WO2012169287A1 - 燃料電池の湿潤状態制御装置 - Google Patents

燃料電池の湿潤状態制御装置 Download PDF

Info

Publication number
WO2012169287A1
WO2012169287A1 PCT/JP2012/060572 JP2012060572W WO2012169287A1 WO 2012169287 A1 WO2012169287 A1 WO 2012169287A1 JP 2012060572 W JP2012060572 W JP 2012060572W WO 2012169287 A1 WO2012169287 A1 WO 2012169287A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
temperature
target
control unit
flow rate
Prior art date
Application number
PCT/JP2012/060572
Other languages
English (en)
French (fr)
Inventor
青木 哲也
充彦 松本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011126109A external-priority patent/JP5765064B2/ja
Priority claimed from JP2011165322A external-priority patent/JP5834594B2/ja
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201280026602.3A priority Critical patent/CN103563148B/zh
Priority to CA2838647A priority patent/CA2838647C/en
Priority to EP12796673.7A priority patent/EP2720306B8/en
Priority to US14/123,868 priority patent/US9620797B2/en
Publication of WO2012169287A1 publication Critical patent/WO2012169287A1/ja
Priority to US15/444,882 priority patent/US9735437B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an apparatus for controlling the wet state of a fuel cell.
  • Maintaining the electrolyte membrane in an appropriate wet state is important for efficient fuel cell power generation. That is, if the wet state of the electrolyte membrane is too high, flooding may occur or a purge operation at the time of stoppage is required in preparation for the start below zero. If the electrolyte membrane is too wet, the voltage of the fuel cell stack may drop and the output may be greatly reduced. Therefore, in JP2007-115488A issued by the Japan Patent Office in 2007, the pressure control valve and the cathode compressor are controlled so that the cathode gas pressure and the cathode gas flow rate can be maintained to maintain the electrolyte membrane in a suitable wet state. In particular, when controlling on the wet side in consideration of fuel consumption, the rotational speed is first reduced to reduce the power consumption of the cathode compressor, and then the pressure regulating valve is opened to raise the pressure.
  • An object of the present invention is to provide a fuel cell wet state control device capable of maintaining an electrolyte membrane in an appropriate wet state while suppressing deterioration of fuel consumption including control of cooling water.
  • the fuel cell wet state control device is a priority control unit that preferentially controls any one of pressure and flow rate of cathode gas when adjusting the fuel cell wet state, and the priority control
  • the water temperature control unit controls the temperature of the cooling water when the wet state of the fuel cell can not be adjusted by the control by the control unit, and either the pressure or the flow rate of the cathode gas to compensate for the response delay of the water temperature control unit.
  • a complementary control unit that controls the other.
  • FIG. 1 is a view showing an example of a system to which a fuel cell wetness control device according to the present invention is applied.
  • FIG. 2A is a schematic view illustrating the reaction of the electrolyte membrane in the fuel cell stack.
  • FIG. 2B is a schematic view illustrating the reaction of the electrolyte membrane in the fuel cell stack.
  • FIG. 3 is a block diagram representing the functions involved in controlling the wet state of the controller when the target wet state is lowered.
  • FIG. 4 is a timing chart showing the operation of the wetness control device when the target wet state is lowered.
  • FIG. 5 is a diagram for explaining problems when the control logic is executed when the target wet state is increased.
  • FIG. 1 is a view showing an example of a system to which a fuel cell wetness control device according to the present invention is applied.
  • FIG. 2A is a schematic view illustrating the reaction of the electrolyte membrane in the fuel cell stack.
  • FIG. 2B is a schematic view
  • FIG. 6 is a block diagram representing the function of the controller for controlling the wet state when the target wet state is increased.
  • FIG. 7 is a diagram for explaining the temperature input to the target pressure calculation block B101 of the fuel cell wetness state control device according to the present invention.
  • FIG. 8 is a timing chart showing the operation of the wetness control device when the target wet state rises.
  • FIG. 9A is a block diagram showing the function of the controller of the second embodiment of the fuel cell wetness state control device according to the present invention.
  • FIG. 9B is a block diagram representing the function of the controller of the second embodiment of the fuel cell wetness state control device according to the present invention.
  • FIG. 10 is a timing chart showing the operation of the wetness control device when the target wet state rises.
  • FIG. 10 is a timing chart showing the operation of the wetness control device when the target wet state rises.
  • FIG. 11 is a timing chart showing the operation of the wetting control device when the target wet condition is lowered.
  • FIG. 12A is a block diagram representing functions relating to control of the controller in the third embodiment of the wet condition control device according to the present invention.
  • FIG. 12B is a block diagram representing functions relating to control of the controller in the third embodiment of the wet condition control device according to the present invention.
  • FIG. 13 is a timing chart showing the operation of the wetting control device when the target wet condition is lowered.
  • FIG. 14 is a timing chart showing the operation of the wetness control device when the target wet state rises.
  • FIG. 15A is a block diagram showing functions relating to control of the controller in the fourth embodiment of the wet condition control device according to the present invention.
  • FIG. 15B is a block diagram showing functions relating to control of the controller in the fourth embodiment of the wet state control device according to the present invention.
  • FIG. 16A is a block diagram showing functions relating to control of the controller in the fifth embodiment of the wet condition control device according to the present invention.
  • FIG. 16B is a block diagram showing functions relating to control of the controller in the fifth embodiment of the wet state control device according to the present invention.
  • FIG. 17A is a block diagram showing functions relating to control of the controller in the sixth embodiment of the wet state control device according to the present invention.
  • FIG. 17B is a block diagram showing functions relating to control of the controller in the sixth embodiment of the wet condition control device according to the present invention.
  • FIG. 1 is a view showing an example of a system to which a fuel cell wetness control device according to the present invention is applied.
  • FIG. 1 a basic system for applying a fuel cell wetness control device according to the present invention will be described.
  • the fuel cell stack 10 is supplied with reaction gases (cathode gas O 2 , anode gas H 2 ) and generates power while being maintained at an appropriate temperature. Therefore, the cathode line 20, the anode line 30, and the cooling water circulation line 40 are connected to the fuel cell stack 10.
  • the current generated by the fuel cell stack 10 is detected by the current sensor 101.
  • the generated voltage of the fuel cell stack 10 is detected by a voltage sensor 102.
  • the cathode gas O 2 supplied to the fuel cell stack 10 flows through the cathode line 20.
  • the cathode line 20 is provided with a compressor 21 and a cathode pressure regulating valve 22.
  • the compressor 21 supplies the cathode gas O 2 , ie, air, to the fuel cell stack 10.
  • the compressor 21 is provided in the cathode line 20 upstream of the fuel cell stack 10.
  • the compressor 21 is driven by a motor M.
  • Compressor 21 adjusts the flow rate of the cathode gas O 2 flowing through the cathode line 20.
  • the flow rate of the cathode gas O 2 is adjusted by the rotational speed of the compressor 21.
  • the cathode pressure regulating valve 22 is provided in the cathode line 20 downstream of the fuel cell stack 10. Cathode pressure regulating valve 22 adjusts the pressure of the cathode gas O 2 flowing through the cathode line 20. The pressure of the cathode gas O 2 is adjusted by the opening degree of the cathode pressure regulating valve 22.
  • the flow rate of the cathode gas O 2 flowing through the cathode line 20 is detected by the cathode flow rate sensor 201.
  • the cathode flow rate sensor 201 is provided downstream of the compressor 21 and upstream of the fuel cell stack 10.
  • the pressure of the cathode gas O 2 flowing through the cathode line 20 is detected by the cathode pressure sensor 202.
  • the cathode pressure sensor 202 is provided downstream of the compressor 21 and upstream of the fuel cell stack 10. Further, in FIG. 1, the cathode pressure sensor 202 is located downstream of the cathode flow sensor 201.
  • the anode gas H 2 supplied to the fuel cell stack 10 flows through the anode line 30.
  • An anode recycle line 300 is juxtaposed to the anode line 30.
  • the anode recirculation line 300 branches from the anode line 30 downstream of the fuel cell stack 10 and joins the anode line 30 upstream of the fuel cell stack 10.
  • a cylinder 31, an anode pressure regulating valve 32, an ejector 33, an anode pump 34, and a purge valve 35 are provided in the anode line 30.
  • the anode gas H 2 is stored in the cylinder 31 under high pressure.
  • the cylinder 31 is provided at the uppermost stream of the anode line 30.
  • the anode pressure regulating valve 32 is provided downstream of the cylinder 31.
  • the anode pressure regulating valve 32 regulates the pressure of the anode gas H 2 newly supplied from the cylinder 31 to the anode line 30.
  • the pressure of the anode gas H 2 is regulated by the opening degree of the anode pressure regulating valve 32.
  • the ejector 33 is provided downstream of the anode pressure regulating valve 32.
  • the ejector 33 is located where the anode recirculation line 300 joins the anode line 30.
  • the anode gas H 2 flowing through the anode recirculation line 300 is mixed with the anode gas H 2 newly supplied from the cylinder 31.
  • the anode pump 34 is located downstream of the ejector 33.
  • the anode pump 34 sends the anode gas H 2 flowing through the ejector 33 to the fuel cell stack 10.
  • the purge valve 35 is provided in the anode line 30 downstream of the fuel cell stack 10 and further downstream of the branch portion of the anode recirculation line 300. When the purge valve 35 is opened, the anode gas H 2 is purged.
  • the pressure of the anode gas H 2 flowing through the anode line 30 is detected by the anode pressure sensor 301.
  • the anode pressure sensor 301 is provided downstream of the anode pump 34 and upstream of the fuel cell stack 10.
  • the coolant supplied to the fuel cell stack 10 flows through the coolant circulation line 40.
  • the cooling water circulation line 40 is provided with a radiator 41, a three-way valve 42, and a water pump 43. Further, a bypass line 400 is provided in parallel to the cooling water circulation line 40.
  • the bypass line 400 branches from upstream of the radiator 41 and joins downstream of the radiator 41. Therefore, the cooling water flowing through the bypass line 400 bypasses the radiator 41.
  • the radiator 41 cools the cooling water.
  • the radiator 41 is provided with a cooling fan 410.
  • the three-way valve 42 is located at the merging portion of the bypass line 400.
  • the three-way valve 42 adjusts the flow rate of the cooling water flowing through the line on the radiator side and the flow rate of the cooling water flowing through the bypass line according to the opening degree. The temperature of the cooling water is thereby adjusted.
  • the water pump 43 is located downstream of the three-way valve 42.
  • the water pump 43 sends the cooling water having flowed through the three-way valve 42 to the fuel cell stack 10.
  • the temperature of the coolant flowing through the coolant circulation line 40 is detected by the water temperature sensor 401.
  • the water temperature sensor 401 is provided upstream of the portion where the bypass line 400 branches.
  • the controller inputs signals of the current sensor 101, the voltage sensor 102, the cathode flow rate sensor 201, the cathode pressure sensor 202, the anode pressure sensor 301, and the water temperature sensor 401. Then, the controller outputs a signal to control the operation of the compressor 21, the cathode pressure regulating valve 22, the anode pressure regulating valve 32, the anode pump 34, the purge valve 35, the three-way valve 42, and the water pump 43.
  • the fuel cell stack 10 is supplied with reaction gases (cathode gas O 2 , anode gas H 2 ) and generates power while being maintained at an appropriate temperature.
  • the power generated by the fuel cell stack 10 is supplied to the battery 12 and the load 13 via the DC / DC converter 11.
  • FIGS. 2A and 2B are schematic views illustrating the reaction of the electrolyte membrane in the fuel cell stack.
  • the fuel cell stack 10 is supplied with reactive gases (cathode gas O 2 , anode gas H 2 ) to generate power.
  • the fuel cell stack 10 is configured by stacking several hundreds of membrane electrode assemblies (MEAs) in which a cathode electrode catalyst layer and an anode electrode catalyst layer are formed on both sides of an electrolyte membrane.
  • FIG. 2A shows one MEA.
  • the MEA is supplied with cathode gas (cathode in) (exhausted from the diagonal side (cathode out) and anode gas is supplied (anodized in) and discharged from the diagonal side (anode out). It is done.
  • each membrane electrode assembly (MEA) the following reactions occur in the cathode electrode catalyst layer and the anode electrode catalyst layer according to the load to generate power.
  • the electrolyte membrane In order to generate power efficiently by the above reaction, it is necessary for the electrolyte membrane to be in a suitable wet state.
  • the inventors focused on the flow rate and pressure of the cathode gas O 2 and the temperature of the fuel cell stack 1.
  • the pressure of the cathode gas O 2 decreases when the opening degree of the cathode pressure regulating valve 22 increases. Therefore, by lowering the pressure of the cathode gas O 2 to increase the opening of the cathode pressure regulating valve 22, the cathode gas O 2 is likely to be discharged. As a result, the water discharged together with the cathode gas O 2 is also increased. Therefore, the wet state of the electrolyte membrane can be reduced. On the other hand, the pressure of the cathode gas O 2 increases when the opening degree of the cathode pressure regulating valve 22 decreases.
  • the cathode gas O 2 is less likely to be discharged.
  • the water discharged together with the cathode gas O 2 is also reduced. Therefore, the wet state of the electrolyte membrane can be increased.
  • the amount of water contained in the cathode gas O 2 is reduced. As a result, the water discharged together with the cathode gas O 2 is also reduced. Therefore, the wet state of the electrolyte membrane can be increased.
  • the inventors obtained such a finding. Further, when increasing the rotation speed of the compressor 21 to increase the flow rate of the cathode gas O 2, the fuel consumption is deteriorated power consumption is increased. Therefore, it is desirable to keep the rotational speed of the compressor 21 as low as possible.
  • the inventors have completed the present invention based on such an idea. Specific contents will be described below.
  • FIG. 3 is a block diagram representing the functions involved in controlling the wet state of the controller when the target wet state is lowered.
  • Each block shown in the block diagram indicates each function of the controller as a virtual unit, and each block does not mean physical existence.
  • the wet state control device controls the operation of the compressor 21, the cathode pressure regulating valve 22, the anode pressure regulating valve 32, the anode pump 34, the purge valve 35, the three-way valve 42, and the water pump 43 to wet the electrolyte membrane of the fuel cell stack 10. Control the state.
  • the wet state control device includes a target pressure calculation block B101, a target temperature calculation block B102, and a target flow amount calculation block B103.
  • the target pressure calculation block B101 corresponds to a priority control unit in the claims.
  • the target temperature calculation block B102 corresponds to the water temperature control unit in the claims.
  • the target flow rate calculation block B103 corresponds to the complementary control unit in the claims.
  • Target pressure calculation block B101 is increased the target wastewater Q H2O_out, that is, when the drying reduces the wet state, the target wastewater Q H2O_out, the minimum stack temperature T min, based the minimum cathode flow rate Q min, the target The pressure P target is calculated.
  • the target displacement Q H2 O_out [NL / min] can be obtained by the following equation (2).
  • NL represents Normal Liter, that is, liter at normal condition.
  • the amount of generated water Q H2O_in [NL / min] inside the fuel cell can be obtained by the following equation (3).
  • the target water balance Qnet_water [NL / min] is set to realize the target wet state of the electrolyte membrane determined in accordance with the operating state (load state) of the fuel cell.
  • the target pressure calculation block B101 obtains the target pressure P target based on the target displacement Q H2 O_out thus obtained, the minimum stack temperature T min and the minimum cathode flow rate Q min .
  • the target pressure P target is determined by the following equations (4-1) and (4-2).
  • the minimum stack temperature T min is the stack temperature at which the wet state of the fuel cell stack is maximized.
  • the temperature of the fuel cell stack 1 is lowered. If the temperature of the fuel cell stack 1 is too low, generation failure due to condensed water may occur. On the other hand, if it is too high, deterioration of the fuel cell stack 1 is accelerated. Therefore, the stack temperature at the time of maximizing the wet state of the fuel cell stack is the lowest stack temperature within the range in which the performance of the fuel cell stack can be secured considering these comprehensively.
  • the minimum cathode flow rate Qmin is the cathode flow rate at which the fuel cell stack is in the wet state at its maximum.
  • the cathode flow rate at the time of minimizing the wet state of the fuel cell stack is the lowest cathode flow rate within the range in which the performance of the fuel cell stack can be secured considering these comprehensively.
  • P sat — min is a saturated water vapor pressure with respect to the minimum stack temperature T min , and the above equation (4-2) is obtained based on the Antoin's equation.
  • the target pressure calculation block B101 is increased the target wastewater Q H2O_out, that is, when the drying reduces the wet state, the target wastewater Q H2O_out, the minimum stack temperature T min, the minimum cathode flow rate Q min And calculate the target pressure P target .
  • the target temperature calculation block B102 obtains a target temperature T target based on the target displacement Q H2 O_out , the pressure P sens detected by the cathode pressure sensor 202, and the minimum cathode flow rate Q min . Specifically, it is determined by the following equations (5-1) and (5-2).
  • the expression (5-1) can be obtained by the reverse lookup of the Antoin's expression.
  • P sat — target is a target saturated water vapor pressure.
  • the pressure P sens is detected by the cathode pressure sensor 202.
  • the pressure loss of the fuel cell stack may be previously obtained by experiment and may be estimated based on the pressure loss.
  • the target temperature calculation block B102 obtains the target temperature T target based on the target displacement amount Q H2 O_out , the actual pressure P sens, and the minimum cathode flow rate Q min .
  • the target flow rate calculation block B 103 obtains a target cathode flow rate Q target based on the target displacement Q H 2 O_out , the pressure P sens detected by the cathode pressure sensor 202, and the water temperature T sens detected by the water temperature sensor 401. Specifically, it is determined by the following equations (6-1) and (6-2).
  • P sat — sens is a saturated water vapor pressure at the water temperature T sens detected by the water temperature sensor 401.
  • the target flow rate calculation block B103 obtains the target cathode flow rate Q target based on the target displacement amount Q H2 O_out , the actual pressure P sens, and the actual water temperature T sens .
  • FIG. 4 is a timing chart showing the operation of the wetness control device when the target wet state is lowered.
  • the wetting control device operates as follows when the target wet condition is lowered.
  • the wet control device starts to operate.
  • the target pressure P target is set based on the target displacement Q H2 O_out , the minimum stack temperature T min and the minimum cathode flow rate Q min .
  • the target temperature T target is set based on the target displacement Q H 2 O_out , the actual pressure P sens, and the minimum cathode flow rate Q min .
  • the target cathode flow rate Q target is set based on the target displacement Q H2 O_out , the actual pressure P sens, and the actual water temperature T sens .
  • the target pressure P target is most likely to fluctuate because it is set based on the stack temperature (minimum stack temperature T min ) and the cathode flow rate (minimum cathode flow rate Q min ) at which the wet state is maximized . Therefore, first, the target pressure P target is preferentially lowered. Then, the cathode pressure control valve 22 is controlled so that the target pressure P target is realized. Then, the cathode pressure decreases with almost no response delay.
  • the target temperature T target begins to fluctuate at time t12. That is, the limit value (minimum cathode flow rate Q min ) is used to set the target temperature T target . Also, the sensor detection value P sens of the cathode pressure adjusted as described above is fed back. For this reason, the part which can not adjust only the cathode pressure will be adjusted by the change of the temperature of a cooling water. The temperature of the cooling water is unlikely to change even if the target value changes, and a response delay is likely to occur. The temperature of the cooling water is detected by the water temperature sensor 401, and this temperature is fed back to determine the cathode flow rate, so that the response delay of the temperature of the cooling water is compensated by the cathode flow rate.
  • the limit value minimum cathode flow rate Q min
  • the target cathode flow rate Q target begins to fluctuate at time t13. That is, since the pressure P sens detected by the cathode pressure sensor 202 and the water temperature T sens detected by the water temperature sensor 401 are fed back to determine the cathode flow rate, the target pressure P target and the target temperature T target are changed The amount that can not be adjusted is compensated by the cathode flow rate.
  • the target pressure is first lowered and the cathode pressure regulating valve 22 is opened.
  • the target coolant temperature is raised and the three-way valve 42 is controlled.
  • the target flow rate is increased to increase the rotational speed of the compressor 21.
  • the increase in rotational speed of the compressor 21 is suppressed as much as possible.
  • the power consumption is suppressed and the fuel economy is improved. Do.
  • FIG. 5 is a diagram for explaining problems when the control logic is executed when the target wet state is increased.
  • the target wet condition when the target wet condition goes up, as mentioned above, the wet condition can not be controlled according to the target. That is, since the target pressure P target is set based on the stack temperature (minimum stack temperature T min ) and the cathode flow rate (minimum cathode flow rate Q min ) at which the wet state is maximized, when the target wet state increases, It is hard to change.
  • the target pressure P target and the target temperature T target begin to change at time t22.
  • Temperature has poor responsiveness and is less variable than pressure. Conversely, the pressure fluctuates earlier than the temperature, and the temperature can not be compensated. As a result, the temperature deviates from the target, and as a result, the wet state can not be controlled according to the target.
  • FIG. 6 is a block diagram representing the function of the controller for controlling the wet state when the target wet state is increased.
  • the target pressure calculation block B101 corresponds to the complementary control unit in the claims.
  • the target temperature calculation block B102 corresponds to the water temperature control unit in the claims.
  • the target flow rate calculation block B103 corresponds to the priority control unit in the claims.
  • the target wet state when the target wet state is increased, it is calculated based on the stack temperature (minimum stack temperature T min ) at which the wet state is maximized , and is higher than the minimum stack temperature T min A temperature (calculated value) lower than the water temperature T sens detected by the sensor 401 is used.
  • the operation amount for operating the coolant temperature is, for example, the rotational speed of the water pump 43.
  • the rotational speed of the water pump 43 is smaller, the flow rate of the cooling water is smaller, so the temperature of the fuel cell stack 1 becomes higher.
  • the water discharged together with the cathode gas O 2 is also increased. Therefore, the wet state of the electrolyte membrane is reduced and dried.
  • the rotation speed of the water pump 43 decreases as the wet state of the electrolyte membrane is reduced and dried. As the wet state of the electrolyte membrane is increased, the rotational speed of the water pump 43 is increased.
  • the stack temperature (minimum stack temperature T min ) at which the wet state is maximized is used as shown in the above-mentioned control when the target wet state is lowered.
  • the wet state of the electrolyte membrane is increased to be wetted. If the rotation speed of the water pump 43 is maximum, the wet state of the electrolyte membrane is to be greatly increased. Therefore, at this time, it is calculated based on the stack temperature (minimum stack temperature T min ) at which the wet state is maximized , and is higher than the minimum stack temperature T min but lower than the water temperature T sens detected by the water temperature sensor 401 The temperature (calculated value) is used. In addition, this temperature will coincide with the water temperature T sens detected by the water temperature sensor 401 in a steady state.
  • temperature is calculated according to the rotational speed of the water pump 43.
  • temperature Tcoolant is calculated based on the following equation (7).
  • the temperature calculated in this manner is shown in FIG. That is, when lowering the wet state of the electrolyte membrane and drying it, the stack temperature (minimum stack temperature T min ) at which the wet state is maximized is used. When it is tried to raise the wet state of the electrolyte membrane to make it wet, it is calculated based on the stack temperature (minimum stack temperature T min ) at which the wet state is maximized, and the water temperature sensor is higher than the minimum stack temperature T min A temperature (calculated value) lower than the water temperature T sens detected in 401 is used.
  • the minimum stack temperature T min and the water temperature T sens are connected by a straight line, and the temperature is divided to calculate the temperature T coolerant .
  • the lowest stack temperature T min and the water temperature T sens may be connected by a convex curve downward like an exponential function or by a convex curve upward like a log function. . Such a relationship may be set in advance. Then, the temperature Tcoolant may be calculated based on these curves.
  • FIG. 8 is a timing chart showing the operation of the wetness control device when the target wet state rises.
  • the target wet state can not be achieved with the pressure calculated by the target pressure calculation block B101. Therefore, at the temperature calculated by the target temperature calculation block B102, the target wet state is achieved, and the pressure fluctuates so as to complement the temperature.
  • the target wet state of the fuel cell is changed, and when the wet state is to be increased, the target flow rate first decreases and the rotational speed of the compressor 21 decreases.
  • the target coolant temperature drops and the three-way valve 42 is controlled.
  • the target pressure rises and the cathode pressure regulating valve 22 is closed.
  • the temperature input to the target pressure calculation block B101 does not rapidly switch depending on whether the target wet state is lowered or raised, it is possible to prevent the control from becoming unstable.
  • FIGS. 9A and 9B are block diagrams showing functions related to the wet state control of the controller of the second embodiment of the fuel cell wet state control device according to the present invention.
  • FIG. 9A is when the target wet condition goes up
  • FIG. 9B is when the target wet condition goes down.
  • the wet state control device of the present embodiment includes a target pressure calculation block B201, a target temperature calculation block B202, and a target flow amount calculation block B203.
  • the target pressure calculation block B201 corresponds to the complementary control unit in the claims.
  • the target temperature calculation block B202 corresponds to the water temperature control unit in the claims.
  • the target flow rate calculation block B203 corresponds to the priority control unit in the claims.
  • the target pressure calculation block B201 corresponds to the priority control unit in the claims.
  • the target temperature calculation block B202 corresponds to the water temperature control unit in the claims.
  • the target flow rate calculation block B203 corresponds to the complementary control unit in the claims.
  • the target pressure calculation block B201 obtains a target cathode pressure P target based on the target displacement QH2O_out , the flow rate Q sens detected by the cathode flow rate sensor 201, and the water temperature T sens detected by the water temperature sensor 401.
  • the target cathode pressure P target is determined by the following equations (8-1) and (8-2).
  • P sat — sens is a saturated water vapor pressure with respect to the water temperature T sens detected by the water temperature sensor 401, and the equation (8-2) is obtained based on the Antoine equation.
  • the target pressure calculation block B201 obtains the target cathode pressure P target based on the target displacement amount Q H2 O_out , the actual flow rate Q sens and the actual water temperature T sens .
  • the target temperature calculation block B 202 obtains a target temperature T target based on the target displacement Q H 2 O_out , the minimum cathode pressure P min, and the flow rate Q sens detected by the cathode flow rate sensor 201. Specifically, it is determined by the following equations (9-1) and (9-2). The equation (9-1) can be obtained by the reverse lookup of Antoin's equation.
  • P sat — target is a target saturated water vapor pressure.
  • the target temperature calculation block B202 obtains the target temperature T target based on the target displacement Q H2 O_out , the minimum cathode pressure P min, and the flow rate Q sens detected by the cathode flow rate sensor 201.
  • the target flow rate calculation block B203 decreases the target displacement volume QH2O_out , that is, increases the wet state to wet it, as shown in FIG. 9A, the target displacement volume QH2O_out , the maximum stack temperature Tmax, and the minimum cathode pressure P
  • a target cathode flow rate Q target is determined based on min . Specifically, it is determined by the following equations (10-1) and (10-2).
  • the maximum stack temperature T max is the stack temperature at which the wet state of the fuel cell stack is minimized.
  • the temperature of the fuel cell stack 1 is increased. If the temperature of the fuel cell stack 1 is too low, generation failure due to condensed water may occur. On the other hand, if it is too high, deterioration of the fuel cell stack 1 is accelerated. Therefore, the stack temperature at the time of minimizing the wet state of the fuel cell stack is the highest stack temperature within the range in which the performance of the fuel cell stack can be secured considering these comprehensively.
  • the minimum cathode pressure P min is the cathode pressure at which the fuel cell stack is in a wet state.
  • the cathode pressure at the time of minimizing the wet state of the fuel cell stack is the lowest cathode pressure within the range in which the performance of the fuel cell stack can be secured considering these comprehensively.
  • the target flow rate calculation block B203 increases the target displacement QH2O_out , that is, reduces the wet state to dry, as shown in FIG. 9B, the target displacement QH2O_out and the stack temperature (maximum stack temperature Tmax ) are obtained.
  • the target cathode flow rate Q target is calculated based on a temperature (calculated value) calculated based on the maximum stack temperature T max but higher than the water temperature T sens detected by the water temperature sensor 401 and the minimum cathode pressure P min. Ask for As in the first embodiment, this calculated value is obtained in consideration of the rotational speed of the water pump 43 (the amount of operation for operating the coolant temperature).
  • the target flow rate calculation block B203 obtains the target cathode flow rate Q target .
  • FIG. 10 is a timing chart showing the operation of the wetness control device when the target wet state rises.
  • the wetting control device operates as follows when the target wet condition is raised.
  • the wetness control device starts to operate.
  • the target cathode flow rate Q target is set based on the target displacement Q H2 O_out , the maximum stack temperature T max and the minimum cathode pressure P min .
  • the target temperature T target is set based on the target displacement Q H2 O_out , the minimum cathode pressure P min, and the actual flow rate Q sens .
  • the target cathode pressure P target is set based on the target displacement Q H 2 O_out , the actual flow rate Q sens, and the actual water temperature T sens .
