック株式会社 Battery pack

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877999B1 (en) * 2012-12-27 2018-07-13 현대자동차주식회사 Apparatus for cooling battery
WO2014103592A1 (en) * 2012-12-28 2014-07-03 日産自動車株式会社 Battery device
JPWO2018207608A1 (en) * 2017-05-12 2020-05-21 三洋電機株式会社 Power supply device, vehicle including the same, power storage device, and power supply device separator
JP7146744B2 (en) 2017-05-12 2022-10-04 三洋電機株式会社 POWER SUPPLY DEVICE AND VEHICLE INCLUDING THE SAME, ELECTRICAL STORAGE DEVICE, AND SEPARATOR FOR POWER SUPPLY DEVICE
US11476541B2 (en) * 2017-05-12 2022-10-18 Sanyo Electric Co., Ltd. Power supply device, vehicle equipped with same, power storage device and separator for power supply device
US11387502B2 (en) * 2018-01-31 2022-07-12 Panasonic Intellectual Property Management Co., Ltd. Battery module comprising a heat transfer component and a thermal expansion material between cells
DE102020104570A1 (en) 2020-02-21 2021-08-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Battery cell and battery with a battery cell arrangement
CN114982050A (en) * 2020-05-04 2022-08-30 株式会社Lg新能源 Battery module having a fire extinguishing unit containing a fire extinguishing material
JPWO2023032114A1 (en) * 2021-09-02 2023-03-09
JP7395074B2 (en) 2021-09-02 2023-12-08 信越ポリマー株式会社 Fire spread prevention type cell unit, its manufacturing method, and battery
WO2023032114A1 (en) * 2021-09-02 2023-03-09 信越ポリマー株式会社 Fire-spread prevention type cell unit, method for manufacturing same, and battery
CN115051074A (en) * 2022-08-11 2022-09-13 楚能新能源股份有限公司 Battery pack and manufacturing process
CN115051074B (en) * 2022-08-11 2022-11-01 楚能新能源股份有限公司 Battery pack and manufacturing process

Also Published As

Publication number Publication date
JP2013004294A (en) 2013-01-07
TW201304248A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
WO2012172829A1 (en) Assembled cell
JP4204237B2 (en) Lithium secondary cell and connection structure of lithium secondary cell
WO2013005650A1 (en) Nonaqueous electrolyte battery module
US8349488B2 (en) Secondary battery including a protective circuit board made of metal
US20130029201A1 (en) Cell module
JP5400013B2 (en) Electrode group and secondary battery using the same
KR20130133585A (en) Pouch type secondary battery
JP2006324143A (en) Secondary battery
JP2007066806A (en) Bipolar battery
JP5871067B2 (en) Battery structure
WO2021009957A1 (en) Non-aqueous electrolyte secondary battery
KR101779156B1 (en) Pouch type secondary battery and method of fabricating the same
JP2006079987A (en) Hybrid battery system
JP2005251617A (en) Secondary battery and battery pack
JP2004139924A (en) Thin battery supporting structure and battery pack equipped with the same
JP5466574B2 (en) Nonaqueous electrolyte battery and nonaqueous electrolyte battery module
CN111697261A (en) Lithium secondary battery
JP2005129393A (en) Secondary battery
JP3702868B2 (en) Thin battery
JP2010232011A (en) Secondary battery
JP5458841B2 (en) Solid battery module manufacturing method and solid battery module obtained by the manufacturing method
JP4720129B2 (en) Secondary battery
JP4052127B2 (en) Thin battery support structure, assembled battery and vehicle
JP5157043B2 (en) Assembled battery
JP5434143B2 (en) Thin battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800388

Country of ref document: EP

Kind code of ref document: A1