WO2012171360A1 - 一种信噪比估计方法与装置 - Google Patents

一种信噪比估计方法与装置 Download PDF

Info

Publication number
WO2012171360A1
WO2012171360A1 PCT/CN2012/071675 CN2012071675W WO2012171360A1 WO 2012171360 A1 WO2012171360 A1 WO 2012171360A1 CN 2012071675 W CN2012071675 W CN 2012071675W WO 2012171360 A1 WO2012171360 A1 WO 2012171360A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reconstructed
received signal
noise
maximum likelihood
Prior art date
Application number
PCT/CN2012/071675
Other languages
English (en)
French (fr)
Inventor
侯晓辉
卢勤博
杨锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012171360A1 publication Critical patent/WO2012171360A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a signal to noise ratio estimation method and apparatus for suppressing fading effects on a multipath fading channel. Background technique
  • the signal-to-noise ratio estimation of the channel is an important technique.
  • Power control, adaptive transmission, cell handover, dynamic channel allocation, spatial diversity, and the like all require fast and accurate estimation of the signal-to-noise ratio (SNR) of the channel.
  • SNR signal-to-noise ratio
  • the current estimation methods of signal-to-noise ratio mainly include the following.
  • the first one is to calculate the constellation distribution of the demodulated signal, but the accuracy of the estimation is not high enough.
  • the second is to establish the bit error rate and signal noise.
  • the function relationship of the ratio using this function relationship, to map the signal-to-noise ratio according to the bit error rate.
  • This method needs to establish a function relationship curve. In practice, it is generally realized by looking up the table, which will greatly increase the complexity and at the same time The environment is changeable, and the established relationship between bit error rate and signal-to-noise ratio is often difficult to track the rapid changes in complex wireless environments. In addition, the accuracy of this method is not very high.
  • the third is Estimation is made by the second and fourth moments of the signal, but the accuracy of this method is not high.
  • the invention provides a method and a device for estimating a signal to noise ratio, which are used to solve the problems of low accuracy, high computational complexity and large influence of wireless channel fading in the existing SNR estimation method.
  • the method of the present invention includes a signal to noise ratio estimation method, the method comprising:
  • the maximum likelihood criterion is used to determine the maximum likelihood estimation value of the received signal power
  • the maximum likelihood estimation value of the noise signal power is respectively related to the reconstructed signal and the received signal, and ML and i ML are obtained ;
  • a maximum likelihood estimate of the signal to noise ratio is determined based on the obtained S ML .
  • the reconstructed signal, the received signal power 5, the noise signal, the noise signal power N and the received signal, the real part and the imaginary part of the noise signal in the joint distribution probability density function are reconstructed signals and received signals.
  • S and N represent, obtain a conditional distribution probability density function of the received signal relative to S and N;
  • the maximum likelihood criterion is used to determine the relationship between ⁇ and ⁇ respectively and the reconstructed signal and the received signal.
  • Rk ⁇ ( m i t + J m Q t ) + VN (3 ⁇ 4 + jZ Q )
  • is the first sampled value of the received signal
  • m and a are the real and imaginary parts of the first sampled value of the reconstructed signal, respectively
  • 3 ⁇ 4 is the first sample obtained by normalizing the power of the noise signal. The real and imaginary parts of the value;
  • a Gaussian noise signal determining the joint probability density distribution function of the real component of the noise signal and the imaginary component is specifically 3 ⁇ 4:, 3 ⁇ 4 k ' ⁇
  • the probability density function according to the condition distribution obtains a likelihood function about S and N, including:
  • the determining the relationship between the ML and the N ML and the reconstructed signal and the received signal by using the maximum likelihood criterion includes:
  • the log likelihood function for S and N is solved to determine the relationship between Z and ⁇ respectively and the reconstructed signal and the received signal.
  • the reconstructing the signal after the training signal is transmitted through the estimated channel according to the channel estimation result, and obtaining the reconstructed signal includes:
  • the training signal is convolved with the estimated channel to obtain a reconstructed signal.
  • the present invention provides a signal to noise ratio estimating apparatus, the apparatus comprising: a signal acquiring module, a channel estimating module, a reconstructed signal module, a maximum likelihood estimating module, and a signal to noise ratio module; wherein, the signal acquiring module is configured to acquire training a received signal obtained by transmitting a signal through a channel; a channel estimation module, configured to perform channel estimation on the channel;
  • a reconstructed signal module configured to reconstruct, according to a channel estimation result, a signal transmitted by the estimated channel of the training signal to obtain a reconstructed signal
  • a maximum likelihood estimation module configured to determine, according to the obtained reconstructed signal and the received signal, a joint probability density function of a real part and a virtual part of a noise signal obeying a Gaussian distribution, and determine the reception by using a maximum likelihood criterion
  • the signal power maximum likelihood estimation value, the noise signal power maximum likelihood estimation value & ML are respectively related to the reconstructed signal and the received signal, and ML and N ML are obtained ;
  • a signal to noise ratio module for determining a maximum likelihood estimate of the signal to noise ratio based on the obtained sum ML .
  • the method for estimating the signal-to-noise ratio of the invention is relatively simple, the computational complexity is low, the estimation accuracy is high, and the fading of the wireless channel is small, especially under the condition that the channel estimation is particularly accurate, the method of the invention can completely eliminate the channel. Fading effect
  • the method is of great significance for the selection of good RF channels in multi-RF channels based on the optimal SNR criterion, and the accurate adjustment of the adaptive rate transmission mode based on SNR estimation is also of special significance;
  • the method of the present invention can be well applied in applications in a communication system where an estimated signal to noise ratio is required and noise power needs to be estimated.
  • FIG. 1 is a flowchart of a method for estimating a signal to noise ratio for transmitting a GMSK modulated signal in a TU3 channel according to the present invention
  • FIG. 3 is a structural diagram of a signal to noise ratio estimating apparatus provided by the present invention.
  • FIG. 5 is a flowchart of an application in adjusting an uplink rate transmission mode of a mobile phone according to the present invention. detailed description
  • the signal-to-noise ratio estimation method of the present invention includes the following steps: Step S101: Acquire a received signal obtained after a training signal is transmitted through a channel.
  • Step S102 Perform channel estimation on the channel.
  • the estimation of the channel may be performed by using the existing method, and is not limited herein, but it is particularly pointed out that the smaller the error between the channel estimation and the ideal channel estimation (regardless of noise), the finally obtained letter of the present invention.
  • the error in the noise ratio estimate is smaller.
  • Step S103 reconstructing, according to the channel estimation result, the signal after the channel estimation of the training signal is estimated.
  • Step S104 according to the obtained reconstructed signal and the received signal, using the joint distribution probability density function of the real part and the imaginary part of the noise signal obeying the Gaussian distribution, determining the maximum received signal power by using the maximum likelihood criterion
  • the estimated value, the maximum likelihood estimate of the noise signal power & ML are related to the reconstructed signal and the received signal, respectively, to obtain the sum ML .
  • Step S105 determining a maximum likelihood estimation value of the signal to noise ratio according to the obtained angle.
  • the invention utilizes the characteristic that the noise signal obeys the Gaussian distribution, and the real part of the noise signal can be obtained.
  • the joint probability density function of the component and the imaginary component is distributed, and since there is a specific relationship between the reconstructed signal, the received signal power 5, the noise signal, the noise signal power N and the received signal, the specific relationship can be used to derive the received signal.
  • the maximum likelihood criterion can be further used to determine the relationship between N ML and the reconstructed signal and the received signal, respectively.
  • the Gaussian function can be used to uniquely determine the joint distribution probability density function of the real and imaginary components of the noise signal, and the maximum likelihood estimate of the received signal power determined by the maximum likelihood criterion ⁇ , the maximum likelihood of the noise signal power
  • the relationship between the estimated value and the reconstructed signal and the received signal is also determined. Therefore, the signal to noise ratio estimation method of the present invention is relatively simple, has low computational complexity, and has high accuracy, especially under the condition of accurate channel estimation. The method can better eliminate the fading effect of the channel.
  • the relationship between the reconstructed signal, the received signal power 5, the noise signal, the noise signal power ⁇ and the received signal, the real part and the imaginary part of the noise signal in the determined joint distribution probability density function may be applied.
  • the conditional distribution probability density function of the received signal relative to S and N, and the likelihood function for S and N are obtained.
  • the maximum likelihood criterion can be used to determine ML , respectively. Relationship with reconstructed and received signals.
  • the maximum likelihood criterion is used to determine the maximum likelihood estimation value of the received signal power and the maximum likelihood estimation value of the noise signal power, and a specific method for determining the maximum likelihood estimation value of the signal to noise ratio, which may specifically include The following steps:
  • Step S3 setting channel h with + 1 tap to perform channel estimation, and estimating channel result is h, and satisfies
  • 2 l, that is, the total energy of the channel estimation is 1, then the estimated channel h and the training signal are convoluted, and the sampled value of the reconstructed signal can be obtained, which is expressed as follows, Xk-l 3 ⁇ 4- z) h ( 1 )
  • Step S4 for the received signal sample value, the complex model described in the formula (2) is established to determine the relationship between the ⁇ and the reconstructed signal, S, the noise signal, and N,
  • r and r i Qt are the real and imaginary parts of the sampled value of the received signal, respectively, and mm is the real part and the virtual part of the sampled value of the reconstructed signal, respectively.
  • the 3 ⁇ 4 and 3 ⁇ 4 are the real and imaginary parts of the first sampled value obtained by normalizing the noise signal.
  • the distribution probability density function is
  • Step S6 from equations (2) and (3), deducing the conditional probability density function of the real part and the imaginary part of ⁇ for S and N is
  • 5,N)
  • Step S8 for the log-likelihood function of the formula (6), respectively, the partial derivatives of S and N are obtained, and the following likelihood equation is obtained.
  • N N U in equations (7), (8), ML , respectively, received signal power S and noise signal power
  • Step S9 calculating the results of the above likelihood equations (7) and (8), determining that ⁇ , /£ are respectively related to the reconstructed signal and the received signal as ⁇ , N ML as shown in equations (9) and (10). ,
  • the channel estimation h in step S203 is calculated.
  • the present invention may adopt an existing method, for example, a channel estimation method such as an LS least squares algorithm/LMMSE minimum mean square error algorithm may be used, and the present invention does not It is limited to use these two channel estimation algorithms. It should be noted that the smaller the error between the channel estimation and the ideal channel estimation (regardless of noise), the more the error of the finally obtained SNR estimation.
  • the method for obtaining the relationship between the ⁇ and ⁇ and the reconstructed signal and the received signal by the log likelihood function for S and N can also be performed by using Newton iteration method, Lagrangian method, etc.
  • the adaptive solution method, the present invention does not impose any specific limitation on the method of finding the maximum likelihood values ⁇ and ⁇ .
  • FIG. 2 is a schematic diagram of a signal to noise ratio estimation method for transmitting a GMSK Gaussian filtered minimum frequency shift keying modulated signal in a TU3 radio channel according to the present invention, including the following steps:
  • Step S202 obtaining a channel estimation S by using a channel estimation method such as an LS algorithm or a LMMSE algorithm.
  • Step S203 calculating a sampling value of the reconstructed signal as m. :
  • Step S204 establishing the following complex model for the received signal sample value, determining the relationship between the ⁇ and the reconstructed signal sample value, S, the noise signal, and N,
  • Step S205 according to the complex model of the obtained reconstructed signal and the received signal sample value r t , Maximum likelihood estimate of received signal power has been determined, the noise signal power maximum likelihood estimation of the reconstructed signal Mr, respectively and the received signal relationship is calculated, N MJ follows
  • Step S206 calculating a ratio to the maximum likelihood estimation value of the signal to noise ratio.
  • the signal-to-noise ratio estimating apparatus provided by the present invention, as shown in FIG. 3, the apparatus includes: a signal acquiring module 301, a channel estimating module 302, a reconstructed signal module 303, a maximum likelihood estimating module 304, and a signal to noise ratio module 305; ,
  • the signal acquisition module 301 is configured to obtain a received signal obtained after the training signal is transmitted through a channel.
  • the channel estimation module 302 is configured to perform channel estimation on the channel.
  • the reconstructed signal module 303 is configured to reconstruct a signal transmitted by the estimated channel of the training signal according to the channel estimation result, to obtain a reconstructed signal.
  • the maximum likelihood estimation module 304 is configured to determine, according to the obtained reconstructed signal and the received signal, a joint probability density function of the real part and the imaginary part of the noise signal obeying the Gaussian distribution, and determine the maximum likelihood criterion
  • the received signal power maximum likelihood estimate z , the noise signal power maximum likelihood estimate & ML are related to the reconstructed signal and the received signal, respectively, to obtain S ML and L.
  • the signal to noise ratio module 305 is configured to determine a maximum likelihood estimation value of the signal to noise ratio according to the obtained sum ML .
  • FIG. 4 shows a device for estimating a signal-to-noise ratio of a receiver according to the present invention.
  • the method of the present invention is of particular importance for the accurate adjustment of the transmission mode of adaptive rate transmission based on signal to noise ratio estimation, which may be used in adaptive rate network transmission.
  • FIG. 5 is a schematic diagram of an application for adjusting an uplink rate transmission mode of a mobile phone according to the present invention, where
  • Step S501 The base station (BTS) applies the method of the present invention to calculate a signal-to-noise ratio (SNR) of the uplink of the mobile phone, and maps a bit error rate (BEP) of the link performance accordingly.
  • SNR signal-to-noise ratio
  • BEP bit error rate
  • Step S502 The base station (BTS) reports the bit error rate (BEP) to the base station controller (BSC).
  • BSC base station controller
  • BEP bit error rate
  • Step S504 The base station controller (BSC) sends a transmission mode change command to the base station (BTS) when it is determined that the transmission mode needs to be adjusted.
  • Step S505 The base station (BTS) receives an adjustment command, and sends an uplink rate transmission mode adjustment command to the mobile terminal.
  • BTS base station
  • Step S506 the mobile terminal receives the uplink rate transmission mode adjustment command, and changes the uplink transmission rate accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)
  • Noise Elimination (AREA)

Abstract

本发明公开了一种信噪比估计方法,获取训练信号经信道传输后得到的接收信号;对所述信道进行信道估计;根据信道估计结果,对训练信号经所述估计的信道传输后的信号进行重构,得到重构信号;根据重构信号及所述接收信号,利用噪声信号的实部分量和虚部分量的联合分布概率密度函数,确定出接收信号功率最大似然估计值ŜML、噪声信号功率最大似然估计值N̂ML分别与重构信号和接收信号的关系,得到ŜML和N̂ML;确定出信噪比的最大似然估计值;本发明同时还公开了一种信噪比估计装置;本发明的信噪比估计的方法相对简单,计算复杂度低,估计准确度高,受无线信道的衰落影响小。

Description

一种信噪比估计方法与装置 技术领域
本发明涉及无线通信技术领域, 尤其涉及的是一种多径衰落信道下抑 制衰落影响的信噪比估计方法与装置。 背景技术
在移动通信中, 信道的信噪比估计是一个很重要的技术。 功率控制、 自适应传输、 小区切换、 动态信道分配、 空间分集合并等都需要快速、 准 确的估计出信道的信噪比(SNR )。 特别是对于高铁环境的多载波联合应用 下, 信噪比估计的准确性就更加重要。
目前的信噪比的估计方法主要有以下几种, 第 1 种是利用解调信号的 星座分布来计算, 但是此种方法估计的准确度不够高; 第 2种是建立误码 率与信噪比的函数关系, 利用此函数关系, 根据误码率来映射出信噪比, 此种方法需要建立函数关系曲线, 实际应用时一般通过查表来实现, 会使 复杂度大大提高, 同时由于无线环境是多变的, 建立的误码率与信噪比的 函数关系曲线也往往很难跟踪上复杂无线环境的快速变化, 另外, 这种方 法估计的准确度也不是很高; 第 3种是通过信号的二阶矩和四阶矩进行估 计, 但是此方法估计的准确度不高。
以上方法, 对于符号间干扰(ISI, Inter Symbol Interference )信道的估 计准确度更低, 而且波动性比较大, 并且无法克服信道的衰落影响。 发明内容
本发明提供一种信噪比估计的方法与装置, 用以解决现有信噪比估计 方法中存在的准确度不高、 计算复杂度高以及受无线信道衰落影响大的问 本发明方法包括一种信噪比估计方法, 该方法包括:
获取训练信号经信道传输后得到的接收信号;
对所述信道进行信道估计;
根据信道估计结果, 对训练信号经所述估计的信道传输后的信号进行 重构, 得到重构信号;
根据得到的重构信号及所述接收信号, 利用服从高斯分布的噪声信号 的实部分量和虚部分量的联合分布概率密度函数, 采用最大似然准则确定 出接收信号功率最大似然估计值 、 噪声信号功率最大似然估计值 ^ 分 别与重构信号和接收信号的关系, 得到 ML和 iML
根据得到的SML和 确定出信噪比的最大似然估计值。
上述方案中, 所述确定 Ζ、 ^ 分别与重构信号和接收信号的关系, 为:
确定服从高斯分布的噪声信号的实部分量和虚部分量的联合分布概率 密度函数;
根据重构信号、接收信号功率 5、 噪声信号、 噪声信号功率 N与接收信 号之间的关系, 将联合分布概率密度函数中的噪声信号的实部分量和虚部 分量采用重构信号、 接收信号、 S和 N表示, 得到接收信号相对 S和 N的条 件分布概率密度函数;
根据所述条件分布概率密度函数得到关于 S和 N的似然函数;
根据关于 5和 的似然函数,采用最大似然准则确定 Ζ、 ^ 分别与重 构信号和接收信号的关系。
上述方案中,所述重构信号、 s、噪声信号、 N与接收信号之间的关系, 为:
rk = ^ (mit + JmQt ) + VN (¾ + jZQ ) 其中, ^为接收信号的第 个采样值, m 、 a分别为重构信号第 个 采样值的实部和虚部, 、 ¾分别为将噪声信号进行功率归一化处理后得 到的第 个采样值的实部和虚部;
由噪声信号服从高斯分布, 确定噪声信号的实部分量 和虚部分量 ¾ 的联合分布概率密度函数具体为: ,¾ k ' πΝ
上述方案中,所述根据所述条件分布概率密度函数得到关于 S和 N的似 然函数, 包括:
对所述条件分布概率密度函数取对数, 得到关于 S和 N的对数似然函 数;
所述采用最大似然准则确定 ML、 NML分别与重构信号和接收信号的关 系, 包括:
对所述关于 S和 N的对数似然函数, 分别对 S和 N求偏导, 确定使偏导 结果等于零的 S和 W为 ^ 和^^ , 确定 、 分别与重构信号和接收信 号的关系;
或者, 利用牛顿迭代法\拉格朗日法, 对所述关于 S和 N的对数似然函 数进行求解, 确定 Z、 ^ 分别与重构信号和接收信号的关系。
上述方案中, 所述 ,、 Μ,分别与重构信号和接收信号的关系为:
Figure imgf000005_0001
1 κ-ι 1 κ-ι 其中, 为接收信号的采样值总数, 、 Γί Qt分别为接收信号第 个采样 上述方案中, 所述根据信道估计结果, 对训练信号经所述估计的信道 传输后的信号进行重构, 得到重构信号, 包括:
将训练信号和所述估计的信道进行卷积 , 得到重构信号。
本发明提供的一种信噪比估计装置, 该装置包括: 信号获取模块、 信 道估计模块、 重构信号模块、 最大似然估计模块、 信噪比模块; 其中, 信号获取模块, 用于获取训练信号经信道传输后得到的接收信号; 信道估计模块, 用于对所述信道进行信道估计;
重构信号模块, 用于根据信道估计结果, 对训练信号经估计的信道传 输的信号进行重构, 得到重构信号;
最大似然估计模块, 用于根据得到的重构信号及所述接收信号, 利用 服从高斯分布的噪声信号的实部分量和虚部分量的联合分布概率密度函 数, 采用最大似然准则确定出接收信号功率最大似然估计值 、 噪声信号 功率最大似然估计值 & ML分别与重构信号和接收信号的关系, 得到 ML和 NML ;
信噪比模块, 用于根据得到的 和 ML确定出信噪比的最大似然估计 值。
本发明有益效果如下:
本发明信噪比估计的方法相对简单, 计算复杂度低, 估计准确度高, 受无线信道的衰落影响小, 特别是在信道估计特别准确的条件下, 本发明 方法能够最大程度的消除信道的衰落影响;
本方法对基于最优信噪比准则下的多射频通道中良好射频通道的选择 具有重要的意义, 对基于信噪比估计进行的自适应速率传输模式的准确调 整也具有特别重要的意义; 在通信系统中需要估计信噪比、 需要估计噪声 功率的应用下, 本发明方法都可以得到很好的应用。 附图说明
图 1为本发明提供的信噪比估计方法流程图;
图 1为本发明提供的一种在 TU3信道中发送 GMSK调制信号的信噪比 估计方法流程图;
图 3为本发明提供的信噪比估计装置结构图;
图 4为本发明提供的一种接收机估计信噪比的装置;
图 5为本发明的一种在手机上行速率传输模式调整中的应用流程图。 具体实施方式
下面结合附图和实施例对本发明提出的信噪比估计方法和装置进行更 评细的说明。
本发明的信噪比估计方法, 如图 1所示, 该方法包括以下步驟: 步驟 S101 , 获取训练信号经信道传输后得到的接收信号。
步驟 S102 , 对所述信道进行信道估计。
此处对所述信道进行估计具体可以采用现有方法, 这里不作限制, 但 是需要特别指出的是, 信道估计与理想信道估计(不考虑噪声 )之间的误 差越小, 本发明最终得到的信噪比估计的误差也就越小。
步驟 S103 , 根据信道估计结果, 对训练信号经过估计的信道传输后的 信号进行重构。
步驟 S104, 根据得到的重构信号及所述接收信号, 利用服从高斯分布 的噪声信号的实部分量和虚部分量的联合分布概率密度函数, 采用最大似 然准则确定出的接收信号功率最大似然估计值 、 噪声信号功率最大似然 估计值 &ML分别与重构信号和接收信号的关系, 得到 和 ML
步驟 S105 , 根据得到的 角定出信噪比的最大似然估计值。 本发明利用噪声信号服从高斯分布的特性, 可以得到噪声信号的实部 分量和虚部分量的联合分布概率密度函数, 而由于重构信号、 接收信号功 率 5、 噪声信号、 噪声信号功率 N与接收信号之间存在特定的关系, 因此可 以利用该特定关系推导出接收信号相对 S和 N的条件分布概率密度函数以 及关于 S和 N的似然函数,再进一步可以采用最大似然准则确定出 、 NML 分别与重构信号和接收信号的关系。
因此, 采用高斯函数可以唯一确定噪声信号的实部分量和虚部分量的 联合分布概率密度函数, 再由最大似然准则确定出的接收信号功率最大似 然估计值 ^、 噪声信号功率最大似然估计值 ^分别与重构信号和接收信 号的关系也是确定的, 因此, 本发明的信噪比估计方法相对简单、 计算复 杂度低, 准确度高, 尤其是在信道估计准确的条件下, 本方法能够较好地 消除信道的衰落影响。
优选地, 可应用重构信号、 接收信号功率 5、 噪声信号、 噪声信号功率 Ν与接收信号之间的关系, 将已确定的联合分布概率密度函数中的噪声信 号的实部分量和虚部分量采用重构信号、接收信号、 S和 N表示, 得到接收 信号相对 S和 N的条件分布概率密度函数, 以及关于 S和 N的似然函数, 再 进一步可以采用最大似然准则确定出 ML、 分别与重构信号和接收信号 的关系。
其中, 应用最大似然准则确定出接收信号功率最大似然估计值 和噪 声信号功率最大似然估计值^ ^, 以及由此确定出信噪比的最大似然估计值 的具体方法, 可具体包括以下步驟:
步驟 S1 , 发送端发送训练信号 , 其中 = (x。 … x^ ) , 并使用 χ 表示该训练信号 中的第 个采样值, 为训练信号的长度,即采样值总数。
步驟 S2 ,接收机获取训练信号 及其经信道传输后得到的接收信号 , 其中 ? = (r。 r, ■■■ ΓΚ_, ) , 并使用 ^表示该接收信号 中的第 个采样值。
步驟 S3 , 设信道 h有 + 1个抽头, 进行信道估计, 估计的信道结果为 h, 且满足 |h|2=l, 即信道估计的总能量为 1, 则将估计的信道 h和训练信 号进行卷积, 可得到重构信号的采样值, 表示如下, Xk-l ¾-z)h ( 1 )
Figure imgf000009_0001
公式( 1 )中, 为重构信号的第^:个采样值,( … χ— J对应 + 1 个信道抽头的训练信号采样值, h = {h0 ■■■ A f对应 + 1个信道抽头。
步驟 S4, 对于接收信号采样值 , 建立公式(2)所述的复数模型, 用 以确定 ^与重构信号 、 S、 噪声信号、 N之间的关系,
= r + Qt
Figure imgf000009_0002
+ jmQt ) + N + jzt (2) 在公式( 2 )中 rri Qt分别为接收信号采样值 ^的实部和虚部, m m 分别为重构信号采样值 的实部和虚部, ¾¾分别为将噪声信号进行功 率归一化处理后得到的第 个采样值的实部和虚部。
步驟 S5, 令 =7^¾, ¾= i^¾分别为噪声信号的实部分量和虚部 分量, 由于它们服从均值为 0,方差为 N/2的高斯分布,可确定出 和¾的 联合分布概率密度函数为
Figure imgf000009_0003
,¾J = (3) πΝ
步驟 S6, 由公式(2)和(3), 推导出 ^的实部 、 虚部 对于 S、 N 的条件分布概率密度函数为
Figure imgf000009_0004
步驟 S7, 由公式 (4), 推导出接收信号 相对 S、 N的条件分布概率 密度函数为 iV,re I S,N) = n/k'¾ I S,N) = (πΝγΚ +∑(¾ Qk ,
Figure imgf000009_0005
在公式(5) 中, 、 分别为接收信号 的实部和虚部,并且
Figure imgf000010_0001
步驟 S7, 对公式(5)的条件分布概率密度函数取对数, 得到关于 S和 N的对数似然函数为, r(5,N) = ln (r7,re|5,N) =
Figure imgf000010_0002
步驟 S8, 对公式(6)的对数似然函数, 分别对 S和 N求偏导, 得到以 下似然方程,
=0 (7)
N=NU
—T(S,N) =0 (8)
N=NU 在公式(7)、 (8)中, ML、 分别为接收信号功率 S和噪声信号功率
N的最大似然估计值。
步骤 S9, 计算以上似然方程(7)和 (8) 的结果, 确定^ ^、 分别 与重构信号和接收信号的关系为公式(9)、 ( 10)所示的 ^、 NML,
Figure imgf000010_0003
步驟 S10, 利用公式(9)、 ( 10) 中的 与^^ 根据公式(11 )得到 信噪比的最大似然估计值, SNR、„ = ( 11 ) 优选地, 计算步驟 S203中的信道估计 h, 本发明可以采用现有方法, 例如可以采用 LS最小二乘算法 \LMMSE最小均方误差算法等信道估计方 法, 本发明不局限于使用这两种信道估计算法。 需要指出的是, 此处的信 道估计与理想信道估计 (不考虑噪声)之间的误差越小, 本发明最终得到 的信噪比估计的误差也就越小。 优选地, 由关于 S和 N的对数似然函数,得到^ ^和 ^^分别与重构信号 和接收信号的关系的方法, 还可以使用牛顿迭代法\拉格朗日法等自适应求 解方法, 本发明对求最大似然值^^和^^的方法不做具体的限制。
图 2所示为本发明提供的一种在 TU3无线信道中发送 GMSK高斯滤波 最小频移键控调制信号的信噪比估计方法, 包括以下步驟:
步驟 S201 , 由发送端发送训练信号 Χ= (χ。 · · · χκ_γ ) , 在经过信道 h 传输后, 接收信号为 ? = (r。 rx ··· J。
步驟 S202, 通过 LS算法或 LMMSE算法等信道估计方法求解得到信 道估计 S。
步驟 S203 , 计算重构信号的采样值为 m. :
Figure imgf000011_0001
步驟 S204,对于接收信号采样值 建立以下复数模型, 确定 ^与重构 信号采样值 、 S、 噪声信号、 N之间的关系,
rk = r + Qk = ^S (m + J ) + (z + jzQt )
步驟 S205, 根据得到的重构信号 及接收信号采样值 rt的复数模型, 利用已经确定的接收信号功率最大似然估计值 、 噪声信号功率最大似然 估计值 Mr分别与重构信号和接收信号的关系式, 计算出 、 NMJ如下
Figure imgf000012_0001
1 1 κ-ι 、
+ + m,
=0
步驟 S206, 计算 与 之比, 得到信噪比的最大似然估计值。
本发明提供的信噪比估计装置, 如图 3 所示, 该装置包括: 信号获取 模块 301、 信道估计模块 302、 重构信号模块 303、 最大似然估计模块 304、 信噪比模块 305; 其中,
信号获取模块 301 , 用于获取训练信号经信道传输后得到的接收信号。 信道估计模块 302, 用于对所述信道进行信道估计。
重构信号模块 303 , 用于根据信道估计结果,对训练信号经估计的信道 传输的信号进行重构, 得到重构信号。
最大似然估计模块 304, 用于根据得到的重构信号及所述接收信号, 利 用服从高斯分布的噪声信号的实部分量和虚部分量的联合分布概率密度函 数, 采用最大似然准则确定出接收信号功率最大似然估计值 z、 噪声信号 功率最大似然估计值 & ML分别与重构信号和接收信号的关系, 得到 SML和 L。
信噪比模块 305 ,用于根据得到的 和 lML确定出信噪比的最大似然估 计值。
图 4 所示为本发明的一种接收机估计信噪比的装置, 训练信号 = (x。 · · · x^ )经射频接收通道传输及中频处理后, 由接收机获取对应 的接收信号 ? = (r。 r{ … 接收机为估计信噪比进行信道估计计算,得 到 S = ( … 并根据信道估计结果,计算训练信号经估计的信道传 输后得到的重构信号 {¾} , 然后利用本发明的信噪比估计方法, 计算出信 噪比估计值。
本发明方法对基于信噪比估计进行的自适应速率传输的传输模式的准 确调整具有特别重要的意义, 在自适应速率的网络传输中可使用本发明。
如图 5 所示为本发明的一种在手机上行速率传输模式调整中的应用, 其中,
步驟 S501 , 基站(BTS )应用本发明方法计算手机上行链路的信噪比 ( SNR ), 并据此映射出链路性能的误码率 ( BEP )。
步驟 S502 , 基站( BTS )将误码率( BEP )上报给基站控制器( BSC )。 步驟 S503 , 基站控制器(BSC )根据误码率 (BEP )判断是否需要调 整传输模式。
步驟 S504,基站控制器( BSC )确定需要调整传输模式时,向基站( BTS ) 发送传输模式改变命令。
步驟 S505 , 基站(BTS )在收到调整命令, 向手机终端发出上行速率 传输模式调整命令。
步驟 S506, 手机终端收到上行速率传输模式调整命令, 相应地改变上 行传输速率。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离 本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权 利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在 内。

Claims

权利要求书
1、 一种信噪比估计方法, 其特征在于, 该方法包括:
获取训练信号经信道传输后得到的接收信号;
对所述信道进行信道估计;
根据信道估计结果, 对训练信号经所述估计的信道传输后的信号进行 重构, 得到重构信号;
根据得到的重构信号及所述接收信号, 利用服从高斯分布的噪声信号 的实部分量和虚部分量的联合分布概率密度函数, 采用最大似然准则确定 出接收信号功率最大似然估计值 、 噪声信号功率最大似然估计值^ ^分 别与重构信号和接收信号的关系, 得到 L和 &ML
根据得到的 和 ML确定出信噪比的最大似然估计值。
2、 如权利要求 1所述的方法, 其特征在于, 所述确定 z、 分别与 重构信号和接收信号的关系, 为:
确定服从高斯分布的噪声信号的实部分量和虚部分量的联合分布概率 密度函数;
根据重构信号、接收信号功率 5、 噪声信号、 噪声信号功率 N与接收信 号之间的关系, 将联合分布概率密度函数中的噪声信号的实部分量和虚部 分量采用重构信号、 接收信号、 S和 N表示, 得到接收信号相对 S和 N的条 件分布概率密度函数;
根据所述条件分布概率密度函数得到关于 S和 N的似然函数; 根据关于 S和 N的似然函数,采用最大似然准则确定 z、 分别与重 构信号和接收信号的关系。
3、 如权利要求 2所述的方法, 其特征在于, 所述重构信号、 5、 噪声 信号、 N与接收信号之间的关系, 为: rt =^fs (mIt + jmQt ) + VN(z + jzQt )
其中, ^为接收信号的第 个采样值, m 、 ma分别为重构信号第 个 采样值的实部和虚部, 、 ¾分别为将噪声信号进行功率归一化处理后得 到的第 个采样值的实部和虚部;
由噪声信号服从高斯分布, 确定噪声信号的实部分量 ¾和虚部分量 υΆ 的联合分布概率密度函数具体为:
Figure imgf000015_0001
4、 如权利要求 2所述的方法, 其特征在于, 所述根据所述条件分布概 率密度函数得到关于 S和 N的似然函数, 包括: 对所述条件分布概率密度函 数取对数, 得到关于 S和 N的对数似然函数;
所述采用最大似然准则确定 SML、 NML分别与重构信号和接收信号的关 系, 包括: 对所述关于 S和 N的对数似然函数, 分别对 S和 N求偏导, 确定 使偏导结果等于零的 S和 N为 和^^ 确定 ^、 分别与重构信号和 接收信号的关系;
或者, 利用牛顿迭代法\拉格朗日法, 对所述关于 S和 N的对数似然函 数进行求解, 确定 z、 分别与重构信号和接收信号的关系。
5、 如权利要求 1至 4任一项所述的方法, 其特征在于, 所述 z、 NML 分别与重构信号和接收信号的关系为:
Figure imgf000015_0002
λ 1 κ-ι λ 1 κ-ι
k=0
其中, 为接收信号的采样值总数, 、 ri 分别为接收信号第 个采样 值的实部和虚部, mIk、 mQk分别为重构信号第 k个采样值的实部和虚部。
6、 如权利要求 1至 4任一项所述的方法, 其特征在于, 所述根据信道 估计结果, 对训练信号经所述估计的信道传输后的信号进行重构, 得到重 构信号, 包括:
将训练信号和所述估计的信道进行卷积 , 得到重构信号。
7、 一种信噪比估计装置, 其特征在于, 该装置包括: 信号获取模块、 信道估计模块、 重构信号模块、 最大似然估计模块、 信噪比模块; 其中, 信号获取模块, 用于获取训练信号经信道传输后得到的接收信号; 信道估计模块, 用于对所述信道进行信道估计;
重构信号模块, 用于根据信道估计结果, 对训练信号经所述估计的信 道传输后的信号进行重构, 得到重构信号;
最大似然估计模块, 用于根据得到的重构信号及所述接收信号, 利用 服从高斯分布的噪声信号的实部分量和虚部分量的联合分布概率密度函 数, 采用最大似然准则确定出接收信号功率最大似然估计值 z、 噪声信号 功率最大似然估计值 iML分别与重构信号和接收信号的关系, 得到 SML和 NML ;
信噪比模块, 用于根据得到的 和 &ML确定出信噪比的最大似然估计 值。
8、 如权利要求 7所述的装置, 其特征在于, 所述最大似然估计模块具 体用于:
确定服从高斯分布的噪声信号的实部分量和虚部分量的联合分布概率 密度函数;
根据重构信号、接收信号功率 5、 噪声信号、 噪声信号功率 N与接收信 号之间的关系, 将联合分布概率密度函数中的噪声信号的实部分量和虚部 分量采用重构信号、 接收信号、 S和 N表示, 得到接收信号相对 S和 N的条 件分布概率密度函数;
根据所述条件分布概率密度函数得到关于 S和 N的似然函数; 根据关于 S和 N的似然函数,采用最大似然准则确定 z、 分别与重 构信号和接收信号的关系。
9、 如权利要求 8所述的装置, 其特征在于, 所述最大似然估计模块还 用于: 对所述条件分布概率密度函数取对数,得到关于 S和 N的对数似然函 数;
采用最大似然准则确定 SML、 NML分别与重构信号和接收信号的关系, 包括:
对所述关于 S和 N的对数似然函数, 分别对 S和 N求偏导, 确定使偏导 结果等于零的 S和 W为 P i^z , 确定 、 分别与重构信号和接收信 号的关系;
或者, 利用牛顿迭代法\拉格朗日法, 对所述关于 S和 N的对数似然函 数进行求解, 确定 z、 分别与重构信号和接收信号的关系。
10、 如权利要求 7至 9任一项所述的装置, 其特征在于, 所述最大似 然估计模块确定的 ^、 NMJ分别与重构信号和接收信号的关系具体为:
Figure imgf000017_0001
其中, 为接收信号的采样值总数, r 、 分别为接收信号第 个采样 值的实部和虚部, 分别为重构信号第 k个采样值的实部和虚部。
11、 如权利要求 7至 9任一项所述的装置, 其特征在于, 所述重构信 号估计模块具体用于将训练信号和所述估计的信道进行卷积 , 得到重构信
PCT/CN2012/071675 2011-06-13 2012-02-27 一种信噪比估计方法与装置 WO2012171360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110157494.0 2011-06-13
CN2011101574940A CN102833191A (zh) 2011-06-13 2011-06-13 一种信噪比估计方法与装置

Publications (1)

Publication Number Publication Date
WO2012171360A1 true WO2012171360A1 (zh) 2012-12-20

Family

ID=47336164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071675 WO2012171360A1 (zh) 2011-06-13 2012-02-27 一种信噪比估计方法与装置

Country Status (2)

Country Link
CN (1) CN102833191A (zh)
WO (1) WO2012171360A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079511A (zh) * 2014-06-17 2014-10-01 华为技术有限公司 最大似然ml接收机数据处理的方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104521212B (zh) * 2013-07-25 2017-08-11 华为技术有限公司 信号重建方法和装置
US10068327B2 (en) * 2013-09-18 2018-09-04 Siemens Medical Solutions Usa, Inc. Method and system for statistical modeling of data using a quadratic likelihood functional
CN108108427A (zh) * 2017-12-18 2018-06-01 辽宁师范大学 基于混合统计建模的纹理图像检索方法
CN109520429B (zh) * 2018-11-26 2020-11-06 重庆大学 白光干涉型光纤法珀传感器的少光谱采样点高速测量系统及方法
CN110808929A (zh) * 2019-10-23 2020-02-18 中国人民解放军陆军勤务学院 相减策略的实复转换式信噪比估计算法
CN114884778B (zh) * 2022-05-25 2023-05-30 中国电子科技集团公司第十研究所 多载波联合的信噪比估计方法、载波合并方法及通信系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491059A (zh) * 2002-10-17 2004-04-21 华为技术有限公司 一种在全球移动通信系统中获取突发信号信噪比的方法
CN101895313A (zh) * 2010-07-12 2010-11-24 西安电子科技大学 Hf/vhf突发通信的信噪比估计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677445B1 (en) * 2004-12-28 2006-09-06 Alcatel Improved blind SNR estimation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491059A (zh) * 2002-10-17 2004-04-21 华为技术有限公司 一种在全球移动通信系统中获取突发信号信噪比的方法
CN101895313A (zh) * 2010-07-12 2010-11-24 西安电子科技大学 Hf/vhf突发通信的信噪比估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, CHEN ET AL.: "Effective SNR Estimation Methods for Burst Transmission in ISI Channel", COMMUNICATIONS TECHNOLOGY, vol. 41, no. 9, 30 September 2008 (2008-09-30), pages 17 - 19, 22 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079511A (zh) * 2014-06-17 2014-10-01 华为技术有限公司 最大似然ml接收机数据处理的方法及装置
CN104079511B (zh) * 2014-06-17 2017-09-12 华为技术有限公司 最大似然ml接收机数据处理的方法及装置

Also Published As

Publication number Publication date
CN102833191A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2012171360A1 (zh) 一种信噪比估计方法与装置
US7397758B1 (en) Channel tracking in a OFDM wireless receiver
US7995672B2 (en) Method and apparatus for reception in a multi-input-multi-output (MIMO) orthogonal frequency domain modulation (OFDM) wireless communication system
US20040100898A1 (en) Method and apparatus for channel quality metric generation within a packet-based multicarrier modulation communication system
US8462613B2 (en) Channel estimation for long term evolution (LTE) terminals
US7995665B2 (en) Method and apparatus for reception in a multi-input-multi-output (MIMO) orthogonal frequency domain modulation (OFDM) wireless communication system
CN103414669B (zh) 一种基于可变窗长的ccfd系统自干扰信道估计方法和装置
TW200952405A (en) Apparatus and method for receiving signal and global system for mobile communication phone
CN112702290B (zh) 一种信道估计方法和设备
WO2013095353A1 (en) An orthogonal frequency division multiplex (ofdm) receiver with phase noise mitigation and reduced latency
US9369328B2 (en) System and method for providing channel equalization in orthogonal frequency division multiplexing (OFDM) wireless systems
US8094760B2 (en) Channel estimation
JP5246771B2 (ja) 位相雑音補償受信機
WO2013071759A1 (zh) 一种相位噪声的估计方法、估计装置、接收机及通信设备
Zhao et al. A burst sc-fde scheme for high-speed communication based on radar
WO2012163102A1 (zh) 一种信干噪比的估计方法及装置
Bellili et al. SNR estimation of QAM-modulated transmissions over time-varying SIMO channels
CN102882816B (zh) 一种多路信号均衡的方法及装置
Yu et al. A joint scheme of decision-directed channel estimation and weighted-average phase error tracking for OFDM WLAN systems
KR101182889B1 (ko) 직접변환수신기의 적응형 자기 이미지 제거방법 및 그 장치
CN109842577B (zh) 一种高动态情景下信道质量测定方法
KR102029738B1 (ko) 채널 추정 장치 및 방법
KR101943983B1 (ko) 차량 간 통신에서 채널 추정을 위한 방법 및 이를 위한 장치
TWI446735B (zh) 合作式通訊系統及其時間延遲補償方法
EP1661344A2 (en) Methods and systems for estimating channel response by applying bias to an initial channel estimate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800920

Country of ref document: EP

Kind code of ref document: A1