  • the target flow rate Q target is most likely to fluctuate because it is set based on the stack temperature (maximum stack temperature T max ) and the cathode pressure (minimum cathode pressure P min ) when the wet state is minimized. Therefore, first, the target flow rate Q target is lowered preferentially. Then, the compressor 21 is controlled so that the target flow rate Q target is realized. Then, the cathode flow rate decreases with almost no response delay.
  • the target temperature T target begins to fluctuate at time t32. That is, the limit value (minimum cathode pressure P min ) is used to set the target temperature T target . Also, the sensor detection value Q sens of the cathode flow rate adjusted as described above is fed back. For this reason, the part which can not adjust only the cathode flow rate will be adjusted by the change of the temperature of a cooling water. The temperature of the cooling water is unlikely to change even if the target value changes, and a response delay is likely to occur. The temperature of the cooling water is detected by the water temperature sensor 401, and this temperature is fed back to determine the cathode pressure, so that the response delay of the temperature of the cooling water is compensated by the cathode pressure.
  • the limit value minimum cathode pressure P min
  • the target cathode pressure P target begins to fluctuate at time t33. That is, since the flow rate Q sens detected by the cathode flow rate sensor 201 and the water temperature T sens detected by the water temperature sensor 401 are fed back to determine the cathode pressure, the target flow rate Q target and the target temperature T target are changed. The amount that can not be adjusted is compensated by the cathode pressure.
  • the target flow rate is first lowered to lower the rotational speed of the compressor 21.
  • the target coolant temperature is lowered to control the three-way valve 42.
  • the target pressure is increased and the cathode pressure regulating valve 22 is closed.
  • FIG. 11 is a timing chart showing the operation of the wetting control device when the target wet condition is lowered.
  • the wet condition can not be controlled as desired. That is, since the target flow rate Q target is set based on the stack temperature (maximum stack temperature T max ) and the cathode pressure (minimum cathode pressure P min ) at the time of minimizing the wet state, when the target wet state decreases, It is hard to change.
  • the target flow rate Q target and the target temperature T target begin to change at time t42.
  • Temperature has poor responsiveness and is less likely to fluctuate than flow rate. Conversely, the flow rate fluctuates earlier than the temperature, and the temperature can not be compensated. As a result, the temperature deviates from the target, and as a result, the wet state can not be controlled as intended.
  • the target flow rate calculation block B203 is calculated based on the stack temperature (maximum stack temperature T max ) when the target displacement amount Q H2 O_out increases, ie, when the wet state is reduced and dried.
  • a temperature (calculated value) lower than the stack temperature T max but higher than the water temperature T sens detected by the water temperature sensor 401 is used.
  • the target wet state can not be achieved with the flow rate calculated by the target flow rate calculation block B203. Therefore, at the temperature calculated in the target temperature calculation block B202, the target wet state is achieved, and the flow rate fluctuates so as to complement the temperature.
  • the target pressure is first lowered and the cathode pressure regulating valve 22 is opened.
  • the target coolant temperature is raised to control the three-way valve 42.
  • the target flow rate is increased to increase the rotational speed of the compressor 21. In this way, the increase in rotational speed of the compressor 21 is suppressed as much as possible.
  • the power consumption increases and the fuel efficiency deteriorates.
  • the increase in the rotational speed of the compressor 21 is suppressed as much as possible, the power consumption is suppressed and the fuel economy is improved. Do.
  • FIGS. 12A and 12B are block diagrams showing functions relating to control of the controller in the third embodiment of the wet condition control device according to the present invention.
  • the wet state control device of the present embodiment includes a wet state reducing portion 100 and a wet state increasing portion 200.
  • the wet state reduction unit 100 is a control unit that is executed when the target displacement Q H 2 O_out increases, ie, the wet state decreases.
  • the wet state reducing unit 100 includes a target pressure calculation block B101, a target temperature calculation block B102, and a target flow amount calculation block B103.
  • the target pressure calculation block B101 corresponds to the priority control unit in the claims.
  • the target temperature calculation block B102 corresponds to the water temperature control unit in the claims.
  • the target flow rate calculation block B103 corresponds to the complementary control unit in the claims.
  • the wet state increase unit 200 is a control unit that is executed when the target displacement Q H2 O_out decreases, ie, the wet state increases.
  • the wet state increase unit 200 includes a target flow rate calculation block B203, a target temperature calculation block B202, and a target pressure calculation block B201.
  • the target pressure calculation block B201 corresponds to the complementary control unit in the claims.
  • the target temperature calculation block B202 corresponds to the water temperature control unit in the claims.
  • the target flow rate calculation block B203 corresponds to the priority control unit in the claims.
  • FIG. 13 is a timing chart showing the operation of the wetting control device when the target wet condition is lowered.
  • the wet control device When the above control logic is executed, when the target wet condition is lowered, the wet control device operates as follows.
  • the wet condition reducing unit 100 of the wet control device starts to operate.
  • the target pressure P target is set based on the target displacement Q H2 O_out , the minimum stack temperature T min and the minimum cathode flow rate Q min .
  • the target temperature T target is set based on the target displacement Q H 2 O_out , the actual pressure P sens, and the minimum cathode flow rate Q min .
  • the target cathode flow rate Q target is set based on the target displacement Q H2 O_out , the actual pressure P sens, and the actual water temperature T sens .
  • the target pressure P target is most likely to fluctuate because it is set based on the stack temperature (minimum stack temperature T min ) and the cathode flow rate (minimum cathode flow rate Q min ) at which the wet state is maximized . Therefore, first, the target pressure P target is preferentially lowered. Then, the cathode pressure control valve 22 is controlled so that the target pressure P target is realized. Then, the cathode pressure decreases with almost no response delay.
  • the target temperature T target begins to fluctuate at time t12. That is, the limit value (minimum cathode flow rate Q min ) is used to set the target temperature T target . Also, the sensor detection value P sens of the cathode pressure adjusted as described above is fed back. For this reason, the part which can not adjust only the cathode pressure will be adjusted by the change of the temperature of a cooling water. The temperature of the cooling water is unlikely to change even if the target value changes, and a response delay is likely to occur. The temperature of the cooling water is detected by the water temperature sensor 401, and this temperature is fed back to determine the cathode flow rate, so that the response delay of the temperature of the cooling water is compensated by the cathode flow rate.
  • the limit value minimum cathode flow rate Q min
  • the target cathode flow rate Q target begins to fluctuate at time t13. That is, since the pressure P sens detected by the cathode pressure sensor 202 and the water temperature T sens detected by the water temperature sensor 401 are fed back to determine the cathode flow rate, the target pressure P target and the target temperature T target are changed The amount that can not be adjusted is compensated by the cathode flow rate.
  • FIG. 14 is a timing chart showing the operation of the wetness control device when the target wet state rises.
  • the target cathode flow rate Q target is set based on the target displacement Q H2 O_out , the maximum stack temperature T max and the minimum cathode pressure P min .
  • the target temperature T target is set based on the target displacement Q H2 O_out , the minimum cathode pressure P min, and the actual flow rate Q sens .
  • the target cathode pressure P target is set based on the target displacement Q H 2 O_out , the actual flow rate Q sens, and the actual water temperature T sens .
  • the target flow rate Q target is most likely to fluctuate because it is set based on the stack temperature (maximum stack temperature T max ) and the cathode pressure (minimum cathode pressure P min ) when the wet state is minimized. Therefore, first, the target flow rate Q target is lowered preferentially. Then, the compressor 21 is controlled so that the target flow rate Q target is realized. Then, the cathode flow rate decreases with almost no response delay.
  • the target temperature T target begins to fluctuate at time t22. That is, the limit value (minimum cathode pressure P min ) is used to set the target temperature T target . Also, the sensor detection value Q sens of the cathode flow rate adjusted as described above is fed back. For this reason, the part which can not adjust only the cathode flow rate will be adjusted by the change of the temperature of a cooling water. The temperature of the cooling water is unlikely to change even if the target value changes, and a response delay is likely to occur. The temperature of the cooling water is detected by the water temperature sensor 401, and this temperature is fed back to determine the cathode pressure, so that the response delay of the temperature of the cooling water is compensated by the cathode pressure.
  • the limit value minimum cathode pressure P min
  • the target cathode pressure P target begins to fluctuate at time t23. That is, since the flow rate Q sens detected by the cathode flow rate sensor 201 and the water temperature T sens detected by the water temperature sensor 401 are fed back to determine the cathode pressure, the target flow rate Q target and the target temperature T target are changed. The amount that can not be adjusted is compensated by the cathode pressure.
  • the target wet state of the fuel cell is changed to lower the wet state
  • the target pressure is lowered and the cathode pressure regulating valve 22 is opened.
  • the target coolant temperature is raised to control the three-way valve 42.
  • the target flow rate is increased to increase the rotational speed of the compressor 21. In this way, the increase in rotational speed of the compressor 21 is suppressed as much as possible.
  • the power consumption increases and the fuel efficiency deteriorates.
  • the increase in the rotational speed of the compressor 21 is suppressed as much as possible, the power consumption is suppressed and the fuel economy is improved. Do.
  • the target flow rate is first lowered to lower the rotational speed of the compressor 21.
  • the target coolant temperature is lowered to control the three-way valve 42.
  • the target pressure is increased and the cathode pressure regulating valve 22 is closed.
  • control logics of the target pressure calculation block B101 and the target pressure calculation block B201 are the same.
  • the control logics of the target temperature calculation block B102 and the target temperature calculation block B202 are also the same.
  • the control logics of the target flow rate calculation block B103 and the target flow rate calculation block B203 are also the same. Then, by changing only the signals input to these control blocks, the wet state of the fuel cell is reduced and dried, or the wet state of the fuel cell is increased and wet. As described above, it is possible to control the wet state of the fuel cell by changing the control order of pressure, temperature, and flow rate by changing the input value while using the same control logic.
  • FIGS. 15A and 15B are block diagrams showing functions relating to control of the controller in the fourth embodiment of the wet condition control device according to the present invention.
  • the three-way valve 42 is not controlled depending on the operation mode. There is also a possibility that the three-way valve 42 can not be controlled due to some trouble.
  • the target pressure calculation block B101 calculates the target pressure P target using the water temperature T sens detected by the water temperature sensor 401 instead of the minimum stack temperature T min .
  • the target flow rate calculation block B203 calculates the target pressure P target using the water temperature T sens detected by the water temperature sensor 401 instead of the maximum stack temperature T max .
  • the target wet state of the fuel cell is changed and the wet state is lowered
  • the target pressure is first lowered and the cathode pressure regulating valve 22 is opened.
  • the target flow rate is increased to increase the rotational speed of the compressor 21.
  • the target wet state of the fuel cell is changed and the wet state is to be increased
  • the target flow rate is first reduced to lower the rotational speed of the compressor 21.
  • the target pressure is increased and the cathode pressure regulating valve 22 is closed. As a result, the rotational speed of the compressor 21 is reduced as early as possible, power consumption is suppressed, and fuel consumption is improved.
  • FIGS. 16A and 16B are block diagrams showing functions relating to control of the controller in the fifth embodiment of the wet state control device according to the present invention.
  • the cathode pressure control valve 22 is not controlled depending on the operation mode. Also, there is a possibility that the cathode pressure regulating valve 22 can not be controlled due to some trouble. In such a case, the target flow rate calculation block B 203 obtains the target cathode flow rate Q target using the pressure P sens detected by the cathode pressure sensor 202 instead of the minimum cathode pressure P min . Further, the target temperature calculation block B 202 obtains the target temperature T target using the pressure P sens detected by the cathode pressure sensor 202 instead of the minimum cathode pressure P min .
  • the cathode pressure regulating valve 22 is not controlled or a case where the cathode pressure regulating valve 22 can not be controlled due to some trouble.
  • the target cooling water temperature is first raised to control the three-way valve 42.
  • the target flow rate is increased to increase the rotational speed of the compressor 21.
  • the target flow rate is first reduced to lower the rotational speed of the compressor 21.
  • the target coolant temperature is lowered to control the three-way valve 42. As a result, the rotational speed of the compressor 21 is reduced as early as possible, and the fuel consumption is improved.
  • FIGS. 17A and 17B are block diagrams showing functions relating to control of the controller in the sixth embodiment of the wet state control device according to the present invention.
  • the target pressure calculation block B101 obtains the target cathode pressure P target using the flow rate Q sens detected by the cathode flow rate sensor 201 instead of the minimum cathode flow rate Q min .
  • the target temperature calculation block B 102 obtains the target temperature T target using the flow rate Q sens detected by the cathode flow rate sensor 201 instead of the minimum cathode flow rate Q min .
  • the rotational speed of the water pump 43 was illustrated as an operation quantity which operates a cooling water temperature, it is not restricted to this.
  • the opening degree of the three-way valve 42 or the rotational speed of the cooling fan 410 may be used.
  • the temperature Tcoolant may be calculated in consideration of the operation amount for operating the coolant temperature.
  • the temperature of the cooling water instead of the temperature of the cooling water, the temperature of the fuel cell itself or the temperature of air may be used.
  • the target pressure calculation block B101 when the target pressure P target is set, the stack temperature (minimum stack temperature T min ) and cathode flow rate (minimum cathode flow rate) at which the wet state is maximized. Q min ) is used.
  • the cathode flow rate minimum cathode flow rate Q min
  • the target temperature calculation block B202 when the target temperature T target is set, the cathode pressure (minimum cathode pressure P min ) at which the wet state is minimized is used.
  • the target flow rate calculation block B203 when the target flow rate Q target is set, the stack temperature (maximum stack temperature T max ) and the cathode pressure (minimum cathode pressure P min ) at which the wet state is minimized are used. If the limit value (maximum value, minimum value) is used in this way, the effect is greatest. However, those smaller than the maximum value and larger than the minimum value may be used. Even in this way, a corresponding effect can be obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池の湿潤状態制御装置は、燃料電池の湿潤状態を調整するときに、カソードガスの圧力及び流量のいずれか一方を優先して制御する優先制御部と、前記優先制御部による制御では燃料電池の湿潤状態を調整しきれないときに、冷却水の温度を制御する水温制御部と、前記水温制御部の応答遅れを補完するように、カソードガスの圧力及び流量のいずれか他方を制御する補完制御部と、を有する。

Description

燃料電池の湿潤状態制御装置
 この発明は、燃料電池の湿潤状態を制御する装置に関する。
 燃料電池を効率よく発電させるには、電解質膜を適度な湿潤状態に維持することが重要である。すなわち、電解質膜の湿潤状態が高すぎればフラッディングが生じたり零下起動に備えて停止時のパージ動作が必要になる。また電解質膜の湿潤状態が低すぎれば燃料電池スタックの電圧が落ち込んで出力が大きく低下するおそれがある。そこで日本国特許庁が2007年に発行したJP2007-115488Aでは、電解質膜を適度な湿潤状態に維持するカソードガス圧力及びカソードガス流量となるように調圧弁やカソードコンプレッサーを制御していた。特に燃費を考慮して湿潤側に制御する場合は、カソードコンプレッサーの消費電力を下げるために回転速度を先に低下させ、その後、調圧弁を開いて圧力を上げる。
 湿潤度を制御するパラメーターとしては冷却水温もある。しかしながら、前述した手法では、湿潤調整するために、冷却水温を制御していなかった。そのため過渡時の湿潤制御において、燃費を改善する余地のあることが本件発明者らによって知見された。
 本発明は、このような従来の問題点に着目してなされた。本発明の目的は、冷却水の制御を含めて燃費の悪化を抑制しつつ、電解質膜を適度な湿潤状態に維持することができる燃料電池の湿潤状態制御装置を提供することである。
 本発明のある態様の燃料電池の湿潤状態制御装置は、燃料電池の湿潤状態を調整するときに、カソードガスの圧力及び流量のいずれか一方を優先して制御する優先制御部と、前記優先制御部による制御では燃料電池の湿潤状態を調整しきれないときに、冷却水の温度を制御する水温制御部と、前記水温制御部の応答遅れを補完するように、カソードガスの圧力及び流量のいずれか他方を制御する補完制御部と、を有する。
 本発明の実施形態、本発明の利点は、添付された図面とともに以下に詳細に説明される。
図1は、本発明による燃料電池の湿潤状態制御装置を適用するシステムの一例を示す図である。 図2Aは、燃料電池スタックにおける電解質膜の反応を説明する模式図である。 図2Bは、燃料電池スタックにおける電解質膜の反応を説明する模式図である。 図3は、目標湿潤状態が下がるときのコントローラの湿潤状態制御にかかる機能をブロック図として表したものである。 図4は、目標湿潤状態が下がるときの湿潤制御装置の作動を示すタイミングチャートである。 図5は、目標湿潤状態が上がる場合に上記制御ロジックが実行されたときの問題点を説明する図である。 図6は、目標湿潤状態が上がるときのコントローラの湿潤状態制御にかかる機能をブロック図として表したものである。 図7は、本発明による燃料電池の湿潤状態制御装置の目標圧力演算ブロックB101に入力する温度について説明する図である。 図8は、目標湿潤状態が上がるときの湿潤制御装置の作動を示すタイミングチャートである。 図9Aは、本発明による燃料電池の湿潤状態制御装置の第2実施形態のコントローラの湿潤状態制御にかかる機能をブロック図として表したものである。 図9Bは、本発明による燃料電池の湿潤状態制御装置の第2実施形態のコントローラの湿潤状態制御にかかる機能をブロック図として表したものである。 図10は、目標湿潤状態が上がるときの湿潤制御装置の作動を示すタイミングチャートである。 図11は、目標湿潤状態が下がるときの湿潤制御装置の作動を示すタイミングチャートである。 図12Aは、本発明による湿潤状態制御装置の第3実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。 図12Bは、本発明による湿潤状態制御装置の第3実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。 図13は、目標湿潤状態が下がるときの湿潤制御装置の作動を示すタイミングチャートである。 図14は、目標湿潤状態が上がるときの湿潤制御装置の作動を示すタイミングチャートである。 図15Aは、本発明による湿潤状態制御装置の第4実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。 図15Bは、本発明による湿潤状態制御装置の第4実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。 図16Aは、本発明による湿潤状態制御装置の第5実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。 図16Bは、本発明による湿潤状態制御装置の第5実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。 図17Aは、本発明による湿潤状態制御装置の第6実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。 図17Bは、本発明による湿潤状態制御装置の第6実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。
(第1実施形態)
 図1は、本発明による燃料電池の湿潤状態制御装置を適用するシステムの一例を示す図である。
 最初に図1を参照して、本発明による燃料電池の湿潤状態制御装置を適用する基本的なシステムについて説明する。
 燃料電池スタック10は、適温に維持されつつ反応ガス(カソードガスO、アノードガスH)が供給されて発電する。そこで燃料電池スタック10には、カソードライン20と、アノードライン30と、冷却水循環ライン40と、が接続される。なお燃料電池スタック10の発電電流は、電流センサー101で検出される。燃料電池スタック10の発電電圧は、電圧センサー102で検出される。
 カソードライン20には、燃料電池スタック10に供給されるカソードガスOが流れる。カソードライン20には、コンプレッサー21と、カソード調圧弁22と、が設けられる。
 コンプレッサー21は、カソードガスO、すなわち空気を燃料電池スタック10に供給する。コンプレッサー21は、燃料電池スタック10よりも上流のカソードライン20に設けられる。コンプレッサー21は、モーターMによって駆動される。コンプレッサー21は、カソードライン20を流れるカソードガスOの流量を調整する。カソードガスOの流量は、コンプレッサー21の回転速度によって調整される。
 カソード調圧弁22は、燃料電池スタック10よりも下流のカソードライン20に設けられる。カソード調圧弁22は、カソードライン20を流れるカソードガスOの圧力を調整する。カソードガスOの圧力は、カソード調圧弁22の開度によって調整される。
 カソードライン20を流れるカソードガスOの流量は、カソード流量センサー201で検出される。このカソード流量センサー201は、コンプレッサー21よりも下流であって燃料電池スタック10よりも上流に設けられる。
 カソードライン20を流れるカソードガスOの圧力は、カソード圧力センサー202で検出される。このカソード圧力センサー202は、コンプレッサー21よりも下流であって燃料電池スタック10よりも上流に設けられる。さらに図1では、カソード圧力センサー202は、カソード流量センサー201の下流に位置する。
 アノードライン30には、燃料電池スタック10に供給されるアノードガスHが流れる。アノードライン30には、アノード再循環ライン300が並設される。アノード再循環ライン300は、燃料電池スタック10よりも下流のアノードライン30から分岐し、燃料電池スタック10よりも上流のアノードライン30に合流する。アノードライン30には、ボンベ31と、アノード調圧弁32と、エゼクター33と、アノードポンプ34と、パージ弁35と、が設けられる。
 ボンベ31には、アノードガスHが高圧状態で貯蔵されている。ボンベ31は、アノードライン30の最上流に設けられる。
 アノード調圧弁32は、ボンベ31の下流に設けられる。アノード調圧弁32は、ボンベ31から新たにアノードライン30に供給するアノードガスHの圧力を調整する。アノードガスHの圧力は、アノード調圧弁32の開度によって調整される。
 エゼクター33は、アノード調圧弁32よりも下流に設けられる。エゼクター33は、アノード再循環ライン300がアノードライン30に合流する部分に位置する。このエゼクター33で、アノード再循環ライン300を流れたアノードガスHが、ボンベ31から新たに供給されたアノードガスHに混合される。
 アノードポンプ34は、エゼクター33の下流に位置する。アノードポンプ34は、エゼクター33を流れたアノードガスHを燃料電池スタック10に送る。
 パージ弁35は、燃料電池スタック10の下流であって、さらにアノード再循環ライン300の分岐部分の下流のアノードライン30に設けられる。パージ弁35が開くと、アノードガスHがパージされる。
 アノードライン30を流れるアノードガスHの圧力は、アノード圧力センサー301で検出される。このアノード圧力センサー301は、アノードポンプ34よりも下流であって燃料電池スタック10よりも上流に設けられる。
 冷却水循環ライン40には、燃料電池スタック10に供給される冷却水が流れる。冷却水循環ライン40には、ラジエーター41と、三方弁42と、ウォーターポンプ43と、が設けられる。また冷却水循環ライン40には、バイパスライン400が並設される。バイパスライン400は、ラジエーター41よりも上流から分岐し、ラジエーター41よりも下流に合流する。このためバイパスライン400を流れる冷却水は、ラジエーター41をバイパスする。
 ラジエーター41は、冷却水を冷却する。ラジエーター41には、クーリングファン410が設けられている。
 三方弁42は、バイパスライン400の合流部分に位置する。三方弁42は、開度に応じて、ラジエーター側のラインを流れる冷却水の流量と、バイパスラインを流れる冷却水の流量と、を調整する。これによって冷却水の温度が調整される。
 ウォーターポンプ43は、三方弁42の下流に位置する。ウォーターポンプ43は、三方弁42を流れた冷却水を燃料電池スタック10に送る。
 冷却水循環ライン40を流れる冷却水の温度は、水温センサー401で検出される。この水温センサー401は、バイパスライン400が分岐する部分よりも上流に設けられる。
 コントローラーは、電流センサー101、電圧センサー102、カソード流量センサー201、カソード圧力センサー202、アノード圧力センサー301、水温センサー401の信号を入力する。そして、コントローラーは、信号を出力して、コンプレッサー21、カソード調圧弁22、アノード調圧弁32、アノードポンプ34、パージ弁35、三方弁42、ウォーターポンプ43の作動を制御する。
 このような構成によって、燃料電池スタック10は、適温に維持されつつ反応ガス(カソードガスO、アノードガスH)が供給されて発電する。燃料電池スタック10によって発電された電力は、DC/DCコンバーター11を介してバッテリー12や負荷13に供給される。
 図2A及び図2Bは、燃料電池スタックにおける電解質膜の反応を説明する模式図である。
 次に、図2A及び図2Bを参照して、発明者らの技術思想について説明する。
 上述のように、燃料電池スタック10は、反応ガス(カソードガスO、アノードガスH)が供給されて発電する。燃料電池スタック10は、電解質膜の両面にカソード電極触媒層及びアノード電極触媒層が形成された膜電極接合体(Membrane Electrode Assembly;MEA)が数百枚積層されて構成される。なお図2Aは1枚のMEAを示している。ここではMEAにカソードガスが供給されて(カソードイン)対角側から排出されながら(カソードアウト)、アノードガスが供給されて(アノードイン)対角側から排出される(アノードアウト)例が示されている。
 各膜電極接合体(MEA)は、カソード電極触媒層及びアノード電極触媒層において以下の反応が、負荷に応じて進行して発電する。
Figure JPOXMLDOC01-appb-M000001
 図2Bに示すように、反応ガス(カソードガスO)がカソード流路を流れるにつれて上式(1-1)の反応が進行し、水蒸気が生成される。するとカソード流路の下流側では相対湿度が高くなる。この結果、カソード側とアノード側との相対湿度差が大きくなる。この相対湿度差をドライビングフォースとして、水が逆拡散しアノード上流側が加湿される。この水分がさらにMEAからアノード流路に蒸発してアノード流路を流れる反応ガス(アノードガスH)を加湿する。そしてアノード下流側に運ばれてアノード下流のMEAを加湿する。
 上記反応によって効率よく発電するには、電解質膜が適度な湿潤状態であることが必要である。
 そこで、本件発明者らは、カソードガスOの流量及び圧力並びに燃料電池スタック1の温度に着目した。
 すなわち、カソードガスOの流量を増やせば、カソードガスOとともに排出される水分が増える。したがって、電解質膜の湿潤状態を低下させることができる。一方、カソードガスOの流量を減らせば、カソードガスOとともに排出される水分が減る。したがって、電解質膜の湿潤状態を上昇させることができる。
 カソードガスOの圧力が減るのは、カソード調圧弁22の開度が大きくなるときである。したがって、カソード調圧弁22の開度を大きくしてカソードガスOの圧力を下げれば、カソードガスOが排出されやすくなる。この結果、カソードガスOとともに排出される水分も増える。したがって、電解質膜の湿潤状態を低下させることができる。一方、カソードガスOの圧力が増えるのは、カソード調圧弁22の開度が小さくなるときである。したがって、カソード調圧弁22の開度を小さくしてカソードガスOの圧力を上げれば、カソードガスOが排出されにくくなる。この結果、カソードガスOとともに排出される水分も減る。したがって、電解質膜の湿潤状態を上昇させることができる。
 燃料電池スタック1の温度が高くなれば、カソードガスOに含まれる水分量が増える。この結果、カソードガスOとともに排出される水分も増える。したがって、電解質膜の湿潤状態を低下させることができる。一方、燃料電池スタック1の温度が低くなれば、カソードガスOに含まれる水分量が減る。この結果、カソードガスOとともに排出される水分も減る。したがって、電解質膜の湿潤状態を上昇させることができる。
 発明者らは、このような知見を得た。さらにカソードガスOの流量を増やすためにコンプレッサー21の回転速度を上げると、消費電力が増大して燃費が悪化する。そこでできる限りコンプレッサー21の回転速度を低く抑えることが望ましい。発明者らは、このような着想に基づいて本発明を完成するに至った。以下では具体的な内容を説明する。
 図3は、目標湿潤状態が下がるときのコントローラの湿潤状態制御にかかる機能をブロック図として表したものである。
 なおブロック図に示される各ブロックは、コントローラーの各機能を仮想ユニットとして示すものであり、各ブロックは物理的な存在を意味しない。
 湿潤状態制御装置は、コンプレッサー21、カソード調圧弁22、アノード調圧弁32、アノードポンプ34、パージ弁35、三方弁42、ウォーターポンプ43の作動を制御して、燃料電池スタック10の電解質膜の湿潤状態を制御する。具体的には、湿潤状態制御装置は、目標圧力演算ブロックB101と、目標温度演算ブロックB102と、目標流量演算ブロックB103と、を含む。なお本実施形態では、目標圧力演算ブロックB101が請求の範囲の優先制御部に対応する。目標温度演算ブロックB102が請求の範囲の水温制御部に対応する。目標流量演算ブロックB103が請求の範囲の補完制御部に対応する。
 目標圧力演算ブロックB101は、目標排水量QH2O_outが増える、すなわち湿潤状態を減少させて乾燥させるときには、目標排水量QH2O_outと、最低スタック温度Tminと、最低カソード流量Qminと、に基づいて、目標圧力Ptargetを演算する。
 なお目標排水量QH2O_out[NL/min]は次式(2)によって求まる。ここでNLは、Normal Liter、すなわち標準状態でのリットルを示す。
Figure JPOXMLDOC01-appb-M000002
 なお燃料電池内部での生成水量QH2O_in[NL/min]は次式(3)によって求まる。
Figure JPOXMLDOC01-appb-M000003
 目標水収支Qnet_water[NL/min]は、燃料電池の運転状態(負荷状態)に応じて決められた電解質膜の目標湿潤状態を実現するように設定される。
 目標圧力演算ブロックB101は、このようにして求められた目標排水量QH2O_outと、最低スタック温度Tminと、最低カソード流量Qminと、に基づいて、目標圧力Ptargetを求める。具体的には、次式(4-1)(4-2)によって、目標圧力Ptargetを求める。
Figure JPOXMLDOC01-appb-M000004
 ここで最低スタック温度Tminとは、燃料電池スタックの湿潤状態を最高にするときのスタック温度である。上述のように、電解質膜の湿潤状態を上昇させるには、燃料電池スタック1の温度を低くする。なお燃料電池スタック1の温度は、低すぎると凝縮水による発電不良が生じるおそれがある。その一方で、高すぎると燃料電池スタック1の劣化が早まる。したがって、燃料電池スタックの湿潤状態を最高にするときのスタック温度とは、これらを総合的に考慮して燃料電池スタックの性能を確保できる範囲で最も低いスタック温度である。同様に、最低カソード流量Qminとは、燃料電池スタックの湿潤状態を最高にするときのカソード流量である。上述のように、電解質膜の湿潤状態を上昇させるには、カソード流量を減らす。なおカソード流量は、低すぎると供給量不足による発電不良が生じるおそれがある。その一方で、高すぎると音振性能が悪化するおそれがある。したがって燃料電池スタックの湿潤状態を最低にするときのカソード流量とは、これらを総合的に考慮して燃料電池スタックの性能を確保できる範囲で最も低いカソード流量である。これらは、予め実験によって燃料電池の運転状態に応じて設定されている。
 またPsat_minは、最低スタック温度Tminに対する飽和水蒸気圧であり、アントワンの式に基づいて上式(4-2)が求められる。
 以上のようにして、目標圧力演算ブロックB101は、目標排水量QH2O_outが増える、すなわち湿潤状態を減少させて乾燥させるときには、目標排水量QH2O_outと、最低スタック温度Tminと、最低カソード流量Qminと、に基づいて、目標圧力Ptargetを演算する。
 目標温度演算ブロックB102は、目標排水量QH2O_outと、カソード圧力センサー202で検出された圧力Psensと、最低カソード流量Qminと、に基づいて、目標温度Ttargetを求める。具体的には、次式(5-1)(5-2)によって求める。なお式(5-1)は、アントワンの式の逆引きによって求められる。
Figure JPOXMLDOC01-appb-M000005
 Psat_targetは、目標飽和水蒸気圧である。なお本実施形態では、圧力Psensは、カソード圧力センサー202で検出されたが、予め実験によって燃料電池スタックの圧力損失を求めておいて、それに基づいて推定してもよい。
 以上のようにして、目標温度演算ブロックB102は、目標排水量QH2O_outと、実圧力Psensと、最低カソード流量Qminと、に基づいて、目標温度Ttargetを求める。
 目標流量演算ブロックB103は、目標排水量QH2O_outと、カソード圧力センサー202で検出された圧力Psensと、水温センサー401で検出された水温Tsensと、に基づいて、目標カソード流量Qtargetを求める。具体的には、次式(6-1)(6-2)によって求める。
Figure JPOXMLDOC01-appb-M000006
 Psat_sensは、水温センサー401で検出された水温Tsensにおける飽和水蒸気圧である。
 以上のようにして、目標流量演算ブロックB103は、目標排水量QH2O_outと、実圧力Psensと、実水温Tsensと、に基づいて、目標カソード流量Qtargetを求める。
 図4は、目標湿潤状態が下がるときの湿潤制御装置の作動を示すタイミングチャートである。
 以上の制御ロジックが実行されると、目標湿潤状態が下がるときに、湿潤制御装置は以下のように作動する。
 時刻t11で、目標湿潤状態が下がると、湿潤制御装置が作動を開始する。
 目標圧力Ptargetは、目標排水量QH2O_outと、最低スタック温度Tminと、最低カソード流量Qminと、に基づいて設定される。目標温度Ttargetは、目標排水量QH2O_outと、実圧力Psensと、最低カソード流量Qminと、に基づいて、設定される。目標カソード流量Qtargetは、目標排水量QH2O_outと、実圧力Psensと、実水温Tsensと、に基づいて設定される。
 目標圧力Ptargetは、湿潤状態を最高にするときのスタック温度(最低スタック温度Tmin)及びカソード流量(最低カソード流量Qmin)に基づいて設定されるので、最も変動しやすい。そこでまず最初は優先的に目標圧力Ptargetが下がる。そして、この目標圧力Ptargetが実現されるように、カソード調圧弁22が制御される。するとカソード圧力がほとんど応答遅れなく低下する。
 目標圧力Ptargetの変更だけでは、調整しきれなければ、時刻t12で、目標温度Ttargetが変動しはじめる。すなわち目標温度Ttargetの設定には、限界値(最低カソード流量Qmin)が用いられる。また上述のようにして調整されたカソード圧力のセンサー検出値Psensがフィードバックされる。このためカソード圧力だけは調整しきれない分が、冷却水の温度の変更で調整されることとなる。なお冷却水の温度は、目標値が変わっても変動しにくく応答遅れが生じやすい。冷却水の温度は、水温センサー401で検出されており、この温度がフィードバックされてカソード流量が決められるので、冷却水の温度の応答遅れがカソード流量で補完される。
 目標温度Ttargetの変更でも、調整しきれなければ、時刻t13で、目標カソード流量Qtargetが変動しはじめる。すなわち、カソード圧力センサー202で検出された圧力Psensと、水温センサー401で検出された水温Tsensと、がフィードバックされて、カソード流量が決められるので、目標圧力Ptarget及び目標温度Ttargetの変更で調整しきれない分がカソード流量で補完されることとなる。
 このようにすることで、目標湿潤状態が下がるときは、まず目標圧力が下げられてカソード調圧弁22が開かれる。次に目標冷却水温が上げられて三方弁42が制御される。そして最後に目標流量が上げられてコンプレッサー21の回転速度が上げられる。このようにすることで、コンプレッサー21の回転速度の上昇が、可能な限り抑制されることとなる。コンプレッサーの回転速度が上昇するほど、消費電力が増大し燃費が悪化するが、本実施形態では、可能な限りコンプレッサー21の回転速度の上昇が抑制されるので、消費電力が抑えられて燃費が向上する。
 図5は、目標湿潤状態が上がる場合に上記制御ロジックが実行されたときの問題点を説明する図である。
 目標湿潤状態が下がるときは、上述のようにすることで、可能な限りコンプレッサー21の回転速度の上昇が抑制されるので、消費電力が抑えられて燃費が向上する。
 しかしながら、目標湿潤状態が上がるときに、上述のようにしては、湿潤状態を目標通りには制御できないことが、発明者によって知見された。すなわち、目標圧力Ptargetは、湿潤状態を最高にするときのスタック温度(最低スタック温度Tmin)及びカソード流量(最低カソード流量Qmin)に基づいて設定されるので、目標湿潤状態が上がるときには、変動しにくい。
 そのため図5に示されるように、時刻t21で、目標湿潤状態が上がると、まず目標カソード流量Qtargetが下がりはじめる。
 目標カソード流量Qtargetの変動だけでは、調整しきれなければ、時刻t22で、目標圧力Ptarget及び目標温度Ttargetが変動しはじめる。温度は応答性が悪く、圧力よりも変動しにくい。逆に言えば、圧力が温度よりも先に変動してしまって温度を補完することができなくなる。そのため温度が目標から乖離することとなって、この結果、湿潤状態を目標通りには制御できないのである。
 図6は、目標湿潤状態が上がるときのコントローラの湿潤状態制御にかかる機能をブロック図として表したものである。
 この図6では、目標圧力演算ブロックB101は請求の範囲の補完制御部に対応する。目標温度演算ブロックB102は請求の範囲の水温制御部に対応する。目標流量演算ブロックB103は請求の範囲の優先制御部に対応する。
 図6に示されているように、目標湿潤状態が上がるときには、湿潤状態を最高にするときのスタック温度(最低スタック温度Tmin)に基づいて演算され、最低スタック温度Tminよりは高いが水温センサー401で検出された水温Tsensよりは低い温度(演算値)を用いる。
 この演算値について具体的に説明する。
 本実施形態では、冷却水温度を操作する操作量に着目し、この操作量に応じて目標圧力演算ブロックB101に入力する温度を演算するようにした。
 冷却水温度を操作する操作量とは、たとえば、ウォーターポンプ43の回転速度である。
 ウォーターポンプ43の回転速度が小さいほど、冷却水の流量が少ないので、燃料電池スタック1の温度が高くなる。燃料電池スタック1の温度が高くなれば、カソードガスOに含まれる水分量が増える。この結果、カソードガスOとともに排出される水分も増える。したがって、電解質膜の湿潤状態が低下して乾燥する。
 逆に、電解質膜の湿潤状態を低下させて乾燥させようとするほど、ウォーターポンプ43の回転速度が小さくなる。電解質膜の湿潤状態を上昇させようとするほど、ウォーターポンプ43の回転速度が大きくなる。
 したがって、ウォーターポンプ43の回転速度が小さいほど、電解質膜の湿潤状態を低下させて乾燥させようとしている。ウォーターポンプ43の回転速度が最小であれば、電解質膜の湿潤状態を大幅に低下させようとしている。そこで、このときには、上述の目標湿潤状態が下がったときの制御として示したように、湿潤状態を最高にするときのスタック温度(最低スタック温度Tmin)を用いる。
 一方、ウォーターポンプ43の回転速度が大きいほど、電解質膜の湿潤状態を上昇させて湿潤させようとしている。ウォーターポンプ43の回転速度が最大であれば、電解質膜の湿潤状態を大幅に上昇させようとしている。そこで、このときには、湿潤状態を最高にするときのスタック温度(最低スタック温度Tmin)に基づいて演算され、最低スタック温度Tminよりは高いが水温センサー401で検出された水温Tsensよりは低い温度(演算値)を用いる。なおこの温度は、定常的には水温センサー401で検出された水温Tsensに一致することとなる。
 そして、その間は、ウォーターポンプ43の回転速度に応じて、温度を演算する。具体的には、次式(7)に基づいて、温度Tcoolantを演算する。
Figure JPOXMLDOC01-appb-M000007
 このようにして演算された温度を図示すると図7のようになる。すなわち電解質膜の湿潤状態を低下させて乾燥させようとするときには、湿潤状態を最高にするときのスタック温度(最低スタック温度Tmin)を用いる。電解質膜の湿潤状態を上昇させて湿潤させようとするときには、湿潤状態を最高にするときのスタック温度(最低スタック温度Tmin)に基づいて演算され、最低スタック温度Tminよりは高いが水温センサー401で検出された水温Tsensよりは低い温度(演算値)を用いる。
 なお図7に示されるように、上式(7)では、最低スタック温度Tminと水温Tsensとを直線で結んで、その間を按分して温度Tcoolantを演算している。しかしながら、このような手法に限られない。直線ではなく、最低スタック温度Tminと水温Tsensとを指数関数のように下に凸の曲線で結ばれる関係にしたり、log関数のように上に凸の曲線で結ばれる関係にしてもよい。そのような関係をあらかじめ設定しておけばよい。そして、これらの曲線に基づいて温度Tcoolantを演算してもよい。
 図8は、目標湿潤状態が上がるときの湿潤制御装置の作動を示すタイミングチャートである。
 このようにすれば、目標圧力演算ブロックB101には、常に、水温センサー401で検出された水温Tsensよりも低い温度が入力されることとなる。そのため、目標圧力演算ブロックB101で演算された圧力では、目標湿潤状態を達成できない。そのため、目標温度演算ブロックB102で演算された温度で、目標湿潤状態が達成されるようになり、その温度を補完するように、圧力が変動することとなる。
 このようにすれば、燃料電池の目標湿潤状態が変更されて、湿潤状態を上げるときには、まず目標流量が下がってコンプレッサー21の回転速度が下がる。次に目標冷却水温が下がって三方弁42が制御される。そして最後に目標圧力が上がってカソード調圧弁22が閉じられる。このようにすることで、コンプレッサー21の回転速度が、可能な限り早めに低下することとなる。上述のようにコンプレッサーの回転速度が上昇するほど、消費電力が増大し燃費が悪化する。換言すれば、コンプレッサーの回転速度が低下するほど、消費電力が抑えられて燃費が向上する。本実施形態では、コンプレッサー21の回転速度が、可能な限り早めに低下するので、燃費が向上するのである。
 また目標湿潤状態が下がるか上がるかで、目標圧力演算ブロックB101に入力される温度が急激に切り替わることがないので、制御が不安定になることを回避できる。
 (第2実施形態)
 図9A及び図9Bは、本発明による燃料電池の湿潤状態制御装置の第2実施形態のコントローラの湿潤状態制御にかかる機能をブロック図として表したものである。図9Aは目標湿潤状態が上がるときであり、図9Bは目標湿潤状態が下がるときである。
 本実施形態の湿潤状態制御装置は、目標圧力演算ブロックB201と、目標温度演算ブロックB202と、目標流量演算ブロックB203と、を含む。
 なお目標湿潤状態が上がるときは(図9A)、目標圧力演算ブロックB201は請求の範囲の補完制御部に対応する。目標温度演算ブロックB202は請求の範囲の水温制御部に対応する。目標流量演算ブロックB203は請求の範囲の優先制御部に対応する。
 目標湿潤状態が下がるときは(図9B)、目標圧力演算ブロックB201は請求の範囲の優先制御部に対応する。目標温度演算ブロックB202は請求の範囲の水温制御部に対応する。目標流量演算ブロックB203は請求の範囲の補完制御部に対応する。
 目標圧力演算ブロックB201は、目標排水量QH2O_outと、カソード流量センサー201で検出された流量Qsensと、水温センサー401で検出された水温Tsensと、に基づいて、目標カソード圧力Ptargetを求める。具体的には、次式(8-1)(8-2)によって、目標カソード圧力Ptargetを求める。
Figure JPOXMLDOC01-appb-M000008
 Psat_sensは、水温センサー401で検出された水温Tsensに対する飽和水蒸気圧であり、式(8-2)は、アントワンの式に基づいて求められる。
 以上のようにして、目標圧力演算ブロックB201は、目標排水量QH2O_outと、実流量Qsensと、実水温Tsensと、に基づいて、目標カソード圧力Ptargetを求める。
 目標温度演算ブロックB202は、目標排水量QH2O_outと、最低カソード圧力Pminと、カソード流量センサー201で検出された流量Qsensと、に基づいて、目標温度Ttargetを求める。具体的には、次式(9-1)(9-2)によって求める。なお式(9-1)は、アントワンの式の逆引きによって求められる。
Figure JPOXMLDOC01-appb-M000009
 Psat_targetは、目標飽和水蒸気圧である。
 以上のようにして、目標温度演算ブロックB202は、目標排水量QH2O_outと、最低カソード圧力Pminと、カソード流量センサー201で検出された流量Qsensと、に基づいて、目標温度Ttargetを求める。
 目標流量演算ブロックB203は、目標排水量QH2O_outが減る、すなわち湿潤状態を増大させて湿潤させるときには、図9Aに示されるように、目標排水量QH2O_outと、最高スタック温度Tmaxと、最低カソード圧力Pminと、に基づいて、目標カソード流量Qtargetを求める。具体的には、次式(10-1)(10-2)によって求める。
Figure JPOXMLDOC01-appb-M000010
 ここで最高スタック温度Tmaxとは、燃料電池スタックの湿潤状態を最低にするときのスタック温度である。上述のように、電解質膜の湿潤状態を下降させるには、燃料電池スタック1の温度を高くする。なお燃料電池スタック1の温度は、低すぎると凝縮水による発電不良が生じるおそれがある。その一方で、高すぎると燃料電池スタック1の劣化が早まる。したがって、燃料電池スタックの湿潤状態を最低にするときのスタック温度とは、これらを総合的に考慮して燃料電池スタックの性能を確保できる範囲で最も高いスタック温度である。同様に、最低カソード圧力Pminとは、燃料電池スタックの湿潤状態を最低にするときのカソード圧力である。上述のように、電解質膜の湿潤状態を下降させるには、カソード圧力を減らす。なおカソード圧力は、低すぎると圧力不足による性能悪化が生じるおそれがある。その一方で、高すぎるとコンプレッサーで実現できないおそれがある。したがって燃料電池スタックの湿潤状態を最低にするときのカソード圧力とは、これらを総合的に考慮して燃料電池スタックの性能を確保できる範囲で最も低いカソード圧力である。これらは、予め実験によって燃料電池の運転状態に応じて設定されている。
 また目標流量演算ブロックB203は、目標排水量QH2O_outが増える、すなわち湿潤状態を低下させて乾燥させるときには、図9Bに示されるように、目標排水量QH2O_outと、スタック温度(最高スタック温度Tmax)に基づいて演算され、最高スタック温度Tmaxよりは低いが水温センサー401で検出された水温Tsensよりは高い温度(演算値)と、最低カソード圧力Pminと、に基づいて、目標カソード流量Qtargetを求める。この演算値は、第1実施形態と同様に、ウォーターポンプ43の回転速度(冷却水温度を操作する操作量)を考慮して求める。
 以上のようにして、目標流量演算ブロックB203は、目標カソード流量Qtargetを求める。
 図10は、目標湿潤状態が上がるときの湿潤制御装置の作動を示すタイミングチャートである。
 以上の制御ロジックが実行されると、目標湿潤状態が上がるときに、湿潤制御装置は以下のように作動する。
 時刻t31で、目標湿潤状態が上がると、湿潤制御装置が作動を開始する。
 目標カソード流量Qtargetは、目標排水量QH2O_outと、最高スタック温度Tmaxと、最低カソード圧力Pminと、に基づいて設定される。目標温度Ttargetは、目標排水量QH2O_outと、最低カソード圧力Pminと、実流量Qsensと、に基づいて設定される。目標カソード圧力Ptargetは、目標排水量QH2O_outと、実流量Qsensと、実水温Tsensと、に基づいて設定される。
 目標流量Qtargetは、湿潤状態を最低にするときのスタック温度(最高スタック温度Tmax)及びカソード圧力(最低カソード圧力Pmin)に基づいて設定されるので、最も変動しやすい。そこでまず最初は優先的に目標流量Qtargetが下がる。そして、この目標流量Qtargetが実現されるように、コンプレッサー21が制御される。するとカソード流量がほとんど応答遅れなく低下する。
 目標流量Qtargetの変更だけでは、調整しきれなければ、時刻t32で、目標温度Ttargetが変動しはじめる。すなわち目標温度Ttargetの設定には、限界値(最低カソード圧力Pmin)が用いられる。また上述のようにして調整されたカソード流量のセンサー検出値Qsensがフィードバックされる。このためカソード流量だけは調整しきれない分が、冷却水の温度の変更で調整されることとなる。なお冷却水の温度は、目標値が変わっても変動しにくく応答遅れが生じやすい。冷却水の温度は、水温センサー401で検出されており、この温度がフィードバックされてカソード圧力が決められるので、冷却水の温度の応答遅れがカソード圧力で補完される。
 目標温度Ttargetの変更でも、調整しきれなければ、時刻t33で、目標カソード圧力Ptargetが変動しはじめる。すなわち、カソード流量センサー201で検出された流量Qsensと、水温センサー401で検出された水温Tsensと、がフィードバックされて、カソード圧力が決められるので、目標流量Qtarget及び目標温度Ttargetの変更で調整しきれない分がカソード圧力で補完されることとなる。
 このようにすれば、燃料電池の目標湿潤状態が変更されて、湿潤状態を上げるときには、まず目標流量を下げてコンプレッサー21の回転速度を下げる。次に目標冷却水温を下げて三方弁42を制御する。そして最後に目標圧力を上げてカソード調圧弁22を閉じる。このようにすることで、コンプレッサー21の回転速度が、可能な限り早めに低下することとなる。上述のようにコンプレッサーの回転速度が上昇するほど、消費電力が増大し燃費が悪化する。換言すれば、コンプレッサーの回転速度が低下するほど、消費電力が抑えられて燃費が向上する。本実施形態では、コンプレッサー21の回転速度が、可能な限り早めに低下するので、燃費が向上するのである。
 図11は、目標湿潤状態が下がるときの湿潤制御装置の作動を示すタイミングチャートである。
 目標湿潤状態が上がるときは、上述のようにすることで、可能な限りコンプレッサー21の回転速度の上昇が抑制されるので、消費電力が抑えられて燃費が向上する。
 しかしながら、目標湿潤状態が下がるときに、上述のようにしては、湿潤状態を目標通りには制御できない。すなわち、目標流量Qtargetは、湿潤状態を最低にするときのスタック温度(最高スタック温度Tmax)及びカソード圧力(最低カソード圧力Pmin)に基づいて設定されるので、目標湿潤状態が下がるときには、変動しにくい。
 目標カソード圧力Ptargetの変動だけでは、調整しきれなければ、時刻t42で、目標流量Qtarget及び目標温度Ttargetが変動しはじめる。温度は応答性が悪く、流量よりも変動しにくい。逆に言えば、流量が温度よりも先に変動してしまって温度を補完することができなくなる。そのため温度が目標から乖離することとなって、この結果、湿潤状態を目標通りには制御できない。
 これに対して本実施形態では、目標流量演算ブロックB203は、目標排水量QH2O_outが増える、すなわち湿潤状態を低下させて乾燥させるときには、スタック温度(最高スタック温度Tmax)に基づいて演算され、最高スタック温度Tmaxよりは低いが水温センサー401で検出された水温Tsensよりは高い温度(演算値)を用いるようにした。
 このようにすれば、目標流量演算ブロックB203には、常に、水温センサー401で検出された水温Tsensよりも高い温度が入力されることとなる。そのため、目標流量演算ブロックB203で演算された流量では、目標湿潤状態を達成できない。そのため、目標温度演算ブロックB202で演算された温度で、目標湿潤状態が達成されるようになり、その温度を補完するように、流量が変動することとなる。
 このようにすることで、目標湿潤状態が下がるときは、まず目標圧力を下げてカソード調圧弁22を開く。次に目標冷却水温を上げて三方弁42を制御する。そして最後に目標流量を上げてコンプレッサー21の回転速度を上げる。このようにすることで、コンプレッサー21の回転速度の上昇が、可能な限り抑制されることとなる。コンプレッサーの回転速度が上昇するほど、消費電力が増大し燃費が悪化するが、本実施形態では、可能な限りコンプレッサー21の回転速度の上昇が抑制されるので、消費電力が抑えられて燃費が向上する。
(第3実施形態)
 図12A及び図12Bは、本発明による湿潤状態制御装置の第3実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。
 本実施形態の湿潤状態制御装置は、湿潤状態減少部100と、湿潤状態増大部200と、を含む。
 湿潤状態減少部100は、目標排水量QH2O_outが増える、すなわち湿潤状態が減少するときに、実行される制御部である。湿潤状態減少部100は、目標圧力演算ブロックB101と、目標温度演算ブロックB102と、目標流量演算ブロックB103と、を含む。なお湿潤状態減少部100は、第1実施形態(図3)と同様であるので、詳細な説明は省略される。なお目標圧力演算ブロックB101は請求の範囲の優先制御部に対応する。目標温度演算ブロックB102は請求の範囲の水温制御部に対応する。目標流量演算ブロックB103は請求の範囲の補完制御部に対応する。
 湿潤状態増大部200は、目標排水量QH2O_outが減る、すなわち湿潤状態が増大するときに、実行される制御部である。湿潤状態増大部200は、目標流量演算ブロックB203と、目標温度演算ブロックB202と、目標圧力演算ブロックB201と、を含む。なおこれらのブロックは、第2実施形態(図9A)と同様であるので、詳細な説明は省略される。なお目標圧力演算ブロックB201は請求の範囲の補完制御部に対応する。目標温度演算ブロックB202は請求の範囲の水温制御部に対応する。目標流量演算ブロックB203は請求の範囲の優先制御部に対応する。
 図13は、目標湿潤状態が下がるときの湿潤制御装置の作動を示すタイミングチャートである。
 以上の制御ロジックが実行されると、目標湿潤状態が下がるときは、湿潤制御装置は以下のように作動する。
 時刻t11で、目標湿潤状態が下がると、湿潤制御装置の湿潤状態減少部100が作動を開始する。
 目標圧力Ptargetは、目標排水量QH2O_outと、最低スタック温度Tminと、最低カソード流量Qminと、に基づいて設定される。目標温度Ttargetは、目標排水量QH2O_outと、実圧力Psensと、最低カソード流量Qminと、に基づいて、設定される。目標カソード流量Qtargetは、目標排水量QH2O_outと、実圧力Psensと、実水温Tsensと、に基づいて設定される。
 目標圧力Ptargetは、湿潤状態を最高にするときのスタック温度(最低スタック温度Tmin)及びカソード流量(最低カソード流量Qmin)に基づいて設定されるので、最も変動しやすい。そこでまず最初は優先的に目標圧力Ptargetが下がる。そして、この目標圧力Ptargetが実現されるように、カソード調圧弁22が制御される。するとカソード圧力がほとんど応答遅れなく低下する。
 目標圧力Ptargetの変更だけでは、調整しきれなければ、時刻t12で、目標温度Ttargetが変動しはじめる。すなわち目標温度Ttargetの設定には、限界値(最低カソード流量Qmin)が用いられる。また上述のようにして調整されたカソード圧力のセンサー検出値Psensがフィードバックされる。このためカソード圧力だけは調整しきれない分が、冷却水の温度の変更で調整されることとなる。なお冷却水の温度は、目標値が変わっても変動しにくく応答遅れが生じやすい。冷却水の温度は、水温センサー401で検出されており、この温度がフィードバックされてカソード流量が決められるので、冷却水の温度の応答遅れがカソード流量で補完される。
 目標温度Ttargetの変更でも、調整しきれなければ、時刻t13で、目標カソード流量Qtargetが変動しはじめる。すなわち、カソード圧力センサー202で検出された圧力Psensと、水温センサー401で検出された水温Tsensと、がフィードバックされて、カソード流量が決められるので、目標圧力Ptarget及び目標温度Ttargetの変更で調整しきれない分がカソード流量で補完されることとなる。
 図14は、目標湿潤状態が上がるときの湿潤制御装置の作動を示すタイミングチャートである。
 時刻t21で、目標湿潤状態が上がると、湿潤制御装置の湿潤状態増大部200が作動を開始する。
 目標カソード流量Qtargetは、目標排水量QH2O_outと、最高スタック温度Tmaxと、最低カソード圧力Pminと、に基づいて設定される。目標温度Ttargetは、目標排水量QH2O_outと、最低カソード圧力Pminと、実流量Qsensと、に基づいて設定される。目標カソード圧力Ptargetは、目標排水量QH2O_outと、実流量Qsensと、実水温Tsensと、に基づいて設定される。
 目標流量Qtargetは、湿潤状態を最低にするときのスタック温度(最高スタック温度Tmax)及びカソード圧力(最低カソード圧力Pmin)に基づいて設定されるので、最も変動しやすい。そこでまず最初は優先的に目標流量Qtargetが下がる。そして、この目標流量Qtargetが実現されるように、コンプレッサー21が制御される。するとカソード流量がほとんど応答遅れなく低下する。
 目標流量Qtargetの変更だけでは、調整しきれなければ、時刻t22で、目標温度Ttargetが変動しはじめる。すなわち目標温度Ttargetの設定には、限界値(最低カソード圧力Pmin)が用いられる。また上述のようにして調整されたカソード流量のセンサー検出値Qsensがフィードバックされる。このためカソード流量だけは調整しきれない分が、冷却水の温度の変更で調整されることとなる。なお冷却水の温度は、目標値が変わっても変動しにくく応答遅れが生じやすい。冷却水の温度は、水温センサー401で検出されており、この温度がフィードバックされてカソード圧力が決められるので、冷却水の温度の応答遅れがカソード圧力で補完される。
 目標温度Ttargetの変更でも、調整しきれなければ、時刻t23で、目標カソード圧力Ptargetが変動しはじめる。すなわち、カソード流量センサー201で検出された流量Qsensと、水温センサー401で検出された水温Tsensと、がフィードバックされて、カソード圧力が決められるので、目標流量Qtarget及び目標温度Ttargetの変更で調整しきれない分がカソード圧力で補完されることとなる。
 本実施形態によれば、燃料電池の目標湿潤状態が変更されて、湿潤状態を下げるときには、まず目標圧力を下げてカソード調圧弁22を開く。次に目標冷却水温を上げて三方弁42を制御する。そして最後に目標流量を上げてコンプレッサー21の回転速度を上げる。このようにすることで、コンプレッサー21の回転速度の上昇が、可能な限り抑制されることとなる。コンプレッサーの回転速度が上昇するほど、消費電力が増大し燃費が悪化するが、本実施形態では、可能な限りコンプレッサー21の回転速度の上昇が抑制されるので、消費電力が抑えられて燃費が向上する。
 また本実施形態によれば、燃料電池の目標湿潤状態が変更されて、湿潤状態を上げるときには、まず目標流量を下げてコンプレッサー21の回転速度を下げる。次に目標冷却水温を下げて三方弁42を制御する。そして最後に目標圧力を上げてカソード調圧弁22を閉じる。このようにすることで、コンプレッサー21の回転速度が、可能な限り早めに低下することとなる。上述のようにコンプレッサーの回転速度が上昇するほど、消費電力が増大し燃費が悪化する。換言すれば、コンプレッサーの回転速度が低下するほど、消費電力が抑えられて燃費が向上する。本実施形態では、コンプレッサー21の回転速度が、可能な限り早めに低下するので、燃費が向上するのである。
 さらに本実施形態では、目標圧力演算ブロックB101と目標圧力演算ブロックB201との制御ロジックは同じである。また目標温度演算ブロックB102と目標温度演算ブロックB202との制御ロジックも同じである。さらに目標流量演算ブロックB103と目標流量演算ブロックB203との制御ロジックも同じである。そしてこれらの制御ブロックに入力される信号をのみ変えることで、燃料電池の湿潤状態を低めて乾燥させたり、燃料電池の湿潤状態を高めて湿潤させたりしている。このように同一の制御ロジックでありながら、入力値を変えるだけで、圧力・温度・流量の制御順位を変えて、燃料電池の湿潤状態を制御できるのである。
 (第4実施形態)
 図15A及び図15Bは、本発明による湿潤状態制御装置の第4実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。
 運転モードによっては、三方弁42を制御しない。また何らかのトラブルによって三方弁42を制御できない可能性がある。このようなときには、目標圧力演算ブロックB101は、最低スタック温度Tminに代えて、水温センサー401で検出された水温Tsensを用いて目標圧力Ptargetを演算する。また目標流量演算ブロックB203は、最高スタック温度Tmaxに代えて、水温センサー401で検出された水温Tsensを用いて目標圧力Ptargetを演算する。
 本実施形態のようにすることで、三方弁42を制御しない運転モードや、何らかのトラブルによって三方弁42を制御できない場合にも対応することができる。また本実施形態でも、燃料電池の目標湿潤状態が変更されて、湿潤状態を下げるときには、まず目標圧力を下げてカソード調圧弁22を開く。次に目標流量を上げてコンプレッサー21の回転速度を上げる。このようになるので、コンプレッサー21の回転速度の上昇が、可能な限り抑制されることとなり、消費電力が抑えられて燃費が向上する。また、燃料電池の目標湿潤状態が変更されて、湿潤状態を上げるときには、まず目標流量を下げてコンプレッサー21の回転速度を下げる。次に目標圧力を上げてカソード調圧弁22を閉じる。このようになるので、コンプレッサー21の回転速度が、可能な限り早めに低下することとなり、消費電力が抑えられて燃費が向上するのである。
 (第5実施形態)
 図16A及び図16Bは、本発明による湿潤状態制御装置の第5実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。
 運転モードによっては、カソード調圧弁22を制御しない。また何らかのトラブルによってカソード調圧弁22を制御できない可能性がある。このようなときには、目標流量演算ブロックB203は、最低カソード圧力Pminに代えて、カソード圧力センサー202で検出された圧力Psensを用いて目標カソード流量Qtargetを求める。また目標温度演算ブロックB202は、最低カソード圧力Pminに代えて、カソード圧力センサー202で検出された圧力Psensを用いて目標温度Ttargetを求める。
 本実施形態のようにすることで、カソード調圧弁22を制御しない運転モードや、何らかのトラブルによってカソード調圧弁22を制御できない場合にも対応することができる。また本実施形態でも、燃料電池の目標湿潤状態が変更されて、湿潤状態を下げるときには、まず目標冷却水温を上げて三方弁42を制御する。次に目標流量を上げてコンプレッサー21の回転速度を上げる。このようになるので、コンプレッサー21の回転速度の上昇が、可能な限り抑制されることとなり、燃費が向上する。また、燃料電池の目標湿潤状態が変更されて、湿潤状態を上げるときには、まず目標流量を下げてコンプレッサー21の回転速度を下げる。次に目標冷却水温を下げて三方弁42を制御する。このようになるので、コンプレッサー21の回転速度が、可能な限り早めに低下することとなり、燃費が向上するのである。
 (第6実施形態)
 図17A及び図17Bは、本発明による湿潤状態制御装置の第6実施形態におけるコントローラの制御にかかる機能をブロック図として表したものである。
 運転モードによっては、コンプレッサー21を制御しない。また何らかのトラブルによってコンプレッサー21を制御できない可能性がある。このようなときには、目標圧力演算ブロックB101は、最低カソード流量Qminに代えて、カソード流量センサー201で検出された流量Qsensを用いて目標カソード圧力Ptargetを求める。また目標温度演算ブロックB102は、最低カソード流量Qminに代えて、カソード流量センサー201で検出された流量Qsensを用いて、目標温度Ttargetを求める。
 本実施形態のようにすることで、コンプレッサー21を制御しない運転モードや、何らかのトラブルによってコンプレッサー21を制御できない場合にも対応することができる。
 以上、本発明の実施形態が説明されたが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲は、上記実施形態の具体的構成には限定されない。
 たとえば、冷却水温度を操作する操作量としては、ウォーターポンプ43の回転速度が例示されたが、これには限られない。三方弁42の開度や、クーリングファン410の回転速度であってもよい。
 また第2実施形態においても、第1実施形態と同様に、冷却水温度を操作する操作量が考慮されて温度Tcoolantが演算されてもよい。
 さらに上記各実施形態は、その他にも適宜組み合わせ可能である。
 また燃料電池の湿潤状態とは、燃料電池の水収支(たとえば「水収支=生成される水-排出される水」で定義される)であってもよいし、燃料電池の電解質膜の抵抗であってもよいし、その他の燃料電池の湿潤状態を表すものであってもよい。
 さらに冷却水の温度に代えて、燃料電池自体の温度や、空気の温度が用いられてもよい。
 さらにまた上記各実施形態では、目標圧力演算ブロックB101では、目標圧力Ptargetが設定されるときに、湿潤状態を最高にするときのスタック温度(最低スタック温度Tmin)及びカソード流量(最低カソード流量Qmin)が用いられる。目標温度演算ブロックB102では、目標温度Ttargetが設定されるときに、湿潤状態を最高にするときのカソード流量(最低カソード流量Qmin)が用いられる。目標温度演算ブロックB202では、目標温度Ttargetが設定されるときに、湿潤状態を最低にするときのカソード圧力(最低カソード圧力Pmin)が用いられる。目標流量演算ブロックB203では、目標流量Qtargetが設定されるときに、湿潤状態を最低にするときのスタック温度(最高スタック温度Tmax)及びカソード圧力(最低カソード圧力Pmin)が用いられる。このように限界値(最大値、最小値)が用いられれば、最も効果が大きい。しかしながら、最大値よりも小さめ、最小値よりも大きめのものが使用されてもよい。このようにしても相応の効果が得られる。
 本願は、2011年6月6日に日本国特許庁に出願された特願2011-126109及び2011年7月28日に日本国特許庁に出願された特願2011-165322に基づく優先権を主張し、これらの出願の全ての内容は参照により本明細書に組み込まれる。

Claims (15)

  1.  燃料電池の湿潤状態を調整するときに、カソードガスの圧力及び流量のいずれか一方を優先して制御する優先制御部と、
     前記優先制御部による制御では燃料電池の湿潤状態を調整しきれないときに、冷却水の温度を制御する水温制御部と、
     前記水温制御部の応答遅れを補完するように、カソードガスの圧力及び流量のいずれか他方を制御する補完制御部と、
    を有する燃料電池の湿潤状態制御装置。
  2.  請求項1に記載の燃料電池の湿潤状態制御装置において、
     燃料電池の湿潤状態を低めて乾燥させる場合には、
      前記優先制御部は、カソードガスの圧力を優先して下げ、
      前記水温制御部は、前記優先制御部による制御では燃料電池の湿潤状態を調整しきれないときに、冷却水の温度を上げ、
      前記補完制御部は、前記水温制御部の応答遅れを補完するように、カソードガスの流量を制御する、
    燃料電池の湿潤状態制御装置。
  3.  請求項1又は請求項2に記載の燃料電池の湿潤状態制御装置において、
     燃料電池の湿潤状態を低めて乾燥させる場合には、
      前記優先制御部は、燃料電池を現在よりも高湿潤状態にするときに供給するカソードガスの流量及び冷却水の温度に基づいてカソードガスの圧力を下げ、
      前記水温制御部は、カソードガスの実圧力及び前記現在よりも高湿潤状態にするときに供給するカソードガスの流量に基づいて冷却水の温度を上げ、
      前記補完制御部は、カソードガスの実圧力及び冷却水の実温度に基づいてカソードガスの流量を制御する、
    燃料電池の湿潤状態制御装置。
  4.  請求項3に記載の燃料電池の湿潤状態制御装置において、
     現在よりも高湿潤状態にするときに供給するカソードガスの流量とは、燃料電池の性能を確保できる範囲で最も低い流量であり、
     現在よりも高湿潤状態にするときに供給する冷却水の温度とは、燃料電池の性能を確保できる範囲で最も低い温度である、
    燃料電池の湿潤状態制御装置。
  5.  請求項3又は請求項4に記載の燃料電池の湿潤状態制御装置において、
     前記水温制御部が作動しない場合であって燃料電池の湿潤状態を低めて乾燥させるときには、前記優先制御部は、前記現在よりも高湿潤状態にするときに供給する冷却水の温度に代えて、冷却水の実温度を用いる、
    燃料電池の湿潤状態制御装置。
  6.  請求項3から請求項5までのいずれか1項に記載の燃料電池の湿潤状態制御装置において、
     前記補完制御部が作動しない場合であって燃料電池の湿潤状態を低めて乾燥させるときには、前記優先制御部及び前記水温制御部は、前記現在よりも高湿潤状態にするときに供給するカソードガスの流量に代えて、カソードガスの実流量を用いる、
    燃料電池の湿潤状態制御装置。
  7.  請求項1又は請求項2に記載の燃料電池の湿潤状態制御装置において、
     燃料電池の湿潤状態を低めて乾燥させる場合には、
      前記優先制御部は、カソードガスの実流量及び冷却水の実温度に基づいてカソードガスの圧力を下げ、
      前記水温制御部は、カソードガスの実流量及び燃料電池を現在よりも低湿潤状態にするときに供給するカソードガスの圧力に基づいて冷却水の温度を上げ、
      前記補完制御部は、燃料電池を現在よりも低湿潤状態にするときに供給するカソードガスの圧力及び燃料電池を現在よりも低湿潤状態にするときに供給する冷却水の温度と冷却水の実温度との間の温度に基づいてカソードガスの流量を制御する、
    燃料電池の湿潤状態制御装置。
  8.  請求項7に記載の燃料電池の湿潤状態制御装置において、
     現在よりも低湿潤状態にするときに供給するカソードガスの圧力とは、燃料電池の性能を確保できる範囲で最も低い圧力であり、
     現在よりも低湿潤状態にするときに供給する冷却水の温度とは、燃料電池の性能を確保できる範囲で最も高い温度である、
    燃料電池の湿潤状態制御装置。
  9.  請求項1から請求項8までのいずれか1項に記載の燃料電池の湿潤状態制御装置において、
     燃料電池の湿潤状態を高めて湿潤させる場合には、
      前記優先制御部は、カソードガスの流量を優先して下げ、
      前記水温制御部は、前記優先制御部による制御では燃料電池の湿潤状態を調整しきれないときに、冷却水の温度を下げ、
      前記補完制御部は、前記水温制御部の応答遅れを補完するように、カソードガスの圧力を制御する、
    燃料電池の湿潤状態制御装置。
  10.  請求項1から請求項9までのいずれか1項に記載の燃料電池の湿潤状態制御装置において、
     燃料電池の湿潤状態を高めて湿潤させる場合には、
      前記優先制御部は、燃料電池を現在よりも低湿潤状態にするときに供給するカソードガス圧力及び冷却水の温度に基づいてカソードガスの流量を下げ、
      前記水温制御部は、カソードガスの実流量及び燃料電池を現在よりも低湿潤状態にするときに供給するカソードガスの圧力に基づいて冷却水の温度を下げ、
      前記補完制御部は、カソードガスの実流量及び冷却水の実温度に基づいてカソードガスの圧力を制御する、
    燃料電池の湿潤状態制御装置。
  11.  請求項10に記載の燃料電池の湿潤状態制御装置において、
     現在よりも低湿潤状態にするときに供給するカソードガスの圧力とは、燃料電池の性能を確保できる範囲で最も低い圧力であり、
     現在よりも低湿潤状態にするときに供給する冷却水の温度とは、燃料電池の性能を確保できる範囲で最も高い温度である、
    燃料電池の湿潤状態制御装置。
  12.  請求項10又は請求項11に記載の燃料電池の湿潤状態制御装置において、
     前記水温制御部が作動しない場合であって燃料電池の湿潤状態を高めて湿潤させるときには、前記優先制御部は、前記現在よりも低湿潤状態にするときに供給する冷却水の温度に代えて、冷却水の実温度を用いる、
    燃料電池の湿潤状態制御装置。
  13.  請求項10から請求項12までのいずれか1項に記載の燃料電池の湿潤状態制御装置において、
     前記補完制御部が作動しない場合であって燃料電池の湿潤状態を高めて湿潤させるときには、前記優先制御部及び前記水温制御部は、前記現在よりも低湿潤状態にするときに供給するカソードガスの圧力に代えて、カソードガスの実圧力を用いる、
    燃料電池の湿潤状態制御装置。
  14.  請求項1から請求項9までのいずれか1項に記載の燃料電池の湿潤状態制御装置において、
     燃料電池の湿潤状態を高めて湿潤させる場合には、
      前記優先制御部は、カソードガスの実圧力及び冷却水の実温度に基づいてカソードガスの流量を下げ、
      前記水温制御部は、カソードガスの実圧力及び燃料電池を現在よりも高湿潤状態にするときに供給するカソードガスの流量に基づいて冷却水の温度を下げ、
      前記補完制御部は、燃料電池を現在よりも高湿潤状態にするときに供給するカソードガスの流量及び燃料電池を現在よりも高湿潤状態にするときに供給する冷却水の温度と冷却水の実温度との間の温度に基づいてカソードガスの圧力を制御する、
    燃料電池の湿潤状態制御装置。
  15.  請求項14に記載の燃料電池の湿潤状態制御装置において、
     現在よりも高湿潤状態にするときに供給するカソードガスの流量とは、燃料電池の性能を確保できる範囲で最も低い流量であり、
     現在よりも高湿潤状態にするときに供給する冷却水の温度とは、燃料電池の性能を確保できる範囲で最も低い温度である、
    燃料電池の湿潤状態制御装置。
     
     
PCT/JP2012/060572 2011-06-06 2012-04-19 燃料電池の湿潤状態制御装置 WO2012169287A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280026602.3A CN103563148B (zh) 2011-06-06 2012-04-19 燃料电池的湿润状态控制装置
CA2838647A CA2838647C (en) 2011-06-06 2012-04-19 Wet state control device for fuel cell
EP12796673.7A EP2720306B8 (en) 2011-06-06 2012-04-19 Wet state control device for fuel cell
US14/123,868 US9620797B2 (en) 2011-06-06 2012-04-19 Wet state control device for fuel cell
US15/444,882 US9735437B2 (en) 2011-06-06 2017-02-28 Wet state control device for fuel cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011126109A JP5765064B2 (ja) 2011-06-06 2011-06-06 燃料電池の湿潤状態制御装置
JP2011-126109 2011-06-06
JP2011-165322 2011-07-28
JP2011165322A JP5834594B2 (ja) 2011-07-28 2011-07-28 燃料電池の湿潤状態制御装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/123,868 A-371-Of-International US9620797B2 (en) 2011-06-06 2012-04-19 Wet state control device for fuel cell
US15/444,882 Division US9735437B2 (en) 2011-06-06 2017-02-28 Wet state control device for fuel cell

Publications (1)

Publication Number Publication Date
WO2012169287A1 true WO2012169287A1 (ja) 2012-12-13

Family

ID=47295858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060572 WO2012169287A1 (ja) 2011-06-06 2012-04-19 燃料電池の湿潤状態制御装置

Country Status (5)

Country Link
US (2) US9620797B2 (ja)
EP (1) EP2720306B8 (ja)
CN (1) CN103563148B (ja)
CA (1) CA2838647C (ja)
WO (1) WO2012169287A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018693A (ja) * 2014-07-09 2016-02-01 トヨタ自動車株式会社 燃料電池システム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929347B2 (ja) * 2011-06-30 2016-06-01 日産自動車株式会社 燃料電池の冷却液温度調整システム
WO2015136677A1 (ja) * 2014-03-13 2015-09-17 日産自動車株式会社 燃料電池システム
JP6137122B2 (ja) * 2014-11-10 2017-05-31 トヨタ自動車株式会社 燃料電池システムにおける冷却媒体の流量制御方法、および燃料電池システム
JP6477896B2 (ja) * 2015-09-11 2019-03-06 日産自動車株式会社 燃料電池システムの制御装置及び燃料電池システムの制御方法
KR101838510B1 (ko) * 2016-03-11 2018-03-14 현대자동차주식회사 증발냉각식의 연료 전지 시스템과 그것을 위한 냉각 제어 방법
KR102004112B1 (ko) 2016-03-15 2019-07-25 닛산 지도우샤 가부시키가이샤 연료 전지 시스템의 습윤 상태 제어 방법 및 습윤 상태 제어 장치
KR101843749B1 (ko) * 2016-04-15 2018-03-30 현대자동차주식회사 연료전지 시스템, 이를 포함하는 차량 및 연료전지 시스템의 제어방법
CN110416578B (zh) * 2019-02-01 2020-04-28 清华大学 燃料电池的增湿方法、计算机设备和存储介质
CN110212221B (zh) * 2019-05-16 2020-06-05 苏州市华昌能源科技有限公司 燃料电池、其湿度控制方法
AT522879B1 (de) * 2019-10-10 2021-03-15 Avl List Gmbh Betriebsvorrichtung, Brennstoffzellensystem, Brennstoffzellenfahrzeug, Verfahren und Computerprogrammprodukt zum Betreiben eines Brennstoffzellensystems
CN113036181B (zh) * 2021-03-16 2022-07-15 上海燃锐新能源汽车技术有限公司 氢气排放控制方法及系统、燃料电池发动机系统及其控制方法
CN113224358B (zh) * 2021-04-13 2022-03-11 佛山市飞驰汽车科技有限公司 燃料电池车辆中燃料电池的温度控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243418A (ja) * 1999-02-23 2000-09-08 Toyota Motor Corp 燃料電池システム
JP2006004819A (ja) * 2004-06-18 2006-01-05 Nissan Motor Co Ltd 燃料電池システム及び燃料電池車両
JP2006351506A (ja) * 2005-05-17 2006-12-28 Nissan Motor Co Ltd 燃料電池システム
JP2007115488A (ja) 2005-10-19 2007-05-10 Toyota Motor Corp 燃料電池のカソードガス制御方法および燃料電池システム
JP2007123095A (ja) * 2005-10-28 2007-05-17 Toyota Motor Corp 燃料電池における冷却水温度制御方法、および燃料電池システム
JP2009231225A (ja) * 2008-03-25 2009-10-08 Toyota Motor Corp 燃料電池システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366821A (en) * 1992-03-13 1994-11-22 Ballard Power Systems Inc. Constant voltage fuel cell with improved reactant supply and control system
US20070287041A1 (en) * 2006-06-09 2007-12-13 Alp Abdullah B System level adjustments for increasing stack inlet RH
WO2008095512A1 (de) * 2007-02-09 2008-08-14 Daimler Ag Versorgungssystem und warnvorrichtung für einen brennstoffzellenstapel sowie verfahren zur kontrolle des versorgungssystems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243418A (ja) * 1999-02-23 2000-09-08 Toyota Motor Corp 燃料電池システム
JP2006004819A (ja) * 2004-06-18 2006-01-05 Nissan Motor Co Ltd 燃料電池システム及び燃料電池車両
JP2006351506A (ja) * 2005-05-17 2006-12-28 Nissan Motor Co Ltd 燃料電池システム
JP2007115488A (ja) 2005-10-19 2007-05-10 Toyota Motor Corp 燃料電池のカソードガス制御方法および燃料電池システム
JP2007123095A (ja) * 2005-10-28 2007-05-17 Toyota Motor Corp 燃料電池における冷却水温度制御方法、および燃料電池システム
JP2009231225A (ja) * 2008-03-25 2009-10-08 Toyota Motor Corp 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2720306A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018693A (ja) * 2014-07-09 2016-02-01 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
CA2838647C (en) 2016-02-09
US20170170495A1 (en) 2017-06-15
CN103563148B (zh) 2016-04-27
EP2720306A4 (en) 2014-12-24
CN103563148A (zh) 2014-02-05
EP2720306B8 (en) 2016-09-07
US20140093796A1 (en) 2014-04-03
US9620797B2 (en) 2017-04-11
EP2720306B1 (en) 2016-06-29
US9735437B2 (en) 2017-08-15
CA2838647A1 (en) 2012-12-13
EP2720306A1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2012169287A1 (ja) 燃料電池の湿潤状態制御装置
JP5834594B2 (ja) 燃料電池の湿潤状態制御装置
JP6206440B2 (ja) 燃料電池システム
US7297427B2 (en) Fuel cell system and process for controlling the same
WO2013157488A1 (ja) 燃料電池システム
WO2011135610A1 (ja) 燃料電池システム
RU2692464C1 (ru) Система топливных элементов и способ управления системой топливных элементов
JP5949946B2 (ja) 燃料電池システム
US8394517B2 (en) Fuel cell system and control method of the system
JP6222050B2 (ja) 燃料電池システム、および、燃料電池システムの制御方法
JP5522309B2 (ja) 燃料電池システム
JP2012109182A (ja) 燃料電池システム
JP2020071957A (ja) 燃料電池システム
WO2013105590A1 (ja) 燃料電池システム
JP5765064B2 (ja) 燃料電池の湿潤状態制御装置
JP5983395B2 (ja) 燃料電池システム
JP2007265686A (ja) 燃料電池システム及び要求出力生成方法
JP2010123441A (ja) 燃料電池システム
WO2014091851A1 (ja) 燃料電池システム及びその制御方法
JP6304366B2 (ja) 燃料電池システム
JP5119568B2 (ja) 燃料電池システムの制御装置及び燃料電池システムの制御方法
JP2007234311A (ja) 燃料電池システム
JP4413587B2 (ja) 燃料電池用加湿システム
JP5858137B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP2006120340A (ja) 燃料電池の反応ガス供給装置および反応ガス供給方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280026602.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796673

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012796673

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14123868

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2838647

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE