WO2012171314A1 - 一种基于几何图像的三维网格模型错误保护编码方法 - Google Patents

一种基于几何图像的三维网格模型错误保护编码方法 Download PDF

Info

Publication number
WO2012171314A1
WO2012171314A1 PCT/CN2011/084749 CN2011084749W WO2012171314A1 WO 2012171314 A1 WO2012171314 A1 WO 2012171314A1 CN 2011084749 W CN2011084749 W CN 2011084749W WO 2012171314 A1 WO2012171314 A1 WO 2012171314A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh model
coding
dimensional
geometric image
model
Prior art date
Application number
PCT/CN2011/084749
Other languages
English (en)
French (fr)
Inventor
朱为鹏
罗笑南
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2012171314A1 publication Critical patent/WO2012171314A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/20Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/65Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using error resilience

Definitions

  • the present invention relates to the field of coding technology of a three-dimensional mesh model, and more particularly to an error protection coding method for a three-dimensional mesh model in a network environment application with a high bit error rate.
  • the wireless channel is the primary path for data transmission.
  • a wireless channel is not only noise, but also multi-path and shadow fading, the bit error rate of up to 10- 3 -1 ( ⁇ 5 (a wired channel bit error rate is generally 10-6 or less). High error The rate seriously affects the quality of data transmission. Therefore, whether the 3D model coding has strong error resistance is one of the keys to ensure the quality of service (QoS) of the 3D model.
  • QoS quality of service
  • a three-dimensional mesh model is usually composed of thousands of vertices and triangles with a complex topology.
  • the 3D mesh model data needs to be compressed. Due to the use of compression coding schemes such as predictive coding and indefinite long entropy coding, the three-dimensional mesh data compression efficiency is higher, and the compressed bit stream is more sensitive to transmission errors. Random or bursty transmission errors, if they occur, are likely to propagate rapidly in compressed coded data, causing serious error propagation.
  • the three-dimensional mesh model data is defined on the two-dimensional manifold.
  • the traditional digital signal processing technology is not easy to apply directly, the data compression efficiency is not high, and the data segmentation and other operations are complicated.
  • the 3D mesh model is very sensitive to transmission errors due to its irregular mesh topology. Even if there is a small transmission error, it may not be able to maintain the global uniform topology of the 2D manifold surface, resulting in the transmission failure of the entire model. .
  • the present invention proposes a three-dimensional mesh model error protection coding method based on geometric images. A balance between coding efficiency and error resilience has been achieved. Summary of the invention
  • the method of the invention proposes a uniform quasi-conservative plane parameterization method for an arbitrary three-dimensional mesh model, and can establish a uniform target-preserving mapping between the three-dimensional mesh model and the plane parameter domain of an arbitrary topology.
  • the 3D model geometric position information can be converted into a regular sampled planar signal.
  • the uniform pseudo-preservation angle mapping ensures that the plane signal of the regular sampling faithfully records the surface geometric information of the three-dimensional mesh model, and overcomes the bottleneck of creating the three-dimensional model rule sampling data.
  • this paper presents a compression coding method based on error protection, which achieves a balance between coding efficiency and error resilience.
  • the technical solution adopted by the present invention is: a geometric image-based three-dimensional mesh model error protection coding method, wherein the three-dimensional mesh model uses a triangular mesh model, and the method includes Take - F part:
  • the construction of geometric images mainly includes the following steps:
  • step (3) repeating step (2) until the parametric deformation introduced by all adjacent triangles is greater than a preset value, stopping the flattening operation of the seed triangle and its field;
  • the uniform quasi-conservative plane parameterization method proposed by the method performs parameterization processing on the model with low error, and the geometric information of the three-dimensional model can be uniformly sampled and further encoded into a two-dimensional image. As its irregular mesh structure is eliminated, the correlation between model data is greatly reduced, and the correlation is enhanced. Therefore, the coded 3D model data can be fundamentally improved in error resilience.
  • the method also provides a compression coding scheme based on error protection, which achieves a good balance between coding efficiency and error resilience.
  • Figure 1 is a flow chart of the method of the present invention
