WO2012169156A1 - Rotating machine having function of outputting signal for controlling internal combustion engine, and starting motor having function of outputting signal for controlling internal combustion engine - Google Patents

Rotating machine having function of outputting signal for controlling internal combustion engine, and starting motor having function of outputting signal for controlling internal combustion engine Download PDF

Info

Publication number
WO2012169156A1
WO2012169156A1 PCT/JP2012/003567 JP2012003567W WO2012169156A1 WO 2012169156 A1 WO2012169156 A1 WO 2012169156A1 JP 2012003567 W JP2012003567 W JP 2012003567W WO 2012169156 A1 WO2012169156 A1 WO 2012169156A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
internal combustion
combustion engine
sensor
signal
Prior art date
Application number
PCT/JP2012/003567
Other languages
French (fr)
Japanese (ja)
Inventor
金千代 寺田
永田 孝一
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201280027905.7A priority Critical patent/CN103597717B/en
Publication of WO2012169156A1 publication Critical patent/WO2012169156A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/006Starting of engines by means of electric motors using a plurality of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00

Definitions

  • the present disclosure relates to an internal combustion engine rotating machine (for example, a starter motor, a magnet generator, or a motor generator) having a function of outputting an internal combustion engine control signal used for controlling an ignition device or the like of the internal combustion engine.
  • an internal combustion engine rotating machine for example, a starter motor, a magnet generator, or a motor generator
  • Patent Document 1 describes a brushless three-phase starting motor.
  • This starting motor is configured by winding a rotor configured by alternately arranging N-pole magnets and S-pole magnets in the rotation direction, and winding a U-phase coil, a V-phase coil, and a W-phase coil around a tooth portion of an iron core.
  • a stator is provided with a U-phase sensor, a V-phase sensor, a W-phase sensor, and a crank rotation position sensor described below.
  • the U-phase sensor, V-phase sensor, and W-phase sensor are attached to a position of the stator facing the magnet, and a U-phase signal, a V-phase signal, and a W-phase signal (motor control signal) corresponding to the polarity of the rotating magnet. Are respectively output (see FIG. 16). Based on these motor control signals, the drive timing of the starting motor is controlled by controlling the energization timing to the U-phase coil, V-phase coil and W-phase coil.
  • the crank rotation position sensor outputs an internal combustion engine control signal shown in FIG. 16 by detecting a different polarity magnetic part described below every time the crankshaft rotates once. That is, a heteropolar magnetic part magnetized with a polarity different from the magnet is formed in a part of a predetermined magnet among the plurality of magnets. Specifically, a heteropolar magnetic part magnetized with an N pole is formed at the upper end of a predetermined S pole magnet in a direction orthogonal to the rotation direction. Then, a crank rotation position sensor is arranged on the rotation path of the heteropolar magnetic part. Note that the U-phase sensor, the V-phase sensor, and the W-phase sensor are arranged so as to be out of the rotation orbit of the heteropolar magnetic part.
  • crank rotation position sensor the detection of the S pole magnet indicated by the dotted line in FIG. 16 is performed only once during the rotation of the crankshaft while the detection of the N pole magnet and the S pole magnet is alternately repeated.
  • the different polarity magnetic part (N pole) is detected without being performed. Therefore, the absolute rotational position of the crankshaft can be grasped based on the rotational position of the crankshaft when the heteropolar magnetic part is detected. Then, fuel injection and ignition timing of the internal combustion engine are controlled on the basis of the absolute rotation position thus grasped.
  • the starter motor described in Patent Document 1 includes the crank rotation position sensor in addition to the U-phase sensor, the V-phase sensor, and the W-phase sensor, so that an internal combustion engine control signal used for controlling fuel injection and ignition timing can be obtained. It has a function to output.
  • the conventional configuration includes a crank rotation position sensor in addition to the U-phase sensor, the V-phase sensor, and the W-phase sensor, the number of sensors increases, resulting in an increase in cost and a structure. There is a concern that it will become complicated and unreliable.
  • a first object of the present disclosure is to provide a rotating machine with a signal output function for controlling an internal combustion engine in which the number of sensors is reduced.
  • a second object of the present disclosure is to provide a rotating machine with a signal output function for controlling an internal combustion engine that can quickly grasp an absolute rotational position of an engine output shaft.
  • a third object of the present disclosure is to provide a starter motor with a signal output function for controlling an internal combustion engine that suppresses a decrease in motor output.
  • a rotating machine with a signal output function for controlling an internal combustion engine includes a rotor configured by alternately arranging magnets having different polarities in the rotation direction.
  • the internal combustion engine control signal output function-equipped rotating machine further includes a stator configured by arranging a plurality of teeth around which a coil is wound in the rotation direction.
  • the internal combustion engine control signal output function-equipped rotating machine further includes a phase sensor that is attached to a position of the stator facing the magnet and outputs a crank position signal corresponding to the polarity of the rotating magnet.
  • a part of a predetermined magnet among the plurality of magnets is formed with a different polarity part that is magnetized in a different polarity from the magnet, or is not magnetized in any polarity, and rotates together with the rotor
  • the starter motor with a signal output function for controlling the internal combustion engine includes a rotor configured by alternately arranging magnets having different polarities in the rotation direction.
  • the starter motor with a signal output function for controlling the internal combustion engine further includes a stator configured by arranging a plurality of teeth around which a coil is wound in the rotation direction.
  • the internal combustion engine control signal output function-equipped start motor further includes a phase sensor that is attached to a position of the stator facing the magnet and outputs a motor control signal according to the polarity of the rotating magnet.
  • the starter motor with a signal output function for controlling the internal combustion engine is rotationally driven by controlling the energization timing to the coil based on the detected signal for motor control, and rotationally drives the output shaft of the internal combustion engine.
  • a heteropolar magnetic portion magnetized with a polarity different from the magnet is formed in a part of a predetermined magnet among the plurality of magnets, and is rotated together with the rotor.
  • the starter motor with a signal output function for controlling the internal combustion engine includes a rotor configured by alternately arranging magnets having different polarities in the rotation direction.
  • the starter motor with a signal output function for controlling the internal combustion engine further includes a stator configured by arranging a plurality of teeth around which a coil is wound in the rotation direction.
  • the internal combustion engine control signal output function-equipped start motor further includes a phase sensor that is attached to a position of the stator facing the magnet and outputs a motor control signal according to the polarity of the rotating magnet.
  • the starter motor with a signal output function for controlling the internal combustion engine is rotationally driven by controlling the energization timing to the coil based on the detected signal for motor control, and rotationally drives the output shaft of the internal combustion engine.
  • a part of a predetermined magnet is magnetized to have a polarity different from that of the magnet, and the magnet is magnetized over the entire rotation direction of the magnet.
  • a heteropolar magnetic part is further provided.
  • the starter motor with a signal output function for controlling the internal combustion engine is disposed on a rotation path of the heteropolar magnetic part that rotates together with the rotor, and detects the heteropolar magnetic part to thereby determine the absolute rotational position of the output shaft. It further includes a rotational position sensor for outputting the expressed internal combustion engine control signal.
  • An internal combustion engine control signal representing the absolute rotational position of the output shaft when the phase sensor detects the heteropolar magnetic part by arranging the phase sensor on the rotational trajectory in addition to the rotational position sensor. In place of the motor control signal.
  • the starter motor with a signal output function for controlling the internal combustion engine includes a rotor configured by alternately arranging magnets having different polarities in the rotation direction.
  • the starter motor with a signal output function for controlling the internal combustion engine further includes a stator configured by arranging a plurality of teeth around which a coil is wound in the rotation direction.
  • the internal combustion engine control signal output function-equipped start motor further includes a phase sensor that is attached to a position of the stator facing the magnet and outputs a motor control signal according to the polarity of the rotating magnet.
  • the starter motor with a signal output function for controlling the internal combustion engine is rotationally driven by controlling the energization timing to the coil based on the detected signal for motor control, and rotationally drives the output shaft of the internal combustion engine.
  • it further includes a heteropolar magnetic part formed in a part of a predetermined magnet among the plurality of magnets and magnetized with a polarity different from that of the magnet.
  • the starter motor with a signal output function for controlling the internal combustion engine is disposed on a rotation path of the heteropolar magnetic part that rotates together with the rotor, and detects the heteropolar magnetic part to thereby determine the absolute rotational position of the output shaft. It further includes a rotational position sensor for outputting the expressed internal combustion engine control signal.
  • the heteropolar magnetic part is formed in a part of the predetermined direction of the predetermined magnet.
  • FIG. 1 is a schematic diagram illustrating an ACG starter (starting motor) according to a first embodiment of the present disclosure.
  • FIG. 2 is a sectional view of the ACG starter and crankshaft shown in FIG.
  • FIG. 3 is a view taken in the direction of arrow III in FIG. 4A is a diagram for explaining the mounting positions of the U-phase sensor, the V-phase sensor, and the W-phase sensor in FIG. 3, and
  • FIG. 4B is a modification of FIG.
  • FIG. 5 is a time chart showing a change in the combination information NNUM in the first embodiment.
  • FIG. 6 is a flowchart showing a processing procedure of energization control for the UVW phase coil in the first embodiment.
  • FIG. 7 is a time chart showing a change in the combination information NNUM in the second embodiment of the present disclosure.
  • FIG. 8 is a time chart showing a change in the combination information NNUM in the third embodiment of the present disclosure.
  • FIG. 9 is a diagram for explaining mounting positions of the U-phase sensor, the V-phase sensor, and the W-phase sensor in the fourth embodiment of the present disclosure.
  • FIG. 10 is a time chart showing a change in the combination information NNUM in the fourth embodiment.
  • FIG. 11 is a diagram for explaining the mounting positions of the U-phase sensor, the V-phase sensor, and the W-phase sensor and the shape of the heteropolar magnetic part in the fifth embodiment of the present disclosure
  • FIG. 12 is a diagram for explaining the mounting positions of the U-phase sensor, the V-phase sensor, and the W-phase sensor and the shape of the nonmagnetic part (gap) in the seventh embodiment of the present disclosure
  • FIG. 13 is a perspective view showing a magnet and a housing in the seventh embodiment.
  • FIG. 14A shows a magnetic short-circuit path by the heteropolar magnetic part
  • FIG. 14B shows a magnetic short-circuit path by the non-magnetic part
  • FIG. 15B are diagrams showing a modification of the shape of the non-magnetic portion (gap)
  • FIG. 16 is a time chart showing changes in the internal combustion engine control signal output from the conventional ACG starter
  • FIG. 17 is a diagram for explaining mounting positions of the U-phase sensor, the V-phase sensor, and the W-phase sensor in FIG.
  • FIG. 18 is a time chart showing the change of the combination information NNUM in the eighth embodiment.
  • FIG. 19 is a time chart showing a change in the combination information NNUM in the ninth embodiment of the present disclosure.
  • FIG. 20 is a time chart showing a change in the combination information NNUM in the tenth embodiment of the present disclosure.
  • FIG. 21 is a time chart showing the change of the combination information NNUM in the eleventh embodiment.
  • FIG. 22 is a schematic diagram illustrating an ACG starter (starting motor) according to a twelfth embodiment of the present disclosure.
  • FIG. 23 is a view taken along arrow XXIII in FIG.
  • FIG. 24 is a diagram for explaining mounting positions of the crank rotation position sensor, the U-phase sensor, the V-phase sensor, and the W-phase sensor in FIG.
  • FIG. 25 is a time chart showing changes in combination information NNUM in the twelfth embodiment.
  • FIG. 26 is a view taken along arrow XXVI in FIG.
  • FIG. 27A is a view for explaining the mounting positions of the crank rotation position sensor, the U-phase sensor, the V-phase sensor, and the W-phase sensor of FIG. 26, and
  • FIG. 27B is a modification of FIG.
  • FIG. 28 is a time chart showing the change of the combination information NNUM in the thirteenth embodiment.
  • FIG. 29 is a time chart showing changes in the combination information NNUM in the fourteenth embodiment.
  • FIG. 30 is a flowchart showing error processing of the combination information NNUM.
  • the starter motor (rotary machine) is an application object of an engine (internal combustion engine) mounted on a two-wheeled vehicle.
  • FIG. 1 shows an injector 10 for injecting fuel into an intake port of the engine, a combustion chamber of the engine 1 shows an ignition device 11 that sparks and ignites an air-fuel mixture, an injector 10, an electronic control device (ECU 13) that controls the operation of the ignition device 11, and an ACG starter 20 (starting motor) that will be described in detail later.
  • the ACG starter 20 is a brushless three-phase AC motor that functions as an engine starter motor, and also functions as an AC generator driven by the engine crankshaft 14 (output shaft).
  • a torque transmission mechanism described below is provided in the power transmission path between the drive wheels of the two-wheeled vehicle and the crankshaft 14. That is, the torque transmission is interrupted until the rotational speed NE of the crankshaft 14 exceeds a predetermined value after the motor driving of the ACG starter 20 is started, and the centrifugal operation is performed to transmit the torque when the predetermined value is reached.
  • a torque transmission mechanism such as a clutch.
  • the ACG starter 20 outputs a U-phase sensor SU that outputs a U-phase signal that represents an electrical angle of a U-phase, a V-phase sensor SV that outputs a V-phase signal that represents an electrical angle of a V-phase, and an electrical angle of a W-phase. It has a W-phase sensor SW that outputs the represented W-phase signal.
  • the U phase sensor SU phase sensor
  • the U phase sensor SU (phase sensor) outputs a crank position signal (reference position signal of the internal combustion engine control signal) representing the absolute rotational position of the crankshaft 14. It also has functions.
  • the ECU 13 determines the energization timing to the U-phase coil CU, V-phase coil CV and W-phase coil CW of the ACG starter 20 based on the UVW-phase signals (motor control signals) output from these UVW-phase sensors SU to SW. By controlling, motor drive control is performed so that the ACG starter 20 is rotationally driven in a desired rotation direction.
  • the throttle sensor 15 detects the opening of a throttle valve that adjusts the intake air amount.
  • the intake pressure sensor 16 detects a negative pressure in the intake port.
  • the ECU 13 operates the injector 10 and the ignition device 11 based on signals such as a crank position signal output from the ACG starter 20, a throttle opening output from the throttle sensor 15, and a negative pressure output from the intake pressure sensor 16. To control.
  • the ECU 13 calculates the rotational speed NE of the crankshaft 14 based on the crank position signal, and calculates the engine load based on the negative pressure PM by the intake pressure sensor 16. Further, based on these NE and PM, the fuel target injection amount, the target injection timing, and the target ignition timing are calculated. Then, the absolute rotational position of the crankshaft 14 is calculated based on the UVW phase signal and the crank position signal output from the UVW phase sensors SU to SW, and the fuel is injected at the target injection timing based on the calculated absolute rotational position. Thus, the operation of the injector 10 is controlled, and the operation of the ignition device 11 is controlled so as to ignite at the target ignition timing.
  • FIGS. 2 is a cross-sectional view of the ACG starter 20 and the crankshaft 14, and FIG. 3 is a view taken in the direction of arrow III in FIG.
  • the ACG starter 20 includes a stator 40 on the inner peripheral side of the rotor 30.
  • the rotor 30 includes a bottomed cylindrical housing 31 and permanent magnets (N-pole magnet 32N and S-pole magnet 32S) fixed to the inner peripheral surface of the housing 31.
  • the N-pole magnet 32N and the S-pole magnet 32S are alternately arranged in the rotation direction, and in the example of FIG. 3, 12 (12 poles) permanent magnets are arranged.
  • the housing 31 is fixed to the crankshaft 14 by fastening means such as a bolt 33 and always rotates at the same rotational speed (NE) as the crankshaft 14. Thereby, the rotor 30 also functions as an engine flywheel.
  • Stator 40 includes U-phase coil CU, V-phase coil CV, W-phase coil CW coil and UVW-phase sensors SU to SW described above, and an iron core 42 on which a tooth portion 41 around which these coils are wound is formed. .
  • a plurality of teeth portions 41 are arranged side by side in the rotation direction, and a U-phase coil CU, a V-phase coil CV, and a W-phase coil CW coil are wound around each tooth portion 41 in order. In the example of FIG. 3, 18 tooth portions 41 are arranged.
  • the UVW phase sensors SU to SW are mounted on the outer peripheral surface of the stator 40, and are in positions facing the N-pole magnet 32N and the S-pole magnet 32S. Thereby, a change in magnetism due to the N-pole magnet 32N and the S-pole magnet 32S generated as the rotor 30 rotates is detected. Note that Hall ICs are employed for the UVW phase sensors SU to SW. Therefore, even when the rotor 30 is not rotating, a detection signal corresponding to the polarity of the opposing magnet can be output.
  • UVW phase sensors SU to SW are mounted at different positions in the rotor rotation direction. Specifically, each of the gaps 41a of the plurality of teeth portions 41 is disposed in a different gap 41a.
  • the U-phase sensor SU is placed in an adjacent gap among the plurality of gaps 41a.
  • the V phase sensor SV and the W phase sensor SW are arranged in order. Therefore, each of the UVW phase sensors SU to SW is shifted by a mechanical angle of 20 degrees.
  • a part of the magnet 32S (A) for a predetermined one pole among the plurality of magnets 32S and 32N includes: A heteropolar magnetic portion 34 to be described is formed. That is, only the portion indicated by the oblique lines in FIG. 4A is magnetized with a polarity (N pole) different from that of the S pole magnet 32S.
  • This heteropolar magnetic part 34 is formed at one end portion of the predetermined magnet 32S (A) in the rotor rotation axis direction (vertical direction in FIG. 4A), and in the rotation direction (left and right in FIG. 4A).
  • the polarity of the predetermined magnet 32S (A) is formed on both sides of the heteropolar magnetic portion 34 in the direction).
  • the upper end portion of the predetermined magnet 32S (A) is divided into three in the rotational direction, and the central portion is formed as the heteropolar magnetic portion 34.
  • the V-phase sensor SV and the W-phase sensor SW are disposed at the same position in the rotor rotation axis direction (vertical direction in FIG. 4A), whereas the U-phase sensor SU is the V-phase sensor SV and the W-phase sensor. It is arranged at a position different from the SW in the direction of the rotation axis.
  • the U-phase sensor SU is positioned on the rotating track 34a of the heteropolar magnetic section 34, and the V-phase sensor SV and the W-phase sensor SW are positioned away from the rotating track 34a.
  • each of the U-phase signal, V-phase signal, and W-phase signal switches between low and high every time the rotor 30 rotates 30 degrees (see FIG. 5). ). Therefore, each electrical angle 360 ° of the UVW phase corresponds to a rotation angle (mechanical angle) 60 ° of the crankshaft 14.
  • the U-phase signal is also switched to low when the heteropolar magnetic part 34 is detected.
  • the rotor 30 rotates 10 degrees the low and high are switched in any of the UVW phase sensors SU to SW.
  • this member 32a when a non-polar member 32a is interposed between the N-pole magnet 32N and the S-pole magnet 32S, this member 32a has a polarity opposite to the sensors SU to SW.
  • the signal may be processed by regarding it as a preset signal (for example, a low signal) out of the low signal and the high signal.
  • the rotor 30 in which the N-pole magnet 32N and the S-pole magnet 32S are adjacent to each other may be adopted so that the member 32a does not exist.
  • a rotor in which a plurality of N-pole magnets 32N and S-pole magnets 32S are formed from one magnet piece by magnetizing one magnet piece to N-pole and S-pole may be adopted.
  • the rotor in this case may be configured using a plurality of (for example, four) magnet pieces, or may be configured using one magnet piece.
  • FIG. 5 is a time chart showing the crank angle, combination information NNUM, binary notation of UVW phase signal, UVW phase signal, ignition signal, injection signal, and engine stroke in order from the top.
  • the combination information NNUM is a virtual signal that represents a combination of the U-phase signal, the V-phase signal, and the W-phase signal that are output at the same time.
  • the combination information NNUM is calculated by combining the binary notation of the UVW phase signal. It is a decimal number.
  • a binary number is represented by a binary number of a U-phase signal
  • the first digit is a binary number of a U-phase signal
  • the second digit is a binary number of a V-phase signal
  • the third digit is a binary number of a W-phase signal.
  • the numerical value converted into a decimal number is the combination information NNUM.
  • This numerical value NNUM is calculated by the ECU 13. For example, as shown in the leftmost column, if the UVW phase signals are “1”, “0”, and “1”, NNUM is “5”.
  • Symbol ES in the figure indicates a portion that has become a low signal due to the detection of the heteropolar magnetic portion 34, and the signal of the portion corresponds to an “internal combustion engine control signal”.
  • the signal corresponds to a “motor control signal”. Except for the portion where the internal combustion engine control signal ES appears, the value of NNUM is repeatedly rotated in the order of 5 ⁇ 1 ⁇ 3 ⁇ 2 ⁇ 6 ⁇ 4.
  • the ECU 13 can calculate the absolute rotational position of the crankshaft 14 based on the crank angle at the time when the NNUM value “0” is detected. If the absolute rotational position can be grasped, the rising or falling timing of each UVW phase signal (that is, the update timing of NNUM) and the positional relationship for one rotation of the 4-cycle engine can be specified.
  • the time tb when the NNUM value “1” appears for the second time can be identified as the time when the piston of the engine reaches the bottom dead center BDC.
  • the value of the intake pressure sensor 16 it is possible to determine whether the bottom dead center BDC timing is an exhaust stroke or a compression stroke (stroke determination).
  • the fuel injection timing and the ignition timing as the target timing based on the NNUM update timing with the absolute rotation position as a reference.
  • the ECU 13 specifies the next NNUM value based on the current NNUM value (identifying means), and the energization control content to the U-phase coil CU, V-phase coil CV, and W-phase coil CW based on the specified next NNUM value. To decide. For example, if the current NNUM value is “3”, it can be specified that the next NNUM value is “2” based on the rotation. That is, it can be said that the tooth portion 41 around which the U-phase coil CU is wound is at a timing when the position changes from the facing position (high) of the S pole magnet 32S to the facing position (low) of the N pole magnet 32N. Therefore, it can be said that it is at the timing of switching the energization on / off state to the U-phase coil CU.
  • the energization of the U-phase coil CU is controlled by the ECU 13 based on whether or not the NNUM value “4” indicating the rise of the U-phase signal or the NNUM value “3” indicating the fall is detected.
  • energization to the V-phase coil CV and the W-phase coil CW is also controlled based on the NNUM value.
  • the energization control for the UVW phase coils CU to CW may be performed by “1” facing the motor driving coils CU, CV, CW.
  • the ECU 13 detects whether or not the ACG starter 20 is reversed based on the history of the NNUM value. For example, if it is rotating forward, the NNUM value should change in the order of 5 ⁇ 1 ⁇ 3 ⁇ 2 ⁇ 6 ⁇ 4 as described above. On the other hand, if the rotation is reversed, the NNUM value should change in the order of 4 ⁇ 6 ⁇ 2 ⁇ 3 ⁇ 1 ⁇ 5.
  • FIG. 6 is a flowchart showing a procedure of processing in which the microcomputer 13a (see FIG. 1) provided in the ECU 13 performs energization control on the UVW phase coils CU to CW as described above.
  • This process is repeatedly executed at a predetermined cycle (for example, a calculation cycle performed by the CPU of the microcomputer 13a described above or every predetermined crank angle).
  • the rotation may be performed at the predetermined period when the rotation is stopped, while the rotation may be performed every time edge detection described below is performed.
  • the microcomputer 13a shown in FIG. 1 has a capture function that captures the timing at which the signals (UVW phase signals shown in FIG. 5) output from the sensors SU to SW and subjected to input processing change. ing. In short, the rising and falling timing (edge detection timing) of the UVW phase signal is detected. Then, the processing of FIG. 6 is executed every time this edge detection is performed.
  • each of the U phase signal, the V phase signal, and the W phase signal is acquired from the UVW phase sensors SU to SW.
  • combination information NNUM representing the combination of these signals is calculated based on the UVW phase signal.
  • the next NNUM value is calculated based on the NNUM value. Specifically, based on the above-described rotation at the time of forward rotation such as 5 ⁇ 1 (0) ⁇ 3 ⁇ 2 ⁇ 6 ⁇ 4, for example, if the current NNUM value is “5”, the next NNUM value is “1”. calculate. If the current NNUM value is “0”, the next NNUM value is calculated to be “3”.
  • step S40 energization control for the UVW phase coils CU to CW is performed based on the next NNUM value calculated in step S30.
  • the ACG starter 20 is driven by a motor in a predetermined rotation direction.
  • the energization control to the U-phase coil CU will be described.
  • the value of the U-phase signal constituting the next NNUM value constitutes the current NNUM value. It means changing from the value of the U-phase signal. Therefore, when the next NNUM value is specified to be “2” or “5”, the energization control content to the U-phase coil CU is switched from on to off or from off to on.
  • the energization control content to the V-phase coil CV is switched when the next NNUM value is specified as “3” or “4”.
  • the NNUM value is specified as “6” or “1”
  • the energization control content to the W-phase coil CW is switched.
  • step S50 it is determined whether or not the NUMUM value “0” appears and the absolute rotational position of the crankshaft 14 has been detected. If it has been detected (S50: YES), the process proceeds to the next step S60, and the injector 10 is set so that the fuel injection timing and the ignition timing become the target timing based on the detected absolute rotational position and UVW phase signal (or NNUM value). And the operation of the ignition device 11 is controlled. However, if the absolute rotational position is not detected (S50: NO), the system waits without operating the injector 10 and the ignition device 11.
  • the driving of the ignition device 11 is started at time ts1 and ignited at time ts2. Further, the fuel injection by the injector 10 is started at the time tf1, and the injection is ended at the time tf2. Then, with reference to the crank angle (absolute rotational position) when the internal combustion engine control signal ES appears, the fourth rise timing (or 4) of the U-phase signal after the internal combustion engine control signal ES appears in the intake stroke.
  • the ignition control is performed with the NN1 value “5” appearance timing) as the ts1 time point and the fifth falling timing of the W-phase signal (or the fifth NNUM value “1” appearance timing) as the ts2 time point.
  • the third falling timing of the V-phase signal (or the third NNUM value “4” appearance timing) is set to the time tf1, and the fifth V-phase signal is output.
  • the fuel injection control is performed with the rise timing (or the fifth NNUM value “3” appearance timing) as tf2.
  • the ignition device 11 and the injector 10 are driven also in ts1 ′ to ts2 ′ and tf1 ′ to tf2 ′.
  • the various ignition control timings ts1 and ts2 and the injection control timings tf1 and tf2 coincide with the rising or falling timing of the UVW phase signal.
  • the ignition control or the injection control may be performed when a predetermined time has elapsed from the rising or falling timing of the UVW phase signal immediately before.
  • the internal combustion engine control signal ES can be output using the U-phase sensor SU that outputs the motor control signal, and the fuel
  • the absolute rotational position of the crankshaft 14 required for engine control such as injection control and ignition control can be grasped. Therefore, a dedicated sensor (crank rotation position sensor) that outputs the internal combustion engine control signal ES can be eliminated, and the number of sensors can be reduced.
  • the NNUM value is “ If it is “0”, it can be determined that the U-phase signal at that time is due to the internal combustion engine control signal ES. Therefore, the absolute rotational position required for engine control can be quickly grasped.
  • the upper end portion of the predetermined magnet 32S (A) is divided into three in the rotation direction, and the heteropolar magnetic portion 34 is formed at the center portion thereof. Therefore, compared with the conventional structure formed over the entire rotation direction, the length in which the predetermined magnet 32S (A) and the heteropolar magnetic part 34 are magnetically short-circuited in the vertical direction can be shortened. Therefore, it is possible to suppress a decrease in motor driving force due to the ACG starter 20, and it is possible to suppress a decrease in power generation amount due to the ACG starter 20.
  • the edge 32b of the predetermined magnet 32S (A) is not connected to the magnetic pole 34S instead of the magnetic pole 34. Can be an edge. Therefore, the commutation timing tc (see FIG. 5) at which the edge 32c of the adjacent magnet 32N (B) (C) located next to the predetermined magnet 32S (A) is switched to the edge 32b of the predetermined magnet 32S (A). It can be detected by the U-phase sensor SU. Therefore, the timing of energization control for the U-phase coil CU can be controlled with high accuracy.
  • the heteropolar magnetic part 34 becomes inconsistent in polarity with the tooth part 41 facing the predetermined magnet 32S (A).
  • it is divided into three parts as described above. Since the heteropolar magnetic part 34 is formed in the central part, compared with the case where the upper end part of the predetermined magnet 32S (A) is formed in the heteropolar magnetic part 34 over the entire rotation direction, The length in the rotation direction can be shortened. Therefore, the occupation area of the heteropolar magnetic portion 34 with respect to the predetermined magnet 32S (A) can be reduced, and the output decrease of the ACG starter 20 caused by the polarity mismatch can be suppressed.
  • the heteropolar magnetic part 34 is formed by dividing into three as described above, the switching timing of the high and low of the internal combustion engine control signal ES is changed between the high and low of the V phase signal and the W phase signal. Can be the same as the switching timing. Therefore, it is possible to avoid the combination information NNUM from becoming complicated.
  • the energization control to the U-phase coil CU is not the control content adapted to the actual electrical angle, and the ACG There is a concern that the starter 20 is rotated in the reverse direction.
  • the torque transmission is interrupted until the rotational speed NE becomes equal to or higher than a predetermined value after the motor driving of the ACG starter 20 is started, the above-mentioned concern can be solved.
  • the rotor 30 and the crankshaft 14 of the ACG starter 20 are fixed so as to rotate integrally with the center of rotation coinciding with each other. Between the rotor 30 and the crankshaft 14, a belt, a gear, or the like The power transmission mechanism is not interposed. Therefore, when the crank position signal is output from the U-phase sensor SU provided in the ACG starter 20, there is a deviation between the rotational phase of the crankshaft 14 and the rotational phase of the rotor 30 due to gear backlash, belt elongation, or the like. Since this can be avoided, sufficient calculation accuracy can be ensured in calculating the absolute rotational position of the crankshaft 14 using the U-phase sensor SU.
  • the NNUM value “0” when the internal combustion engine control signal ES is detected is configured not to appear except when ES is detected. Therefore, since the absolute rotational position can be calculated based on the current NUMUM value, the absolute rotational position can be quickly grasped without waiting for the history of the NNUM value to be accumulated.
  • the next U-phase sensor signal may not be specified from the current U-phase sensor signal.
  • the next NNUM value may be identified to identify the next U-phase sensor signal.
  • the energization control content to the U-phase coil CU is determined based on the next NNUM value specified based on the current NNUM value, so that the next U-phase sensor signal cannot be specified. It is possible to reduce the opportunity and determine the contents of energization control.
  • the rising or falling cycle of the crank position signal shown in FIG. 16 is the time during which the crankshaft 14 rotates by the rotation angle (30 °) occupied by one magnet 32S, 32N.
  • the update cycle of NNUM is a combination of the respective UVW phase signals
  • the crankshaft 14 is rotated by a rotation angle that is one third of the rotation angle (30 °). That is, it can be said that the NNUM update cycle is shorter than the cycle of the crank position signal of FIG. Therefore, according to this embodiment in which the fuel injection timing and the ignition timing are controlled based on the rising or falling timing (NNUM update timing) of each UVW phase signal, the control is performed based on the crank position signal shown in FIG. In comparison with this, the basic time used for control is one third (10 ° / 30 °), and the fuel injection timing and ignition timing can be controlled with high accuracy.
  • the V-phase signal also includes the internal combustion engine control signal ES in the same manner as the U-phase signal (see FIG. 7).
  • the NNUM value is “0”, it can be specified that the internal combustion engine control signal ES is output from the U-phase sensor SU.
  • the NNUM value is “0”, it is specified which of the U-phase sensor SU and the V-phase sensor SV is outputting the internal combustion engine control signal ES. Since this is not possible, there is a concern that the absolute rotational position cannot be calculated.
  • the internal rotational engine control signal ES is specified and the absolute rotational position is calculated.
  • the history information in the present embodiment is two consecutive NNUM values, but three or more consecutive NNUM values may be used as the history information.
  • the NNUM value is “0”, if the previous NUMUM value is “5”, it can be identified as the internal combustion engine control signal ES output from the U-phase sensor SU, and the previous NNUM value can be specified. If the value is “3”, the internal combustion engine control signal ES output from the V-phase sensor SV can be specified.
  • the ACG starter 20 is rotating in reverse, if the previous NNUM value is “3”, the U-phase sensor SU is output from the V-phase sensor SV if the NNUM value is “3”. It can be specified that there is. Then, the absolute rotational position is calculated based on these identification results and the appearance timing of the internal combustion engine control signal ES.
  • the absolute rotational position may be calculated by combining the determination of whether the sensor signal is high or low and the edge detection described above.
  • the edge detection timing of the internal combustion engine control signal ES (refer to the symbol tu in FIG. 7) and the edge detection timing of the W-phase signal (refer to the symbol tw in FIG. 7) are substantially the same, and When it is determined that both signals are switched to low, it can be specified that the signal is an internal combustion engine control signal ES output from the U-phase sensor SU.
  • the edge detection timing of the internal combustion engine control signal ES (see symbol tv in FIG. 7) is substantially the same as the edge detection timing of the U-phase signal (see symbol TC in FIG. 7), and When it is determined that both signals are switched to low, the internal combustion engine control signal ES output from the V-phase sensor SV can be specified.
  • energization control for the UVW phase coils CU to CW is performed by regarding that an arbitrary value (for example, “3”) out of “3” and “6” is the next NNUM value. If the NNUM value does not change because the ACG starter 20 does not start rotating even after the predetermined time has elapsed, the next NNUM value is regarded as another value “6” instead of the arbitrary value “3”. Then, energization control to the UVW phase coils CU to CW is performed.
  • the same effects as those of the first embodiment can be obtained, and the following effects can be obtained. That is, in the first embodiment, the internal combustion engine control signal ES appears once while the crankshaft 14 rotates once, whereas it appears twice according to the present embodiment. For this reason, the internal combustion engine control signal ES appears without waiting for the crankshaft 14 to make one rotation after the driving of the ACG starter 20 is started. Therefore, the absolute rotation is performed based on the internal combustion engine control signal ES. The time required to calculate the position can be shortened. Therefore, the drive start of the injector 10 and the ignition device 11 can be quickly performed. In addition, the driving torque generated by the engine can be generated early and the required motor driving torque can be reduced, so that the ACG starter 20 can be downsized.
  • the NNUM value “0” when the internal combustion engine control signal ES is detected due to the arrangement of the plurality of sensors on the rotation track 34a of the heteropolar magnetic portion 34 is It becomes impossible to specify whether the signal ES for controlling the internal combustion engine by the sensor is combined.
  • the identification is performed based on the history of the NNUM value. The identification can also be performed based on determination of whether the sensor signal is high or low and edge detection. Therefore, the absolute rotational position can be grasped.
  • the U-phase sensor SU and the V-phase sensor SV are arranged on the rotation trajectory 34a of the heteropolar magnetic part 34. Then, all the three UVW phase sensors SU to SW are arranged on the rotation track 34a. As a result, the internal combustion engine control signal ES is also included in the W-phase signal as in the U-phase signal and the V-phase signal (see FIG. 8).
  • the internal combustion engine control signal ES is output from any of the UVW phase sensors SU to SW. Is identified based on the history of the combination information NNUM. Further, in the same manner as in the second embodiment, the identification can be performed based on determination of whether the sensor signal is high or low and edge detection. Then, the absolute rotational position is calculated based on the identification result.
  • the NNUM value is “0”, if the previous NNUM value is “5”, it can be identified as the internal combustion engine control signal ES output from the U-phase sensor SU, and “3”. If so, the output from the V-phase sensor SV can be specified, and if “6”, the output from the W-phase sensor SW can be specified.
  • the ACG starter 20 is reversely rotated, if the previous NUMUM value was “3”, the U-phase sensor SU, if “6”, the V-phase sensor SV, and if “5”, the W-phase sensor SW.
  • the internal combustion engine control signal ES output from can be specified. Then, the absolute rotational position is calculated based on these identification results and the appearance timing of the internal combustion engine control signal ES.
  • the teeth windings face the NNUM value that changes from “5 ⁇ 0 ⁇ 3 ⁇ 0 ⁇ 6 ⁇ 0 ⁇ 5 ⁇ 1” by the internal combustion engine control signal ES.
  • the NNUM value has changed as “5 ⁇ 1 ⁇ 3 ⁇ 2 ⁇ 6 ⁇ 4 ⁇ 5 ⁇ 1”, and is transferred to the UVW phase coils CU to CW.
  • the energization control may be performed.
  • energization control to the UVW phase coils CU to CW is performed by regarding that an arbitrary value (for example, “3”) of “3”, “6”, and “5” is the next NNUM value. If the NNUM value does not change because the ACG starter 20 does not start rotating even after the predetermined time has elapsed, the next NNUM value is not the arbitrary value “3” but other values “6” and “5”. It will have been.
  • the energization control is performed assuming that an arbitrary value (for example, “6”) of “6” and “5” is the next NNUM value.
  • an arbitrary value for example, “6”
  • the next NNUM value is not the arbitrary value “6” but the remaining value “5”.
  • the UVW phase coils CU to CW are energized, the energization control is performed.
  • driving is performed based on the actual NNUM value.
  • the internal combustion engine control signal ES appears three times while the crankshaft 14 rotates once. Therefore, the time required from the start of driving of the ACG starter 20 to the appearance of the internal combustion engine control signal ES can be further shortened compared to the second embodiment. Therefore, the time required to calculate the absolute rotational position based on the internal combustion engine control signal ES can be shortened, and the drive start speedup of the injector 10 and the ignition device 11 can be accelerated.
  • the three UVW phase sensors SU to SW are sequentially arranged in the adjacent gaps 41 a among the gaps 41 a of the plurality of tooth portions 41.
  • the three UVW phase sensors SU to SW are arranged in a dispersed manner instead of being arranged in the adjacent gap 41a.
  • the angle between the U-phase sensor SU and the V-phase sensor SV and the angle between the V-phase sensor SV and the W-phase sensor SW are distributed so as to be 140 °.
  • the internal combustion engine control signal ES appears every time the crankshaft 14 rotates 20 °, whereas in the present embodiment shown in FIG. 10, every time the crankshaft 14 rotates 140 °.
  • An internal combustion engine control signal ES appears.
  • the internal combustion engine control signal ES is output from any of the UVW phase sensors SU to SW. Is identified based on the history of the combination information NNUM. Then, the absolute rotational position is calculated based on the identification result.
  • the energization control is performed in the same manner as the third embodiment, assuming that an arbitrary value (for example, “3”) of “3”, “6”, and “5” is the next NNUM value.
  • an arbitrary value for example, “6” among other values “6” and “5” is set.
  • next NNUM value is regarded as the remaining value “5” instead of the arbitrary value “6”, and the UVW phase coils CU to CW Conduct energization control to
  • the time interval at which the internal combustion engine control signal ES appears can be shortened. Therefore, the time required from the start of driving of the ACG starter 20 to the appearance of the internal combustion engine control signal ES can be further shortened compared to the third embodiment. Therefore, the time required to calculate the absolute rotational position based on the internal combustion engine control signal ES can be shortened, and the drive start speedup of the injector 10 and the ignition device 11 can be accelerated.
  • the “distributed arrangement” according to this embodiment is applied to calculate the absolute rotation position. You may make it aim at shortening of the time required to do.
  • a dedicated sensor for outputting the internal combustion engine control signal ES is abolished, whereas in this embodiment, as shown in FIG. While leaving the sensor SE, the U-phase sensor SU is arranged on the rotation track 34a of the heteropolar magnetic part 34. That is, the crank rotation position sensor SE and the U-phase sensor SU are located on the rotation track 34a of the heteropolar magnetic part 34. Therefore, as shown in FIG. 5, the internal combustion engine control signal ES is output from the U-phase sensor SU, and the internal combustion engine control signal shown in the uppermost stage in FIG. 16 is output from the crank rotation position sensor SE.
  • the combination rotational speed sensor SE is also combined to generate the combination information NNUM. Based on the NNUM value, the absolute rotational position is calculated and the UVW phase coil is generated. Conduct energization control to CU to CW.
  • the heteropolar magnetic portion 34 is formed over the entire rotation direction of the predetermined magnet 32S (A), so that the central portion divided into three as shown in FIG. Compared to the case where the different-polarity magnetic portion 34 is used, the work of magnetizing the different-polarity magnetic portion 34 on the predetermined magnet 32S (A) can be simplified.
  • the crank rotation position sensor SE and the U-phase sensor SU are arranged on the rotation path 34a of the heteropolar magnetic portion 34, the ACG starter 20 is compared with the case where only the crank rotation position sensor SE is arranged.
  • the time required from the start of driving until the internal combustion engine control signal ES appears can be shortened. Therefore, the time required to calculate the absolute rotational position based on the internal combustion engine control signal can be shortened, and the drive start speedup of the injector 10 and the ignition device 11 can be accelerated.
  • the rotation stop position of the crankshaft 14 when the engine is stopped is likely to be within a predetermined range during the compression stroke (for example, a range from about BTDC 150 ° to top dead center TDC). This is because the piston at low NE just before the stop is highly likely to stop due to the compression load when the piston is raised during the compression stroke. Therefore, it is generally possible to grasp the expected stop position by a test or the like.
  • the heteropolar magnetic portion 34 is a phase sensor (in the example of FIG. 5, the U-phase sensor SU, in the example of FIG. 7, the U-phase sensor SU or V-phase). If the sensor SV) is located at a position opposite to or slightly retarded from the opposite position, an internal combustion engine control signal is output during a rotational drive period in which the absolute rotational position cannot be determined. There is a high possibility that the motor cannot be controlled with proper energization control.
  • the motor cannot be controlled with the proper energization control content as described above. Can be reduced.
  • the phase sensor is arranged such that the heteropolar magnetic portion 34 is at a position opposed to the phase sensor or a position delayed by a predetermined amount from the position opposed to the phase sensor. If the heteropolar magnetic part 34 is arranged, the internal combustion engine control signal is output immediately after the engine rotation is started, so that the absolute rotational position based on the internal combustion engine control signal can be quickly calculated, There is also an advantage that the time required for grasping the absolute rotational position can be reduced.
  • FIGS. 12 and 13 are identical to this embodiment shown in FIGS. 12 and 13, the heteropolar magnetic part 34 shown in FIGS. 4 (a) and 4 (b) is replaced with a nonmagnetic part (gap 34k) and deformed. That is, the gap 34k is formed by cutting out a portion of the predetermined magnet 32S (A) that is magnetized by the heteropolar magnetic portion 34.
  • FIG. 13 is a perspective view showing the magnets 32N and 32S in a state of being disposed adjacent to the inner peripheral surface of the housing 31 (see FIG. 1). As shown in FIG. 13, the air gap 34 k has a shape penetrating in the rotation radial direction of the rotor 30.
  • the U-phase sensor SU is positioned on the rotation track 34a of the gap 34k, and the V-phase sensor SV and the W-phase sensor SW are at positions deviating from the rotation track 34a. Therefore, the UVW phase signal, the internal combustion engine control signal ES, and the combination information NNUM output from each sensor are the same as those in FIG.
  • two of the three sensors SU to SW may be arranged on the rotation track 34a.
  • the U-phase sensor SU and the V-phase sensor SV are arranged in this case.
  • the internal combustion engine control signal ES and the combination information NNUM are the same as those in FIG.
  • all three UVW phase sensors SU to SW may be arranged on the rotation track 34a.
  • the internal combustion engine control signal ES and the combination information NNUM are the same as those in FIG. .
  • the internal combustion engine control signal ES and the combination information NNUM are the same as those in FIG.
  • the internal combustion engine control signal ES and the combination information NNUM are the same as those in the above embodiments, and thus the same effects as those in the above embodiments are exhibited.
  • the heteropolar magnetic part 34 with a non-magnetic part (gap 34k), the effect of reducing the amount of magnetic short circuit described below is also exhibited.
  • FIG. 14A is a diagram showing the rotor 30 and the stator 40 according to the first embodiment, and a different magnet part 34 is formed on a predetermined magnet 32S (A).
  • FIG. 14B is a diagram showing the rotor 30 and the stator 40 according to the present embodiment, and a gap 34k is formed in a predetermined magnet 32S (A).
  • a magnetic flux J1 connected to the adjacent magnet 32N (B) (C) is generated from the tooth portion 41 facing the predetermined magnet 32S (A), and this magnetic flux J1 is used as a motor driving force. Or generate electric power.
  • the portion of the housing 31 that faces the S pole magnet 32S becomes the N pole
  • the portion that faces the N pole magnet 32N becomes the S pole.
  • FIG. 14A provided with the heteropolar magnetic part 34, apart from the magnetic flux J1, a magnetic flux J2 that is connected from the heteropolar magnetic part 34 to the magnet 32S (A) through the teeth part 41 is generated and magnetic short-circuited. Occurs.
  • FIG. 14B in which the heteropolar magnetic portion 34 is abolished, the magnetic flux J3 that is connected from the housing 31 to the magnet 32S (A) through the teeth portion 41 is generated to cause a magnetic short circuit.
  • This short circuit path is longer than the short circuit path of the magnetic flux J2. Therefore, the amount of magnetic short circuit is reduced, and the reduction in motor driving force and power generation due to the formation of the different pole portions 34 and 34k can be reduced.
  • a part of a predetermined magnet 32S (S pole magnet 32S in the example of FIG. 17) out of the plurality of magnets 32S, 32N is formed with a different polarity magnetic part 34 described below. That is, only the portion indicated by the oblique lines in FIG. 17 is magnetized to a polarity (N pole) different from that of the S pole magnet 32S.
  • the heteropolar magnetic portion 34 is formed at one end portion of the predetermined magnet 32S in the rotor rotation axis direction (vertical direction in FIG. 17) and exists in the entire rotation direction (horizontal direction in FIG. 17). It is formed as follows.
  • the V-phase sensor SV and the W-phase sensor SW are arranged at the same position in the rotor rotation axis direction (vertical direction in FIG. 17), whereas the U-phase sensor SU is the same as the V-phase sensor SV and the W-phase sensor SW. It arrange
  • each of the U-phase signal, V-phase signal, and W-phase signal switches between low and high every time the rotor 30 rotates 30 degrees (see FIG. 18). ). Therefore, each electrical angle 360 ° of the UVW phase corresponds to a rotation angle (mechanical angle) 60 ° of the crankshaft 14.
  • the U-phase signal is also switched to low when the heteropolar magnetic part 34 is detected.
  • the rotor 30 rotates 10 degrees the low and high are switched in any of the UVW phase sensors SU to SW.
  • the processing may be performed by regarding the low signal and the high signal as a signal set in advance (for example, a low signal).
  • the rotor 30 in which the N-pole magnet 32N and the S-pole magnet 32S are adjacent to each other may be adopted so that the member 32a does not exist.
  • a rotor in which a plurality of N-pole magnets 32N and S-pole magnets 32S are formed from one magnet piece by magnetizing one magnet piece to N-pole and S-pole may be adopted.
  • the rotor in this case may be configured using a plurality of (for example, four) magnet pieces, or may be configured using one magnet piece.
  • FIG. 18 is a time chart showing the crank angle, combination information NNUM, binary notation of UVW phase signal, UVW phase signal, ignition signal, injection signal, and engine stroke in order from the top.
  • the combination information NNUM is a virtual signal that represents a combination of the U-phase signal, the V-phase signal, and the W-phase signal that are output at the same time.
  • the combination information NNUM is calculated by combining the binary notation of the UVW phase signal. It is a decimal number.
  • a binary number is represented by a binary number of a U-phase signal
  • the first digit is a binary number of a U-phase signal
  • the second digit is a binary number of a V-phase signal
  • the third digit is a binary number of a W-phase signal.
  • the numerical value converted into a decimal number is the combination information NNUM.
  • This numerical value NNUM is calculated by the ECU 13. For example, as shown in the leftmost column, if the UVW phase signals are “1”, “0”, and “1”, NNUM is “5”.
  • Symbol ES in the figure indicates a portion that has become a low signal due to the detection of the heteropolar magnetic portion 34, and the signal of the portion corresponds to an “internal combustion engine control signal”.
  • the signal corresponds to a “motor control signal”.
  • the value of NNUM is repeatedly rotated in the order of 5 ⁇ 1 ⁇ 3 ⁇ 2 ⁇ 6 ⁇ 4.
  • the portion of the symbol ES becomes a high signal as shown by the dotted line in the figure.
  • the ECU 13 can calculate the absolute rotational position of the crankshaft 14 based on the crank angle at the time when the NNUM value “0” applied to the symbol tb is detected. If the absolute rotational position can be grasped, the rising or falling timing of each UVW phase signal (that is, the update timing of NNUM) and the positional relationship for one rotation of the 4-cycle engine can be specified.
  • the time point td when the NNUM value “1” appears for the second time can be identified as the time when the piston of the engine has reached the bottom dead center BDC.
  • the value of the intake pressure sensor 16 it is possible to determine whether the bottom dead center BDC timing is an exhaust stroke or a compression stroke (stroke determination).
  • the fuel injection timing and the ignition timing as the target timing based on the NNUM update timing with the absolute rotation position as a reference.
  • the NNUM value is “4” and the previous NNUM value is “4”, it can be specified that the signal is due to the engine control signal ES indicated by the symbol ta.
  • the previous NNUM value is “6”, it can be determined that the motor control signal is indicated by the symbol tf1.
  • the ACG starter 20 is rotating in reverse, it can be determined that the previous NNUM value is “0” and the engine control signal ES, and “5” is the motor control signal. Then, based on these identification results and the appearance timing of the engine control signal ES, the absolute rotational position is calculated.
  • the ECU 13 specifies the next NNUM value based on the current NNUM value (identifying means), and the energization control content to the U-phase coil CU, V-phase coil CV, and W-phase coil CW based on the specified next NNUM value. To decide. For example, if the current NNUM value is “3”, it can be specified that the next NNUM value is “2” based on the rotation. That is, it can be said that the tooth portion 41 around which the U-phase coil CU is wound is at a timing when the position changes from the facing position (high) of the S pole magnet 32S to the facing position (low) of the N pole magnet 32N. Therefore, it can be said that it is at the timing of switching the energization on / off state to the U-phase coil CU.
  • the energization of the U-phase coil CU is controlled by the ECU 13 based on whether or not the NNUM value “4” indicating the rise of the U-phase signal or the NNUM value “3” indicating the fall is detected.
  • energization to the V-phase coil CV and the W-phase coil CW is also controlled based on the NNUM value.
  • the energization control for the UVW phase coils CU to CW may be performed by “1” facing the motor driving coils CU, CV, CW.
  • the NNUM value “4” indicated by the symbol ta is regarded as “5”
  • the NNUM value “2” indicated by the symbol tc is regarded as “3”
  • the energization control to the UVW phase coils CU to CW is performed. To implement.
  • the ECU 13 detects whether or not the ACG starter 20 is reversed based on the history of the NNUM value. For example, if it is rotating forward, the NNUM value should change in the order of 5 ⁇ 1 ⁇ 3 ⁇ 2 ⁇ 6 ⁇ 4 as described above. On the other hand, if the rotation is reversed, the NNUM value should change in the order of 4 ⁇ 6 ⁇ 2 ⁇ 3 ⁇ 1 ⁇ 5.
  • step S10 of FIG. 6 based on the above-described rotation during normal rotation such as 5 (4) ⁇ 1 (0) ⁇ 3 (2) ⁇ 2 ⁇ 6 ⁇ 4, for example, the current NNUM value is “5”. If so, the next NNUM value is calculated to be “1”. If the current NNUM value is “0”, the next NNUM value is calculated to be “3”. If the previous NNUM value is “4” and the current NNUM value is “4”, the next NNUM value is calculated to be “1”. If the previous NNUM value is “0” and the current NNUM value is “2”, the next NNUM value is calculated to be “2”.
  • the U-phase sensor SU is arranged on the rotation orbit 34a of the heteropolar magnetic part 34, whereas in this embodiment, the U-phase The sensor SU and the V-phase sensor SV are arranged on the rotation track 34a.
  • the V-phase signal includes the internal combustion engine control signal ES in the same manner as the U-phase signal (see FIG. 19).
  • the internal combustion engine control signal ES is output from the U-phase sensor SU.
  • the internal combustion engine control signal ES is output from either the U-phase sensor SU or the V-phase sensor SV. Since it cannot be specified whether it is output, there is a concern that the absolute rotational position cannot be calculated.
  • the internal rotational engine control signal ES is specified and the absolute rotational position is calculated.
  • the history information in the present embodiment is two consecutive NNUM values, but three or more consecutive NNUM values may be used as the history information.
  • the internal combustion engine control signal ES output from the U-phase sensor SU can be specified.
  • the ACG starter 20 is rotating in reverse, if the previous NNUM value is “5 ⁇ 4 ⁇ 4”, it can be specified that the signal is an internal combustion engine control signal ES output from the V-phase sensor SV. Then, the absolute rotational position is calculated based on these identification results and the appearance timing of the internal combustion engine control signal ES.
  • energization control to the UVW phase coils CU to CW is performed by regarding that an arbitrary value (for example, “3”) of “3”, “2”, and “6” is the next NNUM value.
  • next NNUM value is not the arbitrary value “3” but another value “2” “6”. It will have been. Therefore, next, energization control is performed assuming that an arbitrary value (for example, “2”) of “2” and “6” is the next NNUM value.
  • the next NNUM value is not the arbitrary value “2” but the remaining value “6”. Assuming that the UVW phase coils CU to CW are energized, the energization control is performed. When the actual NNUM value becomes a value different from the expected value from “0”, driving is performed based on the actual NNUM value.
  • the rotor 30 may rotate slightly and the phase may be shifted.
  • the motor when it is actually at tg, it may be assumed that it is at tf, and as a result of energization control at “3”, it may rotate to a th phase.
  • the motor since the motor was not normally driven, it is considered that the motor is next at tg, and energization control is performed at “2”.
  • energization control is performed at “2”.
  • the motor since the motor was not normally driven, it is considered that the motor is next in th, and energization control is performed at “6”. Therefore, when a phase shift occurs in this way, even if energization control is performed for all candidates “3”, “2”, and “6”, the motor is not normally driven.
  • the same effects as in the eighth embodiment can be obtained, and the following effects can be obtained. That is, in the eighth embodiment, the internal combustion engine control signal ES appears once while the crankshaft 14 rotates once, whereas it appears twice according to the present embodiment. For this reason, the internal combustion engine control signal ES appears without waiting for the crankshaft 14 to make one rotation after the driving of the ACG starter 20 is started. Therefore, the absolute rotation is performed based on the internal combustion engine control signal ES. The time required to calculate the position can be shortened. Therefore, the drive start of the injector 10 and the ignition device 11 can be quickly performed. In addition, the driving torque generated by the engine can be generated early and the required motor driving torque can be reduced, so that the ACG starter 20 can be downsized.
  • the NNUM value “0” when the internal combustion engine control signal ES is detected due to the arrangement of the plurality of sensors on the rotation track 34a of the heteropolar magnetic portion 34 is It becomes impossible to specify whether the signal ES for controlling the internal combustion engine by the sensor is combined.
  • the identification is performed based on the history of the NNUM value, the absolute rotational position can be grasped.
  • next NNUM value candidates “3”, “2”, and “6” are tried in order for the energization control (motor drive control) in the rotation drive period for which the calculation of the absolute rotation position has not yet been completed. Since energization control is performed, motor drive control is possible even during the rotation drive period. Furthermore, even if energization control is performed for all candidates, if motor drive cannot be performed normally, the energization control is performed again in an order different from the previous order so that the motor can be driven reliably. Become.
  • the U-phase sensor SU and the V-phase sensor SV are arranged on the rotation trajectory 34a of the heteropolar magnetic part 34, whereas this embodiment Then, all the three UVW phase sensors SU to SW are arranged on the rotation track 34a.
  • the internal combustion engine control signal ES is also included in the W-phase signal as in the U-phase signal and the V-phase signal (see FIG. 20).
  • the value of NNUM is repeatedly rotated in the order of 5 ⁇ 1 ⁇ 3 ⁇ 2 ⁇ 6 ⁇ 4.
  • the NNUM value of the portion where the internal combustion engine control signal ES appears is 4 (5) ⁇ 0 (1) ⁇ 0 (3) ⁇ 0 (2) ⁇ 0 (6) ⁇ It changes in the order of 0 (4) ⁇ 1 (5) (the numerical value in parentheses indicates the NNUM value when ES does not appear, and is a signal number for driving the motor).
  • an arbitrary value (for example, “3”) among “3” to “5” is regarded as the next NNUM value and is sent to the UVW phase coils CU to CW.
  • Conduct energization control Then, until the motor is driven normally, the arbitrary values are changed in order (for example, 3 ⁇ 2 ⁇ 6 ⁇ 4 ⁇ 5) and tried.
  • an order different from the above order for example, 2 ⁇ 3 ⁇ 5 ⁇ 4 ⁇ 6). Execute energization control in this order).
  • the actual NNUM value becomes a value different from the expected value from “0”
  • the driving is performed again based on the actual NNUM value.
  • the internal combustion engine control signal ES appears three times while the crankshaft 14 rotates once. Therefore, the time required from the start of driving of the ACG starter 20 to the appearance of the internal combustion engine control signal ES can be further reduced as compared with the ninth embodiment. Therefore, the time required to calculate the absolute rotational position based on the internal combustion engine control signal ES can be shortened, and the drive start speedup of the injector 10 and the ignition device 11 can be accelerated.
  • the three UVW phase sensors SU to SW are sequentially arranged in the adjacent gaps 41a among the gaps 41a of the plurality of tooth portions 41.
  • the three UVW phase sensors SU to SW are arranged in a dispersed manner instead of being arranged in the adjacent gap 41a.
  • the angle between the U-phase sensor SU and the V-phase sensor SV and the angle between the V-phase sensor SV and the W-phase sensor SW are distributed so as to be 140 °.
  • the internal combustion engine control signal ES appears every time the crankshaft 14 rotates 20 °, whereas in the present embodiment shown in FIG. 21, every time the crankshaft 14 rotates 140 °.
  • An internal combustion engine control signal ES appears.
  • the value of NNUM is repeatedly rotated in the order of 5 ⁇ 1 ⁇ 3 ⁇ 2 ⁇ 6 ⁇ 4.
  • the NNUM value of the portion where the internal combustion engine control signal ES appears by the U-phase sensor SU changes in the order of 4 (5) ⁇ 0 (1) ⁇ 2 (3) as indicated by the symbols ta to tc (in parentheses). The numerical value in NNNUM value when ES does not appear).
  • the portion due to the V-phase sensor SV changes in the order of 1 (3) ⁇ 0 (2) ⁇ 4 (6) as indicated by the symbols tq to ts, and the portion due to the W-phase sensor SW is changed to the symbols tt to tv. As shown, it changes in the order of 2 (6) ⁇ 0 (4) ⁇ 1 (1).
  • the energization control is performed assuming that the next NNUM value is “3”, “6”, or “5”. Since it is not possible to specify whether it should be sufficient, as in the ninth embodiment, an arbitrary value of “3” to “5” is changed in order until the motor is driven normally. If the motor drive cannot be normally performed even though the energization control is performed for all candidates “3” to “5”, the energization control is performed again in an order different from the above order.
  • the NNUM value is “2” at the time of stoppage, it is not possible to specify whether the next NNUM value should be controlled by “6”, “2”, or “4”. And try again in a different order.
  • the NNUM value is “4” at the time of stoppage, it cannot be specified whether the next NNUM value should be energized by “5”, “1”, or “4”. And try in a different order.
  • the time interval at which the internal combustion engine control signal ES appears can be shortened. Therefore, the time required from the start of driving of the ACG starter 20 to the appearance of the internal combustion engine control signal ES can be further shortened compared to the tenth embodiment. Therefore, the time required to calculate the absolute rotational position based on the internal combustion engine control signal ES can be shortened, and the drive start speedup of the injector 10 and the ignition device 11 can be accelerated.
  • the “distributed arrangement” according to this embodiment is applied to calculate the absolute rotation position. You may make it aim at shortening of the time required to do.
  • the stator 40 includes the U-phase coil CU, the V-phase coil CV, the W-phase coil CW coil, the UVW-phase sensors SU to SW, and the crank rotation position sensor SE that are wound around these coils. And an iron core 42 formed with a tooth portion 41 to be rotated.
  • a plurality of teeth portions 41 are arranged side by side in the rotation direction, and a U-phase coil CU, a V-phase coil CV, and a W-phase coil CW coil are wound around each tooth portion 41 in order.
  • 18 teeth portions 41 are arranged.
  • the UVW phase sensors SU to SW and the crank rotation position sensor SE are mounted on the outer peripheral surface of the stator 40, and are at positions facing the N-pole magnet 32N and the S-pole magnet 32S. Thereby, a change in magnetism due to the N-pole magnet 32N and the S-pole magnet 32S generated as the rotor 30 rotates is detected.
  • Hall ICs are employed for the UVW phase sensors SU to SW and the crank rotation position sensor SE. Therefore, even when the rotor 30 is not rotating, a detection signal corresponding to the polarity of the opposing magnet can be output.
  • the UVW phase sensors SU to SW and the crank rotation position sensor SE are mounted at different positions in the rotor rotation direction. Specifically, each of the gaps 41a of the plurality of tooth portions 41 is disposed in a different gap 41a.
  • the crank rotation position sensors SE and U are arranged in adjacent gaps among the plurality of gaps 41a.
  • the phase sensor SU, the V phase sensor SV, and the W phase sensor SW are arranged in order. Therefore, each of the UVW phase sensors SU to SW and the crank rotation position sensor SE are shifted by a mechanical angle of 20 degrees.
  • a heteropolar magnetic portion 34 described below is formed in a part of a predetermined magnet (S pole magnet 32S in the example of FIG. 24) among the plurality of magnets 32S and 32N. That is, only the portion indicated by the oblique lines in FIG. 24 is magnetized to a polarity (N pole) different from that of the S pole magnet 32S.
  • the heteropolar magnetic portion 34 is formed at one end portion of the predetermined magnet 32S in the rotor rotation axis direction (vertical direction in FIG. 24) and exists throughout the rotation direction (horizontal direction in FIG. 24). It is formed as follows.
  • crank rotation position sensor SE and the U-phase sensor SU are arranged on the rotation track 34a of the heteropolar magnetic part 34.
  • the V-phase sensor SV and the W-phase sensor SW are set at positions deviating from the rotation track 34a.
  • a low signal (binary number “0”) is output when the UVW phase sensors SU to SW and the crank rotation position sensor SE detect the N pole, and a high signal (binary number “1”) when the S pole is detected. )) Is output. Since there are 12 magnets 32S and 32N (12 poles), the crank angle signal, the U phase signal, the V phase signal, and the W phase signal are switched between low and high every time the rotor 30 rotates 30 degrees. (See FIG. 25). Therefore, each electrical angle 360 ° of the UVW phase corresponds to a rotation angle (mechanical angle) 60 ° of the crankshaft 14. However, the crank angle signal and the U-phase signal are also switched to low when the heteropolar magnetic portion 34 is detected. Further, every time the rotor 30 rotates 10 degrees, either the UVW phase sensors SU to SW or the crank rotation position sensor SE is switched between low and high.
  • a non-polar member 32a when a non-polar member 32a is interposed between the N-pole magnet 32N and the S-pole magnet 32S, this member 32a is connected to the UVW phase sensors SU to SW and the crank rotation position sensor SE.
  • processing may be performed by regarding the low signal and the high signal as a preset signal (for example, a low signal).
  • the rotor 30 in which the N-pole magnet 32N and the S-pole magnet 32S are adjacent to each other may be adopted so that the member 32a does not exist.
  • a rotor in which a plurality of N-pole magnets 32N and S-pole magnets 32S are formed from one magnet piece by magnetizing one magnet piece to N-pole and S-pole may be adopted.
  • the rotor in this case may be configured using a plurality of (for example, four) magnet pieces, or may be configured using one magnet piece.
  • FIG. 25 shows, in order from the top, the crank angle, combination information NNUM, the binary notation of the crank angle signal and the UVW phase signal, the crank angle signal by the crank rotational position sensor SE, the UVW phase signal, the ignition signal, the injection signal, and the engine stroke.
  • the combination information NNUM is a virtual signal that represents a combination of a crank angle signal, a U-phase signal, a V-phase signal, and a W-phase signal that is output at the same time. Decimal numbers calculated by combining binary numbers.
  • the first digit in binary notation is the binary number of the crank angle signal
  • the second digit in binary notation is the binary number of the U-phase signal
  • the third digit is the binary number of the V-phase signal
  • the fourth digit is A numerical value obtained by converting a 4-digit binary number represented by a binary number of a W-phase signal into a decimal number is combination information NNUM.
  • This numerical value NNUM is calculated by the ECU 13. For example, as shown in the leftmost column, if the crank angle signal and the UVW phase signal are “1”, “1”, “0”, and “1”, NNUM is “11”.
  • Symbol ES in the figure indicates a portion that has become a low signal due to detection of the heteropolar magnetic portion 34, and the signal of the portion corresponds to an “internal combustion engine control signal”. Signals other than ES correspond to “motor control signals”. Except for the portion where the internal combustion engine control signal ES appears, the value of NNUM is repeatedly rotated in the order of 11 ⁇ 2 ⁇ 6 ⁇ 4 ⁇ 13 ⁇ 9. Incidentally, in contrast to the present embodiment, if the different polar magnetic portion 34 is not formed, the portion of the symbol ES becomes a high signal as shown by the dotted line in the figure.
  • the NNUM value during the period in which the internal combustion engine control signal ES is detected changes from “12” to “8” to “10”. Otherwise, the NNUM value will never be “8”.
  • the NNUM value during the period of detecting the internal combustion engine control signal ES changes from “5” ⁇ “1” ⁇ “3”. Except at the time of detection, the NNUM value never becomes “1”.
  • “12”, “10” and the like relating to the symbols a and c appear only when ES is detected.
  • the ECU 13 performs absolute rotation of the crankshaft 14 with reference to the crank angle at the time when the NNUM value “8” applied to the symbol b and “1”, “12”, “10”, etc. applied to the symbols k, a, and c are detected.
  • the position can be calculated. If the absolute rotational position can be grasped, it is possible to specify the positional relationship between the rising or falling timing of each sensor output signal (that is, the update timing of NNUM) and one rotation of the 4-cycle engine. In short, the absolute rotational position is calculated based on the current NNUM value.
  • the time point g when the NNUM value “2” appears for the second time can be identified as the time when the piston of the engine has reached the bottom dead center BDC.
  • the value of the intake pressure sensor 16 it is possible to determine whether the bottom dead center BDC timing is an exhaust stroke or a compression stroke (stroke determination).
  • the fuel injection timing and the ignition timing as the target timing based on the NNUM update timing with the absolute rotation position as a reference.
  • the NNUM value is “0” and the previous NNUM value is “9”, it can be specified that the signal is due to the engine control signal ES indicated by the symbol e.
  • the previous NNUM value is “2”
  • the engine control signal ES is indicated by the symbol h.
  • the ACG starter 20 it can be specified that the signal ES is applied to the symbol e if the previous NNUM value is “4”, and the signal ES is applied to the symbol h if the value is “6”. Then, based on these identification results and the appearance timing of the engine control signal ES, the absolute rotational position is calculated. In short, the absolute rotational position is calculated based on the history of the NNUM value.
  • the ECU 13 specifies the next NNUM value based on the current NNUM value (identifying means), and the energization control content to the U-phase coil CU, V-phase coil CV, and W-phase coil CW based on the specified next NNUM value. To decide. For example, if the current NNUM value is “6”, it can be specified that the next NNUM value is “4” based on the rotation. That is, it can be said that the tooth portion 41 around which the U-phase coil CU is wound is at a timing when the position changes from the facing position (high) of the S pole magnet 32S to the facing position (low) of the N pole magnet 32N. Therefore, it can be said that it is at the timing of switching the energization on / off state to the U-phase coil CU.
  • the energization of the U-phase coil CU is controlled by the ECU 13 based on whether or not the NNUM value “9” indicating the rising edge of the U-phase signal or the NNUM value “6” indicating the falling edge is detected.
  • energization to the V-phase coil CV and the W-phase coil CW is also controlled based on the NNUM value.
  • the NNUM values “12”, “8”, and “10” applied to the symbols a, b, and c are regarded as “13”, “9”, and “11”, and the energization control to the UVW phase coils CU to CW is performed.
  • the coils CU, CV, and CW of the teeth portion 41 have the same magnetic pole phase, and the motor can be driven to rotate.
  • the NNUM values “9”, “0”, and “4” for the codes d, e, and f are regarded as “11”, “2”, and “6”, and the NNUM values “2” and “2” for the codes g, h, and i are considered.
  • the energization control of the UVW phase coils CU to CW is performed on the assumption that an arbitrary value (for example, “4”) of “4” and “9” is the next NNUM value. If the NNUM value does not change because the ACG starter 20 does not start rotating even after the predetermined time has elapsed, the next NNUM value is regarded as another value “9” instead of the arbitrary value “4”. Then, energization control to the UVW phase coils CU to CW is performed. When the actual NNUM value becomes a value different from the expected value from “0”, driving is performed based on the actual NNUM value.
  • the ECU 13 detects whether or not the ACG starter 20 is reversed based on the history of the NNUM value. For example, if it is rotating forward, the NNUM value should change in the order of 11 ⁇ 2 ⁇ 6 ⁇ 4 ⁇ 13 ⁇ 9 as described above. On the other hand, if the rotation is reversed, the NNUM value should change in the order of 9 ⁇ 13 ⁇ 4 ⁇ 6 ⁇ 2 ⁇ 11.
  • FIG. 6 is a flowchart showing a procedure of processing in which the microcomputer 13a (see FIG. 22) provided in the ECU 13 performs energization control on the UVW phase coils CU to CW as described above.
  • This process is repeatedly executed at a predetermined cycle (for example, a calculation cycle performed by the CPU of the microcomputer 13a described above or every predetermined crank angle).
  • the rotation may be performed at the predetermined period when the rotation is stopped, while the rotation may be performed every time edge detection described below is performed.
  • the microcomputer 13a shown in FIG. 22 has a capture function for capturing the timing at which the signal changes (the UVW phase signal shown in FIG. 25) output from the sensors SU to SW and subjected to input processing. ing. In short, the rising and falling timing (edge detection timing) of the UVW phase signal is detected. Then, the processing of FIG. 6 is executed every time this edge detection is performed.
  • step S10 in the present embodiment, each of the crank angle signal, the U phase signal, the V phase signal, and the W phase signal is acquired from the UVW phase sensors SU to SW.
  • step S20 combination information generating means
  • combination information NNUM representing a combination of these signals is calculated based on the crank angle signal and the UVW phase signal.
  • step S30 the next NNUM value is calculated based on the NNUM value.
  • the next NNUM value is calculated to be “2”. If the current NNUM value is a value that can be specified by the current NNUM value, that is, “8”, “1”, “12”, and “10” for the above-described codes b, k, a, and c, the next NNUM value Are calculated to be “11”, “11”, “9”, and “2”, respectively.
  • step S40 energization control for the UVW phase coils CU to CW is performed based on the next NNUM value calculated in step S30.
  • the ACG starter 20 is driven by a motor in a predetermined rotation direction.
  • the energization control to the U-phase coil CU will be described.
  • the next NNUM value is “11” or “4”
  • the value of the U-phase signal that constitutes the next NNUM value constitutes the current NNUM value. It means changing from the value of the U-phase signal. Therefore, when the next NNUM value is specified to be “11” or “4”, the energization control content to the U-phase coil CU is switched from on to off, or from off to on.
  • the energization control for the V-phase coil CV and the W-phase coil CW is performed in the same manner, when the next NNUM value is specified as “9” or “2”, the energization control content for the V-phase coil CV is switched. When the NNUM value is specified as “13” or “2”, the energization control content to the W-phase coil CW is switched.
  • step S50 it is determined whether or not the NUMUM value “8” appears and the absolute rotational position of the crankshaft 14 has been detected. If it has been detected (S50: YES), the process proceeds to the next step S60, and the injector 10 is set so that the fuel injection timing and the ignition timing become the target timing based on the detected absolute rotational position and UVW phase signal (or NNUM value). And the operation of the ignition device 11 is controlled. However, if the absolute rotational position is not detected (S50: NO), the system waits without operating the injector 10 and the ignition device 11.
  • driving of the ignition device 11 is started at time ts1, and ignition is performed at time ts2. Further, the fuel injection by the injector 10 is started at the time tf1, and the injection is ended at the time tf2. Then, with reference to the crank angle (absolute rotational position) when the internal combustion engine control signal ES appears, the internal combustion engine control signal ES appears in the intake stroke, and then the fifth rise timing of the U-phase signal (or 5 The ignition control is performed with the NN1 value “11” appearance timing) as the ts1 time point and the sixth falling timing of the W-phase signal (or the sixth NNUM value “2” appearance timing) as the ts2 time point.
  • the third falling timing of the V-phase signal (or the third NNUM value “9” appearance timing) is set to the time tf1, and the fifth V-phase signal is output.
  • the fuel injection control is performed with the rise timing (or the fifth NNUM value “6” appearance timing) of t5 as the time point tf2.
  • the ignition device 11 and the injector 10 are driven also in ts1 ′ to ts2 ′ and tf1 ′ to tf2 ′.
  • the various ignition control timings ts1 and ts2 and the injection control timings tf1 and tf2 coincide with the rising or falling timing of the UVW phase signal.
  • the ignition control or the injection control may be performed when a predetermined time has elapsed from the rising or falling timing of the UVW phase signal immediately before.
  • the internal combustion engine control signal ES appears once while the crankshaft 14 makes one revolution, whereas it appears four times according to the present embodiment. For this reason, the internal combustion engine control signal ES appears without waiting for the crankshaft 14 to make one rotation after the driving of the ACG starter 20 is started. Therefore, the absolute rotation is performed based on the internal combustion engine control signal ES. The time required to calculate the position can be shortened. Therefore, the drive start of the injector 10 and the ignition device 11 can be quickly performed. As a result, the required motor driving torque can be reduced, and the ACG starter 20 can be downsized.
  • the NNUM value “0” when the internal combustion engine control signal ES is detected due to the arrangement of a plurality of sensors on the rotation path 34a of the heteropolar magnetic portion 34 is It becomes impossible to specify whether or not the signal ES for internal combustion engine control by these sensors is combined.
  • the identification is performed based on the history of the NNUM value. Therefore, the absolute rotational position can be grasped.
  • the high and low UVW phase signals alone cannot distinguish the low signal from the internal combustion engine control signal ES and the low signal from the motor control signal.
  • the combination information NNUM of each signal is calculated. Based on the NNUM value, even if the ACG starter 20 is stopped, if the NNUM value is “1”, the W It can be specified that the low phase signal is due to the internal combustion engine control signal ES. Therefore, the absolute rotational position required for engine control can be quickly grasped.
  • the next UVW phase sensor signal may not be identified from the current UVW phase sensor signal.
  • the next UVNUM phase sensor signal may be specified by specifying the next NNUM value.
  • the energization control content to the UVW phase coils CU to CW is determined based on the next NNUM value specified based on the current NNUM value, so that the next UVW phase sensor signal is specified.
  • the energization control content can be determined by reducing the chances of being impossible.
  • the rotor 30 and the crankshaft 14 of the ACG starter 20 are fixed so as to rotate integrally with the center of rotation coinciding with each other. Between the rotor 30 and the crankshaft 14, a belt, a gear, or the like The power transmission mechanism is not interposed. Therefore, when the crank angle signal is output from the crank rotation position sensor SE provided in the ACG starter 20, there is a shift between the rotation phase of the crankshaft 14 and the rotation phase of the rotor 30 due to gear backlash, belt extension, or the like. Since this can be avoided, sufficient calculation accuracy can be ensured in calculating the absolute rotational position of the crankshaft 14.
  • the NNUM value “8” when the internal combustion engine control signal ES is detected is configured not to appear except when ES is detected. Therefore, since the absolute rotational position can be calculated based on the current NUMUM value, the absolute rotational position can be quickly grasped without waiting for the history of the NNUM value to be accumulated.
  • the rising or falling cycle of the crank angle signal is the time for the crankshaft 14 to rotate by the rotation angle (30 °) occupied by one magnet 32S, 32N.
  • the update period of NNUM is a combination of sensor signals
  • the crankshaft 14 is rotated by a rotation angle that is one third of the rotation angle (30 °). That is, it can be said that the update period of NNUM is shorter than the cycle of the crank angle signal in FIG. Therefore, according to this embodiment in which the fuel injection timing and the ignition timing are controlled based on the rising or falling timing (NNUM update timing) of each UVW phase signal, the control is performed based on the crank angle signal shown in FIG. In comparison with this, the basic time used for control is one third (10 ° / 30 °), and the fuel injection timing and ignition timing can be controlled with high accuracy.
  • crank rotation position sensor SE and the UVW phase sensors SU to SW are prohibited from being arranged in the adjacent gap 41a, and are arranged in a distributed manner.
  • the angle between the crank rotation position sensor SE and the U-phase sensor SU, the angle between the U-phase sensor SU and the V-phase sensor SV, and the interval between the V-phase sensor SV and the W-phase sensor SW. are arranged so as to have an angle of 80 °. Therefore, as compared with the case where the four sensors SU to SW, SE are sequentially arranged in the adjacent gaps 41a among the gaps 41a of the plurality of tooth portions 41, the maximum value of the time interval at which the internal combustion engine control signal ES appears is larger.
  • a portion of a predetermined magnet 32S (A) (S pole magnet in the example of FIG. 27 (a)) of the plurality of magnets 32S and 32N has a different polar magnetism described below.
  • a portion 34 is formed. That is, only the portion indicated by the oblique lines in FIG. 27A is magnetized with a polarity (N pole) different from that of the S pole magnet 32S.
  • This heteropolar magnetic portion 34 is formed at one end of the predetermined magnet 32S (A) in the rotor rotation axis direction (vertical direction in FIG. 27A) and at the left and right in the rotation direction (FIG. 27A).
  • the polarity of the predetermined magnet 32S (A) is formed on both sides of the heteropolar magnetic portion 34 in the direction).
  • the upper end portion of the predetermined magnet 32S (A) is divided into three in the rotational direction, and the central portion is formed as the heteropolar magnetic portion 34.
  • the U-phase sensor SU, the V-phase sensor SV, and the W-phase sensor SW are arranged at the same position in the rotor rotation axis direction (vertical direction in FIG. 27A), whereas the crank rotation position sensor SE is the UVW phase.
  • the sensors SU to SW are arranged at different positions in the rotation axis direction.
  • the crank rotation position sensor SE is positioned on the rotation track 34a of the heteropolar magnetic section 34, and the UVW phase sensors SU to SW are positioned away from the rotation track 34a.
  • a low signal (binary number “0”) is output when the UVW phase sensors SU to SW and the crank rotation position sensor SE detect the N pole, and a high signal (binary number “1”) when the S pole is detected. )) Is output. Since there are 12 magnets 32S and 32N (12 poles), the crank angle signal, the U phase signal, the V phase signal, and the W phase signal are switched between low and high every time the rotor 30 rotates 30 degrees. (See FIG. 28). Therefore, each electrical angle 360 ° of the UVW phase corresponds to a rotation angle (mechanical angle) 60 ° of the crankshaft 14. However, the crank angle signal is also switched to low when the heteropolar magnetic portion 34 is detected. Further, every time the rotor 30 rotates 10 degrees, either the UVW phase sensors SU to SW or the crank rotation position sensor SE is switched between low and high.
  • this member 32a when a member 32a having no polarity is interposed between the N-pole magnet 32N and the S-pole magnet 32S, this member 32a is used for the UVW phase sensors SU to SW and the crank rotation position.
  • processing may be performed assuming that the signal is a preset signal (for example, a low signal) out of the low signal and the high signal.
  • the rotor 30 in which the N-pole magnet 32N and the S-pole magnet 32S are adjacent to each other may be adopted so that the member 32a does not exist.
  • a rotor in which a plurality of N-pole magnets 32N and S-pole magnets 32S are formed from one magnet piece by magnetizing one magnet piece to N-pole and S-pole may be adopted.
  • the rotor in this case may be configured using a plurality of (for example, four) magnet pieces, or may be configured using one magnet piece.
  • FIG. 28 shows, in order from the top, the crank angle, combination information NNUM, the binary notation of the crank angle signal and the UVW phase signal, the crank angle signal by the crank rotational position sensor SE, the UVW phase signal, the ignition signal, the injection signal, and the engine stroke.
  • the combination information NNUM is a virtual signal that represents a combination of a crank angle signal, a U-phase signal, a V-phase signal, and a W-phase signal that is output at the same time. Decimal numbers calculated by combining binary numbers.
  • the first digit in binary notation is the binary number of the crank angle signal
  • the second digit in binary notation is the binary number of the U-phase signal
  • the third digit is the binary number of the V-phase signal
  • the fourth digit is A numerical value obtained by converting a 4-digit binary number represented by a binary number of a W-phase signal into a decimal number is combination information NNUM.
  • This numerical value NNUM is calculated by the ECU 13. For example, as shown in the leftmost column, if the crank angle signal and the UVW phase signal are “1”, “1”, “0”, and “1”, NNUM is “11”.
  • the symbol ES in the figure indicates a portion that has become a low signal due to the detection of the heteropolar magnetic portion 34.
  • the signal in this portion corresponds to an “internal combustion engine control signal”, and the UVW phase signal is “motor”. It corresponds to a “control signal”. Except for the portion where the internal combustion engine control signal ES appears, the value of NNUM is repeatedly rotated in the order of 11 ⁇ 2 ⁇ 6 ⁇ 4 ⁇ 13 ⁇ 9.
  • the ECU 13 can calculate the absolute rotational position of the crankshaft 14 based on the crank angle at the time when the NNUM value “8” is detected. If the absolute rotational position can be grasped, it is possible to specify the positional relationship between the rising or falling timing of each sensor output signal (that is, the update timing of NNUM) and one rotation of the 4-cycle engine.
  • the time tb when the NNUM value “2” appears for the third time can be identified as the time when the piston of the engine has reached the bottom dead center BDC.
  • the value of the intake pressure sensor 16 it is possible to determine whether the bottom dead center BDC timing is an exhaust stroke or a compression stroke (stroke determination).
  • the fuel injection timing and the ignition timing as the target timing based on the NNUM update timing with the absolute rotation position as a reference.
  • the ECU 13 specifies the next NNUM value based on the current NNUM value (identifying means), and the energization control content to the U-phase coil CU, V-phase coil CV, and W-phase coil CW based on the specified next NNUM value. To decide. For example, if the current NNUM value is “6”, it can be specified that the next NNUM value is “4” based on the rotation. That is, it can be said that the tooth portion 41 around which the U-phase coil CU is wound is at a timing when the position changes from the facing position (high) of the S pole magnet 32S to the facing position (low) of the N pole magnet 32N. Therefore, it can be said that it is at the timing of switching the energization on / off state to the U-phase coil CU.
  • the energization of the U-phase coil CU is controlled by the ECU 13 based on whether or not the NNUM value “9” indicating the rising edge of the U-phase signal or the NNUM value “6” indicating the falling edge is detected.
  • energization to the V-phase coil CV and the W-phase coil CW is also controlled based on the NNUM value.
  • the NNUM value “8” if the energization control for the UVW phase coils CU to CW is performed with “9” facing the motor driving coils CU, CV, CW, the coils CU, The CV and CW and the magnetic pole phase match, and the motor can be driven to rotate.
  • the ECU 13 detects whether or not the ACG starter 20 is reversed based on the history of the NNUM value. For example, if it is rotating forward, the NNUM value should change in the order of 11 ⁇ 2 ⁇ 6 ⁇ 4 ⁇ 13 ⁇ 9 as described above. On the other hand, if the rotation is reversed, the NNUM value should change in the order of 9 ⁇ 13 ⁇ 4 ⁇ 6 ⁇ 2 ⁇ 11.
  • FIG. 6 is a flowchart showing a procedure of processing in which the microcomputer 13a (see FIG. 22) provided in the ECU 13 performs energization control on the UVW phase coils CU to CW as described above.
  • This process is repeatedly executed at a predetermined cycle (for example, a calculation cycle performed by the CPU of the microcomputer 13a described above or every predetermined crank angle).
  • the rotation may be performed at the predetermined period when the rotation is stopped, while the rotation may be performed every time edge detection described below is performed.
  • the microcomputer 13a shown in FIG. 22 has a capture function that captures the timing at which the signals (UVW phase signals shown in FIG. 28) output from the sensors SU to SW and subjected to input processing change. ing. In short, the rising and falling timing (edge detection timing) of the UVW phase signal is detected. Then, the processing of FIG. 6 is executed every time this edge detection is performed.
  • each of the crank angle signal, the U phase signal, the V phase signal, and the W phase signal is acquired from the UVW phase sensors SU to SW.
  • combination information NNUM representing a combination of these signals is calculated based on the crank angle signal and the UVW phase signal.
  • the next NNUM value is calculated based on the NNUM value. Specifically, based on the rotation at forward rotation such as 11 ⁇ 2 ⁇ 6 ⁇ 4 ⁇ 13 ⁇ 9 (8), for example, if the current NNUM value is “11”, the next NNUM value is “2”. calculate. If the current NNUM value is “8”, the next NNUM value is calculated to be “9”.
  • step S40 energization control for the UVW phase coils CU to CW is performed based on the next NNUM value calculated in step S30.
  • the ACG starter 20 is driven by a motor in a predetermined rotation direction.
  • the energization control to the U-phase coil CU will be described.
  • the next NNUM value is “11” or “4”
  • the value of the U-phase signal that constitutes the next NNUM value constitutes the current NNUM value. It means changing from the value of the U-phase signal. Therefore, when the next NNUM value is specified to be “11” or “4”, the energization control content to the U-phase coil CU is switched from on to off, or from off to on.
  • the energization control for the V-phase coil CV and the W-phase coil CW is performed in the same manner, when the next NNUM value is specified as “9” or “2”, the energization control content for the V-phase coil CV is switched. When the NNUM value is specified as “13” or “2”, the energization control content to the W-phase coil CW is switched.
  • step S50 it is determined whether or not the NUMUM value “8” appears and the absolute rotational position of the crankshaft 14 has been detected. If it has been detected (S50: YES), the process proceeds to the next step S60, and the injector 10 is set so that the fuel injection timing and the ignition timing become the target timing based on the detected absolute rotational position and UVW phase signal (or NNUM value). And the operation of the ignition device 11 is controlled. However, if the absolute rotational position is not detected (S50: NO), the system waits without operating the injector 10 and the ignition device 11.
  • driving of the ignition device 11 is started at time ts1, and ignition is performed at time ts2. Further, the fuel injection by the injector 10 is started at the time tf1, and the injection is ended at the time tf2. Then, with reference to the crank angle (absolute rotational position) when the internal combustion engine control signal ES appears, the internal combustion engine control signal ES appears in the intake stroke, and then the fifth rise timing of the U-phase signal (or 5 The ignition control is performed with the NN1 value “11” appearance timing) as the ts1 time point and the sixth falling timing of the W-phase signal (or the sixth NNUM value “2” appearance timing) as the ts2 time point.
  • the third falling timing of the V-phase signal (or the third NNUM value “9” appearance timing) is set to the time tf1, and the fifth V-phase signal is output.
  • the fuel injection control is performed with the rise timing (or the fifth NNUM value “6” appearance timing) of t5 as the time point tf2.
  • the ignition device 11 and the injector 10 are driven also in ts1 ′ to ts2 ′ and tf1 ′ to tf2 ′.
  • the various ignition control timings ts1 and ts2 and the injection control timings tf1 and tf2 coincide with the rising or falling timing of the UVW phase signal.
  • the ignition control or the injection control may be performed when a predetermined time has elapsed from the rising or falling timing of the UVW phase signal immediately before.
  • the rising or falling cycle of the conventional crank angle signal is the time during which the crankshaft 14 rotates by the rotation angle (30 °) occupied by one magnet 32S, 32N.
  • the update period of NNUM is a combination of sensor signals, the crankshaft 14 is rotated by a rotation angle that is one third of the rotation angle (30 °). That is, it can be said that the NNUM update cycle is shorter than the cycle of the conventional crank angle signal. Therefore, according to the present embodiment in which the fuel injection timing and the ignition timing are controlled based on the rising or falling timing (NNUM update timing) of each UVW phase signal, compared with the case of controlling based on the conventional crank angle signal.
  • the basic time used for the control is one third (10 ° / 30 °), and the fuel injection timing and the ignition timing can be controlled with high accuracy.
  • a vehicle having a torque transmission mechanism such as a centrifugal clutch is targeted.
  • the clutch is operated by a driver's clutch operation. Is permitted to start driving the motor of the ACG starter 20 under the condition that the power transmission to the driving wheel is cut off and the neutral gear state is detected. You may make it do.
  • the outer rotor type ACG starter 20 in which the rotor 30 is positioned on the outer peripheral side of the stator 40 is employed, but the inner rotor type ACG starter in which the rotor 30 is positioned on the inner peripheral side of the stator 40. 20 may be adopted.
  • the 12-30 pole ACG starter 20 having 12 poles for the rotor 30 and 18 poles for the stator 40 is targeted, but other pole numbers such as 8-12 poles, 16-24 poles, etc.
  • the ACG starter 20 may be the target.
  • the upper end portion of the predetermined magnet 32S (A) is divided into three in the rotation direction, and the central portion is formed as the heteropolar magnetic portion 34. As shown in FIG.
  • the upper end portion of the predetermined magnet 32S (A) may be divided into two in the rotational direction, and one of them may be formed as the heteropolar magnetic portion 34.
  • it can be configured so that the rise or fall timing of other motor control signals such as V phase and W phase coincide with the rise or fall timing of the internal combustion engine control signal ES. It can be avoided that the combination information NNUM is complicated.
  • the N pole heteropolar magnetic portion 34 is formed in the S pole magnet 32S, and the internal combustion engine control signal ES is set to the low side.
  • the S pole different magnetic part 34 may be formed in the N pole magnet 32N, and the internal combustion engine control signal ES may be set to the high side.
  • the N-pole magnet 32N may be used for high-side output instead of low-side output.
  • three UVW phase sensors SU to SW are provided for the three UVW phase coils CU to CW.
  • any one or two of the three UVW phase sensors SU to SW may be eliminated.
  • the motor control signal of the coil corresponding to the abandoned sensor may be generated by estimating from the motor control signal of another coil.
  • the on-time or off-time of the V-phase signal is measured, and when the measured time elapses from the edge of the V-phase signal or by the V-phase sensor SV What is necessary is just to carry out energization control of the W-phase coil CW by regarding the time when a predetermined time has elapsed from the rise of the motor control signal as the motor control signal applied to the W-phase coil CW.
  • the rotor 30 is directly connected to the crankshaft 14, but the rotor 30 may be connected to the crankshaft 14 through a power transmission mechanism such as a belt or a gear.
  • a deviation occurs between the rotational phase of the crankshaft 14 and the rotational phase of the rotor 30 due to gear backlash, belt elongation, and the like, so the accuracy of calculating the absolute rotational position of the crankshaft 14 is lowered.
  • the ACG starter 20 (motor generator) is employed as the rotating machine according to the present disclosure, but a starter motor that does not have a power generation function may be employed, or a motor function may be provided. A generator that has not been used may be employed. Note that when a generator having no motor function is employed, the signals output from the sensors SU to SW are not used as motor control signals, and therefore, the sensors SU to SW are not located on the rotation track 34a. It is unnecessary to arrange the SW.
  • the generator when adopted, it is not limited to a three-phase generator, but a 12-12 pole magnet generator with 8 poles of the rotor 30 and 12 poles of the stator 40, 8-8 poles, Single phase magnet generators with other pole numbers such as 16-16 poles may be targeted.
  • a gap 34k is formed in the central portion in the rotation direction, and a predetermined magnet 32S (A) exists on both sides of the gap 34k.
  • a gap 34k may be formed at the end in the rotational direction, and the adjacent magnet 32N (B) may be present next to the gap 34k.
  • a gap 34k may be formed over the entire region in the rotation direction, and adjacent magnets 32N (B) may be present on both sides of the gap 34k.
  • the crank reference position is detected by a logic table (NNUM value) of a plurality of levels.
  • the sensor width time is sequentially measured from the sensor input time, the time ratio is obtained, and the ratio is determined from the set value. May be detected as the crank reference position, or this detection method and a detection method using a logic table may be combined.
  • crank rotational position sensor SE and the UVW phase sensors SU to SW are dispersedly arranged, but instead of such a dispersed arrangement, the crank rotational position sensor SE and the UVW phase are arranged.
  • the sensors SU to SW may be arranged in the adjacent gap 41a. Further, only arbitrary sensors among the four sensors may be arranged in a distributed manner.
  • the three UVW phase sensors SU to SW are arranged on the rotation orbit 34a of the heteropolar magnetic part 34, but one or two of these UVW phase sensors SU to SW are arranged. You may make it arrange
  • combination information NNUM representing a combination of these signals is calculated based on the UVW signal. Then, the next NNUM value was calculated based on the current NNUM value. In addition to this, the following processing may be performed.
  • the NNUM value cannot take a value of “7” or “1” at the rise timing of the U phase.
  • FIG. 30 is a flowchart showing an example of error processing of such combination information NNUM. This series of processes is executed as an interrupt process when the microcomputer 13a provided in the ECU 13 detects the edge of the U-phase signal.
  • the NNUM value is “7”, which is a value that cannot be obtained at the rising timing of the U phase if it is normal.
  • the NUMM value is set to “3” in step S160, and this series of processes is temporarily terminated.
  • step S170 determines whether the W-phase signal is “0”. If it is determined in this determination that the W-phase signal is not “0” (S170: NO), the NNUM value is set to “5” in step S180, and this series of processes is temporarily terminated. On the other hand, when it is determined in step S170 that the W-phase signal is “0” (S170: YES), the U-phase error count U_ERR is incremented in step S190, and this series of processes is temporarily terminated. In this case, the NNUM value is “1”, which is a value that cannot be obtained at the rising timing of the U phase if it is normal.
  • step S110 when it is determined in step S110 that the U-phase signal is not rising (S110: NO), that is, when it is determined that the U-phase signal is falling, the value of the U-phase signal is set to “0” in step S200.
  • the NNUM value is “6”, which is a value that cannot be obtained at the falling timing of the U phase if it is normal.
  • the NUMM value is set to “2” in step S240, and this series of processes is temporarily terminated.
  • the U-phase error count U_ERR is incremented according to the occurrence of an error when the edge detection of the U-phase signal is performed. Then, during error count operation or in another routine, it is determined whether or not the U-phase error count U_ERR is greater than a predetermined number, and when the error count ERR is greater than the predetermined number, predetermined error processing is executed. To do.
  • the error processing for example, the combination information NNUM may be reset, or the combination information NNUM may be forcibly changed to a predetermined value.
  • the edge detection of the U-phase signal is performed has been described as an example, but the same processing can be executed also when the edge detection of the V-phase signal or the W transmission signal is performed.
  • the above-described starter motor with a signal output function for controlling an internal combustion engine is configured by arranging a plurality of magnets having different polarities in the rotation direction and a plurality of teeth portions around which the coils are wound in the rotation direction. And a phase sensor that is attached to a position of the stator facing the magnet and outputs a crank position signal corresponding to the polarity of the rotating magnet.
  • a part of a predetermined magnet among the plurality of magnets is formed with a different polarity part that is magnetized in a different polarity from the magnet or not in any polarity, and rotates together with the rotor.
  • the phase sensor outputs a motor control signal corresponding to the polarity of the rotating magnet, and is driven to rotate by controlling the energization timing to the coil based on the detected motor control signal.
  • a rotating machine that functions as a starter motor for rotating the output shaft of the internal combustion engine, and the phase sensor detects the internal combustion engine control signal instead of the motor control signal when the phase sensor detects the heteropolar portion.
  • the reference position signal may be output.
  • the rotating machine may be a starter motor, a magnet generator, or a motor generator.
  • the different pole portion can be detected by each of the phase sensor that outputs the internal combustion engine control signal and the crank rotational position sensor. According to this, since the different pole portion can be detected a plurality of times while the output shaft of the internal combustion engine makes one revolution, the different pole portion is detected after the rotation drive of the internal combustion engine is started and the absolute rotational position is detected.
  • the time required for grasping can be shortened (second purpose). Therefore, for example, in an internal combustion engine having an idle stop system, the absolute rotation position can be grasped at an early stage, so that the restart time can be shortened.
  • the absolute rotation position can be grasped at an early stage even when starting with a kick lever or a starter motor in a two-wheeled vehicle, the operation of the internal combustion engine by fuel injection and ignition can be started early to shorten the start time of the internal combustion engine. it can.
  • a heteropolar magnetic part magnetized with a polarity different from that of the magnet is formed in a part of a predetermined magnet among the plurality of magnets, and rotates together with the rotor.
  • a part of a predetermined magnet among the plurality of magnets is magnetized to have a polarity different from that of the magnet, and the different polarity is formed by magnetizing the magnet in the entire rotation direction.
  • An internal combustion engine control signal representing the absolute rotation position of the output shaft is output by detecting the heteropolar magnetic part, which is disposed on the rotation path of the magnetic part and the heteropolar magnetic part that rotates together with the rotor.
  • a rotational position sensor that performs the absolute rotation of the output shaft when the phase sensor detects the heteropolar magnetic part by arranging the phase sensor in addition to the rotational position sensor on the rotational trajectory.
  • An internal combustion engine control signal representing a position may be output instead of the motor control signal.
  • each of the phase sensor that outputs the internal combustion engine control signal and the crank rotational position sensor detects the different magnetic part, so that a plurality of different magnetic parts are provided during one rotation of the output shaft of the internal combustion engine. Can be detected once. Therefore, it is possible to shorten the time required from the start of the rotation drive of the internal combustion engine to the detection of the heteropolar magnetic part to grasp the absolute rotation position (second object). Therefore, for example, in an internal combustion engine having an idle stop system, the absolute rotation position can be grasped at an early stage, so that the restart time can be shortened.
  • the absolute rotational position can be grasped at an early stage even when starting with a kick lever or a starting motor in a two-wheeled vehicle, the operation of the internal combustion engine by fuel injection and ignition can be started at an early stage, and the starting time can be shortened.
  • the heteropolar magnetic part formed in a part of a predetermined magnet among the plurality of magnets and magnetized with a polarity different from the magnet, and the heteropolar magnetic part rotating together with the rotor And a rotational position sensor that outputs an internal combustion engine control signal that represents the absolute rotational position of the output shaft by detecting the heteropolar magnetic part, and the heteropolar magnetic part includes the predetermined magnetic part. You may form in a part of the said rotation direction among magnets.
  • a predetermined magnet 32S (A) is divided into three in the rotational direction, and the central part is formed as the heteropolar magnetic part 34.
  • the portion indicated by reference sign P and the heteropolar magnetic portion 34 may be arranged in the rotational direction.
  • one of the predetermined magnets 32S (A) divided into two in the rotational direction is formed as the heteropolar magnetic portion 34, so that the reference sign of the predetermined magnets 32S (A)
  • the part indicated by Q and the heteropolar magnetic part 34 may be arranged in the rotational direction.
  • the heteropolar magnetic part is formed in a part of the predetermined magnet in the rotational direction, so that it is different from the predetermined magnet compared to the conventional structure formed over the entire rotational direction. It is possible to shorten the length of magnetic short circuit between the polar magnetic part and the rotation axis direction (vertical direction in FIGS. 27A and 27B). Therefore, it is possible to suppress a decrease in the output of the starting motor. In addition, it is inevitable that the heteropolar magnetic part becomes inconsistent in polarity with the teeth part facing the predetermined magnet.
  • the area of the heteropolar magnetic part is the rotational direction (FIG.
  • the starter motor with a signal output function for controlling an internal combustion engine generates a combination information representing a combination of crank position signals output from the plurality of phase sensors by arranging the plurality of phase sensors side by side in the rotation direction.
  • Combination information generating means may be provided.
  • the starter motor with a signal output function for internal combustion engine control includes the motor control signal for the U-phase coil, the motor control signal for the V-phase coil, the motor control signal for the W-phase coil, and the internal combustion engine control.
  • Combination information generating means for generating combination information representing a combination of signals for use may be provided.
  • phase sensors for example, a U-phase sensor, a V-phase sensor, and a W-phase sensor
  • binary numbers for example, a 3-digit binary number generated by assigning each digit of a 3-digit binary number to the U-phase sensor output, the V-phase sensor output, and the W-phase sensor output corresponds to the combination information.
  • the above disclosure can also be applied to a case where all of the U-phase sensor, V-phase sensor, and W-phase sensor are not provided.
  • the output of the W-phase sensor is estimated based on the output time value of the U-phase sensor or the V-phase sensor, the estimated signal, the U-phase signal detected by the sensor, and the V-phase A combination with a signal is used as the combination information.
  • the absolute rotation position may be calculated based on the current combination information.
  • the absolute rotation position at the time of the combination may be uniquely specified. For example, in the case of the starting motor (rotating machine) shown in FIG. 5 (FIG. 18), if the combination information is “0” by including the engine control signal (see symbol tb in FIG. 18), the phase sensor at that time Since it can be specified that the output signal is not the motor control signal but the internal combustion engine control signal, the absolute rotational position can be calculated.
  • the absolute rotation position since the absolute rotation position is calculated based on the combination information at the present time, the absolute rotation position can be obtained quickly without waiting for the history such as the output history of the phase sensor and the history of the combination information to be accumulated.
  • the rotational position can be grasped.
  • the absolute rotation position may be calculated based on the history of the combination information.
  • the absolute rotation position may be uniquely identified from the history of the combination information. For example, in the case of the starting motor (rotating machine) shown in FIG. 7 (FIG. 19), even if the combination information at the present time is “0” by including the engine control signal (symbols tf, tg, th in FIG. 19). Since the internal combustion engine control signal is output from which sensor cannot be specified, the absolute rotational position cannot be calculated. However, in FIG. 7, when the previous combination information is “5” and this time is “0” (that is, a history such as “5 ⁇ 0”), the signal for internal combustion engine control is currently transmitted from the U-phase sensor.
  • an internal combustion engine control signal is currently output from the V-phase sensor.
  • the previous combination information is “4” and this time is “0” (that is, a history such as “4 ⁇ 0”)
  • an internal combustion engine control signal is currently output from the U-phase sensor.
  • the starter motor with a signal output function for internal combustion engine control is based on the combination information at the present time during a rotational drive period from the start of rotation of the internal combustion engine until the absolute rotational position is calculated.
  • a specifying means for specifying information may be provided, and the energization control content to the coil corresponding to the phase sensor may be determined based on the specifying result by the specifying means in the rotational drive period.
  • the next magnet polarity may be identified from the combination information at the present time. For example, in the starting motor (rotating machine) in FIG. 5 (FIG. 18), if the current combination information is “3”, the next combination information is specified as “2” and the next time corresponding to the U-phase coil. It is specified that the magnet polarity changes from the S pole to the N pole.
  • the content of the next output signal from the phase sensor is specified based on the current combination information, and the energization control content is determined. Therefore, even during the rotation drive period, the energization control content corresponding to the next magnet polarity can be determined without requiring the history accumulation of combination information.
  • At least two of the plurality of phase sensors may be arranged on the rotation trajectory of the different pole portion.
  • next combination information when the next combination information cannot be identified from a plurality of candidates, such as when rotating from a stopped state, the one selected from the candidates is regarded as the next combination information and corresponds to the phase sensor. If, as a result, the sensor output does not change even after a predetermined time has passed, one selected from the remaining candidates as the rotor is not rotating is selected next time.
  • the energization to the coil corresponding to the phase sensor may be controlled.
  • the combination information at the present time includes “engine control signal” and thus becomes “0”.
  • the next combination information is “3” or “6”.
  • one selected from the candidates “3” and “6” is regarded as the next combination information and energized.
  • the starter motor shown in FIG. 18 when the absolute rotation position is not calculated and the combination information at the present time is “2” by including the engine control signal (symbol tc Reference), it cannot be specified whether the next combination information is “2” or “6”.
  • the next combination information cannot be specified in this way, according to the above disclosure, one selected from the candidates “2” and “6” (for example, “2”) is regarded as the next combination information and energized.
  • the next combination information is regarded as “2”, and if the current combination information “0” is based on the code th, the next combination is considered. If it is assumed that the information is “6” and energization control is performed, the motor can be driven normally. However, in the example of FIG. 19, it cannot be specified which of the symbols tf, tg, and th is “0” at the present time in the start-up calculation period.
  • next combination information is regarded as “3” and energization control is performed.
  • the next combination information is regarded as “2” and energization control is performed.
  • the next combination information may be regarded as “6” and the energization control may be performed.
  • trials are performed in the order of “3”, “2”, and “6” as described above. In the middle, the rotor may rotate slightly and the phase may shift.
  • the energization control is performed for all of the plurality of candidates “3”, “2”, and “6” in order (for example, the order of 3 ⁇ 2 ⁇ 6), the motor is normally driven. If not, the energization control is performed considering the next combination information in an order different from the order (for example, the order of 2 ⁇ 3 ⁇ 6). Therefore, an opportunity to try in the order in which the above-described phase shift does not occur is given, so that the motor can be driven normally.
  • the ignition timing or fuel injection of the internal combustion engine may be controlled based on the update timing of the combination information.
  • the above disclosure is not limited to using all update timings of combination information for the control.
  • all the update timings only the update timing that coincides with the timing when the U-phase signal and the V-phase signal change are used for ignition timing control and the like, and the update that coincides with the timing when the W-phase signal changes
  • the timing may not be used for ignition timing control or the like.
  • only the update timing at a crank angle within a predetermined range for example, the vicinity of the compression stroke used for the ignition timing control may be used for the ignition timing control or the like. According to these, it is possible to improve the control accuracy while reducing the control processing load.
  • the plurality of phase sensors are arranged in gaps between the plurality of teeth portions, and the plurality of phase sensors are distributed and prohibited from being arranged in adjacent gaps among the plurality of gaps arranged in the rotation direction. May be.
  • the U-phase sensor, the V-phase sensor, and the W-phase sensor are arranged in a gap between the plurality of teeth portions, and at least two of the U-phase sensor, the V-phase sensor, and the W-phase sensor are used as the phase sensor.
  • the plurality of phase sensors that are set may be dispersedly disposed by prohibiting them from being disposed in adjacent gaps among the plurality of gaps arranged in the rotation direction.
  • the rotational position sensor and the phase sensor are disposed in gaps between the plurality of teeth portions, and the rotational position sensor and the phase sensor are disposed in adjacent gaps among the plurality of gaps arranged in the rotation direction. It may be prohibited and distributed.
  • the number of sensors used as phase sensors increases, the number of times of detecting the different pole portion during one rotation of the output shaft can be increased. It is possible to shorten the time required to detect the polar magnetic part) and grasp the absolute rotational position.
  • the arrangement interval of the phase sensors is too narrow, the time required from the start of the rotation of the internal combustion engine to the detection of the different pole portion to grasp the absolute rotation position cannot be shortened sufficiently.
  • the plurality of phase sensors are prohibited from being arranged in adjacent gaps and are arranged in a distributed manner, so that the time required for grasping the absolute rotational position can be sufficiently shortened.
  • the predetermined magnet and the different pole portion may be arranged in the rotation direction by forming the different pole portion in a part of the rotation direction of the predetermined magnet.
  • a predetermined magnet 32S (A) is divided into three in the rotational direction, and the central portion is formed as a different pole portion (different pole magnetic portion 34), whereby the predetermined magnet 32S.
  • the portion indicated by reference numeral P and the heteropolar magnetic portion 34 are arranged in the rotational direction.
  • one of the predetermined magnets 32S (A) divided into two in the rotational direction is formed as a different pole part (different pole magnetic part 34), whereby a predetermined magnet 32S ( In A), the portion indicated by the symbol Q and the heteropolar magnetic portion 34 are arranged in the rotational direction.
  • the different pole part is formed in a part of the rotation direction of the predetermined magnet, so compared with the conventional structure of FIG. 9A formed over the entire rotation direction,
  • the length of magnetic short circuit between the predetermined magnet and the different pole portion in the direction of the rotation axis (vertical direction in FIGS. 4A and 4B) can be shortened. Therefore, when the rotating machine according to the present disclosure functions as a starter motor, it is possible to suppress a decrease in output of the starter motor. In addition, it is inevitable that the polarity of the different pole portion becomes inconsistent with that of the teeth portion facing the predetermined magnet.
  • the area of the different pole portion is the rotation direction (FIGS. 4A and 4).
  • the polarity of the predetermined magnet may be located on both sides of the different polarity portion in the rotation direction.
  • a predetermined magnet is divided into three parts, and the central part is formed as a different pole part.
  • the predetermined magnet is divided into two, and the polarity of the predetermined magnet (see reference sign Q) is set only on one side of the different polarity part.
  • the rotation direction length of a different pole part can be shortened further.
  • the amount of magnetic short-circuit between the predetermined magnet and the different pole portion can be further reduced, and the occupied area of the different pole portion that is inconsistent in polarity can be further reduced, and the rotating machine (starting motor or generator) Suppressing output reduction can be promoted.
  • the phase sensor is disposed at a position different from the rotational position sensor in the rotational direction, and is disposed on a rotational orbit of the heteropolar magnetic part, so that the phase sensor detects the heteropolar magnetic part.
  • an internal combustion engine control signal representing the absolute rotational position of the output shaft may be output instead of the motor control signal.
  • the heteropolar magnetic part can be detected by each of the phase sensor and the rotational position sensor that output the internal combustion engine control signal. For this reason, since the heteropolar magnetic part can be detected a plurality of times while the output shaft of the internal combustion engine makes one rotation, the absolute magnetic position is detected by detecting the heteropolar magnetic part after the internal combustion engine starts rotating. The time required to do this can be shortened (second purpose).
  • the phase sensor cannot detect the polarity of the predetermined magnet. For this reason, it is impossible to accurately grasp the timing (commutation timing) at which the predetermined magnet is positioned at the detection position of the phase sensor to switch to the state where the adjacent magnet is positioned. For this reason, there is a concern that the timing of switching the energization control content to the coil cannot be accurately controlled at an appropriate timing.
  • the commutation timing applied to the phase sensor can be accurately grasped, and accordingly, the energization control content is switched.
  • the timing can be accurately controlled at an appropriate timing.
  • the starter motor with a signal output function for controlling the internal combustion engine is a vehicle that uses the internal combustion engine as a travel drive source, and the rotational torque of the output shaft is provided on the condition that the rotational speed of the output shaft exceeds a predetermined value. May be applied to a vehicle provided with a torque transmission mechanism for transmitting to the drive wheels of the vehicle.
  • the rotating machine functions as a starter motor
  • the signal output from the phase sensor in the rotational drive from the stop when outputting the internal combustion engine control signal using the phase sensor as described above because it is not possible to specify whether the motor is a motor control signal or an internal combustion engine control signal, the motor cannot be controlled with proper energization control, and the starting motor is set in the direction opposite to the desired direction. There is a concern about the rotational drive.
  • the above disclosure applies to vehicles that transmit output shaft torque to drive wheels on the condition that the rotational speed of the output shaft has reached a predetermined value or higher. Even then, the reverse rotational torque is not transmitted to the drive wheels and does not affect the running of the vehicle. Therefore, the above concerns can be resolved.
  • the output shaft may be a crankshaft, and the rotor may be fixed to the crankshaft and always rotate at the same rotational speed as the crankshaft.
  • the crankshaft and the rotor are connected via a power transmission mechanism such as a belt or a gear
  • the rotational phase of the crankshaft is caused by gear backlash, belt elongation, or the like. And a rotational phase of the rotor are shifted. Therefore, the absolute rotational position of the crankshaft calculated based on the internal combustion engine control signal output by detecting the different pole portion attached to the rotor is a value deviated from the actual absolute rotational position.
  • the rotor is fixed to the crankshaft, and the vehicle is always rotating at the same rotational speed as the crankshaft. Therefore, the absolute rotational position calculated based on the internal combustion engine control signal and the actual rotational position are used. Deviation from the absolute rotation position can be reduced. Accordingly, the absolute rotational position of the crankshaft (output shaft) can be calculated with high accuracy.
  • the absolute rotation position where the output shaft is likely to stop when the internal combustion engine is stopped is set in advance as a predicted stop position, and the different pole portion (different pole magnetism) is avoided by avoiding the predicted stop position.
  • the phase sensor and the different pole portion may be arranged so that the portion) is at a position advanced by a predetermined amount from the facing position of the phase sensor.
  • the different pole part (different pole magnetic part) is at the position facing the phase sensor or at a position slightly retarded from the position facing the phase sensor.
  • the different pole part in a state where the output shaft is stopped at the expected stop position, the different pole part (different pole magnetic part) can be in a position slightly advanced from the facing position of the phase sensor. As described above, it is possible to reduce the possibility that the motor cannot be controlled with the proper energization control content.
  • the absolute rotation position where the output shaft is likely to stop when the internal combustion engine is stopped is set in advance as a predicted stop position (for example, a range from about BTDC 150 ° to top dead center TDC), and the expected stop In a state of stopping at the position, the different pole part (different pole magnetic part) is a predetermined amount from the facing position of the phase sensor (or the rotational position sensor) or the facing position of the phase sensor (or the rotational position sensor). You may arrange
  • a predicted stop position for example, a range from about BTDC 150 ° to top dead center TDC
  • the different pole part is a predetermined amount from the facing position of the phase sensor (or the rotational position sensor) or the facing position of the phase sensor (or the rotational position sensor). You may arrange
  • the absolute rotational position based on the internal combustion engine control signal can be quickly calculated, and the absolute rotation The time required for grasping the position can be reduced.
  • the non-polar part is a non-magnetic part that is not magnetized in either the N pole or the S pole, and may be a gap formed by cutting out a part of the predetermined magnet.
  • the nonmagnetic portion is a different polarity portion
  • the following points are advantageous compared to the case where the different polarity magnetic portion magnetized to have a polarity different from that of the predetermined magnet is used. is there. That is, it is not necessary to perform a magnetizing process to generate a different magnetic part (different pole part), and a non-magnetic part (different pole part) can be formed simply by forming a notch. Can be realized easily.
  • the heteropolar magnetic part is a heteropolar part
  • the predetermined magnet and the heteropolar magnetic part are in the rotation axis direction (vertical direction in FIGS. 4A and 4B). Will cause a magnetic short circuit.
  • the magnetic short-circuit amount can be reduced, and a reduction in the output of the starter motor and a decrease in the power generation output when used as a generator can be suppressed.
  • a U-phase sensor that includes a U-phase coil, a V-phase coil, and a W-phase coil as the coils, and that outputs a U-phase signal used for controlling energization timing to the U-phase coil as the motor control signal
  • the V-phase A V-phase sensor that outputs a V-phase signal used for controlling energization timing to the coil as the motor control signal
  • a W-phase signal that is used to control energization timing to the W-phase coil is output as the motor control signal.
  • the W-phase sensors at least one sensor is provided, and at least one of the U-phase sensor, the V-phase sensor, and the W-phase sensor is used as the phase sensor to rotate the different pole portion (the different pole magnetic portion). You may arrange
  • each sensor that outputs a motor control signal corresponding to each coil is controlled by an internal combustion engine. You may use for the output of the business signal.
  • the U-phase sensor, the V-phase sensor, and the W-phase sensor may not be provided, and the present disclosure can be applied to such a starting motor.
  • the W-phase sensor is not provided, the output position of the W-phase sensor is estimated from the input time based on the output of the U-phase sensor or V-phase sensor, and the W-phase coil is energized and controlled based on the estimated signal. Good.
  • all of the U-phase sensor, the V-phase sensor and the W-phase sensor may be used for the output of the internal combustion engine control signal, or one or two sensors may be used for the output of the internal combustion engine control signal. Good. As the number of sensors to be used is increased, the number of times that the different pole portion is detected during one rotation of the output shaft of the internal combustion engine can be increased, so that the time required for grasping the absolute rotational position can be reduced.

Abstract

A rotor (30) is provided with magnets (32N, 32S) having polarities that differ in the direction of rotation. A stator (40) is provided with a plurality of teeth sections (41) in the direction of rotation onto which coils (CU, CV, CW) are wound. Phase sensors (SU, SV, SW) face the magnets (32N, 32S), and output a crank position signal corresponding to the polarity of the rotating magnets (32N, 32S). Some of the magnets (32N, 32S) form heteropolar sections (34, 34k), which are magnetized to a polarity different from that of the magnet (32N, 32S) or are not magnetized to either polarity. The phase sensors (SU, SV, SW) are arranged on the rotation trajectory of the heteropolar sections (34, 34k), which rotate with the rotor (30). When a heteropolar section (34, 34k) has been detected, the phase sensors (SU, SV, SW) outputs a control signal indicating the absolute rotation position of an output shaft (14) of an internal combustion engine.

Description

内燃機関制御用信号出力機能付き回転機、及び内燃機関制御用信号出力機能付き始動モータRotating machine with signal output function for internal combustion engine control, and starter motor with signal output function for internal combustion engine control 関連出願の相互参照Cross-reference of related applications
 この出願は、2011年6月6日に出願された日本出願番号2011-126079号と、2011年6月6日に出願された日本出願番号2011-126080号と、2011年6月6日に出願された日本出願番号2011-126081号と、2011年6月6日に出願された日本出願番号2011-126082号と、2011年10月18日に出願された日本出願番号2011-228932号と、2012年5月11日に出願された日本出願番号2012-109036号に基づくもので、ここにその記載内容を援用する。 This application is filed on June 6, 2011, Japanese application No. 2011-122679, filed on June 6, 2011, Japanese application No. 2011-122080, and filed on June 6, 2011. Japanese Application No. 2011-126081, filed on June 6, 2011, Japanese Application No. 2011-126082, filed on October 18, 2011, Japanese Application No. 2011-228932, 2012 This is based on Japanese Patent Application No. 2012-109036 filed on May 11, 2011, the contents of which are incorporated herein.
 本開示は、内燃機関の点火装置等の制御に用いる内燃機関制御用信号を出力する機能を有した、内燃機関の回転機(例えば始動モータ、磁石式発電機またはモータ発電機)に関する。 The present disclosure relates to an internal combustion engine rotating machine (for example, a starter motor, a magnet generator, or a motor generator) having a function of outputting an internal combustion engine control signal used for controlling an ignition device or the like of the internal combustion engine.
 特許文献1には、ブラシレス三相の始動モータが記載されている。この始動モータは、N極マグネットとS極マグネットを回転方向に交互に配置して構成されたロータと、U相コイル、V相コイルおよびW相コイルを鉄心のティース部に巻き回して構成されたステータと、から構成されている。そして、ステータには、以下に説明するU相センサ、V相センサ、W相センサおよびクランク回転位置センサが設けられている。 Patent Document 1 describes a brushless three-phase starting motor. This starting motor is configured by winding a rotor configured by alternately arranging N-pole magnets and S-pole magnets in the rotation direction, and winding a U-phase coil, a V-phase coil, and a W-phase coil around a tooth portion of an iron core. And a stator. The stator is provided with a U-phase sensor, a V-phase sensor, a W-phase sensor, and a crank rotation position sensor described below.
 U相センサ、V相センサおよびW相センサは、ステータのうちマグネットと対向する位置に取り付けられ、回転するマグネットの極性に応じたU相信号、V相信号、W相信号(モータ制御用信号)を各々出力する(図16参照)。そして、これらのモータ制御用信号に基づき、U相コイル、V相コイルおよびW相コイルへの通電タイミングを制御することで、始動モータの駆動を制御する。 The U-phase sensor, V-phase sensor, and W-phase sensor are attached to a position of the stator facing the magnet, and a U-phase signal, a V-phase signal, and a W-phase signal (motor control signal) corresponding to the polarity of the rotating magnet. Are respectively output (see FIG. 16). Based on these motor control signals, the drive timing of the starting motor is controlled by controlling the energization timing to the U-phase coil, V-phase coil and W-phase coil.
 クランク回転位置センサは、クランク軸が1回転する毎に、以下に説明する異極磁性部を検出することで、図16に示す内燃機関制御用信号を出力する。すなわち、複数のマグネットのうち所定のマグネットの一部に、当該マグネットとは異なる極性に着磁された異極磁性部を形成しておく。具体的には、所定のS極マグネットのうち回転方向と直交する方向の上端部に、N極に着磁された異極磁性部を形成する。そして、異極磁性部の回転軌道上にクランク回転位置センサを配置する。なお、U相センサ、V相センサおよびW相センサについては、異極磁性部の回転軌道上から外れるように配置する。 The crank rotation position sensor outputs an internal combustion engine control signal shown in FIG. 16 by detecting a different polarity magnetic part described below every time the crankshaft rotates once. That is, a heteropolar magnetic part magnetized with a polarity different from the magnet is formed in a part of a predetermined magnet among the plurality of magnets. Specifically, a heteropolar magnetic part magnetized with an N pole is formed at the upper end of a predetermined S pole magnet in a direction orthogonal to the rotation direction. Then, a crank rotation position sensor is arranged on the rotation path of the heteropolar magnetic part. Note that the U-phase sensor, the V-phase sensor, and the W-phase sensor are arranged so as to be out of the rotation orbit of the heteropolar magnetic part.
 このクランク回転位置センサによれば、N極マグネットとS極マグネットの検出が交互に繰り返される中で、クランク軸が1回転するうちの1回だけ、図16中の点線に示すS極マグネットの検出が為されずに異極磁性部(N極)が検出される。したがって、異極磁性部を検出した時のクランク軸の回転位置に基づき、クランク軸の絶対回転位置を把握できる。そして、このように把握した絶対回転位置を基準として、内燃機関の燃料噴射や点火時期を制御する。 According to this crank rotation position sensor, the detection of the S pole magnet indicated by the dotted line in FIG. 16 is performed only once during the rotation of the crankshaft while the detection of the N pole magnet and the S pole magnet is alternately repeated. The different polarity magnetic part (N pole) is detected without being performed. Therefore, the absolute rotational position of the crankshaft can be grasped based on the rotational position of the crankshaft when the heteropolar magnetic part is detected. Then, fuel injection and ignition timing of the internal combustion engine are controlled on the basis of the absolute rotation position thus grasped.
 以上により、特許文献1記載の始動モータでは、U相センサ、V相センサおよびW相センサに加え、クランク回転位置センサを備えることで、燃料噴射や点火時期の制御に用いる内燃機関制御用信号を出力する機能を有している。 As described above, the starter motor described in Patent Document 1 includes the crank rotation position sensor in addition to the U-phase sensor, the V-phase sensor, and the W-phase sensor, so that an internal combustion engine control signal used for controlling fuel injection and ignition timing can be obtained. It has a function to output.
特開2009-89588号公報 しかしながら、上記従来の構成では、U相センサ、V相センサおよびW相センサとは別にクランク回転位置センサを備えるので、センサ個数が多くなり、コストが高くなったり構造が複雑になったり信頼性が低くなる事が懸念される。また、内燃機関の回転駆動を開始してから異極磁性部が検出されるまでには、センサ出力のパルス間隔の比較を繰り返して求めるためクランク軸が1回転することを要する。そのため、回転を開始してからクランク軸が1回転するまでは絶対回転位置を把握できないので、燃料噴射制御や点火時期制御の開始が遅れるといった事が懸念される。However, since the conventional configuration includes a crank rotation position sensor in addition to the U-phase sensor, the V-phase sensor, and the W-phase sensor, the number of sensors increases, resulting in an increase in cost and a structure. There is a concern that it will become complicated and unreliable. In addition, it is necessary for the crankshaft to make one revolution in order to repeatedly obtain the comparison of the pulse intervals of the sensor output after the rotational drive of the internal combustion engine is started until the heteropolar magnetic part is detected. For this reason, since the absolute rotational position cannot be grasped until the crankshaft rotates once after the rotation is started, there is a concern that the start of the fuel injection control or the ignition timing control is delayed.
 本開示の第1の目的は、センサの個数低減を図った内燃機関制御用信号出力機能付き回転機を提供することにある。本開示の第2の目的は、機関出力軸の絶対回転位置を迅速に把握できるようにした内燃機関制御用信号出力機能付き回転機を提供することにある。本開示の第3の目的は、モータ出力の低下抑制を図った内燃機関制御用信号出力機能付き始動モータを提供することにある。 A first object of the present disclosure is to provide a rotating machine with a signal output function for controlling an internal combustion engine in which the number of sensors is reduced. A second object of the present disclosure is to provide a rotating machine with a signal output function for controlling an internal combustion engine that can quickly grasp an absolute rotational position of an engine output shaft. A third object of the present disclosure is to provide a starter motor with a signal output function for controlling an internal combustion engine that suppresses a decrease in motor output.
 本開示の一態様によると、内燃機関制御用信号出力機能付き回転機は、極性の異なるマグネットを回転方向に交互に配置して構成されたロータを備える。前記内燃機関制御用信号出力機能付き回転機は、コイルが巻き回されたティース部を前記回転方向に複数並べて構成されたステータを更に備える。前記内燃機関制御用信号出力機能付き回転機は、前記ステータのうち前記マグネットと対向する位置に取り付けられ、回転する前記マグネットの極性に応じたクランク位置信号を出力する位相センサを更に備える。複数の前記マグネットのうち所定のマグネットの一部に、当該マグネットとは異なる極性に着磁された、或いはいずれの極性にも着磁されていない異極部を形成し、前記ロータとともに回転する前記異極部の回転軌道上に前記位相センサを配置することで、前記位相センサが前記異極部を検出した時には、内燃機関の出力軸の絶対回転位置を表した内燃機関制御用信号を前記位相センサが出力する。 According to one aspect of the present disclosure, a rotating machine with a signal output function for controlling an internal combustion engine includes a rotor configured by alternately arranging magnets having different polarities in the rotation direction. The internal combustion engine control signal output function-equipped rotating machine further includes a stator configured by arranging a plurality of teeth around which a coil is wound in the rotation direction. The internal combustion engine control signal output function-equipped rotating machine further includes a phase sensor that is attached to a position of the stator facing the magnet and outputs a crank position signal corresponding to the polarity of the rotating magnet. A part of a predetermined magnet among the plurality of magnets is formed with a different polarity part that is magnetized in a different polarity from the magnet, or is not magnetized in any polarity, and rotates together with the rotor By arranging the phase sensor on the rotation path of the different pole portion, when the phase sensor detects the different pole portion, an internal combustion engine control signal indicating the absolute rotational position of the output shaft of the internal combustion engine is output to the phase. The sensor outputs.
 本開示の他の態様によると、内燃機関制御用信号出力機能付き始動モータは、極性の異なるマグネットを回転方向に交互に配置して構成されたロータを備える。前記内燃機関制御用信号出力機能付き始動モータは、コイルが巻き回されたティース部を前記回転方向に複数並べて構成されたステータを更に備える。前記内燃機関制御用信号出力機能付き始動モータは、前記ステータのうち前記マグネットと対向する位置に取り付けられ、回転する前記マグネットの極性に応じたモータ制御用信号を出力する位相センサを更に備える。前記内燃機関制御用信号出力機能付き始動モータは、検出された前記モータ制御用信号に基づき前記コイルへの通電タイミングを制御することで回転駆動して、内燃機関の出力軸を回転駆動させる始動モータであって、複数の前記マグネットのうち所定のマグネットの一部に、当該マグネットとは異なる極性に着磁された異極磁性部を、前記回転方向の全体に亘って形成し、前記ロータとともに回転する前記異極磁性部の回転軌道上に前記位相センサを配置することで、前記位相センサが前記異極磁性部を検出した時には、前記出力軸の絶対回転位置を表した内燃機関制御用信号を前記モータ制御用信号の替わりに出力させる。 According to another aspect of the present disclosure, the starter motor with a signal output function for controlling the internal combustion engine includes a rotor configured by alternately arranging magnets having different polarities in the rotation direction. The starter motor with a signal output function for controlling the internal combustion engine further includes a stator configured by arranging a plurality of teeth around which a coil is wound in the rotation direction. The internal combustion engine control signal output function-equipped start motor further includes a phase sensor that is attached to a position of the stator facing the magnet and outputs a motor control signal according to the polarity of the rotating magnet. The starter motor with a signal output function for controlling the internal combustion engine is rotationally driven by controlling the energization timing to the coil based on the detected signal for motor control, and rotationally drives the output shaft of the internal combustion engine. And a heteropolar magnetic portion magnetized with a polarity different from the magnet is formed in a part of a predetermined magnet among the plurality of magnets, and is rotated together with the rotor. When the phase sensor detects the heteropolar magnetic part by arranging the phase sensor on the rotation orbit of the heteropolar magnetic part, an internal combustion engine control signal indicating the absolute rotational position of the output shaft is generated. Instead of the motor control signal, the signal is output.
 本開示の他の態様によると、 内燃機関制御用信号出力機能付き始動モータは、極性の異なるマグネットを回転方向に交互に配置して構成されたロータを備える。前記内燃機関制御用信号出力機能付き始動モータは、コイルが巻き回されたティース部を前記回転方向に複数並べて構成されたステータを更に備える。前記内燃機関制御用信号出力機能付き始動モータは、前記ステータのうち前記マグネットと対向する位置に取り付けられ、回転する前記マグネットの極性に応じたモータ制御用信号を出力する位相センサを更に備える。前記内燃機関制御用信号出力機能付き始動モータは、検出された前記モータ制御用信号に基づき前記コイルへの通電タイミングを制御することで回転駆動して、内燃機関の出力軸を回転駆動させる始動モータであって、複数の前記マグネットのうち所定のマグネットの一部を、当該マグネットとは異なる極性に着磁するとともに、当該マグネットのうちの前記回転方向の全体に亘って着磁して形成された異極磁性部を更に備える。前記内燃機関制御用信号出力機能付き始動モータは、前記ロータとともに回転する前記異極磁性部の回転軌道上に配置され、前記異極磁性部を検出することにより、前記出力軸の絶対回転位置を表した内燃機関制御用信号を出力する回転位置センサを更に備える。前記回転位置センサに加えて前記位相センサも前記回転軌道上に配置することで、前記位相センサが前記異極磁性部を検出した時には、前記出力軸の絶対回転位置を表した内燃機関制御用信号を前記モータ制御用信号の替わりに出力させる。 According to another aspect of the present disclosure, the starter motor with a signal output function for controlling the internal combustion engine includes a rotor configured by alternately arranging magnets having different polarities in the rotation direction. The starter motor with a signal output function for controlling the internal combustion engine further includes a stator configured by arranging a plurality of teeth around which a coil is wound in the rotation direction. The internal combustion engine control signal output function-equipped start motor further includes a phase sensor that is attached to a position of the stator facing the magnet and outputs a motor control signal according to the polarity of the rotating magnet. The starter motor with a signal output function for controlling the internal combustion engine is rotationally driven by controlling the energization timing to the coil based on the detected signal for motor control, and rotationally drives the output shaft of the internal combustion engine. In the magnet, a part of a predetermined magnet is magnetized to have a polarity different from that of the magnet, and the magnet is magnetized over the entire rotation direction of the magnet. A heteropolar magnetic part is further provided. The starter motor with a signal output function for controlling the internal combustion engine is disposed on a rotation path of the heteropolar magnetic part that rotates together with the rotor, and detects the heteropolar magnetic part to thereby determine the absolute rotational position of the output shaft. It further includes a rotational position sensor for outputting the expressed internal combustion engine control signal. An internal combustion engine control signal representing the absolute rotational position of the output shaft when the phase sensor detects the heteropolar magnetic part by arranging the phase sensor on the rotational trajectory in addition to the rotational position sensor. In place of the motor control signal.
 本開示の他の態様によると、内燃機関制御用信号出力機能付き始動モータは、極性の異なるマグネットを回転方向に交互に配置して構成されたロータを備える。前記内燃機関制御用信号出力機能付き始動モータは、コイルが巻き回されたティース部を前記回転方向に複数並べて構成されたステータを更に備える。前記内燃機関制御用信号出力機能付き始動モータは、前記ステータのうち前記マグネットと対向する位置に取り付けられ、回転する前記マグネットの極性に応じたモータ制御用信号を出力する位相センサを更に備える。前記内燃機関制御用信号出力機能付き始動モータは、検出された前記モータ制御用信号に基づき前記コイルへの通電タイミングを制御することで回転駆動して、内燃機関の出力軸を回転駆動させる始動モータであって、複数の前記マグネットのうち所定のマグネットの一部に形成され、当該マグネットとは異なる極性に着磁された異極磁性部を更に備える。前記内燃機関制御用信号出力機能付き始動モータは、前記ロータとともに回転する前記異極磁性部の回転軌道上に配置され、前記異極磁性部を検出することにより、前記出力軸の絶対回転位置を表した内燃機関制御用信号を出力する回転位置センサを更に備える。前記異極磁性部は、前記所定のマグネットのうち前記回転方向の一部に形成されている。 According to another aspect of the present disclosure, the starter motor with a signal output function for controlling the internal combustion engine includes a rotor configured by alternately arranging magnets having different polarities in the rotation direction. The starter motor with a signal output function for controlling the internal combustion engine further includes a stator configured by arranging a plurality of teeth around which a coil is wound in the rotation direction. The internal combustion engine control signal output function-equipped start motor further includes a phase sensor that is attached to a position of the stator facing the magnet and outputs a motor control signal according to the polarity of the rotating magnet. The starter motor with a signal output function for controlling the internal combustion engine is rotationally driven by controlling the energization timing to the coil based on the detected signal for motor control, and rotationally drives the output shaft of the internal combustion engine. In this case, it further includes a heteropolar magnetic part formed in a part of a predetermined magnet among the plurality of magnets and magnetized with a polarity different from that of the magnet. The starter motor with a signal output function for controlling the internal combustion engine is disposed on a rotation path of the heteropolar magnetic part that rotates together with the rotor, and detects the heteropolar magnetic part to thereby determine the absolute rotational position of the output shaft. It further includes a rotational position sensor for outputting the expressed internal combustion engine control signal. The heteropolar magnetic part is formed in a part of the predetermined direction of the predetermined magnet.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第1実施形態にかかるACGスタータ(始動モータ)を示す模式図であり、 図2は、図1に示すACGスタータおよびクランク軸の断面図であり、 図3は、図2のIII矢視図であり、 図4(a)は、図3のU相センサ、V相センサおよびW相センサの取付け位置を説明する図であり、図4(b)は、図4(a)の変形例であり、 図5は、第1実施形態において、組合せ情報NNUMの変化を示すタイムチャートであり、 図6は、第1実施形態において、UVW相コイルに対する通電制御の処理手順を示すフローチャートであり、 図7は、本開示の第2実施形態において、組合せ情報NNUMの変化を示すタイムチャートであり、 図8は、本開示の第3実施形態において、組合せ情報NNUMの変化を示すタイムチャートであり、 図9は、本開示の第4実施形態において、U相センサ、V相センサおよびW相センサの取付け位置を説明する図であり、 図10は、第4実施形態において、組合せ情報NNUMの変化を示すタイムチャートであり、 図11は、本開示の第5実施形態において、U相センサ、V相センサおよびW相センサの取付け位置と、異極磁性部の形状を説明する図であり、 図12は、本開示の第7実施形態において、U相センサ、V相センサおよびW相センサの取付け位置と、非磁性部(空隙)の形状を説明する図であり、 図13は、第7実施形態において、マグネットおよびハウジングを示す斜視図であり、 図14(a)は異極磁性部による磁気短絡経路を示し、図14(b)は非磁性部による磁気短絡経路を示す図であり、 図15(a),図15(b)は、非磁性部(空隙)の形状の変形例を示す図であり、 図16は、従来のACGスタータから出力される、内燃機関制御用信号の変化を示すタイムチャートであり、 図17は、図3のU相センサ、V相センサおよびW相センサの取付け位置を説明する図であり、 図18は、第8実施形態において、組合せ情報NNUMの変化を示すタイムチャートであり、 図19は、本開示の第9実施形態において、組合せ情報NNUMの変化を示すタイムチャートであり、 図20は、本開示の第10実施形態において、組合せ情報NNUMの変化を示すタイムチャートであり、 図21は、第11実施形態において、組合せ情報NNUMの変化を示すタイムチャートであり、 図22は、本開示の第12実施形態にかかるACGスタータ(始動モータ)を示す模式図であり、 図23は、図2のXXIII矢視図であり、 図24は、図23のクランク回転位置センサ、U相センサ、V相センサおよびW相センサの取付け位置を説明する図であり、 図25は、第12実施形態において、組合せ情報NNUMの変化を示すタイムチャートであり、 図26は、図2のXXVI矢視図であり、 図27(a)は、図26のクランク回転位置センサ、U相センサ、V相センサおよびW相センサの取付け位置を説明する図であり、図27(b)は、図27(a)の変形例であり、 図28は、第13実施形態において、組合せ情報NNUMの変化を示すタイムチャートであり、 図29は、第14実施形態において、組合せ情報NNUMの変化を示すタイムチャートであり、 図30は、組合せ情報NNUMのエラー処理を示すフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a schematic diagram illustrating an ACG starter (starting motor) according to a first embodiment of the present disclosure. FIG. 2 is a sectional view of the ACG starter and crankshaft shown in FIG. FIG. 3 is a view taken in the direction of arrow III in FIG. 4A is a diagram for explaining the mounting positions of the U-phase sensor, the V-phase sensor, and the W-phase sensor in FIG. 3, and FIG. 4B is a modification of FIG. FIG. 5 is a time chart showing a change in the combination information NNUM in the first embodiment. FIG. 6 is a flowchart showing a processing procedure of energization control for the UVW phase coil in the first embodiment. FIG. 7 is a time chart showing a change in the combination information NNUM in the second embodiment of the present disclosure. FIG. 8 is a time chart showing a change in the combination information NNUM in the third embodiment of the present disclosure. FIG. 9 is a diagram for explaining mounting positions of the U-phase sensor, the V-phase sensor, and the W-phase sensor in the fourth embodiment of the present disclosure. FIG. 10 is a time chart showing a change in the combination information NNUM in the fourth embodiment. FIG. 11 is a diagram for explaining the mounting positions of the U-phase sensor, the V-phase sensor, and the W-phase sensor and the shape of the heteropolar magnetic part in the fifth embodiment of the present disclosure; FIG. 12 is a diagram for explaining the mounting positions of the U-phase sensor, the V-phase sensor, and the W-phase sensor and the shape of the nonmagnetic part (gap) in the seventh embodiment of the present disclosure. FIG. 13 is a perspective view showing a magnet and a housing in the seventh embodiment. FIG. 14A shows a magnetic short-circuit path by the heteropolar magnetic part, FIG. 14B shows a magnetic short-circuit path by the non-magnetic part, FIG. 15A and FIG. 15B are diagrams showing a modification of the shape of the non-magnetic portion (gap), FIG. 16 is a time chart showing changes in the internal combustion engine control signal output from the conventional ACG starter, FIG. 17 is a diagram for explaining mounting positions of the U-phase sensor, the V-phase sensor, and the W-phase sensor in FIG. FIG. 18 is a time chart showing the change of the combination information NNUM in the eighth embodiment. FIG. 19 is a time chart showing a change in the combination information NNUM in the ninth embodiment of the present disclosure. FIG. 20 is a time chart showing a change in the combination information NNUM in the tenth embodiment of the present disclosure. FIG. 21 is a time chart showing the change of the combination information NNUM in the eleventh embodiment. FIG. 22 is a schematic diagram illustrating an ACG starter (starting motor) according to a twelfth embodiment of the present disclosure. FIG. 23 is a view taken along arrow XXIII in FIG. FIG. 24 is a diagram for explaining mounting positions of the crank rotation position sensor, the U-phase sensor, the V-phase sensor, and the W-phase sensor in FIG. FIG. 25 is a time chart showing changes in combination information NNUM in the twelfth embodiment. FIG. 26 is a view taken along arrow XXVI in FIG. FIG. 27A is a view for explaining the mounting positions of the crank rotation position sensor, the U-phase sensor, the V-phase sensor, and the W-phase sensor of FIG. 26, and FIG. 27B is a modification of FIG. An example FIG. 28 is a time chart showing the change of the combination information NNUM in the thirteenth embodiment. FIG. 29 is a time chart showing changes in the combination information NNUM in the fourteenth embodiment. FIG. 30 is a flowchart showing error processing of the combination information NNUM.
 以下、本開示を具体化した各実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。 Hereinafter, embodiments embodying the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are denoted by the same reference numerals in the drawings, and the description of the same reference numerals is used.
 (第1実施形態)
 本実施形態にかかる始動モータ(回転機)は、二輪車両に搭載されたエンジン(内燃機関)を適用対象としており、図1は、エンジンの吸気ポートへ燃料を噴射するインジェクタ10、エンジンの燃焼室内にて火花放電して混合気を着火させる点火装置11、インジェクタ10および点火装置11の作動を制御する電子制御装置(ECU13)、後に詳述するACGスタータ20(始動モータ)を示す。
(First embodiment)
The starter motor (rotary machine) according to the present embodiment is an application object of an engine (internal combustion engine) mounted on a two-wheeled vehicle. FIG. 1 shows an injector 10 for injecting fuel into an intake port of the engine, a combustion chamber of the engine 1 shows an ignition device 11 that sparks and ignites an air-fuel mixture, an injector 10, an electronic control device (ECU 13) that controls the operation of the ignition device 11, and an ACG starter 20 (starting motor) that will be described in detail later.
 ACGスタータ20は、エンジンの始動モータとして機能するとともに、エンジンのクランク軸14(出力軸)により駆動して交流発電機としても機能するブラシレス三相交流モータである。ちなみに、二輪車両の駆動輪とクランク軸14との動力伝達経路中には、以下に説明するトルク伝達機構が備えられている。すなわち、ACGスタータ20のモータ駆動を開始してからクランク軸14の回転速度NEが所定値以上になるまではトルク伝達を遮断し、所定値に達した時点でトルク伝達するように作動する、遠心クラッチ等のトルク伝達機構である。 The ACG starter 20 is a brushless three-phase AC motor that functions as an engine starter motor, and also functions as an AC generator driven by the engine crankshaft 14 (output shaft). Incidentally, a torque transmission mechanism described below is provided in the power transmission path between the drive wheels of the two-wheeled vehicle and the crankshaft 14. That is, the torque transmission is interrupted until the rotational speed NE of the crankshaft 14 exceeds a predetermined value after the motor driving of the ACG starter 20 is started, and the centrifugal operation is performed to transmit the torque when the predetermined value is reached. A torque transmission mechanism such as a clutch.
 ACGスタータ20は、U相の電気角を表したU相信号を出力するU相センサSU、V相の電気角を表したV相信号を出力するV相センサSV、およびW相の電気角を表したW相信号を出力するW相センサSWを有している。なお、これらのUVW相センサSU~SWのうちU相センサSU(位相センサ)については、クランク軸14の絶対回転位置を表したクランク位置信号(内燃機関制御用信号の基準位置信号)を出力する機能をも兼ね備えている。 The ACG starter 20 outputs a U-phase sensor SU that outputs a U-phase signal that represents an electrical angle of a U-phase, a V-phase sensor SV that outputs a V-phase signal that represents an electrical angle of a V-phase, and an electrical angle of a W-phase. It has a W-phase sensor SW that outputs the represented W-phase signal. Of these UVW phase sensors SU to SW, the U phase sensor SU (phase sensor) outputs a crank position signal (reference position signal of the internal combustion engine control signal) representing the absolute rotational position of the crankshaft 14. It also has functions.
 ECU13は、これらのUVW相センサSU~SWから出力されるUVW相信号(モータ制御用信号)に基づき、ACGスタータ20のU相コイルCU、V相コイルCVおよびW相コイルCWへの通電タイミングを制御することで、ACGスタータ20を所望の回転方向へ回転駆動させるようにモータ駆動制御する。 The ECU 13 determines the energization timing to the U-phase coil CU, V-phase coil CV and W-phase coil CW of the ACG starter 20 based on the UVW-phase signals (motor control signals) output from these UVW-phase sensors SU to SW. By controlling, motor drive control is performed so that the ACG starter 20 is rotationally driven in a desired rotation direction.
 スロットルセンサ15は、吸気量を調節するスロットルバルブの開度を検出する。吸気圧センサ16は、吸気ポート内の負圧を検出する。そしてECU13は、ACGスタータ20から出力されるクランク位置信号、スロットルセンサ15から出力されるスロットル開度、吸気圧センサ16から出力される負圧等の信号に基づき、インジェクタ10および点火装置11の作動を制御する。 The throttle sensor 15 detects the opening of a throttle valve that adjusts the intake air amount. The intake pressure sensor 16 detects a negative pressure in the intake port. The ECU 13 operates the injector 10 and the ignition device 11 based on signals such as a crank position signal output from the ACG starter 20, a throttle opening output from the throttle sensor 15, and a negative pressure output from the intake pressure sensor 16. To control.
 より詳細に説明すると、ECU13は、クランク位置信号に基づきクランク軸14の回転速度NEを算出し、吸気圧センサ16による負圧PMに基づきエンジン負荷を算出する。また、これらのNEおよびPMに基づき、燃料の目標噴射量、目標噴射時期、目標点火時期を算出する。そして、UVW相センサSU~SWから出力されるUVW相信号およびクランク位置信号に基づきクランク軸14の絶対回転位置を算出し、算出した絶対回転位置を基準として、目標噴射時期で燃料が噴射されるようにインジェクタ10の作動を制御するとともに、目標点火時期で点火するように点火装置11の作動を制御する。 More specifically, the ECU 13 calculates the rotational speed NE of the crankshaft 14 based on the crank position signal, and calculates the engine load based on the negative pressure PM by the intake pressure sensor 16. Further, based on these NE and PM, the fuel target injection amount, the target injection timing, and the target ignition timing are calculated. Then, the absolute rotational position of the crankshaft 14 is calculated based on the UVW phase signal and the crank position signal output from the UVW phase sensors SU to SW, and the fuel is injected at the target injection timing based on the calculated absolute rotational position. Thus, the operation of the injector 10 is controlled, and the operation of the ignition device 11 is controlled so as to ignite at the target ignition timing.
 次に、図2および図3を用いて、ACGスタータ20のハード構成について説明する。なお、図2はACGスタータ20およびクランク軸14の断面図、図3は図2のIII矢視図である。 Next, the hardware configuration of the ACG starter 20 will be described with reference to FIGS. 2 is a cross-sectional view of the ACG starter 20 and the crankshaft 14, and FIG. 3 is a view taken in the direction of arrow III in FIG.
 ACGスタータ20は、ロータ30の内周側にステータ40を備えて構成されている。ロータ30は、有底円筒形状のハウジング31と、ハウジング31の内周面に固定された永久磁石(N極マグネット32NおよびS極マグネット32S)とを備える。N極マグネット32NおよびS極マグネット32Sは、回転方向に交互に並べて配置されており、図3の例では12個(12極)の永久磁石を並べている。ハウジング31は、ボルト33等の締結手段によりクランク軸14に固定され、クランク軸14と同じ回転速度(NE)で常時回転する。これにより、ロータ30はエンジンのフライホイールとしても機能する。 The ACG starter 20 includes a stator 40 on the inner peripheral side of the rotor 30. The rotor 30 includes a bottomed cylindrical housing 31 and permanent magnets (N-pole magnet 32N and S-pole magnet 32S) fixed to the inner peripheral surface of the housing 31. The N-pole magnet 32N and the S-pole magnet 32S are alternately arranged in the rotation direction, and in the example of FIG. 3, 12 (12 poles) permanent magnets are arranged. The housing 31 is fixed to the crankshaft 14 by fastening means such as a bolt 33 and always rotates at the same rotational speed (NE) as the crankshaft 14. Thereby, the rotor 30 also functions as an engine flywheel.
 ステータ40は、先述したU相コイルCU、V相コイルCVおよびW相コイルCWコイルおよびUVW相センサSU~SWと、これらのコイルが巻き回されるティース部41が形成された鉄心42とを備える。ティース部41は回転方向に複数並べて配置されており、各々のティース部41には、U相コイルCU、V相コイルCVおよびW相コイルCWコイルが順番に巻き回されている。図3の例では、18個のティース部41を並べている。 Stator 40 includes U-phase coil CU, V-phase coil CV, W-phase coil CW coil and UVW-phase sensors SU to SW described above, and an iron core 42 on which a tooth portion 41 around which these coils are wound is formed. . A plurality of teeth portions 41 are arranged side by side in the rotation direction, and a U-phase coil CU, a V-phase coil CV, and a W-phase coil CW coil are wound around each tooth portion 41 in order. In the example of FIG. 3, 18 tooth portions 41 are arranged.
 UVW相センサSU~SWは、ステータ40の外周面上に取り付けられることで、N極マグネット32NおよびS極マグネット32Sと対向する位置にある。これにより、ロータ30が回転することに伴い生じるN極マグネット32NおよびS極マグネット32Sによる磁性の変化を検出する。なお、UVW相センサSU~SWにはホールICが採用されている。そのため、ロータ30が回転していない時であっても、対向するマグネットの極性に応じた検出信号を出力することができる。 The UVW phase sensors SU to SW are mounted on the outer peripheral surface of the stator 40, and are in positions facing the N-pole magnet 32N and the S-pole magnet 32S. Thereby, a change in magnetism due to the N-pole magnet 32N and the S-pole magnet 32S generated as the rotor 30 rotates is detected. Note that Hall ICs are employed for the UVW phase sensors SU to SW. Therefore, even when the rotor 30 is not rotating, a detection signal corresponding to the polarity of the opposing magnet can be output.
 UVW相センサSU~SWは、ロータ回転方向においてそれぞれ異なる位置に取り付けられている。具体的には、複数のティース部41の間隙41aのうち各々が異なる間隙41aに配置されており、図4(a)の例では、複数の間隙41aのうち隣り合う間隙に、U相センサSU、V相センサSV、W相センサSWを順番に配置している。そのため、UVW相センサSU~SWの各々は機械角20度分だけずれている。 UVW phase sensors SU to SW are mounted at different positions in the rotor rotation direction. Specifically, each of the gaps 41a of the plurality of teeth portions 41 is disposed in a different gap 41a. In the example of FIG. 4A, the U-phase sensor SU is placed in an adjacent gap among the plurality of gaps 41a. The V phase sensor SV and the W phase sensor SW are arranged in order. Therefore, each of the UVW phase sensors SU to SW is shifted by a mechanical angle of 20 degrees.
 図4(a)に示すように、複数のマグネット32S,32Nのうち所定の一極分のマグネット32S(A)(図4(a)の例ではS極マグネット32S)の一部分には、以下に説明する異極磁性部34が形成されている。すなわち、図4(a)の斜線に示す部分だけは、S極マグネット32Sとは異なる極性(N極)に着磁されている。この異極磁性部34は、所定のマグネット32S(A)のうちロータ回転軸方向(図4(a)の上下方向)の一端部分に形成されるとともに、回転方向(図4(a)の左右方向)のうち異極磁性部34の両側には、所定のマグネット32S(A)の極性が存在するように形成する。要するに、所定のマグネット32S(A)の上端部分を回転方向に3分割し、その中央部分を異極磁性部34として形成する。 As shown in FIG. 4A, a part of the magnet 32S (A) for a predetermined one pole among the plurality of magnets 32S and 32N (the S pole magnet 32S in the example of FIG. 4A) includes: A heteropolar magnetic portion 34 to be described is formed. That is, only the portion indicated by the oblique lines in FIG. 4A is magnetized with a polarity (N pole) different from that of the S pole magnet 32S. This heteropolar magnetic part 34 is formed at one end portion of the predetermined magnet 32S (A) in the rotor rotation axis direction (vertical direction in FIG. 4A), and in the rotation direction (left and right in FIG. 4A). The polarity of the predetermined magnet 32S (A) is formed on both sides of the heteropolar magnetic portion 34 in the direction). In short, the upper end portion of the predetermined magnet 32S (A) is divided into three in the rotational direction, and the central portion is formed as the heteropolar magnetic portion 34.
 V相センサSVおよびW相センサSWはロータ回転軸方向(図4(a)の上下方向)において同じ位置に配置されているのに対し、U相センサSUは、V相センサSVおよびW相センサSWとは回転軸方向において異なる位置に配置されている。これにより、異極磁性部34の回転軌道34a上にU相センサSUが位置し、V相センサSVおよびW相センサSWについては回転軌道34aから外れた位置となるようにする。 The V-phase sensor SV and the W-phase sensor SW are disposed at the same position in the rotor rotation axis direction (vertical direction in FIG. 4A), whereas the U-phase sensor SU is the V-phase sensor SV and the W-phase sensor. It is arranged at a position different from the SW in the direction of the rotation axis. As a result, the U-phase sensor SU is positioned on the rotating track 34a of the heteropolar magnetic section 34, and the V-phase sensor SV and the W-phase sensor SW are positioned away from the rotating track 34a.
 本実施形態では、センサSU~SWがN極を検出した時にはロー信号(二進数「0」)を出力し、S極を検出した時にはハイ信号(二進数「1」)を出力するよう設定してある。そして、マグネット32S,32Nは12個(12極)であるため、U相信号、V相信号、W相信号の各々は、ロータ30が30度回転する毎にローとハイが切り替わる(図5参照)。したがって、UVW相の各々の電気角360°は、クランク軸14の回転角度(機械角)60°に相当する。但し、U相信号については異極磁性部34の検出時にもローに切り替わる。また、ロータ30が10度回転する毎に、UVW相センサSU~SWのいずれかにおいてローとハイが切り替わることとなる。 In this embodiment, when the sensors SU to SW detect the N pole, a low signal (binary number “0”) is output, and when the S pole is detected, a high signal (binary number “1”) is output. It is. Since there are 12 magnets 32S and 32N (12 poles), each of the U-phase signal, V-phase signal, and W-phase signal switches between low and high every time the rotor 30 rotates 30 degrees (see FIG. 5). ). Therefore, each electrical angle 360 ° of the UVW phase corresponds to a rotation angle (mechanical angle) 60 ° of the crankshaft 14. However, the U-phase signal is also switched to low when the heteropolar magnetic part 34 is detected. In addition, every time the rotor 30 rotates 10 degrees, the low and high are switched in any of the UVW phase sensors SU to SW.
 ちなみに、図4(a)の如く、N極マグネット32NとS極マグネット32Sの間に極性を有しない部材32aが介在している場合において、この部材32aがセンサSU~SWに対向して極性を検出できない時には、ロー信号およびハイ信号のうち予め設定しておいた信号(例えばロー信号)であるとみなして処理すればよい。 Incidentally, as shown in FIG. 4A, when a non-polar member 32a is interposed between the N-pole magnet 32N and the S-pole magnet 32S, this member 32a has a polarity opposite to the sensors SU to SW. When the signal cannot be detected, the signal may be processed by regarding it as a preset signal (for example, a low signal) out of the low signal and the high signal.
 なお、前記部材32aが存在しないよう、N極マグネット32NとS極マグネット32Sを隣接させたロータ30を採用してもよいことは勿論である。また、1つのマグネット片をN極とS極に着磁することで、複数のN極マグネット32NおよびS極マグネット32Sを1つのマグネット片から形成したロータを採用してもよい。なお、この場合のロータでは、複数(例えば4つ)のマグネット片を用いて構成してもよいし、1つのマグネット片を用いて構成してもよい。 Of course, the rotor 30 in which the N-pole magnet 32N and the S-pole magnet 32S are adjacent to each other may be adopted so that the member 32a does not exist. Further, a rotor in which a plurality of N-pole magnets 32N and S-pole magnets 32S are formed from one magnet piece by magnetizing one magnet piece to N-pole and S-pole may be adopted. Note that the rotor in this case may be configured using a plurality of (for example, four) magnet pieces, or may be configured using one magnet piece.
 図5は、上段から順に、クランク角、組合せ情報NNUM、UVW相信号の二進数表記、UVW相信号、点火信号、噴射信号、エンジン行程を示すタイムチャートである。組合せ情報NNUMとは、同時期に出力されるU相信号、V相信号およびW相信号の組合せを表した仮想信号であり、本実施形態では、UVW相信号の二進数表記を組み合わせて算出した十進数の数値としている。 FIG. 5 is a time chart showing the crank angle, combination information NNUM, binary notation of UVW phase signal, UVW phase signal, ignition signal, injection signal, and engine stroke in order from the top. The combination information NNUM is a virtual signal that represents a combination of the U-phase signal, the V-phase signal, and the W-phase signal that are output at the same time. In this embodiment, the combination information NNUM is calculated by combining the binary notation of the UVW phase signal. It is a decimal number.
 具体的には、二進数表記の1桁目をU相信号の2進数、2桁目をV相信号の2進数、3桁目をW相信号の2進数で表した3桁の二進数を、十進数に変換した数値が組合せ情報NNUMである。この数値NNUMはECU13により算出される。例えば、最左欄に示すようにUVW相信号が各々「1」「0」「1」であれば、NNUMは「5」となる。 Specifically, a binary number is represented by a binary number of a U-phase signal, the first digit is a binary number of a U-phase signal, the second digit is a binary number of a V-phase signal, and the third digit is a binary number of a W-phase signal. The numerical value converted into a decimal number is the combination information NNUM. This numerical value NNUM is calculated by the ECU 13. For example, as shown in the leftmost column, if the UVW phase signals are “1”, “0”, and “1”, NNUM is “5”.
 図中の符号ESは、異極磁性部34を検出したことによりロー信号となった部分を示しており、当該部分の信号が「内燃機関制御用信号」に相当し、符号ES以外の部分の信号は「モータ制御用信号」に相当する。この内燃機関制御用信号ESが現れる部分を除けば、NNUMの値は5→1→3→2→6→4の順に繰り返しローテーションして変化する。 Symbol ES in the figure indicates a portion that has become a low signal due to the detection of the heteropolar magnetic portion 34, and the signal of the portion corresponds to an “internal combustion engine control signal”. The signal corresponds to a “motor control signal”. Except for the portion where the internal combustion engine control signal ES appears, the value of NNUM is repeatedly rotated in the order of 5 → 1 → 3 → 2 → 6 → 4.
 図中の符号taに示すように、内燃機関制御用信号ESを検出した時のNNUM値は「0」となるが、ES検出時以外では、NNUM値が「0」になることはない。したがって、NNUM値「0」を検出した時点でのクランク角を基準として、ECU13はクランク軸14の絶対回転位置を算出できる。そして、絶対回転位置を把握できれば、各々のUVW相信号の立ち上りまたは立ち下りのタイミング(つまりNNUMの更新タイミング)と、4サイクルエンジンの1回転分の位置関係を特定できる。 As shown by the symbol ta in the figure, the NNUM value when the internal combustion engine control signal ES is detected is “0”, but the NNUM value is not “0” except when the ES is detected. Accordingly, the ECU 13 can calculate the absolute rotational position of the crankshaft 14 based on the crank angle at the time when the NNUM value “0” is detected. If the absolute rotational position can be grasped, the rising or falling timing of each UVW phase signal (that is, the update timing of NNUM) and the positional relationship for one rotation of the 4-cycle engine can be specified.
 例えば、NNUM値「0」が現れた後、NNUM値「1」が2回目に現れたtb時点が、エンジンのピストンが下死点BDCに達した時期であると特定できる。なお、吸気圧センサ16の値を参照すれば、前記下死点BDC時期が排気行程および圧縮行程のいずれであるかを判別(行程判別)できる。これにより、絶対回転位置を基準として、NNUMの更新タイミングに基づき燃料噴射時期や点火時期を目標時期とするように制御できる。 For example, after the NNUM value “0” appears, the time tb when the NNUM value “1” appears for the second time can be identified as the time when the piston of the engine reaches the bottom dead center BDC. By referring to the value of the intake pressure sensor 16, it is possible to determine whether the bottom dead center BDC timing is an exhaust stroke or a compression stroke (stroke determination). Thus, it is possible to control the fuel injection timing and the ignition timing as the target timing based on the NNUM update timing with the absolute rotation position as a reference.
 さらにECU13は、現時点でのNNUM値に基づき次回のNNUM値を特定し(特定手段)、その特定した次回NNUM値に基づきU相コイルCU、V相コイルCVおよびW相コイルCWへの通電制御内容を決定する。例えば、今回NNUM値が「3」であれば、前記ローテーションに基づき次回NNUM値は「2」であると特定できる。つまり、U相コイルCUが巻き回されたティース部41は、S極マグネット32Sの対向位置(ハイ)からN極マグネット32Nの対向位置(ロー)へと移り変わるタイミングにあると言える。そのため、U相コイルCUへの通電オンオフ状態を切り替えるタイミングにあると言える。 Further, the ECU 13 specifies the next NNUM value based on the current NNUM value (identifying means), and the energization control content to the U-phase coil CU, V-phase coil CV, and W-phase coil CW based on the specified next NNUM value. To decide. For example, if the current NNUM value is “3”, it can be specified that the next NNUM value is “2” based on the rotation. That is, it can be said that the tooth portion 41 around which the U-phase coil CU is wound is at a timing when the position changes from the facing position (high) of the S pole magnet 32S to the facing position (low) of the N pole magnet 32N. Therefore, it can be said that it is at the timing of switching the energization on / off state to the U-phase coil CU.
 このように、U相コイルCUへの通電は、U相信号の立ち上りを示すNNUM値「4」、または立ち下がりを示すNNUM値「3」が検出されたか否かに基づきECU13が制御する。同様にして、V相コイルCVおよびW相コイルCWへの通電もNNUM値に基づき制御する。なお、NNUM値「0」については、モータ駆動用コイルCU,CV,CWと対向している「1」でUVW相コイルCU~CWへの通電制御を実施すればよい。 Thus, the energization of the U-phase coil CU is controlled by the ECU 13 based on whether or not the NNUM value “4” indicating the rise of the U-phase signal or the NNUM value “3” indicating the fall is detected. Similarly, energization to the V-phase coil CV and the W-phase coil CW is also controlled based on the NNUM value. As for the NNUM value “0”, the energization control for the UVW phase coils CU to CW may be performed by “1” facing the motor driving coils CU, CV, CW.
 さらにECU13は、NNUM値の履歴に基づき、ACGスタータ20が逆転しているか否かを検知する。例えば、正転していれば上述の如くNNUM値は5→1→3→2→6→4の順に変化する筈である。一方、逆転していればNNUM値は4→6→2→3→1→5の順に変化する筈である。 Further, the ECU 13 detects whether or not the ACG starter 20 is reversed based on the history of the NNUM value. For example, if it is rotating forward, the NNUM value should change in the order of 5 → 1 → 3 → 2 → 6 → 4 as described above. On the other hand, if the rotation is reversed, the NNUM value should change in the order of 4 → 6 → 2 → 3 → 1 → 5.
 ところで、ACGスタータ20によりエンジンを始動させるにあたり、エンジンのピストンが圧縮行程のTDC直前位置から始動させようとすると、ACGスタータ20に要する駆動トルクが圧縮分だけ大きくなるので、エンジンの始動性悪化が懸念される。そこで、エンジン始動開始前に、クランク軸14を逆転させて始動性が良好となるピストン位置に設定しておく、といったスイングバック制御を実施する場合がある。このように、ACGスタータ20を逆転駆動させたい場合があるが、この場合には、例えば今回NNUM値が4であれば、次回NNUM値は6であると特定し、その特定値に応じてUVW相コイルCU~CWへの通電タイミングを制御すればよい。 By the way, when the engine is started by the ACG starter 20, if the engine piston tries to start from the position immediately before the TDC in the compression stroke, the driving torque required for the ACG starter 20 is increased by the amount of compression. Concerned. Therefore, there is a case where swingback control is performed such that the crankshaft 14 is reversely rotated and set to a piston position where the startability is good before starting the engine. As described above, there is a case where the ACG starter 20 is desired to be driven in reverse rotation. In this case, for example, if the current NNUM value is 4, the next NNUM value is specified as 6, and the UVW is determined according to the specified value. The energization timing to the phase coils CU to CW may be controlled.
 図6は、ECU13に備えられたマイコン13a(図1参照)が、上述の如くUVW相コイルCU~CWに対する通電制御を実施する処理の手順を示すフローチャートである。当該処理は、所定周期(例えば先述のマイコン13aのCPUが行う演算周期、又は所定のクランク角度毎)で繰り返し実行される。或いは、回転停止時には前記所定周期で実行する一方で、回転時においては以下に説明するエッジ検知が為される毎に実行してもよい。すなわち、図1に示すマイコン13aは、各センサSU~SWから出力されて入力処理された信号(図5に示すUVW相信号)に対し、その信号が変化するタイミングを捕捉するキャプチャー機能を有している。要するに、UVW相信号の立上りおよび立下りのタイミング(エッジ検知タイミング)を検知する。そして、このエッジ検知がなされる毎に図6の処理を実行する。 FIG. 6 is a flowchart showing a procedure of processing in which the microcomputer 13a (see FIG. 1) provided in the ECU 13 performs energization control on the UVW phase coils CU to CW as described above. This process is repeatedly executed at a predetermined cycle (for example, a calculation cycle performed by the CPU of the microcomputer 13a described above or every predetermined crank angle). Alternatively, the rotation may be performed at the predetermined period when the rotation is stopped, while the rotation may be performed every time edge detection described below is performed. That is, the microcomputer 13a shown in FIG. 1 has a capture function that captures the timing at which the signals (UVW phase signals shown in FIG. 5) output from the sensors SU to SW and subjected to input processing change. ing. In short, the rising and falling timing (edge detection timing) of the UVW phase signal is detected. Then, the processing of FIG. 6 is executed every time this edge detection is performed.
 先ず、図6に示すステップS10において、U相信号、V相信号およびW相信号の各々を、UVW相センサSU~SWから取得する。続くステップS20(組合せ情報生成手段)では、UVW相信号に基づき、これらの信号の組合せを表した組合せ情報NNUMを算出する。続くステップS30では、NNUM値に基づき、次回のNNUM値を算出する。具体的には、先述の5→1(0)→3→2→6→4といった正転時ローテーションに基づき、例えば今回NNUM値が「5」であれば次回NNUM値は「1」であると算出する。なお、今回NNUM値が「0」であれば次回NNUM値は「3」であると算出する。 First, in step S10 shown in FIG. 6, each of the U phase signal, the V phase signal, and the W phase signal is acquired from the UVW phase sensors SU to SW. In the subsequent step S20 (combination information generating means), combination information NNUM representing the combination of these signals is calculated based on the UVW phase signal. In the subsequent step S30, the next NNUM value is calculated based on the NNUM value. Specifically, based on the above-described rotation at the time of forward rotation such as 5 → 1 (0) → 3 → 2 → 6 → 4, for example, if the current NNUM value is “5”, the next NNUM value is “1”. calculate. If the current NNUM value is “0”, the next NNUM value is calculated to be “3”.
 続くステップS40では、ステップS30で算出した次回NNUM値に基づき、UVW相コイルCU~CWへの通電制御を実施する。これによりACGスタータ20は所定の回転方向でモータ駆動する。 In subsequent step S40, energization control for the UVW phase coils CU to CW is performed based on the next NNUM value calculated in step S30. As a result, the ACG starter 20 is driven by a motor in a predetermined rotation direction.
 例えば、U相コイルCUへの通電制御について説明すると、次回NNUM値が「2」または「5」である場合には、次回NNUM値を構成するU相信号の値は、今回NNUM値を構成するU相信号の値から変化することを意味する。よって、次回NNUM値が「2」または「5」であると特定した時点で、U相コイルCUへの通電制御内容をオンからオフ、或いはオフからオンに切り替える。 For example, the energization control to the U-phase coil CU will be described. When the next NNUM value is “2” or “5”, the value of the U-phase signal constituting the next NNUM value constitutes the current NNUM value. It means changing from the value of the U-phase signal. Therefore, when the next NNUM value is specified to be “2” or “5”, the energization control content to the U-phase coil CU is switched from on to off or from off to on.
 V相コイルCVおよびW相コイルCWへの通電制御についても同様にして、次回NNUM値が「3」または「4」であると特定した時点でV相コイルCVへの通電制御内容を切り替え、次回NNUM値が「6」または「1」であると特定した時点でW相コイルCWへの通電制御内容を切り替える。 Similarly, for the energization control to the V-phase coil CV and the W-phase coil CW, the energization control content to the V-phase coil CV is switched when the next NNUM value is specified as “3” or “4”. When the NNUM value is specified as “6” or “1”, the energization control content to the W-phase coil CW is switched.
 続くステップS50では、先述したようにNNUM値「0」が現れてクランク軸14の絶対回転位置の検知が為されているか否かを判定する。検知済みであれば(S50:YES)、次のステップS60に進み、検知した絶対回転位置およびUVW相信号(またはNNUM値)に基づき、燃料噴射時期および点火時期が目標時期となるよう、インジェクタ10および点火装置11の作動を制御する。但し、絶対回転位置の検知が為されていなければ(S50:NO)、インジェクタ10および点火装置11を作動させることなく待機する。 In the subsequent step S50, as described above, it is determined whether or not the NUMUM value “0” appears and the absolute rotational position of the crankshaft 14 has been detected. If it has been detected (S50: YES), the process proceeds to the next step S60, and the injector 10 is set so that the fuel injection timing and the ignition timing become the target timing based on the detected absolute rotational position and UVW phase signal (or NNUM value). And the operation of the ignition device 11 is controlled. However, if the absolute rotational position is not detected (S50: NO), the system waits without operating the injector 10 and the ignition device 11.
 図5の例では、ts1時点で点火装置11の駆動を開始し、ts2時点で点火させている。また、tf1の時点でインジェクタ10による燃料噴射を開始し、tf2の時点で噴射を終了させている。そして、内燃機関制御用信号ESが現れた時のクランク角(絶対回転位置)を基準とし、内燃機関制御用信号ESが吸入行程で出現した後、U相信号の4回目の立上りタイミング(または4回目のNNUM値「5」出現タイミング)をts1時点とし、W相信号の5回目の立下りタイミング(または5回目のNNUM値「1」出現タイミング)をts2時点として点火制御する。 In the example of FIG. 5, the driving of the ignition device 11 is started at time ts1 and ignited at time ts2. Further, the fuel injection by the injector 10 is started at the time tf1, and the injection is ended at the time tf2. Then, with reference to the crank angle (absolute rotational position) when the internal combustion engine control signal ES appears, the fourth rise timing (or 4) of the U-phase signal after the internal combustion engine control signal ES appears in the intake stroke. The ignition control is performed with the NN1 value “5” appearance timing) as the ts1 time point and the fifth falling timing of the W-phase signal (or the fifth NNUM value “1” appearance timing) as the ts2 time point.
 また、内燃機関制御用信号ESが爆発行程で出現した後、V相信号の3回目の立下りタイミング(または3回目のNNUM値「4」出現タイミング)をtf1時点とし、V相信号の5回目の立上りタイミング(または5回目のNNUM値「3」出現タイミング)をtf2時点として燃料噴射制御する。 Further, after the internal combustion engine control signal ES appears in the explosion stroke, the third falling timing of the V-phase signal (or the third NNUM value “4” appearance timing) is set to the time tf1, and the fifth V-phase signal is output. The fuel injection control is performed with the rise timing (or the fifth NNUM value “3” appearance timing) as tf2.
 なお、吸気圧センサ16の検出値に基づき、下死点BDC時期が排気行程および圧縮行程のいずれであるかを行程判別することは先述した通りであるが、この行程判別が未だ為されていない場合には、ts1’~ts2’およびtf1’~tf2’でも点火装置11およびインジェクタ10を駆動させる。また、図5の例では、各種の点火制御時期ts1,ts2および噴射制御時期tf1,tf2がUVW相信号の立上りまたは立下りタイミングと一致しているが、一致していない場合には、目標時期の直前におけるUVW相信号の立上りまたは立下りタイミングから、所定時間が経過した時点で点火制御または噴射制御を実施すればよい。 Note that, as described above, it is determined whether the bottom dead center BDC timing is the exhaust stroke or the compression stroke based on the detection value of the intake pressure sensor 16, but this stroke determination has not yet been made. In this case, the ignition device 11 and the injector 10 are driven also in ts1 ′ to ts2 ′ and tf1 ′ to tf2 ′. In the example of FIG. 5, the various ignition control timings ts1 and ts2 and the injection control timings tf1 and tf2 coincide with the rising or falling timing of the UVW phase signal. The ignition control or the injection control may be performed when a predetermined time has elapsed from the rising or falling timing of the UVW phase signal immediately before.
 以上詳述した本実施形態によれば、以下の効果が得られるようになる。 According to the embodiment described above in detail, the following effects can be obtained.
 (1)異極磁性部34の回転軌道34a上にU相センサSUを配置することで、モータ制御用信号を出力するU相センサSUを利用して内燃機関制御用信号ESを出力でき、燃料噴射制御や点火制御等のエンジン制御に要するクランク軸14の絶対回転位置を把握できるようになる。よって、内燃機関制御用信号ESを出力する専用のセンサ(クランク回転位置センサ)を廃止することができ、センサ個数低減を図ることができる。 (1) By arranging the U-phase sensor SU on the rotation track 34a of the heteropolar magnetic section 34, the internal combustion engine control signal ES can be output using the U-phase sensor SU that outputs the motor control signal, and the fuel The absolute rotational position of the crankshaft 14 required for engine control such as injection control and ignition control can be grasped. Therefore, a dedicated sensor (crank rotation position sensor) that outputs the internal combustion engine control signal ES can be eliminated, and the number of sensors can be reduced.
 (2)U相信号のハイとローだけでは、内燃機関制御用信号ESによるロー信号とモータ制御用信号によるロー信号との見分けがつかない。特に、U相信号の履歴を取得できていないACGスタータ20の駆動開始時またはACGスタータ20の停止時には、U相信号のローが内燃機関制御用信号ESによるものであるか否かを特定できない。これに対し本実施形態では、U相信号、V相信号およびW相信号の組合せ情報NNUMを算出するので、当該NNUM値に基づけば、ACGスタータ20が停止していたとしても、NNUM値が「0」であれば、その時のU相信号のローが内燃機関制御用信号ESによるものであると特定できる。よって、エンジン制御に要する絶対回転位置を迅速に把握できる。 (2) Only the high and low U-phase signals cannot distinguish the low signal from the internal combustion engine control signal ES from the low signal from the motor control signal. In particular, when the driving of the ACG starter 20 for which the history of the U-phase signal has not been acquired or when the ACG starter 20 is stopped, it cannot be determined whether or not the low of the U-phase signal is due to the internal combustion engine control signal ES. On the other hand, in this embodiment, the combination information NNUM of the U-phase signal, the V-phase signal, and the W-phase signal is calculated. Therefore, based on the NNUM value, even if the ACG starter 20 is stopped, the NNUM value is “ If it is “0”, it can be determined that the U-phase signal at that time is due to the internal combustion engine control signal ES. Therefore, the absolute rotational position required for engine control can be quickly grasped.
 特に、アイドルストップ制御システムを有する車両においては、エンジンを自動再始動させるにあたり、上述の如く絶対回転位置を迅速に把握できるので、インジェクタ10及び点火装置11の駆動開始を迅速にでき、好適である。 In particular, in a vehicle having an idle stop control system, since the absolute rotational position can be quickly grasped as described above when the engine is automatically restarted, driving of the injector 10 and the ignition device 11 can be quickly started, which is preferable. .
 (3)所定のマグネット32S(A)の上端部を、回転方向に3分割し、その中央部分に異極磁性部34を形成している。そのため、回転方向全体に亘って形成する従来構造に比べて、所定のマグネット32S(A)と異極磁性部34とが上下方向で磁気短絡する長さを短くできる。よって、ACGスタータ20によるモータ駆動力低下を抑制できるとともに、ACGスタータ20による発電量低下を抑制できる。 (3) The upper end portion of the predetermined magnet 32S (A) is divided into three in the rotation direction, and the heteropolar magnetic portion 34 is formed at the center portion thereof. Therefore, compared with the conventional structure formed over the entire rotation direction, the length in which the predetermined magnet 32S (A) and the heteropolar magnetic part 34 are magnetically short-circuited in the vertical direction can be shortened. Therefore, it is possible to suppress a decrease in motor driving force due to the ACG starter 20, and it is possible to suppress a decrease in power generation amount due to the ACG starter 20.
 (4)また、上述の如く3分割してその中央部分に異極磁性部34を形成するので、所定のマグネット32S(A)のエッジ32bを、異極磁性部34ではなくS極マグネット32Sのエッジにできる。よって、所定のマグネット32S(A)の隣に位置する隣接マグネット32N(B)(C)のエッジ32cから所定のマグネット32S(A)のエッジ32bに切り替わる転流タイミングtc(図5参照)を、U相センサSUで検知できるようになる。よって、U相コイルCUに対する通電制御のタイミングを高精度で制御できる。 (4) Further, as described above, since the magnetic pole 34 is divided into three parts and formed at the center thereof, the edge 32b of the predetermined magnet 32S (A) is not connected to the magnetic pole 34S instead of the magnetic pole 34. Can be an edge. Therefore, the commutation timing tc (see FIG. 5) at which the edge 32c of the adjacent magnet 32N (B) (C) located next to the predetermined magnet 32S (A) is switched to the edge 32b of the predetermined magnet 32S (A). It can be detected by the U-phase sensor SU. Therefore, the timing of energization control for the U-phase coil CU can be controlled with high accuracy.
 (5)異極磁性部34は、所定のマグネット32S(A)に対向するティース部41と極性不整合になることは避けられないが、本実施形態によれば、上述の如く3分割してその中央部分に異極磁性部34を形成するので、所定のマグネット32S(A)の上端部を回転方向全体に亘って異極磁性部34に形成する場合に比べて、異極磁性部34の回転方向長さを短くできる。そのため、所定のマグネット32S(A)に対する異極磁性部34の占有面積を小さくでき、極性不整合に伴い生じるACGスタータ20の出力低下を抑制できる。 (5) It is inevitable that the heteropolar magnetic part 34 becomes inconsistent in polarity with the tooth part 41 facing the predetermined magnet 32S (A). However, according to the present embodiment, it is divided into three parts as described above. Since the heteropolar magnetic part 34 is formed in the central part, compared with the case where the upper end part of the predetermined magnet 32S (A) is formed in the heteropolar magnetic part 34 over the entire rotation direction, The length in the rotation direction can be shortened. Therefore, the occupation area of the heteropolar magnetic portion 34 with respect to the predetermined magnet 32S (A) can be reduced, and the output decrease of the ACG starter 20 caused by the polarity mismatch can be suppressed.
 (6)さらにまた、上述の如く3分割して異極磁性部34を形成するので、内燃機関制御用信号ESのハイとローの切り替わりタイミングを、V相信号およびW相信号のハイとローの切り替わりタイミングと同じにできる。よって、組合せ情報NNUMが複雑になることを回避できる。 (6) Furthermore, since the heteropolar magnetic part 34 is formed by dividing into three as described above, the switching timing of the high and low of the internal combustion engine control signal ES is changed between the high and low of the V phase signal and the W phase signal. Can be the same as the switching timing. Therefore, it is possible to avoid the combination information NNUM from becoming complicated.
 (7)ここで、U相センサSUから内燃機関制御用信号ESを出力させることに起因して、U相コイルCUへの通電制御が実際の電気角に適合した制御内容になっておらずACGスタータ20を逆回転させてしまうことが懸念される。これに対し本実施形態では、ACGスタータ20のモータ駆動を開始してから回転速度NEが所定値以上になるまではトルク伝達を遮断するので、上記懸念を解消できる。 (7) Here, due to the output of the internal combustion engine control signal ES from the U-phase sensor SU, the energization control to the U-phase coil CU is not the control content adapted to the actual electrical angle, and the ACG There is a concern that the starter 20 is rotated in the reverse direction. On the other hand, in the present embodiment, since the torque transmission is interrupted until the rotational speed NE becomes equal to or higher than a predetermined value after the motor driving of the ACG starter 20 is started, the above-mentioned concern can be solved.
 (8)ACGスタータ20のロータ30とクランク軸14とは回転中心が一致した状態で一体的に回転するように固定されており、ロータ30とクランク軸14との間には、ベルトやギア等の動力伝達機構が介在していない。そのため、ACGスタータ20に備えられたU相センサSUからクランク位置信号を出力させるにあたり、ギアのバックラッシュやベルトの伸び等により、クランク軸14の回転位相とロータ30の回転位相とにずれが生じることを回避できるので、U相センサSUを利用してクランク軸14の絶対回転位置を算出するにあたり、十分な算出精度を確保できる。 (8) The rotor 30 and the crankshaft 14 of the ACG starter 20 are fixed so as to rotate integrally with the center of rotation coinciding with each other. Between the rotor 30 and the crankshaft 14, a belt, a gear, or the like The power transmission mechanism is not interposed. Therefore, when the crank position signal is output from the U-phase sensor SU provided in the ACG starter 20, there is a deviation between the rotational phase of the crankshaft 14 and the rotational phase of the rotor 30 due to gear backlash, belt elongation, or the like. Since this can be avoided, sufficient calculation accuracy can be ensured in calculating the absolute rotational position of the crankshaft 14 using the U-phase sensor SU.
 (8)内燃機関制御用信号ESを検出した時のNNUM値「0」が、ES検出時以外では出現しないように構成されている。そのため、現時点でのNNUM値に基づき絶対回転位置を算出できるので、NNUM値の履歴が蓄積されるのを待つことなく、迅速に絶対回転位置を把握できる。 (8) The NNUM value “0” when the internal combustion engine control signal ES is detected is configured not to appear except when ES is detected. Therefore, since the absolute rotational position can be calculated based on the current NUMUM value, the absolute rotational position can be quickly grasped without waiting for the history of the NNUM value to be accumulated.
 (9)ここで、U相センサSUが内燃機関制御用信号ESを出力することに起因して、現時点でのU相センサ信号からは次回のU相センサ信号を特定できない場合がある。しかしこの場合であっても、現時点でのNNUM値に基づけば、次回のNNUM値を特定して次回のU相センサ信号を特定できる場合がある。この点を鑑みた本実施形態では、現時点でのNNUM値に基づき特定した次回のNNUM値に基づき、U相コイルCUへの通電制御内容を決定するので、次回のU相センサ信号が特定できなくなる機会を減らして通電制御内容を決定できるようになる。 (9) Here, because the U-phase sensor SU outputs the internal combustion engine control signal ES, the next U-phase sensor signal may not be specified from the current U-phase sensor signal. However, even in this case, based on the current NUMUM value, the next NNUM value may be identified to identify the next U-phase sensor signal. In the present embodiment in view of this point, the energization control content to the U-phase coil CU is determined based on the next NNUM value specified based on the current NNUM value, so that the next U-phase sensor signal cannot be specified. It is possible to reduce the opportunity and determine the contents of energization control.
 (10)ところで、図16に示すクランク位置信号の立ち上りまたは立ち下りの周期は、1つのマグネット32S,32Nが占める回転角(30°)だけクランク軸14が回転する時間である。これに対し、NNUMの更新周期は、各々のUVW相信号の組合せであるため、前記回転角(30°)の3分の1の回転角だけクランク軸14が回転する時間となる。つまり、NNUMの更新周期は、図16のクランク位置信号の周期よりも短いと言える。そのため、各々のUVW相信号の立ち上りまたは立ち下りのタイミング(NNUMの更新タイミング)に基づき燃料噴射時期や点火時期を制御する本実施形態によれば、図16に示すクランク位置信号に基づき制御する場合に比べて、制御に使用する基本時間が3分の1(10°/30°)になり、燃料噴射時期や点火時期を高精度で制御できる。 (10) By the way, the rising or falling cycle of the crank position signal shown in FIG. 16 is the time during which the crankshaft 14 rotates by the rotation angle (30 °) occupied by one magnet 32S, 32N. On the other hand, since the update cycle of NNUM is a combination of the respective UVW phase signals, the crankshaft 14 is rotated by a rotation angle that is one third of the rotation angle (30 °). That is, it can be said that the NNUM update cycle is shorter than the cycle of the crank position signal of FIG. Therefore, according to this embodiment in which the fuel injection timing and the ignition timing are controlled based on the rising or falling timing (NNUM update timing) of each UVW phase signal, the control is performed based on the crank position signal shown in FIG. In comparison with this, the basic time used for control is one third (10 ° / 30 °), and the fuel injection timing and ignition timing can be controlled with high accuracy.
 (第2実施形態)
 上記第1実施形態では、3つのUVW相センサSU~SWのうち、U相センサSUのみを異極磁性部34の回転軌道34a上に配置しているのに対し、本実施形態では、U相センサSUおよびV相センサSVを回転軌道34a上に配置している。その結果、V相信号についても、U相信号と同様にして内燃機関制御用信号ESが含まれることとなる(図7参照)。
(Second Embodiment)
In the first embodiment, among the three UVW phase sensors SU to SW, only the U-phase sensor SU is arranged on the rotation orbit 34a of the heteropolar magnetic part 34, whereas in this embodiment, the U-phase The sensor SU and the V-phase sensor SV are arranged on the rotation track 34a. As a result, the V-phase signal also includes the internal combustion engine control signal ES in the same manner as the U-phase signal (see FIG. 7).
 ここで、上記第1実施形態では、NNUM値が「0」であれば、U相センサSUから内燃機関制御用信号ESが出力されていることを特定できる。しかし、図7に示す本実施形態では、NNUM値が「0」である場合に、U相センサSUおよびV相センサSVのいずれから内燃機関制御用信号ESが出力されているかを特定することができないため、絶対回転位置を算出できないことが懸念される。 Here, in the first embodiment, if the NNUM value is “0”, it can be specified that the internal combustion engine control signal ES is output from the U-phase sensor SU. However, in the present embodiment shown in FIG. 7, when the NNUM value is “0”, it is specified which of the U-phase sensor SU and the V-phase sensor SV is outputting the internal combustion engine control signal ES. Since this is not possible, there is a concern that the absolute rotational position cannot be calculated.
 そこで本実施形態では、組合せ情報NNUMの履歴を表した履歴情報に基づいて、いずれの内燃機関制御用信号ESであるかを特定して絶対回転位置を算出する。なお、本実施形態での履歴情報とは、2つの連続したNNUM値のことであるが、3つ以上の連続したNNUM値を履歴情報としてもよい。 Therefore, in the present embodiment, based on the history information representing the history of the combination information NNUM, the internal rotational engine control signal ES is specified and the absolute rotational position is calculated. The history information in the present embodiment is two consecutive NNUM values, but three or more consecutive NNUM values may be used as the history information.
 具体的には、NNUM値が「0」である場合において、前回のNNUM値が「5」であればU相センサSUから出力された内燃機関制御用信号ESであると特定でき、前回のNNUM値が「3」であればV相センサSVから出力された内燃機関制御用信号ESであると特定できる。なお、ACGスタータ20が逆転している場合には、前回NNUM値が「3」であればU相センサSU、「6」であればV相センサSVから出力された内燃機関制御用信号ESであると特定できる。そして、これらの特定結果と、内燃機関制御用信号ESの出現タイミングに基づき、絶対回転位置を算出する。 Specifically, when the NNUM value is “0”, if the previous NUMUM value is “5”, it can be identified as the internal combustion engine control signal ES output from the U-phase sensor SU, and the previous NNUM value can be specified. If the value is “3”, the internal combustion engine control signal ES output from the V-phase sensor SV can be specified. When the ACG starter 20 is rotating in reverse, if the previous NNUM value is “3”, the U-phase sensor SU is output from the V-phase sensor SV if the NNUM value is “3”. It can be specified that there is. Then, the absolute rotational position is calculated based on these identification results and the appearance timing of the internal combustion engine control signal ES.
 また、センサ信号がハイ・ローのいずれであるかの判定と、先述したエッジ検知とを組み合わせて絶対回転位置を算出してもよい。具体的には、内燃機関制御用信号ESのエッジ検知時期(図7中の符号tu参照)と、W相信号のエッジ検知時期(図7中の符号tw参照)とがほぼ同じであり、かつ、いずれの信号もローに切り替わったと判定された場合には、U相センサSUから出力された内燃機関制御用信号ESであると特定できる。 Also, the absolute rotational position may be calculated by combining the determination of whether the sensor signal is high or low and the edge detection described above. Specifically, the edge detection timing of the internal combustion engine control signal ES (refer to the symbol tu in FIG. 7) and the edge detection timing of the W-phase signal (refer to the symbol tw in FIG. 7) are substantially the same, and When it is determined that both signals are switched to low, it can be specified that the signal is an internal combustion engine control signal ES output from the U-phase sensor SU.
 同様にして、内燃機関制御用信号ESのエッジ検知時期(図7中の符号tv参照)と、U相信号のエッジ検知時期(図7中の符号tc参照)とがほぼ同じであり、かつ、いずれの信号もローに切り替わったと判定された場合には、V相センサSVから出力された内燃機関制御用信号ESであると特定できる。 Similarly, the edge detection timing of the internal combustion engine control signal ES (see symbol tv in FIG. 7) is substantially the same as the edge detection timing of the U-phase signal (see symbol TC in FIG. 7), and When it is determined that both signals are switched to low, the internal combustion engine control signal ES output from the V-phase sensor SV can be specified.
 次に、UVW相コイルCU~CWへの通電制御について説明する。上述の手法により絶対回転位置を算出した後には、内燃機関制御用信号ESにより「5→0→3→0→6」と変化するNNUM値を、図7中の括弧内に示すように、「5→1→3→2→6」と変化しているとみなしてUVW相コイルCU~CWへの通電制御を実施すれば、ティース部41のコイルCU,CV,CWと磁極位相が一致し、モータを回転駆動させることができる。 Next, energization control to the UVW phase coils CU to CW will be described. After the absolute rotational position is calculated by the above-described method, the NNUM value that changes as “5 → 0 → 3 → 0 → 6” by the internal combustion engine control signal ES is shown in parentheses in FIG. 5 → 1 → 3 → 2 → 6 ”and assuming that the energization control to the UVW phase coils CU to CW is performed, the magnetic pole phases coincide with the coils CU, CV, and CW of the tooth portion 41, The motor can be driven to rotate.
 一方、絶対回転位置が算出される前の停止時においては、NNUM値が「0」である場合において、次回NNUM値が「3」および「6」のいずれであるかを特定できない。そこで本実施形態では、「3」「6」のうちの任意値(例えば「3」)が次回NNUM値であるとみなしてUVW相コイルCU~CWへの通電制御を実施する。そして、所定時間が経過してもACGスタータ20が回転を開始せずにNNUM値が変化しない場合には、次回NNUM値は前記任意値「3」ではなく他の値「6」であったとみなしてUVW相コイルCU~CWへの通電制御を実施する。 On the other hand, at the time of stopping before the absolute rotation position is calculated, when the NNUM value is “0”, it cannot be specified whether the next NNUM value is “3” or “6”. Therefore, in the present embodiment, energization control for the UVW phase coils CU to CW is performed by regarding that an arbitrary value (for example, “3”) out of “3” and “6” is the next NNUM value. If the NNUM value does not change because the ACG starter 20 does not start rotating even after the predetermined time has elapsed, the next NNUM value is regarded as another value “6” instead of the arbitrary value “3”. Then, energization control to the UVW phase coils CU to CW is performed.
 以上詳述した本実施形態によれば、上記第1実施形態と同様の効果が得られるとともに、以下の効果が得られるようになる。すなわち、上記第1実施形態では、クランク軸14が1回転する間に内燃機関制御用信号ESが1回出現するのに対し、本実施形態によれば2回出現する。そのため、ACGスタータ20の駆動を開始してから、クランク軸14が1回転することを待たずして内燃機関制御用信号ESが出現することとなるので、内燃機関制御用信号ESに基づき絶対回転位置を算出するのに要する時間を短縮できる。よって、インジェクタ10及び点火装置11の駆動開始を迅速にできる。また、これにより、エンジンによる駆動トルクが早期に発生し、要求されるモータ駆動トルクを低減させることができるので、ACGスタータ20の小型化を図ることができる。 According to this embodiment described in detail above, the same effects as those of the first embodiment can be obtained, and the following effects can be obtained. That is, in the first embodiment, the internal combustion engine control signal ES appears once while the crankshaft 14 rotates once, whereas it appears twice according to the present embodiment. For this reason, the internal combustion engine control signal ES appears without waiting for the crankshaft 14 to make one rotation after the driving of the ACG starter 20 is started. Therefore, the absolute rotation is performed based on the internal combustion engine control signal ES. The time required to calculate the position can be shortened. Therefore, the drive start of the injector 10 and the ignition device 11 can be quickly performed. In addition, the driving torque generated by the engine can be generated early and the required motor driving torque can be reduced, so that the ACG starter 20 can be downsized.
 また、本実施形態では、異極磁性部34の回転軌道34a上に複数のセンサを配置することに起因して、内燃機関制御用信号ESを検出した時のNNUM値「0」が、いずれのセンサによる内燃機関制御用信号ESを組み合わせたものであるかを特定できなくなる。これに対し、本実施形態では、NNUM値の履歴に基づき前記特定を行う。また、センサ信号がハイ・ローのいずれであるかの判定とエッジ検知とに基づき前記特定を行うこともできる。よって、絶対回転位置の把握を可能にできる。 Further, in the present embodiment, the NNUM value “0” when the internal combustion engine control signal ES is detected due to the arrangement of the plurality of sensors on the rotation track 34a of the heteropolar magnetic portion 34 is It becomes impossible to specify whether the signal ES for controlling the internal combustion engine by the sensor is combined. On the other hand, in the present embodiment, the identification is performed based on the history of the NNUM value. The identification can also be performed based on determination of whether the sensor signal is high or low and edge detection. Therefore, the absolute rotational position can be grasped.
 さらに、本実施形態では、絶対回転位置の算出が未だ完了していない回転駆動期間における通電制御(モータ駆動制御)に関し、次回NNUM値の候補「3」「6」を順に試行して通電制御するので、前記回転駆動期間であってもモータ駆動制御が可能となる。 Furthermore, in the present embodiment, regarding energization control (motor drive control) in the rotation drive period for which the calculation of the absolute rotation position has not yet been completed, the next NNUM value candidates “3” and “6” are tried in turn and the energization control is performed. Therefore, motor drive control is possible even during the rotation drive period.
 (第3実施形態)
 上記第2実施形態では、3つのUVW相センサSU~SWのうち、U相センサSUおよびV相センサSVを異極磁性部34の回転軌道34a上に配置しているのに対し、本実施形態では、3つのUVW相センサSU~SW全てを回転軌道34a上に配置している。その結果、W相信号についても、U相信号およびV相信号と同様にして内燃機関制御用信号ESが含まれることとなる(図8参照)。
(Third embodiment)
In the second embodiment, among the three UVW phase sensors SU to SW, the U-phase sensor SU and the V-phase sensor SV are arranged on the rotation trajectory 34a of the heteropolar magnetic part 34. Then, all the three UVW phase sensors SU to SW are arranged on the rotation track 34a. As a result, the internal combustion engine control signal ES is also included in the W-phase signal as in the U-phase signal and the V-phase signal (see FIG. 8).
 そして、図8に示す本実施形態においても上記第2実施形態と同様にして、NNUM値が「0」である場合に、UVW相センサSU~SWのいずれから内燃機関制御用信号ESが出力されているかを、組合せ情報NNUMの履歴に基づいて特定する。また、上記第2実施形態と同様にして、センサ信号がハイ・ローのいずれであるかの判定とエッジ検知とに基づき前記特定を行うこともできる。そして、その特定結果に基づき絶対回転位置を算出する。 Also in the present embodiment shown in FIG. 8, as in the second embodiment, when the NUMUM value is “0”, the internal combustion engine control signal ES is output from any of the UVW phase sensors SU to SW. Is identified based on the history of the combination information NNUM. Further, in the same manner as in the second embodiment, the identification can be performed based on determination of whether the sensor signal is high or low and edge detection. Then, the absolute rotational position is calculated based on the identification result.
 具体的には、NNUM値が「0」である場合において、前回のNNUM値が「5」であればU相センサSUから出力された内燃機関制御用信号ESであると特定でき、「3」であればV相センサSVからの出力と特定でき、「6」であればW相センサSWからの出力と特定できる。なお、ACGスタータ20が逆転している場合には、前回NNUM値が「3」であればU相センサSU、「6」であればV相センサSV、「5」であればW相センサSWから出力された内燃機関制御用信号ESであると特定できる。そして、これらの特定結果と、内燃機関制御用信号ESの出現タイミングに基づき、絶対回転位置を算出する。 Specifically, when the NNUM value is “0”, if the previous NNUM value is “5”, it can be identified as the internal combustion engine control signal ES output from the U-phase sensor SU, and “3”. If so, the output from the V-phase sensor SV can be specified, and if “6”, the output from the W-phase sensor SW can be specified. When the ACG starter 20 is reversely rotated, if the previous NUMUM value was “3”, the U-phase sensor SU, if “6”, the V-phase sensor SV, and if “5”, the W-phase sensor SW. The internal combustion engine control signal ES output from can be specified. Then, the absolute rotational position is calculated based on these identification results and the appearance timing of the internal combustion engine control signal ES.
 次に、UVW相コイルCU~CWへの通電制御について説明する。上述の手法により絶対回転位置を算出した後には、内燃機関制御用信号ESにより「5→0→3→0→6→0→5→1」と変化するNNUM値を、ティース巻線が対向しているNNUM値、つまり図8中の括弧内に示すように、「5→1→3→2→6→4→5→1」と変化しているとみなして、UVW相コイルCU~CWへの通電制御を実施すればよい。 Next, energization control to the UVW phase coils CU to CW will be described. After the absolute rotational position is calculated by the above-described method, the teeth windings face the NNUM value that changes from “5 → 0 → 3 → 0 → 6 → 0 → 5 → 1” by the internal combustion engine control signal ES. As shown in parentheses in FIG. 8, it is assumed that the NNUM value has changed as “5 → 1 → 3 → 2 → 6 → 4 → 5 → 1”, and is transferred to the UVW phase coils CU to CW. The energization control may be performed.
 一方、絶対回転位置が算出される前の停止時においては、NNUM値が「0」である場合において、次回NNUM値が「3」「6」「5」のいずれであるかを特定できない。そこで本実施形態では、「3」「6」「5」のうちの任意値(例えば「3」)が次回NNUM値であるとみなしてUVW相コイルCU~CWへの通電制御を実施する。そして、所定時間が経過してもACGスタータ20が回転を開始せずにNNUM値が変化しない場合には、次回NNUM値は前記任意値「3」ではなく他の値「6」「5」であったことになる。そこで次は、「6」「5」のうちの任意値(例えば「6」)が次回NNUM値であるとみなして通電制御する。その結果、さらに所定時間が経過してもACGスタータ20が回転を開始せずにNNUM値が変化しない場合には、前記次回NNUM値は任意値「6」ではなく残りの値「5」であったとみなしてUVW相コイルCU~CWへの通電制御を実施する。なお、実際のNNUM値が「0」から期待値と異なる値になった場合には、その実際のNNUM値に基づいて駆動を実施する。 On the other hand, when the NNUM value is “0” at the stop before the absolute rotational position is calculated, it cannot be specified whether the next NNUM value is “3”, “6”, or “5”. Therefore, in the present embodiment, energization control to the UVW phase coils CU to CW is performed by regarding that an arbitrary value (for example, “3”) of “3”, “6”, and “5” is the next NNUM value. If the NNUM value does not change because the ACG starter 20 does not start rotating even after the predetermined time has elapsed, the next NNUM value is not the arbitrary value “3” but other values “6” and “5”. It will have been. Then, next, the energization control is performed assuming that an arbitrary value (for example, “6”) of “6” and “5” is the next NNUM value. As a result, if the NNUM value does not change because the ACG starter 20 does not start rotating even after a predetermined time has elapsed, the next NNUM value is not the arbitrary value “6” but the remaining value “5”. Assuming that the UVW phase coils CU to CW are energized, the energization control is performed. When the actual NNUM value becomes a value different from the expected value from “0”, driving is performed based on the actual NNUM value.
 以上詳述した本実施形態によれば、クランク軸14が1回転する間に内燃機関制御用信号ESが3回出現する。そのため、ACGスタータ20の駆動を開始してから、内燃機関制御用信号ESが出現するまでに要する時間を、上記第2実施形態に比べてさらに短縮することができる。よって、内燃機関制御用信号ESに基づき絶対回転位置を算出するのに要する時間を短縮でき、インジェクタ10及び点火装置11の駆動開始迅速化を促進できる。 According to the present embodiment described in detail above, the internal combustion engine control signal ES appears three times while the crankshaft 14 rotates once. Therefore, the time required from the start of driving of the ACG starter 20 to the appearance of the internal combustion engine control signal ES can be further shortened compared to the second embodiment. Therefore, the time required to calculate the absolute rotational position based on the internal combustion engine control signal ES can be shortened, and the drive start speedup of the injector 10 and the ignition device 11 can be accelerated.
 (第4実施形態)
 上記第3実施形態では、3つのUVW相センサSU~SWを、複数のティース部41の間隙41aのうち隣り合う間隙41aに順番に配置している。これに対し本実施形態では、図9に示すように、3つのUVW相センサSU~SWを隣り合う間隙41aに配置することに替え、分散して配置している。図9の例では、U相センサSUとV相センサSVとの間の角度、およびV相センサSVとW相センサSWとの間の角度が140°となるように分散配置している。
(Fourth embodiment)
In the third embodiment, the three UVW phase sensors SU to SW are sequentially arranged in the adjacent gaps 41 a among the gaps 41 a of the plurality of tooth portions 41. On the other hand, in this embodiment, as shown in FIG. 9, the three UVW phase sensors SU to SW are arranged in a dispersed manner instead of being arranged in the adjacent gap 41a. In the example of FIG. 9, the angle between the U-phase sensor SU and the V-phase sensor SV and the angle between the V-phase sensor SV and the W-phase sensor SW are distributed so as to be 140 °.
 したがって、上記第3実施形態では、クランク軸14が20°回転する毎に内燃機関制御用信号ESが現れるのに対し、図10に示す本実施形態では、クランク軸14が140°回転する毎に内燃機関制御用信号ESが現れる。 Therefore, in the third embodiment, the internal combustion engine control signal ES appears every time the crankshaft 14 rotates 20 °, whereas in the present embodiment shown in FIG. 10, every time the crankshaft 14 rotates 140 °. An internal combustion engine control signal ES appears.
 なお、図10に示す本実施形態においても上記第3実施形態と同様にして、NNUM値が「0」である場合に、UVW相センサSU~SWのいずれから内燃機関制御用信号ESが出力されているかを、組合せ情報NNUMの履歴に基づいて特定する。そして、その特定結果に基づき絶対回転位置を算出する。 In the present embodiment shown in FIG. 10, as in the third embodiment, when the NNUM value is “0”, the internal combustion engine control signal ES is output from any of the UVW phase sensors SU to SW. Is identified based on the history of the combination information NNUM. Then, the absolute rotational position is calculated based on the identification result.
 次に、UVW相コイルCU~CWへの通電制御について説明する。上述の手法により絶対回転位置を算出した後には、内燃機関制御用信号ESにより「5→0→3」「3→0→6」「6→0→5」と変化するNNUM値を、図10中の括弧内に示すように、「5→1→3」「3→2→6」「6→4→5」と変化しているとみなしてUVW相コイルCU~CWへの通電制御を実施すればよい。 Next, energization control to the UVW phase coils CU to CW will be described. After the absolute rotational position is calculated by the above-described method, the NNUM values that change from “5 → 0 → 3”, “3 → 0 → 6”, and “6 → 0 → 5” by the internal combustion engine control signal ES are shown in FIG. As shown in the parentheses in the middle, energization control to the UVW phase coils CU to CW is performed on the assumption that the change is “5 → 1 → 3”, “3 → 2 → 6”, and “6 → 4 → 5”. do it.
 一方、絶対回転位置が算出される前においては、NNUM値が「0」である場合において、次回NNUM値が「3」「6」「5」のいずれであるかを特定できない。そこで本実施形態では、上記第3実施形態と同様にして、「3」「6」「5」のうちの任意値(例えば「3」)が次回NNUM値であるとみなして通電制御を実施し、所定時間が経過してもNNUM値が変化せずACGスタータ20が回転を開始しないとみなされる場合には、他の値「6」「5」のうちの任意値(例えば「6」)が次回NNUM値であるとみなして通電制御を実施し、それでも回転開始しない場合には、次回NNUM値は任意値「6」ではなく残りの値「5」であったとみなしてUVW相コイルCU~CWへの通電制御を実施する。 On the other hand, before the absolute rotational position is calculated, when the NNUM value is “0”, it cannot be specified whether the next NNUM value is “3”, “6”, or “5”. Therefore, in the present embodiment, the energization control is performed in the same manner as the third embodiment, assuming that an arbitrary value (for example, “3”) of “3”, “6”, and “5” is the next NNUM value. When it is considered that the NNUM value does not change even after the predetermined time has elapsed and the ACG starter 20 does not start rotating, an arbitrary value (for example, “6”) among other values “6” and “5” is set. If the energization control is performed assuming that the next NNUM value is reached, and the rotation still does not start, the next NNUM value is regarded as the remaining value “5” instead of the arbitrary value “6”, and the UVW phase coils CU to CW Conduct energization control to
 以上詳述した本実施形態によれば、3つのUVW相センサSU~SWを分散配置するので、内燃機関制御用信号ESが現れる時間間隔を短くできる。そのため、ACGスタータ20の駆動を開始してから、内燃機関制御用信号ESが出現するまでに要する時間を、上記第3実施形態に比べてさらに短縮することができる。よって、内燃機関制御用信号ESに基づき絶対回転位置を算出するのに要する時間を短縮でき、インジェクタ10及び点火装置11の駆動開始迅速化を促進できる。 According to the present embodiment described in detail above, since the three UVW phase sensors SU to SW are distributedly arranged, the time interval at which the internal combustion engine control signal ES appears can be shortened. Therefore, the time required from the start of driving of the ACG starter 20 to the appearance of the internal combustion engine control signal ES can be further shortened compared to the third embodiment. Therefore, the time required to calculate the absolute rotational position based on the internal combustion engine control signal ES can be shortened, and the drive start speedup of the injector 10 and the ignition device 11 can be accelerated.
 なお、UVW相センサSU~SWのうち2つのセンサを異極磁性部34の回転軌道34a上に配置した場合においても、本実施形態にかかる「分散配置」を適用して、絶対回転位置を算出するのに要する時間の短縮を図るようにしてもよい。 Even when two of the UVW phase sensors SU to SW are arranged on the rotation trajectory 34a of the heteropolar magnetic part 34, the “distributed arrangement” according to this embodiment is applied to calculate the absolute rotation position. You may make it aim at shortening of the time required to do.
 (第5実施形態)
 上記各実施形態では、所定のマグネット32S(A)の上端部分に異極磁性部34を形成するにあたり、前記上端部分を回転方向に3分割し、その中央部分を異極磁性部34として形成している。これに対し本実施形態では、上述の如く3分割することを廃止しており、図11中の斜線部分に示すように、所定のマグネット32S(A)の上端部分の全体を異極磁性部34として形成している。
(Fifth embodiment)
In each of the embodiments described above, when forming the heteropolar magnetic portion 34 at the upper end portion of the predetermined magnet 32S (A), the upper end portion is divided into three in the rotational direction, and the central portion is formed as the heteropolar magnetic portion 34. ing. On the other hand, in the present embodiment, the division into three as described above is abolished, and as shown by the hatched portion in FIG. 11, the entire upper end portion of the predetermined magnet 32S (A) is the different polar magnetic portion 34. It is formed as.
 また、上記各実施形態では、内燃機関制御用信号ESを出力する専用のセンサ(クランク回転位置センサ)を廃止しているのに対し、本実施形態では、図11に示すように、クランク回転位置センサSEを残しつつ、異極磁性部34の回転軌道34a上にU相センサSUを配置している。つまり、異極磁性部34の回転軌道34a上には、クランク回転位置センサSEおよびU相センサSUの2つが位置している。そのため、図5に示すように、U相センサSUから内燃機関制御用信号ESが出力されるとともに、図16中の最上段に示す内燃機関制御用信号がクランク回転位置センサSEから出力される。 In each of the above embodiments, a dedicated sensor (crank rotation position sensor) for outputting the internal combustion engine control signal ES is abolished, whereas in this embodiment, as shown in FIG. While leaving the sensor SE, the U-phase sensor SU is arranged on the rotation track 34a of the heteropolar magnetic part 34. That is, the crank rotation position sensor SE and the U-phase sensor SU are located on the rotation track 34a of the heteropolar magnetic part 34. Therefore, as shown in FIG. 5, the internal combustion engine control signal ES is output from the U-phase sensor SU, and the internal combustion engine control signal shown in the uppermost stage in FIG. 16 is output from the crank rotation position sensor SE.
 そして、3つのUVW相センサSU~SWの信号に加え、クランク回転位置センサSEの信号も組み合わせて組合せ情報NNUMを生成しており、このNNUM値に基づき、絶対回転位置を算出するとともにUVW相コイルCU~CWへの通電制御を実施する。 In addition to the signals of the three UVW phase sensors SU to SW, the combination rotational speed sensor SE is also combined to generate the combination information NNUM. Based on the NNUM value, the absolute rotational position is calculated and the UVW phase coil is generated. Conduct energization control to CU to CW.
 以上により、本実施形態によれば、所定のマグネット32S(A)のうち回転方向の全体に亘って異極磁性部34を形成するので、図4(a)に示すように3分割した中央部分を異極磁性部34とする場合に比べて、所定のマグネット32S(A)に異極磁性部34を着磁する作業を簡素にできる。 As described above, according to the present embodiment, the heteropolar magnetic portion 34 is formed over the entire rotation direction of the predetermined magnet 32S (A), so that the central portion divided into three as shown in FIG. Compared to the case where the different-polarity magnetic portion 34 is used, the work of magnetizing the different-polarity magnetic portion 34 on the predetermined magnet 32S (A) can be simplified.
 また、異極磁性部34の回転軌道34a上に、クランク回転位置センサSEおよびU相センサSUの2つを配置するので、クランク回転位置センサSEのみを配置した場合に比べて、ACGスタータ20の駆動を開始してから、内燃機関制御用信号ESが出現するまでに要する時間を短縮できる。よって、内燃機関制御用信号に基づき絶対回転位置を算出するのに要する時間を短縮でき、インジェクタ10及び点火装置11の駆動開始迅速化を促進できる。 In addition, since the crank rotation position sensor SE and the U-phase sensor SU are arranged on the rotation path 34a of the heteropolar magnetic portion 34, the ACG starter 20 is compared with the case where only the crank rotation position sensor SE is arranged. The time required from the start of driving until the internal combustion engine control signal ES appears can be shortened. Therefore, the time required to calculate the absolute rotational position based on the internal combustion engine control signal can be shortened, and the drive start speedup of the injector 10 and the ignition device 11 can be accelerated.
 (第6実施形態)
 エンジンを停止させた時のクランク軸14の回転停止位置は、圧縮行程中の所定範囲(例えばBTDC150°付近から上死点TDCの範囲)となる可能性が高い。このことは、停止直前の低NE時のピストンは、圧縮行程においてピストンを上昇させる時の圧縮負荷により停止する可能性が高いからである。したがって、試験等により停止予想位置を把握することは一般的に可能である。
(Sixth embodiment)
The rotation stop position of the crankshaft 14 when the engine is stopped is likely to be within a predetermined range during the compression stroke (for example, a range from about BTDC 150 ° to top dead center TDC). This is because the piston at low NE just before the stop is highly likely to stop due to the compression load when the piston is raised during the compression stroke. Therefore, it is generally possible to grasp the expected stop position by a test or the like.
 ここで、停止予想位置でクランク軸14が回転停止した状態において、異極磁性部34が位相センサ(図5の例ではU相センサSUであり、図7の例ではU相センサSUまたはV相センサSV)の対向位置、またはその対向位置から僅かに遅角した位置にあるようにすると、絶対回転位置を把握できていない回転駆動期間に内燃機関制御用信号を出力することとなり、この場合には適正な通電制御内容でモータ制御できなくなる可能性が高くなる。 Here, in a state where the crankshaft 14 has stopped rotating at the expected stop position, the heteropolar magnetic portion 34 is a phase sensor (in the example of FIG. 5, the U-phase sensor SU, in the example of FIG. 7, the U-phase sensor SU or V-phase). If the sensor SV) is located at a position opposite to or slightly retarded from the opposite position, an internal combustion engine control signal is output during a rotational drive period in which the absolute rotational position cannot be determined. There is a high possibility that the motor cannot be controlled with proper energization control.
 したがって、停止予想位置で停止した状態において、異極磁性部34が位相センサの対向位置から僅かに進角した位置にあるようにすれば、上述の如く適正な通電制御内容でモータ制御できなくなる可能性を低減できる。 Therefore, if the heteropolar magnetic part 34 is in a position slightly advanced from the opposed position of the phase sensor in the state where it is stopped at the expected stop position, the motor cannot be controlled with the proper energization control content as described above. Can be reduced.
 その一方で、停止予想位置でクランク軸14が回転停止した状態において、異極磁性部34が位相センサの対向位置、或いは位相センサの対向位置から所定量だけ遅角した位置となるよう、位相センサおよび異極磁性部34を配置すれば、エンジン回転を開始してから直ぐに内燃機関制御用信号が出力されるようになるので、内燃機関制御用信号に基づく絶対回転位置の算出を迅速にでき、絶対回転位置の把握に要する時間短縮を促進できる、といった利点もある。 On the other hand, in a state where the crankshaft 14 stops rotating at the expected stop position, the phase sensor is arranged such that the heteropolar magnetic portion 34 is at a position opposed to the phase sensor or a position delayed by a predetermined amount from the position opposed to the phase sensor. If the heteropolar magnetic part 34 is arranged, the internal combustion engine control signal is output immediately after the engine rotation is started, so that the absolute rotational position based on the internal combustion engine control signal can be quickly calculated, There is also an advantage that the time required for grasping the absolute rotational position can be reduced.
 (第7実施形態)
 図12および図13に示す本実施形態では、図4(a)、図4(b)に示す異極磁性部34を非磁性部(空隙34k)に置き換えて変形させたものである。すなわち、所定のマグネット32S(A)のうち、異極磁性部34に着磁されていた部分を切り欠いて空隙34kを形成している。なお、図13は、ハウジング31(図1参照)の内周面に隣接配置された状態のマグネット32N,32Sを示す斜視図である。図13に示すように、空隙34kはロータ30の回転径方向に貫通した形状である。
(Seventh embodiment)
In this embodiment shown in FIGS. 12 and 13, the heteropolar magnetic part 34 shown in FIGS. 4 (a) and 4 (b) is replaced with a nonmagnetic part (gap 34k) and deformed. That is, the gap 34k is formed by cutting out a portion of the predetermined magnet 32S (A) that is magnetized by the heteropolar magnetic portion 34. FIG. 13 is a perspective view showing the magnets 32N and 32S in a state of being disposed adjacent to the inner peripheral surface of the housing 31 (see FIG. 1). As shown in FIG. 13, the air gap 34 k has a shape penetrating in the rotation radial direction of the rotor 30.
 そして、図12に示すように、空隙34kの回転軌道34a上にU相センサSUが位置し、V相センサSVおよびW相センサSWについては回転軌道34aから外れた位置にある。したがって、各々のセンサから出力されるUVW相信号、内燃機関制御用信号ESおよび組合せ情報NNUMは、図5と同じになる。 Then, as shown in FIG. 12, the U-phase sensor SU is positioned on the rotation track 34a of the gap 34k, and the V-phase sensor SV and the W-phase sensor SW are at positions deviating from the rotation track 34a. Therefore, the UVW phase signal, the internal combustion engine control signal ES, and the combination information NNUM output from each sensor are the same as those in FIG.
 なお、空隙34kを形成した本実施形態において、3つのセンサSU~SWのうち2つのセンサを回転軌道34a上に配置してもよく、例えばU相センサSUおよびV相センサSVをこの場合には、内燃機関制御用信号ESおよび組合せ情報NNUMは図7と同じになる。また、本実施形態において、3つのUVW相センサSU~SW全てを回転軌道34a上に配置してもよく、この場合には、内燃機関制御用信号ESおよび組合せ情報NNUMは図8と同じになる。また、本実施形態において、3つのUVW相センサSU~SWを図9の如く分散配置した場合には、内燃機関制御用信号ESおよび組合せ情報NNUMは図10と同じになる。 In the present embodiment in which the gap 34k is formed, two of the three sensors SU to SW may be arranged on the rotation track 34a. For example, in this case, the U-phase sensor SU and the V-phase sensor SV are arranged in this case. The internal combustion engine control signal ES and the combination information NNUM are the same as those in FIG. In the present embodiment, all three UVW phase sensors SU to SW may be arranged on the rotation track 34a. In this case, the internal combustion engine control signal ES and the combination information NNUM are the same as those in FIG. . Further, in the present embodiment, when the three UVW phase sensors SU to SW are dispersedly arranged as shown in FIG. 9, the internal combustion engine control signal ES and the combination information NNUM are the same as those in FIG.
 以上により、空隙34kを形成した本実施形態においても内燃機関制御用信号ESおよび組合せ情報NNUMは上記各実施形態と同じになるため、上記各実施形態と同様の効果が発揮される。しかも、異極磁性部34を非磁性部(空隙34k)に置き換えることにより、以下に説明する磁気短絡量軽減の効果も発揮される。 As described above, also in the present embodiment in which the air gap 34k is formed, the internal combustion engine control signal ES and the combination information NNUM are the same as those in the above embodiments, and thus the same effects as those in the above embodiments are exhibited. In addition, by replacing the heteropolar magnetic part 34 with a non-magnetic part (gap 34k), the effect of reducing the amount of magnetic short circuit described below is also exhibited.
 図14(a)は、第1実施形態にかかるロータ30およびステータ40を示す図であり、所定のマグネット32S(A)に異極磁性部34が形成されている。一方、図14(b)は、本実施形態にかかるロータ30およびステータ40を示す図であり、所定のマグネット32S(A)に空隙34kが形成されている。(a)(b)いずれにおいても、所定のマグネット32S(A)に対向するティース部41から、隣接マグネット32N(B)(C)へと繋がる磁束J1が発生し、この磁束J1がモータ駆動力または発電力を生じさせる。ちなみに、ハウジング31のうちS極マグネット32Sに対向する部分はN極となり、N極マグネット32Nに対向する部分はS極となる。 FIG. 14A is a diagram showing the rotor 30 and the stator 40 according to the first embodiment, and a different magnet part 34 is formed on a predetermined magnet 32S (A). On the other hand, FIG. 14B is a diagram showing the rotor 30 and the stator 40 according to the present embodiment, and a gap 34k is formed in a predetermined magnet 32S (A). In both (a) and (b), a magnetic flux J1 connected to the adjacent magnet 32N (B) (C) is generated from the tooth portion 41 facing the predetermined magnet 32S (A), and this magnetic flux J1 is used as a motor driving force. Or generate electric power. Incidentally, the portion of the housing 31 that faces the S pole magnet 32S becomes the N pole, and the portion that faces the N pole magnet 32N becomes the S pole.
 しかしながら、異極磁性部34を備える図14(a)の場合、この磁束J1とは別に、異極磁性部34からティース部41を通じてマグネット32S(A)へと繋がる磁束J2が発生して磁気短絡が生じる。これに対し、異極磁性部34を廃止した図14(b)の場合、ハウジング31からティース部41を通じてマグネット32S(A)へと繋がる磁束J3が発生して磁気短絡が生じるものの、この磁束J3の短絡経路は、磁束J2の短絡経路に比べて長い。そのため、磁気短絡量が軽減され、異極部34,34kを形成することによるモータ駆動力および発電力の低下を軽減できる。 However, in the case of FIG. 14A provided with the heteropolar magnetic part 34, apart from the magnetic flux J1, a magnetic flux J2 that is connected from the heteropolar magnetic part 34 to the magnet 32S (A) through the teeth part 41 is generated and magnetic short-circuited. Occurs. On the other hand, in the case of FIG. 14B in which the heteropolar magnetic portion 34 is abolished, the magnetic flux J3 that is connected from the housing 31 to the magnet 32S (A) through the teeth portion 41 is generated to cause a magnetic short circuit. This short circuit path is longer than the short circuit path of the magnetic flux J2. Therefore, the amount of magnetic short circuit is reduced, and the reduction in motor driving force and power generation due to the formation of the different pole portions 34 and 34k can be reduced.
 (第8実施形態)
 図17に示すように、複数のマグネット32S,32Nのうち所定のマグネット32S(図17の例ではS極マグネット32S)の一部分には、以下に説明する異極磁性部34が形成されている。すなわち、図17の斜線に示す部分だけは、S極マグネット32Sとは異なる極性(N極)に着磁されている。この異極磁性部34は、所定のマグネット32Sのうちロータ回転軸方向(図17の上下方向)の一端部分に形成されるとともに、回転方向(図17の左右方向)の全体に亘って存在するように形成されている。
(Eighth embodiment)
As shown in FIG. 17, a part of a predetermined magnet 32S (S pole magnet 32S in the example of FIG. 17) out of the plurality of magnets 32S, 32N is formed with a different polarity magnetic part 34 described below. That is, only the portion indicated by the oblique lines in FIG. 17 is magnetized to a polarity (N pole) different from that of the S pole magnet 32S. The heteropolar magnetic portion 34 is formed at one end portion of the predetermined magnet 32S in the rotor rotation axis direction (vertical direction in FIG. 17) and exists in the entire rotation direction (horizontal direction in FIG. 17). It is formed as follows.
 V相センサSVおよびW相センサSWはロータ回転軸方向(図17の上下方向)において同じ位置に配置されているのに対し、U相センサSUは、V相センサSVおよびW相センサSWとは回転軸方向において異なる位置に配置されている。これにより、異極磁性部34の回転軌道34a上にU相センサSUが位置し、V相センサSVおよびW相センサSWについては回転軌道34aから外れた位置となるようにする。 The V-phase sensor SV and the W-phase sensor SW are arranged at the same position in the rotor rotation axis direction (vertical direction in FIG. 17), whereas the U-phase sensor SU is the same as the V-phase sensor SV and the W-phase sensor SW. It arrange | positions in a different position in the rotating shaft direction. As a result, the U-phase sensor SU is positioned on the rotating track 34a of the heteropolar magnetic section 34, and the V-phase sensor SV and the W-phase sensor SW are positioned away from the rotating track 34a.
 本実施形態では、センサSU~SWがN極を検出した時にはロー信号(二進数「0」)を出力し、S極を検出した時にはハイ信号(二進数「1」)を出力するよう設定してある。そして、マグネット32S,32Nは12個(12極)であるため、U相信号、V相信号、W相信号の各々は、ロータ30が30度回転する毎にローとハイが切り替わる(図18参照)。したがって、UVW相の各々の電気角360°は、クランク軸14の回転角度(機械角)60°に相当する。但し、U相信号については異極磁性部34の検出時にもローに切り替わる。また、ロータ30が10度回転する毎に、UVW相センサSU~SWのいずれかにおいてローとハイが切り替わることとなる。 In this embodiment, when the sensors SU to SW detect the N pole, a low signal (binary number “0”) is output, and when the S pole is detected, a high signal (binary number “1”) is output. It is. Since there are 12 magnets 32S and 32N (12 poles), each of the U-phase signal, V-phase signal, and W-phase signal switches between low and high every time the rotor 30 rotates 30 degrees (see FIG. 18). ). Therefore, each electrical angle 360 ° of the UVW phase corresponds to a rotation angle (mechanical angle) 60 ° of the crankshaft 14. However, the U-phase signal is also switched to low when the heteropolar magnetic part 34 is detected. In addition, every time the rotor 30 rotates 10 degrees, the low and high are switched in any of the UVW phase sensors SU to SW.
 ちなみに、図17の如く、N極マグネット32NとS極マグネット32Sの間に極性を有しない部材32aが介在している場合において、この部材32aがセンサSU~SWに対向して極性を検出できない時には、ロー信号およびハイ信号のうち予め設定しておいた信号(例えばロー信号)であるとみなして処理すればよい。 Incidentally, as shown in FIG. 17, when a non-polar member 32a is interposed between the N-pole magnet 32N and the S-pole magnet 32S, when this member 32a cannot detect the polarity facing the sensors SU to SW. The processing may be performed by regarding the low signal and the high signal as a signal set in advance (for example, a low signal).
 なお、前記部材32aが存在しないよう、N極マグネット32NとS極マグネット32Sを隣接させたロータ30を採用してもよいことは勿論である。また、1つのマグネット片をN極とS極に着磁することで、複数のN極マグネット32NおよびS極マグネット32Sを1つのマグネット片から形成したロータを採用してもよい。なお、この場合のロータでは、複数(例えば4つ)のマグネット片を用いて構成してもよいし、1つのマグネット片を用いて構成してもよい。 Of course, the rotor 30 in which the N-pole magnet 32N and the S-pole magnet 32S are adjacent to each other may be adopted so that the member 32a does not exist. Further, a rotor in which a plurality of N-pole magnets 32N and S-pole magnets 32S are formed from one magnet piece by magnetizing one magnet piece to N-pole and S-pole may be adopted. Note that the rotor in this case may be configured using a plurality of (for example, four) magnet pieces, or may be configured using one magnet piece.
 図18は、上段から順に、クランク角、組合せ情報NNUM、UVW相信号の二進数表記、UVW相信号、点火信号、噴射信号、エンジン行程を示すタイムチャートである。組合せ情報NNUMとは、同時期に出力されるU相信号、V相信号およびW相信号の組合せを表した仮想信号であり、本実施形態では、UVW相信号の二進数表記を組み合わせて算出した十進数の数値としている。 FIG. 18 is a time chart showing the crank angle, combination information NNUM, binary notation of UVW phase signal, UVW phase signal, ignition signal, injection signal, and engine stroke in order from the top. The combination information NNUM is a virtual signal that represents a combination of the U-phase signal, the V-phase signal, and the W-phase signal that are output at the same time. In this embodiment, the combination information NNUM is calculated by combining the binary notation of the UVW phase signal. It is a decimal number.
 具体的には、二進数表記の1桁目をU相信号の2進数、2桁目をV相信号の2進数、3桁目をW相信号の2進数で表した3桁の二進数を、十進数に変換した数値が組合せ情報NNUMである。この数値NNUMはECU13により算出される。例えば、最左欄に示すようにUVW相信号が各々「1」「0」「1」であれば、NNUMは「5」となる。 Specifically, a binary number is represented by a binary number of a U-phase signal, the first digit is a binary number of a U-phase signal, the second digit is a binary number of a V-phase signal, and the third digit is a binary number of a W-phase signal. The numerical value converted into a decimal number is the combination information NNUM. This numerical value NNUM is calculated by the ECU 13. For example, as shown in the leftmost column, if the UVW phase signals are “1”, “0”, and “1”, NNUM is “5”.
 図中の符号ESは、異極磁性部34を検出したことによりロー信号となった部分を示しており、当該部分の信号が「内燃機関制御用信号」に相当し、符号ES以外の部分の信号は「モータ制御用信号」に相当する。この内燃機関制御用信号ESが現れる部分を除けば、NNUMの値は5→1→3→2→6→4の順に繰り返しローテーションして変化する。ちなみに、本実施形態に反して異極磁性部34が形成されていなければ、図中の点線に示すように符号ESの部分はハイ信号となる。 Symbol ES in the figure indicates a portion that has become a low signal due to the detection of the heteropolar magnetic portion 34, and the signal of the portion corresponds to an “internal combustion engine control signal”. The signal corresponds to a “motor control signal”. Except for the portion where the internal combustion engine control signal ES appears, the value of NNUM is repeatedly rotated in the order of 5 → 1 → 3 → 2 → 6 → 4. Incidentally, in contrast to the present embodiment, if the different polar magnetic portion 34 is not formed, the portion of the symbol ES becomes a high signal as shown by the dotted line in the figure.
 図中の符号ta,tb,tcに示すように、内燃機関制御用信号ESを検出している期間中のNNUM値は「4」→「0」→「2」と推移するが、ES検出時以外では、NNUM値が「0」になることはない。したがって、符号tbにかかるNNUM値「0」を検出した時点でのクランク角を基準として、ECU13はクランク軸14の絶対回転位置を算出できる。そして、絶対回転位置を把握できれば、各々のUVW相信号の立ち上りまたは立ち下りのタイミング(つまりNNUMの更新タイミング)と、4サイクルエンジンの1回転分の位置関係を特定できる。 As indicated by the symbols ta, tb, and tc in the figure, the NNUM value during the period of detecting the internal combustion engine control signal ES changes from “4” → “0” → “2”. In other cases, the NNUM value never becomes “0”. Therefore, the ECU 13 can calculate the absolute rotational position of the crankshaft 14 based on the crank angle at the time when the NNUM value “0” applied to the symbol tb is detected. If the absolute rotational position can be grasped, the rising or falling timing of each UVW phase signal (that is, the update timing of NNUM) and the positional relationship for one rotation of the 4-cycle engine can be specified.
 例えば、NNUM値「0」が現れた後、NNUM値「1」が2回目に現れたtd時点が、エンジンのピストンが下死点BDCに達した時期であると特定できる。なお、吸気圧センサ16の値を参照すれば、前記下死点BDC時期が排気行程および圧縮行程のいずれであるかを判別(行程判別)できる。これにより、絶対回転位置を基準として、NNUMの更新タイミングに基づき燃料噴射時期や点火時期を目標時期とするように制御できる。 For example, after the NNUM value “0” appears, the time point td when the NNUM value “1” appears for the second time can be identified as the time when the piston of the engine has reached the bottom dead center BDC. By referring to the value of the intake pressure sensor 16, it is possible to determine whether the bottom dead center BDC timing is an exhaust stroke or a compression stroke (stroke determination). Thus, it is possible to control the fuel injection timing and the ignition timing as the target timing based on the NNUM update timing with the absolute rotation position as a reference.
 なお、NNUM値が「4」である場合において、前回のNNUM値が「4」であれば、符号taに示す機関制御用信号ESによるものであると特定できる。一方、前回のNNUM値が「6」であれば、符号tf1に示すモータ制御信号によるものであると特定できる。なお、ACGスタータ20が逆転している場合には、前回NNUM値が「0」であれば機関制御用信号ES、「5」であればモータ制御信号によるものであると特定できる。そして、これらの特定結果と、機関制御用信号ESの出現タイミングに基づき、絶対回転位置を算出する。 If the NNUM value is “4” and the previous NNUM value is “4”, it can be specified that the signal is due to the engine control signal ES indicated by the symbol ta. On the other hand, if the previous NNUM value is “6”, it can be determined that the motor control signal is indicated by the symbol tf1. When the ACG starter 20 is rotating in reverse, it can be determined that the previous NNUM value is “0” and the engine control signal ES, and “5” is the motor control signal. Then, based on these identification results and the appearance timing of the engine control signal ES, the absolute rotational position is calculated.
 さらにECU13は、現時点でのNNUM値に基づき次回のNNUM値を特定し(特定手段)、その特定した次回NNUM値に基づきU相コイルCU、V相コイルCVおよびW相コイルCWへの通電制御内容を決定する。例えば、今回NNUM値が「3」であれば、前記ローテーションに基づき次回NNUM値は「2」であると特定できる。つまり、U相コイルCUが巻き回されたティース部41は、S極マグネット32Sの対向位置(ハイ)からN極マグネット32Nの対向位置(ロー)へと移り変わるタイミングにあると言える。そのため、U相コイルCUへの通電オンオフ状態を切り替えるタイミングにあると言える。 Further, the ECU 13 specifies the next NNUM value based on the current NNUM value (identifying means), and the energization control content to the U-phase coil CU, V-phase coil CV, and W-phase coil CW based on the specified next NNUM value. To decide. For example, if the current NNUM value is “3”, it can be specified that the next NNUM value is “2” based on the rotation. That is, it can be said that the tooth portion 41 around which the U-phase coil CU is wound is at a timing when the position changes from the facing position (high) of the S pole magnet 32S to the facing position (low) of the N pole magnet 32N. Therefore, it can be said that it is at the timing of switching the energization on / off state to the U-phase coil CU.
 このように、U相コイルCUへの通電は、U相信号の立ち上りを示すNNUM値「4」、または立ち下がりを示すNNUM値「3」が検出されたか否かに基づきECU13が制御する。同様にして、V相コイルCVおよびW相コイルCWへの通電もNNUM値に基づき制御する。なお、NNUM値「0」については、モータ駆動用コイルCU,CV,CWと対向している「1」でUVW相コイルCU~CWへの通電制御を実施すればよい。また、符号taに示すNNUM値「4」については「5」であるとみなし、符号tcに示すNNUM値「2」については「3」であるとみなしてUVW相コイルCU~CWへの通電制御を実施する。 Thus, the energization of the U-phase coil CU is controlled by the ECU 13 based on whether or not the NNUM value “4” indicating the rise of the U-phase signal or the NNUM value “3” indicating the fall is detected. Similarly, energization to the V-phase coil CV and the W-phase coil CW is also controlled based on the NNUM value. As for the NNUM value “0”, the energization control for the UVW phase coils CU to CW may be performed by “1” facing the motor driving coils CU, CV, CW. Further, the NNUM value “4” indicated by the symbol ta is regarded as “5”, the NNUM value “2” indicated by the symbol tc is regarded as “3”, and the energization control to the UVW phase coils CU to CW is performed. To implement.
 さらにECU13は、NNUM値の履歴に基づき、ACGスタータ20が逆転しているか否かを検知する。例えば、正転していれば上述の如くNNUM値は5→1→3→2→6→4の順に変化する筈である。一方、逆転していればNNUM値は4→6→2→3→1→5の順に変化する筈である。 Further, the ECU 13 detects whether or not the ACG starter 20 is reversed based on the history of the NNUM value. For example, if it is rotating forward, the NNUM value should change in the order of 5 → 1 → 3 → 2 → 6 → 4 as described above. On the other hand, if the rotation is reversed, the NNUM value should change in the order of 4 → 6 → 2 → 3 → 1 → 5.
 ところで、ACGスタータ20によりエンジンを始動させるにあたり、エンジンのピストンが圧縮行程のTDC直前位置から始動させようとすると、ACGスタータ20に要する駆動トルクが圧縮分だけ大きくなるので、エンジンの始動性悪化が懸念される。そこで、エンジン始動開始前に、クランク軸14を逆転させて始動性が良好となるピストン位置に設定しておく、といったスイングバック制御を実施する場合がある。このように、ACGスタータ20を逆転駆動させたい場合があるが、この場合には、例えば今回NNUM値が4であれば、次回NNUM値は6であると特定し、その特定値に応じてUVW相コイルCU~CWへの通電タイミングを制御すればよい。 By the way, when the engine is started by the ACG starter 20, if the engine piston tries to start from the position immediately before the TDC in the compression stroke, the driving torque required for the ACG starter 20 is increased by the amount of compression. Concerned. Therefore, there is a case where swingback control is performed such that the crankshaft 14 is reversely rotated and set to a piston position where the startability is good before starting the engine. As described above, there is a case where the ACG starter 20 is desired to be driven in reverse rotation. In this case, for example, if the current NNUM value is 4, the next NNUM value is specified as 6, and the UVW is determined according to the specified value. The energization timing to the phase coils CU to CW may be controlled.
 本実施形態では、図6のステップS10において、先述の5(4)→1(0)→3(2)→2→6→4といった正転時ローテーションに基づき、例えば今回NNUM値が「5」であれば次回NNUM値は「1」であると算出する。なお、今回NNUM値が「0」であれば次回NNUM値は「3」であると算出する。また、前回NNUM値が「4」かつ今回NNUM値が「4」であれば次回NNUM値は「1」であると算出する。また、前回NNUM値が「0」かつ今回NNUM値が「2」であれば次回NNUM値は「2」であると算出する。 In this embodiment, in step S10 of FIG. 6, based on the above-described rotation during normal rotation such as 5 (4) → 1 (0) → 3 (2) → 2 → 6 → 4, for example, the current NNUM value is “5”. If so, the next NNUM value is calculated to be “1”. If the current NNUM value is “0”, the next NNUM value is calculated to be “3”. If the previous NNUM value is “4” and the current NNUM value is “4”, the next NNUM value is calculated to be “1”. If the previous NNUM value is “0” and the current NNUM value is “2”, the next NNUM value is calculated to be “2”.
 以上詳述した本実施形態によれば、第1実施形態の(1),(2),(7),(8),(9),(10)の効果が得られるようになる。 According to this embodiment described in detail above, the effects (1), (2), (7), (8), (9), and (10) of the first embodiment can be obtained.
 (第9実施形態)
 上記第1実施形態では、3つのUVW相センサSU~SWのうち、U相センサSUのみを異極磁性部34の回転軌道34a上に配置しているのに対し、本実施形態では、U相センサSUおよびV相センサSVを回転軌道34a上に配置している。その結果、V相信号についても、U相信号と同様にして内燃機関制御用信号ESが含まれることとなる(図19参照)。
(Ninth embodiment)
In the first embodiment, among the three UVW phase sensors SU to SW, only the U-phase sensor SU is arranged on the rotation orbit 34a of the heteropolar magnetic part 34, whereas in this embodiment, the U-phase The sensor SU and the V-phase sensor SV are arranged on the rotation track 34a. As a result, the V-phase signal includes the internal combustion engine control signal ES in the same manner as the U-phase signal (see FIG. 19).
 ここで、上記第8実施形態では、NNUM値が「0」であれば、U相センサSUから内燃機関制御用信号ESが出力されていることを特定できる。しかし、図19に示す本実施形態では、NNUM値が「0」である場合に(符合tf,tg,th参照)、U相センサSUおよびV相センサSVのいずれから内燃機関制御用信号ESが出力されているかを特定することができないため、絶対回転位置を算出できないことが懸念される。 Here, in the eighth embodiment, if the NNUM value is “0”, it can be specified that the internal combustion engine control signal ES is output from the U-phase sensor SU. However, in the present embodiment shown in FIG. 19, when the NNUM value is “0” (see symbols tf, tg, and th), the internal combustion engine control signal ES is output from either the U-phase sensor SU or the V-phase sensor SV. Since it cannot be specified whether it is output, there is a concern that the absolute rotational position cannot be calculated.
 そこで本実施形態では、組合せ情報NNUMの履歴を表した履歴情報に基づいて、いずれの内燃機関制御用信号ESであるかを特定して絶対回転位置を算出する。なお、本実施形態での履歴情報とは、2つの連続したNNUM値のことであるが、3つ以上の連続したNNUM値を履歴情報としてもよい。 Therefore, in the present embodiment, based on the history information representing the history of the combination information NNUM, the internal rotational engine control signal ES is specified and the absolute rotational position is calculated. The history information in the present embodiment is two consecutive NNUM values, but three or more consecutive NNUM values may be used as the history information.
 具体的には、NNUM値が「0」である場合において、前回のNNUM値が「6→4→4」であればU相センサSUから出力された内燃機関制御用信号ESであると特定できる。なお、ACGスタータ20が逆転している場合には、前回NNUM値が「5→4→4」であればV相センサSVから出力された内燃機関制御用信号ESであると特定できる。そして、これらの特定結果と、内燃機関制御用信号ESの出現タイミングに基づき、絶対回転位置を算出する。 Specifically, when the NNUM value is “0”, if the previous NNUM value is “6 → 4 → 4”, the internal combustion engine control signal ES output from the U-phase sensor SU can be specified. . When the ACG starter 20 is rotating in reverse, if the previous NNUM value is “5 → 4 → 4”, it can be specified that the signal is an internal combustion engine control signal ES output from the V-phase sensor SV. Then, the absolute rotational position is calculated based on these identification results and the appearance timing of the internal combustion engine control signal ES.
 次に、UVW相コイルCU~CWへの通電制御について説明する。上述の手法により絶対回転位置を算出した後には、内燃機関制御用信号ESにより「4→0→0→0→4」と変化するNNUM値を、「5→1→3→2→6」と変化しているとみなしてUVW相コイルCU~CWへの通電制御を実施すれば、ティース部41のコイルCU,CV,CWと磁極位相が一致し、モータを回転駆動させることができる。 Next, energization control to the UVW phase coils CU to CW will be described. After calculating the absolute rotational position by the above-described method, the NNUM value that changes from “4 → 0 → 0 → 0 → 4” by the internal combustion engine control signal ES is changed to “5 → 1 → 3 → 2 → 6”. If energization control is performed on the UVW-phase coils CU to CW on the assumption that they have changed, the magnetic pole phases coincide with the coils CU, CV, and CW of the tooth portion 41, and the motor can be driven to rotate.
 一方、絶対回転位置が算出される前の停止時においては、NNUM値が「0」である場合において、符号tf,tg,thのいずれに該当する「0」であるかを特定できない。よって、次回NNUM値を「3」「2」「6」のいずれであるとみなして通電制御すれば良いかを特定できない。そこで本実施形態では、「3」「2」「6」のうちの任意値(例えば「3」)が次回NNUM値であるとみなしてUVW相コイルCU~CWへの通電制御を実施する。 On the other hand, at the time of stopping before the absolute rotational position is calculated, when the NNUM value is “0”, it cannot be specified which of the symbols tf, tg, and th is “0”. Therefore, it is not possible to identify whether the next NNUM value should be “3”, “2”, or “6” to control energization. Therefore, in the present embodiment, energization control to the UVW phase coils CU to CW is performed by regarding that an arbitrary value (for example, “3”) of “3”, “2”, and “6” is the next NNUM value.
 そして、所定時間が経過してもACGスタータ20が回転を開始せずにNNUM値が変化しない場合には、次回NNUM値は前記任意値「3」ではなく他の値「2」「6」であったことになる。そこで次は、「2」「6」のうちの任意値(例えば「2」)が次回NNUM値であるとみなして通電制御する。 If the NNUM value does not change because the ACG starter 20 does not start rotating even after a predetermined time has elapsed, the next NNUM value is not the arbitrary value “3” but another value “2” “6”. It will have been. Therefore, next, energization control is performed assuming that an arbitrary value (for example, “2”) of “2” and “6” is the next NNUM value.
 その結果、さらに所定時間が経過してもACGスタータ20が回転を開始せずにNNUM値が変化しない場合には、前記次回NNUM値は任意値「2」ではなく残りの値「6」であったとみなしてUVW相コイルCU~CWへの通電制御を実施する。なお、実際のNNUM値が「0」から期待値と異なる値になった場合には、その実際のNNUM値に基づいて駆動を実施する。 As a result, if the NNUM value does not change because the ACG starter 20 does not start rotating even after a predetermined time has elapsed, the next NNUM value is not the arbitrary value “2” but the remaining value “6”. Assuming that the UVW phase coils CU to CW are energized, the energization control is performed. When the actual NNUM value becomes a value different from the expected value from “0”, driving is performed based on the actual NNUM value.
 しかし、全ての候補「3」「2」「6」について3→2→6の順に試行する最中に、ロータ30が僅かに回転して位相がずれる場合がある。例えば、実際にはtgにある時に、tfにあるとみなして「3」で通電制御した結果、回転してthの位相になる場合がある。この場合、正常にモータ駆動しなかったので次にtgにあるとみなして「2」で通電制御することとなる。すると今度は、回転してtgの位相になる場合がある。この場合、正常にモータ駆動しなかったので次にthにあるとみなして「6」で通電制御することとなる。したがって、このように位相ずれが生じると、全ての候補「3」「2」「6」について通電制御しても、正常にモータ駆動しなくなる。 However, during the trial of all candidates “3”, “2”, and “6” in the order of 3 → 2 → 6, the rotor 30 may rotate slightly and the phase may be shifted. For example, when it is actually at tg, it may be assumed that it is at tf, and as a result of energization control at “3”, it may rotate to a th phase. In this case, since the motor was not normally driven, it is considered that the motor is next at tg, and energization control is performed at “2”. This time, there is a case where it rotates to a phase of tg. In this case, since the motor was not normally driven, it is considered that the motor is next in th, and energization control is performed at “6”. Therefore, when a phase shift occurs in this way, even if energization control is performed for all candidates “3”, “2”, and “6”, the motor is not normally driven.
 この点を鑑みた本実施形態では、複数の候補「3」「2」「6」の全てについて通電制御を実施したにも拘わらず、正常にモータ駆動できなかった場合には、前記順番とは異なる順番(例えば2→3→6の順)で通電制御を実施する。これにより、先述した位相ずれが生じない順番で試行する機会が与えられるようになるので、正常にモータ駆動できるようになる。なお、実際のNNUM値が「0」から期待値と異なる値になった場合には、その実際のNNUM値に基づいて駆動を実施する。 In this embodiment in view of this point, when the motor drive is not normally performed even though energization control is performed for all of the plurality of candidates “3”, “2”, and “6”, the order is The energization control is performed in a different order (for example, the order of 2 → 3 → 6). As a result, the opportunity to try in the order in which the above-described phase shift does not occur is given, so that the motor can be driven normally. When the actual NNUM value becomes a value different from the expected value from “0”, driving is performed based on the actual NNUM value.
 以上詳述した本実施形態によれば、上記第8実施形態と同様の効果が得られるとともに、以下の効果が得られるようになる。すなわち、上記第8実施形態では、クランク軸14が1回転する間に内燃機関制御用信号ESが1回出現するのに対し、本実施形態によれば2回出現する。そのため、ACGスタータ20の駆動を開始してから、クランク軸14が1回転することを待たずして内燃機関制御用信号ESが出現することとなるので、内燃機関制御用信号ESに基づき絶対回転位置を算出するのに要する時間を短縮できる。よって、インジェクタ10及び点火装置11の駆動開始を迅速にできる。また、これにより、エンジンによる駆動トルクが早期に発生し、要求されるモータ駆動トルクを低減させることができるので、ACGスタータ20の小型化を図ることができる。 According to the present embodiment described in detail above, the same effects as in the eighth embodiment can be obtained, and the following effects can be obtained. That is, in the eighth embodiment, the internal combustion engine control signal ES appears once while the crankshaft 14 rotates once, whereas it appears twice according to the present embodiment. For this reason, the internal combustion engine control signal ES appears without waiting for the crankshaft 14 to make one rotation after the driving of the ACG starter 20 is started. Therefore, the absolute rotation is performed based on the internal combustion engine control signal ES. The time required to calculate the position can be shortened. Therefore, the drive start of the injector 10 and the ignition device 11 can be quickly performed. In addition, the driving torque generated by the engine can be generated early and the required motor driving torque can be reduced, so that the ACG starter 20 can be downsized.
 また、本実施形態では、異極磁性部34の回転軌道34a上に複数のセンサを配置することに起因して、内燃機関制御用信号ESを検出した時のNNUM値「0」が、いずれのセンサによる内燃機関制御用信号ESを組み合わせたものであるかを特定できなくなる。これに対し、本実施形態では、NNUM値の履歴に基づき前記特定を行うので、絶対回転位置の把握を可能にできる。 Further, in the present embodiment, the NNUM value “0” when the internal combustion engine control signal ES is detected due to the arrangement of the plurality of sensors on the rotation track 34a of the heteropolar magnetic portion 34 is It becomes impossible to specify whether the signal ES for controlling the internal combustion engine by the sensor is combined. On the other hand, in the present embodiment, since the identification is performed based on the history of the NNUM value, the absolute rotational position can be grasped.
 さらに、本実施形態では、絶対回転位置を算出が未だ完了していない回転駆動期間における通電制御(モータ駆動制御)に関し、次回NNUM値の候補「3」「2」「6」を順に試行して通電制御するので、前記回転駆動期間であってもモータ駆動制御が可能となる。さらに、全ての候補について通電制御を実施したにも拘わらず、正常にモータ駆動できなかった場合には、前回の順番とは異なる順番で再度通電制御を実施するので、確実にモータ駆動できるようになる。 Further, in the present embodiment, the next NNUM value candidates “3”, “2”, and “6” are tried in order for the energization control (motor drive control) in the rotation drive period for which the calculation of the absolute rotation position has not yet been completed. Since energization control is performed, motor drive control is possible even during the rotation drive period. Furthermore, even if energization control is performed for all candidates, if motor drive cannot be performed normally, the energization control is performed again in an order different from the previous order so that the motor can be driven reliably. Become.
 (第10実施形態)
 上記第9実施形態では、3つのUVW相センサSU~SWのうち、U相センサSUおよびV相センサSVを異極磁性部34の回転軌道34a上に配置しているのに対し、本実施形態では、3つのUVW相センサSU~SW全てを回転軌道34a上に配置している。その結果、W相信号についても、U相信号およびV相信号と同様にして内燃機関制御用信号ESが含まれることとなる(図20参照)。
(10th Embodiment)
In the ninth embodiment, among the three UVW phase sensors SU to SW, the U-phase sensor SU and the V-phase sensor SV are arranged on the rotation trajectory 34a of the heteropolar magnetic part 34, whereas this embodiment Then, all the three UVW phase sensors SU to SW are arranged on the rotation track 34a. As a result, the internal combustion engine control signal ES is also included in the W-phase signal as in the U-phase signal and the V-phase signal (see FIG. 20).
 図20に示す本実施形態においては、内燃機関制御用信号ESが現れる部分を除けば、NNUMの値は5→1→3→2→6→4の順に繰り返しローテーションして変化する。一方、内燃機関制御用信号ESが現れる部分のNNUM値については、符号tj~tpに示すように4(5)→0(1)→0(3)→0(2)→0(6)→0(4)→1(5)の順に変化する(カッコ内の数値はESが現れない場合のNNUM値を示し、モータ駆動用の信号番号となる)。 In the present embodiment shown in FIG. 20, except for the portion where the internal combustion engine control signal ES appears, the value of NNUM is repeatedly rotated in the order of 5 → 1 → 3 → 2 → 6 → 4. On the other hand, the NNUM value of the portion where the internal combustion engine control signal ES appears is 4 (5) → 0 (1) → 0 (3) → 0 (2) → 0 (6) → It changes in the order of 0 (4) → 1 (5) (the numerical value in parentheses indicates the NNUM value when ES does not appear, and is a signal number for driving the motor).
 したがって、絶対回転位置が算出される前の停止時においては、NNUM値が「0」である場合において、符号tk,tl,tm,tn,toのいずれに該当する「0」であるかを特定できない。よって、次回NNUM値を「3」「2」「6」「4」「5」のいずれであるとみなして通電制御すれば良いかを特定できない。 Therefore, at the time of stopping before the absolute rotational position is calculated, when the NNUM value is “0”, it is specified which of the symbols tk, tl, tm, tn, and to be “0” Can not. Therefore, it is not possible to specify whether the next NNUM value should be “3”, “2”, “6”, “4”, or “5” to control the energization.
 そこで本実施形態では、上記第2実施形態と同様にして、「3」~「5」のうちの任意値(例えば「3」)が次回NNUM値であるとみなしてUVW相コイルCU~CWへの通電制御を実施する。そして、正常にモータ駆動するまで、任意値を順番(例えば3→2→6→4→5)に変更して試行する。そして、全ての候補「3」~「5」について通電制御を実施したにも拘わらず正常にモータ駆動できなかった場合には、前記順番とは異なる順番(例えば2→3→5→4→6の順)で通電制御を実施する。なお、実際のNNUM値が「0」から期待値と異なる値になった場合には、その実際のNNUM値に基づいて駆動を再度実施する。 Therefore, in the present embodiment, as in the second embodiment, an arbitrary value (for example, “3”) among “3” to “5” is regarded as the next NNUM value and is sent to the UVW phase coils CU to CW. Conduct energization control. Then, until the motor is driven normally, the arbitrary values are changed in order (for example, 3 → 2 → 6 → 4 → 5) and tried. When the energization control is performed for all the candidates “3” to “5” but the motor cannot be driven normally, an order different from the above order (for example, 2 → 3 → 5 → 4 → 6). Execute energization control in this order). When the actual NNUM value becomes a value different from the expected value from “0”, the driving is performed again based on the actual NNUM value.
 次に、UVW相コイルCU~CWへの通電制御について説明する。上述の手法により絶対回転位置を算出した後には、内燃機関制御用信号ESにより「4→0→0→0→0→0→1」と変化するNNUM値を、ティース巻線が対向しているNNUM値、つまり「5→1→3→2→6→4→5」と変化しているとみなして、UVW相コイルCU~CWへの通電制御を実施すればよい。 Next, energization control to the UVW phase coils CU to CW will be described. After the absolute rotational position is calculated by the above-described method, the teeth windings are opposed to the NNUM value that changes from “4 → 0 → 0 → 0 → 0 → 0 → 1” by the internal combustion engine control signal ES. Assuming that the NNUM value, that is, “5 → 1 → 3 → 2 → 6 → 4 → 5” is changed, the energization control to the UVW phase coils CU to CW may be performed.
 以上詳述した本実施形態によれば、クランク軸14が1回転する間に内燃機関制御用信号ESが3回出現する。そのため、ACGスタータ20の駆動を開始してから、内燃機関制御用信号ESが出現するまでに要する時間を、上記第9実施形態に比べてさらに短縮することができる。よって、内燃機関制御用信号ESに基づき絶対回転位置を算出するのに要する時間を短縮でき、インジェクタ10及び点火装置11の駆動開始迅速化を促進できる。 According to the present embodiment described in detail above, the internal combustion engine control signal ES appears three times while the crankshaft 14 rotates once. Therefore, the time required from the start of driving of the ACG starter 20 to the appearance of the internal combustion engine control signal ES can be further reduced as compared with the ninth embodiment. Therefore, the time required to calculate the absolute rotational position based on the internal combustion engine control signal ES can be shortened, and the drive start speedup of the injector 10 and the ignition device 11 can be accelerated.
 (第11実施形態)
 上記第10実施形態では、3つのUVW相センサSU~SWを、複数のティース部41の間隙41aのうち隣り合う間隙41aに順番に配置している。これに対し本実施形態では、図9に示すように、3つのUVW相センサSU~SWを隣り合う間隙41aに配置することに替え、分散して配置している。図9の例では、U相センサSUとV相センサSVとの間の角度、およびV相センサSVとW相センサSWとの間の角度が140°となるように分散配置している。
(Eleventh embodiment)
In the tenth embodiment, the three UVW phase sensors SU to SW are sequentially arranged in the adjacent gaps 41a among the gaps 41a of the plurality of tooth portions 41. On the other hand, in this embodiment, as shown in FIG. 9, the three UVW phase sensors SU to SW are arranged in a dispersed manner instead of being arranged in the adjacent gap 41a. In the example of FIG. 9, the angle between the U-phase sensor SU and the V-phase sensor SV and the angle between the V-phase sensor SV and the W-phase sensor SW are distributed so as to be 140 °.
 したがって、上記第10実施形態では、クランク軸14が20°回転する毎に内燃機関制御用信号ESが現れるのに対し、図21に示す本実施形態では、クランク軸14が140°回転する毎に内燃機関制御用信号ESが現れる。 Therefore, in the tenth embodiment, the internal combustion engine control signal ES appears every time the crankshaft 14 rotates 20 °, whereas in the present embodiment shown in FIG. 21, every time the crankshaft 14 rotates 140 °. An internal combustion engine control signal ES appears.
 図21に示す本実施形態においては、内燃機関制御用信号ESが現れる部分を除けば、NNUMの値は5→1→3→2→6→4の順に繰り返しローテーションして変化する。一方、内燃機関制御用信号ESがU相センサSUにより現れる部分のNNUM値については、符号ta~tcに示すように4(5)→0(1)→2(3)の順に変化する(カッコ内の数値はESが現れない場合のNNUM値)。また、V相センサSVによる部分については符号tq~tsに示すように1(3)→0(2)→4(6)の順に変化し、W相センサSWによる部分については符号tt~tvに示すように2(6)→0(4)→1(1)の順に変化する。 In the present embodiment shown in FIG. 21, except for the part where the internal combustion engine control signal ES appears, the value of NNUM is repeatedly rotated in the order of 5 → 1 → 3 → 2 → 6 → 4. On the other hand, the NNUM value of the portion where the internal combustion engine control signal ES appears by the U-phase sensor SU changes in the order of 4 (5) → 0 (1) → 2 (3) as indicated by the symbols ta to tc (in parentheses). The numerical value in NNNUM value when ES does not appear). Further, the portion due to the V-phase sensor SV changes in the order of 1 (3) → 0 (2) → 4 (6) as indicated by the symbols tq to ts, and the portion due to the W-phase sensor SW is changed to the symbols tt to tv. As shown, it changes in the order of 2 (6) → 0 (4) → 1 (1).
 したがって、絶対回転位置が算出される前の停止時においては、NNUM値が「0」である場合において、次回NNUM値を「3」「6」「5」のいずれであるとみなして通電制御すれば良いかを特定できないので、上記第9実施形態と同様にして、「3」~「5」のうちの任意値を、正常にモータ駆動するまで順番に変更して試行する。そして、全ての候補「3」~「5」について通電制御を実施したにも拘わらず正常にモータ駆動できなかった場合には、前記順番とは異なる順番で通電制御を再度実施する。 Accordingly, when the NNUM value is “0” at the stop before the absolute rotational position is calculated, the energization control is performed assuming that the next NNUM value is “3”, “6”, or “5”. Since it is not possible to specify whether it should be sufficient, as in the ninth embodiment, an arbitrary value of “3” to “5” is changed in order until the motor is driven normally. If the motor drive cannot be normally performed even though the energization control is performed for all candidates “3” to “5”, the energization control is performed again in an order different from the above order.
 また、停止時にNNUM値が「1」である場合において、次回NNUM値を「3」「1」「2」のいずれで通電制御すれば良いかを特定できないので、「3」~「2」のうちの任意値を、正常にモータ駆動するまで順番に変更して試行する。そして、全ての候補「3」~「2」について通電制御を実施したにも拘わらず正常にモータ駆動できなかった場合には、前記順番とは異なる順番で通電制御を再度実施する。 In addition, when the NNUM value is “1” at the time of stoppage, it is not possible to specify which of the next NNUM value “3”, “1”, and “2” should be energized, so “3” to “2” Change any of these values in order until the motor is driven normally. If the motor drive cannot be normally performed even though the energization control is performed for all candidates “3” to “2”, the energization control is performed again in an order different from the above order.
 同様に、停止時にNNUM値が「2」であれば次回NNUM値を「6」「2」「4」のいずれで通電制御すれば良いかを特定できないので、正常にモータ駆動するまで順番に変更して試行し、さらには異なる順番で試行する。また、停止時にNNUM値が「4」であれば次回NNUM値を「5」「1」「4」のいずれで通電制御すれば良いかを特定できないので、正常にモータ駆動するまで順番に変更して試行し、さらには異なる順番で試行する。 Similarly, if the NNUM value is “2” at the time of stoppage, it is not possible to specify whether the next NNUM value should be controlled by “6”, “2”, or “4”. And try again in a different order. In addition, if the NNUM value is “4” at the time of stoppage, it cannot be specified whether the next NNUM value should be energized by “5”, “1”, or “4”. And try in a different order.
 次に、UVW相コイルCU~CWへの通電制御について説明する。上述の手法により絶対回転位置を算出した後には、内燃機関制御用信号ESにより「4→0→2」「1→0→4」「2→0→1」と変化するNNUM値を、「5→1→3」「3→2→6」「6→4→1」と変化しているとみなしてUVW相コイルCU~CWへの通電制御を実施すればよい。 Next, energization control to the UVW phase coils CU to CW will be described. After the absolute rotational position is calculated by the above-described method, the NNUM value that changes from “4 → 0 → 2”, “1 → 0 → 4”, and “2 → 0 → 1” by the internal combustion engine control signal ES is set to “5”. It is only necessary to control the energization of the UVW phase coils CU to CW on the assumption that the change has occurred: → 1 → 3 ”,“ 3 → 2 → 6 ”, and“ 6 → 4 → 1 ”.
 以上詳述した本実施形態によれば、3つのUVW相センサSU~SWを分散配置するので、内燃機関制御用信号ESが現れる時間間隔を短くできる。そのため、ACGスタータ20の駆動を開始してから、内燃機関制御用信号ESが出現するまでに要する時間を、上記第10実施形態に比べてさらに短縮することができる。よって、内燃機関制御用信号ESに基づき絶対回転位置を算出するのに要する時間を短縮でき、インジェクタ10及び点火装置11の駆動開始迅速化を促進できる。 According to the present embodiment described in detail above, since the three UVW phase sensors SU to SW are distributedly arranged, the time interval at which the internal combustion engine control signal ES appears can be shortened. Therefore, the time required from the start of driving of the ACG starter 20 to the appearance of the internal combustion engine control signal ES can be further shortened compared to the tenth embodiment. Therefore, the time required to calculate the absolute rotational position based on the internal combustion engine control signal ES can be shortened, and the drive start speedup of the injector 10 and the ignition device 11 can be accelerated.
 なお、UVW相センサSU~SWのうち2つのセンサを異極磁性部34の回転軌道34a上に配置した場合においても、本実施形態にかかる「分散配置」を適用して、絶対回転位置を算出するのに要する時間の短縮を図るようにしてもよい。 Even when two of the UVW phase sensors SU to SW are arranged on the rotation trajectory 34a of the heteropolar magnetic part 34, the “distributed arrangement” according to this embodiment is applied to calculate the absolute rotation position. You may make it aim at shortening of the time required to do.
 (第12実施形態)
 本実施形態の構成を図22に示す。
(Twelfth embodiment)
The configuration of this embodiment is shown in FIG.
 図2,23に示すように、ステータ40は、先述したU相コイルCU、V相コイルCV、W相コイルCWコイル、UVW相センサSU~SWおよびクランク回転位置センサSEと、これらのコイルが巻き回されるティース部41が形成された鉄心42とを備える。ティース部41は回転方向に複数並べて配置されており、各々のティース部41には、U相コイルCU、V相コイルCVおよびW相コイルCWコイルが順番に巻き回されている。図23の例では、18個のティース部41を並べている。 As shown in FIGS. 2 and 23, the stator 40 includes the U-phase coil CU, the V-phase coil CV, the W-phase coil CW coil, the UVW-phase sensors SU to SW, and the crank rotation position sensor SE that are wound around these coils. And an iron core 42 formed with a tooth portion 41 to be rotated. A plurality of teeth portions 41 are arranged side by side in the rotation direction, and a U-phase coil CU, a V-phase coil CV, and a W-phase coil CW coil are wound around each tooth portion 41 in order. In the example of FIG. 23, 18 teeth portions 41 are arranged.
 UVW相センサSU~SWおよびクランク回転位置センサSEは、ステータ40の外周面上に取り付けられることで、N極マグネット32NおよびS極マグネット32Sと対向する位置にある。これにより、ロータ30が回転することに伴い生じるN極マグネット32NおよびS極マグネット32Sによる磁性の変化を検出する。なお、UVW相センサSU~SWおよびクランク回転位置センサSEにはホールICが採用されている。そのため、ロータ30が回転していない時であっても、対向するマグネットの極性に応じた検出信号を出力することができる。 The UVW phase sensors SU to SW and the crank rotation position sensor SE are mounted on the outer peripheral surface of the stator 40, and are at positions facing the N-pole magnet 32N and the S-pole magnet 32S. Thereby, a change in magnetism due to the N-pole magnet 32N and the S-pole magnet 32S generated as the rotor 30 rotates is detected. Note that Hall ICs are employed for the UVW phase sensors SU to SW and the crank rotation position sensor SE. Therefore, even when the rotor 30 is not rotating, a detection signal corresponding to the polarity of the opposing magnet can be output.
 UVW相センサSU~SWおよびクランク回転位置センサSEは、ロータ回転方向においてそれぞれ異なる位置に取り付けられている。具体的には、複数のティース部41の間隙41aのうち各々が異なる間隙41aに配置されており、図24の例では、複数の間隙41aのうち隣り合う間隙に、クランク回転位置センサSE、U相センサSU、V相センサSV、W相センサSWを順番に配置している。そのため、UVW相センサSU~SWおよびクランク回転位置センサSEの各々は機械角20度分だけずれている。 The UVW phase sensors SU to SW and the crank rotation position sensor SE are mounted at different positions in the rotor rotation direction. Specifically, each of the gaps 41a of the plurality of tooth portions 41 is disposed in a different gap 41a. In the example of FIG. 24, the crank rotation position sensors SE and U are arranged in adjacent gaps among the plurality of gaps 41a. The phase sensor SU, the V phase sensor SV, and the W phase sensor SW are arranged in order. Therefore, each of the UVW phase sensors SU to SW and the crank rotation position sensor SE are shifted by a mechanical angle of 20 degrees.
 図24に示すように、複数のマグネット32S,32Nのうち所定のマグネット(図24の例ではS極マグネット32S)の一部分には、以下に説明する異極磁性部34が形成されている。すなわち、図24の斜線に示す部分だけは、S極マグネット32Sとは異なる極性(N極)に着磁されている。この異極磁性部34は、所定のマグネット32Sのうちロータ回転軸方向(図24の上下方向)の一端部分に形成されるとともに、回転方向(図24の左右方向)の全体に亘って存在するように形成されている。 As shown in FIG. 24, a heteropolar magnetic portion 34 described below is formed in a part of a predetermined magnet (S pole magnet 32S in the example of FIG. 24) among the plurality of magnets 32S and 32N. That is, only the portion indicated by the oblique lines in FIG. 24 is magnetized to a polarity (N pole) different from that of the S pole magnet 32S. The heteropolar magnetic portion 34 is formed at one end portion of the predetermined magnet 32S in the rotor rotation axis direction (vertical direction in FIG. 24) and exists throughout the rotation direction (horizontal direction in FIG. 24). It is formed as follows.
 クランク回転位置センサSEおよびU相センサSUは、異極磁性部34の回転軌道34a上に配置されている。これに対し、V相センサSVおよびW相センサSWは回転軌道34aから外れた位置となるようにする。 The crank rotation position sensor SE and the U-phase sensor SU are arranged on the rotation track 34a of the heteropolar magnetic part 34. On the other hand, the V-phase sensor SV and the W-phase sensor SW are set at positions deviating from the rotation track 34a.
 本実施形態では、UVW相センサSU~SWおよびクランク回転位置センサSEがN極を検出した時にはロー信号(二進数「0」)を出力し、S極を検出した時にはハイ信号(二進数「1」)を出力するよう設定してある。そして、マグネット32S,32Nは12個(12極)であるため、クランク角信号、U相信号、V相信号、W相信号の各々は、ロータ30が30度回転する毎にローとハイが切り替わる(図25参照)。したがって、UVW相の各々の電気角360°は、クランク軸14の回転角度(機械角)60°に相当する。但し、クランク角信号およびU相信号については異極磁性部34の検出時にもローに切り替わる。また、ロータ30が10度回転する毎に、UVW相センサSU~SWおよびクランク回転位置センサSEのいずれかにおいてローとハイが切り替わることとなる。 In this embodiment, a low signal (binary number “0”) is output when the UVW phase sensors SU to SW and the crank rotation position sensor SE detect the N pole, and a high signal (binary number “1”) when the S pole is detected. )) Is output. Since there are 12 magnets 32S and 32N (12 poles), the crank angle signal, the U phase signal, the V phase signal, and the W phase signal are switched between low and high every time the rotor 30 rotates 30 degrees. (See FIG. 25). Therefore, each electrical angle 360 ° of the UVW phase corresponds to a rotation angle (mechanical angle) 60 ° of the crankshaft 14. However, the crank angle signal and the U-phase signal are also switched to low when the heteropolar magnetic portion 34 is detected. Further, every time the rotor 30 rotates 10 degrees, either the UVW phase sensors SU to SW or the crank rotation position sensor SE is switched between low and high.
 ちなみに、図24の如く、N極マグネット32NとS極マグネット32Sの間に極性を有しない部材32aが介在している場合において、この部材32aがUVW相センサSU~SWおよびクランク回転位置センサSEに対向して極性を検出できない時には、ロー信号およびハイ信号のうち予め設定しておいた信号(例えばロー信号)であるとみなして処理すればよい。 Incidentally, as shown in FIG. 24, when a non-polar member 32a is interposed between the N-pole magnet 32N and the S-pole magnet 32S, this member 32a is connected to the UVW phase sensors SU to SW and the crank rotation position sensor SE. When the polarity cannot be detected oppositely, processing may be performed by regarding the low signal and the high signal as a preset signal (for example, a low signal).
 なお、前記部材32aが存在しないよう、N極マグネット32NとS極マグネット32Sを隣接させたロータ30を採用してもよいことは勿論である。また、1つのマグネット片をN極とS極に着磁することで、複数のN極マグネット32NおよびS極マグネット32Sを1つのマグネット片から形成したロータを採用してもよい。なお、この場合のロータでは、複数(例えば4つ)のマグネット片を用いて構成してもよいし、1つのマグネット片を用いて構成してもよい。 Of course, the rotor 30 in which the N-pole magnet 32N and the S-pole magnet 32S are adjacent to each other may be adopted so that the member 32a does not exist. Further, a rotor in which a plurality of N-pole magnets 32N and S-pole magnets 32S are formed from one magnet piece by magnetizing one magnet piece to N-pole and S-pole may be adopted. Note that the rotor in this case may be configured using a plurality of (for example, four) magnet pieces, or may be configured using one magnet piece.
 図25は、上段から順に、クランク角、組合せ情報NNUM、クランク角信号およびUVW相信号の二進数表記、クランク回転位置センサSEによるクランク角信号、UVW相信号、点火信号、噴射信号、エンジン行程を示すタイムチャートである。組合せ情報NNUMとは、同時期に出力されるクランク角信号、U相信号、V相信号およびW相信号の組合せを表した仮想信号であり、本実施形態では、クランク角信号およびUVW相信号の二進数表記を組み合わせて算出した十進数の数値としている。 FIG. 25 shows, in order from the top, the crank angle, combination information NNUM, the binary notation of the crank angle signal and the UVW phase signal, the crank angle signal by the crank rotational position sensor SE, the UVW phase signal, the ignition signal, the injection signal, and the engine stroke. It is a time chart which shows. The combination information NNUM is a virtual signal that represents a combination of a crank angle signal, a U-phase signal, a V-phase signal, and a W-phase signal that is output at the same time. Decimal numbers calculated by combining binary numbers.
 具体的には、二進数表記の1桁目をクランク角信号の2進数、二進数表記の2桁目をU相信号の2進数、3桁目をV相信号の2進数、4桁目をW相信号の2進数で表した4桁の二進数を、十進数に変換した数値が組合せ情報NNUMである。この数値NNUMはECU13により算出される。例えば、最左欄に示すようにクランク角信号およびUVW相信号が各々「1」「1」「0」「1」であれば、NNUMは「11」となる。 Specifically, the first digit in binary notation is the binary number of the crank angle signal, the second digit in binary notation is the binary number of the U-phase signal, the third digit is the binary number of the V-phase signal, and the fourth digit is A numerical value obtained by converting a 4-digit binary number represented by a binary number of a W-phase signal into a decimal number is combination information NNUM. This numerical value NNUM is calculated by the ECU 13. For example, as shown in the leftmost column, if the crank angle signal and the UVW phase signal are “1”, “1”, “0”, and “1”, NNUM is “11”.
 図中の符号ESは、異極磁性部34を検出したことによりロー信号となった部分を示しており、当該部分の信号が「内燃機関制御用信号」に相当し、U相信号のうち符号ES以外の部分の信号は「モータ制御用信号」に相当する。この内燃機関制御用信号ESが現れる部分を除けば、NNUMの値は11→2→6→4→13→9の順に繰り返しローテーションして変化する。ちなみに、本実施形態に反して異極磁性部34が形成されていなければ、図中の点線に示すように符号ESの部分はハイ信号となる。 Symbol ES in the figure indicates a portion that has become a low signal due to detection of the heteropolar magnetic portion 34, and the signal of the portion corresponds to an “internal combustion engine control signal”. Signals other than ES correspond to “motor control signals”. Except for the portion where the internal combustion engine control signal ES appears, the value of NNUM is repeatedly rotated in the order of 11 → 2 → 6 → 4 → 13 → 9. Incidentally, in contrast to the present embodiment, if the different polar magnetic portion 34 is not formed, the portion of the symbol ES becomes a high signal as shown by the dotted line in the figure.
 図中の符号a,b,cに示すように、内燃機関制御用信号ESを検出している期間中のNNUM値は「12」→「8」→「10」と推移するが、ES検出時以外では、NNUM値が「8」になることはない。また、図中の符号j,k,lに示すように、内燃機関制御用信号ESを検出している期間中のNNUM値は「5」→「1」→「3」と推移するが、ES検出時以外では、NNUM値が「1」になることはない。他にも、例えば符号a,cにかかる「12」「10」等はES検出時にしか現れない。 As indicated by reference symbols a, b, and c in the figure, the NNUM value during the period in which the internal combustion engine control signal ES is detected changes from “12” to “8” to “10”. Otherwise, the NNUM value will never be “8”. In addition, as indicated by the symbols j, k, and l in the figure, the NNUM value during the period of detecting the internal combustion engine control signal ES changes from “5” → “1” → “3”. Except at the time of detection, the NNUM value never becomes “1”. In addition, for example, “12”, “10” and the like relating to the symbols a and c appear only when ES is detected.
 したがって、符号bにかかるNNUM値「8」や符号k,a,cにかかる「1」「12」「10」等を検出した時点でのクランク角を基準として、ECU13はクランク軸14の絶対回転位置を算出できる。そして、絶対回転位置を把握できれば、各々のセンサ出力信号の立ち上りまたは立ち下りのタイミング(つまりNNUMの更新タイミング)と、4サイクルエンジンの1回転分の位置関係を特定できる。要するに、現時点でのNNUM値に基づき絶対回転位置を算出する。 Therefore, the ECU 13 performs absolute rotation of the crankshaft 14 with reference to the crank angle at the time when the NNUM value “8” applied to the symbol b and “1”, “12”, “10”, etc. applied to the symbols k, a, and c are detected. The position can be calculated. If the absolute rotational position can be grasped, it is possible to specify the positional relationship between the rising or falling timing of each sensor output signal (that is, the update timing of NNUM) and one rotation of the 4-cycle engine. In short, the absolute rotational position is calculated based on the current NNUM value.
 例えば、NNUM値「8」が現れた後、NNUM値「2」が2回目に現れたg時点が、エンジンのピストンが下死点BDCに達した時期であると特定できる。なお、吸気圧センサ16の値を参照すれば、前記下死点BDC時期が排気行程および圧縮行程のいずれであるかを判別(行程判別)できる。これにより、絶対回転位置を基準として、NNUMの更新タイミングに基づき燃料噴射時期や点火時期を目標時期とするように制御できる。 For example, after the NNUM value “8” appears, the time point g when the NNUM value “2” appears for the second time can be identified as the time when the piston of the engine has reached the bottom dead center BDC. By referring to the value of the intake pressure sensor 16, it is possible to determine whether the bottom dead center BDC timing is an exhaust stroke or a compression stroke (stroke determination). Thus, it is possible to control the fuel injection timing and the ignition timing as the target timing based on the NNUM update timing with the absolute rotation position as a reference.
 なお、NNUM値が「0」である場合において、前回のNNUM値が「9」であれば、符号eに示す機関制御用信号ESによるものであると特定できる。一方、前回のNNUM値が「2」であれば、符号hに示す機関制御用信号ESによるものであると特定できる。なお、ACGスタータ20が逆転している場合には、前回NNUM値が「4」であれば符号eにかかる信号ES、「6」であれば符号hにかかる信号ESであると特定できる。そして、これらの特定結果と、機関制御用信号ESの出現タイミングに基づき、絶対回転位置を算出する。要するに、NNUM値の履歴に基づき絶対回転位置を算出する。 When the NNUM value is “0” and the previous NNUM value is “9”, it can be specified that the signal is due to the engine control signal ES indicated by the symbol e. On the other hand, if the previous NNUM value is “2”, it can be specified that the engine control signal ES is indicated by the symbol h. When the ACG starter 20 is reversed, it can be specified that the signal ES is applied to the symbol e if the previous NNUM value is “4”, and the signal ES is applied to the symbol h if the value is “6”. Then, based on these identification results and the appearance timing of the engine control signal ES, the absolute rotational position is calculated. In short, the absolute rotational position is calculated based on the history of the NNUM value.
 さらにECU13は、現時点でのNNUM値に基づき次回のNNUM値を特定し(特定手段)、その特定した次回NNUM値に基づきU相コイルCU、V相コイルCVおよびW相コイルCWへの通電制御内容を決定する。例えば、今回NNUM値が「6」であれば、前記ローテーションに基づき次回NNUM値は「4」であると特定できる。つまり、U相コイルCUが巻き回されたティース部41は、S極マグネット32Sの対向位置(ハイ)からN極マグネット32Nの対向位置(ロー)へと移り変わるタイミングにあると言える。そのため、U相コイルCUへの通電オンオフ状態を切り替えるタイミングにあると言える。 Further, the ECU 13 specifies the next NNUM value based on the current NNUM value (identifying means), and the energization control content to the U-phase coil CU, V-phase coil CV, and W-phase coil CW based on the specified next NNUM value. To decide. For example, if the current NNUM value is “6”, it can be specified that the next NNUM value is “4” based on the rotation. That is, it can be said that the tooth portion 41 around which the U-phase coil CU is wound is at a timing when the position changes from the facing position (high) of the S pole magnet 32S to the facing position (low) of the N pole magnet 32N. Therefore, it can be said that it is at the timing of switching the energization on / off state to the U-phase coil CU.
 このように、U相コイルCUへの通電は、U相信号の立ち上りを示すNNUM値「9」、または立ち下がりを示すNNUM値「6」が検出されたか否かに基づきECU13が制御する。同様にして、V相コイルCVおよびW相コイルCWへの通電もNNUM値に基づき制御する。 Thus, the energization of the U-phase coil CU is controlled by the ECU 13 based on whether or not the NNUM value “9” indicating the rising edge of the U-phase signal or the NNUM value “6” indicating the falling edge is detected. Similarly, energization to the V-phase coil CV and the W-phase coil CW is also controlled based on the NNUM value.
 なお、符号a,b,cにかかるNNUM値「12」「8」「10」については、「13」「9」「11」とみなしてUVW相コイルCU~CWへの通電制御を実施すれば、ティース部41のコイルCU,CV,CWと磁極位相が一致し、モータを回転駆動させることができる。同様に、符号d,e,fにかかるNNUM値「9」「0」「4」については「11」「2」「6」とみなし、符号g,h,iにかかるNNUM値「2」「0」「9」については「6」「4」「13」とみなし、符号j,k,lにかかるNNUM値「5」「1」「3」については「13」「9」「11」とみなして通電制御する。 Note that the NNUM values “12”, “8”, and “10” applied to the symbols a, b, and c are regarded as “13”, “9”, and “11”, and the energization control to the UVW phase coils CU to CW is performed. The coils CU, CV, and CW of the teeth portion 41 have the same magnetic pole phase, and the motor can be driven to rotate. Similarly, the NNUM values “9”, “0”, and “4” for the codes d, e, and f are regarded as “11”, “2”, and “6”, and the NNUM values “2” and “2” for the codes g, h, and i are considered. “0” and “9” are regarded as “6”, “4”, and “13”, and NNUM values “5”, “1”, and “3” for the codes j, k, and l are “13”, “9”, and “11”. Considering energization control.
 一方、絶対回転位置が算出される前の停止時においては、例えばNNUM値が「0」である場合において、次回NNUM値が「4」および「9」のいずれであるかを特定できない。そこで本実施形態では、「4」「9」のうちの任意値(例えば「4」)が次回NNUM値であるとみなしてUVW相コイルCU~CWへの通電制御を実施する。そして、所定時間が経過してもACGスタータ20が回転を開始せずにNNUM値が変化しない場合には、次回NNUM値は前記任意値「4」ではなく他の値「9」であったとみなしてUVW相コイルCU~CWへの通電制御を実施する。なお、実際のNNUM値が「0」から期待値と異なる値になった場合には、その実際のNNUM値に基づいて駆動を実施する。 On the other hand, at the stop before the absolute rotation position is calculated, for example, when the NNUM value is “0”, it cannot be specified whether the next NNUM value is “4” or “9”. Therefore, in the present embodiment, the energization control of the UVW phase coils CU to CW is performed on the assumption that an arbitrary value (for example, “4”) of “4” and “9” is the next NNUM value. If the NNUM value does not change because the ACG starter 20 does not start rotating even after the predetermined time has elapsed, the next NNUM value is regarded as another value “9” instead of the arbitrary value “4”. Then, energization control to the UVW phase coils CU to CW is performed. When the actual NNUM value becomes a value different from the expected value from “0”, driving is performed based on the actual NNUM value.
 さらにECU13は、NNUM値の履歴に基づき、ACGスタータ20が逆転しているか否かを検知する。例えば、正転していれば上述の如くNNUM値は11→2→6→4→13→9の順に変化する筈である。一方、逆転していればNNUM値は9→13→4→6→2→11の順に変化する筈である。 Further, the ECU 13 detects whether or not the ACG starter 20 is reversed based on the history of the NNUM value. For example, if it is rotating forward, the NNUM value should change in the order of 11 → 2 → 6 → 4 → 13 → 9 as described above. On the other hand, if the rotation is reversed, the NNUM value should change in the order of 9 → 13 → 4 → 6 → 2 → 11.
 ところで、ACGスタータ20によりエンジンを始動させるにあたり、エンジンのピストンが圧縮行程のTDC直前位置から始動させようとすると、ACGスタータ20に要する駆動トルクが圧縮分だけ大きくなるので、エンジンの始動性悪化が懸念される。そこで、エンジン始動開始前に、クランク軸14を逆転させて始動性が良好となるピストン位置に設定しておく、といったスイングバック制御を実施する場合がある。このように、ACGスタータ20を逆転駆動させたい場合があるが、この場合には、例えば今回NNUM値が9であれば、次回NNUM値は13であると特定し、その特定値に応じてUVW相コイルCU~CWへの通電タイミングを制御すればよい。 By the way, when the engine is started by the ACG starter 20, if the engine piston tries to start from the position immediately before the TDC in the compression stroke, the driving torque required for the ACG starter 20 is increased by the amount of compression. Concerned. Therefore, there is a case where swingback control is performed such that the crankshaft 14 is reversely rotated and set to a piston position where the startability is good before starting the engine. Thus, there is a case where it is desired to drive the ACG starter 20 in the reverse direction. In this case, for example, if the current NNUM value is 9, the next NNUM value is specified as 13, and the UVW is determined according to the specified value. The energization timing to the phase coils CU to CW may be controlled.
 図6は、ECU13に備えられたマイコン13a(図22参照)が、上述の如くUVW相コイルCU~CWに対する通電制御を実施する処理の手順を示すフローチャートである。当該処理は、所定周期(例えば先述のマイコン13aのCPUが行う演算周期、又は所定のクランク角度毎)で繰り返し実行される。或いは、回転停止時には前記所定周期で実行する一方で、回転時においては以下に説明するエッジ検知が為される毎に実行してもよい。すなわち、図22に示すマイコン13aは、各センサSU~SWから出力されて入力処理された信号(図25に示すUVW相信号)に対し、その信号が変化するタイミングを捕捉するキャプチャー機能を有している。要するに、UVW相信号の立上りおよび立下りのタイミング(エッジ検知タイミング)を検知する。そして、このエッジ検知がなされる毎に図6の処理を実行する。 FIG. 6 is a flowchart showing a procedure of processing in which the microcomputer 13a (see FIG. 22) provided in the ECU 13 performs energization control on the UVW phase coils CU to CW as described above. This process is repeatedly executed at a predetermined cycle (for example, a calculation cycle performed by the CPU of the microcomputer 13a described above or every predetermined crank angle). Alternatively, the rotation may be performed at the predetermined period when the rotation is stopped, while the rotation may be performed every time edge detection described below is performed. That is, the microcomputer 13a shown in FIG. 22 has a capture function for capturing the timing at which the signal changes (the UVW phase signal shown in FIG. 25) output from the sensors SU to SW and subjected to input processing. ing. In short, the rising and falling timing (edge detection timing) of the UVW phase signal is detected. Then, the processing of FIG. 6 is executed every time this edge detection is performed.
 先ず、図6に示すステップS10において、本実施形態では、クランク角信号、U相信号、V相信号およびW相信号の各々を、UVW相センサSU~SWから取得する。続くステップS20(組合せ情報生成手段)では、クランク角信号およびUVW相信号に基づき、これらの信号の組合せを表した組合せ情報NNUMを算出する。続くステップS30では、NNUM値に基づき、次回のNNUM値を算出する。 First, in step S10 shown in FIG. 6, in the present embodiment, each of the crank angle signal, the U phase signal, the V phase signal, and the W phase signal is acquired from the UVW phase sensors SU to SW. In subsequent step S20 (combination information generating means), combination information NNUM representing a combination of these signals is calculated based on the crank angle signal and the UVW phase signal. In the subsequent step S30, the next NNUM value is calculated based on the NNUM value.
 具体的には、先述の11→2→6→4→13→9といった正転時ローテーションに基づき、例えば今回NNUM値が「11」であれば次回NNUM値は「2」であると算出する。なお、今回NNUM値が、現時点でのNNUM値で特定できる値、すなわち、先述した符号b,k,a,cにかかる「8」「1」「12」「10」であれば、次回NNUM値は各々「11」「11」「9」「2」であると算出する。 Specifically, based on the above-described rotation at normal rotation such as 11 → 2 → 6 → 4 → 13 → 9, for example, if the current NNUM value is “11”, the next NNUM value is calculated to be “2”. If the current NNUM value is a value that can be specified by the current NNUM value, that is, “8”, “1”, “12”, and “10” for the above-described codes b, k, a, and c, the next NNUM value Are calculated to be “11”, “11”, “9”, and “2”, respectively.
 続くステップS40では、ステップS30で算出した次回NNUM値に基づき、UVW相コイルCU~CWへの通電制御を実施する。これによりACGスタータ20は所定の回転方向でモータ駆動する。 In subsequent step S40, energization control for the UVW phase coils CU to CW is performed based on the next NNUM value calculated in step S30. As a result, the ACG starter 20 is driven by a motor in a predetermined rotation direction.
 例えば、U相コイルCUへの通電制御について説明すると、次回NNUM値が「11」または「4」である場合には、次回NNUM値を構成するU相信号の値は、今回NNUM値を構成するU相信号の値から変化することを意味する。よって、次回NNUM値が「11」または「4」であると特定した時点で、U相コイルCUへの通電制御内容をオンからオフ、或いはオフからオンに切り替える。 For example, the energization control to the U-phase coil CU will be described. When the next NNUM value is “11” or “4”, the value of the U-phase signal that constitutes the next NNUM value constitutes the current NNUM value. It means changing from the value of the U-phase signal. Therefore, when the next NNUM value is specified to be “11” or “4”, the energization control content to the U-phase coil CU is switched from on to off, or from off to on.
 V相コイルCVおよびW相コイルCWへの通電制御についても同様にして、次回NNUM値が「9」または「2」であると特定した時点でV相コイルCVへの通電制御内容を切り替え、次回NNUM値が「13」または「2」であると特定した時点でW相コイルCWへの通電制御内容を切り替える。 Similarly, the energization control for the V-phase coil CV and the W-phase coil CW is performed in the same manner, when the next NNUM value is specified as “9” or “2”, the energization control content for the V-phase coil CV is switched. When the NNUM value is specified as “13” or “2”, the energization control content to the W-phase coil CW is switched.
 続くステップS50では、先述したようにNNUM値「8」が現れてクランク軸14の絶対回転位置の検知が為されているか否かを判定する。検知済みであれば(S50:YES)、次のステップS60に進み、検知した絶対回転位置およびUVW相信号(またはNNUM値)に基づき、燃料噴射時期および点火時期が目標時期となるよう、インジェクタ10および点火装置11の作動を制御する。但し、絶対回転位置の検知が為されていなければ(S50:NO)、インジェクタ10および点火装置11を作動させることなく待機する。 In the subsequent step S50, as described above, it is determined whether or not the NUMUM value “8” appears and the absolute rotational position of the crankshaft 14 has been detected. If it has been detected (S50: YES), the process proceeds to the next step S60, and the injector 10 is set so that the fuel injection timing and the ignition timing become the target timing based on the detected absolute rotational position and UVW phase signal (or NNUM value). And the operation of the ignition device 11 is controlled. However, if the absolute rotational position is not detected (S50: NO), the system waits without operating the injector 10 and the ignition device 11.
 図25の例では、ts1時点で点火装置11の駆動を開始し、ts2時点で点火させている。また、tf1の時点でインジェクタ10による燃料噴射を開始し、tf2の時点で噴射を終了させている。そして、内燃機関制御用信号ESが現れた時のクランク角(絶対回転位置)を基準とし、内燃機関制御用信号ESが吸入行程で出現した後、U相信号の5回目の立上りタイミング(または5回目のNNUM値「11」出現タイミング)をts1時点とし、W相信号の6回目の立下りタイミング(または6回目のNNUM値「2」出現タイミング)をts2時点として点火制御する。 In the example of FIG. 25, driving of the ignition device 11 is started at time ts1, and ignition is performed at time ts2. Further, the fuel injection by the injector 10 is started at the time tf1, and the injection is ended at the time tf2. Then, with reference to the crank angle (absolute rotational position) when the internal combustion engine control signal ES appears, the internal combustion engine control signal ES appears in the intake stroke, and then the fifth rise timing of the U-phase signal (or 5 The ignition control is performed with the NN1 value “11” appearance timing) as the ts1 time point and the sixth falling timing of the W-phase signal (or the sixth NNUM value “2” appearance timing) as the ts2 time point.
 また、内燃機関制御用信号ESが爆発行程で出現した後、V相信号の3回目の立下りタイミング(または3回目のNNUM値「9」出現タイミング)をtf1時点とし、V相信号の5回目の立上りタイミング(または5回目のNNUM値「6」出現タイミング)をtf2時点として燃料噴射制御する。 In addition, after the internal combustion engine control signal ES appears in the explosion stroke, the third falling timing of the V-phase signal (or the third NNUM value “9” appearance timing) is set to the time tf1, and the fifth V-phase signal is output. The fuel injection control is performed with the rise timing (or the fifth NNUM value “6” appearance timing) of t5 as the time point tf2.
 なお、吸気圧センサ16の検出値に基づき、下死点BDC時期が排気行程および圧縮行程のいずれであるかを行程判別することは先述した通りであるが、この行程判別が未だ為されていない場合には、ts1’~ts2’およびtf1’~tf2’でも点火装置11およびインジェクタ10を駆動させる。また、図25の例では、各種の点火制御時期ts1,ts2および噴射制御時期tf1,tf2がUVW相信号の立上りまたは立下りタイミングと一致しているが、一致していない場合には、目標時期の直前におけるUVW相信号の立上りまたは立下りタイミングから、所定時間が経過した時点で点火制御または噴射制御を実施すればよい。 Note that, as described above, it is determined whether the bottom dead center BDC timing is the exhaust stroke or the compression stroke based on the detection value of the intake pressure sensor 16, but this stroke determination has not yet been made. In this case, the ignition device 11 and the injector 10 are driven also in ts1 ′ to ts2 ′ and tf1 ′ to tf2 ′. In the example of FIG. 25, the various ignition control timings ts1 and ts2 and the injection control timings tf1 and tf2 coincide with the rising or falling timing of the UVW phase signal. The ignition control or the injection control may be performed when a predetermined time has elapsed from the rising or falling timing of the UVW phase signal immediately before.
 以上詳述した本実施形態によれば、以下の効果が得られるようになる。 According to the embodiment described above in detail, the following effects can be obtained.
 (1)図16に示す従来手法では、クランク軸14が1回転する間に内燃機関制御用信号ESが1回出現するのに対し、本実施形態によれば4回出現する。そのため、ACGスタータ20の駆動を開始してから、クランク軸14が1回転することを待たずして内燃機関制御用信号ESが出現することとなるので、内燃機関制御用信号ESに基づき絶対回転位置を算出するのに要する時間を短縮できる。よって、インジェクタ10及び点火装置11の駆動開始を迅速にできる。これにより、要求されるモータ駆動トルクを低減させることができるので、ACGスタータ20の小型化を図ることができる。 (1) In the conventional method shown in FIG. 16, the internal combustion engine control signal ES appears once while the crankshaft 14 makes one revolution, whereas it appears four times according to the present embodiment. For this reason, the internal combustion engine control signal ES appears without waiting for the crankshaft 14 to make one rotation after the driving of the ACG starter 20 is started. Therefore, the absolute rotation is performed based on the internal combustion engine control signal ES. The time required to calculate the position can be shortened. Therefore, the drive start of the injector 10 and the ignition device 11 can be quickly performed. As a result, the required motor driving torque can be reduced, and the ACG starter 20 can be downsized.
 (2)本実施形態では、異極磁性部34の回転軌道34a上に複数のセンサを配置することに起因して、内燃機関制御用信号ESを検出した時のNNUM値「0」が、いずれのセンサによる内燃機関制御用信号ESを組み合わせたものであるかを特定できなくなる。これに対し、本実施形態では、NNUM値の履歴に基づき前記特定を行う。よって、絶対回転位置の把握を可能にできる。 (2) In the present embodiment, the NNUM value “0” when the internal combustion engine control signal ES is detected due to the arrangement of a plurality of sensors on the rotation path 34a of the heteropolar magnetic portion 34 is It becomes impossible to specify whether or not the signal ES for internal combustion engine control by these sensors is combined. On the other hand, in the present embodiment, the identification is performed based on the history of the NNUM value. Therefore, the absolute rotational position can be grasped.
 (3)本実施形態では、絶対回転位置を算出が未だ完了していない回転駆動期間における通電制御(モータ駆動制御)に関し、次回NNUM値の候補「6」「13」を順に試行して通電制御するので、前記回転駆動期間であってもモータ駆動制御が可能となる。 (3) In the present embodiment, regarding the energization control (motor drive control) in the rotation drive period for which the calculation of the absolute rotation position has not yet been completed, the next NNUM value candidates “6” and “13” are tried in order and the energization control is performed. Therefore, motor drive control is possible even during the rotation drive period.
 (4)UVW相信号のハイとローだけでは、内燃機関制御用信号ESによるロー信号とモータ制御用信号によるロー信号との見分けがつかない。特に、NNUM値の履歴を取得できていないACGスタータ20の駆動開始時またはACGスタータ20の停止時には、UVW相信号のローが内燃機関制御用信号ESによるものであるか否かを特定できない。これに対し本実施形態では、各信号の組合せ情報NNUMを算出するので、当該NNUM値に基づけば、ACGスタータ20が停止していたとしても、NNUM値が「1」であれば、その時のW相信号のローが内燃機関制御用信号ESによるものであると特定できる。よって、エンジン制御に要する絶対回転位置を迅速に把握できる。 (4) The high and low UVW phase signals alone cannot distinguish the low signal from the internal combustion engine control signal ES and the low signal from the motor control signal. In particular, when the drive of the ACG starter 20 for which the history of the NNUM value has not been acquired or when the ACG starter 20 is stopped, it cannot be specified whether or not the low of the UVW phase signal is due to the internal combustion engine control signal ES. On the other hand, in the present embodiment, the combination information NNUM of each signal is calculated. Based on the NNUM value, even if the ACG starter 20 is stopped, if the NNUM value is “1”, the W It can be specified that the low phase signal is due to the internal combustion engine control signal ES. Therefore, the absolute rotational position required for engine control can be quickly grasped.
 特に、アイドルストップ制御システムを有する車両においては、エンジンを自動再始動させるにあたり、上述の如く絶対回転位置を迅速に把握できるので、インジェクタ10及び点火装置11の駆動開始を迅速にでき、好適である。 In particular, in a vehicle having an idle stop control system, since the absolute rotational position can be quickly grasped as described above when the engine is automatically restarted, driving of the injector 10 and the ignition device 11 can be quickly started, which is preferable. .
 (5)ここで、UVW相センサSU~SWが内燃機関制御用信号ESを出力することに起因して、現時点でのUVW相センサ信号からは次回のUVW相センサ信号を特定できない場合がある。しかしこの場合であっても、現時点でのNNUM値に基づけば、次回のNNUM値を特定して次回のUVW相センサ信号を特定できる場合がある。この点を鑑みた本実施形態では、現時点でのNNUM値に基づき特定した次回のNNUM値に基づき、UVW相コイルCU~CWへの通電制御内容を決定するので、次回のUVW相センサ信号が特定できなくなる機会を減らして通電制御内容を決定できるようになる。 (5) Here, due to the UVW phase sensors SU to SW outputting the internal combustion engine control signal ES, the next UVW phase sensor signal may not be identified from the current UVW phase sensor signal. However, even in this case, based on the current NNUM value, the next UVNUM phase sensor signal may be specified by specifying the next NNUM value. In view of this point, in the present embodiment, the energization control content to the UVW phase coils CU to CW is determined based on the next NNUM value specified based on the current NNUM value, so that the next UVW phase sensor signal is specified. The energization control content can be determined by reducing the chances of being impossible.
 (6)ACGスタータ20のロータ30とクランク軸14とは回転中心が一致した状態で一体的に回転するように固定されており、ロータ30とクランク軸14との間には、ベルトやギア等の動力伝達機構が介在していない。そのため、ACGスタータ20に備えられたクランク回転位置センサSEからクランク角信号を出力させるにあたり、ギアのバックラッシュやベルトの伸び等により、クランク軸14の回転位相とロータ30の回転位相とにずれが生じることを回避できるので、クランク軸14の絶対回転位置を算出するにあたり、十分な算出精度を確保できる。 (6) The rotor 30 and the crankshaft 14 of the ACG starter 20 are fixed so as to rotate integrally with the center of rotation coinciding with each other. Between the rotor 30 and the crankshaft 14, a belt, a gear, or the like The power transmission mechanism is not interposed. Therefore, when the crank angle signal is output from the crank rotation position sensor SE provided in the ACG starter 20, there is a shift between the rotation phase of the crankshaft 14 and the rotation phase of the rotor 30 due to gear backlash, belt extension, or the like. Since this can be avoided, sufficient calculation accuracy can be ensured in calculating the absolute rotational position of the crankshaft 14.
 (7)内燃機関制御用信号ESを検出した時のNNUM値「8」が、ES検出時以外では出現しないように構成されている。そのため、現時点でのNNUM値に基づき絶対回転位置を算出できるので、NNUM値の履歴が蓄積されるのを待つことなく、迅速に絶対回転位置を把握できる。 (7) The NNUM value “8” when the internal combustion engine control signal ES is detected is configured not to appear except when ES is detected. Therefore, since the absolute rotational position can be calculated based on the current NUMUM value, the absolute rotational position can be quickly grasped without waiting for the history of the NNUM value to be accumulated.
 (8)ところで、図16に示す従来手法において、クランク角信号の立ち上りまたは立ち下りの周期は、1つのマグネット32S,32Nが占める回転角(30°)だけクランク軸14が回転する時間である。これに対し、NNUMの更新周期は、各々のセンサ信号の組合せであるため、前記回転角(30°)の3分の1の回転角だけクランク軸14が回転する時間となる。つまり、NNUMの更新周期は、図16のクランク角信号の周期よりも短いと言える。そのため、各々のUVW相信号の立ち上りまたは立ち下りのタイミング(NNUMの更新タイミング)に基づき燃料噴射時期や点火時期を制御する本実施形態によれば、図16に示すクランク角信号に基づき制御する場合に比べて、制御に使用する基本時間が3分の1(10°/30°)になり、燃料噴射時期や点火時期を高精度で制御できる。 (8) In the conventional method shown in FIG. 16, the rising or falling cycle of the crank angle signal is the time for the crankshaft 14 to rotate by the rotation angle (30 °) occupied by one magnet 32S, 32N. On the other hand, since the update period of NNUM is a combination of sensor signals, the crankshaft 14 is rotated by a rotation angle that is one third of the rotation angle (30 °). That is, it can be said that the update period of NNUM is shorter than the cycle of the crank angle signal in FIG. Therefore, according to this embodiment in which the fuel injection timing and the ignition timing are controlled based on the rising or falling timing (NNUM update timing) of each UVW phase signal, the control is performed based on the crank angle signal shown in FIG. In comparison with this, the basic time used for control is one third (10 ° / 30 °), and the fuel injection timing and ignition timing can be controlled with high accuracy.
 (9)図23に示すように、クランク回転位置センサSEおよびUVW相センサSU~SWを隣り合う間隙41aに配置することを禁止して、分散して配置している。図23の例では、クランク回転位置センサSEとU相センサSUとの間の角度、U相センサSUとV相センサSVとの間の角度、およびV相センサSVとW相センサSWとの間の角度が80°となるように分散配置している。そのため、4つのセンサSU~SW,SEを、複数のティース部41の間隙41aのうち隣り合う間隙41aに順番に配置する場合に比べて、内燃機関制御用信号ESが現れる時間間隔の最長値を短くできる。よって、ACGスタータ20の駆動を開始してから、内燃機関制御用信号ESが出現するまでに要する時間を、上述の分散配置により短縮することができる。よって、内燃機関制御用信号ESに基づき絶対回転位置を算出するのに要する時間を短縮でき、インジェクタ10及び点火装置11の駆動開始迅速化を促進できる。 (9) As shown in FIG. 23, the crank rotation position sensor SE and the UVW phase sensors SU to SW are prohibited from being arranged in the adjacent gap 41a, and are arranged in a distributed manner. In the example of FIG. 23, the angle between the crank rotation position sensor SE and the U-phase sensor SU, the angle between the U-phase sensor SU and the V-phase sensor SV, and the interval between the V-phase sensor SV and the W-phase sensor SW. Are arranged so as to have an angle of 80 °. Therefore, as compared with the case where the four sensors SU to SW, SE are sequentially arranged in the adjacent gaps 41a among the gaps 41a of the plurality of tooth portions 41, the maximum value of the time interval at which the internal combustion engine control signal ES appears is larger. Can be shortened. Therefore, the time required from the start of driving of the ACG starter 20 to the appearance of the internal combustion engine control signal ES can be shortened by the above-described distributed arrangement. Therefore, the time required to calculate the absolute rotational position based on the internal combustion engine control signal ES can be shortened, and the drive start speedup of the injector 10 and the ignition device 11 can be accelerated.
 (第13実施形態)
 本実施形態の構成を図22に示す。
(13th Embodiment)
The configuration of this embodiment is shown in FIG.
 図27(a)に示すように、複数のマグネット32S,32Nのうち所定のマグネット32S(A)(図27(a)の例ではS極マグネット)の一部分には、以下に説明する異極磁性部34が形成されている。すなわち、図27(a)の斜線に示す部分だけは、S極マグネット32Sとは異なる極性(N極)に着磁されている。この異極磁性部34は、所定のマグネット32S(A)のうちロータ回転軸方向(図27(a)の上下方向)の一端部分に形成されるとともに、回転方向(図27(a)の左右方向)のうち異極磁性部34の両側には、所定のマグネット32S(A)の極性が存在するように形成する。要するに、所定のマグネット32S(A)の上端部分を回転方向に3分割し、その中央部分を異極磁性部34として形成する。 As shown in FIG. 27 (a), a portion of a predetermined magnet 32S (A) (S pole magnet in the example of FIG. 27 (a)) of the plurality of magnets 32S and 32N has a different polar magnetism described below. A portion 34 is formed. That is, only the portion indicated by the oblique lines in FIG. 27A is magnetized with a polarity (N pole) different from that of the S pole magnet 32S. This heteropolar magnetic portion 34 is formed at one end of the predetermined magnet 32S (A) in the rotor rotation axis direction (vertical direction in FIG. 27A) and at the left and right in the rotation direction (FIG. 27A). The polarity of the predetermined magnet 32S (A) is formed on both sides of the heteropolar magnetic portion 34 in the direction). In short, the upper end portion of the predetermined magnet 32S (A) is divided into three in the rotational direction, and the central portion is formed as the heteropolar magnetic portion 34.
 U相センサSU、V相センサSVおよびW相センサSWはロータ回転軸方向(図27(a)の上下方向)において同じ位置に配置されているのに対し、クランク回転位置センサSEは、UVW相センサSU~SWとは回転軸方向において異なる位置に配置されている。これにより、異極磁性部34の回転軌道34a上にクランク回転位置センサSEが位置し、UVW相センサSU~SWについては回転軌道34aから外れた位置となるようにする。 The U-phase sensor SU, the V-phase sensor SV, and the W-phase sensor SW are arranged at the same position in the rotor rotation axis direction (vertical direction in FIG. 27A), whereas the crank rotation position sensor SE is the UVW phase. The sensors SU to SW are arranged at different positions in the rotation axis direction. As a result, the crank rotation position sensor SE is positioned on the rotation track 34a of the heteropolar magnetic section 34, and the UVW phase sensors SU to SW are positioned away from the rotation track 34a.
 本実施形態では、UVW相センサSU~SWおよびクランク回転位置センサSEがN極を検出した時にはロー信号(二進数「0」)を出力し、S極を検出した時にはハイ信号(二進数「1」)を出力するよう設定してある。そして、マグネット32S,32Nは12個(12極)であるため、クランク角信号、U相信号、V相信号、W相信号の各々は、ロータ30が30度回転する毎にローとハイが切り替わる(図28参照)。したがって、UVW相の各々の電気角360°は、クランク軸14の回転角度(機械角)60°に相当する。但し、クランク角信号については異極磁性部34の検出時にもローに切り替わる。また、ロータ30が10度回転する毎に、UVW相センサSU~SWおよびクランク回転位置センサSEのいずれかにおいてローとハイが切り替わることとなる。 In this embodiment, a low signal (binary number “0”) is output when the UVW phase sensors SU to SW and the crank rotation position sensor SE detect the N pole, and a high signal (binary number “1”) when the S pole is detected. )) Is output. Since there are 12 magnets 32S and 32N (12 poles), the crank angle signal, the U phase signal, the V phase signal, and the W phase signal are switched between low and high every time the rotor 30 rotates 30 degrees. (See FIG. 28). Therefore, each electrical angle 360 ° of the UVW phase corresponds to a rotation angle (mechanical angle) 60 ° of the crankshaft 14. However, the crank angle signal is also switched to low when the heteropolar magnetic portion 34 is detected. Further, every time the rotor 30 rotates 10 degrees, either the UVW phase sensors SU to SW or the crank rotation position sensor SE is switched between low and high.
 ちなみに、図27(a)の如く、N極マグネット32NとS極マグネット32Sの間に極性を有しない部材32aが介在している場合において、この部材32aがUVW相センサSU~SWおよびクランク回転位置センサSEに対向して極性を検出できない時には、ロー信号およびハイ信号のうち予め設定しておいた信号(例えばロー信号)であるとみなして処理すればよい。 Incidentally, as shown in FIG. 27A, when a member 32a having no polarity is interposed between the N-pole magnet 32N and the S-pole magnet 32S, this member 32a is used for the UVW phase sensors SU to SW and the crank rotation position. When the polarity cannot be detected in opposition to the sensor SE, processing may be performed assuming that the signal is a preset signal (for example, a low signal) out of the low signal and the high signal.
 なお、前記部材32aが存在しないよう、N極マグネット32NとS極マグネット32Sを隣接させたロータ30を採用してもよいことは勿論である。また、1つのマグネット片をN極とS極に着磁することで、複数のN極マグネット32NおよびS極マグネット32Sを1つのマグネット片から形成したロータを採用してもよい。なお、この場合のロータでは、複数(例えば4つ)のマグネット片を用いて構成してもよいし、1つのマグネット片を用いて構成してもよい。 Of course, the rotor 30 in which the N-pole magnet 32N and the S-pole magnet 32S are adjacent to each other may be adopted so that the member 32a does not exist. Further, a rotor in which a plurality of N-pole magnets 32N and S-pole magnets 32S are formed from one magnet piece by magnetizing one magnet piece to N-pole and S-pole may be adopted. Note that the rotor in this case may be configured using a plurality of (for example, four) magnet pieces, or may be configured using one magnet piece.
 図28は、上段から順に、クランク角、組合せ情報NNUM、クランク角信号およびUVW相信号の二進数表記、クランク回転位置センサSEによるクランク角信号、UVW相信号、点火信号、噴射信号、エンジン行程を示すタイムチャートである。組合せ情報NNUMとは、同時期に出力されるクランク角信号、U相信号、V相信号およびW相信号の組合せを表した仮想信号であり、本実施形態では、クランク角信号およびUVW相信号の二進数表記を組み合わせて算出した十進数の数値としている。 FIG. 28 shows, in order from the top, the crank angle, combination information NNUM, the binary notation of the crank angle signal and the UVW phase signal, the crank angle signal by the crank rotational position sensor SE, the UVW phase signal, the ignition signal, the injection signal, and the engine stroke. It is a time chart which shows. The combination information NNUM is a virtual signal that represents a combination of a crank angle signal, a U-phase signal, a V-phase signal, and a W-phase signal that is output at the same time. Decimal numbers calculated by combining binary numbers.
 具体的には、二進数表記の1桁目をクランク角信号の2進数、二進数表記の2桁目をU相信号の2進数、3桁目をV相信号の2進数、4桁目をW相信号の2進数で表した4桁の二進数を、十進数に変換した数値が組合せ情報NNUMである。この数値NNUMはECU13により算出される。例えば、最左欄に示すようにクランク角信号およびUVW相信号が各々「1」「1」「0」「1」であれば、NNUMは「11」となる。 Specifically, the first digit in binary notation is the binary number of the crank angle signal, the second digit in binary notation is the binary number of the U-phase signal, the third digit is the binary number of the V-phase signal, and the fourth digit is A numerical value obtained by converting a 4-digit binary number represented by a binary number of a W-phase signal into a decimal number is combination information NNUM. This numerical value NNUM is calculated by the ECU 13. For example, as shown in the leftmost column, if the crank angle signal and the UVW phase signal are “1”, “1”, “0”, and “1”, NNUM is “11”.
 図中の符号ESは、異極磁性部34を検出したことによりロー信号となった部分を示しており、当該部分の信号が「内燃機関制御用信号」に相当し、UVW相信号は「モータ制御用信号」に相当する。この内燃機関制御用信号ESが現れる部分を除けば、NNUMの値は11→2→6→4→13→9の順に繰り返しローテーションして変化する。 The symbol ES in the figure indicates a portion that has become a low signal due to the detection of the heteropolar magnetic portion 34. The signal in this portion corresponds to an “internal combustion engine control signal”, and the UVW phase signal is “motor”. It corresponds to a “control signal”. Except for the portion where the internal combustion engine control signal ES appears, the value of NNUM is repeatedly rotated in the order of 11 → 2 → 6 → 4 → 13 → 9.
 図中の符号taに示すように、内燃機関制御用信号ESを検出した時のNNUM値は「8」となるが、ES検出時以外では、NNUM値が「8」になることはない。したがって、NNUM値「8」を検出した時点でのクランク角を基準として、ECU13はクランク軸14の絶対回転位置を算出できる。そして、絶対回転位置を把握できれば、各々のセンサ出力信号の立ち上りまたは立ち下りのタイミング(つまりNNUMの更新タイミング)と、4サイクルエンジンの1回転分の位置関係を特定できる。 As shown by the symbol ta in the figure, the NNUM value when the internal combustion engine control signal ES is detected is “8”, but the NNUM value does not become “8” except when ES is detected. Therefore, the ECU 13 can calculate the absolute rotational position of the crankshaft 14 based on the crank angle at the time when the NNUM value “8” is detected. If the absolute rotational position can be grasped, it is possible to specify the positional relationship between the rising or falling timing of each sensor output signal (that is, the update timing of NNUM) and one rotation of the 4-cycle engine.
 例えば、NNUM値「8」が現れた後、NNUM値「2」が3回目に現れたtb時点が、エンジンのピストンが下死点BDCに達した時期であると特定できる。なお、吸気圧センサ16の値を参照すれば、前記下死点BDC時期が排気行程および圧縮行程のいずれであるかを判別(行程判別)できる。これにより、絶対回転位置を基準として、NNUMの更新タイミングに基づき燃料噴射時期や点火時期を目標時期とするように制御できる。 For example, after the NNUM value “8” appears, the time tb when the NNUM value “2” appears for the third time can be identified as the time when the piston of the engine has reached the bottom dead center BDC. By referring to the value of the intake pressure sensor 16, it is possible to determine whether the bottom dead center BDC timing is an exhaust stroke or a compression stroke (stroke determination). Thus, it is possible to control the fuel injection timing and the ignition timing as the target timing based on the NNUM update timing with the absolute rotation position as a reference.
 さらにECU13は、現時点でのNNUM値に基づき次回のNNUM値を特定し(特定手段)、その特定した次回NNUM値に基づきU相コイルCU、V相コイルCVおよびW相コイルCWへの通電制御内容を決定する。例えば、今回NNUM値が「6」であれば、前記ローテーションに基づき次回NNUM値は「4」であると特定できる。つまり、U相コイルCUが巻き回されたティース部41は、S極マグネット32Sの対向位置(ハイ)からN極マグネット32Nの対向位置(ロー)へと移り変わるタイミングにあると言える。そのため、U相コイルCUへの通電オンオフ状態を切り替えるタイミングにあると言える。 Further, the ECU 13 specifies the next NNUM value based on the current NNUM value (identifying means), and the energization control content to the U-phase coil CU, V-phase coil CV, and W-phase coil CW based on the specified next NNUM value. To decide. For example, if the current NNUM value is “6”, it can be specified that the next NNUM value is “4” based on the rotation. That is, it can be said that the tooth portion 41 around which the U-phase coil CU is wound is at a timing when the position changes from the facing position (high) of the S pole magnet 32S to the facing position (low) of the N pole magnet 32N. Therefore, it can be said that it is at the timing of switching the energization on / off state to the U-phase coil CU.
 このように、U相コイルCUへの通電は、U相信号の立ち上りを示すNNUM値「9」、または立ち下がりを示すNNUM値「6」が検出されたか否かに基づきECU13が制御する。同様にして、V相コイルCVおよびW相コイルCWへの通電もNNUM値に基づき制御する。なお、NNUM値「8」については、モータ駆動用コイルCU,CV,CWと対向している「9」でUVW相コイルCU~CWへの通電制御を実施すれば、ティース部41のコイルCU,CV,CWと磁極位相が一致し、モータを回転駆動させることができる。 Thus, the energization of the U-phase coil CU is controlled by the ECU 13 based on whether or not the NNUM value “9” indicating the rising edge of the U-phase signal or the NNUM value “6” indicating the falling edge is detected. Similarly, energization to the V-phase coil CV and the W-phase coil CW is also controlled based on the NNUM value. As for the NNUM value “8”, if the energization control for the UVW phase coils CU to CW is performed with “9” facing the motor driving coils CU, CV, CW, the coils CU, The CV and CW and the magnetic pole phase match, and the motor can be driven to rotate.
 さらにECU13は、NNUM値の履歴に基づき、ACGスタータ20が逆転しているか否かを検知する。例えば、正転していれば上述の如くNNUM値は11→2→6→4→13→9の順に変化する筈である。一方、逆転していればNNUM値は9→13→4→6→2→11の順に変化する筈である。 Further, the ECU 13 detects whether or not the ACG starter 20 is reversed based on the history of the NNUM value. For example, if it is rotating forward, the NNUM value should change in the order of 11 → 2 → 6 → 4 → 13 → 9 as described above. On the other hand, if the rotation is reversed, the NNUM value should change in the order of 9 → 13 → 4 → 6 → 2 → 11.
 ところで、ACGスタータ20によりエンジンを始動させるにあたり、エンジンのピストンが圧縮行程のTDC直前位置から始動させようとすると、ACGスタータ20に要する駆動トルクが圧縮分だけ大きくなるので、エンジンの始動性悪化が懸念される。そこで、エンジン始動開始前に、クランク軸14を逆転させて始動性が良好となるピストン位置に設定しておく、といったスイングバック制御を実施する場合がある。このように、ACGスタータ20を逆転駆動させたい場合があるが、この場合には、例えば今回NNUM値が9であれば、次回NNUM値は13であると特定し、その特定値に応じてUVW相コイルCU~CWへの通電タイミングを制御すればよい。 By the way, when the engine is started by the ACG starter 20, if the engine piston tries to start from the position immediately before the TDC in the compression stroke, the driving torque required for the ACG starter 20 is increased by the amount of compression. Concerned. Therefore, there is a case where swingback control is performed such that the crankshaft 14 is reversely rotated and set to a piston position where the startability is good before starting the engine. Thus, there is a case where it is desired to drive the ACG starter 20 in the reverse direction. In this case, for example, if the current NNUM value is 9, the next NNUM value is specified as 13, and the UVW is determined according to the specified value. The energization timing to the phase coils CU to CW may be controlled.
 図6は、ECU13に備えられたマイコン13a(図22参照)が、上述の如くUVW相コイルCU~CWに対する通電制御を実施する処理の手順を示すフローチャートである。当該処理は、所定周期(例えば先述のマイコン13aのCPUが行う演算周期、又は所定のクランク角度毎)で繰り返し実行される。或いは、回転停止時には前記所定周期で実行する一方で、回転時においては以下に説明するエッジ検知が為される毎に実行してもよい。すなわち、図22に示すマイコン13aは、各センサSU~SWから出力されて入力処理された信号(図28に示すUVW相信号)に対し、その信号が変化するタイミングを捕捉するキャプチャー機能を有している。要するに、UVW相信号の立上りおよび立下りのタイミング(エッジ検知タイミング)を検知する。そして、このエッジ検知がなされる毎に図6の処理を実行する。 FIG. 6 is a flowchart showing a procedure of processing in which the microcomputer 13a (see FIG. 22) provided in the ECU 13 performs energization control on the UVW phase coils CU to CW as described above. This process is repeatedly executed at a predetermined cycle (for example, a calculation cycle performed by the CPU of the microcomputer 13a described above or every predetermined crank angle). Alternatively, the rotation may be performed at the predetermined period when the rotation is stopped, while the rotation may be performed every time edge detection described below is performed. That is, the microcomputer 13a shown in FIG. 22 has a capture function that captures the timing at which the signals (UVW phase signals shown in FIG. 28) output from the sensors SU to SW and subjected to input processing change. ing. In short, the rising and falling timing (edge detection timing) of the UVW phase signal is detected. Then, the processing of FIG. 6 is executed every time this edge detection is performed.
 先ず、図6に示すステップS10において、本実施形態では、クランク角信号、U相信号、V相信号およびW相信号の各々を、UVW相センサSU~SWから取得する。続くステップS20(組合せ情報生成手段)では、クランク角信号およびUVW相信号に基づき、これらの信号の組合せを表した組合せ情報NNUMを算出する。続くステップS30では、NNUM値に基づき、次回のNNUM値を算出する。具体的には、先述の11→2→6→4→13→9(8)といった正転時ローテーションに基づき、例えば今回NNUM値が「11」であれば次回NNUM値は「2」であると算出する。なお、今回NNUM値が「8」であれば次回NNUM値は「9」であると算出する。 First, in step S10 shown in FIG. 6, in the present embodiment, each of the crank angle signal, the U phase signal, the V phase signal, and the W phase signal is acquired from the UVW phase sensors SU to SW. In subsequent step S20 (combination information generating means), combination information NNUM representing a combination of these signals is calculated based on the crank angle signal and the UVW phase signal. In the subsequent step S30, the next NNUM value is calculated based on the NNUM value. Specifically, based on the rotation at forward rotation such as 11 → 2 → 6 → 4 → 13 → 9 (8), for example, if the current NNUM value is “11”, the next NNUM value is “2”. calculate. If the current NNUM value is “8”, the next NNUM value is calculated to be “9”.
 続くステップS40では、ステップS30で算出した次回NNUM値に基づき、UVW相コイルCU~CWへの通電制御を実施する。これによりACGスタータ20は所定の回転方向でモータ駆動する。 In subsequent step S40, energization control for the UVW phase coils CU to CW is performed based on the next NNUM value calculated in step S30. As a result, the ACG starter 20 is driven by a motor in a predetermined rotation direction.
 例えば、U相コイルCUへの通電制御について説明すると、次回NNUM値が「11」または「4」である場合には、次回NNUM値を構成するU相信号の値は、今回NNUM値を構成するU相信号の値から変化することを意味する。よって、次回NNUM値が「11」または「4」であると特定した時点で、U相コイルCUへの通電制御内容をオンからオフ、或いはオフからオンに切り替える。 For example, the energization control to the U-phase coil CU will be described. When the next NNUM value is “11” or “4”, the value of the U-phase signal that constitutes the next NNUM value constitutes the current NNUM value. It means changing from the value of the U-phase signal. Therefore, when the next NNUM value is specified to be “11” or “4”, the energization control content to the U-phase coil CU is switched from on to off, or from off to on.
 V相コイルCVおよびW相コイルCWへの通電制御についても同様にして、次回NNUM値が「9」または「2」であると特定した時点でV相コイルCVへの通電制御内容を切り替え、次回NNUM値が「13」または「2」であると特定した時点でW相コイルCWへの通電制御内容を切り替える。 Similarly, the energization control for the V-phase coil CV and the W-phase coil CW is performed in the same manner, when the next NNUM value is specified as “9” or “2”, the energization control content for the V-phase coil CV is switched. When the NNUM value is specified as “13” or “2”, the energization control content to the W-phase coil CW is switched.
 続くステップS50では、先述したようにNNUM値「8」が現れてクランク軸14の絶対回転位置の検知が為されているか否かを判定する。検知済みであれば(S50:YES)、次のステップS60に進み、検知した絶対回転位置およびUVW相信号(またはNNUM値)に基づき、燃料噴射時期および点火時期が目標時期となるよう、インジェクタ10および点火装置11の作動を制御する。但し、絶対回転位置の検知が為されていなければ(S50:NO)、インジェクタ10および点火装置11を作動させることなく待機する。 In the subsequent step S50, as described above, it is determined whether or not the NUMUM value “8” appears and the absolute rotational position of the crankshaft 14 has been detected. If it has been detected (S50: YES), the process proceeds to the next step S60, and the injector 10 is set so that the fuel injection timing and the ignition timing become the target timing based on the detected absolute rotational position and UVW phase signal (or NNUM value). And the operation of the ignition device 11 is controlled. However, if the absolute rotational position is not detected (S50: NO), the system waits without operating the injector 10 and the ignition device 11.
 図28の例では、ts1時点で点火装置11の駆動を開始し、ts2時点で点火させている。また、tf1の時点でインジェクタ10による燃料噴射を開始し、tf2の時点で噴射を終了させている。そして、内燃機関制御用信号ESが現れた時のクランク角(絶対回転位置)を基準とし、内燃機関制御用信号ESが吸入行程で出現した後、U相信号の5回目の立上りタイミング(または5回目のNNUM値「11」出現タイミング)をts1時点とし、W相信号の6回目の立下りタイミング(または6回目のNNUM値「2」出現タイミング)をts2時点として点火制御する。 In the example of FIG. 28, driving of the ignition device 11 is started at time ts1, and ignition is performed at time ts2. Further, the fuel injection by the injector 10 is started at the time tf1, and the injection is ended at the time tf2. Then, with reference to the crank angle (absolute rotational position) when the internal combustion engine control signal ES appears, the internal combustion engine control signal ES appears in the intake stroke, and then the fifth rise timing of the U-phase signal (or 5 The ignition control is performed with the NN1 value “11” appearance timing) as the ts1 time point and the sixth falling timing of the W-phase signal (or the sixth NNUM value “2” appearance timing) as the ts2 time point.
 また、内燃機関制御用信号ESが爆発行程で出現した後、V相信号の3回目の立下りタイミング(または3回目のNNUM値「9」出現タイミング)をtf1時点とし、V相信号の5回目の立上りタイミング(または5回目のNNUM値「6」出現タイミング)をtf2時点として燃料噴射制御する。 In addition, after the internal combustion engine control signal ES appears in the explosion stroke, the third falling timing of the V-phase signal (or the third NNUM value “9” appearance timing) is set to the time tf1, and the fifth V-phase signal is output. The fuel injection control is performed with the rise timing (or the fifth NNUM value “6” appearance timing) of t5 as the time point tf2.
 なお、吸気圧センサ16の検出値に基づき、下死点BDC時期が排気行程および圧縮行程のいずれであるかを行程判別することは先述した通りであるが、この行程判別が未だ為されていない場合には、ts1’~ts2’およびtf1’~tf2’でも点火装置11およびインジェクタ10を駆動させる。また、図28の例では、各種の点火制御時期ts1,ts2および噴射制御時期tf1,tf2がUVW相信号の立上りまたは立下りタイミングと一致しているが、一致していない場合には、目標時期の直前におけるUVW相信号の立上りまたは立下りタイミングから、所定時間が経過した時点で点火制御または噴射制御を実施すればよい。 Note that, as described above, it is determined whether the bottom dead center BDC timing is the exhaust stroke or the compression stroke based on the detection value of the intake pressure sensor 16, but this stroke determination has not yet been made. In this case, the ignition device 11 and the injector 10 are driven also in ts1 ′ to ts2 ′ and tf1 ′ to tf2 ′. In the example of FIG. 28, the various ignition control timings ts1 and ts2 and the injection control timings tf1 and tf2 coincide with the rising or falling timing of the UVW phase signal. The ignition control or the injection control may be performed when a predetermined time has elapsed from the rising or falling timing of the UVW phase signal immediately before.
 以上詳述した本実施形態によれば、第1実施形態の(1),(5),(6),(8),
(10)の効果、及び以下の効果が得られるようになる。
According to this embodiment described above in detail, (1), (5), (6), (8),
The effect (10) and the following effects can be obtained.
 (11)ところで、従来のクランク角信号の立ち上りまたは立ち下りの周期は、1つのマグネット32S,32Nが占める回転角(30°)だけクランク軸14が回転する時間である。これに対し、NNUMの更新周期は、各々のセンサ信号の組合せであるため、前記回転角(30°)の3分の1の回転角だけクランク軸14が回転する時間となる。つまり、NNUMの更新周期は、従来のクランク角信号の周期よりも短いと言える。そのため、各々のUVW相信号の立ち上りまたは立ち下りのタイミング(NNUMの更新タイミング)に基づき燃料噴射時期や点火時期を制御する本実施形態によれば、従来のクランク角信号に基づき制御する場合に比べて、制御に使用する基本時間が3分の1(10°/30°)になり、燃料噴射時期や点火時期を高精度で制御できる。 (11) By the way, the rising or falling cycle of the conventional crank angle signal is the time during which the crankshaft 14 rotates by the rotation angle (30 °) occupied by one magnet 32S, 32N. On the other hand, since the update period of NNUM is a combination of sensor signals, the crankshaft 14 is rotated by a rotation angle that is one third of the rotation angle (30 °). That is, it can be said that the NNUM update cycle is shorter than the cycle of the conventional crank angle signal. Therefore, according to the present embodiment in which the fuel injection timing and the ignition timing are controlled based on the rising or falling timing (NNUM update timing) of each UVW phase signal, compared with the case of controlling based on the conventional crank angle signal. Thus, the basic time used for the control is one third (10 ° / 30 °), and the fuel injection timing and the ignition timing can be controlled with high accuracy.
 (他の実施形態)
 本開示は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present disclosure is not limited to the description of the above-described embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.
 ・上記各実施形態では、遠心クラッチ等のトルク伝達機構を有する車両を対象としているが、このようなトルク伝達機構を有していない車両を対象とした場合には、運転者のクラッチ操作によりクラッチをオフ作動させて駆動輪への動力伝達を遮断していることを条件としたり、ニュートラルギヤ状態であることが検出されていることを条件としたりして、ACGスタータ20のモータ駆動開始を許可するようにしてもよい。 In each of the above embodiments, a vehicle having a torque transmission mechanism such as a centrifugal clutch is targeted. However, when a vehicle not having such a torque transmission mechanism is targeted, the clutch is operated by a driver's clutch operation. Is permitted to start driving the motor of the ACG starter 20 under the condition that the power transmission to the driving wheel is cut off and the neutral gear state is detected. You may make it do.
 ・上記各実施形態では、ステータ40の外周側にロータ30が位置するアウターロータ型のACGスタータ20を採用しているが、ステータ40の内周側にロータ30が位置するインナーロータ型のACGスタータ20を採用してもよい。 In each of the above embodiments, the outer rotor type ACG starter 20 in which the rotor 30 is positioned on the outer peripheral side of the stator 40 is employed, but the inner rotor type ACG starter in which the rotor 30 is positioned on the inner peripheral side of the stator 40. 20 may be adopted.
 ・上記各実施形態では、ロータ30を12極、ステータ40を18極とした12-18極のACGスタータ20を対象としているが、8-12極や16-24極等、他の極数のACGスタータ20を対象としてもよい。 In each of the above embodiments, the 12-30 pole ACG starter 20 having 12 poles for the rotor 30 and 18 poles for the stator 40 is targeted, but other pole numbers such as 8-12 poles, 16-24 poles, etc. The ACG starter 20 may be the target.
 ・上記第1実施形態では、所定のマグネット32S(A)の上端部分を回転方向に3分割し、その中央部分を異極磁性部34として形成しているが、図4(b)に示すように、所定のマグネット32S(A)の上端部分を回転方向に2分割して、その一方を異極磁性部34として形成してもよい。但し、3分割した場合には、V相およびW相等の他のモータ制御信号の立上りまたは立下りタイミングと、内燃機関制御用信号ESの立上りまたは立下りタイミングとが一致するように構成できるので、組合せ情報NNUMが複雑になることを回避できる。これに対し、上述の如く2分割した場合には、組合せ情報NNUMが複雑になり、絶対回転位置の算出や通電制御の処理負荷が大きくなるといったデメリットがある。一方、2分割の場合には、内燃機関制御用信号ESの立下りが、他のV相、W相のほぼ中間位置となり、機械角で5°の信号間隔となる。よって、機械角で10°の信号間隔となる3分割の場合に比べて、点火および噴射を高精度で制御できるといったメリットがある。 In the first embodiment, the upper end portion of the predetermined magnet 32S (A) is divided into three in the rotation direction, and the central portion is formed as the heteropolar magnetic portion 34. As shown in FIG. In addition, the upper end portion of the predetermined magnet 32S (A) may be divided into two in the rotational direction, and one of them may be formed as the heteropolar magnetic portion 34. However, when divided into three, it can be configured so that the rise or fall timing of other motor control signals such as V phase and W phase coincide with the rise or fall timing of the internal combustion engine control signal ES. It can be avoided that the combination information NNUM is complicated. On the other hand, when it is divided into two as described above, there is a demerit that the combination information NNUM becomes complicated and the processing load for calculating the absolute rotation position and energization control becomes large. On the other hand, in the case of two divisions, the falling edge of the internal combustion engine control signal ES is at an almost intermediate position between the other V phase and W phase, and the signal interval is 5 ° in mechanical angle. Therefore, there is an advantage that ignition and injection can be controlled with high accuracy compared to the case of three divisions in which the signal angle is 10 ° in mechanical angle.
 ・上記各実施形態では、S極マグネット32S中にN極の異極磁性部34を形成しており、内燃機関制御用信号ESをロー側に設定している。これに対し、N極マグネット32N中にS極の異極磁性部34を形成して、内燃機関制御用信号ESをハイ側に設定してもよい。また、N極マグネット32Nでロー側出力ではなくハイ側出力にしてもよい。 In each of the embodiments described above, the N pole heteropolar magnetic portion 34 is formed in the S pole magnet 32S, and the internal combustion engine control signal ES is set to the low side. On the other hand, the S pole different magnetic part 34 may be formed in the N pole magnet 32N, and the internal combustion engine control signal ES may be set to the high side. Further, the N-pole magnet 32N may be used for high-side output instead of low-side output.
 ・上記各実施形態では、3本のUVW相コイルCU~CWに対して3つのUVW相センサSU~SWを設けている。これに対し、3つのUVW相センサSU~SWのうちのいずれか1つまたは2つを廃止するようにしてもよい。この場合、廃止したセンサに対応するコイルのモータ制御信号は、他のコイルのモータ制御信号から推定して生成すればよい。例えば、W相センサSWを廃止した場合には、V相信号のオン時間またはオフ時間を計測しておき、V相信号のエッジから前記計測した時間が経過した時点、或いは、V相センサSVによるモータ制御信号の立上りから所定時間が経過した時点を、W相コイルCWにかかるモータ制御信号であると見なしてW相コイルCWを通電制御すればよい。 In the above embodiments, three UVW phase sensors SU to SW are provided for the three UVW phase coils CU to CW. On the other hand, any one or two of the three UVW phase sensors SU to SW may be eliminated. In this case, the motor control signal of the coil corresponding to the abandoned sensor may be generated by estimating from the motor control signal of another coil. For example, when the W-phase sensor SW is abolished, the on-time or off-time of the V-phase signal is measured, and when the measured time elapses from the edge of the V-phase signal or by the V-phase sensor SV What is necessary is just to carry out energization control of the W-phase coil CW by regarding the time when a predetermined time has elapsed from the rise of the motor control signal as the motor control signal applied to the W-phase coil CW.
 ・上記各実施形態では、クランク軸14にロータ30を直結させているが、ベルトやギア等の動力伝達機構を介してロータ30をクランク軸14に連結させてもよい。但しこの場合には、ギアのバックラッシュやベルトの伸び等により、クランク軸14の回転位相とロータ30の回転位相とにずれが生じるので、クランク軸14の絶対回転位置の算出精度は低下する。 In the above embodiments, the rotor 30 is directly connected to the crankshaft 14, but the rotor 30 may be connected to the crankshaft 14 through a power transmission mechanism such as a belt or a gear. However, in this case, a deviation occurs between the rotational phase of the crankshaft 14 and the rotational phase of the rotor 30 due to gear backlash, belt elongation, and the like, so the accuracy of calculating the absolute rotational position of the crankshaft 14 is lowered.
 ・上記各実施形態では、本開示にかかる回転機にACGスタータ20(モータ発電機)を採用しているが、発電機能を有していない始動モータを採用してもよいし、モータ機能を有していない発電機を採用してもよい。なお、モータ機能を有していない発電機を採用した場合、各センサSU~SWから出力される信号はモータ制御信号として用いられることがないため、回転軌道34a上から外れた位置にセンサSU~SWを配置することは不必要となる。また、発電機を採用した場合には3相発電機に限定されるものではなく、ロ
ータ30を12極、ステータ40を12極とした12-12極の磁石式発電機や8-8極、16-16極等、他の極数の単相磁石発電機を対象としてもよい。
In each of the above embodiments, the ACG starter 20 (motor generator) is employed as the rotating machine according to the present disclosure, but a starter motor that does not have a power generation function may be employed, or a motor function may be provided. A generator that has not been used may be employed. Note that when a generator having no motor function is employed, the signals output from the sensors SU to SW are not used as motor control signals, and therefore, the sensors SU to SW are not located on the rotation track 34a. It is unnecessary to arrange the SW. Further, when the generator is adopted, it is not limited to a three-phase generator, but a 12-12 pole magnet generator with 8 poles of the rotor 30 and 12 poles of the stator 40, 8-8 poles, Single phase magnet generators with other pole numbers such as 16-16 poles may be targeted.
 ・図12に示す上記第7実施形態では、回転方向の中央部に空隙34kを形成し、空隙34kの両隣には所定のマグネット32S(A)が存在している。これに対し、図15(a)に示すように回転方向の端部に空隙34kを形成し、空隙34kの隣に隣接マグネット32N(B)が存在するようにしてもよい。或いは、図15(b)に示すように回転方向の全域に亘って空隙34kを形成し、空隙34kの両隣に隣接マグネット32N(B)が存在するようにしてもよい。 In the seventh embodiment shown in FIG. 12, a gap 34k is formed in the central portion in the rotation direction, and a predetermined magnet 32S (A) exists on both sides of the gap 34k. On the other hand, as shown in FIG. 15A, a gap 34k may be formed at the end in the rotational direction, and the adjacent magnet 32N (B) may be present next to the gap 34k. Alternatively, as shown in FIG. 15B, a gap 34k may be formed over the entire region in the rotation direction, and adjacent magnets 32N (B) may be present on both sides of the gap 34k.
 ・上記各実施形態では、複数のレベルの論理表(NNUM値)によりクランク基準位置を検出したが、センサ入力時間からセンサ幅時間を順次計測し、その時間比を求め、その比が設定値よりも大きくなった位置をクランク基準位置として検出してもよいし、この検出手法と論理表による検出手法とを組み合わせてもよい。 In each of the above embodiments, the crank reference position is detected by a logic table (NNUM value) of a plurality of levels. However, the sensor width time is sequentially measured from the sensor input time, the time ratio is obtained, and the ratio is determined from the set value. May be detected as the crank reference position, or this detection method and a detection method using a logic table may be combined.
 ・上記第12実施形態では、先述したように、クランク回転位置センサSEおよびUVW相センサSU~SWを分散配置しているが、このような分散配置に替えて、クランク回転位置センサSEおよびUVW相センサSU~SWを隣り合う間隙41aに配置するようにしてもよい。また、4つのセンサのうち任意のセンサのみを分散配置するようにしてもよい。 In the twelfth embodiment, as described above, the crank rotational position sensor SE and the UVW phase sensors SU to SW are dispersedly arranged, but instead of such a dispersed arrangement, the crank rotational position sensor SE and the UVW phase are arranged. The sensors SU to SW may be arranged in the adjacent gap 41a. Further, only arbitrary sensors among the four sensors may be arranged in a distributed manner.
 ・上記第12実施形態では、3つのUVW相センサSU~SWを、異極磁性部34の回転軌道34a上に配置しているが、これらのUVW相センサSU~SWのうち1つまたは2つのセンサを回転軌道34a上に配置するようにしてもよい。なお、この場合においても、第1実施形態にかかる「分散配置」を適用して、絶対回転位置を算出するのに要する時間の短縮を図るようにしてもよい。 In the twelfth embodiment, the three UVW phase sensors SU to SW are arranged on the rotation orbit 34a of the heteropolar magnetic part 34, but one or two of these UVW phase sensors SU to SW are arranged. You may make it arrange | position a sensor on the rotation track | orbit 34a. In this case as well, the “distributed arrangement” according to the first embodiment may be applied to reduce the time required to calculate the absolute rotational position.
 ・上記各実施形態では、UVW信号に基づき、これらの信号の組合せを表した組合せ情報NNUMを算出した。そして、今回のNNUM値に基づいて、次回のNNUM値を算出した。これに加えて以下のような処理を行ってもよい。 In each of the above embodiments, combination information NNUM representing a combination of these signals is calculated based on the UVW signal. Then, the next NNUM value was calculated based on the current NNUM value. In addition to this, the following processing may be performed.
 例えば、図5に示すNNUM値の変化では、UVW相信号の立上り又は立下りのタイミング(エッジ検知タイミング)において、NNUM値として取り得ない値が存在する。具体的には、U相の立ち上がりタイミングでは、NNUM値は「7」や「1」の値を取り得ない。このように、正常であれば取り得ない値をNNUM値が取った回数をカウントし、この回数が所定回数よりも多くなった場合に、所定のエラー処理を実行する。 For example, in the change of the NNUM value shown in FIG. 5, there is a value that cannot be taken as the NNUM value at the rising or falling timing (edge detection timing) of the UVW phase signal. Specifically, the NNUM value cannot take a value of “7” or “1” at the rise timing of the U phase. As described above, the number of times the NNUM value takes a value that cannot be obtained if normal is counted, and when this number exceeds a predetermined number, predetermined error processing is executed.
 図30は、こうした組合せ情報NNUMのエラー処理の一例を示すフローチャートである。この一連の処理は、ECU13に備えられたマイコン13aによって、U相信号のエッジ検知がなされた時に割り込み処理として実行される。 FIG. 30 is a flowchart showing an example of error processing of such combination information NNUM. This series of processes is executed as an interrupt process when the microcomputer 13a provided in the ECU 13 detects the edge of the U-phase signal.
 先ず、図30に示すステップS110においてU相信号の立上りであるか否か判定する。この判定においてU相信号の立上りであると判定した場合(S110:YES)、ステップS120においてU相信号の値を「1」にする。続くステップS130では、V相信号=「0」であるか否か判定する。この判定においてV相信号=「0」でないと判定した場合(S130:NO)、ステップS140においてW相信号=「0」であるか否か判定する。この判定においてW相信号=「0」でないと判定した場合(S140:NO)、ステップS150においてU相エラーカウントU_ERRをインクリメントし、この一連の処理を一旦終了する。この場合、NNUM値は「7」であり、正常であればU相の立上りタイミングでは取り得ない値となっている。一方、ステップS140においてW相信号=「0」であると判定した場合(S140:YES)、ステップS160においてNNUM値を「3」にし、この一連の処理を一旦終了する。 First, in step S110 shown in FIG. 30, it is determined whether the U-phase signal is rising. If it is determined in this determination that the U-phase signal is rising (S110: YES), the value of the U-phase signal is set to “1” in step S120. In a succeeding step S130, it is determined whether or not the V-phase signal = “0”. If it is determined in this determination that the V-phase signal is not “0” (S130: NO), it is determined whether or not the W-phase signal is “0” in step S140. If it is determined in this determination that the W-phase signal is not “0” (S140: NO), the U-phase error count U_ERR is incremented in step S150, and this series of processes is temporarily terminated. In this case, the NNUM value is “7”, which is a value that cannot be obtained at the rising timing of the U phase if it is normal. On the other hand, when it is determined in step S140 that the W-phase signal is “0” (S140: YES), the NUMM value is set to “3” in step S160, and this series of processes is temporarily terminated.
 また、ステップS130においてV相信号=「0」であると判定した場合(S130:YES)、ステップS170においてW相信号=「0」であるか否か判定する。この判定においてW相信号=「0」でないと判定した場合(S170:NO)、ステップS180においてNNUM値を「5」にし、この一連の処理を一旦終了する。一方、ステップS170においてW相信号=「0」であると判定した場合(S170:YES)、ステップS190においてU相エラーカウントU_ERRをインクリメントし、この一連の処理を一旦終了する。この場合、NNUM値は「1」であり、正常であればU相の立上りタイミングでは取り得ない値となっている。 If it is determined in step S130 that the V-phase signal is “0” (S130: YES), it is determined in step S170 whether the W-phase signal is “0”. If it is determined in this determination that the W-phase signal is not “0” (S170: NO), the NNUM value is set to “5” in step S180, and this series of processes is temporarily terminated. On the other hand, when it is determined in step S170 that the W-phase signal is “0” (S170: YES), the U-phase error count U_ERR is incremented in step S190, and this series of processes is temporarily terminated. In this case, the NNUM value is “1”, which is a value that cannot be obtained at the rising timing of the U phase if it is normal.
 一方、ステップS110においてU相信号の立上りでないと判定した場合(S110:NO)、すなわちU相信号の立下りであると判定した場合、ステップS200においてU相信号の値を「0」にする。続くステップS210では、V相信号=「0」であるか否か判定する。この判定においてV相信号=「0」でないと判定した場合(S210:NO)、ステップS220においてW相信号=「0」であるか否か判定する。この判定においてW相信号=「0」でないと判定した場合(S220:NO)、ステップS230においてU相エラーカウントU_ERRをインクリメントし、この一連の処理を一旦終了する。この場合、NNUM値は「6」であり、正常であればU相の立下りタイミングでは取り得ない値となっている。一方、ステップS220においてW相信号=「0」であると判定した場合(S220:YES)、ステップS240においてNNUM値を「2」にし、この一連の処理を一旦終了する。 On the other hand, when it is determined in step S110 that the U-phase signal is not rising (S110: NO), that is, when it is determined that the U-phase signal is falling, the value of the U-phase signal is set to “0” in step S200. In a succeeding step S210, it is determined whether or not the V-phase signal = “0”. If it is determined in this determination that the V-phase signal is not “0” (S210: NO), it is determined in step S220 whether the W-phase signal is “0”. If it is determined in this determination that the W-phase signal is not “0” (S220: NO), the U-phase error count U_ERR is incremented in step S230, and this series of processes is temporarily terminated. In this case, the NNUM value is “6”, which is a value that cannot be obtained at the falling timing of the U phase if it is normal. On the other hand, if it is determined in step S220 that the W-phase signal is “0” (S220: YES), the NUMM value is set to “2” in step S240, and this series of processes is temporarily terminated.
 また、ステップS210においてV相信号=「0」であると判定した場合(S210:YES)、ステップS250においてW相信号=「0」であるか否か判定する。この判定においてW相信号=「0」でないと判定した場合(S250:NO)、ステップS260においてU相エラーカウントU_ERRをインクリメントし、この一連の処理を一旦終了する。この場合、NNUM値は「4」であり、正常であればU相の立下りタイミングでは取り得ない値となっている。一方、ステップS250においてW相信号=「0」であると判定した場合(S250:YES)、ステップS270においてNNUM値を「0」にし、この一連の処理を一旦終了する。 If it is determined in step S210 that the V-phase signal is “0” (S210: YES), it is determined in step S250 whether the W-phase signal is “0”. If it is determined in this determination that the W-phase signal is not “0” (S250: NO), the U-phase error count U_ERR is incremented in step S260, and this series of processes is temporarily terminated. In this case, the NNUM value is “4”, which is a value that cannot be obtained at the falling timing of the U phase if it is normal. On the other hand, if it is determined in step S250 that the W-phase signal = “0” (S250: YES), the NNUM value is set to “0” in step S270, and this series of processes is temporarily terminated.
 上記のように、U相信号のエッジ検知がなされた時にエラー発生に応じて、U相エラーカウントU_ERRがインクリメントされる。そして、エラーカウント操作時や別のルーチンにおいて、U相エラーカウントU_ERRが所定回数よりも多いか否か判定し、エラーカウントERRの回数が所定回数よりも多くなった場合に所定のエラー処理を実行する。エラー処理としては、例えば組合せ情報NNUMをリセットしたり、組合せ情報NNUMを強制的に所定値に変更したりしてもよい。なお、ここではU相信号のエッジ検知がなされた場合を例にして説明したが、V相信号又はW送信号のエッジ検知がなされた場合にも、同様の処理を実行することができる。 As described above, the U-phase error count U_ERR is incremented according to the occurrence of an error when the edge detection of the U-phase signal is performed. Then, during error count operation or in another routine, it is determined whether or not the U-phase error count U_ERR is greater than a predetermined number, and when the error count ERR is greater than the predetermined number, predetermined error processing is executed. To do. As the error processing, for example, the combination information NNUM may be reset, or the combination information NNUM may be forcibly changed to a predetermined value. Here, the case where the edge detection of the U-phase signal is performed has been described as an example, but the same processing can be executed also when the edge detection of the V-phase signal or the W transmission signal is performed.
 以下、上述の内燃機関制御用信号出力機能付き始動モータの構成と作用効果について記載する。 Hereinafter, the configuration and operational effects of the above-described starter motor with a signal output function for controlling an internal combustion engine will be described.
 上述の内燃機関制御用信号出力機能付き始動モータは、極性の異なるマグネットを回転方向に交互に配置して構成されたロータと、コイルが巻き回されたティース部を前記回転方向に複数並べて構成されたステータと、前記ステータのうち前記マグネットと対向する位置に取り付けられ、回転する前記マグネットの極性に応じたクランク位置信号を出力する位相センサと、を備えることを前提とする。 The above-described starter motor with a signal output function for controlling an internal combustion engine is configured by arranging a plurality of magnets having different polarities in the rotation direction and a plurality of teeth portions around which the coils are wound in the rotation direction. And a phase sensor that is attached to a position of the stator facing the magnet and outputs a crank position signal corresponding to the polarity of the rotating magnet.
 そして、複数の前記マグネットのうち所定のマグネットの一部に、当該マグネットとは異なる極性に着磁された、或いはいずれの極性にも着磁されていない異極部を形成し、前記ロータとともに回転する前記異極部の回転軌道上に前記位相センサを配置することで、前記位相センサが前記異極部を検出した時には、内燃機関の出力軸の絶対回転位置を表した内燃機関制御用信号を前記位相センサが出力する。 Then, a part of a predetermined magnet among the plurality of magnets is formed with a different polarity part that is magnetized in a different polarity from the magnet or not in any polarity, and rotates together with the rotor. By arranging the phase sensor on the rotation path of the different pole portion, when the phase sensor detects the different pole portion, an internal combustion engine control signal indicating the absolute rotational position of the output shaft of the internal combustion engine is generated. The phase sensor outputs.
 あるいは、前記位相センサは、回転する前記マグネットの極性に応じたモータ制御用信号を出力しており、検出された前記モータ制御用信号に基づき前記コイルへの通電タイミングを制御することで回転駆動して、内燃機関の出力軸を回転駆動させる始動モータとして機能する回転機であって、前記位相センサは、前記異極部を検出した時には、前記モータ制御用信号の替わりに前記内燃機関制御用信号の基準位置信号を出力してもよい。 Alternatively, the phase sensor outputs a motor control signal corresponding to the polarity of the rotating magnet, and is driven to rotate by controlling the energization timing to the coil based on the detected motor control signal. A rotating machine that functions as a starter motor for rotating the output shaft of the internal combustion engine, and the phase sensor detects the internal combustion engine control signal instead of the motor control signal when the phase sensor detects the heteropolar portion. The reference position signal may be output.
 これによれば、モータ制御用信号を出力する位相センサを利用して内燃機関制御用信号の基準位置信号を出力させるようにできるので、先述した特許文献1記載のクランク回転位置センサを廃止することができる。よって、センサ個数の低減を図ることができる(第1の目的)。ちなみに、回転機は、始動モータであってもよいし、磁石式発電機であってもよいし、モータ発電機であってもよい。 According to this, since the reference position signal of the internal combustion engine control signal can be output using the phase sensor that outputs the motor control signal, the crank rotational position sensor described in Patent Document 1 described above can be eliminated. Can do. Therefore, the number of sensors can be reduced (first object). Incidentally, the rotating machine may be a starter motor, a magnet generator, or a motor generator.
 或いは、前記クランク回転位置センサを廃止せずに残しておけば、内燃機関制御用信号を出力する位相センサとクランク回転位置センサとの各々で異極部を検出するようにできる。これによれば、内燃機関の出力軸が1回転する間に異極部を複数回検出するようにできるので、内燃機関の回転駆動を開始してから異極部を検出して絶対回転位置の把握するまでに要する時間を短縮できる(第2の目的)。そのため、例えばアイドルストップシステムを有する内燃機関において、絶対回転位置を早期に把握できるので再始動時間を短縮できる。また、二輪車両でのキックレバーや始動モータによる始動時においても、絶対回転位置を早期に把握できるので、燃料噴射および点火による内燃機関の運転を早期に開始して、内燃機関の始動時間を短縮できる。 Alternatively, if the crank rotational position sensor is left without being abolished, the different pole portion can be detected by each of the phase sensor that outputs the internal combustion engine control signal and the crank rotational position sensor. According to this, since the different pole portion can be detected a plurality of times while the output shaft of the internal combustion engine makes one revolution, the different pole portion is detected after the rotation drive of the internal combustion engine is started and the absolute rotational position is detected. The time required for grasping can be shortened (second purpose). Therefore, for example, in an internal combustion engine having an idle stop system, the absolute rotation position can be grasped at an early stage, so that the restart time can be shortened. In addition, since the absolute rotation position can be grasped at an early stage even when starting with a kick lever or a starter motor in a two-wheeled vehicle, the operation of the internal combustion engine by fuel injection and ignition can be started early to shorten the start time of the internal combustion engine. it can.
 また、複数の前記マグネットのうち所定のマグネットの一部に、当該マグネットとは異なる極性に着磁された異極磁性部を、前記回転方向の全体に亘って形成し、前記ロータとともに回転する前記異極磁性部の回転軌道上に前記位相センサを配置することで、前記位相センサが前記異極磁性部を検出した時には、前記出力軸の絶対回転位置を表した内燃機関制御用信号を前記モータ制御用信号の替わりに出力させてもよい。 Further, a heteropolar magnetic part magnetized with a polarity different from that of the magnet is formed in a part of a predetermined magnet among the plurality of magnets, and rotates together with the rotor. By arranging the phase sensor on the rotation path of the heteropolar magnetic part, when the phase sensor detects the heteropolar magnetic part, an internal combustion engine control signal indicating the absolute rotational position of the output shaft is transmitted to the motor. You may make it output instead of the signal for control.
 これによれば、モータ制御用信号を出力する位相センサを利用して内燃機関制御用信号も出力させるようにできるので、先述した特許文献1記載のクランク回転位置センサを廃止することができる。よって、センサ個数の低減を図ることができる(第1の目的)。 According to this, since the internal combustion engine control signal can be output using the phase sensor that outputs the motor control signal, the crank rotational position sensor described in Patent Document 1 can be eliminated. Therefore, the number of sensors can be reduced (first object).
 また、複数の前記マグネットのうち所定のマグネットの一部を、当該マグネットとは異なる極性に着磁するとともに、当該マグネットのうちの前記回転方向の全体に亘って着磁して形成された異極磁性部と、前記ロータとともに回転する前記異極磁性部の回転軌道上に配置され、前記異極磁性部を検出することにより、前記出力軸の絶対回転位置を表した内燃機関制御用信号を出力する回転位置センサと、を備え、前記回転位置センサに加えて前記位相センサも前記回転軌道上に配置することで、前記位相センサが前記異極磁性部を検出した時には、前記出力軸の絶対回転位置を表した内燃機関制御用信号を前記モータ制御用信号の替わりに出力させてもよい。 In addition, a part of a predetermined magnet among the plurality of magnets is magnetized to have a polarity different from that of the magnet, and the different polarity is formed by magnetizing the magnet in the entire rotation direction. An internal combustion engine control signal representing the absolute rotation position of the output shaft is output by detecting the heteropolar magnetic part, which is disposed on the rotation path of the magnetic part and the heteropolar magnetic part that rotates together with the rotor. A rotational position sensor that performs the absolute rotation of the output shaft when the phase sensor detects the heteropolar magnetic part by arranging the phase sensor in addition to the rotational position sensor on the rotational trajectory. An internal combustion engine control signal representing a position may be output instead of the motor control signal.
 これによれば、内燃機関制御用信号を出力する位相センサとクランク回転位置センサとの各々で異極磁性部を検出するので、内燃機関の出力軸が1回転する間に異極磁性部を複数回検出するようにできる。よって、内燃機関の回転駆動を開始してから異極磁性部を検出して絶対回転位置の把握するまでに要する時間を短縮できる(第2の目的)。そのため、例えばアイドルストップシステムを有する内燃機関において、絶対回転位置を早期に把握できるので再始動時間を短縮できる。また、二輪車両でのキックレバーや始動モータによる始動時においても、絶対回転位置を早期に把握できるので、燃料噴射および点火による内燃機関の運転を早期に開始して、始動時間を短縮できる。 According to this, each of the phase sensor that outputs the internal combustion engine control signal and the crank rotational position sensor detects the different magnetic part, so that a plurality of different magnetic parts are provided during one rotation of the output shaft of the internal combustion engine. Can be detected once. Therefore, it is possible to shorten the time required from the start of the rotation drive of the internal combustion engine to the detection of the heteropolar magnetic part to grasp the absolute rotation position (second object). Therefore, for example, in an internal combustion engine having an idle stop system, the absolute rotation position can be grasped at an early stage, so that the restart time can be shortened. In addition, since the absolute rotational position can be grasped at an early stage even when starting with a kick lever or a starting motor in a two-wheeled vehicle, the operation of the internal combustion engine by fuel injection and ignition can be started at an early stage, and the starting time can be shortened.
 また、複数の前記マグネットのうち所定のマグネットの一部に形成され、当該マグネットとは異なる極性に着磁された異極磁性部と、前記ロータとともに回転する前記異極磁性部の回転軌道上に配置され、前記異極磁性部を検出することにより、前記出力軸の絶対回転位置を表した内燃機関制御用信号を出力する回転位置センサと、を備え、前記異極磁性部は、前記所定のマグネットのうち前記回転方向の一部に形成されてもよい。 In addition, on the rotation trajectory of the heteropolar magnetic part formed in a part of a predetermined magnet among the plurality of magnets and magnetized with a polarity different from the magnet, and the heteropolar magnetic part rotating together with the rotor And a rotational position sensor that outputs an internal combustion engine control signal that represents the absolute rotational position of the output shaft by detecting the heteropolar magnetic part, and the heteropolar magnetic part includes the predetermined magnetic part. You may form in a part of the said rotation direction among magnets.
 例えば、図27(a)に示すように所定のマグネット32S(A)を回転方向に3分割したうちの中央部を異極磁性部34として形成することで、所定のマグネット32S(A)のうち符号Pに示す部分と異極磁性部34とが回転方向に並ぶようにしてもよい。或いは、図27(b)に示すように所定のマグネット32S(A)を回転方向に2分割したうちの一方を異極磁性部34として形成することで、所定のマグネット32S(A)のうち符号Qに示す部分と異極磁性部34とが回転方向に並ぶようにしてもよい。 For example, as shown in FIG. 27 (a), a predetermined magnet 32S (A) is divided into three in the rotational direction, and the central part is formed as the heteropolar magnetic part 34. The portion indicated by reference sign P and the heteropolar magnetic portion 34 may be arranged in the rotational direction. Alternatively, as shown in FIG. 27B, one of the predetermined magnets 32S (A) divided into two in the rotational direction is formed as the heteropolar magnetic portion 34, so that the reference sign of the predetermined magnets 32S (A) The part indicated by Q and the heteropolar magnetic part 34 may be arranged in the rotational direction.
 このように、上記開示によれば、異極磁性部を、所定のマグネットのうち回転方向の一部に形成するので、回転方向全体に亘って形成する従来構造に比べて、所定のマグネットと異極磁性部とが回転軸方向(図27(a),図27(b)の上下方向)で磁気短絡する長さを短くできる。よって、始動モータの出力低下を抑制できる。また、異極磁性部は、所定のマグネットに対向するティース部と極性不整合になることは避けられないが、上記開示によれば異極磁性部の面積が回転方向(図27(a),図27(b)の左右方向)に小さくなるので、極性不整合に伴い生じる始動モータの出力低下を抑制できる。なお、本開示にかかる始動モータが、内燃機関により駆動して発電機としても機能するものである場合、その発電機による発電量が増加するといった効果も発揮される。また、回転方向の全体に亘って異極磁性部を形成した場合に比べて、異極磁性部の回転方向長さを短くできる。そのため、所定のマグネットに対する異極磁性部の占有面積を小さくでき、異極磁性部が存在することによる始動モータの出力低下を抑制できる(第3の目的)。 Thus, according to the above disclosure, the heteropolar magnetic part is formed in a part of the predetermined magnet in the rotational direction, so that it is different from the predetermined magnet compared to the conventional structure formed over the entire rotational direction. It is possible to shorten the length of magnetic short circuit between the polar magnetic part and the rotation axis direction (vertical direction in FIGS. 27A and 27B). Therefore, it is possible to suppress a decrease in the output of the starting motor. In addition, it is inevitable that the heteropolar magnetic part becomes inconsistent in polarity with the teeth part facing the predetermined magnet. However, according to the above disclosure, the area of the heteropolar magnetic part is the rotational direction (FIG. 27 (a), Since it becomes small in the left-right direction of FIG.27 (b), the output fall of the starting motor which arises with polarity mismatching can be suppressed. Note that when the starter motor according to the present disclosure is driven by an internal combustion engine and functions also as a generator, an effect of increasing the amount of power generated by the generator is also exhibited. Further, the length of the heteropolar magnetic part in the rotational direction can be shortened as compared to the case where the heteropolar magnetic part is formed over the entire rotational direction. Therefore, the area occupied by the different magnetic part with respect to the predetermined magnet can be reduced, and the decrease in the output of the starting motor due to the presence of the different magnetic part can be suppressed (third object).
 内燃機関制御用信号出力機能付き始動モータは、複数の前記位相センサを、前記回転方向に並べて配置し、複数の前記位相センサから出力されたクランク位置信号の組合せを表した、組合せ情報を生成する組合せ情報生成手段を備えてもよい。 The starter motor with a signal output function for controlling an internal combustion engine generates a combination information representing a combination of crank position signals output from the plurality of phase sensors by arranging the plurality of phase sensors side by side in the rotation direction. Combination information generating means may be provided.
 内燃機関制御用信号出力機能付き始動モータは、前記U相コイルに対する前記モータ制御用信号、前記V相コイルに対する前記モータ制御用信号、前記W相コイルに対する前記モータ制御用信号、および前記内燃機関制御用信号の組合せを表した、組合せ情報を生成する組合せ情報生成手段を備えてもよい。 The starter motor with a signal output function for internal combustion engine control includes the motor control signal for the U-phase coil, the motor control signal for the V-phase coil, the motor control signal for the W-phase coil, and the internal combustion engine control. Combination information generating means for generating combination information representing a combination of signals for use may be provided.
 ここで、図16に示す従来の機関制御用信号のエッジ間隔Lxの長さに基づいて、信号中の欠け歯部Lxaを検出して出力軸の絶対回転位置を把握しようとすると、その把握に要する時間が長くなる。これに対し、上記開示によれば、各々の信号の組合せを表した組合せ情報を生成するので、この組合せ情報に基づき前記判定を実施すれば、絶対回転位置の把握に要する時間短縮を促進できる。 Here, based on the length of the edge interval Lx of the conventional engine control signal shown in FIG. 16, if the missing tooth portion Lxa in the signal is detected and the absolute rotational position of the output shaft is to be grasped, the grasp is performed. It takes longer time. On the other hand, according to the above disclosure, combination information representing the combination of each signal is generated. Therefore, if the determination is performed based on the combination information, time required for grasping the absolute rotational position can be promoted.
 ちなみに、「組合せ情報」の具体例としては、複数の位相センサ(例えばU相センサ、V相センサおよびW相センサ)から出力されるオンオフ信号を「0」または「1」の二進数で表現する。そして、例えば3桁の二進数の各桁を、U相センサ出力、V相センサ出力、W相センサ出力に割り振って生成した3桁の二進数が、上記組合せ情報に相当する。 Incidentally, as a specific example of “combination information”, on / off signals output from a plurality of phase sensors (for example, a U-phase sensor, a V-phase sensor, and a W-phase sensor) are expressed by binary numbers of “0” or “1”. . For example, a 3-digit binary number generated by assigning each digit of a 3-digit binary number to the U-phase sensor output, the V-phase sensor output, and the W-phase sensor output corresponds to the combination information.
 なお、上記開示はU相センサ、V相センサおよびW相センサの全てを備えていない場合にも適用できる。例えばW相センサが備えられていない場合には、U相センサまたはV相センサの出力時間値に基づきW相センサの出力を推定し、その推定信号と、センサ検出されたU相信号およびV相信号との組合せを前記組合せ情報とする。 Note that the above disclosure can also be applied to a case where all of the U-phase sensor, V-phase sensor, and W-phase sensor are not provided. For example, when the W-phase sensor is not provided, the output of the W-phase sensor is estimated based on the output time value of the U-phase sensor or the V-phase sensor, the estimated signal, the U-phase signal detected by the sensor, and the V-phase A combination with a signal is used as the combination information.
 現時点での前記組合せ情報に基づき、前記絶対回転位置を算出してもよい。 The absolute rotation position may be calculated based on the current combination information.
 ここで、所定の組合せの場合には、その組合せ時の絶対回転位置を一義的に特定できる場合がある。例えば図5(図18)に示す始動モータ(回転機)の場合、組合せ情報が機関制御信号を含むことにより「0」になっていれば(図18の符合tb参照)、その時の位相センサから出力されている信号がモータ制御用信号ではなく内燃機関制御用信号であることを特定できるので、絶対回転位置を算出できる。 Here, in the case of a predetermined combination, the absolute rotation position at the time of the combination may be uniquely specified. For example, in the case of the starting motor (rotating machine) shown in FIG. 5 (FIG. 18), if the combination information is “0” by including the engine control signal (see symbol tb in FIG. 18), the phase sensor at that time Since it can be specified that the output signal is not the motor control signal but the internal combustion engine control signal, the absolute rotational position can be calculated.
 この点を鑑みた上記開示では、現時点での組合せ情報に基づき絶対回転位置を算出するので、位相センサの出力履歴や組合せ情報の履歴等の履歴が蓄積されるのを待つことなく、迅速に絶対回転位置を把握できる。 In the above disclosure in view of this point, since the absolute rotation position is calculated based on the combination information at the present time, the absolute rotation position can be obtained quickly without waiting for the history such as the output history of the phase sensor and the history of the combination information to be accumulated. The rotational position can be grasped.
 前記組合せ情報の履歴に基づき、前記絶対回転位置を算出してもよい。 The absolute rotation position may be calculated based on the history of the combination information.
 ここで、現時点での組合せ情報が、絶対回転位置を一義的には特定できない内容である場合であっても、組合せ情報の履歴から絶対回転位置を一義的に特定できる場合がある。例えば図7(図19)に示す始動モータ(回転機)の場合、現時点での組合せ情報が機関制御信号を含むことにより「0」になっていたとしても(図19の符合tf,tg,th参照)、各センサのいずれから内燃機関制御用信号が出力されているのかを特定できないので、絶対回転位置を算出できない。しかし、図7において、前回の組合せ情報が「5」、今回が「0」であった場合(つまり「5→0」といった履歴の場合)には、現時点においてU相センサから内燃機関制御用信号が出力されていると特定できる。また、前回の組合せ情報が「3」、今回が「0」であった場合(つまり「3→0」といった履歴の場合)には、現時点においてV相センサから内燃機関制御用信号が出力されていると特定できる。図19において、前回の組合せ情報が「4」、今回が「0」であった場合(つまり「4→0」といった履歴の場合)には、現時点においてU相センサから内燃機関制御用信号が出力されていると特定できる。 Here, even if the combination information at the present time is such that the absolute rotation position cannot be uniquely identified, the absolute rotation position may be uniquely identified from the history of the combination information. For example, in the case of the starting motor (rotating machine) shown in FIG. 7 (FIG. 19), even if the combination information at the present time is “0” by including the engine control signal (symbols tf, tg, th in FIG. 19). Since the internal combustion engine control signal is output from which sensor cannot be specified, the absolute rotational position cannot be calculated. However, in FIG. 7, when the previous combination information is “5” and this time is “0” (that is, a history such as “5 → 0”), the signal for internal combustion engine control is currently transmitted from the U-phase sensor. Can be identified as being output. When the previous combination information is “3” and this time is “0” (that is, a history such as “3 → 0”), an internal combustion engine control signal is currently output from the V-phase sensor. Can be identified. In FIG. 19, when the previous combination information is “4” and this time is “0” (that is, a history such as “4 → 0”), an internal combustion engine control signal is currently output from the U-phase sensor. Can be identified.
 この点を鑑みた上記開示では、組合せ情報の履歴に基づき絶対回転位置を算出するので、現時点での組合せ情報からは絶対回転位置を特定できない位置であっても、絶対回転位置の把握を実現できる。 In the above disclosure in view of this point, since the absolute rotation position is calculated based on the history of combination information, even if the absolute rotation position cannot be specified from the combination information at the present time, the absolute rotation position can be grasped. .
 内燃機関制御用信号出力機能付き始動モータは、前記内燃機関の回転を開始してから前記絶対回転位置が算出されるまでの回転駆動期間において、現時点での前記組合せ情報に基づき、次回の前記組合せ情報を特定する特定手段を備え、前記回転駆動期間において、前記特定手段による特定結果に基づき、前記位相センサに対応する前記コイルへの通電制御内容を決定してもよい。 The starter motor with a signal output function for internal combustion engine control is based on the combination information at the present time during a rotational drive period from the start of rotation of the internal combustion engine until the absolute rotational position is calculated. A specifying means for specifying information may be provided, and the energization control content to the coil corresponding to the phase sensor may be determined based on the specifying result by the specifying means in the rotational drive period.
 ここで、モータ制御用信号に基づきコイルへの通電タイミングを制御(モータ制御)するにあたり、位相センサから次回出力されるモータ制御用信号がN極およびS極のいずれであるかを把握して、次回のマグネット極性に応じた通電制御内容にする必要がある。そして、絶対回転位置が把握されていない回転駆動期間であっても、次回のマグネット極性については現時点での組合せ情報から特定できる場合がある。例えば、図5(図18)の始動モータ(回転機)において、現時点での組合せ情報が「3」であれば、次回の組合せ情報が「2」に特定されて、U相コイルに対応する次回のマグネット極性がS極からN極に変化することが特定される。 Here, when controlling the energization timing to the coil based on the motor control signal (motor control), grasp whether the motor control signal output next from the phase sensor is N pole or S pole, It is necessary to set the energization control contents according to the next magnet polarity. Even in a rotational drive period in which the absolute rotational position is not grasped, the next magnet polarity may be identified from the combination information at the present time. For example, in the starting motor (rotating machine) in FIG. 5 (FIG. 18), if the current combination information is “3”, the next combination information is specified as “2” and the next time corresponding to the U-phase coil. It is specified that the magnet polarity changes from the S pole to the N pole.
 この点を鑑みた上記開示では、現時点での組合せ情報に基づき、位相センサから次回出力される信号の内容を特定して、通電制御内容を決定する。よって、回転駆動期間であっても、組合せ情報の履歴蓄積を必要とすることもなく、次回のマグネット極性に応じた通電制御内容を決定できる。 In the above disclosure in view of this point, the content of the next output signal from the phase sensor is specified based on the current combination information, and the energization control content is determined. Therefore, even during the rotation drive period, the energization control content corresponding to the next magnet polarity can be determined without requiring the history accumulation of combination information.
 複数の前記位相センサの少なくとも2つを前記異極部の回転軌道上に配置してもよい。 At least two of the plurality of phase sensors may be arranged on the rotation trajectory of the different pole portion.
 上記開示によれば、内燃機関の出力軸が1回転する間に異極部が検出される回数を多くできるので、絶対回転位置の把握に要する時間短縮を促進できる。 According to the above disclosure, it is possible to increase the number of times that the different pole portion is detected while the output shaft of the internal combustion engine makes one rotation, and therefore it is possible to promote the reduction in time required for grasping the absolute rotational position.
 例えば停止状態から回転駆動する場合等、次回の前記組合せ情報を複数の候補から特定できない場合において、前記候補の中から選択した1つが次回の前記組合せ情報であるとみなして、前記位相センサに対応する前記コイルへの通電を制御し、その結果、所定時間が経過してもセンサ出力が変化しない場合には、前記ロータが回転していないものとして残りの候補の中から選択した1つが次回の前記組合せ情報であるとみなして、前記位相センサに対応する前記コイルへの通電を制御してもよい。 For example, when the next combination information cannot be identified from a plurality of candidates, such as when rotating from a stopped state, the one selected from the candidates is regarded as the next combination information and corresponds to the phase sensor. If, as a result, the sensor output does not change even after a predetermined time has passed, one selected from the remaining candidates as the rotor is not rotating is selected next time. Considering the combination information, the energization to the coil corresponding to the phase sensor may be controlled.
 ここで、例えば図7に示す始動モータ(回転機)の場合、絶対回転位置が算出されていない停止時においては、現時点での組合せ情報が機関制御信号を含むことにより「0」になっていれば、次回の組合せ情報が「3」であるか「6」であるかを特定できない。このように次回の組合せ情報を特定できない場合、上記開示によれば、候補「3」「6」の中から選択した1つ(例えば「3」)が次回の前記組合せ情報であるとみなして通電制御(モータ駆動制御)を実施し、その結果、所定時間が経過しても組合せ情報「0」が変化しない場合、つまりモータを回転駆動できていない場合には、残りの候補の中から選択した1つ「6」が次回の組合せ情報であるとみなして再度通電制御する。そのため、回転駆動できるまで複数候補の全てについて順に通電制御を試行することになるので、次回の組合せ情報を特定できない場合であってもモータ駆動を実現できる。 Here, for example, in the case of the starter motor (rotary machine) shown in FIG. 7, when the absolute rotational position is not calculated, the combination information at the present time includes “engine control signal” and thus becomes “0”. Thus, it cannot be specified whether the next combination information is “3” or “6”. When the next combination information cannot be specified in this way, according to the above disclosure, one selected from the candidates “3” and “6” (for example, “3”) is regarded as the next combination information and energized. When the combination information “0” does not change even after a predetermined time has passed as a result of the control (motor drive control), that is, when the motor cannot be driven to rotate, it is selected from the remaining candidates One “6” is regarded as the next combination information, and energization control is performed again. Therefore, since energization control is sequentially tried for all of the plurality of candidates until it can be rotationally driven, motor driving can be realized even when the next combination information cannot be specified.
 ここで、例えば図18に示す始動モータの場合、絶対回転位置が算出されていない停止時においては、現時点での組合せ情報が機関制御信号を含むことにより「2」になっていれば(符合tc参照)、次回の組合せ情報が「2」であるか「6」であるかを特定できない。このように次回の組合せ情報を特定できない場合、上記開示によれば、候補「2」「6」の中から選択した1つ(例えば「2」)が次回の前記組合せ情報であるとみなして通電制御(モータ駆動制御)を実施し、その結果、所定時間が経過しても組合せ情報「0」が変化しない場合、つまりモータを回転駆動できていない場合には、残りの候補の中から選択した1つ「6」が次回の組合せ情報であるとみなして再度通電制御する。そのため、回転駆動できるまで複数候補の全てについて順に通電制御を試行することになるので、次回の組合せ情報を特定できない場合であってもモータ駆動を実現できる。 Here, for example, in the case of the starter motor shown in FIG. 18, when the absolute rotation position is not calculated and the combination information at the present time is “2” by including the engine control signal (symbol tc Reference), it cannot be specified whether the next combination information is “2” or “6”. When the next combination information cannot be specified in this way, according to the above disclosure, one selected from the candidates “2” and “6” (for example, “2”) is regarded as the next combination information and energized. When the combination information “0” does not change even after a predetermined time has passed as a result of the control (motor drive control), that is, when the motor cannot be driven to rotate, it is selected from the remaining candidates One “6” is regarded as the next combination information, and energization control is performed again. Therefore, since energization control is sequentially tried for all of the plurality of candidates until it can be rotationally driven, motor driving can be realized even when the next combination information cannot be specified.
 複数の前記候補の全てについて順番に次回の前記組合せ情報であるとみなして前記制御を実施した結果、正常にモータ駆動できなかった場合には、前記順番とは異なる順番で前記制御を実施してもよい。 As a result of performing the control on the basis of the next combination information in order for all of the plurality of candidates, if the motor cannot be driven normally, the control is performed in an order different from the order. Also good.
 ところで、例えば図19に示す始動モータの場合においても、始動時算出期間において現時点での組合せ情報が「0」である場合には(符号tf,tg,th参照)、上記図18の場合と同様にして、次回の組合せ情報が「3」「2」「6」のいずれであるかを特定できない。すなわち、例えば現時点での組合せ情報「0」が符号tfによるものであれば、次回の組合せ情報を「3」であるとみなして通電制御すれば正常にモータ駆動できる。また、現時点での組合せ情報「0」が符号tgによるものであれば次回の組合せ情報を「2」であるとみなし、現時点での組合せ情報「0」が符号thによるものであれば次回の組合せ情報を「6」であるとみなして通電制御すれば正常にモータ駆動できる。しかし図19の例では、始動時算出期間において現時点での「0」が符号tf,tg,thのいずれによるものであるかを特定できない。 By the way, for example, in the case of the starter motor shown in FIG. 19, when the combination information at the present time is “0” in the start time calculation period (see tf, tg, and th), the same as in the case of FIG. Thus, it cannot be specified whether the next combination information is “3”, “2”, or “6”. That is, for example, if the current combination information “0” is based on the symbol tf, the motor can be driven normally if the next combination information is regarded as “3” and energization control is performed. Further, if the current combination information “0” is based on the code tg, the next combination information is regarded as “2”, and if the current combination information “0” is based on the code th, the next combination is considered. If it is assumed that the information is “6” and energization control is performed, the motor can be driven normally. However, in the example of FIG. 19, it cannot be specified which of the symbols tf, tg, and th is “0” at the present time in the start-up calculation period.
 そこで、次回の組合せ情報を「3」であるとみなして通電制御し、その結果正常にモータ駆動しなければ、次回の組合せ情報を「2」であるとみなして通電制御し、その結果でも正常にモータ駆動しなければ、次回の組合せ情報を「6」であるとみなして通電制御してもよい。しかし、図19に例示されるように、特定できない組合せ情報が3つ以上連続して出現するように設定されている場合には、上述の如く「3」「2」「6」の順に試行する最中に、ロータが僅かに回転して位相がずれる場合がある。 Therefore, the next combination information is regarded as “3” and energization control is performed. As a result, if the motor is not normally driven, the next combination information is regarded as “2” and energization control is performed. If the motor is not driven, the next combination information may be regarded as “6” and the energization control may be performed. However, as illustrated in FIG. 19, when it is set so that three or more combination information that cannot be specified appear consecutively, trials are performed in the order of “3”, “2”, and “6” as described above. In the middle, the rotor may rotate slightly and the phase may shift.
 例えば、実際にはtgにある時に、tfにあるとみなして「3」で通電制御した結果、回転してthの位相になる場合がある。この場合、正常にモータ駆動しなかったので次にtgにあるとみなして「2」で通電制御することとなる。すると今度は、回転してtgの位相になる場合がある。この場合、正常にモータ駆動しなかったので次にthにあるとみなして「6」で通電制御することとなる。したがって、このように位相ずれが生じると、全ての候補「3」「2」「6」について通電制御しても、正常にモータ駆動しなくなる。 For example, when it is actually at tg, it may be assumed that it is at tf, and as a result of energization control at “3”, it may rotate and become the phase of th. In this case, since the motor was not normally driven, it is considered that the motor is next at tg, and energization control is performed at “2”. This time, there is a case where it rotates to a phase of tg. In this case, since the motor was not normally driven, it is considered that the motor is next in th, and energization control is performed at “6”. Therefore, when a phase shift occurs in this way, even if energization control is performed for all candidates “3”, “2”, and “6”, the motor is not normally driven.
 この点を鑑みた上記開示では、複数の候補「3」「2」「6」の全てについて順番(例えば3→2→6の順)に通電制御を実施したにも拘わらず、正常にモータ駆動できなかった場合には、前記順番とは異なる順番(例えば2→3→6の順)で次回の組合せ情報であるとみなして通電制御を実施する。そのため、先述した位相ずれが生じない順番で試行する機会が与えられるようになるので、正常にモータ駆動できるようになる。 In the above disclosure in view of this point, although the energization control is performed for all of the plurality of candidates “3”, “2”, and “6” in order (for example, the order of 3 → 2 → 6), the motor is normally driven. If not, the energization control is performed considering the next combination information in an order different from the order (for example, the order of 2 → 3 → 6). Therefore, an opportunity to try in the order in which the above-described phase shift does not occur is given, so that the motor can be driven normally.
 前記組合せ情報の更新タイミングに基づき、前記内燃機関の点火時期または燃料噴射を制御してもよい。 The ignition timing or fuel injection of the internal combustion engine may be controlled based on the update timing of the combination information.
 例えば、上記開示に反して、U相センサの信号が変化したタイミングに基づき点火時期や燃料噴射を制御しようとすると、このセンサ信号の変化タイミングの周期は組合せ情報の更新周期よりも長いので、点火時期または燃料噴射を高精度で制御するのに限界が有る。そこで上記開示では、組合せ情報の更新タイミングに基づき点火時期または燃料噴射を制御するので、これらを高精度で制御できるようになる。 For example, contrary to the above disclosure, if it is attempted to control the ignition timing and fuel injection based on the timing when the signal of the U-phase sensor changes, the cycle of the change timing of the sensor signal is longer than the update period of the combination information. There is a limit to controlling the timing or fuel injection with high accuracy. Therefore, in the above disclosure, since the ignition timing or the fuel injection is controlled based on the update timing of the combination information, these can be controlled with high accuracy.
 なお、上記開示は、組合せ情報の全ての更新タイミングを前記制御に用いることに限定されるものではない。例えば、全ての更新タイミングのうち、U相信号およびV相信号が変化したタイミングと同時期の更新タイミングのみを点火時期制御等に用いるようにして、W相信号が変化したタイミングと同時期の更新タイミングについては点火時期制御等に用いないようにしてもよい。或いは、全ての更新タイミングのうち、所定範囲のクランク角における更新タイミング、例えば点火時期制御に使用する圧縮行程付近のみを点火時期制御等に用いるようにしてもよい。これらによれば、制御の処理負荷を軽減しながら制御の精度を高めることができる。 Note that the above disclosure is not limited to using all update timings of combination information for the control. For example, among all the update timings, only the update timing that coincides with the timing when the U-phase signal and the V-phase signal change are used for ignition timing control and the like, and the update that coincides with the timing when the W-phase signal changes The timing may not be used for ignition timing control or the like. Alternatively, among all the update timings, only the update timing at a crank angle within a predetermined range, for example, the vicinity of the compression stroke used for the ignition timing control may be used for the ignition timing control or the like. According to these, it is possible to improve the control accuracy while reducing the control processing load.
 複数の前記位相センサは、複数の前記ティース部の間隙に配置され、複数の前記位相センサを、前記回転方向に並ぶ複数の前記間隙のうち隣り合う間隙に配置することを禁止して分散配置してもよい。 The plurality of phase sensors are arranged in gaps between the plurality of teeth portions, and the plurality of phase sensors are distributed and prohibited from being arranged in adjacent gaps among the plurality of gaps arranged in the rotation direction. May be.
 前記U相センサ、前記V相センサおよび前記W相センサは、複数の前記ティース部の間隙に配置され、前記U相センサ、前記V相センサおよび前記W相センサの少なくとも2つが、前記位相センサとして設定され、複数の前記位相センサを、前記回転方向に並ぶ複数の前記間隙のうち隣り合う間隙に配置することを禁止して分散配置してもよい。 The U-phase sensor, the V-phase sensor, and the W-phase sensor are arranged in a gap between the plurality of teeth portions, and at least two of the U-phase sensor, the V-phase sensor, and the W-phase sensor are used as the phase sensor. The plurality of phase sensors that are set may be dispersedly disposed by prohibiting them from being disposed in adjacent gaps among the plurality of gaps arranged in the rotation direction.
 前記回転位置センサおよび前記位相センサは、複数の前記ティース部の間隙に配置され、前記回転位置センサおよび前記位相センサを、前記回転方向に並ぶ複数の前記間隙のうち隣り合う間隙に配置することを禁止して分散配置してもよい。 The rotational position sensor and the phase sensor are disposed in gaps between the plurality of teeth portions, and the rotational position sensor and the phase sensor are disposed in adjacent gaps among the plurality of gaps arranged in the rotation direction. It may be prohibited and distributed.
 ここで、位相センサとして利用されるセンサの数が多いほど、出力軸が1回転する間に異極部を検出する回数を多くできるので、内燃機関の回転を開始してから異極部(異極磁性部)を検出して絶対回転位置の把握するまでに要する時間を短縮できる。ただし、位相センサの配置間隔が狭すぎると、内燃機関の回転を開始してから異極部を検出して絶対回転位置の把握するまでに要する時間を十分に短縮できない。この点を鑑みた上記開示では、複数の前記位相センサを隣り合う間隙に配置することを禁止して分散配置するので、絶対回転位置の把握に要する時間を十分に短縮できる。 Here, as the number of sensors used as phase sensors increases, the number of times of detecting the different pole portion during one rotation of the output shaft can be increased. It is possible to shorten the time required to detect the polar magnetic part) and grasp the absolute rotational position. However, if the arrangement interval of the phase sensors is too narrow, the time required from the start of the rotation of the internal combustion engine to the detection of the different pole portion to grasp the absolute rotation position cannot be shortened sufficiently. In the above disclosure in view of this point, the plurality of phase sensors are prohibited from being arranged in adjacent gaps and are arranged in a distributed manner, so that the time required for grasping the absolute rotational position can be sufficiently shortened.
 前記所定のマグネットのうち前記回転方向の一部に前記異極部を形成することで、前記所定のマグネットと前記異極部とが前記回転方向に並ぶようにしてもよい。 The predetermined magnet and the different pole portion may be arranged in the rotation direction by forming the different pole portion in a part of the rotation direction of the predetermined magnet.
 例えば、図4(a)に示すように所定のマグネット32S(A)を回転方向に3分割したうちの中央部を異極部(異極磁性部34)として形成することで、所定のマグネット32S(A)のうち符号Pに示す部分と異極磁性部34とが回転方向に並ぶようにする。或いは、図4(b)に示すように所定のマグネット32S(A)を回転方向に2分割したうちの一方を異極部(異極磁性部34)として形成することで、所定のマグネット32S(A)のうち符号Qに示す部分と異極磁性部34とが回転方向に並ぶようにする。 For example, as shown in FIG. 4 (a), a predetermined magnet 32S (A) is divided into three in the rotational direction, and the central portion is formed as a different pole portion (different pole magnetic portion 34), whereby the predetermined magnet 32S. In (A), the portion indicated by reference numeral P and the heteropolar magnetic portion 34 are arranged in the rotational direction. Alternatively, as shown in FIG. 4B, one of the predetermined magnets 32S (A) divided into two in the rotational direction is formed as a different pole part (different pole magnetic part 34), whereby a predetermined magnet 32S ( In A), the portion indicated by the symbol Q and the heteropolar magnetic portion 34 are arranged in the rotational direction.
 このように、上記開示によれば、異極部を、所定のマグネットのうち回転方向の一部に形成するので、回転方向全体に亘って形成する図9(a)の従来構造に比べて、所定のマグネットと異極部とが回転軸方向(図4(a),図4(b)の上下方向)で磁気短絡する長さを短くできる。よって、本開示にかかる回転機が始動モータとして機能するものである場合において、始動モータの出力低下を抑制できる。また、異極部は、所定のマグネットに対向するティース部と極性不整合になることは避けられないが、上記開示によれば異極部の面積が回転方向(図4(a),図4(b)の左右方向)に小さくなるので、極性不整合に伴い生じる始動モータ(回転機)の出力低下を抑制できる。なお、本開示にかかる回転機が、内燃機関により駆動して発電機として機能するものである場合、その発電機による発電量が増加するといった効果も発揮される。また、回転方向の全体に亘って異極部を形成した場合に比べて、異極部の回転方向長さを短くできる。そのため、所定のマグネットに対する異極部の占有面積を小さくでき、異極部が存在することによる回転機(始動モータまたは発電機)の出力低下を抑制できる。 Thus, according to the above disclosure, the different pole part is formed in a part of the rotation direction of the predetermined magnet, so compared with the conventional structure of FIG. 9A formed over the entire rotation direction, The length of magnetic short circuit between the predetermined magnet and the different pole portion in the direction of the rotation axis (vertical direction in FIGS. 4A and 4B) can be shortened. Therefore, when the rotating machine according to the present disclosure functions as a starter motor, it is possible to suppress a decrease in output of the starter motor. In addition, it is inevitable that the polarity of the different pole portion becomes inconsistent with that of the teeth portion facing the predetermined magnet. However, according to the above disclosure, the area of the different pole portion is the rotation direction (FIGS. 4A and 4). (B) in the left-right direction), it is possible to suppress a decrease in the output of the starter motor (rotating machine) caused by the polarity mismatch. In addition, when the rotary machine concerning this indication is driven by an internal combustion engine and functions as a generator, the effect that the electric power generation amount by the generator increases is also exhibited. In addition, the length of the different pole portion in the rotation direction can be shortened compared to the case where the different pole portion is formed over the entire rotation direction. Therefore, the occupation area of the different pole part with respect to a predetermined magnet can be made small, and the output fall of the rotary machine (starting motor or generator) by presence of a different pole part can be suppressed.
 前記回転方向のうち前記異極部の両側に前記所定のマグネットの極性が位置するようにしてもよい。例えば、図4(a)(図27(a))に示すように所定のマグネットを3分割して、その中央部を異極部として形成する。 The polarity of the predetermined magnet may be located on both sides of the different polarity portion in the rotation direction. For example, as shown in FIG. 4A (FIG. 27A), a predetermined magnet is divided into three parts, and the central part is formed as a different pole part.
 ここで、上記開示に反し、図4(b)(図27(b))に例示する2分割構成にした場合には、所定のマグネット32S(A)に隣接する2つのマグネット(隣接マグネット32N(B)(C))のうち、一方の隣接マグネット32N(B)と所定のマグネット32S(A)との位置変化のタイミング(転流タイミング)についてはセンサで検出できるものの、他方の隣接マグネット32N(C)と所定のマグネット32S(A)との転流タイミングについては検出できない。これに対し上記開示では、図4(a)(図27(a))に例示する3分割構成であるため、両側の隣接マグネット32N(B)(C)に対して転流タイミングを検出できるようになる。よって、通電制御内容の切り替えタイミングの適正化を促進できる。 Here, contrary to the above disclosure, in the case of the two-divided configuration illustrated in FIG. 4B (FIG. 27B), two magnets adjacent to the predetermined magnet 32S (A) (adjacent magnet 32N ( B) (C)), the position change timing (commutation timing) between one adjacent magnet 32N (B) and a predetermined magnet 32S (A) can be detected by a sensor, but the other adjacent magnet 32N ( The commutation timing between C) and the predetermined magnet 32S (A) cannot be detected. On the other hand, in the above disclosure, since the three-part configuration illustrated in FIG. 4A (FIG. 27A) is used, the commutation timing can be detected for the adjacent magnets 32N (B) (C) on both sides. become. Therefore, optimization of the switching timing of the energization control content can be promoted.
 さらに上記開示によれば、図4(b)(図27(b))に例示する如く所定のマグネットを2分割して、異極部の片側だけに所定のマグネットの極性(符号Q参照)を位置させる場合に比べて、異極部の回転方向長さをより一層短くできる。そのため、所定のマグネットと異極部との磁気短絡量をより一層低減できるとともに、極性不整合となっている異極部の占有面積をより一層小さくでき、回転機(始動モータまたは発電機)の出力低下抑制を促進できる。 Further, according to the above disclosure, as shown in FIG. 4B (FIG. 27B), the predetermined magnet is divided into two, and the polarity of the predetermined magnet (see reference sign Q) is set only on one side of the different polarity part. Compared with the case where it positions, the rotation direction length of a different pole part can be shortened further. As a result, the amount of magnetic short-circuit between the predetermined magnet and the different pole portion can be further reduced, and the occupied area of the different pole portion that is inconsistent in polarity can be further reduced, and the rotating machine (starting motor or generator) Suppressing output reduction can be promoted.
 前記位相センサは、前記回転方向において前記回転位置センサとは異なる位置に配置されるとともに、前記異極磁性部の回転軌道上に配置されることで、前記位相センサが前記異極磁性部を検出した時には、前記出力軸の絶対回転位置を表した内燃機関制御用信号を前記モータ制御用信号の替わりに出力してもよい。 The phase sensor is disposed at a position different from the rotational position sensor in the rotational direction, and is disposed on a rotational orbit of the heteropolar magnetic part, so that the phase sensor detects the heteropolar magnetic part. In this case, an internal combustion engine control signal representing the absolute rotational position of the output shaft may be output instead of the motor control signal.
 上記開示によれば、内燃機関制御用信号を出力する位相センサと回転位置センサとの各々で異極磁性部を検出するようにできる。そのため、内燃機関の出力軸が1回転する間に異極磁性部を複数回検出するようにできるので、内燃機関の回転を開始してから、異極磁性部を検出して絶対回転位置の把握するまでに要する時間を短縮できる(第2の目的)。 According to the above disclosure, the heteropolar magnetic part can be detected by each of the phase sensor and the rotational position sensor that output the internal combustion engine control signal. For this reason, since the heteropolar magnetic part can be detected a plurality of times while the output shaft of the internal combustion engine makes one rotation, the absolute magnetic position is detected by detecting the heteropolar magnetic part after the internal combustion engine starts rotating. The time required to do this can be shortened (second purpose).
 ここで、上記開示に反して、所定のマグネットのうち回転方向の全体に亘って異極磁性部が形成されている場合には、位相センサは所定のマグネットの極性を検出できない。そのため、位相センサの検出位置に所定のマグネットが位置する状態から、隣接マグネットが位置する状態に切り替わるタイミング(転流タイミング)を正確に把握できなくなる。そのため、コイルへの通電制御内容を切り替えるタイミングを適正なタイミングに精度良く制御することができなくなることが懸念される。 Here, contrary to the above disclosure, when the different polarity magnetic part is formed over the entire rotation direction of the predetermined magnet, the phase sensor cannot detect the polarity of the predetermined magnet. For this reason, it is impossible to accurately grasp the timing (commutation timing) at which the predetermined magnet is positioned at the detection position of the phase sensor to switch to the state where the adjacent magnet is positioned. For this reason, there is a concern that the timing of switching the energization control content to the coil cannot be accurately controlled at an appropriate timing.
 これに対し、異極磁性部の回転方向両側に所定のマグネットの極性が位置するようにすれば、位相センサにかかる前記転流タイミングを正確に把握することができ、ひいては、通電制御内容を切り替えるタイミングを適正タイミングに精度良く制御できる。 On the other hand, if the polarity of the predetermined magnet is positioned on both sides of the rotation direction of the heteropolar magnetic part, the commutation timing applied to the phase sensor can be accurately grasped, and accordingly, the energization control content is switched. The timing can be accurately controlled at an appropriate timing.
 内燃機関制御用信号出力機能付き始動モータは、前記内燃機関を走行駆動源とする車両であって、前記出力軸の回転速度が所定値以上になったことを条件として、前記出力軸の回転トルクを前記車両の駆動輪へ伝達するトルク伝達機構を備えた車両に適用されてもよい。 The starter motor with a signal output function for controlling the internal combustion engine is a vehicle that uses the internal combustion engine as a travel drive source, and the rotational torque of the output shaft is provided on the condition that the rotational speed of the output shaft exceeds a predetermined value. May be applied to a vehicle provided with a torque transmission mechanism for transmitting to the drive wheels of the vehicle.
 ところで、回転機が始動モータとして機能するものである場合において、上述してきたように位相センサを利用して内燃機関制御用信号を出力させるにあたり、停止からの回転駆動において位相センサから出力された信号がモータ制御用信号および内燃機関制御用信号のいずれであるかを特定できなかった場合に起因して、適正な通電制御内容でモータ制御できず、始動モータを所望の向きとは逆の向きに回転駆動させてしまうことが懸念される。 By the way, in the case where the rotating machine functions as a starter motor, the signal output from the phase sensor in the rotational drive from the stop when outputting the internal combustion engine control signal using the phase sensor as described above. Because it is not possible to specify whether the motor is a motor control signal or an internal combustion engine control signal, the motor cannot be controlled with proper energization control, and the starting motor is set in the direction opposite to the desired direction. There is a concern about the rotational drive.
 この懸念に対し、上記開示では、出力軸の回転速度が所定値以上になったことを条件として出力軸トルクを駆動輪へ伝達する車両を適用対象とするので、仮に始動モータを逆回転させてしまっても、その逆回転トルクは駆動輪へ伝達されることはなく、車両の走行には影響しない。よって、上記懸念を解消できる。 In response to this concern, the above disclosure applies to vehicles that transmit output shaft torque to drive wheels on the condition that the rotational speed of the output shaft has reached a predetermined value or higher. Even then, the reverse rotational torque is not transmitted to the drive wheels and does not affect the running of the vehicle. Therefore, the above concerns can be resolved.
 前記出力軸はクランク軸であり、前記ロータは、前記クランク軸に固定され、前記クランク軸と同じ回転速度で常時回転してもよい。 The output shaft may be a crankshaft, and the rotor may be fixed to the crankshaft and always rotate at the same rotational speed as the crankshaft.
 ここで、上記開示に反し、クランク軸とロータとが、ベルトやギア等の動力伝達機構を介して連結されている場合には、ギアのバックラッシュやベルトの伸び等により、クランク軸の回転位相とロータの回転位相とにずれが生じる。そのため、ロータに取り付けられた異極部を検出して出力された内燃機関制御用信号に基づき算出されたクランク軸の絶対回転位置は、実際の絶対回転位置に対してずれた値になる。 Here, contrary to the above disclosure, when the crankshaft and the rotor are connected via a power transmission mechanism such as a belt or a gear, the rotational phase of the crankshaft is caused by gear backlash, belt elongation, or the like. And a rotational phase of the rotor are shifted. Therefore, the absolute rotational position of the crankshaft calculated based on the internal combustion engine control signal output by detecting the different pole portion attached to the rotor is a value deviated from the actual absolute rotational position.
 この点を鑑みた上記開示では、ロータがクランク軸に固定され、クランク軸と同じ回転速度で常時回転する車両を適用対象とするので、内燃機関制御用信号に基づき算出した絶対回転位置と実際の絶対回転位置とのずれを小さくできる。よって、クランク軸(出力軸)の絶対回転位置の算出を高精度にできる。 In view of this point, in the above disclosure, the rotor is fixed to the crankshaft, and the vehicle is always rotating at the same rotational speed as the crankshaft. Therefore, the absolute rotational position calculated based on the internal combustion engine control signal and the actual rotational position are used. Deviation from the absolute rotation position can be reduced. Accordingly, the absolute rotational position of the crankshaft (output shaft) can be calculated with high accuracy.
 前記内燃機関を停止させた時に前記出力軸が停止する可能性の高い前記絶対回転位置を、停止予想位置として予め設定しておき、前記停止予想位置を避けて、前記異極部(異極磁性部)が前記位相センサの対向位置から所定量だけ進角した位置となるよう、前記位相センサおよび前記異極部を配置してもよい。 The absolute rotation position where the output shaft is likely to stop when the internal combustion engine is stopped is set in advance as a predicted stop position, and the different pole portion (different pole magnetism) is avoided by avoiding the predicted stop position. The phase sensor and the different pole portion may be arranged so that the portion) is at a position advanced by a predetermined amount from the facing position of the phase sensor.
 ここで、上記開示に反して、停止予想位置で出力軸が停止した状態において、異極部(異極磁性部)が位相センサの対向位置、またはその対向位置から僅かに遅角した位置にあるようにすると、絶対回転位置を把握できていない停止時に内燃機関制御用信号を出力することとなり、この場合には適正な通電制御内容でモータ制御できなくなる可能性が高くなる。 Here, contrary to the above disclosure, in a state where the output shaft is stopped at the expected stop position, the different pole part (different pole magnetic part) is at the position facing the phase sensor or at a position slightly retarded from the position facing the phase sensor. By doing so, an internal combustion engine control signal is output at the time of a stop when the absolute rotational position cannot be grasped, and in this case, there is a high possibility that the motor control cannot be performed with proper energization control content.
 この点を鑑みた上記開示では、停止予想位置で出力軸が停止した状態において、異極部(異極磁性部)が位相センサの対向位置から僅かに進角した位置にあるようにできるので、上述の如く適正な通電制御内容でモータ制御できなくなる可能性を低減できる。 In the above disclosure in view of this point, in a state where the output shaft is stopped at the expected stop position, the different pole part (different pole magnetic part) can be in a position slightly advanced from the facing position of the phase sensor. As described above, it is possible to reduce the possibility that the motor cannot be controlled with the proper energization control content.
 前記内燃機関を停止させた時に前記出力軸が停止する可能性の高い前記絶対回転位置を、停止予想位置(例えばBTDC150°付近から上死点TDCの範囲)として予め設定しておき、前記停止予想位置で停止した状態において、前記異極部(異極磁性部)が前記位相センサ(または前記回転位置センサ)の対向位置、或いは前記位相センサ(または前記回転位置センサ)の対向位置から所定量だけ遅角した位置となるよう、前記位相センサおよび前記異極部(異極磁性部)を配置してもよい。 The absolute rotation position where the output shaft is likely to stop when the internal combustion engine is stopped is set in advance as a predicted stop position (for example, a range from about BTDC 150 ° to top dead center TDC), and the expected stop In a state of stopping at the position, the different pole part (different pole magnetic part) is a predetermined amount from the facing position of the phase sensor (or the rotational position sensor) or the facing position of the phase sensor (or the rotational position sensor). You may arrange | position the said phase sensor and the said different pole part (different pole magnetic part) so that it may become a retarded position.
 上記開示によれば、内燃機関の回転駆動を開始してから直ぐに内燃機関制御用信号が出力されるようになるので、内燃機関制御用信号に基づく絶対回転位置の算出を迅速にでき、絶対回転位置の把握に要する時間短縮を促進できる。 According to the above disclosure, since the internal combustion engine control signal is output immediately after the rotational drive of the internal combustion engine is started, the absolute rotational position based on the internal combustion engine control signal can be quickly calculated, and the absolute rotation The time required for grasping the position can be reduced.
 前記異極部は、N極およびS極のいずれにも着磁させない非磁性部であり、前記所定のマグネットの一部を切り欠いて形成された空隙であってもよい。 The non-polar part is a non-magnetic part that is not magnetized in either the N pole or the S pole, and may be a gap formed by cutting out a part of the predetermined magnet.
 このように非磁性部を異極部とする上記開示によれば、所定のマグネットと異なる極性に着磁させた異極磁性部を異極部とする場合に比べて、以下の点で有利である。すなわち、異極磁性部(異極部)を生成すべく着磁処理することを不要にでき、切り欠きを形成するだけで非磁性部(異極部)を形成できるので、異極部の形成を容易に実現できる。 Thus, according to the above disclosure in which the nonmagnetic portion is a different polarity portion, the following points are advantageous compared to the case where the different polarity magnetic portion magnetized to have a polarity different from that of the predetermined magnet is used. is there. That is, it is not necessary to perform a magnetizing process to generate a different magnetic part (different pole part), and a non-magnetic part (different pole part) can be formed simply by forming a notch. Can be realized easily.
 また、上記開示に反して異極磁性部を異極部とした場合には、所定のマグネットと異極磁性部とが回転軸方向(図4(a),図4(b)の上下方向)で磁気短絡することとなる。この点、非磁性部を異極部とした上記開示によれば、前記磁気短絡量を低減でき、始動モータの出力低下や発電機として使用する場合の発電出力の低下を抑制できる。 In addition, contrary to the above disclosure, when the heteropolar magnetic part is a heteropolar part, the predetermined magnet and the heteropolar magnetic part are in the rotation axis direction (vertical direction in FIGS. 4A and 4B). Will cause a magnetic short circuit. In this regard, according to the above disclosure in which the nonmagnetic part is a different pole part, the magnetic short-circuit amount can be reduced, and a reduction in the output of the starter motor and a decrease in the power generation output when used as a generator can be suppressed.
 U相コイル、V相コイルおよびW相コイルを前記コイルとして備えており、前記U相コイルへの通電タイミングの制御に用いるU相信号を前記モータ制御用信号として出力するU相センサ、前記V相コイルへの通電タイミングの制御に用いるV相信号を前記モータ制御用信号として出力するV相センサ、および前記W相コイルへの通電タイミングの制御に用いるW相信号を前記モータ制御用信号として出力するW相センサのうち、少なくとも1つのセンサを備え、前記U相センサ、前記V相センサおよび前記W相センサの少なくとも1つを、前記位相センサとして前記異極部(前記異極磁性部)の回転軌道上に配置してもよい。 A U-phase sensor that includes a U-phase coil, a V-phase coil, and a W-phase coil as the coils, and that outputs a U-phase signal used for controlling energization timing to the U-phase coil as the motor control signal, the V-phase A V-phase sensor that outputs a V-phase signal used for controlling energization timing to the coil as the motor control signal, and a W-phase signal that is used to control energization timing to the W-phase coil is output as the motor control signal. Among the W-phase sensors, at least one sensor is provided, and at least one of the U-phase sensor, the V-phase sensor, and the W-phase sensor is used as the phase sensor to rotate the different pole portion (the different pole magnetic portion). You may arrange | position on an orbit.
 このようにU相コイル、V相コイルおよびW相コイルを有する三相の始動モータ(回転機)の場合には、各コイルに対応したモータ制御用信号を出力する各々のセンサを、内燃機関制御用信号の出力に利用してもよい。但し、三相であってもU相センサ、V相センサおよびW相センサの全てを備えていない場合があり、このような始動モータにも本開示は適用できる。例えばW相センサが備えられていない場合には、U相センサまたはV相センサの出力に基づきW相センサの出力位置を入力時間から推定し、その推定信号に基づきW相コイルを通電制御すればよい。 Thus, in the case of a three-phase starter motor (rotary machine) having a U-phase coil, a V-phase coil, and a W-phase coil, each sensor that outputs a motor control signal corresponding to each coil is controlled by an internal combustion engine. You may use for the output of the business signal. However, even if there are three phases, the U-phase sensor, the V-phase sensor, and the W-phase sensor may not be provided, and the present disclosure can be applied to such a starting motor. For example, if the W-phase sensor is not provided, the output position of the W-phase sensor is estimated from the input time based on the output of the U-phase sensor or V-phase sensor, and the W-phase coil is energized and controlled based on the estimated signal. Good.
 また、U相センサ、V相センサおよびW相センサの全てを内燃機関制御用信号の出力に利用してもよいし、1つまたは2つのセンサを内燃機関制御用信号の出力に利用してもよい。そして、利用するセンサの数を多くするほど、内燃機関の出力軸が1回転する間に異極部が検出される回数を多くできるので、絶対回転位置の把握に要する時間短縮を促進できる。 Further, all of the U-phase sensor, the V-phase sensor and the W-phase sensor may be used for the output of the internal combustion engine control signal, or one or two sensors may be used for the output of the internal combustion engine control signal. Good. As the number of sensors to be used is increased, the number of times that the different pole portion is detected during one rotation of the output shaft of the internal combustion engine can be increased, so that the time required for grasping the absolute rotational position can be reduced.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (37)

  1.  極性の異なるマグネット(32N,32S)を回転方向に交互に配置して構成されたロータ(30)と、
     コイル(CU,CV,CW)が巻き回されたティース部(41)を前記回転方向に複数並べて構成されたステータ(40)と、
     前記ステータ(40)のうち前記マグネット(32N,32S)と対向する位置に取り付けられ、回転する前記マグネット(32N,32S)の極性に応じたクランク位置信号を出力する位相センサ(SU、SV,SW)と、
    を備え、
     複数の前記マグネット(32N,32S)のうち所定のマグネット(32N,32S)の一部に、当該マグネット(32N,32S)とは異なる極性に着磁された、或いはいずれの極性にも着磁されていない異極部(34、34k)を形成し、
     前記ロータ(30)とともに回転する前記異極部(34、34k)の回転軌道上に前記位相センサ(SU、SV,SW)を配置することで、前記位相センサ(SU、SV,SW)が前記異極部(34、34k)を検出した時には、内燃機関の出力軸(14)の絶対回転位置を表した内燃機関制御用信号を前記位相センサ(SU、SV,SW)が出力する、内燃機関制御用信号出力機能付き回転機。
     
    A rotor (30) configured by alternately arranging magnets (32N, 32S) having different polarities in the rotation direction;
    A stator (40) configured by arranging a plurality of teeth (41) around which coils (CU, CV, CW) are wound in the rotational direction;
    Phase sensors (SU, SV, SW) which are attached to positions of the stator (40) facing the magnets (32N, 32S) and output a crank position signal corresponding to the polarity of the rotating magnets (32N, 32S). )When,
    With
    Of the plurality of magnets (32N, 32S), a part of a predetermined magnet (32N, 32S) is magnetized to a polarity different from that of the magnet (32N, 32S), or magnetized to any polarity. Non-different pole parts (34, 34k) are formed,
    By disposing the phase sensor (SU, SV, SW) on the rotation trajectory of the different polarity part (34, 34k) rotating together with the rotor (30), the phase sensor (SU, SV, SW) is An internal combustion engine in which the phase sensor (SU, SV, SW) outputs an internal combustion engine control signal representing the absolute rotational position of the output shaft (14) of the internal combustion engine when the different pole portion (34, 34k) is detected Rotating machine with control signal output function.
  2.  複数の前記位相センサ(SU、SV,SW)を、前記回転方向に並べて配置し、
     複数の前記位相センサ(SU、SV,SW)から出力されたクランク位置信号の組合せを表した、組合せ情報を生成する組合せ情報生成手段(S20)を備える、請求項1に記載の内燃機関制御用信号出力機能付き回転機。
     
    A plurality of the phase sensors (SU, SV, SW) are arranged side by side in the rotation direction,
    The internal combustion engine control unit according to claim 1, further comprising combination information generation means (S20) for generating combination information representing a combination of crank position signals output from the plurality of phase sensors (SU, SV, SW). Rotating machine with signal output function.
  3.  現時点での前記組合せ情報に基づき、前記絶対回転位置を算出する、請求項2に記載の内燃機関制御用信号出力機能付き回転機。
     
    The rotating machine with a signal output function for controlling an internal combustion engine according to claim 2, wherein the absolute rotational position is calculated based on the combination information at a current time point.
  4.  前記組合せ情報の履歴に基づき、前記絶対回転位置を算出する、請求項2または3に記載の内燃機関制御用信号出力機能付き回転機。
     
    The rotating machine with a signal output function for internal combustion engine control according to claim 2 or 3, wherein the absolute rotational position is calculated based on a history of the combination information.
  5.  前記内燃機関の回転を開始してから前記絶対回転位置が算出されるまでの回転駆動期間において、現時点での前記組合せ情報に基づき、次回の前記組合せ情報を特定する特定手段(13)を備え、
     前記回転駆動期間において、前記特定手段(13)による特定結果に基づき、前記位相センサ(SU、SV,SW)に対応する前記コイル(CU,CV,CW)への通電制御内容を決定する、請求項2~4のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    In a rotational drive period from the start of rotation of the internal combustion engine to the calculation of the absolute rotational position, a specifying means (13) for specifying the next combination information based on the combination information at the present time,
    In the rotational drive period, the energization control content to the coils (CU, CV, CW) corresponding to the phase sensors (SU, SV, SW) is determined based on the identification result by the identification means (13). Item 5. A rotating machine with a signal output function for controlling an internal combustion engine according to any one of Items 2 to 4.
  6.  複数の前記位相センサ(SU、SV,SW)の少なくとも2つを前記異極部(34、34k)の回転軌道上に配置した、請求項2~5のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    The internal combustion engine control according to any one of claims 2 to 5, wherein at least two of the plurality of phase sensors (SU, SV, SW) are arranged on a rotation trajectory of the different pole portion (34, 34k). Rotating machine with signal output function.
  7.  次回の前記組合せ情報を複数の候補から特定できない場合において、前記候補の中から選択した1つが次回の前記組合せ情報であるとみなして、前記位相センサ(SU、SV,SW)に対応する前記コイル(CU,CV,CW)への通電を制御し、
     その結果、所定時間が経過してもセンサ出力が変化しない場合には、前記ロータ(30)が回転していないものとして残りの候補の中から選択した1つが次回の前記組合せ情報であるとみなして、前記位相センサ(SU、SV,SW)に対応する前記コイル(CU,CV,CW)への通電を順次制御する、請求項2~6のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    When the next combination information cannot be specified from a plurality of candidates, the coil corresponding to the phase sensor (SU, SV, SW) is assumed that one selected from the candidates is the next combination information. Control the energization to (CU, CV, CW)
    As a result, if the sensor output does not change even after a predetermined time has elapsed, the one selected from the remaining candidates on the assumption that the rotor (30) is not rotating is regarded as the next combination information. The internal combustion engine control signal according to any one of claims 2 to 6, wherein energization to the coils (CU, CV, CW) corresponding to the phase sensors (SU, SV, SW) is sequentially controlled. Rotating machine with output function.
  8.  前記組合せ情報の更新タイミングに基づき、前記内燃機関の点火時期または燃料噴射を制御する、請求項2~7のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    The rotating machine with a signal output function for controlling an internal combustion engine according to any one of claims 2 to 7, wherein ignition timing or fuel injection of the internal combustion engine is controlled based on an update timing of the combination information.
  9.  複数の前記位相センサ(SU、SV,SW)は、複数の前記ティース部(41)の間隙に配置され、
     複数の前記位相センサ(SU、SV,SW)を、前記回転方向に並ぶ複数の前記間隙のうち隣り合う間隙に配置することを禁止して分散配置した、請求項2~8のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    The plurality of phase sensors (SU, SV, SW) are arranged in the gaps between the plurality of teeth portions (41),
    The plurality of phase sensors (SU, SV, SW) are distributed and prohibited from being arranged in adjacent gaps among the plurality of gaps arranged in the rotation direction. A rotating machine with a signal output function for controlling an internal combustion engine as described in 1.
  10.  前記所定のマグネット(32N,32S)のうち前記回転方向の一部に前記異極部(34、34k)を形成することで、前記所定のマグネット(32N,32S)と前記異極部(34、34k)とが前記回転方向に並ぶようにした、請求項1~9のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    By forming the different pole portion (34, 34k) in a part of the rotation direction of the predetermined magnet (32N, 32S), the predetermined magnet (32N, 32S) and the different pole portion (34, 34k) are formed. The rotating machine with a signal output function for controlling an internal combustion engine according to any one of claims 1 to 9, wherein 34k) is arranged in the rotation direction.
  11.  前記回転方向のうち前記異極部(34、34k)の両側に前記所定のマグネット(32N,32S)の極性が位置するようにした、請求項10に記載の内燃機関制御用信号出力機能付き回転機。
     
    The rotation with the signal output function for internal combustion engine control according to claim 10, wherein polarities of the predetermined magnets (32N, 32S) are positioned on both sides of the different polarity portion (34, 34k) in the rotation direction. Machine.
  12.  前記内燃機関を走行駆動源とする車両であって、
     前記出力軸(14)の回転速度が所定値以上になったことを条件として、前記出力軸(14)の回転トルクを前記車両の駆動輪へ伝達するトルク伝達機構を備えた車両に適用されている、請求項1~11のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    A vehicle using the internal combustion engine as a travel drive source,
    The present invention is applied to a vehicle provided with a torque transmission mechanism that transmits the rotational torque of the output shaft (14) to the drive wheels of the vehicle on the condition that the rotational speed of the output shaft (14) becomes a predetermined value or more. The rotating machine with a signal output function for controlling an internal combustion engine according to any one of claims 1 to 11.
  13.  前記出力軸(14)はクランク軸(14)であり、
     前記ロータ(30)は、前記クランク軸(14)に固定され、前記クランク軸(14)と同じ回転速度で常時回転する、請求項1~12のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    The output shaft (14) is a crankshaft (14);
    The internal combustion engine control signal according to any one of claims 1 to 12, wherein the rotor (30) is fixed to the crankshaft (14) and constantly rotates at the same rotational speed as the crankshaft (14). Rotating machine with output function.
  14.  前記内燃機関を停止させた時に前記出力軸(14)が停止する可能性の高い前記絶対回転位置を、停止予想位置として予め設定しておき、
     前記停止予想位置を避けて、前記異極部(34、34k)が前記位相センサ(SU、SV,SW)の対向位置から所定量だけ進角した位置となるよう、前記位相センサ(SU、SV,SW)および前記異極部(34、34k)を配置した、請求項1~13のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    The absolute rotation position where the output shaft (14) is highly likely to stop when the internal combustion engine is stopped is set in advance as a predicted stop position;
    Avoiding the expected stop position, the phase sensors (SU, SV) are arranged such that the different pole portions (34, 34k) are advanced by a predetermined amount from the facing positions of the phase sensors (SU, SV, SW). , SW) and the different pole portion (34, 34k), the rotating machine with a signal output function for controlling an internal combustion engine according to any one of claims 1 to 13.
  15.  前記内燃機関を停止させた時に前記出力軸(14)が停止する可能性の高い前記絶対回転位置を、停止予想位置として予め設定しておき、
     前記停止予想位置で停止した状態において、前記異極部(34、34k)が前記位相センサ(SU、SV,SW)の対向位置、或いは前記位相センサ(SU、SV,SW)の対向位置から所定量だけ遅角した位置となるよう、前記位相センサ(SU、SV,SW)および前記異極部(34、34k)を配置した、請求項1~13のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    The absolute rotation position where the output shaft (14) is highly likely to stop when the internal combustion engine is stopped is set in advance as a predicted stop position;
    In the state of stopping at the expected stop position, the different polarity part (34, 34k) is located away from the facing position of the phase sensor (SU, SV, SW) or the facing position of the phase sensor (SU, SV, SW). The internal combustion engine control according to any one of claims 1 to 13, wherein the phase sensor (SU, SV, SW) and the different pole portion (34, 34k) are arranged so that the position is retarded by a fixed amount. Rotating machine with signal output function.
  16.  前記異極部(34、34k)は、N極およびS極のいずれにも着磁させない非磁性部(34k)であり、前記所定のマグネット(32N,32S)の一部を切り欠いて形成された空隙である、請求項1~15のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    The different pole portions (34, 34k) are non-magnetic portions (34k) that are not magnetized in either the N pole or the S pole, and are formed by cutting out a part of the predetermined magnets (32N, 32S). The rotating machine with a signal output function for controlling an internal combustion engine according to any one of claims 1 to 15, wherein the rotating machine has a gap.
  17.  前記位相センサ(SU、SV,SW)は、回転する前記マグネット(32N,32S)の極性に応じたモータ制御用信号を出力しており、
     検出された前記モータ制御用信号に基づき前記コイル(CU,CV,CW)への通電タイミングを制御することで回転駆動して、内燃機関の出力軸(14)を回転駆動させる始動モータとして機能する回転機であって、
     前記位相センサ(SU、SV,SW)は、前記異極部(34、34k)を検出した時には、前記モータ制御用信号の替わりに前記内燃機関制御用信号の基準位置信号を出力する、請求項1~16のいずれか1つに記載の内燃機関制御用信号出力機能付き回転機。
     
    The phase sensor (SU, SV, SW) outputs a motor control signal corresponding to the polarity of the rotating magnet (32N, 32S),
    Based on the detected motor control signal, the energization timing of the coils (CU, CV, CW) is controlled to rotate, thereby functioning as a starter motor for rotating the output shaft (14) of the internal combustion engine. A rotating machine,
    The phase sensor (SU, SV, SW) outputs a reference position signal of the internal combustion engine control signal instead of the motor control signal when detecting the different polarity portion (34, 34k). 17. A rotating machine with a signal output function for controlling an internal combustion engine according to any one of 1 to 16.
  18.  U相コイル(CU)、V相コイル(CV)およびW相コイル(CW)を前記コイル(CU,CV,CW)として備えており、
     前記U相コイル(CU)への通電タイミングの制御に用いるU相信号を前記モータ制御用信号として出力するU相センサ(SU)、前記V相コイル(CV)への通電タイミングの制御に用いるV相信号を前記モータ制御用信号として出力するV相センサ(SV)、および前記W相コイル(CW)への通電タイミングの制御に用いるW相信号を前記モータ制御用信号として出力するW相センサ(SW)のうち、少なくとも1つのセンサを備え、
     前記U相センサ(SU)、前記V相センサ(SV)および前記W相センサ(SW)の少なくとも1つを、前記位相センサ(SU、SV,SW)として前記異極部(34、34k)の回転軌道上に配置する、請求項17に記載の内燃機関制御用信号出力機能付き回転機。
     
    A U-phase coil (CU), a V-phase coil (CV), and a W-phase coil (CW) are provided as the coils (CU, CV, CW),
    A U-phase sensor (SU) that outputs a U-phase signal used for controlling the energization timing to the U-phase coil (CU) as the motor control signal, and a V that is used to control the energization timing to the V-phase coil (CV). A V-phase sensor (SV) that outputs a phase signal as the motor control signal, and a W-phase sensor (SV) that outputs a W-phase signal used for controlling energization timing to the W-phase coil (CW) ( SW) at least one sensor,
    At least one of the U-phase sensor (SU), the V-phase sensor (SV), and the W-phase sensor (SW) is used as the phase sensor (SU, SV, SW) of the heteropolar portion (34, 34k). The rotating machine with a signal output function for controlling an internal combustion engine according to claim 17, which is arranged on a rotating track.
  19.  極性の異なるマグネット(32N,32S)を回転方向に交互に配置して構成されたロータ(30)と、
     コイル(CU,CV,CW)が巻き回されたティース部(41)を前記回転方向に複数並べて構成されたステータ(40)と、
     前記ステータ(40)のうち前記マグネット(32N,32S)と対向する位置に取り付けられ、回転する前記マグネット(32N,32S)の極性に応じたモータ制御用信号を出力する位相センサ(SU、SV,SW)と、
    を備え、
     検出された前記モータ制御用信号に基づき前記コイル(CU,CV,CW)への通電タイミングを制御することで回転駆動して、内燃機関の出力軸(14)を回転駆動させる始動モータであって、
     複数の前記マグネット(32N,32S)のうち所定のマグネット(32N,32S)の一部に、当該マグネット(32N,32S)とは異なる極性に着磁された異極磁性部(34)を、前記回転方向の全体に亘って形成し、
     前記ロータ(30)とともに回転する前記異極磁性部(34)の回転軌道上に前記位相センサ(SU、SV,SW)を配置することで、前記位相センサ(SU、SV,SW)が前記異極磁性部(34)を検出した時には、前記出力軸(14)の絶対回転位置を表した内燃機関制御用信号を前記モータ制御用信号の替わりに出力させる、内燃機関制御用信号出力機能付き始動モータ。
     
    A rotor (30) configured by alternately arranging magnets (32N, 32S) having different polarities in the rotation direction;
    A stator (40) configured by arranging a plurality of teeth (41) around which coils (CU, CV, CW) are wound in the rotational direction;
    A phase sensor (SU, SV, which is attached to a position of the stator (40) facing the magnet (32N, 32S) and outputs a motor control signal according to the polarity of the rotating magnet (32N, 32S). SW)
    With
    A starter motor that rotates and drives the output shaft (14) of the internal combustion engine by controlling the energization timing of the coils (CU, CV, CW) based on the detected motor control signal. ,
    Among the plurality of magnets (32N, 32S), a part of a predetermined magnet (32N, 32S) is provided with a heteropolar magnetic part (34) magnetized in a polarity different from that of the magnet (32N, 32S). Formed over the entire rotational direction,
    By disposing the phase sensor (SU, SV, SW) on the rotation path of the heteropolar magnetic part (34) rotating with the rotor (30), the phase sensor (SU, SV, SW) Start with an internal combustion engine control signal output function that outputs an internal combustion engine control signal representing the absolute rotational position of the output shaft (14) instead of the motor control signal when the polar magnetic part (34) is detected motor.
  20.  極性の異なるマグネット(32N,32S)を回転方向に交互に配置して構成されたロータ(30)と、
     コイル(CU,CV,CW)が巻き回されたティース部(41)を前記回転方向に複数並べて構成されたステータ(40)と、
     前記ステータ(40)のうち前記マグネット(32N,32S)と対向する位置に取り付けられ、回転する前記マグネット(32N,32S)の極性に応じたモータ制御用信号を出力する位相センサ(SU、SV,SW)と、
    を備え、
     検出された前記モータ制御用信号に基づき前記コイル(CU,CV,CW)への通電タイミングを制御することで回転駆動して、内燃機関の出力軸(14)を回転駆動させる始動モータであって、
     複数の前記マグネット(32N,32S)のうち所定のマグネット(32N,32S)の一部を、当該マグネット(32N,32S)とは異なる極性に着磁するとともに、当該マグネット(32N,32S)のうちの前記回転方向の全体に亘って着磁して形成された異極磁性部(34)と、
     前記ロータ(30)とともに回転する前記異極磁性部(34)の回転軌道上に配置され、前記異極磁性部(34)を検出することにより、前記出力軸(14)の絶対回転位置を表した内燃機関制御用信号を出力する回転位置センサ(SE)と、
    を備え、
     前記回転位置センサ(SE)に加えて前記位相センサ(SU、SV,SW)も前記回転軌道上に配置することで、前記位相センサ(SU、SV,SW)が前記異極磁性部(34)を検出した時には、前記出力軸(14)の絶対回転位置を表した内燃機関制御用信号を前記モータ制御用信号の替わりに出力させる、内燃機関制御用信号出力機能付き始動モータ。
     
    A rotor (30) configured by alternately arranging magnets (32N, 32S) having different polarities in the rotation direction;
    A stator (40) configured by arranging a plurality of teeth (41) around which coils (CU, CV, CW) are wound in the rotational direction;
    A phase sensor (SU, SV, which is attached to a position of the stator (40) facing the magnet (32N, 32S) and outputs a motor control signal according to the polarity of the rotating magnet (32N, 32S). SW)
    With
    A starter motor that rotates and drives the output shaft (14) of the internal combustion engine by controlling the energization timing of the coils (CU, CV, CW) based on the detected motor control signal. ,
    Among a plurality of the magnets (32N, 32S), a part of a predetermined magnet (32N, 32S) is magnetized to have a polarity different from that of the magnet (32N, 32S), and among the magnets (32N, 32S) Different pole magnetic part (34) formed by being magnetized over the whole of the rotation direction,
    The absolute rotation position of the output shaft (14) is indicated by detecting the different magnetic part (34), which is arranged on the rotation path of the different magnetic part (34) rotating together with the rotor (30). A rotational position sensor (SE) that outputs a signal for controlling the internal combustion engine,
    With
    In addition to the rotational position sensor (SE), the phase sensor (SU, SV, SW) is also arranged on the rotational trajectory, so that the phase sensor (SU, SV, SW) is the heteropolar magnetic part (34). A starter motor with an internal combustion engine control signal output function that outputs an internal combustion engine control signal representing the absolute rotational position of the output shaft (14) instead of the motor control signal when the output shaft (14) is detected.
  21.  極性の異なるマグネット(32N,32S)を回転方向に交互に配置して構成されたロータ(30)と、
     コイル(CU,CV,CW)が巻き回されたティース部(41)を前記回転方向に複数並べて構成されたステータ(40)と、
     前記ステータ(40)のうち前記マグネット(32N,32S)と対向する位置に取り付けられ、回転する前記マグネット(32N,32S)の極性に応じたモータ制御用信号を出力する位相センサ(SU、SV,SW)と、
    を備え、
     検出された前記モータ制御用信号に基づき前記コイル(CU,CV,CW)への通電タイミングを制御することで回転駆動して、内燃機関の出力軸(14)を回転駆動させる始動モータであって、
     複数の前記マグネット(32N,32S)のうち所定のマグネット(32N,32S)の一部に形成され、当該マグネット(32N,32S)とは異なる極性に着磁された異極磁性部(34)と、
     前記ロータ(30)とともに回転する前記異極磁性部(34)の回転軌道上に配置され、前記異極磁性部(34)を検出することにより、前記出力軸(14)の絶対回転位置を表した内燃機関制御用信号を出力する回転位置センサ(SE)と、
    を備え、
     前記異極磁性部(34)は、前記所定のマグネット(32N,32S)のうち前記回転方向の一部に形成されている、内燃機関制御用信号出力機能付き始動モータ。
     
    A rotor (30) configured by alternately arranging magnets (32N, 32S) having different polarities in the rotation direction;
    A stator (40) configured by arranging a plurality of teeth (41) around which coils (CU, CV, CW) are wound in the rotational direction;
    A phase sensor (SU, SV, which is attached to a position of the stator (40) facing the magnet (32N, 32S) and outputs a motor control signal according to the polarity of the rotating magnet (32N, 32S). SW)
    With
    A starter motor that rotates and drives the output shaft (14) of the internal combustion engine by controlling the energization timing of the coils (CU, CV, CW) based on the detected motor control signal. ,
    A heteropolar magnetic part (34) formed in a part of a predetermined magnet (32N, 32S) among the plurality of magnets (32N, 32S) and magnetized with a polarity different from that of the magnet (32N, 32S). ,
    The absolute rotation position of the output shaft (14) is indicated by detecting the different magnetic part (34), which is arranged on the rotation path of the different magnetic part (34) rotating together with the rotor (30). A rotational position sensor (SE) that outputs a signal for controlling the internal combustion engine,
    With
    The heteropolar magnetic part (34) is a starter motor with a signal output function for internal combustion engine control, which is formed in a part of the rotation direction of the predetermined magnets (32N, 32S).
  22.  前記回転方向のうち前記異極磁性部(34)の両側に前記所定のマグネット(32N,32S)の極性が位置するように、前記異極磁性部(34)が形成されている、請求項21に記載の内燃機関制御用信号出力機能付き始動モータ。
     
    The said different polarity magnetic part (34) is formed so that the polarity of the said predetermined magnet (32N, 32S) may be located in the both sides of the said different polarity magnetic part (34) among the said rotation directions. A starter motor with a signal output function for controlling an internal combustion engine as described in 1.
  23.  前記位相センサ(SU、SV,SW)は、前記回転方向において前記回転位置センサ(SE)とは異なる位置に配置されるとともに、前記異極磁性部(34)の回転軌道上に配置されることで、前記位相センサ(SU、SV,SW)が前記異極磁性部(34)を検出した時には、前記出力軸(14)の絶対回転位置を表した内燃機関制御用信号を前記モータ制御用信号の替わりに出力する、請求項21または22に記載の内燃機関制御用信号出力機能付き始動モータ。
     
    The phase sensor (SU, SV, SW) is disposed at a position different from the rotational position sensor (SE) in the rotational direction and is disposed on a rotational trajectory of the heteropolar magnetic portion (34). When the phase sensor (SU, SV, SW) detects the heteropolar magnetic part (34), an internal combustion engine control signal representing the absolute rotational position of the output shaft (14) is used as the motor control signal. The starter motor with a signal output function for controlling an internal combustion engine according to claim 21 or 22, wherein the starter motor outputs the signal instead of the engine.
  24.  U相コイル(CU)、V相コイル(CV)およびW相コイル(CW)を前記コイル(CU,CV,CW)として備えており、
     前記U相コイル(CU)への通電タイミングの制御に用いるU相信号を前記モータ制御用信号として出力するU相センサ(SU)、前記V相コイル(CV)への通電タイミングの制御に用いるV相信号を前記モータ制御用信号として出力するV相センサ(SV)、および前記W相コイル(CW)への通電タイミングの制御に用いるW相信号を前記モータ制御用信号として出力するW相センサ(SW)のうち、少なくとも1つのセンサを備え、
     前記U相センサ(SU)、前記V相センサ(SV)および前記W相センサ(SW)の少なくとも1つを、前記位相センサ(SU、SV,SW)として前記異極磁性部(34)の回転軌道上に配置する、請求項19~23のいずれか1つに記載の内燃機関制御用信号出力機能付き始動モータ。
     
    A U-phase coil (CU), a V-phase coil (CV), and a W-phase coil (CW) are provided as the coils (CU, CV, CW),
    A U-phase sensor (SU) that outputs a U-phase signal used for controlling the energization timing to the U-phase coil (CU) as the motor control signal, and a V that is used to control the energization timing to the V-phase coil (CV). A V-phase sensor (SV) that outputs a phase signal as the motor control signal, and a W-phase sensor (SV) that outputs a W-phase signal used for controlling energization timing to the W-phase coil (CW) ( SW) at least one sensor,
    Rotation of the heteropolar magnetic part (34) using at least one of the U-phase sensor (SU), the V-phase sensor (SV) and the W-phase sensor (SW) as the phase sensor (SU, SV, SW). The starter motor with a signal output function for controlling an internal combustion engine according to any one of claims 19 to 23, which is disposed on a track.
  25.  前記U相コイル(CU)に対する前記モータ制御用信号、前記V相コイル(CV)に対する前記モータ制御用信号、前記W相コイル(CW)に対する前記モータ制御用信号、および前記内燃機関制御用信号の組合せを表した、組合せ情報を生成する組合せ情報生成手段(S20)を備える、請求項24に記載の内燃機関制御用信号出力機能付き始動モータ。
     
    The motor control signal for the U-phase coil (CU), the motor control signal for the V-phase coil (CV), the motor control signal for the W-phase coil (CW), and the internal combustion engine control signal The starter motor with a signal output function for controlling an internal combustion engine according to claim 24, further comprising combination information generation means (S20) for generating combination information representing the combination.
  26.  現時点での前記組合せ情報に基づき、前記絶対回転位置を算出する、請求項25に記載の内燃機関制御用信号出力機能付き始動モータ。
     
    The starter motor with a signal output function for controlling an internal combustion engine according to claim 25, wherein the absolute rotational position is calculated based on the combination information at the present time.
  27.  前記組合せ情報の履歴に基づき、前記絶対回転位置を算出する、請求項25または26に記載の内燃機関制御用信号出力機能付き始動モータ。
     
    27. The starter motor with an internal combustion engine control signal output function according to claim 25 or 26, wherein the absolute rotational position is calculated based on a history of the combination information.
  28.  前記内燃機関の回転を開始してから前記絶対回転位置が算出されるまでの回転駆動期間において、現時点での前記組合せ情報に基づき、次回の前記組合せ情報を特定する特定手段(13)を備え、
     前記回転駆動期間において、前記特定手段(13)による特定結果に基づき、前記位相センサ(SU、SV,SW)に対応する前記コイル(CU,CV,CW)への通電制御内容を決定する、請求項25~27のいずれか1つに記載の内燃機関制御用信号出力機能付き始動モータ。
     
    In a rotational drive period from the start of rotation of the internal combustion engine to the calculation of the absolute rotational position, a specifying means (13) for specifying the next combination information based on the combination information at the present time,
    In the rotational drive period, the energization control content to the coils (CU, CV, CW) corresponding to the phase sensors (SU, SV, SW) is determined based on the identification result by the identification means (13). Item 28. The starter motor with a signal output function for controlling an internal combustion engine according to any one of Items 25 to 27.
  29.  次回の前記組合せ情報を複数の候補から特定できない場合において、前記候補の中から選択した1つが次回の前記組合せ情報であるとみなして、前記位相センサ(SU、SV,SW)に対応する前記コイル(CU,CV,CW)への通電を制御し、
     その結果、所定時間が経過してもセンサ出力が変化しない場合には、前記ロータ(30)が回転していないものとして残りの候補の中から選択した1つが次回の前記組合せ情報であるとみなして、前記位相センサ(SU、SV,SW)に対応する前記コイル(CU,CV,CW)への通電を制御する、請求項25~28のいずれか1つに記載の内燃機関制御用信号出力機能付き始動モータ。
     
    When the next combination information cannot be specified from a plurality of candidates, the coil corresponding to the phase sensor (SU, SV, SW) is assumed that one selected from the candidates is the next combination information. Control the energization to (CU, CV, CW)
    As a result, if the sensor output does not change even after a predetermined time has elapsed, the one selected from the remaining candidates on the assumption that the rotor (30) is not rotating is regarded as the next combination information. The internal combustion engine control signal output according to any one of claims 25 to 28, wherein energization to the coils (CU, CV, CW) corresponding to the phase sensors (SU, SV, SW) is controlled. Start motor with function.
  30.  複数の前記候補の全てについて順番に次回の前記組合せ情報であるとみなして前記制御を実施した結果、正常にモータ駆動できなかった場合には、前記順番とは異なる順番で前記制御を実施する、請求項29に記載の内燃機関制御用信号出力機能付き始動モータ。
     
    As a result of performing the control by considering that it is the next combination information in order for all of the plurality of candidates, if the motor could not be driven normally, the control is performed in an order different from the order. 30. A starter motor with a signal output function for controlling an internal combustion engine according to claim 29.
  31.  前記組合せ情報の更新タイミングに基づき、前記内燃機関の点火時期または燃料噴射を制御する、請求項25~30のいずれか1つに記載の内燃機関制御用信号出力機能付き始動モータ。
     
    The starter motor with a signal output function for internal combustion engine control according to any one of claims 25 to 30, which controls ignition timing or fuel injection of the internal combustion engine based on an update timing of the combination information.
  32.  前記U相センサ(SU)、前記V相センサ(SV)および前記W相センサ(SW)は、複数の前記ティース部(41)の間隙に配置され、
     前記U相センサ(SU)、前記V相センサ(SV)および前記W相センサ(SW)の少なくとも2つが、前記位相センサ(SU、SV,SW)として設定され、
     複数の前記位相センサ(SU、SV,SW)を、前記回転方向に並ぶ複数の前記間隙のうち隣り合う間隙に配置することを禁止して分散配置した、請求項24~31のいずれか1つに記載の内燃機関制御用信号出力機能付き始動モータ。
     
    The U-phase sensor (SU), the V-phase sensor (SV), and the W-phase sensor (SW) are arranged in a gap between the plurality of teeth portions (41),
    At least two of the U-phase sensor (SU), the V-phase sensor (SV), and the W-phase sensor (SW) are set as the phase sensors (SU, SV, SW),
    A plurality of the phase sensors (SU, SV, SW) are distributed and prohibited from being arranged in adjacent gaps among the plurality of gaps arranged in the rotation direction. A starter motor with a signal output function for controlling an internal combustion engine as described in 1.
  33.  前記ロータ(30)とともに回転する前記異極磁性部(34)の回転軌道上に配置され、前記異極磁性部(34)を検出することにより、前記出力軸(14)の絶対回転位置を表した内燃機関制御用信号を出力する回転位置センサ(SE)を備え、
     前記回転位置センサ(SE)および前記位相センサ(SU、SV,SW)は、複数の前記ティース部(41)の間隙に配置され、
     前記回転位置センサ(SE)および前記位相センサ(SU、SV,SW)を、前記回転方向に並ぶ複数の前記間隙のうち隣り合う間隙に配置することを禁止して分散配置した、請求項19~31のいずれか1つに記載の内燃機関制御用信号出力機能付き始動モータ。
     
    The absolute rotation position of the output shaft (14) is indicated by detecting the different magnetic part (34), which is arranged on the rotation path of the different magnetic part (34) rotating together with the rotor (30). A rotational position sensor (SE) that outputs a signal for controlling the internal combustion engine,
    The rotational position sensor (SE) and the phase sensor (SU, SV, SW) are disposed in a gap between the plurality of teeth (41),
    The rotational position sensor (SE) and the phase sensor (SU, SV, SW) are distributed and prohibited from being arranged in adjacent gaps among the plurality of gaps arranged in the rotation direction. 31. A starter motor having a signal output function for controlling an internal combustion engine according to any one of 31.
  34.  前記出力軸(14)はクランク軸(14)であり、
     前記ロータ(30)は、前記クランク軸(14)に固定され、前記クランク軸(14)と同じ回転速度で常時回転する、請求項19~33のいずれか1つに記載の内燃機関制御用信号出力機能付き始動モータ。
     
    The output shaft (14) is a crankshaft (14);
    The internal combustion engine control signal according to any one of claims 19 to 33, wherein the rotor (30) is fixed to the crankshaft (14) and constantly rotates at the same rotational speed as the crankshaft (14). Starter motor with output function.
  35.  前記内燃機関を停止させた時に前記出力軸(14)が停止する可能性の高い前記絶対回転位置を、停止予想位置として予め設定しておき、
     前記停止予想位置を避けて、前記異極磁性部(34)が前記位相センサ(SU、SV,SW)の対向位置から所定量だけ進角した位置となるよう、前記位相センサ(SU、SV,SW)および前記異極磁性部(34)を配置した、請求項19~34のいずれか1つに記載の内燃機関制御用信号出力機能付き始動モータ。
     
    The absolute rotation position where the output shaft (14) is highly likely to stop when the internal combustion engine is stopped is set in advance as a predicted stop position;
    Avoiding the expected stop position, the phase sensor (SU, SV, etc.) is arranged such that the heteropolar magnetic part (34) is advanced by a predetermined amount from the facing position of the phase sensor (SU, SV, SW). The starter motor with a signal output function for controlling an internal combustion engine according to any one of claims 19 to 34, wherein SW and the heteropolar magnetic portion (34) are arranged.
  36.  前記内燃機関を停止させた時に前記出力軸(14)が停止する可能性の高い前記絶対回転位置を、停止予想位置として予め設定しておき、
     前記停止予想位置で停止した状態において、前記異極磁性部(34)が前記位相センサ(SU、SV,SW)の対向位置、或いは前記位相センサ(SU、SV,SW)の対向位置から所定量だけ遅角した位置となるよう、前記位相センサ(SU、SV,SW)および前記異極磁性部(34)を配置した、請求項19~34のいずれか1つに記載の内燃機関制御用信号出力機能付き始動モータ。
     
    The absolute rotation position where the output shaft (14) is highly likely to stop when the internal combustion engine is stopped is set in advance as a predicted stop position;
    In the state of stopping at the expected stop position, the different polarity magnetic part (34) is a predetermined amount from the facing position of the phase sensor (SU, SV, SW) or the facing position of the phase sensor (SU, SV, SW). The internal combustion engine control signal according to any one of claims 19 to 34, wherein the phase sensor (SU, SV, SW) and the heteropolar magnetic part (34) are arranged so as to be at a position that is retarded by a certain amount. Starter motor with output function.
  37.  前記ロータ(30)とともに回転する前記異極磁性部(34)の回転軌道上に配置され、前記異極磁性部(34)を検出することにより、前記出力軸(14)の絶対回転位置を表した内燃機関制御用信号を出力する回転位置センサ(SE)を備え、
     前記内燃機関を停止させた時に前記出力軸(14)が停止する可能性の高い前記絶対回転位置を、停止予想位置として予め設定しておき、
     前記停止予想位置で停止した状態において、前記異極磁性部(34)が前記位相センサ(SU、SV,SW)または前記回転位置センサ(SE)の対向位置、或いは前記位相センサ(SU、SV,SW)または前記回転位置センサ(SE)の対向位置から所定量だけ遅角した位置となるよう、前記異極磁性部(34)を配置した、請求項19~34のいずれか1つに記載の内燃機関制御用信号出力機能付き始動モータ。
     
    The absolute rotation position of the output shaft (14) is indicated by detecting the different magnetic part (34), which is arranged on the rotation path of the different magnetic part (34) rotating together with the rotor (30). A rotational position sensor (SE) that outputs a signal for controlling the internal combustion engine,
    The absolute rotation position where the output shaft (14) is highly likely to stop when the internal combustion engine is stopped is set in advance as a predicted stop position;
    In the state of stopping at the expected stop position, the magnetic pole part (34) is opposed to the phase sensor (SU, SV, SW) or the rotational position sensor (SE), or the phase sensor (SU, SV, SW) or the heteropolar magnetic part (34) is arranged so as to be at a position delayed by a predetermined amount from a position opposed to the rotational position sensor (SE) or the rotational position sensor (SE). Starter motor with signal output function for internal combustion engine control.
PCT/JP2012/003567 2011-06-06 2012-05-31 Rotating machine having function of outputting signal for controlling internal combustion engine, and starting motor having function of outputting signal for controlling internal combustion engine WO2012169156A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280027905.7A CN103597717B (en) 2011-06-06 2012-05-31 There is electric rotating machine and the starter motor of internal combustion engine control signal output function

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011-126081 2011-06-06
JP2011126081 2011-06-06
JP2011-126079 2011-06-06
JP2011126082 2011-06-06
JP2011126080 2011-06-06
JP2011-126080 2011-06-06
JP2011-126082 2011-06-06
JP2011126079 2011-06-06
JP2011228932 2011-10-18
JP2011-228932 2011-10-18
JP2012-109036 2012-05-11
JP2012109036A JP5811945B2 (en) 2011-06-06 2012-05-11 Rotating machine with signal output function for internal combustion engine control, and starter motor with signal output function for internal combustion engine control

Publications (1)

Publication Number Publication Date
WO2012169156A1 true WO2012169156A1 (en) 2012-12-13

Family

ID=47295743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003567 WO2012169156A1 (en) 2011-06-06 2012-05-31 Rotating machine having function of outputting signal for controlling internal combustion engine, and starting motor having function of outputting signal for controlling internal combustion engine

Country Status (3)

Country Link
JP (1) JP5811945B2 (en)
CN (1) CN103597717B (en)
WO (1) WO2012169156A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051011A1 (en) * 2012-09-26 2014-04-03 株式会社ミツバ Electromagnetic rotating device, engine assembly, and engine vehicle
JP2015100221A (en) * 2013-11-20 2015-05-28 株式会社デンソー Starter generator with engine control signal output function
EP3121945A1 (en) * 2015-07-23 2017-01-25 Toyo Denso Kabushiki Kaisha Motor, rotation period detection method thereof, motor rotation period detection sensor assembly, and power generator
JP2018027008A (en) * 2016-07-29 2018-02-15 三星電子株式会社Samsung Electronics Co.,Ltd. motor
CN107834729A (en) * 2017-10-25 2018-03-23 上海渝癸德信息技术服务中心 Starting-generating all-in-one and its control method
WO2020217900A1 (en) * 2019-04-26 2020-10-29 デンソートリム株式会社 Internal combustion engine rotating electric machine and rotor of same
EP3823155A4 (en) * 2018-07-11 2021-12-22 Mitsuba Corporation Drive device for three-phase rotating electric machine and three-phase rotating electric machine unit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015872A (en) * 2013-07-08 2015-01-22 ヤマハ発動機株式会社 Electric rotating machine and saddle-riding type vehicle
JP2015015873A (en) * 2013-07-08 2015-01-22 ヤマハ発動機株式会社 Electric rotating machine and saddle-riding type vehicle
JP6547663B2 (en) 2016-03-11 2019-07-24 株式会社デンソー Control device
KR101846910B1 (en) 2016-11-17 2018-05-28 현대자동차 주식회사 Apparatus and method for starting engine of mild hybrid electric vehicle
DE102017222863A1 (en) * 2017-12-15 2019-06-19 Robert Bosch Gmbh Method and device for determining a rotational angular position of a crankshaft of an internal combustion engine
JP7168787B2 (en) * 2019-07-25 2022-11-09 株式会社デンソートリム Generator motor for internal combustion engine
JP7353930B2 (en) 2019-11-14 2023-10-02 株式会社ミツバ Rotating electrical machine system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101645A (en) * 1990-08-17 1992-04-03 Secoh Giken Inc Electromagnetic vibrator
JPH0522902A (en) * 1991-07-12 1993-01-29 Daikin Ind Ltd Rotational direction detector for motor and air blowing controller for air conditioner
JPH05176512A (en) * 1991-06-11 1993-07-13 Canon Electron Inc Brushless motor
JPH0611357A (en) * 1992-06-26 1994-01-21 Victor Co Of Japan Ltd Phase signal generating device of motor
JPH0698516A (en) * 1991-07-05 1994-04-08 Canon Electron Inc Electromagentic rotating machine
JP2009095163A (en) * 2007-10-10 2009-04-30 Asmo Co Ltd Wiper motor
JP2010200418A (en) * 2009-02-23 2010-09-09 Mitsuba Corp Outer rotor type rotating electric machine
JP2010532154A (en) * 2007-06-27 2010-09-30 ブルックス オートメーション インコーポレイテッド Position feedback for self-bearing motors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3945696B2 (en) * 2002-09-05 2007-07-18 本田技研工業株式会社 Rotation detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101645A (en) * 1990-08-17 1992-04-03 Secoh Giken Inc Electromagnetic vibrator
JPH05176512A (en) * 1991-06-11 1993-07-13 Canon Electron Inc Brushless motor
JPH0698516A (en) * 1991-07-05 1994-04-08 Canon Electron Inc Electromagentic rotating machine
JPH0522902A (en) * 1991-07-12 1993-01-29 Daikin Ind Ltd Rotational direction detector for motor and air blowing controller for air conditioner
JPH0611357A (en) * 1992-06-26 1994-01-21 Victor Co Of Japan Ltd Phase signal generating device of motor
JP2010532154A (en) * 2007-06-27 2010-09-30 ブルックス オートメーション インコーポレイテッド Position feedback for self-bearing motors
JP2009095163A (en) * 2007-10-10 2009-04-30 Asmo Co Ltd Wiper motor
JP2010200418A (en) * 2009-02-23 2010-09-09 Mitsuba Corp Outer rotor type rotating electric machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051011A1 (en) * 2012-09-26 2014-04-03 株式会社ミツバ Electromagnetic rotating device, engine assembly, and engine vehicle
JP2015100221A (en) * 2013-11-20 2015-05-28 株式会社デンソー Starter generator with engine control signal output function
WO2015076344A1 (en) * 2013-11-20 2015-05-28 株式会社デンソー Starter-generator provided with function for outputting signal for engine control
CN105745824A (en) * 2013-11-20 2016-07-06 株式会社电装 Starter-generator provided with function for outputting signal for engine control
EP3121945A1 (en) * 2015-07-23 2017-01-25 Toyo Denso Kabushiki Kaisha Motor, rotation period detection method thereof, motor rotation period detection sensor assembly, and power generator
US10224788B2 (en) 2015-07-23 2019-03-05 Toyo Denso Kabushiki Kaisha Motor, rotation period detection method thereof, motor rotation period detection sensor assembly, and power generator
JP7029243B2 (en) 2016-07-29 2022-03-03 三星電子株式会社 motor
JP2018027008A (en) * 2016-07-29 2018-02-15 三星電子株式会社Samsung Electronics Co.,Ltd. motor
CN107834729A (en) * 2017-10-25 2018-03-23 上海渝癸德信息技术服务中心 Starting-generating all-in-one and its control method
EP3823155A4 (en) * 2018-07-11 2021-12-22 Mitsuba Corporation Drive device for three-phase rotating electric machine and three-phase rotating electric machine unit
JPWO2020217900A1 (en) * 2019-04-26 2021-10-14 株式会社デンソートリム Rotating machine for internal combustion engine and its rotor
WO2020217900A1 (en) * 2019-04-26 2020-10-29 デンソートリム株式会社 Internal combustion engine rotating electric machine and rotor of same
JP7129560B2 (en) 2019-04-26 2022-09-01 株式会社デンソートリム Rotating electric machine for internal combustion engine and its rotor

Also Published As

Publication number Publication date
CN103597717A (en) 2014-02-19
JP2013102667A (en) 2013-05-23
CN103597717B (en) 2016-05-18
JP5811945B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5811945B2 (en) Rotating machine with signal output function for internal combustion engine control, and starter motor with signal output function for internal combustion engine control
EP1233175B1 (en) Starter, start control device, and crank angle detector of internal combustion engine
TWI551776B (en) Engine unit and vehicle
TWI546447B (en) Four-stroke engine unit for use in vehicle and vehicle
TWI528680B (en) Engine unit and vehicle
JP5708347B2 (en) Single cylinder engine stroke discrimination device
EP3051118B1 (en) Engine unit and vehicle
JP2019152146A (en) Engine unit for saddle riding-type vehicle, and saddle riding-type vehicle
TWI663327B (en) Engine unit and straddle type vehicle
JP6019246B2 (en) Engine start control device
JP2018053772A (en) Engine unit and saddle-riding type vehicle
JP2017036666A (en) Engine unit
JP5876188B1 (en) Engine system and saddle riding type vehicle
JP2015117677A (en) Engine unit and vehicle
WO2016125456A1 (en) Motor control apparatus
JP7353930B2 (en) Rotating electrical machine system
WO2021015183A1 (en) Power generator motor for internal combustion engine
JP2017036665A (en) Engine unit
JP2018053773A (en) Saddle-riding type vehicle
JP2021179203A (en) Engine start control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797507

Country of ref document: EP

Kind code of ref document: A1