KR101789293B1 - Battery pack of improved reaction capability to cell temperature rise and fabricating method for the same - Google Patents

Battery pack of improved reaction capability to cell temperature rise and fabricating method for the same Download PDF

Info

Publication number
KR101789293B1
KR101789293B1 KR1020170089129A KR20170089129A KR101789293B1 KR 101789293 B1 KR101789293 B1 KR 101789293B1 KR 1020170089129 A KR1020170089129 A KR 1020170089129A KR 20170089129 A KR20170089129 A KR 20170089129A KR 101789293 B1 KR101789293 B1 KR 101789293B1
Authority
KR
South Korea
Prior art keywords
cells
flow path
cartridge
air flow
air
Prior art date
Application number
KR1020170089129A
Other languages
Korean (ko)
Other versions
KR20170084004A (en
Inventor
남진무
최용석
정승훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020170089129A priority Critical patent/KR101789293B1/en
Publication of KR20170084004A publication Critical patent/KR20170084004A/en
Application granted granted Critical
Publication of KR101789293B1 publication Critical patent/KR101789293B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • H01M2/1016
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

셀 온도 상승 대응 능력이 개선된 배터리팩을 제공한다. 본 발명에 따른 배터리팩은 다수의 셀들이 적층 구성된 셀 적층체; 및 적층된 셀들 사이에 위치하는 부재를 포함해 상기 셀들을 냉각하는 냉각 장치를 포함하고, 상기 부재는 단방향 열변형 재료부를 포함하여 구성된 것이다. 본 발명에 의하면, 수시로 변하는 배터리팩 내의 셀 온도에 맞게 공기 유량 또는 흡열부피를 빠르게 조절하여 적절한 냉각이 이루어지도록 한다. 따라서, 셀 온도 상승을 효과적으로 억제할 수 있으며 전지의 성능 및 수명을 향상시킬 수 있다. A battery pack having improved cell temperature rise responsiveness is provided. A battery pack according to the present invention includes: a cell laminate in which a plurality of cells are stacked; And a cooling device for cooling the cells, including a member positioned between the stacked cells, wherein the member comprises a unidirectional thermally deformable material portion. According to the present invention, the air flow rate or endothermic volume is quickly adjusted to the cell temperature in the battery pack which changes frequently, so that proper cooling is achieved. Therefore, the cell temperature rise can be effectively suppressed, and the performance and lifetime of the battery can be improved.

Description

셀 온도 상승 대응 능력이 개선된 배터리팩 및 그 제조방법{Battery pack of improved reaction capability to cell temperature rise and fabricating method for the same}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a battery pack,

본 발명은 이차전지 단위 셀들을 적층한 모듈형 배터리팩 및 그 제조방법에 관한 것으로, 더욱 상세하게는 가변 냉각 장치를 포함함으로써 셀 온도 상승 대응 능력이 개선된 배터리팩 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a modular battery pack in which secondary battery unit cells are stacked, and a method of manufacturing the same. More particularly, the present invention relates to a battery pack including a variable cooling device.

이차전지는 충전이 불가능한 일차전지와는 달리, 충·방전이 가능한 전지를 말하는 것으로서, 휴대폰, PDA, 노트북 컴퓨터 등의 소형 첨단 전자기기 분야뿐만 아니라 에너지 저장 시스템(ESS), 전기 자동차(EV) 또는 하이브리드 자동차(HEV)의 동력원으로 사용되고 있다. Unlike a primary battery, which can not be recharged, a secondary battery refers to a battery capable of charging and discharging, and is used in various fields such as an energy storage system (ESS), an electric vehicle (EV), And is used as a power source for a hybrid vehicle (HEV).

전기 자동차의 모터 구동 등과 같은 큰 전력을 필요로 하는 기기에는, 다수 개의 고출력 셀을 적층해 직렬로 연결하여 구성되는 대용량의 모듈형 배터리팩이 사용되는 것이 일반적이다. 예컨대, HEV용 배터리팩의 경우 수 개에서 많게는 수십 개의 셀이 충전과 방전을 번갈아가면서 수행하게 됨에 따라 이러한 충·방전 등을 제어하여 배터리팩이 적정한 동작 상태로 유지되도록 관리할 필요성이 있다. Generally, a large-capacity modular battery pack constructed by stacking a plurality of high-output cells and connecting them in series is generally used for devices requiring large power such as motor drive of an electric vehicle. For example, in the case of an HEV battery pack, several to several tens of cells are alternately charged and discharged, so that it is necessary to control such charging / discharging so as to maintain the battery pack in an appropriate operating state.

특히, 이차전지가 작동하는 동안 발생하는 열은 이차전지의 온도를 상승시켜, 열을 효율적으로 냉각시키지 않으면 이차전지의 수명이 짧아지고 오작동을 일으키는 등 안정성이 크게 저하되는 문제가 있어, 냉각은 이차전지를 포함하는 배터리팩의 제작에 있어서 무엇보다 중요한 과제이다. In particular, the heat generated during operation of the secondary battery raises the temperature of the secondary battery, and if the heat is not efficiently cooled, the lifetime of the secondary battery is shortened and malfunctions are caused, Which is an important issue in manufacturing a battery pack including a battery.

배터리팩은 충방전시에 발생한 열을 제거할 수 있도록 인접한 셀들을 일정한 간격으로 이격시켜 적층한다. 예를 들어, 셀 자체를 별도의 부재 없이 소정의 간격으로 이격시키면서 순차적으로 적층하거나, 또는 기계적 강성이 낮은 셀의 경우, 하나 또는 둘 이상의 조합으로 카트리지 등에 내장하고 이러한 카트리지들을 다수 개 적층하여 배터리팩을 구성할 수 있다. 적층된 셀들 사이에는 축적되는 열을 효과적으로 제거할 수 있도록, 냉각수 또는 냉각 공기와 같은 냉매의 유로가 형성되는 구조로 이루어진다. The battery pack stacks adjacent cells at regular intervals so as to remove heat generated during charging and discharging. For example, the cells themselves may be sequentially stacked while spaced apart from each other by a predetermined space, or in the case of a cell having low mechanical rigidity, one or a combination of two or more cells may be stacked in a cartridge, . ≪ / RTI > The stacked cells are structured such that a flow path of a coolant such as cooling water or cooling air is formed so as to effectively remove accumulated heat.

예를 들어 직접 공랭식 모듈의 경우, 셀과 셀 사이에 냉각 공기가 흐를 수 있는 유로가 있다. 일반적으로 냉각 공기를 제공하는 데에는 냉각팬(fan)이 이용된다. 배터리팩 내의 셀 온도는 작동 조건에 따라 수시로 변하지만 냉각 컨트롤은 냉각팬의 온/오프(on/off) 제어만을 통해 이루어지기 때문에 온도 변화, 특히 온도 상승에 대응하는 반응 속도가 매우 느리다는 문제가 있다.For example, in the case of a direct air-cooling module, there is a flow path through which cooling air can flow between the cell and the cell. Generally, a cooling fan is used to provide cooling air. The cell temperature in the battery pack varies from time to time depending on the operating conditions, but the problem of very slow response to temperature changes, especially temperature rises, is due to cooling control being only on / off control of the cooling fan have.

본 발명이 해결하고자 하는 과제는 배터리팩 내의 셀 온도 상승 대응 능력이 개선된 배터리팩 및 그 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a battery pack and a method of manufacturing the same that have improved cell temperature rising capability in a battery pack.