  • FIG. 3 is a diagram of a coding effect according to an embodiment of the present invention.
  • the method of the invention proposes a three-dimensional mesh model error protection coding method based on the image of the child.
  • the main processes are as follows: (1) performing uniform quasi-conservative plane parameterization on the existing mesh model; (2) uniformizing the mesh model The parametric angle plane parameterization result is uniformly sampled, and the geometric image is constructed; (3) error protection compression coding is performed on the geometric image data and the cutting path data; (4) the three-dimensional mesh model is restored according to the geometric image data and the cutting path data.
  • the specifics are shown in Figure 1.
  • a method of parameterizing the conformal plane is to reduce and control the parametric deformation as much as possible.
  • the step of parameterizing the uniform pseudo-preserving plane of the triangular mesh model is as follows: First, a non-boundary seed triangle is randomly selected on the initial triangular mesh model, and its length-preserving map (completely without deformation) to the plane; then starting from the triangle, According to the local geometric deformation metric proposed in this paper, each time a neighboring triangle with the smallest deformation is selected to flatten, and all the triangles are not overlapped when flattening until the parametric deformation introduced by all adjacent triangles is greater than the preset value; The seed triangle is flattened for a new round, so that each time the flattening operation creates a new quasi-expandable patch (ie, a patch that parametrically deforms within a certain control range).
  • T is a triangle on the original triangular mesh model, corresponding to the corresponding mapping on the two-dimensional plane
  • is the maximum and minimum eigenvalues of the affine transformation J / matrix, corresponding to The maximum and minimum lengths of the length of the unit length at different locations on the original plane after affine transformation.
  • the mapping from the seed triangle is guaranteed, that is, y and the value are the same as 1, and the adjacent triangle has one edge to maintain the original length. Therefore, if the adjacent triangle is closer to the conformal mapping, the local triangular area is The integrated parameterized deformation of the angle and angle is smaller.
  • the main advantages of the uniform quasi-conservative plane parameterization method are as follows: firstly, it is applicable to the 3D model of any topology; secondly, the segmentation and parameterization of the model are simultaneous, which is simple and fast, and has high computational efficiency; at the same time, it can ensure plane parametric deformation. Lower, by changing the threshold size, you can also flexibly control the accuracy as needed.
  • M is the initial triangular mesh model
  • D is the corresponding plane parameter domain after the partial meshing of the triangular mesh model
  • the parameterized function ⁇ gives the slice linear mapping from the parameter domain D to the triangular mesh model.
  • the parameter domain D take a "sampling grid point" along a straight line at a uniform interval.
  • the parameterization function ⁇ the corresponding information of the sampling grid points on the initial three-dimensional grid model can be calculated, and the geometry of the regular sampling grid points is calculated.
  • the information is stored in the format of the image (using the three-dimensional coordinates instead of the RGB components), and the three-dimensional model rule data can be converted into a geometric image.
  • the three-dimensional coordinate information based on the cutting boundary and the boundary of the mesh edge are three in reconstruction. Dimensional coordinate information, the mesh piece is stitched to obtain a reconstructed mesh that is consistent with the initial mesh topology.
  • FIG. 3 is a coding effect diagram of the method of the present invention, wherein (a) is an input original three-dimensional mesh model; (b) a corresponding parameterized parameter result thereof; (c) a corresponding geometric image thereof; (d) A regular sampling mesh model based on geometric image and cut path reconstruction.
  • the invention can solve the problem that the irregular mesh structure of the triangular mesh model is very sensitive to transmission errors. With the elimination of the irregular mesh structure, the correlation between the model data is greatly reduced, and the correlation is enhanced. Therefore, the coded 3D model data can be fundamentally improved in error resilience.
  • the method also provides a compression coding scheme based on error protection, which achieves a good balance between coding efficiency and error resilience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明涉及一种基于基于几何图像的三维网格模型错误保护编码方法。该方法通过均匀准保角平面参数化方法,构造几何图像,然后针对几何图像的特征进行错误保护压缩编码。本方法能够解决三角网格模型不规则的网状结构对于传输错误非常敏感的问题,随着不规则的网状结构消除,模型数据之间关联性大大降低,同时相关性增强。因此这种编码的三维模型数据,其误码弹性可得到根本改善。为了节省普适计算环境下的网络带宽资源,本方法还给出了基于错误保护的压缩编码方案,取得了编码效率和误码弹性之间的较好平衡。

Description

说明书 一种基于几何图像的三维网格模型错误保护编码方法 技术领域
本发明涉及三维网格模型的编码技术领域,具体地说是涉及到误 码率较高的网络环境应用中的三维网格模型的错误保护编码方法。
背景技术
在普适计算环境下, 无线信道是数据传输的主要通路。与有线信 道相比, 无线信道不仅噪声大, 而且具有多径和阴影衰落, 误码率高 达 10— 3-1(Τ5 (有线信道的误码率一般在 10— 6以下)。 高误码率严重影 响数据传输的质量, 因此, 三维模型编码是否具有很强的抗误码能力 是确保三维模型数据传输服务质量(QoS: Quality of Service)的关键 之一。
三维网格模型通常由成千上万顶点和三角形组成,具有复杂的拓 扑结构。 在普适计算环境下, 为了节省宝贵的网络带宽资源, 需要对 三维网格模型数据进行压缩。由于预测编码和不定长熵编码等压缩编 码方案的使用,三维网格数据压缩效率越高, 其压縮比特流对传输错 误越敏感。随机或突发的传输错误一旦发生, 很可能在压缩编码数据 中快速地传播, 造成严重的错误蔓延。
目前, 关于改善三维网格模型数据误码弹性的研究很少。提高三 角网格模型误码弹性所采用的方法主要是通过网格分片或分层等数 据分割机制来阻止传输错误的蔓延。 如: 自适应的网格分割编码等。 受限于三维模型不规则的网状拓扑结构, 这些方法不仅操作较复杂, 对误码弹性的改善效果也不能令人满意。
三维网格模型数据定义在二维流形上,传统的数字信号处理技术 不易直接应用, 数据压缩效率不高, 数据分片等操作复杂。 同时三维 网格模型因其不规则的网状拓扑结构, 对于传输错误非常敏感, 即使 出现很小的传输错误,也有可能无法维持二维流形表面全局一致的拓 扑结构, 导致整个模型的传输失败。
因此,建立三维网格模型与二维图像之间的联系对于三维模型压 缩传输的错误保护编码具有非常重要的意义,它意味着三维模型的所 有属性可以转化为规则采样的平面信号,从而彻底摆脱拓扑连接信息 的束缚, 并可直接运用正交分析工具对这些信号做分析处理。
为解决上述三维网格模型编码难题,本发明提出了一种基于几何 图像的三维网格模型错误保护编码方法。取得了编码效率和错误弹性 之间的平衡。 发明内容
本发明的方法通过提出了一种针对任意三維网格模型的均匀准 保角平面参数化方法,可建立任意拓扑的三维网格模型与平面参数域 之间的均勾准保角映射。再对参数域规则采样, 即可将三维模型几何 位置信息转化为规则采样的平面信号。均匀准保角映射保证了规则采 样的平面信号忠实地记录了三维网格模型的表面几何信息,克服了创 建三维模型规则采样数据的瓶颈。 得到三维网格模型的规则采样数据后,结合其自身特点并借鉴压 缩视频流抗误码编码技术, 本文给出了基于错误保护的压缩编码方 法, 取得了编码效率和错误弹性之间的平衡。
为达到 .. t述的目的, 本发明采用的技术方案是: 一种基于几何图 像的三维网格模型错误保护编码方法,其中的三维网格模型本文采用 的是三角网格模型, 该方法包含以— F部分:
几何图像的构造, 主要包括以下几个步骤:
( 1 ) 首先在初始三角网格模型上随机选取一个非边界的种子三 角形, 将其保长映射 (完全无变形) 到平面;
(2 ) 从该种子三角形出发, 依据局部几何变形度量, 每次选取 一个变形最小的相邻三角形展平, 展平时保证所有三角形不重叠;
( 3 )重复歩骤(2 )直到所有相邻三角形引入的参数化变形均大 于预设值, 停止对该种子三角形及其领域进行的展平操作;
(4) 重新随机选取种子三角形进行新一轮的展平, 每一次展平 操作就生成 ·· -个新的准可展面片(即参数化变形在某控制范围内的面 片), 直至初始三角网格模型全部展平完毕。
( 5 ) 根据需要确定采样密度, 对均匀准保角平面参数化结果进 行均匀釆样;
(6 ) 对于每个有效采样点, 根据其所落入三角形的三个顶点的 三维坐标值和该采样点对应的重心坐标计算采样点的三维坐标;
( 7 ) 将采样点对应的三维坐标值标准化到 [0, 1 ]区域; 当几何图像构造完成后, 在对其进行基于错误保护的编码, 从而 得到兼顾存储优化和扛误码性的编码结果。编码过程可分成以下几个 步骤:
( 1 ) 将几何图像划分为 8X8的数据小块;
(2 ) 剔除纯背景数据块;
( 3 )对图像做分块 DCT变换, 对切割路径、 块系数和支流系数 采用定长编码, 对交流系数霍夫曼编码;
本发明的技术特点主要体现如下:
1、 本方法提出的均匀准保角平面参数化方法对模型做低误差的 参数化处理, 三维模型的几何信息可被均匀的采样, 并进一歩编码为 二维图像的方式。随着其不规则的网状结构消除, 模型数据之间关联 性大大降低, 同时相关性增强。 因此这种编码的三维模型数据, 其误 码弹性可得到根本改善。
2、 为了节省普适计算环境下的网络带宽资源, 进一步提高编码 效率, 本方法还给出了基于错误保护的压縮编码方案, 取得了编码效 率和误码弹性之间的较好平衡。
附图说明
图 1为本发明方法的流程图;
图 2为本发明实施例的流程示意图;
图 3为本发明实施例的编码效果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方 案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。基于本发明中的实施例, 本领域普 通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
本发明方法提出基于儿何图像的三维网格模型错误保护编码方 法, 主要的流程如下: (1 )对已有的网格模型实施均匀准保角平面参 数化; (2)对网格模型的均匀准保角平面参数化结果均匀采样, 构造 几何图像; (3 )对几何图像数据和切割路径数据进行错误保护压缩编 码; (4)根据几何图像数据和切割路径数据恢复三维网格模型。 具体 如图 1所示。
其中,一种均勾准保角平面参数化方法, 是为了尽量降低并控制 参数化变形。三角网格模型的均匀准保角平面参数化步骤如下: 首先 在初始三角网格模型上随机选取一个非边界的种子三角形,将其保长 映射(完全无变形)到平面; 然后从该三角形出发, 依据本文提出的 局部几何变形度量, 每次选取一个变形最小的相邻三角形展平, 展平 时保证所有三角形不重叠,直到所有相邻三角形引入的参数化变形均 大于预设值; 再重新随机选取种子三角形进行新一轮的展平, 这样每 一次展平操作就生成一个新的准可展面片(即参数化变形在某控制范 围内的面片)。
衡量局部三角形参数化变形程度日 , 假定 T为原始三角网格模型 上的一个三角形, 为其二维平面上对应的映射, 和^ "为仿射变 换 J /矩阵的最大和最小特征值, 对应于原始平面上的不同位置单 位长度在仿射变换之后长度的最大值和最小值。 考虑到从种子三角形开始的映射是保长的, 即 y 与 值同为 1, 与其相邻的三角形均有一条边保持原长, 因此, 相邻三角形若越 近似于保角映射则局部三角形面积和角度的综合参数化变形越小。以 此类推, 在随后的展平过程中, 每一次都是选取参数化变形最小且未 超出预定阈值的相邻三角形展平,对整个展平区域的映射可视为准保 长, 因此, 仍可近似认为所有相邻三角形中映射越接近于保角映射, 其综合参数化变形越小。 定义局部三角形参数化变形为: 当且仅当 等于^,时, 由 ^到 '的映射为保角映射。 采用这种 参数化变形度量方法, 可更好的控制整体参数化误差,保证每一步展 开操作后得到准可展面片。
均匀准保角平面参数化方法的主要优势如下:首先适用于任意拓 扑的三维模型; 其次模型的分割与参数化同时进行, 既简单又快速, 具有很高的运算效率; 同时可确保平面参数化变形较低, 通过改变阈 值大小, 还可以根据需要灵活地控制精度。
假定 M是初始的三角网格模型, D是三角网格模型局部分割展平 后对应的平面参数域, 参数化函数 ^给出从参数域 D到三角网格模型 的分片线性映射。在参数域 D上按均匀的间隔沿直线取 "个采样 格点, 根据参数化函数 ^可计算出这些采样格点在初始三维网格模型 上对应的儿何信息,把规则采样格点的几何信息按照图像的格式储存 (用三维坐标代替 RGB分量),即可将三维模型规则釆样数据转化为 几何图像。在重构时基于切割边界的三维坐标信息和网格边的边界三 维坐标信息, 对网格片进行缝合处理, 得到与初始网格拓扑一致的重 构网格。
上述过程可通过图 2中的流程图来表示。
图 3为本发明方法的编码效果图,其中 (a)为输入的原始三维网格 模型; (b)为其对应的平面参数化结果; (c)为其对应的几何图像; (d) 为根据几何图像和切割路径重构的规则采样网格模型。
通过本发明能够解决三角网格模型不规则的网状结构对于传输 错误非常敏感的问题, 随着不规则的网状结构消除, 模型数据之间关 联性大大降低, 同时相关性增强。 因此这种编码的三维模型数据, 其 误码弹性可得到根本改善。 为了节省普适计算环境 F的网络带宽资 源, 本方法还给出了基于错误保护的压缩编码方案, 取得了编码效率 和误码弹性之间的较好平衡。

Claims

权利要求书
1、 一种基于几何图像的三维网格模型错误保护编码方法, 其特 征在于,减少网格模型存储空间的同时提高三维网格模型编码的误码 能力, 该方法包含以下步骤:
51、 对己有的网格模型实施均匀准保角平面参数化;
52、对 格模型的均匀准保角平面参数化结果均匀采样,构造几 何图像;
53、 对几何图像数据和切割路径数据进行错误保护压缩编码;
54、 根据儿何图像数据和切割路径数据恢复三维网格模型。
2、 根据权利要求 1所述的方法, 其特征在于, 该方法中的三维 网格模型采用的是三角网格模型, 所述的均匀准保角平面参数化, 可 用以下步骤实现:
S11、 首先在初始三角网格模型 .,, t:随机选取一个非边界的种子三 角形, 将其完全无变形的保长映射到平面;
512、 从该种子三角形出发, 依据局部几何变形度量, 每次选取 一个变形最小的相邻三角形展平, 展平时保证所有三角形不重叠;
513、 重复步骤 S12直到所有相邻三角形引入的参数化变形均大 于预设值, 停止对该种子三角形及其领域进行的展平操作;
514、 重新随机选取种子三角形进行新一轮的展平, 每一次展平 操作就生成一个新的准可展面片,即参数化变形在某控制范围内的面 片, 直至初始三角网格模型全部展平完毕。 3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述的构造 几何图像的步骤为-
S2K 根据需要确定采样密度, 对均匀准保角平面参数化结果进 行均勾采样;
522、 对于每个有效采样点, 根据其所落入三角形的三个顶点的 三维坐标值和该采样点对应的重心坐标计算采样点的三维坐标;
523、 将采样点对应的三维坐标值标准化到 [0, 1]区域。
4、 根据权利要求 3所述的方法, 其特征在于, 所述的对几何图 像数据和切割路径数据进行错误保护压缩编码的歩骤为:
S3 K 将几何图像划分为 8 X 8的数据小块;
532、 剔除纯背景数据块;
533、对图像做分块 DCT变换, 对切割路径、块系数和支流系数 采用定长编码, 对交流系数霍夫曼编码。
5、 根据权利要求 4所述的方法, 其特征在于, 所述的根据几何 图像数据和切割路径数据恢复三维网格模型的步骤为:
S4K 将几何图像数据映射到三维空间, 得到网格片;
542、 将切割路径数据映射到三维空间;
543、 将分开的网格片的边界点按照距离最近的原则映射到切割 路径上;
S444、对边界区域重新网格化,得到与输入网格拓扑结构相同的 网格模型。
PCT/CN2011/084749 2011-06-15 2011-12-27 一种基于几何图像的三维网格模型错误保护编码方法 WO2012171314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110161865 CN102281440A (zh) 2011-06-15 2011-06-15 一种基于几何图像的三维网格模型错误保护编码方法
CN201110161865.2 2011-06-15

Publications (1)

Publication Number Publication Date
WO2012171314A1 true WO2012171314A1 (zh) 2012-12-20

Family

ID=45106577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084749 WO2012171314A1 (zh) 2011-06-15 2011-12-27 一种基于几何图像的三维网格模型错误保护编码方法

Country Status (2)

Country Link
CN (1) CN102281440A (zh)
WO (1) WO2012171314A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281440A (zh) * 2011-06-15 2011-12-14 中山大学 一种基于几何图像的三维网格模型错误保护编码方法
CN103489221B (zh) * 2013-09-30 2017-11-07 中国科学院深圳先进技术研究院 四边形网格共形参数化方法
CN104570928A (zh) * 2013-10-29 2015-04-29 中国科学院沈阳自动化研究所 基于共形参数化的网格曲面上数控加工轨迹规划方法
CN104715496B (zh) * 2015-03-23 2017-11-07 中国科学技术大学 云环境下基于三维点云模型的图像预测方法、系统及装置
CN105203095B (zh) * 2015-09-14 2018-11-30 博康云信科技有限公司 一种室内三维空间实时路径导航方法及导航系统
CN117475109B (zh) * 2023-12-21 2024-03-19 中建三局集团有限公司 基于拉伸体几何切割的模型流水段划分方法、装置及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577310B1 (en) * 1998-12-01 2003-06-10 Samsung Electronics Co., Ltd. 3D mesh coding/decoding method and apparatus for error resilience and incremental rendering
CN101123000A (zh) * 2007-07-05 2008-02-13 广东中大讯通软件科技有限公司 一种三维图形数据的压缩处理方法
CN101799936A (zh) * 2010-03-22 2010-08-11 董洪伟 基于分片的特征敏感的曲面重建方法
CN102281440A (zh) * 2011-06-15 2011-12-14 中山大学 一种基于几何图像的三维网格模型错误保护编码方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577310B1 (en) * 1998-12-01 2003-06-10 Samsung Electronics Co., Ltd. 3D mesh coding/decoding method and apparatus for error resilience and incremental rendering
CN101123000A (zh) * 2007-07-05 2008-02-13 广东中大讯通软件科技有限公司 一种三维图形数据的压缩处理方法
CN101799936A (zh) * 2010-03-22 2010-08-11 董洪伟 基于分片的特征敏感的曲面重建方法
CN102281440A (zh) * 2011-06-15 2011-12-14 中山大学 一种基于几何图像的三维网格模型错误保护编码方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN, YIHUANG ET AL.: "Detection and Correction of Transmission Errors in JPEG Images", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, vol. 8, no. 2, April 1998 (1998-04-01), pages 221 - 231 *
ZHU, WEIPENG ET AL.: "Error-Resilient Coding of 3-D Graphic Models for Ubiquitous Multimedia Services", ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI, vol. 50, no. 3, May 2011 (2011-05-01) *

Also Published As

Publication number Publication date
CN102281440A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
WO2012171314A1 (zh) 一种基于几何图像的三维网格模型错误保护编码方法
KR20140133817A (ko) 옥트리 분해에 기초한 3d 모델의 효율적인 압축
JP4672735B2 (ja) 効果的なテクスチャマッピングのための3次元メッシュ情報のテクスチャ座標符号化及び復号化方法
WO2012171312A1 (zh) 一种面向普适终端的三维网格模型连续多分辨率编码方法
CN113613010A (zh) 基于稀疏卷积神经网络的点云几何无损压缩方法
CN102625126A (zh) 一种基于预测的三维网格编码方法
CN104244009B (zh) 一种分布式视频编码中码率控制方法
CN104702961B (zh) 一种分布式视频编码中码率控制方法
KR20150004838A (ko) 멀티-컴포넌트 3d 모델에 대한 에러 메트릭을 추정하기 위한 방법 및 장치
WO2022042538A1 (zh) 一种基于块的点云几何帧间预测方法和解码方法
Park et al. Error resilient 3-D mesh compression
CN103260030B (zh) 面向移动终端三维模型流式传输方法
CN104318505A (zh) 基于图像离散余弦变换的三维网格模型盲水印方法
CN107093197B (zh) 一种基于局部圆柱坐标的动画压缩方法
Bao et al. Remote walkthrough over mobile networks using 3-D image warping and streaming
CN113240788A (zh) 三维数据的传输和接收方法、设备和计算机可读存储介质
Wei et al. Content-Adaptive Level of Detail for Lossless Point Cloud Compression
WO2023174334A1 (zh) 编码、解码方法、装置及设备
Dong et al. 3D model progressive compression algorithm using attributes
Shi et al. Realistic mesh compression based on geometry image
US20230316585A1 (en) Atlas sampling based mesh compression with charts of general topology
WO2024083039A1 (zh) 网格编码方法、网格解码方法及相关设备
KR20230012558A (ko) 비디오 기반 포인트 클라우드 코딩을 위한 고속 재채색
WO2024083043A1 (zh) 网格编码方法、装置、通信设备及可读存储介质
US20230156222A1 (en) Grid-based patch generation for video-based point cloud coding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867597

Country of ref document: EP

Kind code of ref document: A1