WO2012169179A1 - 球技用ボール - Google Patents

球技用ボール Download PDF

Info

Publication number
WO2012169179A1
WO2012169179A1 PCT/JP2012/003692 JP2012003692W WO2012169179A1 WO 2012169179 A1 WO2012169179 A1 WO 2012169179A1 JP 2012003692 W JP2012003692 W JP 2012003692W WO 2012169179 A1 WO2012169179 A1 WO 2012169179A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
region
sphere
core layer
golf ball
Prior art date
Application number
PCT/JP2012/003692
Other languages
English (en)
French (fr)
Inventor
剛史 北崎
美沙樹 松村
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2012547382A priority Critical patent/JP6111669B2/ja
Priority to KR1020137031123A priority patent/KR101772521B1/ko
Publication of WO2012169179A1 publication Critical patent/WO2012169179A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B43/00Balls with special arrangements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/0039Intermediate layers, e.g. inner cover, outer core, mantle characterised by the material
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/005Cores
    • A63B37/0051Materials other than polybutadienes; Constructional details
    • A63B37/0055Materials other than polybutadienes; Constructional details with non-spherical insert(s)
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/14Special surfaces
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B43/00Balls with special arrangements
    • A63B43/004Balls with special arrangements electrically conductive, e.g. for automatic arbitration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/007Characteristics of the ball as a whole
    • A63B37/0072Characteristics of the ball as a whole with a specified number of layers
    • A63B37/0075Three piece balls, i.e. cover, intermediate layer and core

Definitions

  • the present invention relates to a ball for ball games.
  • a device using a Doppler radar has been used as a measuring device for measuring ball game balls, particularly golf ball launch conditions (initial velocity, launch angle, spin amount) and ballistic measurement.
  • a transmission wave composed of a microwave is emitted from the antenna toward the golf ball, the reflected wave reflected by the golf ball is measured, and the moving speed and spin are calculated based on the Doppler signal obtained from the transmission wave and the reflected wave. Find the amount.
  • obtaining the reflected wave efficiently is advantageous in securing the measurement distance.
  • Patent Documents 1, 2, and 3 a technique for providing a layer or film containing a metal material over the entire surface of the ball has been proposed in order to improve appearance and design.
  • Patent Document 4 a technique for providing a spherical metal layer is provided between a core layer of a ball and a cover.
  • an object of the present invention is to provide a ball game ball that is advantageous in accurately and accurately performing launch condition measurement and ballistic measurement.
  • a ball game ball of the present invention is a ball game ball including a sphere and a cover layer covering the sphere, and is formed in a spherical portion centering on the center of the sphere.
  • the conductive paint comprises at least a coating film forming component, a solvent, and a metal powder, and the content of the metal powder when the conductive paint is dried is 80% by mass or more. It is 97 mass% or less, It is characterized by the above-mentioned.
  • the transmission wave emitted from the antenna of the Doppler radar is efficiently reflected by the plurality of first regions moving with the rotation of the ball for ball game, so that it is necessary to detect the spin amount in the Doppler signal.
  • the signal intensity of the frequency distribution can be ensured, the amount of spin can be detected stably and reliably, and this is advantageous in accurately measuring the launch conditions and ballistics accurately.
  • FIG. 1 It is a block diagram explaining the measurement principle of a ball game ball using Doppler radar. It is explanatory drawing of the principle which detects the spin amount of a golf ball. It is explanatory drawing which simplifies and shows the result of having performed the wavelet analysis of the Doppler signal Sd at the time of measuring the launched golf ball with the Doppler radar 10.
  • FIG. It is explanatory drawing which shows the signal strength distribution data P which shows distribution of the signal strength for every frequency obtained by frequency-analyzing the Doppler signal Sd in the time t1 in FIG. 1 is a plan view of a golf ball 2 according to a first embodiment. It is sectional drawing of the golf ball 2 in 1st Embodiment.
  • FIG. 2 is a cross-sectional view of a golf ball 2 illustrating a first region 22.
  • FIG. It is a top view of the golf ball 2 in a 1st modification. It is a top view of the golf ball 2 in a 2nd modification. It is sectional drawing of the ball game ball 4 in 2nd Embodiment.
  • FIG. 6 is a diagram showing the measurement results of spin amounts in Experimental Examples 1 to 3. It is a figure which shows the measurement result of the spin amount of Experimental example 4. FIG. It is a figure which shows the measurement result of the spin amount of Experimental example 5. FIG. It is a figure which shows the measurement result of the spin amount of Experimental example 6.
  • FIG. FIG. 6 is a diagram showing the spin time measurement time and tracking distance in Experimental Examples 4 to 6.
  • (A), (B) is explanatory drawing which shows the signal strength distribution data P which shows signal strength distribution for every frequency obtained by frequency-analyzing the Doppler signal Sd obtained when the golf ball 2 is hit. . It is a figure which shows the evaluation result of a 3rd Example. It is a figure which shows the evaluation result of a 4th Example. It is sectional drawing of the golf ball 2 in 3rd Embodiment.
  • the Doppler radar 10 includes an antenna 12 and a Doppler sensor 14.
  • reference numeral 2 indicates a golf ball as a ball for ball game
  • 4 indicates a golf club head
  • 6 indicates a shaft
  • 8 indicates a golf club.
  • the antenna 12 transmits a microwave as a transmission wave W ⁇ b> 1 toward the golf ball 2 based on the transmission signal supplied from the Doppler sensor 14, and receives the reflected wave W ⁇ b> 2 reflected by the golf ball 2 and receives the received signal. Is supplied to the Doppler sensor 14.
  • the Doppler sensor 14 supplies a transmission signal to the antenna 12.
  • the Doppler signal Sd having the Doppler frequency Fd is generated as time series data based on the received signal supplied from the antenna 12.
  • the Doppler signal Sd is a signal having a Doppler frequency Fd defined by a frequency F1-F2 that is a difference between the frequency F1 of the transmission signal and the frequency F2 of the reception signal.
  • Various commercially available Doppler sensors 14 can be used. For example, a 24 GHz microwave can be used as the transmission signal, and the frequency of the transmission signal is not limited as long as the Doppler signal Sd can be obtained.
  • the Doppler frequency Fd is expressed by Expression (1).
  • V speed of the golf ball 2
  • c speed of light (3 ⁇ 10 8 m / s) Therefore, when equation (1) is solved for V, equation (2) is obtained.
  • V c ⁇ Fd / (2 ⁇ F1) (2) That is, the velocity V of the golf ball 2 is proportional to the Doppler frequency Fd. Therefore, the frequency component of the Doppler frequency Fd can be detected from the Doppler signal Sd, and the velocity V of the golf ball 2 can be obtained from the detected Doppler frequency component based on Expression (2).
  • FIG. 2 is an explanatory diagram of the principle of detecting the spin amount of the golf ball.
  • the transmission wave W1 is efficiently reflected at the first portion A, which is the surface portion where the angle formed with the transmission direction of the transmission wave W1 is close to 90 degrees.
  • the strength of W2 is high.
  • the transmission wave W1 is not efficiently reflected in the second part B and the third part C, which are parts of the surface of the golf ball whose surface makes an angle with the transmission direction of the transmission wave W1 close to 0 degrees.
  • the intensity of the reflected wave W2 is low.
  • the second portion B is a portion in which the direction of movement due to the spin of the golf ball 2 is opposite to the direction of movement of the golf ball.
  • the third portion C is a portion in which the direction of movement due to the spin of the golf ball 2 is the same as the direction of movement of the golf ball.
  • the velocity detected based on the reflected wave W2 reflected by the first portion A is the first partial velocity Va
  • the velocity detected based on the reflected wave W2 reflected by the second portion B is the second partial velocity Vb
  • a velocity detected based on the reflected wave W2 reflected by the third portion C is defined as a third partial velocity Vc.
  • Va V ⁇ (3)
  • Vb Va- ⁇ r (4)
  • Vc Vb + ⁇ r (5) (Where V ⁇ is the moving speed of the golf ball 2, ⁇ is the angular velocity (rad / s), and r is the radius of the golf ball 2).
  • the moving speed V ⁇ of the golf ball 2 can be calculated from the first partial speed Va based on the formula (3), and the second and third parts can be calculated based on the formula (4) or the formula (5). Since the angular velocity ⁇ is obtained from the velocities Vb and Vc, the spin rate can be calculated from the angular velocity ⁇ .
  • the signal intensity distribution data indicating the signal intensity distribution for each frequency by performing frequency analysis of the Doppler signal Sd. It is also possible to generate P and determine the moving speed V ⁇ and the spin amount from the signal intensity distribution data P.
  • FIG. 3 is an explanatory view showing a simplified result of wavelet analysis of the Doppler signal Sd when the hit golf ball is measured by the Doppler radar 10.
  • the horizontal axis represents time t (ms), and the vertical axis represents the Doppler frequency Fd (kHz) and the velocity V (m / s) of the golf ball 2.
  • Such a diagram can be obtained, for example, by sampling the Doppler signal Sd, taking it into a digital oscilloscope and converting it into digital data, and then performing wavelet analysis or continuous FFT analysis on the digital data using a personal computer or the like. .
  • the frequency distribution indicated by the symbol DA is a portion corresponding to the first partial speed Va with a strong signal strength.
  • the frequency distribution indicated by the symbol DB has a lower signal intensity than the frequency distribution DA and corresponds to the second partial speed Vb.
  • the frequency distribution indicated by the reference sign DC is a portion corresponding to the third partial velocity Vc having a signal intensity lower than the frequency distribution DA.
  • FIG. 4 is an explanatory diagram showing signal intensity distribution data P indicating a signal intensity distribution for each frequency obtained by frequency analysis of the Doppler signal Sd at time t1 in FIG.
  • the horizontal axis represents velocity V (m / s)
  • the vertical axis represents signal intensity Ps (arbitrary unit). Note that the velocity V on the horizontal axis is proportional to the frequency of the Doppler signal Sd.
  • the thin line represents the measured value of the signal intensity distribution data P
  • the thick line represents the moving average of the measured value of the signal intensity distribution data P. That is, since the actual measurement value of the signal intensity distribution data P is greatly fluctuated due to the influence of noise included in the measurement, the signal intensity distribution data P in which the influence of the noise is suppressed is obtained by taking a moving average. .
  • the signal intensity distribution data P represented by the moving average has one maximum value that maximizes the signal intensity Ps, and the signal intensity gradually decreases as the distance from the maximum value increases.
  • the peak of the signal intensity distribution data P that is, the maximum value Dmax of the signal intensity Ps corresponds to the value of the first partial speed Va.
  • the value of the Doppler frequency corresponding to the maximum value Dmax of the signal strength Ps corresponds to the value of the first partial velocity Va. Therefore, the higher the Doppler frequency corresponding to the maximum value Dmax, the higher the first partial speed Va, that is, the moving speed of the golf ball 2.
  • the width of the peak of the signal intensity distribution data P is proportional to the difference ⁇ V (speed width) between the second partial speed Vb and the third partial speed Vc. Therefore, the smaller the difference ⁇ V between the second partial speed Vb and the third partial speed Vc, the smaller the spin amount. Therefore, if the difference ⁇ V is zero, the spin amount is also zero. Further, the larger the difference ⁇ V between the second partial speed Vb and the third partial speed Vc, the larger the spin amount.
  • the difference ⁇ V between the second partial velocity Vb and the third partial velocity Vc is expressed by the following equation (6) as can be seen from the equations (4) and (5), that is, a value proportional to the angular velocity ⁇ . It becomes.
  • the width of the mountain can be defined as follows.
  • the width of the peak of the signal intensity distribution data P is such that when the threshold Dt of the signal intensity signal intensity Ps is Dmax ⁇ N (where 0 ⁇ N ⁇ 1), the signal intensity Ps of the signal intensity distribution data P is the threshold Dt. Is the width of the part.
  • the golf ball is actually hit to measure the data of the maximum value Dmax and the moving speed V ⁇ , and the data of the peak width and the spin amount Sp of the signal intensity distribution data P are measured. Then, a correlation map between the maximum value Dmax and the moving speed V ⁇ and a correlation map between the peak width of the signal intensity distribution data P and the spin amount Sp are created from these actual measurement results.
  • the moving speed V ⁇ can be obtained from the maximum value Dmax
  • the spin amount Sp can be obtained from the width of the peak of the signal intensity distribution data P. Therefore, it is important to reliably measure the maximum value Dmax when obtaining the moving speed V ⁇ using such a measurement principle.
  • the spin amount Sp it is important to reliably measure the width of the peak of the signal intensity distribution data P.
  • the signal intensity of the reflected wave W2 received by the antenna 12 decreases, and the signal intensity of each frequency distribution DA, DB, DC Each decrease.
  • the signal strengths of the frequency distribution DB and DC of the Doppler signal Sd shown in FIG. 3 are originally weaker than the signal strength of the frequency distribution DA, the signal strengths of the frequency distribution DB and DC are measured stably. There are disadvantages.
  • the signal strength of the frequency distribution DB and DC that can be received by the antenna 12 falls below the signal strength of the frequency distribution DA in a short time, the time during which the signal strength of the frequency distribution DB and DC can be measured is very limited. There is also the disadvantage that it is a limited period. For this reason, it is difficult to reliably measure the width of the peak of the signal intensity distribution data P, which is disadvantageous in obtaining an accurate spin amount Sp. Therefore, there is a demand for a golf ball 2 that can reliably receive the signal intensity of the frequency distributions DB and DC in the reflected wave W2 reflected by the golf ball 2 with the antenna 12.
  • FIG. 5 is a plan view of the golf ball 2 in the first embodiment
  • FIG. 6 is a cross-sectional view of the golf ball 2 in the first embodiment.
  • the golf ball 2 includes a sphere 20, a first region 22, a second region 24, and a cover layer 26.
  • the sphere 20 has a spherical and solid core layer 28, and the core layer 28 includes a spherical and solid inner core layer 28A, and the inner core layer 28A.
  • the inner core layer 28A is made of a conventionally known material such as synthetic rubber.
  • the outer core layer 28B is made of a conventionally known material such as a synthetic resin.
  • the core layer 28 may be composed of a single core layer or may be composed of three or more core layers.
  • the first region 22 is a region having a high radio wave reflectance formed on the surface portion of the sphere 20.
  • the first region 22 is a region having a high radio wave reflectance formed on a spherical surface centered on the center of the sphere 20. . Therefore, the first region 22 has high radio wave reflection characteristics and efficiently reflects radio waves (microwaves).
  • a plurality of first regions 22 are formed on the surface of the outer core layer 28B and have conductivity.
  • region 22 is exhibiting the perfect circle shape which has the same diameter, the shape of each 1st area
  • the diameter of the perfect circle is preferably 2 mm or more and 15 mm or less in order to ensure the intensity of the reflected wave and to ensure the measurement accuracy in the measurement apparatus 10.
  • the diameter of the inscribed circle shall be 2 mm or more and 15 mm or less. Is preferred.
  • the diameter of a perfect circle or an inscribed circle is 2 mm or more and 15 mm or less, it is advantageous in securing measurement accuracy that the inventors of the present invention use a 24 GHz or 10 GHz microwave as a transmission wave. This is confirmed by the experimental results.
  • the plurality of first regions 22 are positioned at the vertices of a regular polyhedron or quasi-regular polyhedron that is assumed to be positioned on the surface of the sphere 20 (a spherical surface centered on the center of the sphere 20).
  • the first region 22 is located at six vertices of a regular hexahedron that is assumed to be located on the surface of the sphere 20. Therefore, six first regions are formed.
  • the first region 22 is located at four vertices of a virtual tetrahedron that is assumed to be located on the surface of the sphere 20. Therefore, four first regions are formed.
  • the first region 22 may be formed in plural on the surface of the sphere 20, and the number thereof is arbitrary. However, it is stable that the first region 22 reflects the transmitted wave W1 while moving (rotating) as many of the first regions 22 as possible regardless of the direction of the rotation axis of the sphere 20. This is preferable for obtaining the reflected wave W2.
  • FIG. 5, FIG. 8, and FIG. 9 are compared.
  • the radio wave region 22 that reflects the effective reflected wave W2 when the six first regions 22 are formed, when the two first regions 22 are positioned on the rotation axis, the radio wave region 22 that reflects the effective reflected wave W2 is There will be four.
  • the radio wave region 22 that reflects the effective reflected wave W2 when one first region 22 is located on the rotation axis, the radio wave region 22 that reflects the effective reflected wave W2 is There will be three.
  • the radio wave region 22 that reflects the effective reflected wave W2 is Two. Therefore, in order to obtain a stable reflected wave W2, FIG. 8 is more advantageous than FIG. 9, and FIG. 5 is more advantageous than FIG.
  • the plurality of first regions 22 may extend in a straight line perpendicular to each other on the surface of the sphere 20 and may have a lattice shape.
  • the second region 24 is partitioned into a rectangular shape by the first region 22 extending linearly.
  • the first region 22 only needs to be able to sufficiently secure the intensity of the reflected wave W2.
  • the radio wave reflectance ⁇ can be measured by a conventionally known method such as a waveguide method or a free space method.
  • the first region 22 is composed of a conductive paint
  • the conductive paint contains a coating film forming component, an additive, a solvent, and a metal powder.
  • the content of the metal powder during drying of the conductive paint is 80% by mass or more and 97% by mass or less, and more preferably 90% by mass or more and 97% by mass or less.
  • the “content ratio of the metal powder at the time of drying the conductive paint” as used in the present invention means that the conductive paint is dried after drying the conductive paint under drying conditions of a drying temperature of 50 ° C. and a drying time of 24 hours. It means the content of metal powder in the paint.
  • a coating-film formation component contains either a polyester resin, an epoxy resin, a urethane resin, and a polyester urethane resin.
  • the conductive paint in the present invention may contain additives.
  • Additives are antifoaming agents, desiccants and the like, and various conventionally known ones can be used.
  • a solvent is for adjusting the fluidity
  • PGMEA propylene glycol monomethyl ether acetate
  • Any metal powder may be used as long as it has conductivity, and various conventionally known powders such as silver-coated copper powder obtained by coating silver on copper and silver powder can be used.
  • the first region 22 is formed as follows. (1) A recess 30 having the same shape, the same size, and a uniform depth is formed in a portion of the surface of the outer core layer 28B where the first region 22 is to be formed. (2) A conductive paint is applied to each recess 30 and dried. (3) The surface of the outer core layer 28B is polished to remove the conductive paint that protrudes outward from the recess 30.
  • the first region 22 may be formed by applying a conductive paint on the surface of the outer core 28B and drying it without providing the recess 30, but if the recess 30 is provided as in the present embodiment. The variation in the amount of conductive paint applied to each recess 30 can be suppressed.
  • the second region 24 is a region formed on the remaining portion of the sphere 20 excluding the first region 22 and having a radio wave reflectance lower than that of the first region 22.
  • the second region 24 has a radio wave reflection characteristic lower than that of the first region 22.
  • the second region 24 is formed by a portion of the surface of the remaining outer core layer 28B excluding the first region 22, and thus is formed of a synthetic resin and thus has no conductivity.
  • the radio wave reflectivity of the second region 24 is 1% or less and the surface resistance is 400 ⁇ / sq. . The above is preferable.
  • the total area of the first region 22 is preferably 50% or less of the surface area of the sphere 20, and more preferably 2% to 30%.
  • the ratio between the reflection intensity of the radio wave reflected by the first region 22 and the reflection intensity of the radio wave reflected by the second region 24 ( It is advantageous to ensure a large (difference), and 2% to 30% is more advantageous to ensure a large ratio (difference) in the reflection intensity.
  • securing a large ratio (difference) between the reflection intensities in the first region 22 and the second region 24 is advantageous in stably measuring the spin rate.
  • the cover layer 26 covers the sphere 20, and the cover layer 26 covers the first region 22 and the second region 24 in the present embodiment.
  • the cover layer 26 is formed of a material that allows passage of radio waves, such as a material that does not contain a conductive substance, so that the radio waves are reflected by the first region 22, and such a material is conventionally known.
  • Various synthetic resins can be used.
  • a large number of dimples 30 are formed on the surface of the cover layer 26. In this case, if the cover layer 26 is opaque, the first region 22 and the second region 24 can be hidden from the outside, which is advantageous in improving the design.
  • the thickness of the cover layer 26 is preferably 0.5 mm or more and 3.0 mm or less, and more preferably 1.0 mm or more and 2.0 mm or less.
  • the thickness of the cover layer 26 is not less than 0.5 mm and not more than 3.0 mm, it is advantageous in securing durability while ensuring large radio wave reflectivity.
  • the thickness of the cover layer 26 is 1.0 mm or more and 2.0 mm or less, it is advantageous in securing durability while ensuring large radio wave reflectivity and further facilitating manufacture.
  • the golf ball 2 of the present embodiment is formed in a first region 22 having a high radio wave reflectivity formed on a spherical surface centered on the center of the sphere 20 and the remaining portion on the spherical surface excluding the first region 22. And a second region 24 having a radio wave reflectance lower than that of the first region 22. Therefore, the transmission wave W ⁇ b> 1 emitted from the antenna 12 of the Doppler radar 10 is reflected by the plurality of first regions 22 that move with the rotation of the golf ball 2. Therefore, it is advantageous in securing the radio wave intensity of the reflected wave W2.
  • the signal intensity of each frequency distribution DA, DB, DC can be ensured. .
  • the signal strength of the frequency distribution DB, DC which is originally weak compared to the signal strength of the frequency distribution DA can be ensured. That is, the signal intensity of the frequency distributions DB and DC necessary for detecting the spin amount Sp in the Doppler signal can be ensured, which is advantageous in stably and reliably detecting the spin amount Sp. Therefore, the spin amount Sp can be stably measured over a longer period.
  • the Doppler radar 10 when the Doppler radar 10 is applied to a golf simulator apparatus installed indoors, it is sufficient even if the output of the transmission wave W1 is low or the S / N ratio is not sufficiently obtained. Frequency distribution DB and DC having signal strength can be obtained. Therefore, the ball simulator and the flight distance can be accurately calculated based on the spin amount Sp in addition to the initial velocity and launch angle of the golf ball by the golf simulator device, and a more accurate simulation reflecting the spin amount Sp can be performed. it can. Specifically, by reflecting the spin amount Sp, it is possible to simulate a fade-type or draw-type spherical muscle in which the golf ball 2 returns to a target line that has been impossible to simulate until now. Further, the flight distance can be more accurately simulated by reflecting the spin amount Sp.
  • the golf ball 2 of the present embodiment is included in the conductive paint because the content of the metal powder during drying of the conductive paint constituting the first region 22 is 80% by mass or more and 97% by mass or less. Since the metal component can be secured, it is advantageous in securing the durability of the conductive paint when the golf ball 2 is hit with the golf club head 4. Further, when the content of the metal powder during drying of the conductive paint is 90% by mass or more and 97% by mass or less, more metal components contained in the conductive paint can be secured, so that the golf ball 2 is the golf club head 4. This is more advantageous in ensuring the durability of the conductive paint when struck.
  • the conductive paint When the content of the metal powder is less than 80% by mass, the conductive paint is soft when dried, so that the conductive paint is easily broken when the golf ball 2 is hit with the golf club head 4 to ensure durability. It is disadvantageous to do. Moreover, when the content rate of a metal powder exceeds 97 mass%, since the ratio of the metal powder which occupies for an electroconductive paint increases too much, there exists a disadvantage that workability
  • FIG. 10 is a sectional view of the ball game ball 4 according to the second embodiment.
  • the same parts and members as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the ball game ball 2 ⁇ / b> A includes a sphere 20, a first region 22, a second region 24, and a cover layer 26.
  • the spherical body 20 is formed by a spherical and hollow core layer 40.
  • the core layer 40 is made of a conventionally known material such as rubber or synthetic resin.
  • the plurality of first regions 22 and the second region 24 are formed on the outer surface (surface) of the core layer 40. That is, in the second embodiment, the spherical surface centered on the center of the sphere 20 is the outer surface of the core layer 40.
  • the first region 22 is formed by applying and drying a conductive paint on the outer surface of the core layer 40 without forming a recess on the outer surface of the core layer 40. In the second embodiment, the same effect as that of the first embodiment can be obtained.
  • FIG. 23 is a sectional view of the golf ball 2 according to the third embodiment.
  • the golf ball 2 includes a sphere 20, a first region 22, a second region 24, and a cover layer 26.
  • the sphere 20 is formed by the inner core layer 28A and the outer core layer 28B covering the inner core layer 28A, and the spherical surface centered on the center of the sphere 20 is the surface or the outer side of the inner core layer 28A. It is an inner surface of the core layer 28B.
  • the outer core layer 28B is made of a synthetic resin having no conductivity.
  • a plurality of first regions 22 are formed in a spherical portion centering on the center of the sphere 20, in other words, a plurality of first regions 22 are formed on the surface of the inner core layer 28A.
  • the second region 24 is formed in the remaining portion excluding the first region 22 on the spherical surface of the sphere 20, in other words, formed in the portion of the surface of the remaining inner core layer 28 ⁇ / b> A excluding the first region 22. Therefore, since the second region 24 is formed of synthetic resin, it does not have conductivity.
  • the cover layer 26 is made of a synthetic resin having no conductivity and covers the sphere 20. Since the cover layer 26 and the outer core layer 28 ⁇ / b> B do not have electrical conductivity and pass radio waves, the radio waves are reflected by the first region 22. In the third embodiment, the same effect as that of the first embodiment can be obtained.
  • Experimental Example 1 the first region 22 is not formed on the golf ball 2.
  • Experimental Example 2 one first region 22 is provided on the golf ball 2.
  • Experimental Example 3 is one in which six first regions 22 are provided on the golf ball 2 and is configured as shown in FIGS. 5 and 6.
  • Each golf ball 2 configured in this manner was launched by a golf ball launching device, and measurement was performed using a measuring device using the Doppler radar 10, and the Doppler signal Sd was subjected to wavelet analysis.
  • the spin amount applied to the golf ball 2 by the golf ball launching device was set to 1000 rpm and 3000 rpm.
  • the number of golf balls 2 measured in Experimental Examples 1, 2, and 3 was 10 respectively.
  • FIG. 11 is a diagram illustrating a wavelet analysis result of the Doppler signal Sd when the spin rate is 1000 rpm in Experimental Example 1.
  • FIG. 12 is a diagram showing a wavelet analysis result of the Doppler signal Sd when the spin rate is 1000 rpm in Experimental Example 2.
  • FIG. 13 is a diagram illustrating a wavelet analysis result of the Doppler signal Sd when the spin rate is 1000 rpm in Experimental Example 3.
  • FIG. 14 is a diagram illustrating a wavelet analysis result of the Doppler signal Sd when the spin rate is set to 3000 rpm in Experimental Example 3.
  • FIG. 15 is a diagram showing the measurement results of the spin amounts in Experimental Examples 1 to 3, and the ratio (percentage) of the number of golf balls 2 in which the spin amounts could be measured when ten golf balls 2 were measured. Is displayed.
  • the second and third frequency distributions DB and DC decrease with time, but a signal intensity sufficient to measure the spin rate is secured. . That is, as shown in FIG. 15, the spin amount can be measured 100% regardless of whether the spin amount applied to the golf ball 2 at the time of launch is 1000 rpm or 3000 rpm. That is, as the spin rate is higher, the second speed VB described in FIG. 2 is further decreased and the third speed VC is further increased. Therefore, the widths of the second and third frequency distributions DB and DC are increased. Therefore, it is advantageous in securing the signal strengths of the second and third frequency distributions DB and DC. Even if the spin amount is the same, the signal intensity of the reflected wave W2 reflected per unit time increases as the number of the first regions 22 increases, so that the second and third frequency distributions DB, DC This is advantageous in securing signal strength.
  • the width of the frequency distribution of the Doppler signal Sd is smaller than those in FIGS. 13 and 14, and the signal intensities of the second and third frequency distributions DB and DC are shown.
  • the second and third frequency distributions DB and DC decrease with time and disappear. That is, as shown in FIG. 15, when the spin amount applied to the golf ball 2 at the time of launch is as low as 1000 rpm, the spin amount cannot be measured in Experimental Example 1, and the spin amount can be measured only 30% in Experimental Example 2. Can not. Further, when the spin amount becomes as high as 3000 rpm, the spin amount can be measured 100% in both experimental examples 1 and 2. This is because the higher the spin rate, the lower the second speed VB and the higher the third speed VC, so the width of the second and third frequency distributions (the width of the frequency distribution of the Doppler signal Sd) is larger. It is.
  • Experimental Example 4 the first region 22 is not formed on the golf ball 2.
  • Experimental Example 5 the golf ball 2 is provided with one first region 22.
  • Experimental Example 6 is one in which six first regions 22 are provided on the golf ball 2, and is configured as shown in FIGS. 5 and 6.
  • Each golf ball 2 configured in this manner was launched by a golf ball launching device and measured using the Doppler radar 10 to measure changes in the spin amount of the golf ball 2 over time.
  • the initial speed given to the golf ball 2 by the golf ball launching device was 60 m / s, and the spin amount given to the golf ball 2 was 3000 rpm.
  • the number of golf balls 2 measured in Experimental Examples 4 to 6 was 10 respectively.
  • FIG. 16 is a diagram showing the measurement result of the spin amount of Experimental Example 4
  • FIG. 17 is a diagram showing the measurement result of the spin amount of Experimental Example 5
  • FIG. 18 is a diagram showing the measurement result of the spin amount of Experimental Example 6.
  • the solid lines shown in FIGS. 16, 17, and 18 are straight lines showing the relationship between the elapsed time calculated based on each measured value of the spin amount and the spin amount.
  • FIG. 19 is a diagram showing the measurement time and tracking distance of the spin amount in Experimental Examples 4 to 6, and shows an average value when 10 golf balls 2 are measured. As shown in FIG. 18, when the number of the first regions 22 was zero, the measurement time was 1.1 seconds and the tracking time was 66 m.
  • the measurement data of the spin amount after 0.5 seconds has a large variation, and the values that can be used as the spin amount measurement data were a measurement time of 0.5 seconds and a tracking distance of 30 m.
  • the measurement time was 1.25 seconds and the tracking distance was 75m.
  • the measurement time is 2.6 seconds and the tracking distance is 156 m. From the above results, it can be seen that when the number of the first regions 22 is zero, the measurement time is limited to 0.5 seconds and the tracking distance is limited to 30 m. Further, it can be seen that when the number of the first regions 22 is six, the measurement time and the tracking distance can be largely ensured when the number is six. From such experimental results, by using the golf ball 2 of the present embodiment, it is possible to secure the measurement time and tracking distance of the spin amount, which is advantageous for stably and reliably measuring the spin amount. It became clear that there was.
  • FIGS. 20A and 20B show signal intensity distribution data P indicating a signal intensity distribution for each frequency, which is obtained by frequency analysis of the Doppler signal Sd obtained when the golf ball 2 is hit. It is explanatory drawing.
  • FIGS. 20A and 20B show signal intensity distribution data P indicating a signal intensity distribution for each frequency, which is obtained by frequency analysis of the Doppler signal Sd obtained when the golf ball 2 is hit. It is explanatory drawing.
  • the signal intensity distribution data P is shown as measured values, and the spin amounts in FIGS. 20A and 20B are equivalent.
  • FIG. 20A since the waveform of the signal intensity distribution data P forms a peak having one peak and the width of the peak is widened, the second partial speed Vb and the third partial speed Vc. Is sufficiently obtained, indicating that the spin amount Sp can be accurately measured.
  • FIG. 20A when the first region 22 is observed, it is found that the conductive paint constituting the first region 22 is not damaged and conduction is ensured over the entire first region 22. .
  • FIG. 20B although the waveform of the signal intensity distribution data P forms a peak having one peak, the width of the peak is narrow although the spin amount is equivalent to that in FIG.
  • the signal intensity of the second partial speed Vb and the third partial speed Vc becomes insufficient, indicating that the spin amount Sp cannot be measured accurately.
  • FIG. 20B when the first region 22 is observed, it is found that the conductive paint constituting the first region 22 is finely broken, and the entire conduction of the first region 22 is not ensured. . Therefore, as shown in FIG. 20A, if the state of the conductive paint constituting the first region 22 is maintained so that conduction is ensured throughout the first region 22, the change in the spin amount Sp. It can be seen that a Doppler signal Sd whose mountain width also changes can be obtained, and the spin amount Sp can be accurately measured. On the other hand, as shown in FIG.
  • the experimental conditions in the third example are as follows.
  • a golf ball 2 as a sample is provided with six first regions 22 and is configured as shown in FIGS. 5 and 6.
  • the first region 22 was a perfect circle, and the diameter of the perfect circle was 5 mm.
  • the conductive paint comprises a coating film forming component, a metal powder, and a solvent.
  • the metal powder content is 71% by mass in Experimental Example 7, 80% by mass in Experimental Example 8, 90% by mass in Experimental Example 9, and Experimental Example. 10 was 97% by mass, and Experimental Example 11 was 99% by mass.
  • the metal powder is silver-coated copper powder, and the solvent used for the conductive paint is PGMEA (propylene glycol monomethyl ether acetate).
  • the coating film forming component was a common polyester urethane resin in Experimental Examples 7-9.
  • Ten samples of the golf ball 2 were prepared for each experimental example.
  • the evaluation method is as follows. With respect to durability, each golf ball 2 was hit with a golf club, and the spin amount Sp could not be measured at each of the hit times of 50 times, 100 times, 150 times, and 200 times. The number was counted as “unmeasurable number”.
  • the coating workability was evaluated by an index with a metal content of 80% by mass as 100.
  • the evaluation results of the third example are shown in FIG.
  • the conductive paint was composed of a coating film forming component, metal powder and a solvent, and the content of the metal powder was 85% by mass common to Experimental Examples 12-16.
  • the metal powder is silver-coated copper powder, and the solvent used for the conductive paint is PGMEA (propylene glycol monomethyl ether acetate).
  • Experimental Example 12 was an acrylic resin
  • Experimental Example 13 was a polyester resin
  • Experimental Example 14 was an epoxy resin
  • Experimental Example 15 was a urethane resin
  • Experimental Example 16 was a polyester urethane resin.
  • the evaluation results of the fourth example are shown in FIG. (durability)
  • the coating film forming component is a polyester resin, an epoxy resin, a urethane resin, or a polyester urethane resin
  • the conductive paint constituting the first region 22 is superior in durability compared to the acrylic resin.
  • the present invention is not limited to the ball game balls exemplified in the embodiment, and can be widely applied to various ball game balls.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 打ち出し条件の計測や弾道計測を的確にかつ正確に行う上で有利な球技用ボールを提供する。 ゴルフボール2は、球体20と、第1領域22と、第2領域24と、カバー層26とを備えている。第1領域22は、球体20の中心を中心とした球面上に形成された電波反射率が高い領域である。第1領域22は、導電性塗料で構成され、導電性塗料は、塗膜形成成分と、添加剤と、溶剤と、金属粉末を含有している。導電性塗料の乾燥時における金属粉末の含有率は、80質量%以上97質量%以下であり、90質量%以上97質量%以下がより好ましい。第2領域24は、前記球面上で第1領域22を除く残りの部分で形成され電波反射率が第1領域22よりも低い領域である。カバー層26は、第1領域22および第2領域24を覆うものである。

Description

球技用ボール
 本発明は球技用ボールに関する。
 近年、球技用ボール、特にゴルフボールの打ち出し条件(ゴルフボールの初速、打ち出し角度、スピン量)の計測や弾道計測を行う計測装置としてドップラーレーダを用いた装置が使用されている。
 上記装置では、アンテナからゴルフボールに向けてマイクロ波からなる送信波を発射し、ゴルフボールで反射された反射波を計測し、送信波と反射波から得られるドップラー信号に基づいて移動速度やスピン量を求める。
 この場合、移動速度やスピン量を安定して確実に計測するためには、反射波を効率よく得ることが重要である。言い換えると、反射波を効率よく得ることが計測距離を確保する上で有利となる。
 一方、外観性やデザイン性を高めるために金属材料を含む層や膜をボールの表面全体にわたって設ける技術が提案されている(特許文献1、2、3参照)。
 また、反発性を確保するために、ボールのコア層とカバーの間に球面状の金属層を設ける技術が提案されている(特許文献4参照)。
特開2007-021204号公報 特開2004-166719号公報 特開2007-175492号公報 特開平11-076458号公報
 本発明者らの実験によれば、金属材料を含む層や膜がボールの表面全体に球面状に形成されていると、電波反射特性を確保する上では有利となるものの、ボールのスピン量に関しては計測距離を確保する上で不十分なものであった。
 本発明は、このような事情に鑑みてなされたものであり、その目的は、打ち出し条件の計測や弾道計測を的確にかつ正確に行う上で有利な球技用ボールを提供することにある。
 上記目的を達成するために、本発明の球技用ボールは、球体と、前記球体を覆うカバー層とを備えた球技用ボールであり、前記球体の中心を中心とした球面の部分に形成された電波反射率が高い第1領域と、前記球面上で前記第1領域を除く残りの部分に形成され電波反射率が前記第1領域よりも低い第2領域とを備え、前記第1の領域は、導電性塗料で構成され、前記導電性塗料は、塗膜形成成分と、溶剤と、金属粉末とを少なくとも含有し、前記導電性塗料の乾燥時における前記金属粉末の含有率が80質量%以上97質量%以下であることを特徴とする。
 本発明によれば、ドップラーレーダのアンテナから発射された送信波が球技用ボールの回転と共に移動する複数の第1領域によって効率よく反射されるので、ドップラー信号におけるスピン量を検出するために必要な周波数分布の信号強度を確保することができ、スピン量の検出を安定して確実に行うことができ、打ち出し条件の計測や弾道計測を的確にかつ正確に行う上で有利となる。
ドップラーレーダを用いた球技用ボールの計測原理を説明するブロック図である。 ゴルフボールのスピン量を検出する原理の説明図である。 打ち出されたゴルフボールをドップラーレーダ10で計測した場合におけるドップラー信号Sdをウェーブレット解析した結果を単純化して示す説明図である。 図3における時点t1におけるドップラー信号Sdを周波数解析することによって得た、周波数ごとの信号強度の分布を示す信号強度分布データPを示す説明図である。 第1の実施の形態におけるゴルフボール2の平面図である。 第1の実施の形態におけるゴルフボール2の断面図である。 第1領域22を説明するゴルフボール2の断面図である。 第1の変形例におけるゴルフボール2の平面図である。 第2の変形例におけるゴルフボール2の平面図である。 第2の実施の形態における球技用ボール4の断面図である。 実験例1においてスピン量を1000rpmとした場合のドップラー信号Sdのウェーブレット解析結果を示す図である。 実験例2においてスピン量を1000rpmとした場合のドップラー信号Sdのウェーブレット解析結果を示す図である。 実験例3においてスピン量を1000rpmとした場合のドップラー信号Sdのウェーブレット解析結果を示す図である。 実験例3においてスピン量を3000rpmとした場合のドップラー信号Sdのウェーブレット解析結果を示す図である。 実験例1~3におけるスピン量の計測結果を示す図である。 実験例4のスピン量の計測結果を示す図である。 実験例5のスピン量の計測結果を示す図である。 実験例6のスピン量の計測結果を示す図である。 実験例4~6におけるスピン量の計測時間と追尾距離を示す図である。 (A),(B)はゴルフボール2を打撃したときに得られるドップラー信号Sdを周波数解析することによって得た、周波数ごとの信号強度の分布を示す信号強度分布データPを示す説明図である。 第3の実施例の評価結果を示す図である。 第4の実施例の評価結果を示す図である。 第3の実施の形態におけるゴルフボール2の断面図である。
(第1の実施の形態)
 本発明の球技用ボールの実施の形態について説明する前に、ドップラーレーダを用いた球技用ボールの移動速度およびスピン量の測定原理について説明する。
 図1に示すように、ドップラーレーダ10は、アンテナ12と、ドップラーセンサ14とを備える。
 なお、図1において符号2は球技用ボールとしてのゴルフボール、4はゴルフクラブヘッド、6はシャフト、8はゴルフクラブを示す。
 アンテナ12は、ドップラーセンサ14から供給される送信信号に基づいて送信波W1としてのマイクロ波をゴルフボール2に向けて送信すると共に、ゴルフボール2で反射された反射波W2を受信して受信信号をドップラーセンサ14に供給するものである。
 ドップラーセンサ14は、アンテナ12に送信信号を供給するものである。また、アンテナ12から供給される受信信号に基づいてドップラー周波数Fdを有するドップラー信号Sdを時系列データとして生成するものである。
 ドップラー信号Sdとは、前記送信信号の周波数F1と前記受信信号の周波数F2との差分の周波数F1-F2で定義されるドップラー周波数Fdを有する信号である。
 ドップラーセンサ14は、市販されている種々のものが使用可能である。
 なお、前記の送信信号としては、例えば、24GHzのマイクロ波が使用可能であり、ドップラー信号Sdを得られるものであれば送信信号の周波数は限定されない。
 次に、ゴルフボール2の速度およびスピン量の計測原理について説明する。
 従来から知られているように、ドップラー周波数Fdは式(1)で表される。
 Fd=F1-F2=2・V・F1/c   (1)
 ただし、V:ゴルフボール2の速度、c:光速(3・10m/s)
 したがって、式(1)をVについて解くと、式(2)となる。
 V=c・Fd/(2・F1)       (2)
 すなわち、ゴルフボール2の速度Vは、ドップラー周波数Fdに比例することになる。
 したがって、ドップラー信号Sdからドップラー周波数Fdの周波数成分を検出し、検出したドップラー周波数成分から式(2)に基づいてゴルフボール2の速度Vを求めることができる。
 図2はゴルフボールのスピン量を検出する原理の説明図である。
 ゴルフボール2の表面のうち、送信波W1の送信方向となす角度が90度に近い表面の部分である第1部分Aでは送信波W1が効率よく反射され、したがって、第1部分Aでは反射波W2の強度が高い。
 一方、ゴルフボールの表面のうち、送信波W1の送信方向となす角度が0度に近い表面の部分である第2部分B、第3部分Cでは送信波W1が効率よく反射されず、したがって、第2、第3部分B、Cでは反射波W2の強度が低い。
 第2部分Bは、ゴルフボール2のスピンによって移動する方向とゴルフボールの移動方向とが反対向きとなる部分である。
 第3部分Cは、ゴルフボール2のスピンによって移動する方向とゴルフボールの移動方向とが同じ向きとなる部分である。
 第1部分Aで反射される反射波W2に基づいて検出される速度を第1部分速度Va、第2部分Bで反射される反射波W2に基づいて検出される速度を第2部分速度Vb、第3部分Cで反射される反射波W2に基づいて検出される速度を第3部分速度Vcとする。
 すると、以下の式が成立する。
 Va=Vα    (3)
 Vb=Va-ωr (4)
 Vc=Vb+ωr (5)
 (ただし、Vαはゴルフボール2の移動速度、ωは角速度(rad/s)、rはゴルフボール2の半径)
 したがって、原理的には、式(3)に基づいて第1部分速度Vaからゴルフボール2の移動速度Vαを算出でき、式(4)または式(5)に基づいて、第2、第3部分速度Vb,Vcから角速度ωが求められるので、角速度ωからスピン量を算出できることになる。
 しかしながら、上記の式に基づいて移動速度Vα、スピン量を算出するのではなく、以下に説明するように、ドップラー信号Sdを周波数解析することによって周波数ごとの信号強度の分布を示す信号強度分布データPを生成し、この信号強度分布データPから移動速度Vα、スピン量を求めることも可能である。
 図3は、打撃された打ち出されたゴルフボールをドップラーレーダ10で計測した場合におけるドップラー信号Sdをウェーブレット解析した結果を単純化して示す説明図である。
 横軸は時間t(ms)、縦軸はドップラー周波数Fd(kHz)およびゴルフボール2の速度V(m/s)を示す。
 このような線図は、例えば、ドップラー信号Sdをサンプリングしてデジタルオシロスコープに取り込んでデジタルデータに変換し、該デジタルデータをパーソナルコンピュータなどを用いてウェーブレット解析、あるいは、連続FFT解析することで得られる。
 図3に示す周波数分布において、ハッチングで示した部分はドップラー信号Sdの強度が大きく、実線で示した部分はドップラー信号Sdの強度がハッチングで示した部分よりも小さいことを示している。
 したがって、符号DAで示す周波数分布は、信号強度が強く、第1部分速度Vaに対応する部分である。
 符号DBで示す周波数分布は、周波数分布DAよりも信号強度が低く、第2部分速度Vbに対応する部分である。
 符号DCで示す周波数分布は、周波数分布DAよりも信号強度が低く、第3部分速度Vcに対応する部分である。
 図4は図3における時点t1におけるドップラー信号Sdを周波数解析することによって得た、周波数ごとの信号強度の分布を示す信号強度分布データPを示す説明図である。
 図4において横軸は速度V(m/s)、縦軸は信号強度Ps(任意単位)である。なお、横軸の速度Vはドップラー信号Sdの周波数に比例している。
 図中細線は信号強度分布データPの実測値を表わし、太線は信号強度分布データPの実測値の移動平均を示す。
 すなわち、信号強度分布データPの実測値は、測定時に含まれるノイズの影響を受けて大きく変動しているため、移動平均をとることによってノイズの影響を抑制した信号強度分布データPを得ている。
 以下移動平均によって表わされた信号強度分布データPについて説明する。
 図4から明らかなように、信号強度分布データPは、信号強度Psが最大となる1つの最大値を有し、最大値から離れるほど信号強度が次第に低下しやがてゼロとなる単一の山形を呈している。
 ここで、信号強度分布データPの山、すなわち、信号強度Psの最大値Dmaxが第1部分速度Vaの値に対応している。言い換えると、信号強度Psの最大値Dmaxが対応するドップラー周波数の値が第1部分速度Vaの値に対応している。
 したがって、最大値Dmaxに対応するドップラー周波数が高いほど、第1部分速度Va、すなわち、ゴルフボール2の移動速度が高いことになる。
 また、信号強度分布データPの山の幅は、第2部分速度Vbと第3部分速度Vcの差分ΔV(速度幅)に比例する。
 したがって、第2部分速度Vbと第3部分速度Vcの差分ΔVが小さいほどスピン量が小さく、したがって、この差分ΔVがゼロならばスピン量もゼロとなる。また、第2部分速度Vbと第3部分速度Vcの差分ΔVが大きいほどスピン量が大きいことになる。
 ここで、第2部分速度Vbと第3部分速度Vcの差分ΔVは、式(4)、式(5)からわかるように以下の式(6)で示され、すなわち、角速度ωに比例した値となる。
 ΔV=Vc-Vb=(Va+ωr)-(Va-ωr)=2ωr  (6)
 したがって、(6)式から明らかなように、信号強度分布データPの山の幅に基づいてスピン量を算出することができる。
 ここで、山の幅は次のように定義することができる。
 すなわち、信号強度分布データPの山の幅は、信号強度信号強度Psの閾値DtをDmax・N(ただし0<N<1)とした場合、信号強度分布データPのうち信号強度Psが閾値Dtとなる部分の幅とする。
 図4では、Dt=Dmax・10%と、Dt=Dmax・50%とを例示しているが、閾値Dtは山の幅を安定して計測できる値に設定すればよい。
 したがって、図4に示すように、ドップラー信号Sdの信号強度分布データPを求めることにより、この信号強度分布データPから移動速度Vα、スピン量SPを容易に求めることが可能となる。
 例えば、ゴルフボールを実際に打撃して最大値Dmaxと移動速度Vαのデータを実測すると共に、信号強度分布データPの山の幅とスピン量Spのデータを実測する。
 そして、これら実測結果から最大値Dmaxと移動速度Vαの相関マップと、信号強度分布データPの山の幅とスピン量Spの相関マップとを作成する。
 これら相関マップを用いることにより、最大値Dmaxから移動速度Vαを得ることができ、信号強度分布データPの山の幅からスピン量Spを得ることができる。
 したがって、このような測定原理を用いて移動速度Vαを得るにあたっては最大値Dmaxを確実に計測することが重要である。
 また、スピン量Spを得るにあたっては、信号強度分布データPの山の幅を確実に計測することが重要である。
 しかしながら、打撃されたゴルフボール2がアンテナ12から離間するほど(時間が経過するほど)、アンテナ12で受信される反射波W2の信号強度が低下し、各周波数分布DA、DB、DCの信号強度はそれぞれ低下する。
 この際、図3に示すドップラー信号Sdの周波数分布DB、DCの信号強度は周波数分布DAの信号強度に比較して元々弱いため、周波数分布DB、DCの信号強度を安定して計測する上で不利がある。また、アンテナ12で受信可能な周波数分布DB、DCの信号強度は、周波数分布DAの信号強度よりも短時間で下回ってしまうため、周波数分布DB、DCの信号強度の計測可能な時間はごく限られた期間となる不利もある。
 このような理由から、信号強度分布データPの山の幅を確実に計測することが難しく、正確なスピン量Spを得る上で不利がある。
 したがって、ゴルフボール2で反射される反射波W2のうちの周波数分布DB,DCの信号強度を確実にアンテナ12で受信できるようなゴルフボール2が望まれている。
 次に本実施の形態のゴルフボールについて説明する。
 図5は第1の実施の形態におけるゴルフボール2の平面図、図6は第1の実施の形態におけるゴルフボール2の断面図である。
 図5に示すように、ゴルフボール2は、球体20と、第1領域22と、第2領域24と、カバー層26とを備えている。
 図6に示すように、本実施の形態では、球体20は、球状で中実のコア層28を有し、コア層28は、球状で中実の内側コア層28Aと、この内側コア層28Aを覆う外側コア層28Bとで構成されている。
 本実施の形態では、内側コア層28Aは、合成ゴムなどの従来公知の材料で構成されている。また、外側コア層28Bは、合成樹脂などの従来公知の材料で構成されている。
 なお、コア層28は単一のコア層で構成されていても、あるいは、3層以上のコア層で構成されていてもよいことは無論である。
 第1領域22は、球体20の表面の部分に形成された電波反射率が高い領域であり、言い換えると、球体20の中心を中心とした球面上に形成された電波反射率が高い領域である。
 したがって、第1領域22は高い電波反射特性を有しており、電波(マイクロ波)を効率よく反射する。
 本実施の形態では、第1領域22は外側コア層28Bの表面に複数形成され導電性を有している。
 また、各第1領域22は、同一の直径を有する正円状を呈しているが、各第1領域22の形状は三角形、四角形、あるいは正多角形などであってもよい。
 各第1領域22が正円である場合、反射波の強度を確保する上でまた計測装置10における計測精度を確保する上でその正円の直径は2mm以上15mm以下であることが好ましい。
 また、各第1領域22が正多角形である場合、反射波の強度を確保する上でまた計測装置10における計測精度を確保する上でその内接円の直径が2mm以上15mm以下であることが好ましい。
 なお、正円または内接円の直径が2mm以上15mm以下であると、計測精度を確保する上で有利となることは、送信波として24GHzまたは10GHzのマイクロ波を使用した場合の発明者らの実験結果によって確認されたものである。この原因としては、例えば、第1領域22の表面で反射される反射波と第1領域22のエッジ部分で反射される反射波との干渉が計測精度に与える影響が小さくなるからであると考えられる。
 また、図7に示すように、前記の球面上において(本実施の形態では球体20の表面上において)第1領域22の互いに対向する2箇所と、球体20の中心Oとを通る2つの直線がなす角度θは、十分な強度の反射波を得る上でまた反射波を精度よく受信する上で5度以上45度以下であることが好ましい。
 複数の第1領域22は、頂点が球体20の表面(球体20の中心を中心とした球面)に位置するように仮想された正多面体または準正多面体の各頂点に位置している。
 例えば、本実施の形態では、第1領域22は頂点が球体20の表面に位置するように仮想された正六面体の6つの頂点に位置している。したがって、第1領域は6個形成されている。
 また、図8に示す第1の変形例では、第1領域22は頂点が球体20の表面に位置するように仮想された正四面体の4つの頂点に位置している。したがって、第1領域は4個形成されている。
 あるいは、図9に示す第2の変形例のように、第1領域22は3つ形成され、3つの第1領域22を接続する想像線は、球体20の直径を含んだ平面上で正三角形を構成するようにしてもよい。
 要するに、第1領域22は球体20の表面に複数形成されていればよく、その数は任意である。
 ただし、第1領域22は、球体20の回転軸がどのような方向に位置しても、なるべく多くの第1領域22が移動しながら(回転しながら)送信波W1を反射することが、安定した反射波W2を得る上で好ましい。
 このような観点から図5、図8、図9について比較する。
 図5に示すように6個の第1領域22が形成されている場合は、回転軸上に2個の第1領域22が位置した場合に、有効な反射波W2を反射する電波領域22は4個となる。
 図8に示すように4個の第1領域22が形成されている場合は、回転軸上に1個の第1領域22が位置した場合に、有効な反射波W2を反射する電波領域22は3個となる。
 図9に示すように3個の第1領域22が形成されている場合は、回転軸上に1個の第1領域22が位置した場合に、有効な反射波W2を反射する電波領域22は2個となる。
 したがって、安定した反射波W2を得る上では、図9よりも図8が有利であり、図8よりも図5がより有利となる。
 また、複数の第1領域22はそれぞれ球体20の表面上で互いに直交する直線状に延在して格子状を呈していてもよい。
 この場合、第2領域24は直線状に延在する第1領域22によって矩形状に区画されることになる。
 第1領域22は、反射波W2の強度を十分に確保することができればよく、例えば、次に示す従来公知の関係式を用いることによって、第1領域22の表面抵抗として必要な範囲を求めることができる。
 すなわち、電波反射率:Γ、表面抵抗:Rとしたとき、式(10)、式(12)が成立する。
 Γ=(377-R)/(377+R)    (10)
 R=(377(1-Γ))/(1+Γ)   (12)
 Γ=1は全反射、Γ=0は無反射を示し、377は空気の特性インピーダンスを示す。
 したがって、式(2)より
 Γ=1のときR=0
 Γ=0のときR=377
 ここで、Γ=0.5とすると、R=377(0.5/1.5)≒130となる。
 したがって、電波反射率Γとして十分な値をΓ=0.5(50%)以上とすると、表面抵抗Rは130Ω/sq.以下とすることが必要となる。
 また、電波反射率Γが0.9(90%)以上であり、したがって、表面抵抗Rが20Ω/sq.以下であることが、反射波W2の強度を確保する上でより好ましい。
 なお、電波反射率Γは、導波管法や自由空間法など従来公知方法によって測定することができるものである。
 第1領域22は、導電性塗料で構成され、導電性塗料は、塗膜形成成分と、添加剤と、溶剤と、金属粉末を含有している。
 導電性塗料の乾燥時における金属粉末の含有率は、80質量%以上97質量%以下であり、90質量%以上97質量%以下がより好ましい。
 ここで、本発明でいう「導電性塗料の乾燥時における金属粉末の含有率」とは、乾燥温度50℃、乾燥時間24時間の乾燥条件により前記導電性塗料を乾燥した後の、記導電性塗料中の金属粉末の含有率を意味する。なお、以下の記載において、「導電性塗料の乾燥時における金属粉末の含有率」を単に「金属粉末の含有率」と言うことがある。
 塗膜形成成分は、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステルウレタン樹脂の何れかを含む。
 本発明における導電性塗料は、添加剤を配合しても良い。添加剤は、消泡剤、乾燥剤などであり、従来公知の様々なものが使用可能である。
 溶剤は、塗料としての流動性を調整するためのものであり、PGMEA(プロピレングリコールモノメチルエーテルアセテート)など従来公知の様々なものが使用可能である。
 金属粉末は、導電性を有するものであればよく、銅に銀をコーティングした銀コート銅粉、銀粉など従来公知の様々なものが使用可能である。
 なお、本実施の形態では、第1領域22は以下のように形成される。
(1)外側コア層28Bの表面のうち第1領域22を形成すべき箇所に同形同大で均一の深さを有する凹部30を形成しておく。
(2)各凹部30に導電性塗料を塗布して乾燥させる。
(3)外側コア層28Bの表面を研磨し、凹部30から外側にはみ出た導電性塗料を除去する。
 なお、凹部30を設けることなく、外側コア28Bの表面に導電性塗料を塗布して乾燥させることで第1領域22を形成してもよいが、本実施の形態のように凹部30を設けると、各凹部30に塗布される導電性塗料の塗布量のバラつきを抑制することができる。
 第2領域24は、球体20の球面上で第1領域22を除く残りの部分に形成され電波反射率が第1領域22よりも低い領域である。
 言い換えると、第2領域24は、第1領域22よりも低い電波反射特性を有するものである。
 本実施の形態では、第2領域24は、第1領域22を除く残りの外側コア層28Bの表面の部分で形成され、したがって合成樹脂で形成されているため導電性を有さない。
 なお、第1領域22の電波反射率と第2領域24の電波反射率との比(差)を大きく確保する上で第2領域24の電波反射率は1%以下、表面抵抗は400Ω/sq.以上であることが好ましい。
 なお、第1領域22の総面積は、球体20の表面積の50%以下であることが好ましく、2%~30%がより好ましい。
 第1領域22の総面積が球体20の表面積の50%以下であると、第1領域22で反射される電波の反射強度と、第2領域24で反射される電波の反射強度との比(差)を大きく確保する上で有利となり、2%~30%であると、上記の反射強度の比(差)を大きく確保する上でより有利となる。
 このように第1領域22と第2領域24とで反射強度との比(差)を大きく確保すると、スピン量の計測を安定して行う上で有利となる。
 図5,図6に示すように、カバー層26は、球体20を覆うものであり、本実施の形態では、カバー層26は第1領域22および第2領域24を覆っている。
 カバー層26は、第1領域22による電波の反射がなされるように、電波の通過を許容する材料、例えば、導電性物質を含有しない材料などで形成され、このような材料としては、従来公知のさまざまな合成樹脂などを使用することができる。
 カバー層26の表面には多数のディンプル30が形成されている。
 この場合、カバー層26を不透明なものとすると、外部から第1領域22および第2領域24を隠すことができ意匠性の向上を図る上で有利となる。
 また、カバー層26の厚さは0.5mm以上3.0mm以下であることが好ましく、1.0mm以上2.0mm以下であることがより好ましい。
 カバー層26の厚さが0.5mm以上3.0mm以下であると、電波反射性を大きく確保しつつ耐久性を確保する上で有利となる。
 カバー層26の厚さが1.0mm以上2.0mm以下であると電波反射性を大きく確保しつつ耐久性を確保し、さらに製造の容易化を図る上で有利となる。
 次に本実施の形態のゴルフボール2の作用効果について説明する。
 本実施の形態のゴルフボール2は、球体20の中心を中心とした球面上に形成された電波反射率が高い第1領域22と、球面上で第1領域22を除く残りの部分に形成され電波反射率が第1領域22よりも低い第2領域24とを有している。
 したがって、ドップラーレーダ10のアンテナ12から発射された送信波W1がゴルフボール2の回転と共に移動する複数の第1領域22によって反射される。そのため、反射波W2の電波強度を確保する上で有利となる。
 そのため、打撃されたゴルフボール2がアンテナ12から離間してアンテナ12で受信される反射波W2の信号強度が低下しても、各周波数分布DA、DB、DCの信号強度を確保することができる。
 特に、周波数分布DAの信号強度に比較して元々弱い周波数分布DB、DCの信号強度を確保することができる。
 すなわち、ドップラー信号におけるスピン量Spを検出するために必要な周波数分布DB,DCの信号強度を確保することができ、スピン量Spの検出を安定して確実に行う上で有利となる。
 したがって、より長い期間にわたってスピン量Spの計測を安定して行うことができる。
 また、ドップラーレーダ10が室内に設置されるゴルフシミュレータ装置に適用されるものであった場合には、送信波W1の出力が低くても、S/N比が十分得られなくても、十分な信号強度を有する周波数分布DB、DCを得ることができる。
 そのため、ゴルフシミュレータ装置によって、ゴルフボールの初速や打ち出し角に加えてスピン量Spに基づいて球筋や飛距離を正確に算出することができ、スピン量Spを反映させたより正確なシミュレーションを行うことができる。
 具体的には、スピン量Spを反映させることにより、これまでシミュレーションが不可能であった目標線に対してゴルフボール2が戻ってくるフェード系やドロー系の球筋のシミュレーションが可能となる。また、スピン量Spを反映させることにより、飛距離をより正確にシミュレーションすることができる。
 また、本実施の形態のゴルフボール2は、第1領域22を構成する導電性塗料の乾燥時における金属粉末の含有率を80質量%以上97質量%以下としたので、導電性塗料に含まれる金属成分を確保できるため、ゴルフボール2がゴルフクラブヘッド4で打撃された場合の導電性塗料の耐久性を確保する上で有利となる。
 また、導電性塗料の乾燥時における金属粉末の含有率を90質量%以上97質量%以下とすると、導電性塗料に含まれる金属成分をより多く確保できるため、ゴルフボール2がゴルフクラブヘッド4で打撃された場合の導電性塗料の耐久性を確保する上でより有利となる。
 金属粉末の含有率が80質量%を下回ると、乾燥時における導電性塗料の性状が柔らかくなることからゴルフボール2がゴルフクラブヘッド4で打撃された際に導電性塗料が壊れやすく耐久性を確保する上で不利となる。
 また、金属粉末の含有率が97質量%を上回ると、導電性塗料に占める金属粉末の割合が多くなりすぎることから導電性塗料を塗布する際の作業性が低下する不利がある。
 また、塗膜形成成分を、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステルウレタン樹脂の何れかとしたので、合成樹脂材料で構成された外側コア層28Bおよびカバー層30に対する親和性、密着性を確保する上で有利となり、ゴルフボール2がゴルフクラブヘッド4で打撃された際の耐久性を高める上で有利となる。
 また、塗膜形成成分中、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステルウレタン樹脂の何れかが10質量%以上占めるようにしても、導電性塗料の耐衝撃性を高める上で有利となる。
(第2の実施の形態)
 次に第2の実施の形態について説明する。
 第2の実施の形態は中空状の球技用ボール、例えば、軟式野球用ボール、硬式テニスボール、軟式テニスボール、バレーボール、サッカーボール、卓球用ボールなどに適用された場合について説明する。
 図10は第2の実施の形態における球技用ボール4の断面図である。なお、以下の実施の形態において第1の実施の形態と同様の部分、部材には同一の符号を付してその説明を省略する。
 図10に示すように、球技用ボール2Aは、球体20と、第1領域22と、第2領域24と、カバー層26とを備えている。
 球体20は、球状で中空のコア層40により形成されている。コア層40は、ゴムや合成樹脂など従来公知の材料で構成されている。
 複数の第1領域22と、第2領域24はコア層40の外面(表面)に形成されている。すなわち、第2の実施の形態では、球体20の中心を中心とした球面は、コア層40の外面である。
 第2の実施の形態では、コア層40の外面に凹部を形成することなく、導電性塗料をコア層40の外面に塗布し乾燥させることで第1領域22を形成している。
 このような第2の実施の形態においても第1の実施の形態と同様の効果が奏される。
(第3の実施の形態)
 次に第3の実施の形態について説明する。
 第3の実施の形態は、第1の実施の形態の変形例である。
 図23は第3の実施の形態におけるゴルフボール2の断面図である。
 図23に示すように、ゴルフボール2は、球体20と、第1領域22と、第2領域24と、カバー層26とを備えている。
 本実施の形態では、球体20は、内側コア層28Aと、内側コア層28Aを覆う外側コア層28Bとで形成され、球体20の中心を中心とした球面は、内側コア層28Aの表面または外側コア層28Bの内面である。
 外側コア層28Bは、導電性を有さない合成樹脂で構成されている。
 第1領域22は、球体20の中心を中心とした球面の部分に複数形成され、言い換えると、内側コア層28Aの表面に複数形成されている。
 第2領域24は、球体20の球面上で第1領域22を除く残りの部分に形成され、言い換えると、第1領域22を除く残りの内側コア層28Aの表面の部分で形成されている。したがって、第2領域24は、合成樹脂で形成されているため導電性を有さない。
 カバー層26は、導電性を有さない合成樹脂で構成され、球体20を覆っている。
 カバー層26および外側コア層28Bは導電性を有さず電波を通過するため、第1領域22による電波の反射がなされる。
 このような第3の実施の形態においても第1の実施の形態と同様の効果が奏される。
(第1の実施例)
 次にゴルフボール2の実験結果について説明する。なお、以下では、第1の実施の形態のゴルフボール2について実験を行った。
 第1の実施例について説明する。
 実験条件は次のとおりである。
 実験例1は、ゴルフボール2に第1領域22が形成されていないものである。
 実験例2は、ゴルフボール2に1個の第1領域22を設けたものである。
 実験例3は、ゴルフボール2に6個の第1領域22を設けたものであり、図5,図6に示すように構成されている。
 このように構成された各ゴルフボール2をゴルフボール打ち出し装置によって打ち出してドップラーレーダ10を使用した計測装置を用いて計測を行い、ドップラー信号Sdをウェーブレット解析した。
 ゴルフボール打ち出し装置によってゴルフボール2に与えるスピン量は1000rpm、3000rpmとした。
 実験例1、2,3で計測したゴルフボール2の個数はそれぞれ10個とした。
 図11は実験例1においてスピン量を1000rpmとした場合のドップラー信号Sdのウェーブレット解析結果を示す図である。
 図12は実験例2においてスピン量を1000rpmとした場合のドップラー信号Sdのウェーブレット解析結果を示す図である。
 図13は実験例3においてスピン量を1000rpmとした場合のドップラー信号Sdのウェーブレット解析結果を示す図である。
 図14は実験例3においてスピン量を3000rpmとした場合のドップラー信号Sdのウェーブレット解析結果を示す図である。
 横軸は時間t(ms)、縦軸はドップラー周波数Fd(kHz)およびゴルフボール2の速度V(m/s)を示す。
 図15は実験例1~3におけるスピン量の計測結果を示す図であり、10個のゴルフボール2の計測を行った場合に、スピン量が計測できたゴルフボール2の個数を比率(パーセント)で表示している。
 図13、図14に示すように、実験例3では、第2、第3周波数分布DB、DCが時間経過と共に減少しているもののスピン量を計測するに足る程度の信号強度が確保されている。
 すなわち、図15に示すように、打ち出し時にゴルフボール2に与えるスピン量が1000rpm、3000rpmの何れであってもスピン量の計測が100%可能となっている。
 すなわち、スピン量が高いほど、図2で説明した第2速度VBがより低下しかつ第3速度VCがより上昇することから、第2、第3周波数分布DB、DCの幅がより大きくなり、したがって、第2、第3周波数分布DB、DCの信号強度を確保する上で有利となる。
 なお、スピン量が同じであっても、第1領域22の個数が多いほど、単位時間当たりに反射される反射波W2の信号強度が強くなるため、第2、第3周波数分布DB、DCの信号強度を確保する上で有利となる。
 図11、図12に示すように、実験例1、2では、ドップラー信号Sdの周波数分布の幅が図13、図14に比較して小さく、第2、第3周波数分布DB、DCの信号強度が低く、第2、第3周波数分布DB、DCが時間経過と共に減少しやがて消失している。
 すなわち、図15に示すように、打ち出し時にゴルフボール2に与えるスピン量が1000rpmと低い場合には、実験例1ではスピン量の計測ができず、実験例2ではスピン量の計測が30%しかできない。
 また、スピン量が3000rpmと高くなると、実験例1、2ともスピン量の計測が100%可能となっている。
 これは、スピン量が高いほど、第2速度VBがより低下しかつ第3速度VCがより上昇するため、第2、第3周波数分布の幅(ドップラー信号Sdの周波数分布の幅)が大きいからである。
 このような実験結果から、本実施の形態のゴルフボール2を用いることにより、スピン量の値に拘わらず、スピン量の計測を安定して確実に行う上で有利であることが明らかとなった。
(第2の実施例)
 次に第2の実施例について説明する。
 実験条件は次のとおりである。
 実験例4は、ゴルフボール2に第1領域22が形成されていないものである。
 実験例5は、ゴルフボール2に1個の第1領域22を設けたものである。
 実験例6は、ゴルフボール2に6個の第1領域22を設けたものであり、図5、図6に示すように構成されている。
 このように構成された各ゴルフボール2をゴルフボール打ち出し装置によって打ち出してドップラーレーダ10を用いて計測を行い、時間経過に伴うゴルフボール2のスピン量の変化を計測した。
 ゴルフボール打ち出し装置によってゴルフボール2に与える初速は60m/s、ゴルフボール2に与えるスピン量は3000rpmとした。
 実験例4~6で計測したゴルフボール2の個数はそれぞれ10個とした。
 図16は実験例4のスピン量の計測結果を示す図、図17は実験例5のスピン量の計測結果を示す図、図18は実験例6のスピン量の計測結果を示す図である。
 なお、図16、図17、図18に示される実線は、スピン量の各計測値に基づいて算出された時間経過とスピン量との関係を示す直線である。
 図19は実験例4~6におけるスピン量の計測時間と追尾距離を示す図であり、10個のゴルフボール2の計測を行った場合における平均値を示している。
 図18に示すように第1領域22が0個の場合、計測時間は1.1秒、追尾時間は66mであった。しかしながら、0.5秒以降のスピン量の計測データはばらつきが大きく、スピン量の計測データとして使用できる値としては、計測時間が0.5秒、追尾距離が30mであった。
 図16に示すように第1領域22が1個の場合、計測時間は1.25秒、追尾距離は75mであった。
 図17に示すように第1領域22が6個の場合、計測時間は2.6秒、追尾距離は156mであった。
 以上の結果から、第1領域22が0個の場合は、計測時間が0.5秒、追尾距離が30mと限られていることがわかる。
 また、第1領域22が1個の場合に比較して6個の場合は、計測時間および追尾距離を大きく確保できることがわかる。
 このような実験結果から、本実施の形態のゴルフボール2を用いることにより、スピン量の計測時間および追尾距離を確保することができ、スピン量の計測を安定して確実に行う上で有利であることが明らかとなった。
(第3の実施例)
 次に第3の実施例について説明する。
 第3の実施例は、ゴルフボール2をゴルフクラブヘッド4で打撃した場合の耐久性と、導電性塗料の塗布作業性とを評価した。
 耐久性は、試料となるゴルフボール2をゴルフクラブヘッド4で繰り返して打撃し、所定の打撃回数毎にスピン量Spの測定が不能となったゴルフボール2の個数で評価した。
 以下、スピン量Spの測定が可能であるか、不能であるかの評価方法について説明する。
 図20(A),(B)は、ゴルフボール2を打撃したときに得られるドップラー信号Sdを周波数解析することによって求められた、周波数ごとの信号強度の分布を示す信号強度分布データPを示す説明図である。なお、図20(A),(B)において信号強度分布データPは実測値で示し、図20(A)、(B)のスピン量は同等である。
 図20(A)は、信号強度分布データPの波形が1つのピークを有する山を形成しており、かつ、山の幅が広がっていることから、第2部分速度Vbと第3部分速度Vcの信号強度が十分に得られており、スピン量Spを正確に計測できていることを示している。
 図20(A)の場合、第1領域22を観察すると、第1領域22を構成する導電性塗料は破損されておらず、第1領域22の全体にわたって導通が確保されていることがわかった。
 図20(B)は、信号強度分布データPの波形は1つのピークを有する山を形成しているものの、図20(A)と同等なスピン量なのに山の幅が狭くなっていることから、第2部分速度Vbと第3部分速度Vcの信号強度が不十分となり、スピン量Spを正確に計測できていないことを示している。
 図20(B)の場合、第1領域22を観察すると、第1領域22を構成する導電性塗料が細かく破断されており、第1領域22の全体にわたる導通が確保されていないことがわかった。
 したがって、図20(A)に示すように、第1領域22を構成する導電性塗料の状態を、第1領域22の全体にわたって導通が確保されているように維持すれば、スピン量Spの変化によって山の幅も変化するドップラー信号Sdを得ることができ、スピン量Spを正確に計測することができることがわかる。
 これに対して、図20(B)に示すように、第1領域22を構成する導電性塗料が破損されると、スピン量Spが変化しても山の幅が変化しないドップラー信号Sdしか得られず、スピン量Spを正確に計測することが出来ないことがわかる。
 したがって、以下の実施例では、図20(B)のようにスピン量Spが大きいのに山の幅が広がらない時点でスピン量Spの測定が不能であると判定した。
 第3の実施例における実験条件は、以下の通りである。
 試料となるゴルフボール2は、6個の第1領域22を設けたものであり、図5,図6に示すように構成されている。この場合、第1領域22は正円とし、正円の直径は5mmとした。これらの条件は、第3、第4の実施例において共通である。
 導電性塗料は、塗膜形成成分、金属粉末および溶剤からなり、金属粉末の含有率は、実験例7を71質量%、実験例8を80質量%、実験例9を90質量%,実験例10を97質量%,実験例11を99質量%とした。なお、金属粉末は銀コート銅粉であり、導電性塗料に使用した溶剤は、PGMEA(プロピレングリコールモノメチルエーテルアセテート)である。
 塗膜形成成分は、実験例7~9において共通のポリエステルウレタン樹脂とした。
 ゴルフボール2の試料は、実験例毎に10個ずつ作成した。
 評価方法は以下の通りである。
 耐久性については、各ゴルフボール2をゴルフクラブを用いて打撃し、打撃回数が50回、100回、150回、200回のそれぞれの時点で、スピン量Spの測定が不能となった試料の数を「測定不能数」として計数した。
 塗布作業性については、金属含有率が80質量%の場合を100とした指数で評価した。
 第3の実施例の評価結果を図21に示す。
(耐久性)
 金属粉末の含有率が80質量%以上97質量%以下の範囲にあると、それらの範囲を下回る場合に比較して、第1領域22を構成する導電性塗料の耐久性が優れていることがわかる。
 また、金属粉末の含有率が90質量%を下回る場合よりも90質量%を上回る方が第1領域22を構成する導電性塗料の耐久性がより優れていることがわかる。
(塗布作業性)
 金属粉末の含有率が80質量%以上97質量%以下の範囲にあると、それらの範囲を上回る場合に比較して、塗布作業性が優れていることがわかる。
(第4の実施例)
 次に第4の実施例について説明する。
 第4の実施例では耐久性について評価した。評価方法は第3の実施例と同様である。
 第4の実施例における実験条件は以下の通りである。
 導電性塗料は、塗膜形成成分、金属粉末および溶剤からなり、金属粉末の含有率は実験例12~16において共通の85質量%とした。なお、金属粉末は銀コート銅粉であり、導電性塗料に使用した溶剤は、PGMEA(プロピレングリコールモノメチルエーテルアセテート)である。
 塗膜形成成分は、実験例12をアクリル樹脂、実験例13をポリエステル樹脂、実験例14をエポキシ樹脂、実験例15をウレタン樹脂、実験例16をポリエステルウレタン樹脂とした。
 第4の実施例の評価結果を図22に示す。
(耐久性)
 塗膜形成成分がポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステルウレタン樹脂の場合は、アクリル樹脂に比較して、第1領域22を構成する導電性塗料の耐久性が優れていることがわかる。
 なお、本発明は、実施の形態で例示した球技用ボールに限定されるものではなく、さまざまな球技用ボールに広く適用可能である。
 2……ゴルフボール(球技用ボール)、20……球体、22……第1領域、24……第2領域、26……カバー層。

Claims (11)

  1.  球体と、
     前記球体を覆うカバー層とを備えた球技用ボールであり、
     前記球体の中心を中心とした球面の部分に形成された電波反射率が高い第1領域と、
     前記球面上で前記第1領域を除く残りの部分に形成され電波反射率が前記第1領域よりも低い第2領域とを備え、
     前記第1の領域は、導電性塗料で構成され、
     前記導電性塗料は、塗膜形成成分と、溶剤と、金属粉末とを少なくとも含有し、
     前記導電性塗料の乾燥時における前記金属粉末の含有率が80質量%以上97質量%以下である、
     ことを特徴とする球技用ボール。
  2.  前記塗膜形成成分は、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステルウレタン樹脂の何れかを含む、
     ことを特徴とする請求項1記載の球技用ボール。
  3.  前記導電性塗料の乾燥時における前記金属粉末の含有率が90質量%以上97質量%以下である、
     ことを特徴とする請求項1または2項記載の球技用ボール。
  4.  前記第1領域は導電性を有し、前記第2領域は導電性を有さない、
     ことを特徴とする請求項1乃至3に何れか1項記載の球技用ボール。
  5.  前記第1領域の表面抵抗は130Ω/sq.以下である、
     ことを特徴とする請求項1乃至4に何れか1項記載の球技用ボール。
  6.  前記カバー層は合成樹脂製である、
     ことを特徴とする請求項1乃至5に何れか1項記載の球技用ボール。
  7.  前記球体の中心を中心とした球面は前記球体の表面である、
     ことを特徴とする請求項1乃至6に何れか1項記載の球技用ボール。
  8.  前記球体は、球状で中実のコア層で形成され、
     前記球体の中心を中心とした球面は、前記コア層の表面である、
     ことを特徴とする請求項1乃至6に何れか1項記載の球技用ボール。
  9.  前記球体は、球状で中空のコア層で形成され、
     前記球体の中心を中心とした球面は、前記コア層の外面である、
     ことを特徴とする請求項1乃至6に何れか1項記載の球技用ボール。
  10.  前記球体は、球状の内側コア層と、前記内側コア層を覆う外側コア層とで形成され、
     前記球体の中心を中心とした球面は、前記内側コア層の表面または前記外側コア層の内面である、
     ことを特徴とする請求項1乃至6に何れか1項記載の球技用ボール。
  11.  前記球技用ボールは、ゴルフボールである、
     ことを特徴とする請求項1乃至10に何れか1項記載の球技用ボール。
PCT/JP2012/003692 2011-06-09 2012-06-06 球技用ボール WO2012169179A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012547382A JP6111669B2 (ja) 2011-06-09 2012-06-06 球技用ボール
KR1020137031123A KR101772521B1 (ko) 2011-06-09 2012-06-06 구기용 볼

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011128977 2011-06-09
JP2011-128977 2011-06-09

Publications (1)

Publication Number Publication Date
WO2012169179A1 true WO2012169179A1 (ja) 2012-12-13

Family

ID=47295764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003692 WO2012169179A1 (ja) 2011-06-09 2012-06-06 球技用ボール

Country Status (3)

Country Link
JP (1) JP6111669B2 (ja)
KR (1) KR101772521B1 (ja)
WO (1) WO2012169179A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062882A (ja) * 2012-09-03 2014-04-10 Yokohama Rubber Co Ltd:The 移動体の回転数計測装置
WO2015071928A1 (ja) * 2013-11-13 2015-05-21 横浜ゴム株式会社 移動体の回転数計測装置
US11872461B1 (en) * 2018-07-13 2024-01-16 Topgolf Callaway Brands Corp. Golf ball with wound core with integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180251U (ja) * 1974-12-18 1976-06-25
JPS5818566U (ja) * 1981-07-29 1983-02-04 内外ゴム株式会社 球速検知用軟式野球ボ−ル
JP2007130071A (ja) * 2005-11-08 2007-05-31 Bridgestone Sports Co Ltd ゴルフボールの性能評価システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266701A (ja) * 1995-03-30 1996-10-15 Hino Motors Ltd 打球追跡表示装置
JP5649993B2 (ja) * 2011-01-26 2015-01-07 株式会社フローベル 測定装置および測定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180251U (ja) * 1974-12-18 1976-06-25
JPS5818566U (ja) * 1981-07-29 1983-02-04 内外ゴム株式会社 球速検知用軟式野球ボ−ル
JP2007130071A (ja) * 2005-11-08 2007-05-31 Bridgestone Sports Co Ltd ゴルフボールの性能評価システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062882A (ja) * 2012-09-03 2014-04-10 Yokohama Rubber Co Ltd:The 移動体の回転数計測装置
WO2015071928A1 (ja) * 2013-11-13 2015-05-21 横浜ゴム株式会社 移動体の回転数計測装置
US10379213B2 (en) 2013-11-13 2019-08-13 The Yokohama Rubber Co., Ltd. Moving body rotation speed measurement device
US11872461B1 (en) * 2018-07-13 2024-01-16 Topgolf Callaway Brands Corp. Golf ball with wound core with integrated circuit

Also Published As

Publication number Publication date
JP6111669B2 (ja) 2017-04-12
KR101772521B1 (ko) 2017-08-29
JPWO2012169179A1 (ja) 2015-02-23
KR20140038427A (ko) 2014-03-28

Similar Documents

Publication Publication Date Title
JP5783048B2 (ja) 球技用ボール
JP6221746B2 (ja) 球技用ボール
KR100947898B1 (ko) 스포츠 공의 회전 파라미터 결정
US11673029B2 (en) System and method for determining spin measurements using ball marking
US9645235B2 (en) Determination of spin parameters of a sports ball
US10962635B2 (en) Determination of spin parameters of a sports ball
JP2022133365A (ja) スポーツボールのスピン軸を決定するための方法
JP6111669B2 (ja) 球技用ボール
JP5617481B2 (ja) ボール計測装置
JP2011143096A (ja) 球技用ボール
JP5966271B2 (ja) 球技用ボール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012547382

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137031123

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797558

Country of ref document: EP

Kind code of ref document: A1