상기 과제를 해결하기 위한 본 발명에 따른 배터리팩은 다수의 셀들이 적층 구성된 셀 적층체; 및 적층된 셀들 사이에 위치하는 부재를 포함해 상기 셀들을 냉각하는 냉각 장치를 포함하고, 상기 부재는 단방향 열변형 재료부를 포함하여 구성된 것이다.According to an aspect of the present invention, there is provided a battery pack comprising: a cell stacked body in which a plurality of cells are stacked; And a cooling device for cooling the cells, including a member positioned between the stacked cells, wherein the member comprises a unidirectional thermally deformable material portion.

일 실시예에 따르면, 상기 부재는 상기 적층된 셀들 사이에 공기 유로를 제공하며, 상기 공기 유로는 상기 단방향 열변형 재료부 사이의 공간으로 정의된다. 이 경우, 상기 단방향 열변형 재료부는 상기 셀들의 온도 상승시 상기 셀들의 적층 방향을 따라 열팽창하여 상기 공기 유로의 높이를 증가시키는 것이거나, 상기 셀들의 온도 상승시 상기 셀들의 적층 방향에 수직한 방향으로 열수축하여 상기 공기 유로의 너비를 증가시키는 것일 수 있다. According to one embodiment, the member provides an air flow path between the stacked cells, and the air flow path is defined as a space between the unidirectional heat deformable material portions. In this case, the unidirectional thermally deformable material part thermally expands along the stacking direction of the cells when the temperature of the cells rises, thereby increasing the height of the air flow path, or increasing the height of the air flow path in a direction perpendicular to the stacking direction of the cells So as to increase the width of the air flow path.

다른 실시예에 따르면, 상기 부재는 상기 셀들과 면접촉하여 흡열하는 냉각핀이며 상기 단방향 열변형 재료부로 이루어진다. 이 경우, 상기 단방향 열변형 재료부는 상기 셀들의 온도 상승시 상기 셀들의 적층 방향을 따라 열팽창함으로써 전도에 의한 열방출 경로의 단면적을 증가시키는 것일 수 있다. According to another embodiment, the member is a cooling fin that absorbs heat in face-to-face contact with the cells and is made of the unidirectional heat-deformable material portion. In this case, the unidirectional thermally deformable material portion may thermally expand along the stacking direction of the cells when the temperatures of the cells rise, thereby increasing the cross-sectional area of the heat releasing path by conduction.

본 발명에 있어서, 상기 단방향 열변형 재료부는 플라스틱, 중합체, 올리고머, 이들의 파생물들, 또는 이들의 조합물들 중 어느 하나일 수 있다.In the present invention, the unidirectional heat-deformable material portion may be any one of plastics, polymers, oligomers, derivatives thereof, or combinations thereof.

하나의 예로서, 상기 단방향 열변형 재료부는 폴리에스테르 또는 이들의 파생물들을 포함한다. As one example, the unidirectional thermally deformable material portion comprises polyester or derivatives thereof.

상기 과제를 해결하기 위해, 본 발명에서는 이러한 배터리팩을 제조하는 방법도 제공한다. 이 배터리팩 제조방법에 의하면, 상기 부재를 단방향 열변형 재료부를 포함하도록 구성함으로써 상기 셀 온도 상승시 상기 단방향 열변형 재료부의 변형에 따라 냉각 장치를 가변시켜 상기 셀을 냉각하도록 할 수 있다.In order to solve the above problems, the present invention also provides a method of manufacturing such a battery pack. According to this battery pack manufacturing method, by configuring the member so as to include the unidirectional heat-deformable material portion, the cooling device can be changed in accordance with the deformation of the unidirectional heat-deformable material portion when the cell temperature rises, thereby cooling the cell.

이차전지는 충·방전을 통해 오랜 기간 사용되므로 사용기간뿐만 아니라 전지의 안정성이 큰 관심의 대상이다. 또한, 배터리팩은 충·방전 과정에서 고열이 발생하여 전지의 성능과 수명에 영향을 미치므로 적절한 냉각 시스템을 구성하여 냉각하는 것이 필요하다. Since the secondary battery is used for a long period of time through charging and discharging, not only the period of use but also the stability of the battery is of great interest. In addition, since the battery pack generates high heat during charging and discharging, it affects the performance and lifetime of the battery, so it is necessary to form an appropriate cooling system to cool the battery pack.

본 발명에 따르면, 셀과 셀 사이에 단방향으로 열팽창 또는 열수축하는 물질을 삽입해 셀 온도 상승시 이 물질이 높이 방향으로 팽창하거나 너비 방향으로 수축하여 더 많은 냉각 공기가 유입될 수 있도록 하거나 흡열부피가 증가되도록 하고 셀 온도가 떨어지면 반대로 수축 또는 팽창되어 본래 상태로 돌아가게 한다. According to the present invention, a material which uni-directionally expands or shrinks in a single direction is inserted between a cell and a cell so that when the cell temperature rises, the material expands in a height direction or shrinks in a width direction so that more cooling air can be introduced, And when the cell temperature falls, it contracts or expands to return to its original state.

이에 따라, 수시로 변하는 배터리팩 내의 셀 온도에 맞게 공기 유량 또는 흡열부피를 빠르게 조절하여 적절한 냉각이 이루어지도록 한다. 따라서, 셀 온도 상승을 효과적으로 억제할 수 있으며 전지의 성능 및 수명을 향상시킬 수 있다. Accordingly, the air flow rate or the endothermic volume is quickly adjusted to the cell temperature in the battery pack which changes from time to time, so that proper cooling is achieved. Therefore, the cell temperature rise can be effectively suppressed, and the performance and lifetime of the battery can be improved.

본 발명에 의하면, 냉각 장치가 가변적이어서 빠른 반응 속도로 공기 유량을 조절하거나 흡열부피를 조절할 수 있으므로 동일한 작동 조건에서 셀의 온도 변화 폭이 작아질 수 있다.According to the present invention, since the cooling device is variable, the air flow rate can be controlled at a high reaction rate or the endothermic volume can be controlled, so that the temperature variation width of the cell can be reduced under the same operating condition.

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명의 일 실시예에 따른 배터리팩을 나타낸 사시도이다.
도 2는 도 1의 배터리팩에서 셀 적층체 부분만을 도시한 사시도이다
도 3은 도 1의 배터리팩에서 셀 적층체의 적층 방향과 나란한 단면 중 두 개의 셀 부분만을 도시한 것으로, 단방향 열변형 재료부가 셀들의 적층 방향(y)을 따라 열팽창하는 경우의 예이다.
도 4는 도 1의 배터리팩에서 셀 적층체의 적층 방향과 나란한 단면 중 두 개의 셀 부분만을 도시한 것으로, 단방향 열변형 재료부가 셀들의 적층 방향에 수직한 방향(x)을 따라 열수축하는 경우의 예이다.
도 5는 본 발명의 다른 실시예에 따른 배터리팩의 사시도이고, 도 6은 정면도이다.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments of the invention and, together with the description of the invention, It should not be construed as limited.
1 is a perspective view illustrating a battery pack according to an embodiment of the present invention.
2 is a perspective view showing only a cell stack portion in the battery pack of FIG. 1
Fig. 3 shows only two cell portions in a cross section of the cell pack in Fig. 1 that are parallel to the stacking direction of the cell stack, and is an example of a case where the unidirectional thermal deformation additive material thermally expands along the stacking direction y of the cells.
FIG. 4 is a cross-sectional view of the cell stack of the battery pack of FIG. 1, showing only two cell portions of the cell stack in a direction parallel to the direction of stacking. Yes.
FIG. 5 is a perspective view of a battery pack according to another embodiment of the present invention, and FIG. 6 is a front view.

이하에서 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예에 대해 상세하게 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. It is provided to let you know. It should be noted that the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention and are not intended to represent all of the technical ideas of the present invention so that various equivalents And variations are possible.

도 1은 본 발명의 일 실시예에 따른 배터리팩을 나타낸 사시도이다.1 is a perspective view illustrating a battery pack according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시예에 따른 배터리팩(100)은, 셀 적층체(30), 흡기덕트(40) 및 배기덕트(50)를 포함한다.Referring to FIG. 1, a battery pack 100 according to an embodiment of the present invention includes a cell stack 30, an intake duct 40, and an exhaust duct 50.

셀 적층체(30)은 다수의 셀(20)들이 적층하여 구성한다. 셀(20)은 양극판, 분리막 및 음극판으로 구성된 전극조립체를 포함하며, 각 셀(20)의 양극판과 음극판으로부터 돌출된 다수의 양극 탭 및 음극 탭에 각각 양극 리드 및 음극 리드가 전기적으로 접속된 것일 수 있다. The cell stack 30 is formed by stacking a plurality of cells 20. The cell 20 includes an electrode assembly composed of a positive electrode plate, a separator, and a negative electrode plate. The positive electrode plate and the negative electrode lead of each cell 20 are electrically connected to a plurality of positive electrode tabs and negative electrode tabs protruding from the negative electrode plate, .

상기 양극판의 재질은 알루미늄이 주로 이용된다. 대안적으로, 상기 양극판은 스테인리스 스틸, 니켈, 티탄 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것이 사용될 수 있다. 나아가, 이차전지의 화학적 변화를 야기하지 않고 높은 도전성을 갖는 재질이라면 양극판으로 사용하는데 제한이 없다.As the material of the positive electrode plate, aluminum is mainly used. Alternatively, the positive electrode plate may be formed by surface-treating a surface of stainless steel, nickel, titanium or aluminum or stainless steel with carbon, nickel, titanium, silver or the like. Further, if the secondary battery is made of a material having high conductivity without causing a chemical change, there is no limitation to use it as a positive electrode plate.

상기 양극판의 일부 영역에는 양극 탭이 구비되는데 양극 탭은 상기 양극판이 연장되는 형태로 이루어질 수 있다. 대안적으로, 양극판의 소정 부위에 도전성 재질의 부재를 용접 등을 통하여 접합하는 형태로 구성하는 것도 가능하다. 또한, 양극 재료를 상기 양극판 외주면의 일부 영역에 도포 및 건조하여 양극 탭을 형성하여도 무방하다. A positive electrode tab may be provided on a part of the positive electrode plate, and the positive electrode tab may be formed to extend the positive electrode plate. Alternatively, it is also possible to form a configuration in which a member made of a conductive material is joined to a predetermined portion of the positive electrode plate through welding or the like. Further, the positive electrode material may be applied and dried on a part of the outer surface of the positive electrode plate to form the positive electrode tab.

상기 양극판에 대응되는 음극판은 주로 구리 재질이 이용된다. 대안적으로, 음극판은 스테인리스 스틸, 알루미늄, 니켈, 티탄, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것이 사용될 수 있고, 알루미늄-카드뮴 합금 등이 사용될 수 있다.The negative electrode plate corresponding to the positive electrode plate is mainly made of a copper material. Alternatively, the cathode plate may be a surface treated with carbon, nickel, titanium or silver on the surface of stainless steel, aluminum, nickel, titanium, copper or stainless steel, and aluminum-cadmium alloy or the like may be used.

상기 음극판 또한 일부 영역에 음극 탭이 구비되며, 앞서 설명된 양극 탭과 같이 상기 음극판에서 연장되는 형태로 구현될 수 있음은 물론, 음극판 소정 부위에 도전성 재질의 부재를 용접하는 등의 방법으로 접합할 수도 있으며, 음극 재료를 상기 음극판 외주면의 일부 영역에 도포 및 건조하는 방식 등으로 형성하는 것도 가능하다.The negative electrode plate may also be provided with a negative electrode tab in a certain area and may be formed to extend from the negative electrode plate as in the positive electrode tab described above. In addition, the negative electrode plate may be formed by welding a conductive member to a predetermined portion of the negative electrode plate Or it may be formed in such a manner that a negative electrode material is applied and dried on a part of the outer circumferential surface of the negative electrode plate.

상기 양극 리드는 상기 양극판에 구비된 양극 탭에, 음극 리드는 상기 음극판에 구비된 음극 탭에 전기적으로 접속된다. 바람직하게, 상기 양극 리드 및 상기 음극 리드는 각각 복수의 양극 탭 및 복수의 음극 탭과 접합된다. The positive electrode lead is electrically connected to the positive electrode tab provided on the positive electrode plate, and the negative electrode lead is electrically connected to the negative electrode tab provided on the negative electrode plate. Preferably, the positive electrode lead and the negative electrode lead are bonded to a plurality of positive electrode tabs and a plurality of negative electrode tabs, respectively.

상기 양극판과 상기 음극판에는 각각 양극 활물질과 음극 활물질이 코팅되어 있다. 일 예로, 상기 양극 활물질은 리튬 계열의 활물질이고, 대표적인 예로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, LiFePO4 또는 Li1 + zNi1 -x-yCoxMyO2(0≤x≤1, 0≤y≤1, 0≤x+y≤1, 0≤z≤1, M은 Al, Sr, Mg, La, Mn 등의 금속) 등의 금속 산화물이 사용될 수 있다. 상기 음극 활물질은 탄소 계열의 활물질이고, 상기 음극 활물질로는 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등의 탄소 재료, 리튬 금속, 리튬 합금 등이 사용될 수 있다. 상기 양극 활물질과 음극 활물질의 종류와 화학적 조성은 이차전지의 종류에 따라 얼마든지 달라질 수 있으므로 상기에서 열거한 구체적인 예는 하나의 예시에 불과하다는 것을 이해하여야 한다. The positive electrode plate and the negative electrode plate are respectively coated with a positive electrode active material and a negative electrode active material. LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 or Li 1 + z Ni 1 -xy Co x M y O 2 (0? 1, 0? y? 1, 0? x + y? 1, 0? z? 1, and M is a metal such as Al, Sr, Mg, La, or Mn). The negative electrode active material is a carbonaceous active material, and examples of the negative electrode active material include a carbon material such as crystalline carbon, amorphous carbon, carbon composite, carbon fiber, lithium metal, lithium alloy and the like. The types and chemical compositions of the cathode active material and the anode active material may vary depending on the kind of the secondary battery. Therefore, it should be understood that the specific examples given above are only examples.

상기 분리막은 다공성 재질을 가진 것이라면 특별히 제한이 없다. 상기 분리막은 다공성이 있는 고분자막, 예컨대 다공성 폴리올레핀막, 폴리비닐리덴 풀루오라이드-헥사풀루오로 프로필렌, 폴리비닐리덴 풀루오라이드-트리클로로에틸렌, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐아세테이트, 에틸렌 비닐 아세테이트 공중합체, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸폴리비닐알콜, 시아노에틸셀룰로오스, 시아노에틸수크로오스, 풀루란, 카르복실 메틸 셀룰로오스, 아크릴로니트릴스티렌부타디엔 공중합체, 폴리이미드, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 부직포막, 다공성 웹(web) 구조를 가진 막 또는 이들의 혼합체 등으로 이루어질 수 있다. 상기 분리막의 단면 또는 양면에는 무기 입자가 결착되어 있을 수 있다. The separation membrane is not particularly limited as long as it has a porous material. The separation membrane may be a porous polymer membrane such as a porous polyolefin membrane, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichlorethylene, polymethyl methacrylate, polyacrylonitrile, polyvinyl Polyvinyl pyrrolidone, polyvinyl acetate, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinyl alcohol, cyanoethylcellulose, Polybutylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polyether ether ketone, polyether sulfone, polyether sulfone, polyether sulfone, , Poly Alkenylene may be formed of oxide, polyphenylene sulfide, polyethylene naphthalene, a non-woven film, a porous web (web) or a mixture film having a structure like. An inorganic particle may be adhered to an end surface or both surfaces of the separation membrane.

상기 무기 입자는 5 이상의 고유전율 상수를 갖는 무기 입자가 바람직하며, 10 이상의 유전율 상수를 가지며 밀도가 낮은 무기 입자가 더욱 바람직하다. 이는 전지내에서 이동하는 리튬 이온을 용이하게 전달할 수 있기 때문이다. 5 이상의 고유전율 상수를 갖는 무기 입자의 비제한적인 예로는 Pb(Zr,Ti)O3(PZT), Pb1 - xLaxZr1 -yTiyO3(PLZT), Pb(Mg3Nb2 /3)O3-PbTiO3(PMN-PT), BaTiO3, HfO2, SrTiO3, TiO2, Al2O3, ZrO2, SnO2, CeO2, MgO, CaO, ZnO, Y2O3 또는 이들의 혼합체 등이 있다.The inorganic particles are preferably inorganic particles having a high dielectric constant of 5 or more, more preferably inorganic particles having a dielectric constant of 10 or more and a low density. This is because it can easily transfer lithium ions moving in the cell. Non-limiting examples of inorganic particles having a high dielectric constant of 5 or more is Pb (Zr, Ti) O 3 (PZT), Pb 1 - x La x Zr 1 -y Ti y O 3 (PLZT), Pb (Mg 3 Nb 2/3) O 3 -PbTiO 3 (PMN-PT), BaTiO 3, HfO 2, SrTiO 3, TiO 2, Al 2 O 3, ZrO 2, SnO 2, CeO 2, MgO, CaO, ZnO, Y 2 O 3 Or a mixture thereof.

도시한 바와 같이 셀(20)들 각각은 판상형이면서 인접한 전지에 대면하도록 적층 배열된다. 카트리지(25)들은 셀(20)들을 각각 고정하여 적층 구조를 형성한다. As shown in the figure, each of the cells 20 is arranged in a stacked manner so as to face the adjacent cells while being in a plate-like shape. The cartridges 25 each fix the cells 20 to form a laminated structure.

상기 셀(20)은 파우치형 전지 조립체일 수 있다. 이 때, 셀(20)은 수지층과 금속층을 포함하는 라미네이트 시트의 전지케이스에 전극조립체를 내장한 상태에서 전지케이스의 외주면을 열융착하여 밀봉한 구조의 파우치형 전지셀이고, 상기 파우치형 전지셀의 열융착된 외주면이 상기 셀(20)들을 각각 고정하여 셀 적층체를 형성하는 카트리지(25)들 사이에 고정될 수 있다. The cell 20 may be a pouch-shaped battery assembly. At this time, the cell 20 is a pouch-shaped battery cell having a structure in which the outer circumferential surface of the battery case is thermally fused and sealed while the electrode assembly is housed in the battery case of the laminate sheet including the resin layer and the metal layer, And the heat-sealed outer circumferential surface of the cell can be fixed between the cartridges 25 that fix the cells 20 to form a cell laminate.

흡기덕트(40)는 셀 적층체(30) 측면에 결합되고 외부로부터 유입된 냉각 공기가 셀(20)들 사이로 배출될 수 있도록 한다. 흡기덕트(40)는 냉각 공기가 유입되는 흡기구(45)에 일측이 연결되고 타측이 셀 적층체(30) 측면으로 개구된다. 그리고, 흡기덕트(40)는 흡기구(45)에서 멀어질수록 폭이 감소하도록 경사진 구조이다. The intake duct 40 is coupled to the side surface of the cell stack body 30 and allows the cooling air introduced from the outside to be discharged into the cells 20. The intake duct (40) has one side connected to the intake port (45) through which the cooling air flows and the other side opened to the side of the cell stack body (30). The intake duct 40 is inclined so as to decrease in width as the intake duct 45 moves away from the intake port 45.

배기덕트(50)는 셀 적층체(30)의 다른 측면에 흡기덕트(40)와 대향되게 결합된다. 그리고, 셀(20)들 사이를 통과한 냉각 공기가 외부로 배출될 수 있도록 한다. 배기덕트(50)는 냉각 공기가 배출되는 배기구(55)에 일측이 연결되고 타측이 셀 적층체(30) 측으로 개구된다. The exhaust duct 50 is opposed to the intake duct 40 on the other side of the cell stack 30. The cooling air passing between the cells 20 can be discharged to the outside. The exhaust duct 50 has one side connected to the exhaust port 55 through which the cooling air is discharged and the other side opened toward the cell laminate 30. [

흡기덕트(40)와 배기덕트(50)는 이와 같이 셀 적층체(30)의 서로 대향되는 양쪽 측면에 형성되는 것이 바람직하다. 이는 흡기구(45)와 배기구(55)를 각각 셀 적층체(30)의 서로 다른 면에 형성함으로써, 흡기구(45)로 흡기되어 상기 셀 적층체(30)을 거치며 복수 개의 셀(20)들을 냉각시킨 후 배기구(55)로 배기되는 냉각 공기가 다시 흡기구(45)로 무분별하게 혼입되는 것을 방지하기 위함이다. 냉각 공기가 흡기덕트(40)로 유입되는 방향과 배기덕트(50)로부터 배출되는 방향은 서로 동일한 Z 타입이라고 할 수 있다. 냉각 공기가 셀(20)들 사이를 통과하며 셀(20)들의 충·방전 과정에서 발생하는 열을 냉각하는 직접 공랭식 구조를 이룬다. It is preferable that the intake duct 40 and the exhaust duct 50 are formed on both sides of the cell stack 30 opposite to each other. This is because the intake port 45 and the exhaust port 55 are formed on different surfaces of the cell stack body 30 so that the plurality of cells 20 are cooled by being sucked into the intake port 45 and passing through the cell stack body 30 So that the cooling air exhausted to the exhaust port 55 is prevented from being mixed into the intake port 45 indiscriminately. The direction in which the cooling air is introduced into the intake duct 40 and the direction in which the cooling air is discharged from the exhaust duct 50 are of the same Z type. The cooling air passes between the cells 20 and forms a direct air-cooling structure for cooling the heat generated during the charging and discharging of the cells 20. [

도 2는 도 1의 배터리팩에서 셀 적층체 부분만을 도시한 사시도이다. FIG. 2 is a perspective view showing only a cell stack portion in the battery pack of FIG. 1; FIG.

도 2를 참조하면, 셀 적층체(30)는 복수 개의 셀(20)들이 일정한 간격을 두고 전지면에 대하여 수직 방향으로 적층되고, 카트리지(25)들은 단방향 열변형 재료부(27)와 함께 셀(20)들 사이에 냉각 공기가 흐를 수 있도록 공기 유로(26)를 형성한다. 여기서, 단방향 열변형 재료부(27)는 적층된 셀(20)들 사이에 공기 유로(26)를 제공하며, 상기 공기 유로(26)는 상기 단방향 열변형 재료부(27) 사이의 공간으로 정의될 수 있다. 도시된 예에서는 전지면에 대하여 3 개의 공기 유로가 각 전지마다 형성된다. 카트리지(25)와 일체형으로 단방향 열변형 재료부(27)를 성형하여 카트리지(25)로 셀(20)들을 지지하는 동시에 셀(20)들 사이에 공기 유로(26)를 형성할 수 있다. 2, a plurality of cells 20 are stacked in a vertical direction with respect to a paper surface at regular intervals, and the cartridges 25 are stacked together with the unidirectional thermally deformable material portion 27, The air flow path 26 is formed so that the cooling air can flow between the air flow paths 20. Here, the unidirectional thermally deformable material portion 27 provides an air flow path 26 between the stacked cells 20, and the air flow path 26 is defined as a space between the unidirectional thermally deformable material portions 27 . In the illustrated example, three air flow passages are formed for each cell with respect to the ground surface. The unidirectional thermally deformable material portion 27 can be molded integrally with the cartridge 25 to support the cells 20 with the cartridge 25 and to form the air flow path 26 between the cells 20. [

흡기구(45)는 셀 적층체(30)의 복수 개의 셀(20)들 사이에 형성되는 공기 유로(26)를 통과하는 냉각 공기의 유동 방향에 대해 수직으로 형성될 수 있다. 즉, 공기 유로(26)에 흡기구(45)가 가깝게 형성되며, 공기 유로(26)를 통과하는 냉각 공기의 유동 방향과 수직이 되도록 흡기구(45)가 형성되어, 흡기구(45)와 셀 적층체(30)를 연결하는 흡기덕트(40)의 길이가 짧으며 구부러지지 않도록 구성될 수 있다. 이는 흡기구(45)로 흡기되는 냉각 공기의 유동 저항을 줄일 수 있으며 공기 유로(26)로 냉각 공기의 흡기가 원활하게 이루어져 배터리팩(100)의 냉각 성능을 향상시킬 수 있는 효과가 있다. The intake port 45 may be formed perpendicular to the flow direction of the cooling air passing through the air flow path 26 formed between the plurality of cells 20 of the cell stack 30. That is, the air inlet port 45 is formed in the air flow passage 26 so as to be perpendicular to the flow direction of the cooling air passing through the air flow passage 26, The length of the intake duct 40 connecting the intake duct 30 may be short and not be bent. This can reduce the flow resistance of the cooling air that is drawn into the inlet port 45 and improve the cooling performance of the battery pack 100 because the cooling air is smoothly introduced into the air flow path 26.

이와 같이 본 실시예에 따른 배터리팩(100)은 적층된 셀(20)들 사이에 위치하는 열변형 재료부(27)를 포함해 상기 셀(20)들을 냉각하는 냉각 장치로서 흡기덕트(40) 및 배기덕트(50)를 포함하는 것이나, 냉각 장치의 예는 이것에만 한정되는 것이 아니고 다양한 구성이 가능하다. The battery pack 100 according to the present embodiment is a cooling device for cooling the cells 20 including the thermally deformable material portion 27 located between the stacked cells 20, And the exhaust duct 50, but examples of the cooling device are not limited to these, and various configurations are possible.

도 3은 도 1의 배터리팩에서 셀 적층체의 적층 방향과 나란한 단면 중 두 개의 셀 부분만을 도시한 것으로, 단방향 열변형 재료부(27)가 셀들의 적층 방향(y)을 따라 열팽창하는 경우의 예이다.FIG. 3 shows only two cell portions in a cross section of the cell stack of FIG. 1 that are parallel to the stacking direction of the cell stack. In the case where the unidirectional heat deforming material portion 27 thermally expands along the stacking direction y of the cells Yes.

(a)와 같은 평상시 상태에서 셀 온도가 상승하면 단방향 열변형 재료부(27) 가 y방향으로 열팽창하여 (b)에서와 같이 단방향 열변형 재료부(27')가 되고, 공기 유로(26')는 (a)의 공기 유로(26)에 비하여 높이가 증가된다. 이와 같이 셀(20) 내부에 비정상적인 고온부가 형성되었을 때 단방향 열변형 재료부(27)의 변형에 의해 공기 유로(26)가 변형되어 흐르는 냉각 공기 양을 증가시킬 수 있으므로 온도 상승을 막을 수 있다. 이와 같이 본 발명에 따른 배터리팩은 냉각 장치가 가변적이다. the unidirectional thermally deformable material portion 27 thermally expands in the y direction to become the unidirectional thermally deformable material portion 27 'as shown in (b), and the air flow path 26' Is increased in height as compared with the air passage 26 of (a). When the abnormal high temperature portion is formed in the cell 20, the amount of the cooling air flowing through the air flow path 26 due to the deformation of the unidirectional thermally deformable material portion 27 can be increased. As described above, the cooling device of the battery pack according to the present invention is variable.

도 4는 도 1의 배터리팩에서 셀 적층체의 적층 방향과 나란한 단면 중 두 개의 셀 부분만을 도시한 것으로, 단방향 열변형 재료부(27)가 셀들의 적층 방향에 수직한 방향(x)을 따라 열수축하는 경우의 예이다. FIG. 4 shows only two cell portions in the cross section of the cell stack in the stacking direction of the cell stack in FIG. 1, in which unidirectional thermally deformable material portions 27 extend along a direction (x) This is an example of the case of heat shrinkage.

(a)와 같은 평상시 상태에서 셀 온도가 상승하면 단방향 열변형 재료부(27) 가 x방향으로 열수축하여 (b)에서와 같이 단방향 열변형 재료부(27")가 되고, 공기 유로(26")는 (a)의 공기 유로(26)에 비하여 너비가 증가된다. 이와 같이 셀(20) 내부에 비정상적인 고온부가 형성되었을 때 단방향 열변형 재료부(27)의 변형에 의해 공기 유로(26)가 변형되어 흐르는 냉각 공기 양을 증가시킬 수 있으므로 온도 상승을 막을 수 있다. 이와 같이 본 발명에 따른 배터리팩은 냉각 장치가 가변적이다. the unidirectional thermally deformable material portion 27 is thermally shrunk in the x direction to become the unidirectional thermally deformable material portion 27 "as shown in (b), and the air flow path 26" Is increased in width as compared with the air passage 26 of (a). When the abnormal high temperature portion is formed in the cell 20, the amount of the cooling air flowing through the air flow path 26 due to the deformation of the unidirectional thermally deformable material portion 27 can be increased. As described above, the cooling device of the battery pack according to the present invention is variable.

열변형은 가역적이어서 도 3(b)의 단방향 열변형 재료부(27')와 같이 팽창된 상태, 도 4(b)의 단방향 열변형 재료부(27")와 같이 수축된 상태도 온도 하강시에는 도 3(a) 및 도 4(a)처럼 평상시의 단방향 열변형 재료부(27)로 복귀된다. The thermal deformation is reversible so that it is in an expanded state as in the case of the unidirectional thermally deformable material portion 27 'in Fig. 3 (b) and in the contracted state as in the unidirectional thermally deformable material portion 27' Unidirectional thermally deformable material portion 27 as shown in Figs. 3 (a) and 4 (a).

단방향 열변형 재료부(27)는 플라스틱, 중합체, 올리고머, 이들의 파생물들, 또는 이들의 조합물들 중 어느 하나일 수 있다. 특히 도 4에서와 같이 단방향으로 열수축하는 재료는 폴리에스테르 또는 이들의 파생물들을 포함한다.The unidirectional thermally deformable material portion 27 can be any one of plastics, polymers, oligomers, derivatives thereof, or combinations thereof. In particular, the material that uni-directionally shrinks as in Fig. 4 includes polyester or derivatives thereof.

한편, 셀(20)은 셀(20)들 사이에 절연막을 개재시키면서 복수의 셀(20)을 단순 적층한 구조를 가질 수도 있다. 다른 예로, 셀(20)은 절연막의 상부 및/또는 하부에 셀(20)을 적절한 간격으로 배열한 후 절연막을 셀(20)과 함께 한쪽 방향으로 폴딩하여 폴딩된 절연막 사이 사이에 셀(20)이 삽입되어 있는 스택 폴딩 구조를 가질 수 있다. 이 경우에는 카트리지(25)와는 별개로 단방향 열변형 재료부(27)를 셀(20)들 사이에 개재하여 공기 유로(26)를 형성할 수 있다. On the other hand, the cell 20 may have a structure in which a plurality of cells 20 are simply laminated while interposing an insulating film between the cells 20. As another example, the cells 20 may be formed by arranging the cells 20 at appropriate intervals on the upper and / or lower portions of the insulating film and then folding the insulating film together with the cells 20 in one direction to form the cells 20 between the folded insulating films. Lt; RTI ID = 0.0 > stacked < / RTI > folding structure. In this case, the air flow path 26 can be formed by interposing the unidirectional thermally deformable material portion 27 between the cells 20, separately from the cartridge 25.

도 5는 본 발명의 다른 실시예에 따른 배터리팩의 사시도이고, 도 6은 정면도이다. FIG. 5 is a perspective view of a battery pack according to another embodiment of the present invention, and FIG. 6 is a front view.

도 5 및 도 6을 참조하면, 배터리팩(200)은 다수의 셀(120)들이 적층된 셀 적층체(130) 일측에 히트싱크(150)를 배치하여 적층된 셀(120)들 사이의 열을 제거하도록 하는데, 히트싱크(150)에는 냉각수의 유로(160)가 형성되어 있다.5 and 6, a battery pack 200 includes a heat sink 150 disposed on one side of a cell stack 130 in which a plurality of cells 120 are stacked, And the heat sink 150 is provided with a flow passage 160 for cooling water.

셀(120)은 한정된 공간에서 높은 적층률을 제공할 수 있도록 바람직하게는 판상형 셀이고, 일면 또는 양면이 인접한 셀(120)에 대면하도록 적층 배열되어 셀 적층체(130)를 형성하고 있을 수 있다. The cell 120 is preferably a plate-shaped cell so as to provide a high laminating ratio in a limited space, and may be formed by stacking the cell 120 so as to face one or both of the adjacent cells 120 to form the cell stack 130 .

히트싱크(150)는 열 접촉에 의해 다른 물체로부터 열을 흡수하고 발산하는 물체를 의미한다. 히트싱크(150)는 내부에 유로(160)를 포함하는 중공구조이다. 히트싱크(150) 내부 유로(160)에 흐르는 냉매는 유로(160)에서 용이하게 흐르면서 냉각성이 우수한 유체이면 특별한 제한은 없으며, 기체 또는 액체일 수 있다. 예를 들어, 잠열이 높아 냉각 효율성을 극대화할 수 있는 물일 수 있다. 그러나 이것에 한정하지 않고, 흐름이 발생하는 것이면, 부동액, 가스 냉매, 공기 등이어도 좋다. The heat sink 150 refers to an object that absorbs heat and emits heat from other objects by thermal contact. The heat sink 150 is a hollow structure including a flow passage 160 therein. The coolant flowing in the internal flow path 160 of the heat sink 150 is not particularly limited as long as the coolant flows easily in the flow path 160 and is excellent in cooling ability, and may be a gas or a liquid. For example, the latent heat is high and can be water that can maximize cooling efficiency. However, the present invention is not limited to this, and it may be an antifreeze, gas refrigerant, air or the like as long as a flow occurs.

셀(120)들 사이에는 상기 셀(120)들과 면접촉하여 흡열하는 냉각핀(127)을 더 포함하고, 히트싱크(150)는 냉각핀(127)으로부터 전도된 열을 방열하도록 냉각핀(127)과 연결되어 있다. The heat sink 150 further includes a cooling fin 127 that absorbs heat conducted from the cooling fins 127. The cooling fins 127 are disposed on the cooling fins 127, 127).

냉각핀(127)은 양면이 셀(120)들에 각각 밀착된 상태로 셀(120)들 사이에 개재되어 있고, 히트싱크(150)에 면 접촉하는 형상으로 절곡되어 있다. 즉, 셀(120)들 사이에 냉각핀(127)을 개재하였을 때, 냉각핀(127)이 히트싱크(150)에 면접촉하고 있으므로, 열전도에 의한 방열 효과를 극대화할 수 있다. 도시한 냉각핀(127)은 수직단면상 "T"자형인데 절곡 방향에 따라서는 "ㄱ"자형이 될 수도 있다. The cooling fin 127 is interposed between the cells 120 in such a manner that both surfaces of the cooling fin 127 are in close contact with the cells 120 and is bent into a shape in surface contact with the heat sink 150. That is, when the cooling fin 127 is interposed between the cells 120, since the cooling fin 127 is in surface contact with the heat sink 150, the heat radiation effect due to heat conduction can be maximized. The illustrated cooling fins 127 may be "T" -shaped in vertical section, but may be "-shaped" depending on the bending direction.

냉각핀(127)은 도 3을 참조하여 설명한 바와 같은 단방향 열변형 재료부(27)로 이루어진다. 상기 셀(120)들의 온도 상승시 상기 셀(120)들의 적층 방향(y)을 따라 열팽창함으로써 전도에 의한 열방출 경로의 단면적을 증가시키는 것이 바람직하다. 평상시 상태에서 셀 온도가 상승하면 냉각핀(127)이 y방향으로 열팽창하여 흡열부피가 증가되면 보다 빠르게 열전달이 가능해져 냉각이 이루어지므로 온도 상승을 막을 수 있다. 이와 같이 본 발명에 따른 배터리팩은 냉각 장치가 가변적이다. The cooling fin 127 is made of the unidirectional heat-deformable material portion 27 as described with reference to Fig. It is preferable to increase the cross-sectional area of the heat discharge path by conduction by thermally expanding along the stacking direction (y) of the cells 120 when the temperature of the cells 120 rises. When the cell temperature rises in a normal state, if the cooling fin 127 thermally expands in the y direction to increase the endothermic volume, the heat can be transferred more quickly and the cooling can be performed. As described above, the cooling device of the battery pack according to the present invention is variable.

이와 같이 본 실시예에 따른 배터리팩(200)은 적층된 셀(120)들 사이에 위치하는 열변형 재료부로 이루어진 냉각핀(127)을 포함해 상기 셀(120)들을 냉각하는 냉각 장치로서 히트싱크(150)를 포함하는 것이나, 냉각 장치의 예는 이것에만 한정되는 것이 아니고 다양한 구성이 가능하다. As described above, the battery pack 200 according to the present embodiment includes a cooling fin 127 formed of a heat deformable material portion positioned between the stacked cells 120 to cool the cells 120, (150), but examples of the cooling device are not limited to these, and various configurations are possible.

상기 배터리팩은 소망하는 출력 및 용량에 따라 단위모듈로서 배터리모듈을 조합하여 제조될 수 있으며, 장착 효율성, 구조적 안정성 등을 고려할 때, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장 장치 등의 전원으로 바람직하게 사용될 수 있지만, 적용 범위가 이들만으로 한정되는 것은 아니다. The battery pack may be manufactured by assembling a battery module as a unit module according to a desired output and capacity. In consideration of mounting efficiency and structural stability, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, The present invention can be suitably used as a power source for devices, but is not limited thereto.

따라서, 본 발명은 상기 배터리팩을 전원으로 포함하는 디바이스 제공에 이용될 수 있고, 상기 디바이스는 구체적으로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력저장 장치일 수 있다. 이러한 디바이스의 구조 및 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명을 생략한다. Therefore, the present invention can be used for providing a device including the battery pack as a power source, and the device can be specifically an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle or a power storage device. The structure and manufacturing method of such a device are well known in the art, so a detailed description thereof will be omitted herein.

이상, 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but many variations and modifications may be made without departing from the spirit and scope of the invention as defined in the appended claims. It will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the scope of the appended claims.

20, 120...셀 25...카트리지
30, 130...셀 적층체 40...흡기덕트
50...배기덕트 45...흡기구
55...배기구 100, 200..배터리팩
127…냉각핀 150…히트싱크
20, 120 ... cell 25 ... cartridge
30, 130 ... cell stack body 40 ... intake duct
50 ... exhaust duct 45 ... intake port
55 ... exhaust 100, 200 .. Battery pack
127 ... Cooling pin 150 ... Heatsink

Claims (6)

다수의 셀들을 카트리지에 각각 고정하여 적층 구성한 셀 적층체; 및
흡기덕트와 배기덕트를 포함하고,
상기 카트리지에는 단방향 열변형 재료부가 일체형으로 성형되어 있어, 상기 카트리지로 상기 셀들을 지지하는 동시에 상기 셀들 사이에 상기 단방향 열변형 재료부 사이의 공간으로 정의되는 공기 유로가 형성되며,
상기 단방향 열변형 재료부는 상기 셀들의 온도 상승시 상기 셀들의 적층 방향을 따라 열팽창하여 상기 공기 유로의 높이를 증가시키며,
상기 흡기덕트는 냉각 공기가 유입되는 흡기구에 일측이 연결되고 타측이 상기 셀 적층체 측면으로 개구되고, 상기 배기덕트는 상기 공기 유로를 통과한 상기 냉각 공기가 배출되는 배기구에 일측이 연결되고 타측이 상기 셀 적층체 측으로 개구되어 상기 셀 적층체의 다른 측면에 상기 흡기덕트와 대향되게 결합되며, 상기 흡기구는 상기 공기 유로를 통과하는 상기 냉각 공기의 유동 방향에 대해 수직으로 형성되어 있는 것을 특징으로 하는 배터리팩.
A cell stacked structure in which a plurality of cells are fixed to a cartridge, respectively; And
Comprising an intake duct and an exhaust duct,
Wherein the unidirectional thermal deformation material portion is formed integrally with the cartridge so that the cartridge supports the cells with the cartridge and an air flow path defined between the cells is defined as a space between the unidirectional thermal deformation material portions,
Wherein the unidirectional thermally deformable material portion thermally expands along the stacking direction of the cells when the temperatures of the cells rise to increase the height of the air flow path,
Wherein one end of the intake duct is connected to an intake port through which the cooling air is introduced and the other end is open to the side of the cell stack body and one end is connected to an exhaust port through which the cooling air having passed through the air flow path is discharged, And the air intake port is formed perpendicular to the flow direction of the cooling air passing through the air flow path. The air intake duct according to any one of claims 1 to 3, Battery pack.
다수의 셀들을 카트리지에 각각 고정하여 적층 구성한 셀 적층체; 및
흡기덕트와 배기덕트를 포함하고,
상기 카트리지에는 단방향 열변형 재료부가 일체형으로 성형되어 있어, 상기 카트리지로 상기 셀들을 지지하는 동시에 상기 셀들 사이에 상기 단방향 열변형 재료부 사이의 공간으로 정의되는 공기 유로가 형성되며,
상기 단방향 열변형 재료부는 상기 셀들의 온도 상승시 상기 셀들의 적층 방향에 수직한 방향으로 열수축하여 상기 공기 유로의 너비를 증가시키며,
상기 흡기덕트는 냉각 공기가 유입되는 흡기구에 일측이 연결되고 타측이 상기 셀 적층체 측면으로 개구되고, 상기 배기덕트는 상기 공기 유로를 통과한 상기 냉각 공기가 배출되는 배기구에 일측이 연결되고 타측이 상기 셀 적층체 측으로 개구되어 상기 셀 적층체의 다른 측면에 상기 흡기덕트와 대향되게 결합되며, 상기 흡기구는 상기 공기 유로를 통과하는 상기 냉각 공기의 유동 방향에 대해 수직으로 형성되어 있는 것을 특징으로 하는 배터리팩.
A cell stacked structure in which a plurality of cells are fixed to a cartridge, respectively; And
Comprising an intake duct and an exhaust duct,
Wherein the unidirectional thermal deformation material portion is formed integrally with the cartridge so that the cartridge supports the cells with the cartridge and an air flow path defined between the cells is defined as a space between the unidirectional thermal deformation material portions,
Wherein the unidirectional thermally deformable material portion is heat shrunk in a direction perpendicular to the stacking direction of the cells when the temperatures of the cells rise, thereby increasing a width of the air flow path,
Wherein one end of the intake duct is connected to an intake port through which the cooling air is introduced and the other end is open to the side of the cell stack body and one end is connected to an exhaust port through which the cooling air having passed through the air flow path is discharged, And the air intake port is formed perpendicular to the flow direction of the cooling air passing through the air flow path. The air intake duct according to any one of claims 1 to 3, Battery pack.
제1항 또는 제2항에 있어서,
상기 단방향 열변형 재료부는 플라스틱, 중합체, 올리고머, 이들의 파생물들, 또는 이들의 조합물들 중 어느 하나인 것을 특징으로 하는 배터리팩.
3. The method according to claim 1 or 2,
Wherein the unidirectional thermally deformable material portion is any one of plastics, polymers, oligomers, derivatives thereof, or combinations thereof.
다수의 셀들을 카트리지에 각각 고정하여 적층 구성한 셀 적층체; 및
흡기덕트와 배기덕트를 포함하여 배터리팩을 제조하고,
상기 카트리지에는 단방향 열변형 재료부가 일체형으로 성형되어 있어, 상기 카트리지로 상기 셀들을 지지하는 동시에 상기 셀들 사이에 상기 단방향 열변형 재료부 사이의 공간으로 정의되는 공기 유로가 형성되며,
상기 단방향 열변형 재료부는 상기 셀들의 온도 상승시 상기 셀들의 적층 방향을 따라 열팽창하여 상기 공기 유로의 높이를 증가시키며,
상기 흡기덕트는 냉각 공기가 유입되는 흡기구에 일측이 연결되고 타측이 상기 셀 적층체 측면으로 개구되고, 상기 배기덕트는 상기 공기 유로를 통과한 상기 냉각 공기가 배출되는 배기구에 일측이 연결되고 타측이 상기 셀 적층체 측으로 개구되어 상기 셀 적층체의 다른 측면에 상기 흡기덕트와 대향되게 결합되며, 상기 흡기구는 상기 공기 유로를 통과하는 상기 냉각 공기의 유동 방향에 대해 수직으로 형성되어 있는 것을 특징으로 하는 배터리팩 제조 방법.
A cell stacked structure in which a plurality of cells are fixed to a cartridge, respectively; And
A battery pack including an intake duct and an exhaust duct is manufactured,
Wherein the unidirectional thermal deformation material portion is formed integrally with the cartridge so that the cartridge supports the cells with the cartridge and an air flow path defined between the cells is defined as a space between the unidirectional thermal deformation material portions,
Wherein the unidirectional thermally deformable material portion thermally expands along the stacking direction of the cells when the temperatures of the cells rise to increase the height of the air flow path,
Wherein one end of the intake duct is connected to an intake port through which the cooling air is introduced and the other end is open to the side of the cell stack body and one end is connected to an exhaust port through which the cooling air having passed through the air flow path is discharged, And the air intake port is formed perpendicular to the flow direction of the cooling air passing through the air flow path. The air intake duct according to any one of claims 1 to 3, A method of manufacturing a battery pack.
다수의 셀들을 카트리지에 각각 고정하여 적층 구성한 셀 적층체; 및
흡기덕트와 배기덕트를 포함하여 배터리팩을 제조하고,
상기 카트리지에는 단방향 열변형 재료부가 일체형으로 성형되어 있어, 상기 카트리지로 상기 셀들을 지지하는 동시에 상기 셀들 사이에 상기 단방향 열변형 재료부 사이의 공간으로 정의되는 공기 유로가 형성되며,
상기 단방향 열변형 재료부는 상기 셀들의 온도 상승시 상기 셀들의 적층 방향에 수직한 방향으로 열수축하여 상기 공기 유로의 너비를 증가시키며,
상기 흡기덕트는 냉각 공기가 유입되는 흡기구에 일측이 연결되고 타측이 상기 셀 적층체 측면으로 개구되고, 상기 배기덕트는 상기 공기 유로를 통과한 상기 냉각 공기가 배출되는 배기구에 일측이 연결되고 타측이 상기 셀 적층체 측으로 개구되어 상기 셀 적층체의 다른 측면에 상기 흡기덕트와 대향되게 결합되며, 상기 흡기구는 상기 공기 유로를 통과하는 상기 냉각 공기의 유동 방향에 대해 수직으로 형성되어 있는 것을 특징으로 하는 배터리팩 제조 방법.
A cell stacked structure in which a plurality of cells are fixed to a cartridge, respectively; And
A battery pack including an intake duct and an exhaust duct is manufactured,
Wherein the unidirectional thermal deformation material portion is formed integrally with the cartridge so that the cartridge supports the cells with the cartridge and an air flow path defined between the cells is defined as a space between the unidirectional thermal deformation material portions,
Wherein the unidirectional thermally deformable material portion is heat shrunk in a direction perpendicular to the stacking direction of the cells when the temperatures of the cells rise, thereby increasing a width of the air flow path,
Wherein one end of the intake duct is connected to an intake port through which the cooling air is introduced and the other end is open to the side of the cell stack body and one end is connected to an exhaust port through which the cooling air having passed through the air flow path is discharged, And the air intake port is formed perpendicular to the flow direction of the cooling air passing through the air flow path. The air intake duct according to any one of claims 1 to 3, A method of manufacturing a battery pack.
제4항 또는 제5항에 있어서,
상기 단방향 열변형 재료부는 플라스틱, 중합체, 올리고머, 이들의 파생물들, 또는 이들의 조합물들 중 어느 하나인 것을 특징으로 하는 배터리팩 제조 방법.
The method according to claim 4 or 5,
Wherein the unidirectional thermally deformable material portion is any one of plastic, polymer, oligomer, derivatives thereof, or a combination thereof.
KR1020170089129A 2017-07-13 2017-07-13 Battery pack of improved reaction capability to cell temperature rise and fabricating method for the same KR101789293B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170089129A KR101789293B1 (en) 2017-07-13 2017-07-13 Battery pack of improved reaction capability to cell temperature rise and fabricating method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170089129A KR101789293B1 (en) 2017-07-13 2017-07-13 Battery pack of improved reaction capability to cell temperature rise and fabricating method for the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140163637A Division KR20160061122A (en) 2014-11-21 2014-11-21 Battery pack of improved reaction capability to cell temperature rise and fabricating method for the same

Publications (2)

Publication Number Publication Date
KR20170084004A KR20170084004A (en) 2017-07-19
KR101789293B1 true KR101789293B1 (en) 2017-10-23

Family

ID=59427406

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170089129A KR101789293B1 (en) 2017-07-13 2017-07-13 Battery pack of improved reaction capability to cell temperature rise and fabricating method for the same

Country Status (1)

Country Link
KR (1) KR101789293B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230124809A (en) 2022-02-18 2023-08-28 동의대학교 산학협력단 Development of an electric vehicle battery temperature control device that can control thermal conductivity

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6859896B2 (en) * 2017-08-10 2021-04-14 トヨタ自動車株式会社 Battery system
KR20200131022A (en) * 2019-05-13 2020-11-23 현대모비스 주식회사 Battery module assemble and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004294A (en) 2011-06-16 2013-01-07 Nissan Motor Co Ltd Battery pack

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004294A (en) 2011-06-16 2013-01-07 Nissan Motor Co Ltd Battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230124809A (en) 2022-02-18 2023-08-28 동의대학교 산학협력단 Development of an electric vehicle battery temperature control device that can control thermal conductivity

Also Published As

Publication number Publication date
KR20170084004A (en) 2017-07-19

Similar Documents

Publication Publication Date Title
KR101715697B1 (en) Battery module comprising thermoelectric module for cooling part
KR101715698B1 (en) Battery module comprising heat transfer device using wick for cooling part
KR100998845B1 (en) Battery Module of Heat Dissipation Property, Heat Exchange Member, and Large or Middle-sized Battery Pack Employed with the Same
US10978759B2 (en) Battery module having improved cooling performance
EP3136497B1 (en) Battery module including water cooling structure
EP2849275B1 (en) Battery module including high-efficiency cooling structure
KR101757382B1 (en) Cooling member of improved cooling performance and battery module comprising the same
US9735451B2 (en) Battery module having temperature sensor and battery pack employed with the same
KR101601142B1 (en) Heat sink having 2 or more separated cooling way with insulation material
KR102285283B1 (en) Submodule and battery module comprising the submodule
KR101601149B1 (en) Heat sink having 2 or more separated cooling way
KR101789293B1 (en) Battery pack of improved reaction capability to cell temperature rise and fabricating method for the same
KR101853166B1 (en) Secondary battery, component for secondary battery and method for fabricating the same
KR101761825B1 (en) Battery module, and battery pack including the same
KR20160061122A (en) Battery pack of improved reaction capability to cell temperature rise and fabricating method for the same
KR101772061B1 (en) Battery pack containing thermoelectric devices for controlling temperature and cold-starting method for electric vehicle using the same
KR101760865B1 (en) Self-cooling method and system using thermoelectric devices for a battery pack
KR20140111623A (en) Secondary battery and manufacturing method thereof
KR101752865B1 (en) Thermal pad having multiple hardness
KR20150045245A (en) Heat sink having 2 or more separated cooling way with common gateway
KR20200048758A (en) Battery Module
KR102347566B1 (en) Battery pack for eco-friendly cars
KR20240004036A (en) Rechargeable battery

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant