WO2016125456A1 - Motor control apparatus - Google Patents

Motor control apparatus Download PDF

Info

Publication number
WO2016125456A1
WO2016125456A1 PCT/JP2016/000389 JP2016000389W WO2016125456A1 WO 2016125456 A1 WO2016125456 A1 WO 2016125456A1 JP 2016000389 W JP2016000389 W JP 2016000389W WO 2016125456 A1 WO2016125456 A1 WO 2016125456A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
signal
rotation
stator coil
control unit
Prior art date
Application number
PCT/JP2016/000389
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 正健
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016125456A1 publication Critical patent/WO2016125456A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting

Definitions

  • the present disclosure relates to a motor control device that adjusts the phase of a camshaft with respect to a crankshaft by controlling driving of a motor mechanically coupled to each of the crankshaft and camshaft via a valve timing conversion unit. .
  • a valve timing adjusting device that adjusts the valve timing of an intake valve.
  • This valve timing adjusting device has a rotor portion to which a motor shaft is fixed, an electric motor having a stator coil provided around the rotor portion, and a plurality of switching elements connected to the stator coil.
  • the valve timing adjusting device includes an energization driving means for switching a switching element (selection element) to be turned on for each rotation angle range of the motor shaft, and a crankshaft and a camshaft according to the operating state of the internal combustion engine and the rotation state of the motor shaft.
  • a phase adjustment mechanism for adjusting the relative phase.
  • the energization driving means of the valve timing adjusting device described in Patent Document 1 is such that when the target rotation direction of the motor shaft matches the actual rotation direction, for example, the rotation angle of the motor shaft is 30 ° mechanical angle (120 ° electrical angle). ) Is set to an on range in which the selection element is continuously turned on.
  • the energization driving unit divides and sets the rotation angle range into an on range and an off range in which the selection element is continuously turned off.
  • a voltage is applied to the stator coil in the on range, but no voltage is applied in the off range. For this reason, the time required for the current corresponding to the sum of the applied voltage and the induced voltage to flow through the selection element is shortened, and excessive heat generation of the selection element is suppressed.
  • an electric motor (motor) is mechanically connected to a crankshaft via a phase adjustment mechanism. Therefore, when the internal combustion engine is driven to burn and the crankshaft rotates, the motor shaft of the motor also rotates regardless of the generation of control torque (rotational torque) due to energization of the stator coil. Even when the crankshaft is inertially rotated by stopping the internal combustion engine, the motor shaft rotates in the same direction as the crankshaft while reducing its rotational speed. However, the rotor portion fixed to the motor shaft has a permanent magnet.
  • the energization driving means determines that the target rotation direction and the actual rotation direction are different, and ends the operation.
  • the energization driving unit divides and sets the rotation angle range into the on range and the off range. Therefore, when the rotation angle at the time when the motor is stopped is included in the ON range, the rotational torque can be generated on the motor shaft of the motor by the energization driving means at the time of restart. Therefore, by rotating the motor shaft, the phase of the cam shaft relative to the crankshaft can be adjusted to a phase suitable for restarting the internal combustion engine with the amount of compressed air in the combustion chamber constituted by the cylinder and the piston.
  • An object of the present disclosure is to provide a motor control device capable of suppressing excessive heat generation of a switching element and generating rotational torque to the motor at the time of restart regardless of the rotational angle at the time when the motor is stopped.
  • the motor control device controls the drive of a motor mechanically connected to each of the crankshaft and the camshaft via a valve timing conversion unit, so that the camshaft with respect to the crankshaft Adjust the phase.
  • the motor includes an output shaft connected to the valve timing conversion unit, a rotor to which the output shaft is fixed, and a stator provided around the rotor, and the rotor includes a permanent magnet.
  • the stator includes a stator coil.
  • the motor control device generates a magnetic flux by causing a current to flow through the stator coil, and causes the rotor to generate a rotational torque that promotes or prevents the rotation of the output shaft by causing the magnetic flux to act on the permanent magnet.
  • a rotation angle detector that outputs a rotation signal that depends on the rotation angle of the motor and the rotation direction of the motor, and a plurality of switching elements that constitute the inverter based on the rotation signal.
  • a motor control unit that controls connection between the stator coil and each of a positive terminal and a negative terminal of a power source to control a current flowing in the stator coil, and controls generation of the rotational torque; and And an instruction unit for instructing the increase / decrease direction.
  • the motor control unit is in a normal mode when the increase / decrease direction of the rotational torque instructed by the instruction unit is a direction for promoting the rotation of the motor, and the increase / decrease direction of the rotational torque prevents the motor from rotating.
  • the motor control unit may be configured such that when M is a natural number of 1 or more and N is a natural number of 2 or more, the stator coil is connected to the positive terminal and the negative terminal of the power source regardless of the rotation angle of the motor in the normal mode.
  • the stator coil is connected to the plus terminal while the stator coil is intermittently connected to the plus terminal M times while the motor rotates by a predetermined rotation angle range in the power generation mode.
  • the stator coil is intermittently connected N times to the negative terminal.
  • the motor controller in the power generation mode, is energized by intermittently connecting the stator coil to the power source while the motor rotates within a predetermined rotation angle range. . According to this, even if the motor reversely rotates momentarily due to the brake torque, and the motor control unit is temporarily switched from the normal mode to the power generation mode, the rotational torque can be generated at the time of restart. Thereby, the cam phase can be adjusted to a phase suitable for restarting the internal combustion engine. In addition, it is possible to suppress an excessive current from flowing through the plurality of switching elements. As a result, excessive heat generation of the plurality of switching elements is suppressed.
  • the motor control device controls the drive of a motor mechanically connected to each of the crankshaft and the camshaft via a valve timing conversion unit, so that the camshaft with respect to the crankshaft Adjust the phase.
  • the motor includes an output shaft connected to the valve timing conversion unit, a rotor to which the output shaft is fixed, and a stator provided around the rotor, and the rotor includes a permanent magnet.
  • the stator includes a stator coil.
  • the motor control device generates a magnetic flux by causing a current to flow through the stator coil, and causes the rotor to generate a rotational torque that promotes or prevents the rotation of the output shaft by causing the magnetic flux to act on the permanent magnet.
  • a rotation angle detector that outputs a rotation signal that depends on the rotation angle of the motor and the rotation direction of the motor, and a plurality of switching elements that constitute the inverter based on the rotation signal.
  • a motor control unit that controls connection between the stator coil and each of a positive terminal and a negative terminal of a power source to control a current flowing in the stator coil, and controls generation of the rotational torque; and And an instruction unit for instructing the increase / decrease direction.
  • the motor control unit is in a normal mode when the increase / decrease direction of the rotational torque instructed by the instruction unit is a direction for promoting the rotation of the motor, and the increase / decrease direction of the rotational torque prevents the motor from rotating.
  • the motor control unit connects the stator coil to each of the plus terminal and the minus terminal regardless of the rotation angle of the motor in the normal mode, where N is a natural number of 2 or more, and in the power generation mode. After connecting the stator coil to the minus terminal intermittently N times while the motor rotates by a predetermined rotation angle range while connecting the stator coil to the plus terminal regardless of the rotation angle of the motor.
  • the stator coil and the minus terminal are continuously disconnected from each other for at least one time corresponding to the time when the minus terminal is intermittently connected N times.
  • the motor control device has the same effects as the first aspect of the present disclosure.
  • FIG. 1 is a block diagram illustrating a schematic configuration of the motor control device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the motor
  • FIG. 3 is a cross-sectional view for explaining the arrangement of the rotation angle sensor.
  • FIG. 4 is a circuit diagram showing a schematic configuration of the inverter and the stator coil.
  • FIG. 5 is a timing chart showing the relationship between the sensor signal and the control signal.
  • FIG. 6 is a chart showing the relationship between the sensor signal and the rotation angle.
  • FIG. 7 is a chart showing the relationship between the rotation angle and the control signal in normal control.
  • FIG. 1 is a block diagram illustrating a schematic configuration of the motor control device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the motor
  • FIG. 3 is a cross-sectional view for explaining the arrangement of the rotation angle sensor.
  • FIG. 4 is a circuit diagram showing a schematic configuration of the inverter and
  • FIG. 8 is a schematic diagram showing current flowing through the inverter and the stator coil in normal control.
  • FIG. 9 is a chart showing the relationship between the rotation angle and the control signal in power generation control.
  • FIG. 10 is a timing chart showing control signals input to the upper and lower switches to be controlled in the power generation control.
  • FIG. 11 is a schematic diagram showing a current flowing through the inverter and the stator coil in the power generation control.
  • FIG. 12 is a graph schematically showing the brake torque
  • FIG. 13 is a cross-sectional view of the motor showing the positional relationship between the rotation angle sensor and the stator coil
  • FIG. 14 is a chart showing the positional relationship between the rotation angle sensor and the permanent magnet with respect to the rotation angle of the rotor, FIG.
  • FIG. 15 is a timing chart for explaining that it becomes impossible to restart as a result of mode switching by brake torque.
  • FIG. 16 is a timing chart for explaining that restarting is possible even when mode switching by brake torque is performed.
  • FIG. 17 is a block diagram showing a schematic configuration of the pre-driver,
  • FIG. 18 is a timing chart for explaining the PWM drive signal.
  • FIG. 19 is a flowchart showing the determination process of the control determination unit,
  • FIG. 20 is a timing chart for explaining the count number and the switch-off signal.
  • FIG. 21 is a flowchart for explaining signal processing of the power generation control unit.
  • FIG. 22 is a timing chart for explaining a modified example of the power generation control, and
  • FIG. 23 is a timing chart for explaining a modified example of the power generation control.
  • FIG. 1 illustrates a motor 200, an internal combustion engine 300, a valve timing conversion unit 310, a cam angle sensor 340, and a crank angle sensor 350.
  • 2, 3, 13, and 14 an electrical angle, which will be described later, is shown in parentheses, and the rotation angle sensor 60 is hatched.
  • reference numerals are omitted to avoid complication, and one N pole of a permanent magnet 212 described later is hatched to clarify the rotation state.
  • a part of the control signal is hatched.
  • the motor control device 100 controls the phase difference between the camshaft 320 and the crankshaft 330 of the internal combustion engine 300 (hereinafter referred to as cam phase) by controlling the rotation of the motor 200.
  • cam phase the phase difference between the camshaft 320 and the crankshaft 330 of the internal combustion engine 300
  • the motor control device 100 is electrically connected to the motor 200 via three stator wires 97 to 99, and the motor 200 is mechanically connected to the internal combustion engine 300 via a valve timing conversion unit 310. ing.
  • the motor 200, the valve timing conversion unit 310, and the internal combustion engine 300 will be described first, and then the motor control device 100 will be described in detail.
  • the motor 200 includes a rotor 210 fixed to the output shaft, and a stator 220 provided around the rotor 210.
  • the rotor 210 has a cylindrical iron core 211 and a permanent magnet 212 embedded in the iron core 211.
  • the N poles and S poles of the permanent magnet 212 are embedded at equal intervals around the axis of the iron core 211 so that the N poles and S poles are alternately adjacent to each other, and the adjacent interval between the adjacent N poles and S poles is 45 °. It has become.
  • the magnetic flux generated by the plurality of permanent magnets 212 periodically changes every time the rotor 210 rotates 90 °, and the electrical angle is 360 ° with respect to the mechanical angle of 90 °.
  • a magnetic flux generated from the permanent magnet 212 is detected by a rotation angle sensor 60 described later.
  • the stator 220 includes a cylindrical case 221, salient poles 222 provided on the inner peripheral surface of the case 221, and a stator coil 223 wound around the salient poles 222. Twelve salient poles 222 are provided at equal intervals on the inner peripheral surface of the case 221, and the shortest adjacent interval between the two salient poles 222 is 30 ° around the axis of the rotor 210.
  • the stator coil 223 includes a U-phase stator coil 224, a V-phase stator coil 225, and a W-phase stator coil 226.
  • the U-phase stator coil 224, the V-phase stator coil 225, and the W-phase stator coil 226 are wound around the 12 salient poles 222 so as to be adjacent to each other in order, and each of the four salient poles has an adjacent interval of 90 ° It is wound around 222.
  • the three stator coils 224 to 226 are Y-connected as shown in FIG. 4, and are connected to the midpoints of the two switches of the corresponding inverter 33, respectively. As will be described in detail later, for example, when the switches 34 and 37 shown in FIG. 4 are turned on, the stator coils 224 and 225 are connected to the positive terminal and the negative terminal of the power source, and current flows through the stator coils 224 and 225.
  • Magnetic flux is generated from the stator coils 224 and 225 by this current flow, and this magnetic flux acts on the permanent magnet 212 of the rotor 210 to generate rotational torque in the rotor 210.
  • the output shaft of the motor 200 rotates independently.
  • the output shaft of the motor 200 described above is connected to the camshaft 320 via the valve timing conversion unit 310.
  • the valve timing conversion unit 310 is connected to the crankshaft 330 via a chain.
  • the crankshaft 330 starts to rotate by driving the internal combustion engine 300
  • the camshaft 320 and the output shaft of the motor 200 together with the valve timing conversion unit 310 also start to rotate.
  • This rotation causes the cam lobe provided on the cam journal of the camshaft 320 to rotate.
  • the intake valve and the exhaust valve move up and down with respect to the combustion chamber by the rotation of the cam lobe, the intake valve intakes the combustion chamber, and the exhaust valve exhausts the combustion chamber.
  • the cam lobe of the camshaft 320 corresponding to the intake valve or the exhaust valve rotates once when the crankshaft 330 rotates twice.
  • the phases of the intake valve and the exhaust valve are shifted by approximately 180 ° when converted by the rotation angle of the camshaft 320. This phase difference can be adjusted by controlling the cam phase described above by the motor control device 100, the motor 200, and the valve timing conversion unit 310.
  • the valve timing converter 310 transmits the rotational torque of the crankshaft 330 transmitted through the above-described chain to the camshaft 320, and the planetary gear that rotates the camshaft 320 relative to the crankshaft 330. It has a mechanism.
  • the valve timing conversion unit 310 includes an annular ring gear to which the above-described chain is connected, and a disk-shaped pinion gear and a valve gear provided in the ring gear.
  • the ring gear is connected to the crankshaft 330 via a chain, and the valve gear is connected to the camshaft 320.
  • the pinion gear is connected to the output shaft of the motor 200.
  • Teeth are formed on the inner surface of the ring gear, and teeth are formed on the outer surfaces of the pinion gear and the valve gear.
  • the teeth of the inner surface of the ring gear and the teeth of the pinion gear mesh with each other, and the teeth of the pinion gear and the teeth of the valve gear mesh with each other. Therefore, when the crankshaft 330 rotates, the rotational torque is transmitted to the ring gear through the chain, and thereby the ring gear rotates. Then, the pinion gear revolves around the valve gear, thereby rotating the valve gear. As a result, the camshaft 320 rotates together with the crankshaft 330.
  • the motor control device 100 When maintaining the phase difference (or cam phase) between the camshaft 320 and the crankshaft 330, the motor control device 100 causes the valve gear and the ring gear to revolve around the valve gear without causing the motor 200 to rotate the pinion gear. Rotate at the same speed. However, when the cam phase is advanced or retarded, the motor control device 100 revolves around the valve gear while rotating the pinion gear by the motor 200, thereby rotating the valve gear relative to the ring gear. When the output shaft of the motor 200 revolves faster than the crankshaft 330, the cam phase is advanced, and when the output shaft revolves later than the crankshaft 330, the cam phase is retarded.
  • the motor 200 is provided with a rotation angle sensor 60
  • the internal combustion engine 300 is provided with a cam angle sensor 340 and a crank angle sensor 350.
  • a detection signal indicating the rotation state of the motor 200 is detected by the rotation angle sensor 60
  • the rotation angle of the camshaft 320 and the rotation angle of the crankshaft 330 are detected by the cam angle sensor 340 and the crank angle sensor 350.
  • the motor control device 100 calculates the rotation angle of the motor 200 based on the detection signal, and calculates the rotation speed of the internal combustion engine 300 based on the rotation angle of the camshaft 320 and the rotation angle of the crankshaft 330.
  • the motor control device 100 controls the motor 200 based on the calculated rotation speed of the internal combustion engine 300 and the rotation angle of the motor 200. By doing so, the motor control device 100 performs cam phase control.
  • the target phase described above must be calculated.
  • the target phase is determined based on various sensor signals indicating the running state of the vehicle, such as an accelerator opening sensor that indicates the accelerator depression amount of the user and an air flow meter that measures the intake air amount of the internal combustion engine 300. It is calculated by.
  • the motor control device 100 will be described in detail.
  • the motor control device 100 includes an electronic control device 10, a driver 20, and a rotation angle sensor 60.
  • the electronic control device 10 outputs an instruction signal including the target rotation speed (or rotation speed) of the motor 200 to the driver 20, and the driver 20 performs a motor operation based on the instruction signal and the detection signal of the rotation angle sensor 60. 200 is controlled.
  • the rotation angle sensor 60 generates a detection signal corresponding to the rotation of the motor 200 and outputs the detection signal to the driver 20.
  • the electronic control unit 10 and the driver 20 are electrically connected via four signal lines 90 to 93, and the driver 20 and the rotation angle sensor 60 are electrically connected via three sensor lines 94 to 96. Yes.
  • the electronic control unit 10 sets the target number of rotations of the motor 200 based on the various sensor signals indicating the traveling state of the vehicle, the number of rotations of the internal combustion engine 300, and the rotation angle signal and the rotation direction signal output from the driver 20. Is to determine.
  • the electronic control unit 10 calculates a cam phase as a target that matches the traveling state of the vehicle based on the various sensor signals.
  • the electronic control unit 10 calculates the rotation speed of the motor 200 for setting the target cam phase, and outputs an instruction signal including this rotation speed to the driver 20.
  • the electronic control unit 10 always sets the number of revolutions included in the instruction signal to a finite value, and when the internal combustion engine 300 stops combustion driving, instructs the driver 20 to stop generating the rotational torque together with the finite number of revolutions. Is included in the instruction signal.
  • the driver 20 includes a motor control unit 30, a sensor signal processing unit 40, and a state determination unit 50.
  • the motor control unit 30 controls the rotation of the motor 200 based on the instruction signal input from the electronic control device 10, the rotation angle signal input from the sensor signal processing unit 40, and the sensor signal.
  • the motor control unit 30 rotates the rotor 210 by flowing a rotation current for rotating the output shaft of the motor 200 through the three-phase stator coils 224 to 226 of the motor 200.
  • the sensor signal processing unit 40 generates a digital sensor signal, a rotation angle signal, and a rotation direction signal based on an analog detection signal input from the rotation angle sensor 60.
  • the state determination unit 50 generates a state determination signal described later.
  • the state determination unit 50 receives the sensor signal, the rotation angle signal, the rotation direction signal, the instruction signal, and the rotation current.
  • the motor control device 100 includes a current sensor for detecting the rotation current, and a detection signal of the current sensor is input to the state determination unit 50.
  • the motor control unit 30 causes the rotation current to flow so that the rotation speed of the output shaft matches the rotation speed included in the instruction signal. As a result, the motor control unit 30 advances, retards, or maintains the cam phase.
  • the motor control unit 30 does not flow the rotation current through the three-phase stator coils 224 to 226. In this case, the output shaft of the motor 200 is driven by the crankshaft 330 and the camshaft 320 to rotate.
  • the planetary gear mechanism has a stopper for stopping the cam phase at the slowest most retarded angle and the most advanced advance angle. As described above, when the output shaft of the motor 200 rotates with the crankshaft 330, the cam phase becomes the most retarded angle.
  • the motor control unit 30 includes a rotation control processing unit 31, a pre-driver 32, and an inverter 33.
  • the rotation control processing unit 31 determines the increase / decrease direction of the rotational torque based on the target rotation speed (target rotation speed) included in the instruction signal and the current rotation speed (current rotation speed) detected from the rotation angle signal described later. calculate.
  • the rotational control processing unit 31 determines to increase the rotational torque in the direction in which the rotation of the motor 200 is promoted.
  • the rotation control processing unit 31 determines to decrease the rotation torque in the increasing / decreasing direction so that the rotation of the motor 200 is prevented.
  • the rotation control processing unit 31 is based on the target number of rotations and the current number of rotations, and the time during which each of the lower switches 35, 37, and 39 to be described later is turned on while the motor 200 rotates 60 degrees in electrical angle (or Duty ratio) is also calculated.
  • the rotation control processing unit 31 outputs control information including the increase / decrease direction of the rotational torque and the duty ratio to the pre-driver 32.
  • the rotation control processing unit 31 corresponds to an instruction unit.
  • the pre-driver 32 controls the inverter 33 based on the control information input from the rotation control processing unit 31 and the rotation angle signal and sensor signal input from the sensor signal processing unit 40.
  • the pre-driver 32 detects the current rotation direction (or actual rotation direction) of the rotor 210 based on a sensor signal described later, and the actual rotation direction and the increase / decrease direction (or torque direction) of the rotation torque included in the control information. And compare.
  • the pre-driver 32 is in the normal mode when both the actual rotation direction and the torque direction are coincident (in the direction of promoting rotation), and is in the power generation mode when they are different (or in the direction of preventing rotation). .
  • the pre-driver 32 promotes the rotation of the output shaft and increases the rotation speed by controlling the drive of the inverter 33 so that a rotational torque along the rotation direction of the output shaft is generated in the normal mode. Further, the pre-driver 32 controls the drive of the inverter 33 so as to generate a rotation torque opposite to the rotation direction of the output shaft in the power generation mode, thereby preventing the rotation of the output shaft and slowing down the rotation speed.
  • the pre-driver 32 controls the acceleration and deceleration of the rotational speed of the output shaft by the duty ratio included in the control information.
  • the configuration of the pre-driver 32 and the control (normal control and power generation control) of the inverter 33 in the normal mode and the power generation mode will be described in detail later.
  • the rotation direction detection by the pre-driver 32 is performed based on FIG. 6 in the same manner as the sensor signal processing unit 40 as described later.
  • the pre-driver 32 stores the relationship between the sensor signal and the rotation direction shown in FIG.
  • the rotation control processing unit 31 since the instruction signal always includes a finite number of rotations, the rotation control processing unit 31 always outputs the torque direction to the pre-driver 32. Therefore, the pre-driver 32 is always in the normal mode or the power generation mode.
  • the direction of the torque coincides with the direction in which the rotor 210 rotates inertially with the crankshaft 330. Therefore, in this case, the pre-driver 32 is in the normal mode.
  • the pre-driver 32 corresponds to a motor control unit.
  • the inverter 33 has switches 34 to 39 corresponding to the stator coils 224 to 226, respectively.
  • each of the switches 34 to 39 is an N-channel MOSFET and corresponds to a switching element.
  • the U-phase switches 34 and 35, the V-phase switches 36 and 37, and the W-phase switches 38 and 39 are connected in series from the plus terminal to the minus terminal of the power source, and the two switches that form these pairs are connected in parallel. Yes.
  • One end of the U-phase stator coil 224 is connected to the midpoint of the U-phase switches 34 and 35, and one end of the V-phase stator coil 225 is connected to the midpoint of the V-phase switches 36 and 37.
  • One end of a W-phase stator coil 226 is connected to the midpoint.
  • the other ends of the stator coils 224 to 226 are connected to each other, and the stator coils 224 to 226 are Y-connected.
  • the sensor signal processing unit 40 binarizes the detection signal corresponding to the rotation angle of the output shaft output from the rotation angle sensor 60 to generate a digital sensor signal, and based on this sensor signal, the rotation angle signal and A rotation direction signal is generated.
  • the rotation angle sensor 60 has three Hall elements 61 to 63 as sensor elements, and these three Hall elements 61 to 63 are located above the permanent magnet 212 of the rotor 210.
  • the magnetic flux generated by the permanent magnet 212 changes periodically every time the rotor 210 rotates 90 ° in mechanical angle (360 ° in electrical angle). Therefore, when the rotor 210 rotates 90 ° in mechanical angle, the direction of the magnetic flux passing through each of the three Hall elements 61 to 63 is reversed.
  • the three Hall elements 61 to 63 are provided around the axis of the rotor 210 at a mechanical angle of 30 °.
  • the magnetic flux of the permanent magnet 212 that passes through the three Hall elements 61 to 63 is shifted by 120 ° in terms of electrical angle, and the phases of the detection signals output from the three Hall elements 61 to 63 are also shifted by 120 °.
  • the three detection signals are binarized by the sensor signal processing unit 40, and the pulsed U-phase sensor signal, V-phase sensor signal, and W-phase sensor signal shown in FIG. 5 are generated.
  • the sensor signal corresponds to a rotation signal
  • the sensor signal processing unit 40 and the rotation angle sensor 60 constitute a rotation angle detection unit.
  • the above three sensor signals have the same waveform, and when the rotor 210 rotates 180 °, the voltage level changes from the Hi level to the Lo level, or from the Lo level to the Hi level.
  • the three sensor signals are out of phase with each other by 120 °.
  • the voltage level of any one of the U-phase sensor signal, the V-phase sensor signal, and the W-phase sensor signal changes every time the rotation angle of the rotor 210 advances by 60 °.
  • the rotation angle signal described above is a pulse signal in which the voltage level changes for a predetermined time and returns to the original every time at least one of the three sensor signals changes.
  • the voltage level of the rotation angle signal changes from the Hi level to the Lo level every time the voltage level of the sensor signal changes from the Hi level to the Lo level, or from the Lo level to the Hi level. Then, after a predetermined time, the voltage level returns from the Lo level to the Hi level.
  • the pulse included in the rotation angle signal falls every time the output shaft rotates 60 °. Therefore, by detecting the falling edge of the pulse of the rotation angle signal, it is possible to detect that the motor 200 has rotated 60 °. For this reason, the rotation speed (or rotation speed) of the motor 200 can be detected by detecting the number of pulses (the number of falling edges) of the rotation angle signal per unit time.
  • the above rotation direction signal is a pulse signal whose voltage level is fixed at the Hi level or the Lo level according to the voltage level change pattern of the three sensor signals.
  • the sensor signal processing unit 40 In order to determine the voltage level of the rotation direction signal, the sensor signal processing unit 40 must detect the rotation direction of the motor 200. The rotation direction of the motor 200 is detected based on the chart shown in FIG.
  • the sensor signal processing unit 40 stores a correspondence relationship between the change patterns of the three sensor signals with respect to the rotation angle of the motor 200 shown in FIG. As shown in FIGS. 5 and 6, the sensor signal processing unit 40 determines how the voltage levels of the three sensor signals have changed in the process in which the time advances from t1 to t7 (process in which the time advances from period T1 to T6). judge. For example, as shown in FIG.
  • the sensor signal processing unit 40 determines the voltage level of the rotation direction signal based on the determination result.
  • the state determination unit 50 generates a state determination signal whose duty ratio changes according to the rotation state of the motor 200.
  • the state determination unit 50 according to the present embodiment generates a state determination signal having a first duty ratio when the voltage levels of the three sensor signals are changing. In contrast, when the voltage level of each of the three sensor signals becomes constant, the state determination unit 50 generates a state determination signal having a second duty ratio different from the first duty ratio.
  • the first duty ratio is 80% and the second duty ratio is 90%.
  • the first duty ratio indicates that the motor 200 is in a rotating state
  • the second duty ratio indicates that the motor 200 is in a stopped state.
  • This state determination signal is input to the electronic control device 10. Based on the duty ratio of the state determination signal, the electronic control unit 10 determines whether the motor 200 is in a rotating state or a stopped state.
  • the state determination unit 50 performs another determination in addition to the rotation state of the motor 200. That is, the state determination unit 50 also determines the state of the sensor signal, the state of the motor control unit 30, and the state of the instruction signal line 90. For example, the voltage level of the W-phase sensor signal may be constant even though the voltage levels of the U-phase sensor signal and the V-phase sensor signal have changed. In this case, the state determination unit 50 causes a power fault or a ground fault in the third Hall element 63 that generates the W-phase sensor signal, or in the third sensor line 96 that connects the third Hall element 63 and the sensor signal processing unit 40. And a state determination signal having a third duty ratio (for example, 40%) is generated.
  • a third duty ratio for example, 40%
  • the state determination unit 50 causes an abnormality in the motor control unit 30.
  • the state determination unit 50 generates a state determination signal having a fourth duty ratio (for example, 60%).
  • the state determination unit 50 determines that a power fault or a ground fault has occurred in the instruction signal line 90, and a fifth duty ratio (for example, 100%) The state determination signal is generated.
  • the electronic control unit 10 determines not only the rotation state of the motor 200 but also the state of the sensor signal, the state of the motor control unit 30, and the state of the instruction signal line 90.
  • the pre-driver 32 makes the direction in which the rotor 210 rotates (or the actual rotation direction) the same as the direction of the rotational torque generated in the rotor 210 by the inverter 33 (torque direction).
  • the U-phase upper switch 34 connected to the positive terminal side of the power supply is in the ON state, and at 120 ° -240 °
  • the upper phase switch 36 is turned on.
  • the W-phase upper switch 38 is turned on at 240 ° -360 °.
  • the V-phase lower switch 37 connected to the negative terminal side of the power source is intermittently turned on when the rotation angle of the rotor 210 is 300 ° -60 °, and W
  • the phase lower stage switch 39 is intermittently turned on.
  • the U-phase lower switch 35 is intermittently turned on at 180 ° -300 °.
  • the pre-driver 32 sequentially turns on the upper switches 34, 36, 38 connected to the positive terminal side of the power source while the motor 200 rotates 360 °, and the lower switch connected to the negative terminal side of the power source. 35, 37, and 39 are sequentially turned on sequentially.
  • stator coils 224 to 226 are connected in series to the positive terminal and the negative terminal of the power source, and a rotating current flows through the stator coil.
  • rotational torque is generated in the rotor 210, and the output shaft of the motor 200 rotates.
  • the stator coils 224 and 225 are connected in series to the positive terminal and the negative terminal of the power source via the switches 34 and 37. Accordingly, a current based on the power supply voltage flows from the positive terminal to the negative terminal of the power supply as shown by the solid line arrow in FIG. At this time, since the actual rotation direction and the torque direction of the motor 200 are the same, a counter electromotive force in the direction opposite to the power supply voltage is generated in the stator coils 224 and 225.
  • the pre-driver 32 makes the actual rotation direction and the torque direction of the rotor 210 different in the power generation control.
  • the upper switches 34, 36, 38 connected to the positive terminal side of the power supply are turned on intermittently. More specifically, if N is a natural number of 2 or more, the upper switches 34 and 36 to be controlled are controlled every time the lower switches 37 and 39 to be controlled are intermittently turned on N times as shown in FIG. The state is changed from the on state to the off state or from the off state to the on state.
  • N is 3, and the pre-driver 32 changes the voltage level of the control signal input to the upper switch to be controlled from the Hi level to the Lo level each time three pulses are input to the lower switch to be controlled. Change from Lo level to Hi level.
  • the upper switch that is not controlled is in an off state, and the upper switch that is to be controlled is intermittently changed to an on state while the motor 200 rotates 120 °.
  • the number M of times the upper switch to be controlled is intermittently turned on while the motor 200 rotates 120 ° is determined by the number of rotations of the motor 200. For example, in FIG.
  • the U-phase upper end switch 34 to be controlled is intermittently turned on three times. It has become.
  • the upper switch to be controlled may be turned on once while the motor 200 rotates 120 °. In this case, the upper switch to be controlled is once in the on state and in the off state. Therefore, the number M of times the upper switch to be controlled is intermittently turned on is 1 or more.
  • the rotating current based on the power supply voltage does not flow through the stator coils 224 to 226, and the rotating torque based on the rotating current is not generated in the rotor 210.
  • the upper switch to be controlled is intermittently turned on, but always turned on.
  • the lower switch to be controlled is turned on N times intermittently. Therefore, a rotating current based on the power supply voltage flows in the stator coils 224 to 226, and a rotating torque based on the rotating current is generated in the rotor 210.
  • stator coils 224 to 226 The reason why no current flows through the stator coils 224 to 226 as described above is as follows. For example, when the rotation angle of the motor 200 is 0 ° -60 ° and the switches 34 and 37 are turned on, the stator coils 224 and 225 are connected in series to the positive terminal and the negative terminal of the power source via the switches 34 and 37. . Therefore, a current based on the power supply voltage flows from the positive terminal to the negative terminal of the power supply as shown by the solid arrow in FIG. At this time, since the actual rotation direction of the motor 200 is different from the torque direction, a counter electromotive force is generated in the U-phase stator coil 224 in the same direction as the power supply voltage.
  • the upper switch to be controlled is intermittently turned on, and a time during which no current flows is provided in each of the upper switches 34, 36, and 38. Thereby, excessive heat generation of the upper switches 34, 36, 38 is suppressed.
  • the rotor 210 has a plurality of permanent magnets 212, and a stator coil 223 wound around the salient pole 222 is provided around the permanent magnets 212.
  • the stator coil 2223 When no rotating current flows through the stator coil 223, no rotating torque is generated in the rotor 210 due to the rotating current.
  • a magnetic force is generated between the permanent magnet 212 and the stator coil 223 described above, and this acts on the rotor 210 as a brake torque that prevents the rotation of the rotor 210.
  • the brake torque generated due to the permanent magnet 212 varies as shown in FIG.
  • the brake torque becomes zero when the stator coil 223 (the salient pole 222) and the N pole or S pole of the permanent magnet 212 face each other.
  • a brake torque is generated that prevents the rotation.
  • torque that promotes rotation of the rotor 210 is also generated due to the magnetic force.
  • this torque is mainly discussed in the present embodiment.
  • the third Hall element 63 located in the middle of the three Hall elements 61 to 63 deviates by 7.5 ° in mechanical angle (30 ° in electrical angle) from the salient pole 222 closest to itself.
  • the first Hall element 61 is located between the N pole and the S pole in a state where the four N poles of the permanent magnet 212 are opposed to the salient pole 222.
  • the output level of the 1 hall element 61 changes from the Hi level to the Lo level, or from the Lo level to the Hi level.
  • the N pole or S pole of the permanent magnet 212 faces the salient pole 222, and the brake torque Becomes zero.
  • the output level of one of the three Hall elements 61 to 63 is inverted.
  • the output shaft of the motor 200 is rotated by the crankshaft 330 and rotates.
  • the rotation of the output shaft of the motor 200 as well as the crankshaft 330 weakens. If the rotation becomes weak enough to stop, the rotor 210 may stop so that the N pole or the S pole faces the salient pole 222 after the rotation direction is reversed momentarily due to the brake torque.
  • the output level of the third Hall element 63 is reversed and then returned to the original level, it is determined that the rotor 210 is reversely rotated by the sensor signal processing unit 40 and the pre-driver 32. .
  • the pre-driver 32 determines that the actual rotation direction of the motor 200 is different from the torque direction, and switches from the normal mode to the power generation mode. Then, the operation ends. In the case of the above-described modification, the pre-driver 32 does not pass a rotating current through the stator coils 224 to 226 in a specific angle range such as 60 ° -120 °, 180 ° -240 °, 300 ° -360 ° in the power generation mode. For example, as shown in FIG. 15, when the motor 200 stops within a range of a rotation angle of 180 ° -240 °, the pre-driver 32 outputs a control signal corresponding to this angle range to the switches 34 to 39 at the time of restart.
  • the pre-driver 32 outputs the voltage level of the control signal input to the upper switch to be controlled every time three pulses are output to the lower switch to be controlled in the power generation mode. Change. Therefore, as shown at time t8 in FIG. 16, a rotational current flows through the stator coils 224 to 226 at the time of restarting, whereby the rotor 210 is rotated.
  • the pre-driver 32 includes a reference signal generation unit 70, a PWM drive signal generation unit 71, a control determination unit 72, a power generation control unit 73, a memory 74, and a switch drive circuit 75.
  • the reference signal generation unit 70 determines the pulse period of the control signal input to the lower switches 35, 37, 39, and the PWM drive signal generation unit 71 sets the pulse width of the control signal input to the lower switches 35, 37, 39 ( Alternatively, the duty ratio is determined.
  • the reference signal generation unit 70 generates a triangular wave having a constant period as a reference signal, and outputs this triangular wave to the PWM drive signal generation unit 71.
  • Control information of the rotation control processing unit 31 is input to the PWM drive signal generation unit 71 together with the above-described triangular wave.
  • This control information includes a duty ratio based on the target rotational speed and the current rotational speed, which is a signal whose voltage level depends on the target rotational speed and the current rotational speed as shown by a straight line in FIG. Hereinafter, it is indicated as a duty signal).
  • the PWM drive signal generation unit 71 compares the duty signal and the triangular wave, and generates a PWM drive signal that becomes Hi level when the former has a higher voltage level than the latter, and becomes Lo level when the other is opposite.
  • the pulse period of this PWM drive signal is determined by a triangular wave, but the pulse width is determined by a duty signal.
  • the switch drive circuit 75 performs on / off control of the lower switches 35, 37, and 39 based on the pulse width and pulse period of the PWM drive signal, and the on-time depends on the pulse width of the PWM drive signal. That is, when the pulse width of the PWM drive signal is increased, the ON time of the lower switches 35, 37, 39 is increased, and when the pulse width of the PWM drive signal is decreased, the ON time of the lower switches 35, 37, 39 is decreased.
  • the control determination unit 72 determines whether the operation mode of the power generation control unit 73 is the normal mode or the power generation mode. The control determination unit 72 determines the operation mode according to the flowchart shown in FIG. First, in step S10, the control determination unit 72 reads the control information input from the rotation control processing unit 31, and the rotation angle signal and sensor signal input from the sensor signal processing unit 40. Then, the control determination unit 72 proceeds to step S20.
  • step S20 the control determination unit 72 determines the rotation direction of the rotor 210 based on the read sensor signal and the relationship shown in FIG. Then, the control determination unit 72 proceeds to step S30.
  • step S30 the control determination unit 72 detects the current rotation speed of the motor 200 based on the read rotation angle signal, and determines whether the current rotation speed is higher than a stored threshold value. That is, the control determination unit 72 determines whether or not the rotation speed (or rotation speed) of the rotor 210 is fast enough to perform power generation control. If it is determined that the rotational speed is higher than the threshold value, the control determination unit 72 proceeds to step S40, and if it is determined that the rotational speed is equal to or less than the threshold value, the control determination unit 72 proceeds to step S50.
  • step S50 when the rotor 210 stops after momentarily rotating in the reverse direction due to brake torque, the signal switching occurs instantaneously, so the control determination unit 72 determines that the rotation speed is sufficiently higher than the above-described threshold value. . Therefore, when the rotor 210 rotates in reverse due to the brake torque, the control determination unit 72 proceeds to step S50.
  • step S40 the control determination unit 72 determines to set the operation mode to the normal mode, and outputs a mode signal including the information to the power generation control unit 73. Then, the operation ends.
  • the mode signal of the present embodiment is set to Lo level in the normal mode and Hi level in the power generation mode.
  • the control determination unit 72 determines whether or not the rotational direction of the rotor 210 is different from the torque direction. If it is determined that the rotation direction and the torque direction are the same, the control determination unit 72 proceeds to step S40 and sets the voltage level of the mode signal to the Lo level. In contrast, if it is determined that the rotation direction and the torque direction are different, the control determination unit 72 proceeds to step S60.
  • step S60 the control determination unit 72 determines that the operation mode is set to the power generation mode, and sets the voltage level of the mode signal to the Hi level. Then, the operation ends.
  • the power generation control unit 73 determines the on / off state of the switch of the inverter 33 to be controlled.
  • the power generation control unit 73 receives the triangular wave and the mode signal as the reference signal described above. As shown in FIG. 20, the power generation control unit 73 has a comparison signal having a constant voltage level, and compares the comparison signal with a reference signal to generate a switch signal with a duty ratio of 50%.
  • the pulse period of this switch signal is the same as the pulse period of the PWM drive signal, and is the same as the interval at which the lower switches 35, 37 and 39 are intermittently turned on.
  • the power generation control unit 73 counts the falling edge of the switch signal and stores the count number in the memory 74.
  • the power generation control unit 73 resets the count number and returns it to zero.
  • the power generation control unit 73 resets the count number and rewrites the flag that determines the voltage level of the switch-off signal stored in the memory 74 from 0 to 1 or from 1 to 0.
  • the power generation control unit 73 enters the normal mode when the voltage level of the mode signal is the Lo level, and sets the output signal (for example, the switch-off signal) to the Lo level regardless of the flag.
  • the power generation control unit 73 enters the power generation mode and changes the voltage level of the switch-off signal according to the flag. That is, the power generation control unit sets the switch-off signal to Hi level when the flag is 1 in the power generation mode, and sets the switch-off signal to Lo level when the flag is 0.
  • the switch drive circuit 75 generates a control signal to be output to the switches 34 to 39 based on the sensor signal, the switch-off signal, and the PWM drive signal.
  • the switch drive circuit 75 stores the relationship between the sensor signal and the rotation angle shown in FIG. 6, and the relationship between the sensor signal and the control signal shown in FIG.
  • the switch drive circuit 75 calculates the rotation angle based on the relationship shown in FIG. 6 and the sensor signal, and specifies the switch of the inverter 33 to be controlled based on the relationship shown in FIG. 7 and the calculated rotation angle. Then, the switch drive circuit 75 outputs a pulsed control signal to the lower switch that is the control target based on the PWM drive signal.
  • the switch drive circuit 75 outputs a control signal to the upper switch to be controlled based on the relationship shown in FIG.
  • the switch drive circuit 75 When the switch-off signal is at the Lo level, the switch drive circuit 75 outputs a Hi-level control signal to the upper switch to be controlled and turns it on. As described above, when the power generation control unit 73 is in the normal mode, the switch-off signal is always at the Lo level. Therefore, the switch drive circuit 75 outputs a Hi level control signal to the upper switch to be controlled, as indicated by the symbol Hi in FIG. In contrast, when the power generation control unit 73 is in the power generation mode, the switch-off signal changes between the Hi level and the Lo level. When the switch-off signal is at the Hi level, the switch drive circuit 75 outputs a Lo-level control signal to the upper switch to be controlled to turn it off. Therefore, as indicated by symbol Ph in FIG. 10, the switch drive circuit 75 changes the voltage level of the control signal output to the upper switch to be controlled from the Hi level to the Lo level or the Lo level each time the voltage level of the switch-off signal is switched. Switch to Hi level.
  • step S110 the power generation control unit 73 determines whether or not the mode signal is at the Hi level. If it is determined that the mode signal is not at the Hi level, the power generation control unit 73 enters the normal mode and proceeds to step S120. On the other hand, when it is determined that the mode signal is at the Hi level, the power generation control unit 73 enters the power generation mode and proceeds to step S130.
  • step S120 the power generation control unit 73 resets the count number stored in the memory 74, and proceeds to step S140.
  • step S140 the power generation control unit 73 sets the switch-off signal flag stored in the memory 74 to 0 and sets the switch-off signal to Lo level. While the power generation control unit 73 in the normal mode repeats the above steps S110, S120, and S140, the switch drive circuit 75 controls the switches 34 to 39 to open and close based on the relationship shown in FIG.
  • step S110 When the flow goes back a little and it is determined in step S110 that the mode signal is Hi level and the process proceeds to step S130, the power generation control unit 73 acquires the count number stored in the memory 74. Then, the power generation control unit 73 proceeds to step S150.
  • step S150 the power generation control unit 73 acquires the switch-off signal flag stored in the memory 74 and confirms the switch-off signal state. Then, the power generation control unit 73 proceeds to step S160.
  • the power generation control unit 73 determines whether or not the count number acquired in step S130 is N (for example, 3) or more. If it is determined that the count number is smaller than N, the power generation control unit 73 proceeds to step S170. On the other hand, if it is determined that the count number is N or more, the power generation control unit 73 proceeds to step S180.
  • N for example, 3
  • step S170 the power generation control unit 73 increases (or increments) the count number by 1 and stores it in the memory 74. Then, the power generation control unit 73 proceeds to step S220.
  • step S180 the power generation control unit 73 determines whether the switch-off signal flag acquired in step S150 is 1, and the switch-off signal is at the Hi level. If it is determined that the switch-off signal is not at the Hi level, the power generation control unit 73 proceeds to step S190. On the other hand, if it is determined that the switch-off signal is at the Hi level, the power generation control unit 73 proceeds to step S200.
  • step S190 the power generation control unit 73 sets the switch-off signal flag to 1 and stores it in the memory 74. Then, the power generation control unit 73 sets the voltage level of the switch-off signal to the Hi level, and proceeds to step S210.
  • step S200 the power generation control unit 73 sets the switch-off signal flag to 0 and stores it in the memory 74. Then, the power generation control unit 73 sets the voltage level of the switch-off signal to the Lo level, and proceeds to step S210.
  • step S210 the power generation control unit 73 resets the count number stored in the memory 74, and proceeds to step S220.
  • step S220 the power generation control unit 73 determines whether the switch-off signal flag is 1, and the switch-off signal is at the Hi level. If it is determined that the switch-off signal is not at the Hi level, the power generation control unit 73 proceeds to step S230. On the other hand, if it is determined that the switch-off signal is at the Hi level, the power generation control unit 73 proceeds to step S240.
  • step S230 the power generation control unit 73 sets the switch-off signal to Lo level. Then, the operation ends.
  • step S240 the power generation control unit 73 sets the switch-off signal to the Hi level. Then, the operation ends. While the above-described steps S110, S130, and S150 to S240 are repeated by the power generation control unit 73 in the power generation mode, the switch drive circuit 75 sets the switches 34 to 39 in FIG. 9 according to the relationship shown in FIG. Open / close control is performed so as to satisfy the relationship shown.
  • the normal mode power generation control unit 73 sequentially repeats steps S110, S120, and S140 of FIG. 21 to fix the voltage level of the switch-off signal at the Lo level.
  • the power generation control unit 73 in the power generation mode sequentially repeats steps S110, S130, and S150 to S240 in FIG. 21 to change the voltage level of the switch-off signal.
  • step S130 When the power generation control unit 73 immediately after switching from the normal mode to the power generation mode proceeds to step S130 for the first time, the count number stored in the memory 74 is zero.
  • step S150 the flag of the switch-off signal stored in the memory 74 is 0, and the voltage level of the switch-off signal is Lo level. Therefore, when the process proceeds to step S160, since the count number is zero, the power generation control unit 73 proceeds to step S170 and increments the number of switches.
  • the switch-off signal is Lo level, so the process proceeds to step S230 and outputs a Lo-level switch-off signal.
  • step S180 the power generation control unit 73 proceeds to step S180 because the number of switches is N or more.
  • the power generation control unit 73 proceeds to step S190, sets the switch-off signal flag to 1, and sets the switch-off signal to the Hi level.
  • the voltage level of the control signal input to the U-phase upper switch 34 to be controlled is changed from the Hi level to the Lo level.
  • step S210 the power generation control unit 73 resets the number of switches.
  • step S220 since the switch-off signal is at the Hi level, the power generation control unit 73 proceeds to step S240 and outputs a Hi-level switch-off signal. If the power generation control unit 73 thereafter proceeds to step S130 again, the count number stored in the memory 74 is zero.
  • step S150 the flag of the switch-off signal stored in the memory 74 is 1, and the voltage level of the switch-off signal is Hi level. Therefore, when the process proceeds to step S160, since the count number is zero, the power generation control unit 73 proceeds to step S170 and increments the number of switches.
  • step S220 When the power generation control unit 73 proceeds to step S220, since the switch-off signal is at the Hi level, the power generation control unit 73 proceeds to step S240 and outputs a Hi-level switch-off signal. After repeating this process N times (three times) and then proceeding to step S160 again, the power generation control unit 73 proceeds to step S180 because the number of switches is N or more. At this time, since the switch-off signal is at the Hi level, the power generation control unit 73 proceeds to step S200, sets the switch-off signal flag to 0, and sets the switch-off signal to the Lo level. As a result, for example, as shown in FIG. 10, the voltage level of the control signal input to the U-phase upper switch 34 to be controlled is changed from the Lo level to the Hi level.
  • the pre-driver 32 is energized by intermittently connecting the stator coil 223 to the power source while the motor 200 rotates by a predetermined rotation angle range. According to this, even when the motor 200 reversely rotates momentarily due to the brake torque and the pre-driver 32 is temporarily switched from the normal mode to the power generation mode, the rotational torque can be generated at the time of restart. As a result, the cam phase can be adjusted to a phase suitable for restarting the internal combustion engine 300.
  • the pre-driver 32 intermittently energizes the stator coil 223 while the motor 200 rotates by a predetermined rotation angle range in the power generation mode. According to this, it is possible to suppress an excessive current flow through the upper switches 34, 36, and 38, and it is possible to suppress excessive heat generation of the upper switches 34, 36, and 38.
  • the pre-driver 32 is connected to the positive terminal while intermittently connecting the stator coil 223 and the positive terminal of the power source M times while the motor 200 rotates by a predetermined rotation angle range in the power generation mode.
  • the negative terminal is connected N times intermittently. Therefore, the upper switches 34, 36, and 38 are excessive compared to the configuration in which the negative terminal is intermittently connected N times while the stator coil and the positive terminal are always connected while the motor rotates by a predetermined rotation angle range. Current flow is suppressed. As a result, excessive heat generation of the upper switches 34, 36, 38 is suppressed.
  • the example which controls the upper stage switch of a control object to an ON state intermittently was shown.
  • the upper switch as the control target may be always on.
  • the lower switch to be controlled is repeatedly turned on and continuously turned off sequentially.
  • the switch drive circuit 75 always controls the upper switch to be controlled to be in an on state depending on the voltage level of the switch-off signal.
  • the switch drive circuit 75 controls the lower switches 35, 37, and 39 to be in an OFF state when a Hi level switch-off signal is input.
  • the rotation angle sensor 60 has a Hall element as a sensor element.
  • any sensor element can be used as long as it is a magnetoelectric conversion element that converts a magnetic signal into an electric signal.
  • three examples are shown as the number of sensor elements, the number of sensor elements need not be three or more.
  • the driver 20 includes the state determination unit 50 in the present embodiment.
  • the driver 20 may not have the state determination unit 50.
  • the rotation angle signal is a pulse signal in which the voltage level changes for a predetermined time each time at least one of the three sensor signals changes.
  • the rotation angle signal is not limited to the above example, and may be a signal whose voltage level fluctuates according to the change frequency of the voltage levels of the three sensor signals.
  • the sensor signal processing unit 40 stores the relationship of the voltage level corresponding to the change frequency of the voltage level of the three sensor signals, and after detecting the change frequency of the voltage level of the sensor signal, A voltage level signal based on the relationship is output as a rotation angle signal.
  • Each of the electronic control device 10, the rotation control processing unit 31, and the pre-driver 32 stores the relationship of the rotation speed corresponding to the voltage level of the rotation angle signal, and this relationship and the voltage of the input rotation angle signal. The number of revolutions is detected based on the level.
  • the motor control device 100 having the above function is suitable for a vehicle that performs idling stop.
  • a vehicle that performs idling stop it is required to restart in a short time after stopping the engine.
  • the motor control device 100 can generate the rotational torque by the pre-driver 32 without depending on the stop of the motor 200 due to the brake torque.
  • the cam phase can be adjusted to a phase suitable for restarting the internal combustion engine 300 in a short time, whereby the engine can be restarted in a short time.
  • each section is expressed as S10, for example.
  • each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section.
  • each section configured in this manner can be referred to as a device, module, or means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A motor control apparatus according to the present invention comprises: an inverter (33) that causes a rotational torque that promotes or prevents rotation of an output shaft of a motor; rotation angle detection unit (40, 60) that outputs rotation signals; a motor control unit (32) that controls the connection of a stator coil of the motor to a positive terminal and negative terminal of a power source respectively and that controls the generation of rotational torque; and an instruction unit (31) that instructs an increasing/decreasing direction of the rotational torque. The motor control unit enters normal mode when the increasing/decreasing direction is in a direction promoting rotation of the motor and the motor control unit enters power generation mode when the increasing/decreasing direction is in a direction preventing rotation of the motor, the motor control unit connecting the stator coil to each of the positive terminal and the negative terminal of the power source and, when in power generation mode, while the motor rotates only within a predetermined rotation angle range, the motor control unit intermittently connects the stator coil M times to the positive terminal while intermittently connecting the stator coil to the negative terminal N times.

Description

モータ制御装置Motor control device 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年2月2日に出願された日本特許出願番号2015-18551号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-18551 filed on February 2, 2015, the contents of which are incorporated herein by reference.
 本開示は、クランクシャフトおよびカムシャフトそれぞれとバルブタイミング変換部を介して機械的に連結されたモータの駆動を制御することで、クランクシャフトに対するカムシャフトの位相を調整するモータ制御装置に関するものである。 The present disclosure relates to a motor control device that adjusts the phase of a camshaft with respect to a crankshaft by controlling driving of a motor mechanically coupled to each of the crankshaft and camshaft via a valve timing conversion unit. .
 特許文献1に示されるように、吸気弁のバルブタイミングを調整するバルブタイミング調整装置が知られている。このバルブタイミング調整装置は、モータ軸の固定されるロータ部およびロータ部の周りに設けられたステータコイルを有する電動モータと、ステータコイルに接続される複数のスイッチング素子と、を有している。またバルブタイミング調整装置は、オンするスイッチング素子(選択素子)をモータ軸の回転角度範囲毎に切り換える通電駆動手段と、内燃機関の運転状況やモータ軸の回転状態に応じてクランク軸とカム軸の相対位相を調整する位相調整機構と、を備えている。 As shown in Patent Document 1, a valve timing adjusting device that adjusts the valve timing of an intake valve is known. This valve timing adjusting device has a rotor portion to which a motor shaft is fixed, an electric motor having a stator coil provided around the rotor portion, and a plurality of switching elements connected to the stator coil. In addition, the valve timing adjusting device includes an energization driving means for switching a switching element (selection element) to be turned on for each rotation angle range of the motor shaft, and a crankshaft and a camshaft according to the operating state of the internal combustion engine and the rotation state of the motor shaft. A phase adjustment mechanism for adjusting the relative phase.
 上記のステータコイルに電流が流れ、ステータコイルから磁界が発生している状態でモータ軸が回転すると、それによってステータコイルに誘起電圧が発生する。モータ軸の目標回転方向がモータ軸の実回転方向と一致している場合、スイッチング素子のオンによりステータコイルへ印加される電圧に対して、反対方向の誘起電圧が発生する。これによりオン状態のスイッチング素子(選択素子)には、印加電圧と誘起電圧との差に応じた電流が流れる。しかしながらモータ軸の目標回転方向がモータ軸の実回転方向と相異している場合、スイッチング素子のオンによりステータコイルへ印加される電圧に対して、同一方向の誘起電圧が発生する。これにより選択素子には印加電圧と誘起電圧との和に応じた大電流が流れる。そのため選択素子が過度に発熱する虞がある。 When an electric current flows through the stator coil and a motor shaft rotates while a magnetic field is generated from the stator coil, an induced voltage is generated in the stator coil. When the target rotation direction of the motor shaft coincides with the actual rotation direction of the motor shaft, an induced voltage is generated in the opposite direction to the voltage applied to the stator coil when the switching element is turned on. As a result, a current corresponding to the difference between the applied voltage and the induced voltage flows through the switching element (selection element) in the on state. However, when the target rotation direction of the motor shaft is different from the actual rotation direction of the motor shaft, an induced voltage in the same direction is generated with respect to the voltage applied to the stator coil when the switching element is turned on. As a result, a large current corresponding to the sum of the applied voltage and the induced voltage flows through the selection element. Therefore, there is a possibility that the selection element generates excessive heat.
 そこで特許文献1に記載のバルブタイミング調整装置の通電駆動手段は、モータ軸の目標回転方向と実回転方向が一致する場合、例えばモータ軸の回転角度が機械角で30°(電気角で120°)の回転角度範囲の全域を、選択素子を継続してオンするオン範囲に設定する。そして通電駆動手段は、目標回転方向と実回転方向が相異する場合、回転角度範囲を、オン範囲と、選択素子を継続してオフするオフ範囲とに分割して設定する。これによりオン範囲においてはステータコイルに電圧が印加されるが、オフ範囲においては電圧が印加されなくなる。そのため上記の印加電圧と誘起電圧との和に応じた電流が選択素子に流れる時間が短縮され、選択素子の過度な発熱が抑制される。 Therefore, the energization driving means of the valve timing adjusting device described in Patent Document 1 is such that when the target rotation direction of the motor shaft matches the actual rotation direction, for example, the rotation angle of the motor shaft is 30 ° mechanical angle (120 ° electrical angle). ) Is set to an on range in which the selection element is continuously turned on. When the target rotation direction and the actual rotation direction are different, the energization driving unit divides and sets the rotation angle range into an on range and an off range in which the selection element is continuously turned off. Thus, a voltage is applied to the stator coil in the on range, but no voltage is applied in the off range. For this reason, the time required for the current corresponding to the sum of the applied voltage and the induced voltage to flow through the selection element is shortened, and excessive heat generation of the selection element is suppressed.
 ところで特許文献1に示されるバルブタイミング調整装置では、電動モータ(モータ)が位相調整機構を介してクランク軸と機械的に連結されている。そのため内燃機関が燃焼駆動してクランク軸が回転している場合、ステータコイルへの通電による制御トルク(回転トルク)の発生に関わらずにモータのモータ軸も回転する。内燃機関の駆動停止によってクランク軸が惰性回転している際もモータ軸はその回転数を低減しながらもクランク軸と同一方向に回転する。しかしながらモータ軸に固定されたロータ部は永久磁石を有している。この永久磁石の周囲にはステータコイルなどの金属材料があるため、その金属材料と永久磁石との間に磁力が発生し、これがロータ部の回転を妨げるブレーキトルクとしてモータ軸に作用する。モータ軸がクランク軸とともに惰性回転し、その回転力が静止するほどに弱まると、上記のブレーキトルクのためにその回転方向が一瞬逆転した後に停止する虞がある。このように停止前に回転方向が逆転すると、通電駆動手段は目標回転方向と実回転方向が相異すると判定して、その動作を終了する。上記したように通電駆動手段は、目標回転方向と実回転方向が相異する場合、回転角度範囲をオン範囲とオフ範囲とに分割して設定する。したがってモータが停止した時点における回転角度がオン範囲に含まれる場合、再起動時に通電駆動手段によってモータのモータ軸に回転トルクを発生することができる。そのためモータ軸を回転することで、カム軸のクランク軸に対する位相を、シリンダとピストンとによって構成される燃焼室内の圧縮空気量を内燃機関の再始動に適した位相に調整することができる。しかしながらモータが停止した時点における回転角度がオフ範囲に含まれる場合、再起動時に通電駆動手段によってモータ軸に回転トルクを発生することができない。そのためモータ軸を回転することができず、カム軸のクランク軸に対する位相を、内燃機関の再始動に適した位相に調整することができない、という不具合が生じる。 Incidentally, in the valve timing adjustment device disclosed in Patent Document 1, an electric motor (motor) is mechanically connected to a crankshaft via a phase adjustment mechanism. Therefore, when the internal combustion engine is driven to burn and the crankshaft rotates, the motor shaft of the motor also rotates regardless of the generation of control torque (rotational torque) due to energization of the stator coil. Even when the crankshaft is inertially rotated by stopping the internal combustion engine, the motor shaft rotates in the same direction as the crankshaft while reducing its rotational speed. However, the rotor portion fixed to the motor shaft has a permanent magnet. Since there is a metal material such as a stator coil around the permanent magnet, a magnetic force is generated between the metal material and the permanent magnet, and this acts on the motor shaft as a brake torque that prevents the rotation of the rotor portion. If the motor shaft is inertially rotated together with the crankshaft and its rotational force is weakened so as to be stationary, there is a possibility that the rotational direction is momentarily reversed due to the brake torque and then stopped. Thus, when the rotation direction is reversed before stopping, the energization driving means determines that the target rotation direction and the actual rotation direction are different, and ends the operation. As described above, when the target rotation direction and the actual rotation direction are different, the energization driving unit divides and sets the rotation angle range into the on range and the off range. Therefore, when the rotation angle at the time when the motor is stopped is included in the ON range, the rotational torque can be generated on the motor shaft of the motor by the energization driving means at the time of restart. Therefore, by rotating the motor shaft, the phase of the cam shaft relative to the crankshaft can be adjusted to a phase suitable for restarting the internal combustion engine with the amount of compressed air in the combustion chamber constituted by the cylinder and the piston. However, when the rotation angle at the time when the motor is stopped is included in the OFF range, it is not possible to generate a rotational torque on the motor shaft by the energization driving means at the time of restart. As a result, the motor shaft cannot be rotated, and the camshaft with respect to the crankshaft cannot be adjusted to a phase suitable for restarting the internal combustion engine.
特開2009-62837号公報JP 2009-62837 A
 本開示は、スイッチング素子の過度な発熱を抑制するとともに、モータが停止した時点における回転角度に関わらずに再起動時においてモータに回転トルクを発生することのできるモータ制御装置を提供することを目的とする。 An object of the present disclosure is to provide a motor control device capable of suppressing excessive heat generation of a switching element and generating rotational torque to the motor at the time of restart regardless of the rotational angle at the time when the motor is stopped. And
 本開示の第一の態様に係るモータ制御装置は、クランクシャフトおよびカムシャフトそれぞれとバルブタイミング変換部を介して機械的に連結されたモータの駆動を制御することで、前記クランクシャフトに対する前記カムシャフトの位相を調整する。前記モータは、前記バルブタイミング変換部に連結された出力軸と、前記出力軸が固定されるロータと、前記ロータの周りに設けられたステータと、を有し、前記ロータは永久磁石を備え、前記ステータはステータコイルを備える。前記のモータ制御装置は、前記ステータコイルに電流を流して磁束を発生させ、その磁束を前記永久磁石に作用させることで、前記出力軸の回転を促進する若しくは妨げる回転トルクを前記ロータに生じさせるインバータと、前記モータの回転角度と前記モータの回転方向とに依存する回転信号を出力する回転角検出部と、前記回転信号に基づいて前記インバータを構成する複数のスイッチング素子を開閉制御することで前記ステータコイルと電源のプラス端子およびマイナス端子それぞれとの接続を制御して前記ステータコイルに流れる電流を制御し、前記回転トルクの発生を制御するモータ制御部と、前記モータ制御部に前記回転トルクの増減方向を指示する指示部と、を有する。前記モータ制御部は、前記指示部から指示された前記回転トルクの増減方向が前記モータの回転を促進する方向の場合に通常モードになり、前記回転トルクの増減方向が前記モータの回転を妨げる方向の場合に発電モードになる。また、前記モータ制御部は、Mを1以上の自然数とし、Nを2以上の自然数とすると、前記通常モードにおいて前記モータの回転角度に依らずに前記ステータコイルを前記電源のプラス端子とマイナス端子それぞれに接続し、前記発電モードにおいて所定の回転角度範囲だけ前記モータが回転する間に前記ステータコイルを断続的にM回前記プラス端子に接続しつつ、前記ステータコイルが前記プラス端子に接続されている際に前記ステータコイルを前記マイナス端子に断続的にN回接続する。 The motor control device according to the first aspect of the present disclosure controls the drive of a motor mechanically connected to each of the crankshaft and the camshaft via a valve timing conversion unit, so that the camshaft with respect to the crankshaft Adjust the phase. The motor includes an output shaft connected to the valve timing conversion unit, a rotor to which the output shaft is fixed, and a stator provided around the rotor, and the rotor includes a permanent magnet. The stator includes a stator coil. The motor control device generates a magnetic flux by causing a current to flow through the stator coil, and causes the rotor to generate a rotational torque that promotes or prevents the rotation of the output shaft by causing the magnetic flux to act on the permanent magnet. By opening and closing an inverter, a rotation angle detector that outputs a rotation signal that depends on the rotation angle of the motor and the rotation direction of the motor, and a plurality of switching elements that constitute the inverter based on the rotation signal. A motor control unit that controls connection between the stator coil and each of a positive terminal and a negative terminal of a power source to control a current flowing in the stator coil, and controls generation of the rotational torque; and And an instruction unit for instructing the increase / decrease direction. The motor control unit is in a normal mode when the increase / decrease direction of the rotational torque instructed by the instruction unit is a direction for promoting the rotation of the motor, and the increase / decrease direction of the rotational torque prevents the motor from rotating. In the case of, it becomes power generation mode. The motor control unit may be configured such that when M is a natural number of 1 or more and N is a natural number of 2 or more, the stator coil is connected to the positive terminal and the negative terminal of the power source regardless of the rotation angle of the motor in the normal mode. The stator coil is connected to the plus terminal while the stator coil is intermittently connected to the plus terminal M times while the motor rotates by a predetermined rotation angle range in the power generation mode. The stator coil is intermittently connected N times to the negative terminal.
 本開示の第一の態様によれば、上記したようにモータ制御部は発電モードにおいて、所定の回転角度範囲だけモータが回転する間にステータコイルを電源と断続的に接続して通電している。これによればブレーキトルクのためにモータが一瞬逆回転し、モータ制御部が通常モードから発電モードに一時的に切り換わったとしても、再起動時に回転トルクを発生することができる。これによりカム位相を、内燃機関の再始動に適した位相に調整することができる。それに加えて、前記複数のスイッチング素子に過度な電流の流れることが抑制される。この結果、前記複数のスイッチング素子の過度な発熱が抑制される。 According to the first aspect of the present disclosure, as described above, in the power generation mode, the motor controller is energized by intermittently connecting the stator coil to the power source while the motor rotates within a predetermined rotation angle range. . According to this, even if the motor reversely rotates momentarily due to the brake torque, and the motor control unit is temporarily switched from the normal mode to the power generation mode, the rotational torque can be generated at the time of restart. Thereby, the cam phase can be adjusted to a phase suitable for restarting the internal combustion engine. In addition, it is possible to suppress an excessive current from flowing through the plurality of switching elements. As a result, excessive heat generation of the plurality of switching elements is suppressed.
 本開示の第二の態様に係るモータ制御装置は、クランクシャフトおよびカムシャフトそれぞれとバルブタイミング変換部を介して機械的に連結されたモータの駆動を制御することで、前記クランクシャフトに対する前記カムシャフトの位相を調整する。前記モータは、前記バルブタイミング変換部に連結された出力軸と、前記出力軸が固定されるロータと、前記ロータの周りに設けられたステータと、を有し、前記ロータは永久磁石を備え、前記ステータはステータコイルを備える。前記のモータ制御装置は、前記ステータコイルに電流を流して磁束を発生させ、その磁束を前記永久磁石に作用させることで、前記出力軸の回転を促進する若しくは妨げる回転トルクを前記ロータに生じさせるインバータと、前記モータの回転角度と前記モータの回転方向とに依存する回転信号を出力する回転角検出部と、前記回転信号に基づいて前記インバータを構成する複数のスイッチング素子を開閉制御することで前記ステータコイルと電源のプラス端子およびマイナス端子それぞれとの接続を制御して前記ステータコイルに流れる電流を制御し、前記回転トルクの発生を制御するモータ制御部と、前記モータ制御部に前記回転トルクの増減方向を指示する指示部と、を有する。前記モータ制御部は、前記指示部から指示された前記回転トルクの増減方向が前記モータの回転を促進する方向の場合に通常モードになり、前記回転トルクの増減方向が前記モータの回転を妨げる方向の場合に発電モードになる。また、前記モータ制御部は、Nを2以上の自然数とすると、前記通常モードにおいて前記モータの回転角度に依らずに前記ステータコイルを前記プラス端子と前記マイナス端子それぞれに接続し、前記発電モードにおいて前記モータの回転角度に依らずに前記ステータコイルを前記プラス端子に接続しつつ、所定の回転角度範囲だけ前記モータが回転する間に前記ステータコイルを前記マイナス端子に断続的にN回接続した後に前記マイナス端子を断続的にN回接続した時間の分だけ前記ステータコイルと前記マイナス端子とを連続的に非接続状態にすることを少なくとも一回行う。 The motor control device according to the second aspect of the present disclosure controls the drive of a motor mechanically connected to each of the crankshaft and the camshaft via a valve timing conversion unit, so that the camshaft with respect to the crankshaft Adjust the phase. The motor includes an output shaft connected to the valve timing conversion unit, a rotor to which the output shaft is fixed, and a stator provided around the rotor, and the rotor includes a permanent magnet. The stator includes a stator coil. The motor control device generates a magnetic flux by causing a current to flow through the stator coil, and causes the rotor to generate a rotational torque that promotes or prevents the rotation of the output shaft by causing the magnetic flux to act on the permanent magnet. By opening and closing an inverter, a rotation angle detector that outputs a rotation signal that depends on the rotation angle of the motor and the rotation direction of the motor, and a plurality of switching elements that constitute the inverter based on the rotation signal. A motor control unit that controls connection between the stator coil and each of a positive terminal and a negative terminal of a power source to control a current flowing in the stator coil, and controls generation of the rotational torque; and And an instruction unit for instructing the increase / decrease direction. The motor control unit is in a normal mode when the increase / decrease direction of the rotational torque instructed by the instruction unit is a direction for promoting the rotation of the motor, and the increase / decrease direction of the rotational torque prevents the motor from rotating. In the case of, it becomes power generation mode. The motor control unit connects the stator coil to each of the plus terminal and the minus terminal regardless of the rotation angle of the motor in the normal mode, where N is a natural number of 2 or more, and in the power generation mode. After connecting the stator coil to the minus terminal intermittently N times while the motor rotates by a predetermined rotation angle range while connecting the stator coil to the plus terminal regardless of the rotation angle of the motor. The stator coil and the minus terminal are continuously disconnected from each other for at least one time corresponding to the time when the minus terminal is intermittently connected N times.
 本開示の第二の態様に係るモータ制御装置は、本開示の第一の態様と同様な効果を奏する。 The motor control device according to the second aspect of the present disclosure has the same effects as the first aspect of the present disclosure.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係るモータ制御装置の概略構成を示すブロック図であり、 図2は、モータの概略構成を示す断面図であり、 図3は、回転角センサの配置を説明するための断面図であり、 図4は、インバータとステータコイルの概略構成を示す回路図であり、 図5は、センサ信号と制御信号の関係を示すタイミングチャートであり、 図6は、センサ信号と回転角度との関係を示す図表であり、 図7は、通常制御における回転角度と制御信号との関係を示す図表であり、 図8は、通常制御においてインバータとステータコイルを流れる電流を示す模式図であり、 図9は、発電制御における回転角度と制御信号との関係を示す図表であり、 図10は、発電制御において制御対象となる上段スイッチと下段スイッチそれぞれに入力される制御信号を示すタイミングチャートであり、 図11は、発電制御においてインバータとステータコイルを流れる電流を示す模式図であり、 図12は、ブレーキトルクを模式的に示すグラフ図であり、 図13は、回転角センサとステータコイルとの位置関係を示すモータの断面図であり、 図14は、ロータの回転角度に対する回転角センサと永久磁石との位置関係を示す図表であり、 図15は、ブレーキトルクによるモード切り換えの結果、再起動できなくなることを説明するためのタイミングチャートであり、 図16は、ブレーキトルクによるモード切り換えが行われたとしても、再起動できることを説明するためのタイミングチャートであり、 図17は、プリドライバの概略構成を示すブロック図であり、 図18は、PWM駆動信号を説明するためのタイミングチャートであり、 図19は、制御判定部の判定処理を示すフローチャートであり、 図20は、カウント数とスイッチオフ信号を説明するためのタイミングチャートであり、 図21は、発電制御部の信号処理を説明するためのフローチャートであり、 図22は、発電制御の変形例を説明するためのタイミンチャートであり、及び、 図23は、発電制御の変形例を説明するためのタイミングチャートである。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a block diagram illustrating a schematic configuration of the motor control device according to the first embodiment. FIG. 2 is a cross-sectional view showing a schematic configuration of the motor, FIG. 3 is a cross-sectional view for explaining the arrangement of the rotation angle sensor. FIG. 4 is a circuit diagram showing a schematic configuration of the inverter and the stator coil. FIG. 5 is a timing chart showing the relationship between the sensor signal and the control signal. FIG. 6 is a chart showing the relationship between the sensor signal and the rotation angle. FIG. 7 is a chart showing the relationship between the rotation angle and the control signal in normal control. FIG. 8 is a schematic diagram showing current flowing through the inverter and the stator coil in normal control. FIG. 9 is a chart showing the relationship between the rotation angle and the control signal in power generation control. FIG. 10 is a timing chart showing control signals input to the upper and lower switches to be controlled in the power generation control. FIG. 11 is a schematic diagram showing a current flowing through the inverter and the stator coil in the power generation control. FIG. 12 is a graph schematically showing the brake torque, FIG. 13 is a cross-sectional view of the motor showing the positional relationship between the rotation angle sensor and the stator coil, FIG. 14 is a chart showing the positional relationship between the rotation angle sensor and the permanent magnet with respect to the rotation angle of the rotor, FIG. 15 is a timing chart for explaining that it becomes impossible to restart as a result of mode switching by brake torque. FIG. 16 is a timing chart for explaining that restarting is possible even when mode switching by brake torque is performed. FIG. 17 is a block diagram showing a schematic configuration of the pre-driver, FIG. 18 is a timing chart for explaining the PWM drive signal. FIG. 19 is a flowchart showing the determination process of the control determination unit, FIG. 20 is a timing chart for explaining the count number and the switch-off signal. FIG. 21 is a flowchart for explaining signal processing of the power generation control unit. FIG. 22 is a timing chart for explaining a modified example of the power generation control, and FIG. 23 is a timing chart for explaining a modified example of the power generation control.
 以下、本開示の実施形態を図に基づいて説明する。
(第1実施形態)
 図1~図21に基づいて、本実施形態に係るモータ制御装置を説明する。なお図1ではモータ制御装置100の他に、モータ200、内燃機関300、バルブタイミング変換部310、カム角センサ340、および、クランク角センサ350を図示している。そして図2、図3、図13、および、図14それぞれでは後述する電気角を括弧つきで図示し、回転角センサ60にハッチングを施している。また図14では煩雑と成ることを避けるために符号を省略し、回転状態を明りょうとするために後述の永久磁石212の1つのN極にハッチングを施している。最後に、図5および図16の発電制御において制御対象の上段スイッチに入力される制御信号が単にHiレベルではないことを示すために、制御信号の一部にハッチングを施している。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
(First embodiment)
The motor control device according to this embodiment will be described with reference to FIGS. In addition to the motor control device 100, FIG. 1 illustrates a motor 200, an internal combustion engine 300, a valve timing conversion unit 310, a cam angle sensor 340, and a crank angle sensor 350. 2, 3, 13, and 14, an electrical angle, which will be described later, is shown in parentheses, and the rotation angle sensor 60 is hatched. In FIG. 14, reference numerals are omitted to avoid complication, and one N pole of a permanent magnet 212 described later is hatched to clarify the rotation state. Finally, in order to indicate that the control signal input to the upper switch to be controlled is not simply at the Hi level in the power generation control of FIGS. 5 and 16, a part of the control signal is hatched.
 モータ制御装置100はモータ200の回転を制御することで、内燃機関300のカムシャフト320とクランクシャフト330の位相差(以下、カム位相と示す)を制御するものである。図1に示すようにモータ制御装置100は3つのステータ線97~99を介してモータ200と電気的に接続され、モータ200はバルブタイミング変換部310を介して内燃機関300と機械的に連結されている。以下においては先ずモータ200、バルブタイミング変換部310、および、内燃機関300を説明した後、モータ制御装置100について詳説する。 The motor control device 100 controls the phase difference between the camshaft 320 and the crankshaft 330 of the internal combustion engine 300 (hereinafter referred to as cam phase) by controlling the rotation of the motor 200. As shown in FIG. 1, the motor control device 100 is electrically connected to the motor 200 via three stator wires 97 to 99, and the motor 200 is mechanically connected to the internal combustion engine 300 via a valve timing conversion unit 310. ing. In the following, the motor 200, the valve timing conversion unit 310, and the internal combustion engine 300 will be described first, and then the motor control device 100 will be described in detail.
 図2に示すようにモータ200は出力軸に固定されたロータ210、および、ロータ210の周りに設けられたステータ220を有する。ロータ210は円柱形状の鉄芯211と、この鉄芯211に埋め込まれた永久磁石212と、を有する。本実施形態では永久磁石212のN極とS極とが交互に隣接するように鉄芯211の軸周りに等間隔で埋め込まれており、隣り合うN極とS極の隣接間隔が45°になっている。これにより複数の永久磁石212にて発生される磁束はロータ210が90°回転する毎に周期的に変化し、機械角90°に対して電気角が360°になっている。この永久磁石212から発せられる磁束が後述の回転角センサ60にて検出される。 2, the motor 200 includes a rotor 210 fixed to the output shaft, and a stator 220 provided around the rotor 210. The rotor 210 has a cylindrical iron core 211 and a permanent magnet 212 embedded in the iron core 211. In the present embodiment, the N poles and S poles of the permanent magnet 212 are embedded at equal intervals around the axis of the iron core 211 so that the N poles and S poles are alternately adjacent to each other, and the adjacent interval between the adjacent N poles and S poles is 45 °. It has become. As a result, the magnetic flux generated by the plurality of permanent magnets 212 periodically changes every time the rotor 210 rotates 90 °, and the electrical angle is 360 ° with respect to the mechanical angle of 90 °. A magnetic flux generated from the permanent magnet 212 is detected by a rotation angle sensor 60 described later.
 これに対してステータ220は円筒形状のケース221と、このケース221の内周面に設けられた突極222と、突極222に巻き回されたステータコイル223と、を有する。ケース221の内周面に12個の突極222が等間隔で設けられ、2つの突極222の最短隣接間隔がロータ210の軸周りにて30°になっている。ステータコイル223としては図4に示すようにU相ステータコイル224、V相ステータコイル225、W相ステータコイル226を有する。上記した12個の突極222にU相ステータコイル224、V相ステータコイル225、W相ステータコイル226が順に隣接するように巻き回され、それぞれ隣接間隔が90°の関係にある4つの突極222に巻き回されている。3つのステータコイル224~226は図4に示すようにY結線され、それぞれ対応するインバータ33の2つのスイッチの中点に結線されている。後で詳説するが、例えば図4に示すスイッチ34,37がオン状態になるとステータコイル224,225が電源のプラス端子とマイナス端子とに接続され、ステータコイル224,225に電流が流れる。この電流の流動によってステータコイル224,225から磁束が発生され、この磁束がロータ210の永久磁石212に作用することでロータ210に回転トルクが発生する。これによりモータ200の出力軸が自立回転する。 In contrast, the stator 220 includes a cylindrical case 221, salient poles 222 provided on the inner peripheral surface of the case 221, and a stator coil 223 wound around the salient poles 222. Twelve salient poles 222 are provided at equal intervals on the inner peripheral surface of the case 221, and the shortest adjacent interval between the two salient poles 222 is 30 ° around the axis of the rotor 210. As shown in FIG. 4, the stator coil 223 includes a U-phase stator coil 224, a V-phase stator coil 225, and a W-phase stator coil 226. The U-phase stator coil 224, the V-phase stator coil 225, and the W-phase stator coil 226 are wound around the 12 salient poles 222 so as to be adjacent to each other in order, and each of the four salient poles has an adjacent interval of 90 ° It is wound around 222. The three stator coils 224 to 226 are Y-connected as shown in FIG. 4, and are connected to the midpoints of the two switches of the corresponding inverter 33, respectively. As will be described in detail later, for example, when the switches 34 and 37 shown in FIG. 4 are turned on, the stator coils 224 and 225 are connected to the positive terminal and the negative terminal of the power source, and current flows through the stator coils 224 and 225. Magnetic flux is generated from the stator coils 224 and 225 by this current flow, and this magnetic flux acts on the permanent magnet 212 of the rotor 210 to generate rotational torque in the rotor 210. As a result, the output shaft of the motor 200 rotates independently.
 上記したモータ200の出力軸はバルブタイミング変換部310を介してカムシャフト320と連結されている。そしてバルブタイミング変換部310はチェーンを介してクランクシャフト330と連結されている。内燃機関300の駆動によってクランクシャフト330が回転し始めると、それに伴ってバルブタイミング変換部310とともにカムシャフト320とモータ200の出力軸も回転し始める。この回転によってカムシャフト320のカムジャーナルに設けられたカムロブが回転する。カムロブの回転により吸気弁と排気弁が燃焼室に対して上下動し、吸気弁にて燃焼室への吸気が行われ、排気弁にて燃焼室からの排気が行われる。 The output shaft of the motor 200 described above is connected to the camshaft 320 via the valve timing conversion unit 310. The valve timing conversion unit 310 is connected to the crankshaft 330 via a chain. When the crankshaft 330 starts to rotate by driving the internal combustion engine 300, the camshaft 320 and the output shaft of the motor 200 together with the valve timing conversion unit 310 also start to rotate. This rotation causes the cam lobe provided on the cam journal of the camshaft 320 to rotate. The intake valve and the exhaust valve move up and down with respect to the combustion chamber by the rotation of the cam lobe, the intake valve intakes the combustion chamber, and the exhaust valve exhausts the combustion chamber.
 内燃機関300が例えば4サイクルエンジンの場合、吸気弁若しくは排気弁に対応するカムシャフト320のカムロブは、クランクシャフト330が2回転すると1回転する。通常、吸気弁と排気弁の位相はカムシャフト320の回転角度で換算するとおよそ180°ずれている。この位相差は、上記したカム位相をモータ制御装置100、モータ200、および、バルブタイミング変換部310によって制御することで調整可能となっている。 When the internal combustion engine 300 is a four-cycle engine, for example, the cam lobe of the camshaft 320 corresponding to the intake valve or the exhaust valve rotates once when the crankshaft 330 rotates twice. Normally, the phases of the intake valve and the exhaust valve are shifted by approximately 180 ° when converted by the rotation angle of the camshaft 320. This phase difference can be adjusted by controlling the cam phase described above by the motor control device 100, the motor 200, and the valve timing conversion unit 310.
 図示しないがバルブタイミング変換部310は上記したチェーンを介して伝達されるクランクシャフト330の回転トルクをカムシャフト320に伝達しつつ、カムシャフト320をクランクシャフト330に対して相対的に回転させる遊星歯車機構を有する。バルブタイミング変換部310は上記したチェーンが連結される環状のリングギヤ、および、リングギヤの中に設けられた円盤状のピニオンギヤとバルブギヤを有する。リングギヤはチェーンを介してクランクシャフト330に連結され、バルブギヤはカムシャフト320に連結されている。そしてピニオンギヤはモータ200の出力軸に連結されている。リングギヤの内側面に歯が形成され、ピニオンギヤおよびバルブギヤそれぞれの外側面に歯が形成されている。このリングギヤの内側面の歯とピニオンギヤの歯とが噛み合わさり、ピニオンギヤの歯とバルブギヤの歯とが噛み合わさっている。したがってクランクシャフト330が回転するとその回転トルクがチェーンを介してリングギヤに伝達され、これによってリングギヤが回転する。するとピニオンギヤがバルブギヤの周りを公転し、これによってバルブギヤが回転する。この結果、クランクシャフト330とともにカムシャフト320が回転する。 Although not shown, the valve timing converter 310 transmits the rotational torque of the crankshaft 330 transmitted through the above-described chain to the camshaft 320, and the planetary gear that rotates the camshaft 320 relative to the crankshaft 330. It has a mechanism. The valve timing conversion unit 310 includes an annular ring gear to which the above-described chain is connected, and a disk-shaped pinion gear and a valve gear provided in the ring gear. The ring gear is connected to the crankshaft 330 via a chain, and the valve gear is connected to the camshaft 320. The pinion gear is connected to the output shaft of the motor 200. Teeth are formed on the inner surface of the ring gear, and teeth are formed on the outer surfaces of the pinion gear and the valve gear. The teeth of the inner surface of the ring gear and the teeth of the pinion gear mesh with each other, and the teeth of the pinion gear and the teeth of the valve gear mesh with each other. Therefore, when the crankshaft 330 rotates, the rotational torque is transmitted to the ring gear through the chain, and thereby the ring gear rotates. Then, the pinion gear revolves around the valve gear, thereby rotating the valve gear. As a result, the camshaft 320 rotates together with the crankshaft 330.
 カムシャフト320におけるクランクシャフト330との位相差(または、カム位相)を維持する場合、モータ制御装置100はモータ200によってピニオンギヤを自転させずにバルブギヤの周りを公転させることで、バルブギヤとリングギヤとを同一の速さで回転させる。しかしながらカム位相を進角若しくは遅角する場合、モータ制御装置100はモータ200によってピニオンギヤを自転させつつバルブギヤの周りを公転させることで、バルブギヤをリングギヤに対して相対的に回転させる。モータ200の出力軸がクランクシャフト330よりも速く公転するとカム位相が進角され、出力軸がクランクシャフト330よりも遅く公転するとカム位相が遅角される。進角若しくは遅角によってカム位相が目標とする位相に到達すると、モータ200の出力軸をリングギヤと同一の速さで公転させる。これによって調整後のカム位相が維持される。このモータ200によるカム位相制御によって、吸気タイミングと排気タイミングが調整される。 When maintaining the phase difference (or cam phase) between the camshaft 320 and the crankshaft 330, the motor control device 100 causes the valve gear and the ring gear to revolve around the valve gear without causing the motor 200 to rotate the pinion gear. Rotate at the same speed. However, when the cam phase is advanced or retarded, the motor control device 100 revolves around the valve gear while rotating the pinion gear by the motor 200, thereby rotating the valve gear relative to the ring gear. When the output shaft of the motor 200 revolves faster than the crankshaft 330, the cam phase is advanced, and when the output shaft revolves later than the crankshaft 330, the cam phase is retarded. When the cam phase reaches the target phase due to advance or retard, the output shaft of the motor 200 is revolved at the same speed as the ring gear. As a result, the adjusted cam phase is maintained. By the cam phase control by the motor 200, the intake timing and the exhaust timing are adjusted.
 図1に示すようにモータ200には回転角センサ60が設けられ、内燃機関300にはカム角センサ340とクランク角センサ350が設けられている。回転角センサ60によってモータ200の回転状態を示す検知信号が検出され、カム角センサ340とクランク角センサ350によってカムシャフト320の回転角度とクランクシャフト330の回転角度が検出される。モータ制御装置100は検知信号に基づいてモータ200の回転角度を算出し、カムシャフト320の回転角度とクランクシャフト330の回転角度とに基づいて内燃機関300の回転数を算出する。モータ制御装置100は算出した内燃機関300の回転数とモータ200の回転角度とに基づいてモータ200を制御する。こうすることでモータ制御装置100はカム位相制御を行う。 As shown in FIG. 1, the motor 200 is provided with a rotation angle sensor 60, and the internal combustion engine 300 is provided with a cam angle sensor 340 and a crank angle sensor 350. A detection signal indicating the rotation state of the motor 200 is detected by the rotation angle sensor 60, and the rotation angle of the camshaft 320 and the rotation angle of the crankshaft 330 are detected by the cam angle sensor 340 and the crank angle sensor 350. The motor control device 100 calculates the rotation angle of the motor 200 based on the detection signal, and calculates the rotation speed of the internal combustion engine 300 based on the rotation angle of the camshaft 320 and the rotation angle of the crankshaft 330. The motor control device 100 controls the motor 200 based on the calculated rotation speed of the internal combustion engine 300 and the rotation angle of the motor 200. By doing so, the motor control device 100 performs cam phase control.
 なおカム位相制御を行うためには上記した目標とする位相を算出しなくてはならない。この目標とする位相は、ユーザーのアクセル踏込量を示すアクセル開度センサや内燃機関300の吸入空気量を計測するエアフローメータなどの車両の走行状態を示す各種センサ信号に基づいて、モータ制御装置100にて算出される。以下、モータ制御装置100について詳説する。 Note that in order to perform cam phase control, the target phase described above must be calculated. The target phase is determined based on various sensor signals indicating the running state of the vehicle, such as an accelerator opening sensor that indicates the accelerator depression amount of the user and an air flow meter that measures the intake air amount of the internal combustion engine 300. It is calculated by. Hereinafter, the motor control device 100 will be described in detail.
 図1に示すようにモータ制御装置100は、電子制御装置10、ドライバ20、および、回転角センサ60を有する。電子制御装置10はドライバ20に目標とするモータ200の回転数(または、回転速度)を含む指示信号を出力するものであり、ドライバ20は指示信号および回転角センサ60の検知信号に基づいてモータ200を制御するものである。回転角センサ60はモータ200の回転に応じた検知信号を生成してドライバ20に出力するものである。電子制御装置10とドライバ20とは4つの信号線90~93を介して電気的に接続され、ドライバ20と回転角センサ60とは3つのセンサ線94~96を介して電気的に接続されている。 As shown in FIG. 1, the motor control device 100 includes an electronic control device 10, a driver 20, and a rotation angle sensor 60. The electronic control device 10 outputs an instruction signal including the target rotation speed (or rotation speed) of the motor 200 to the driver 20, and the driver 20 performs a motor operation based on the instruction signal and the detection signal of the rotation angle sensor 60. 200 is controlled. The rotation angle sensor 60 generates a detection signal corresponding to the rotation of the motor 200 and outputs the detection signal to the driver 20. The electronic control unit 10 and the driver 20 are electrically connected via four signal lines 90 to 93, and the driver 20 and the rotation angle sensor 60 are electrically connected via three sensor lines 94 to 96. Yes.
 電子制御装置10は上記した車両の走行状態を示す各種センサ信号や内燃機関300の回転数、および、ドライバ20から出力される回転角信号と回転方向信号に基づいて目標とするモータ200の回転数を決定するものである。電子制御装置10は上記の各種センサ信号に基づいて、車両の走行状態に適合する目標と成るカム位相を算出する。次いで電子制御装置10は、この目標とするカム位相とするためのモータ200の回転数を算出し、この回転数を含めた指示信号をドライバ20に出力する。なお電子制御装置10は指示信号に含める回転数を常に有限の値に設定しており、内燃機関300が燃焼駆動を停止した場合、有限の回転数とともに、ドライバ20に回転トルクの発生を止める指示を指示信号に含ませる。 The electronic control unit 10 sets the target number of rotations of the motor 200 based on the various sensor signals indicating the traveling state of the vehicle, the number of rotations of the internal combustion engine 300, and the rotation angle signal and the rotation direction signal output from the driver 20. Is to determine. The electronic control unit 10 calculates a cam phase as a target that matches the traveling state of the vehicle based on the various sensor signals. Next, the electronic control unit 10 calculates the rotation speed of the motor 200 for setting the target cam phase, and outputs an instruction signal including this rotation speed to the driver 20. The electronic control unit 10 always sets the number of revolutions included in the instruction signal to a finite value, and when the internal combustion engine 300 stops combustion driving, instructs the driver 20 to stop generating the rotational torque together with the finite number of revolutions. Is included in the instruction signal.
 図1に示すようにドライバ20は、モータ制御部30、センサ信号処理部40、および、状態判定部50を有する。モータ制御部30は電子制御装置10から入力される指示信号およびセンサ信号処理部40から入力される回転角信号とセンサ信号に基づいてモータ200の回転を制御するものである。モータ制御部30はモータ200の出力軸を自立回転するための回転電流をモータ200の3相のステータコイル224~226に流すことでロータ210を回転する。センサ信号処理部40は回転角センサ60から入力されるアナログの検知信号に基づいてデジタルのセンサ信号、回転角信号、および、回転方向信号を生成するものである。状態判定部50は後述の状態判定信号を生成するものである。この状態判定部50には上記したセンサ信号、回転角信号、回転方向信号、指示信号、および、回転電流が入力される。なお図示しないが、上記の回転電流を検出するための電流センサをモータ制御装置100は有しており、この電流センサの検出信号が状態判定部50に入力される。 As shown in FIG. 1, the driver 20 includes a motor control unit 30, a sensor signal processing unit 40, and a state determination unit 50. The motor control unit 30 controls the rotation of the motor 200 based on the instruction signal input from the electronic control device 10, the rotation angle signal input from the sensor signal processing unit 40, and the sensor signal. The motor control unit 30 rotates the rotor 210 by flowing a rotation current for rotating the output shaft of the motor 200 through the three-phase stator coils 224 to 226 of the motor 200. The sensor signal processing unit 40 generates a digital sensor signal, a rotation angle signal, and a rotation direction signal based on an analog detection signal input from the rotation angle sensor 60. The state determination unit 50 generates a state determination signal described later. The state determination unit 50 receives the sensor signal, the rotation angle signal, the rotation direction signal, the instruction signal, and the rotation current. Although not shown, the motor control device 100 includes a current sensor for detecting the rotation current, and a detection signal of the current sensor is input to the state determination unit 50.
 モータ制御部30は、電子制御装置10から指示信号が入力されると指示信号に含まれる回転数に出力軸の回転数が一致するように回転電流を流す。これによってモータ制御部30はカム位相を進角、遅角、若しくは、維持する。しかしながら上記したように内燃機関300の燃焼駆動が停止し、指示信号に回転トルクの発生を止める指示が含まれる場合、モータ制御部30は3相のステータコイル224~226に回転電流を流さない。この場合モータ200の出力軸はクランクシャフト330およびカムシャフト320に連れまわされて回転する。上記の遊星歯車機構はカム位相を最も遅い最遅角、および、最も進んだ最進角に止めるためのストッパを有している。上記したようにモータ200の出力軸がクランクシャフト330によって連れ回されて回転する場合、カム位相は最遅角になる。 When the instruction signal is input from the electronic control device 10, the motor control unit 30 causes the rotation current to flow so that the rotation speed of the output shaft matches the rotation speed included in the instruction signal. As a result, the motor control unit 30 advances, retards, or maintains the cam phase. However, as described above, when the combustion drive of the internal combustion engine 300 is stopped and the instruction signal includes an instruction to stop the generation of rotational torque, the motor control unit 30 does not flow the rotation current through the three-phase stator coils 224 to 226. In this case, the output shaft of the motor 200 is driven by the crankshaft 330 and the camshaft 320 to rotate. The planetary gear mechanism has a stopper for stopping the cam phase at the slowest most retarded angle and the most advanced advance angle. As described above, when the output shaft of the motor 200 rotates with the crankshaft 330, the cam phase becomes the most retarded angle.
 図1に示すようにモータ制御部30は、回転制御処理部31、プリドライバ32、および、インバータ33を有する。回転制御処理部31は指示信号に含まれる目標とする回転数(目標回転数)、および、後述の回転角信号から検出した現在の回転数(現在回転数)に基づいて回転トルクの増減方向を算出する。回転制御処理部31は目標回転数が現在回転数よりも高い場合、回転トルクの増減方向をモータ200の回転が促進される方向にして増加することを決定する。その反対に目標回転数が現在回転数よりも低い場合、回転制御処理部31は回転トルクの増減方向をモータ200の回転が妨げられる方向にして減少することを決定する。また回転制御処理部31は目標回転数と現在回転数とに基づいて、モータ200が電気角で60°回転する間に後述の下段スイッチ35,37,39それぞれをオン状態とする時間(または、デューティ比)も算出する。回転制御処理部31は上記の回転トルクの増減方向とデューティ比とを含む制御情報をプリドライバ32に出力する。回転制御処理部31が指示部に相当する。 As shown in FIG. 1, the motor control unit 30 includes a rotation control processing unit 31, a pre-driver 32, and an inverter 33. The rotation control processing unit 31 determines the increase / decrease direction of the rotational torque based on the target rotation speed (target rotation speed) included in the instruction signal and the current rotation speed (current rotation speed) detected from the rotation angle signal described later. calculate. When the target rotational speed is higher than the current rotational speed, the rotational control processing unit 31 determines to increase the rotational torque in the direction in which the rotation of the motor 200 is promoted. On the other hand, when the target rotation speed is lower than the current rotation speed, the rotation control processing unit 31 determines to decrease the rotation torque in the increasing / decreasing direction so that the rotation of the motor 200 is prevented. Further, the rotation control processing unit 31 is based on the target number of rotations and the current number of rotations, and the time during which each of the lower switches 35, 37, and 39 to be described later is turned on while the motor 200 rotates 60 degrees in electrical angle (or Duty ratio) is also calculated. The rotation control processing unit 31 outputs control information including the increase / decrease direction of the rotational torque and the duty ratio to the pre-driver 32. The rotation control processing unit 31 corresponds to an instruction unit.
 プリドライバ32は回転制御処理部31から入力される制御情報、および、センサ信号処理部40から入力される回転角信号とセンサ信号に基づいてインバータ33を制御する。プリドライバ32は後述のセンサ信号に基づいてロータ210の現在の回転方向(または、実回転方向)を検出し、この実回転方向と制御情報に含まれる回転トルクの増減方向(または、トルク方向)とを比較する。プリドライバ32は実回転方向とトルク方向の両者が一致する場合(回転を促進する方向の場合)に通常モードとなり、両者が相違する場合(または、回転を妨げる方向の場合)に発電モードとなる。プリドライバ32は通常モードにおいて出力軸の回転方向に沿う回転トルクが発生するようにインバータ33の駆動を制御することで出力軸の回転を促進して回転速度を速くする。またプリドライバ32は発電モードにおいて出力軸の回転方向とは逆向きの回転トルクが発生するようにインバータ33の駆動を制御することで出力軸の回転を妨げて回転速度を遅くする。プリドライバ32は出力軸の回転速度の加速度と減速度を制御情報に含まれるデューティ比によって制御している。このプリドライバ32の構成、および、通常モードおよび発電モード時におけるインバータ33の制御(通常制御と発電制御)は後で詳説する。上記したプリドライバ32による回転方向の検出は、後述するようにセンサ信号処理部40と同様にして図6に基づいて行われる。プリドライバ32は図6に示すセンサ信号と回転方向の関係を記憶している。 The pre-driver 32 controls the inverter 33 based on the control information input from the rotation control processing unit 31 and the rotation angle signal and sensor signal input from the sensor signal processing unit 40. The pre-driver 32 detects the current rotation direction (or actual rotation direction) of the rotor 210 based on a sensor signal described later, and the actual rotation direction and the increase / decrease direction (or torque direction) of the rotation torque included in the control information. And compare. The pre-driver 32 is in the normal mode when both the actual rotation direction and the torque direction are coincident (in the direction of promoting rotation), and is in the power generation mode when they are different (or in the direction of preventing rotation). . The pre-driver 32 promotes the rotation of the output shaft and increases the rotation speed by controlling the drive of the inverter 33 so that a rotational torque along the rotation direction of the output shaft is generated in the normal mode. Further, the pre-driver 32 controls the drive of the inverter 33 so as to generate a rotation torque opposite to the rotation direction of the output shaft in the power generation mode, thereby preventing the rotation of the output shaft and slowing down the rotation speed. The pre-driver 32 controls the acceleration and deceleration of the rotational speed of the output shaft by the duty ratio included in the control information. The configuration of the pre-driver 32 and the control (normal control and power generation control) of the inverter 33 in the normal mode and the power generation mode will be described in detail later. The rotation direction detection by the pre-driver 32 is performed based on FIG. 6 in the same manner as the sensor signal processing unit 40 as described later. The pre-driver 32 stores the relationship between the sensor signal and the rotation direction shown in FIG.
 上記したように指示信号には常に有限の回転数が含まれているので、回転制御処理部31はトルク方向を常時プリドライバ32に出力している。そのためプリドライバ32は常に通常モードか発電モードになっている。特に内燃機関300の燃焼駆動が終了して、指示信号に回転トルクの発生を止める指示が含まれる場合、ロータ210がクランクシャフト330とともに惰性回転している方向にトルク方向が一致している。したがってこの場合プリドライバ32は通常モードとなっている。プリドライバ32がモータ制御部に相当する。 As described above, since the instruction signal always includes a finite number of rotations, the rotation control processing unit 31 always outputs the torque direction to the pre-driver 32. Therefore, the pre-driver 32 is always in the normal mode or the power generation mode. In particular, when the combustion drive of the internal combustion engine 300 is finished and the instruction signal includes an instruction to stop the generation of rotational torque, the direction of the torque coincides with the direction in which the rotor 210 rotates inertially with the crankshaft 330. Therefore, in this case, the pre-driver 32 is in the normal mode. The pre-driver 32 corresponds to a motor control unit.
 図4に示すようにインバータ33はステータコイル224~226それぞれに対応するスイッチ34~39を有している。本実施形態においてスイッチ34~39はそれぞれNチャネル型MOSFETであり、スイッチング素子に相当する。電源のプラス端子からマイナス端子に向かってU相スイッチ34,35、V相スイッチ36,37、および、W相スイッチ38,39それぞれが直列接続され、これら対を成す2つのスイッチが並列接続されている。そしてU相スイッチ34,35の中点にU相ステータコイル224の一端が接続され、V相スイッチ36,37の中点にV相ステータコイル225の一端が接続され、W相スイッチ38,39の中点にW相ステータコイル226の一端が接続されている。これらステータコイル224~226それぞれの他端が互いに結線され、ステータコイル224~226がY結線されている。 As shown in FIG. 4, the inverter 33 has switches 34 to 39 corresponding to the stator coils 224 to 226, respectively. In this embodiment, each of the switches 34 to 39 is an N-channel MOSFET and corresponds to a switching element. The U-phase switches 34 and 35, the V- phase switches 36 and 37, and the W- phase switches 38 and 39 are connected in series from the plus terminal to the minus terminal of the power source, and the two switches that form these pairs are connected in parallel. Yes. One end of the U-phase stator coil 224 is connected to the midpoint of the U-phase switches 34 and 35, and one end of the V-phase stator coil 225 is connected to the midpoint of the V- phase switches 36 and 37. One end of a W-phase stator coil 226 is connected to the midpoint. The other ends of the stator coils 224 to 226 are connected to each other, and the stator coils 224 to 226 are Y-connected.
 センサ信号処理部40は、回転角センサ60から出力される出力軸の回転角に対応する検知信号を二値化処理してデジタルのセンサ信号を生成し、このセンサ信号に基づいて回転角信号と回転方向信号を生成する。図2に示すように回転角センサ60はセンサ素子として3つのホール素子61~63を有し、これら3つのホール素子61~63はロータ210の永久磁石212の上方に位置している。上記したように永久磁石212にて発生される磁束はロータ210が機械角で90°(電気角で360°)回転する毎に周期的に変化する。そのためロータ210が機械角で90°回転すると、3つのホール素子61~63それぞれを透過する磁束の向きが反転する。図2および図3に示すように3つのホール素子61~63はロータ210の軸周りにおいて機械角で隣接角度30°で設けられている。これにより3つのホール素子61~63を透過する永久磁石212の磁束は電気角で120°ずれており、3つのホール素子61~63から出力される検知信号の位相も120°ずれている。この3つの検知信号がセンサ信号処理部40にて二値化処理され、図5に示すパルス状のU相センサ信号、V相センサ信号、W相センサ信号が生成される。図5~図7、図9、図10に示す回転角度は上記した電気角に相当し、以下においては特に断わらない限り、回転角度を電気角で表す。なお上記のセンサ信号が回転信号に相当し、センサ信号処理部40と回転角センサ60とによって回転角検出部が構成されている。 The sensor signal processing unit 40 binarizes the detection signal corresponding to the rotation angle of the output shaft output from the rotation angle sensor 60 to generate a digital sensor signal, and based on this sensor signal, the rotation angle signal and A rotation direction signal is generated. As shown in FIG. 2, the rotation angle sensor 60 has three Hall elements 61 to 63 as sensor elements, and these three Hall elements 61 to 63 are located above the permanent magnet 212 of the rotor 210. As described above, the magnetic flux generated by the permanent magnet 212 changes periodically every time the rotor 210 rotates 90 ° in mechanical angle (360 ° in electrical angle). Therefore, when the rotor 210 rotates 90 ° in mechanical angle, the direction of the magnetic flux passing through each of the three Hall elements 61 to 63 is reversed. As shown in FIGS. 2 and 3, the three Hall elements 61 to 63 are provided around the axis of the rotor 210 at a mechanical angle of 30 °. As a result, the magnetic flux of the permanent magnet 212 that passes through the three Hall elements 61 to 63 is shifted by 120 ° in terms of electrical angle, and the phases of the detection signals output from the three Hall elements 61 to 63 are also shifted by 120 °. The three detection signals are binarized by the sensor signal processing unit 40, and the pulsed U-phase sensor signal, V-phase sensor signal, and W-phase sensor signal shown in FIG. 5 are generated. The rotation angles shown in FIGS. 5 to 7, 9, and 10 correspond to the electrical angles described above, and in the following, the rotation angles are expressed in electrical angles unless otherwise specified. The sensor signal corresponds to a rotation signal, and the sensor signal processing unit 40 and the rotation angle sensor 60 constitute a rotation angle detection unit.
 上記した3つのセンサ信号は同一の波形を有し、ロータ210が180°回転すると電圧レベルがHiレベルからLoレベル、若しくは、LoレベルからHiレベルに変動する。そして3つのセンサ信号は互いに位相が120°ずれている。以上により図5および図6に示すようにロータ210の回転角度が60°進む毎にU相センサ信号、V相センサ信号、W相センサ信号の内のいずれか1つの電圧レベルが変化する。 The above three sensor signals have the same waveform, and when the rotor 210 rotates 180 °, the voltage level changes from the Hi level to the Lo level, or from the Lo level to the Hi level. The three sensor signals are out of phase with each other by 120 °. As described above, as shown in FIGS. 5 and 6, the voltage level of any one of the U-phase sensor signal, the V-phase sensor signal, and the W-phase sensor signal changes every time the rotation angle of the rotor 210 advances by 60 °.
 上記した回転角信号は3つのセンサ信号の内の少なくとも1つの電圧レベルが変化する毎に電圧レベルが所定時間変化して元に戻るパルス信号である。本実施形態において回転角信号は、センサ信号の電圧レベルがHiレベルからLoレベル、若しくは、LoレベルからHiレベルに変化する毎に、電圧レベルがHiレベルからLoレベルへと変化する。そして所定時間後に電圧レベルがLoレベルからHiレベルへと元に戻る。換言すれば、出力軸が60°回転する毎に回転角信号に含まれるパルスが立ち下がる。したがって回転角信号のパルスの立ち下りエッジを検出することで、モータ200が60°回転したことを検出することができる。このため単位時間当たりの回転角信号のパルスの数(立ち下りエッジ数)を検出することでモータ200の回転数(または、回転速度)を検出することができる。 The rotation angle signal described above is a pulse signal in which the voltage level changes for a predetermined time and returns to the original every time at least one of the three sensor signals changes. In the present embodiment, the voltage level of the rotation angle signal changes from the Hi level to the Lo level every time the voltage level of the sensor signal changes from the Hi level to the Lo level, or from the Lo level to the Hi level. Then, after a predetermined time, the voltage level returns from the Lo level to the Hi level. In other words, the pulse included in the rotation angle signal falls every time the output shaft rotates 60 °. Therefore, by detecting the falling edge of the pulse of the rotation angle signal, it is possible to detect that the motor 200 has rotated 60 °. For this reason, the rotation speed (or rotation speed) of the motor 200 can be detected by detecting the number of pulses (the number of falling edges) of the rotation angle signal per unit time.
 上記した回転方向信号は3つのセンサ信号の電圧レベルの変化パターンに応じて、Hiレベル若しくはLoレベルに電圧レベルが固定されるパルス信号である。この回転方向信号の電圧レベルを定めるためには、センサ信号処理部40がモータ200の回転方向を検出しなければならないが、モータ200の回転方向は図6に示す図表に基づいて検出される。センサ信号処理部40は図6に示すモータ200の回転角度に対する3つのセンサ信号の変化パターンの対応関係を記憶している。センサ信号処理部40は図5および図6に示すように時間がt1からt7へと進む過程(期間T1からT6へと進む過程)において3つのセンサ信号の電圧レベルがどのように変化したかを判定する。例えば図6に示すように期間T1においてU相センサ信号、V相センサ信号、W相センサ信号の電圧レベルがHi,Lo,Hiの場合に、時間が進み期間T2においてHi,Lo,Loと変化した場合、センサ信号処理部40はモータ200が正転していると判定する。これとは異なり、期間T1においてU相センサ信号、V相センサ信号、W相センサ信号の電圧レベルがHi,Lo,Hiの場合に、時間が進み期間T2においてLo,Lo,Hiと変化した場合、センサ信号処理部40はモータ200が逆転していると判定する。このようにセンサ信号処理部40は、図6に示す3つのセンサ信号の電圧レベルの組み合わせが時間経過に伴って実線矢印で示すように左から右へと変化する場合にモータ200は正転していると判定する。それとは逆にセンサ信号処理部40は、図6に示す3つのセンサ信号の電圧レベルの組み合わせが時間経過に伴って破線矢印で示すように右から左へと変化する場合にモータ200は逆転していると判定する。センサ信号処理部40はこの判定結果に基づいて回転方向信号の電圧レベルを決定している。 The above rotation direction signal is a pulse signal whose voltage level is fixed at the Hi level or the Lo level according to the voltage level change pattern of the three sensor signals. In order to determine the voltage level of the rotation direction signal, the sensor signal processing unit 40 must detect the rotation direction of the motor 200. The rotation direction of the motor 200 is detected based on the chart shown in FIG. The sensor signal processing unit 40 stores a correspondence relationship between the change patterns of the three sensor signals with respect to the rotation angle of the motor 200 shown in FIG. As shown in FIGS. 5 and 6, the sensor signal processing unit 40 determines how the voltage levels of the three sensor signals have changed in the process in which the time advances from t1 to t7 (process in which the time advances from period T1 to T6). judge. For example, as shown in FIG. 6, when the voltage levels of the U-phase sensor signal, the V-phase sensor signal, and the W-phase sensor signal are Hi, Lo, and Hi in the period T1, the time advances and changes to Hi, Lo, and Lo in the period T2. In this case, the sensor signal processing unit 40 determines that the motor 200 is rotating forward. In contrast, when the voltage levels of the U-phase sensor signal, the V-phase sensor signal, and the W-phase sensor signal are Hi, Lo, and Hi in the period T1, the time advances and changes to Lo, Lo, and Hi in the period T2. The sensor signal processing unit 40 determines that the motor 200 is rotating in reverse. In this way, the sensor signal processing unit 40 causes the motor 200 to rotate forward when the combination of the voltage levels of the three sensor signals shown in FIG. 6 changes from left to right as indicated by the solid line arrows as time elapses. It is determined that On the other hand, the sensor signal processing unit 40 reverses the motor 200 when the combination of the voltage levels of the three sensor signals shown in FIG. 6 changes from right to left as indicated by the dashed arrows with the passage of time. It is determined that The sensor signal processing unit 40 determines the voltage level of the rotation direction signal based on the determination result.
 状態判定部50はモータ200の回転状態に応じて、デューティ比の変化する状態判定信号を生成する。本実施形態に係る状態判定部50は3つのセンサ信号の電圧レベルが変化している場合に第1デューティ比の状態判定信号を生成する。これとは異なり3つのセンサ信号それぞれの電圧レベルが一定となった場合に状態判定部50は第1デューティ比とは異なる第2デューティ比の状態判定信号を生成する。本実施形態において第1デューティ比は80%、第2デューティ比は90%である。第1デューティ比はモータ200が回転状態であることを示し、第2デューティ比はモータ200が停止状態であることを示している。この状態判定信号が電子制御装置10に入力される。電子制御装置10は状態判定信号のデューティ比に基づいてモータ200が回転状態であるのかそれとも停止状態であるのかを判別する。 The state determination unit 50 generates a state determination signal whose duty ratio changes according to the rotation state of the motor 200. The state determination unit 50 according to the present embodiment generates a state determination signal having a first duty ratio when the voltage levels of the three sensor signals are changing. In contrast, when the voltage level of each of the three sensor signals becomes constant, the state determination unit 50 generates a state determination signal having a second duty ratio different from the first duty ratio. In the present embodiment, the first duty ratio is 80% and the second duty ratio is 90%. The first duty ratio indicates that the motor 200 is in a rotating state, and the second duty ratio indicates that the motor 200 is in a stopped state. This state determination signal is input to the electronic control device 10. Based on the duty ratio of the state determination signal, the electronic control unit 10 determines whether the motor 200 is in a rotating state or a stopped state.
 本実施形態に係る状態判定部50はモータ200の回転状態の他に別の判定も行う。すなわち状態判定部50は、センサ信号の状態、モータ制御部30の状態、および、指示信号線90の状態の判定も行う。例えばU相センサ信号とV相センサ信号の電圧レベルが変化しているにも関わらず、W相センサ信号の電圧レベルが一定となる場合がある。この場合状態判定部50はW相センサ信号を生成する第3ホール素子63、若しくはこの第3ホール素子63とセンサ信号処理部40とを接続する第3センサ線96に天絡若しくは地絡が生じていると判定し、第3デューティ比(例えば、40%)の状態判定信号を生成する。また、例えばステータ線97~99を介して3相のステータコイル224~226に供給する回転電流の少なくとも1つの電圧レベルが一定となった場合、状態判定部50はモータ制御部30に異常が生じた、若しくは、ステータ線97~99の少なくとも1つに天絡若しくは地絡が生じたと判定する。この場合、状態判定部50は第4デューティ比(例えば、60%)の状態判定信号を生成する。さらに言えば、例えば指示信号線90の電圧レベルが一定となった場合、状態判定部50は指示信号線90に天絡若しくは地絡が生じたと判定し、第5デューティ比(例えば、100%)の状態判定信号を生成する。電子制御装置10は状態判定信号のデューティ比に基づいて、モータ200の回転状態だけではなく、センサ信号の状態、モータ制御部30の状態、および、指示信号線90の状態も判別する。 The state determination unit 50 according to the present embodiment performs another determination in addition to the rotation state of the motor 200. That is, the state determination unit 50 also determines the state of the sensor signal, the state of the motor control unit 30, and the state of the instruction signal line 90. For example, the voltage level of the W-phase sensor signal may be constant even though the voltage levels of the U-phase sensor signal and the V-phase sensor signal have changed. In this case, the state determination unit 50 causes a power fault or a ground fault in the third Hall element 63 that generates the W-phase sensor signal, or in the third sensor line 96 that connects the third Hall element 63 and the sensor signal processing unit 40. And a state determination signal having a third duty ratio (for example, 40%) is generated. For example, when at least one voltage level of the rotational current supplied to the three-phase stator coils 224 to 226 via the stator wires 97 to 99 becomes constant, the state determination unit 50 causes an abnormality in the motor control unit 30. Alternatively, it is determined that at least one of the stator wires 97 to 99 has a power fault or a ground fault. In this case, the state determination unit 50 generates a state determination signal having a fourth duty ratio (for example, 60%). Furthermore, for example, when the voltage level of the instruction signal line 90 becomes constant, the state determination unit 50 determines that a power fault or a ground fault has occurred in the instruction signal line 90, and a fifth duty ratio (for example, 100%) The state determination signal is generated. Based on the duty ratio of the state determination signal, the electronic control unit 10 determines not only the rotation state of the motor 200 but also the state of the sensor signal, the state of the motor control unit 30, and the state of the instruction signal line 90.
 次に、通常制御を説明する。プリドライバ32は通常制御においてロータ210が回転している方向(または、実回転方向)とインバータ33によってロータ210に生成される回転トルクの方向(トルク方向)とを同一とする。この制御では、図7に記号Hiで示すようにロータ210の回転角度が0°-120°において電源のプラス端子側に接続されたU相上段スイッチ34をオン状態、120°-240°においてV相上段スイッチ36をオン状態とする。そして240°-360°においてW相上段スイッチ38をオン状態とする。また図7に記号Pで示すようにロータ210の回転角度が300°-60°において電源のマイナス端子側に接続されたV相下段スイッチ37を断続的にオン状態、60°-180°においてW相下段スイッチ39を断続的にオン状態とする。そして180°-300°においてU相下段スイッチ35を断続的にオン状態とする。このようにプリドライバ32はモータ200が360°回転する間に、電源のプラス端子側に接続された上段スイッチ34,36,38を順次オン状態とし、電源のマイナス端子側に接続された下段スイッチ35,37,39を順次断続的にオン状態とする。こうすることで3つのステータコイル224~226の内の2つが電源のプラス端子とマイナス端子とに直列接続され、ステータコイルに回転電流が流れる。この結果回転トルクがロータ210に発生し、モータ200の出力軸が回転する。 Next, normal control will be described. In the normal control, the pre-driver 32 makes the direction in which the rotor 210 rotates (or the actual rotation direction) the same as the direction of the rotational torque generated in the rotor 210 by the inverter 33 (torque direction). In this control, as indicated by symbol Hi in FIG. 7, when the rotation angle of the rotor 210 is 0 ° -120 °, the U-phase upper switch 34 connected to the positive terminal side of the power supply is in the ON state, and at 120 ° -240 ° The upper phase switch 36 is turned on. Then, the W-phase upper switch 38 is turned on at 240 ° -360 °. Further, as indicated by the symbol P in FIG. 7, the V-phase lower switch 37 connected to the negative terminal side of the power source is intermittently turned on when the rotation angle of the rotor 210 is 300 ° -60 °, and W The phase lower stage switch 39 is intermittently turned on. Then, the U-phase lower switch 35 is intermittently turned on at 180 ° -300 °. In this way, the pre-driver 32 sequentially turns on the upper switches 34, 36, 38 connected to the positive terminal side of the power source while the motor 200 rotates 360 °, and the lower switch connected to the negative terminal side of the power source. 35, 37, and 39 are sequentially turned on sequentially. By doing so, two of the three stator coils 224 to 226 are connected in series to the positive terminal and the negative terminal of the power source, and a rotating current flows through the stator coil. As a result, rotational torque is generated in the rotor 210, and the output shaft of the motor 200 rotates.
 例えばモータ200の回転角度が0°-60°においてスイッチ34,37それぞれがオン状態になると、スイッチ34,37を介してステータコイル224,225が電源のプラス端子とマイナス端子とに直列接続される。したがって図8にて実線矢印で示すように電源のプラス端子からマイナス端子へと向かう電源電圧に基づく電流が流れる。この際、モータ200の実回転方向とトルク方向とが同一であるため、ステータコイル224,225には電源電圧とは逆向きの逆起電力が発生する。したがってこの場合、図8にて破線矢印で示すように電源のマイナス端子からプラス端子へと向かう逆起電力に基づく電流が流れる。この際、スイッチ34,37それぞれを流れる2つの電流の流動方向が反対向きとなるため、スイッチ34,37それぞれに過剰な電流が流れず、過度に発熱することがない。なお回転電流の流量は、下段スイッチ35,37,39それぞれのオン時間に依存して多くなる。したがって下段スイッチ35,37,39それぞれのオン時間が長くなると回転トルクが増大し、モータ200の加速度が増大する。 For example, when the rotation angle of the motor 200 is 0 ° -60 ° and the switches 34 and 37 are turned on, the stator coils 224 and 225 are connected in series to the positive terminal and the negative terminal of the power source via the switches 34 and 37. . Accordingly, a current based on the power supply voltage flows from the positive terminal to the negative terminal of the power supply as shown by the solid line arrow in FIG. At this time, since the actual rotation direction and the torque direction of the motor 200 are the same, a counter electromotive force in the direction opposite to the power supply voltage is generated in the stator coils 224 and 225. Accordingly, in this case, a current based on the back electromotive force flowing from the minus terminal to the plus terminal of the power source flows as indicated by a broken line arrow in FIG. At this time, since the flow directions of the two currents flowing through the switches 34 and 37 are opposite to each other, an excessive current does not flow through each of the switches 34 and 37, and excessive heat is not generated. The flow rate of the rotating current increases depending on the ON time of each of the lower switches 35, 37, and 39. Therefore, as the ON time of each of the lower switches 35, 37, 39 becomes longer, the rotational torque increases and the acceleration of the motor 200 increases.
 次に、発電制御を説明する。プリドライバ32は発電制御においてロータ210の実回転方向とトルク方向とを異ならせる。この場合、図9に記号Phで示すように、電源のプラス端子側に接続された上段スイッチ34,36,38を断続的にオン状態とする。詳しく言えば、Nを2以上の自然数とすると、図10に示すように制御対象となる下段スイッチ37,39を断続的にN回オン制御する毎に、制御対象となる上段スイッチ34,36をオン状態からオフ状態若しくはオフ状態からオン状態へと変化させる。本実施形態においてNは3であり、プリドライバ32は制御対象となる下段スイッチに3つのパルスを入力する毎に制御対象となる上段スイッチに入力する制御信号の電圧レベルをHiレベルからLoレベル若しくはLoレベルからHiレベルへと変化させる。なお図9に示すように制御対象外の上段スイッチはオフ状態となっており、制御対象の上段スイッチはモータ200が120°回転する間に断続的にオン状態に変化される。モータ200が120°回転する間に制御対象の上段スイッチが断続的にオン状態になる回数Mは、モータ200の回転数によって決定される。例えば図10では、モータ200が120°回転する間に制御対象の下段スイッチ37,38が断続的に4N+1回オン制御されるため、制御対象のU相上端スイッチ34は断続的に3回オン状態になっている。モータ200の回転数によっては、モータ200が120°回転する間に制御対象の上段スイッチが1回オン状態になることもあり得る。この場合、制御対象の上段スイッチはオン状態とオフ状態とに1度ずつなる。したがって制御対象の上段スイッチが断続的にオン状態になる回数Mは1以上の数となる。 Next, power generation control will be described. The pre-driver 32 makes the actual rotation direction and the torque direction of the rotor 210 different in the power generation control. In this case, as indicated by the symbol Ph in FIG. 9, the upper switches 34, 36, 38 connected to the positive terminal side of the power supply are turned on intermittently. More specifically, if N is a natural number of 2 or more, the upper switches 34 and 36 to be controlled are controlled every time the lower switches 37 and 39 to be controlled are intermittently turned on N times as shown in FIG. The state is changed from the on state to the off state or from the off state to the on state. In this embodiment, N is 3, and the pre-driver 32 changes the voltage level of the control signal input to the upper switch to be controlled from the Hi level to the Lo level each time three pulses are input to the lower switch to be controlled. Change from Lo level to Hi level. As shown in FIG. 9, the upper switch that is not controlled is in an off state, and the upper switch that is to be controlled is intermittently changed to an on state while the motor 200 rotates 120 °. The number M of times the upper switch to be controlled is intermittently turned on while the motor 200 rotates 120 ° is determined by the number of rotations of the motor 200. For example, in FIG. 10, since the lower switches 37 and 38 to be controlled are intermittently turned on 4N + 1 times while the motor 200 rotates 120 °, the U-phase upper end switch 34 to be controlled is intermittently turned on three times. It has become. Depending on the number of rotations of the motor 200, the upper switch to be controlled may be turned on once while the motor 200 rotates 120 °. In this case, the upper switch to be controlled is once in the on state and in the off state. Therefore, the number M of times the upper switch to be controlled is intermittently turned on is 1 or more.
 なお3つの上段スイッチ34,36,38の全てがオフ状態の場合、ステータコイル224~226に電源電圧に基づく回転電流が流れず、その回転電流に基づく回転トルクがロータ210には発生されない。しかしながら上記したように制御対象となっている上段スイッチは断続的ではあるが必ずオン状態になり、この上端スイッチがオン状態の時に制御対象の下段スイッチは断続的にN回オン状態になる。そのためステータコイル224~226に電源電圧に基づく回転電流が流れ、その回転電流に基づく回転トルクがロータ210に発生される。 When all the three upper switches 34, 36, and 38 are in the OFF state, the rotating current based on the power supply voltage does not flow through the stator coils 224 to 226, and the rotating torque based on the rotating current is not generated in the rotor 210. However, as described above, the upper switch to be controlled is intermittently turned on, but always turned on. When the upper switch is turned on, the lower switch to be controlled is turned on N times intermittently. Therefore, a rotating current based on the power supply voltage flows in the stator coils 224 to 226, and a rotating torque based on the rotating current is generated in the rotor 210.
 上記したようにステータコイル224~226に全く電流が流れない状態を作るのは、下記理由のためである。例えばモータ200の回転角度が0°-60°においてスイッチ34,37それぞれがオン状態になると、スイッチ34,37を介してステータコイル224,225が電源のプラス端子とマイナス端子とに直列接続される。したがって図11にて実線矢印で示すように電源のプラス端子からマイナス端子へと向かう電源電圧に基づく電流が流れる。この際、モータ200の実回転方向とトルク方向とが相違するため、U相ステータコイル224には電源電圧と同一方向の逆起電力が発生する。したがってこの場合、図11にて破線矢印で示すようにU相上段スイッチ34からステータコイル224,226を介してW相上段スイッチ38へと向かう逆起電力に基づく電流が流れる。この際、U相上段スイッチ34を流れる2つの電流の流動方向が同一となるため、U相上段スイッチ34に過剰な電流が流れ、それによって過度に発熱する虞がある。このような過度な発熱は、上段スイッチ36,38においても同様に起こる可能性がある。 The reason why no current flows through the stator coils 224 to 226 as described above is as follows. For example, when the rotation angle of the motor 200 is 0 ° -60 ° and the switches 34 and 37 are turned on, the stator coils 224 and 225 are connected in series to the positive terminal and the negative terminal of the power source via the switches 34 and 37. . Therefore, a current based on the power supply voltage flows from the positive terminal to the negative terminal of the power supply as shown by the solid arrow in FIG. At this time, since the actual rotation direction of the motor 200 is different from the torque direction, a counter electromotive force is generated in the U-phase stator coil 224 in the same direction as the power supply voltage. Therefore, in this case, a current based on the back electromotive force that flows from the U-phase upper switch 34 to the W-phase upper switch 38 via the stator coils 224 and 226 flows as indicated by a broken line arrow in FIG. At this time, since the flow directions of the two currents flowing through the U-phase upper switch 34 are the same, an excessive current flows through the U-phase upper switch 34, which may cause excessive heat generation. Such excessive heat generation may occur in the upper switches 36 and 38 as well.
 このようにモータ200の実回転方向とトルク方向とを異ならせる発電制御では、上段スイッチ34,36,38それぞれが過度に発熱する虞がある。そのため上記したようには制御対象となる上段スイッチを断続的にオン状態とし、上段スイッチ34,36,38それぞれに電流の流れない時間を設ける。これにより上段スイッチ34,36,38の過度な発熱が抑制される。 In this way, in the power generation control in which the actual rotation direction and the torque direction of the motor 200 are different, there is a possibility that the upper switches 34, 36, and 38 generate excessive heat. Therefore, as described above, the upper switch to be controlled is intermittently turned on, and a time during which no current flows is provided in each of the upper switches 34, 36, and 38. Thereby, excessive heat generation of the upper switches 34, 36, 38 is suppressed.
 なお本構成とは異なり、上段スイッチ34,36,38の過度な発熱を抑制するために60°-120°、180°-240°、300°-360°などの特定の角度範囲において全ての上段スイッチ34,36,38をオフ状態にする場合、下記に示す不具合の生じる虞がある。図2に示したように、ロータ210は複数の永久磁石212を有し、この永久磁石212の周囲には突極222に巻き回されたステータコイル223が設けられている。ステータコイル223に回転電流が流れていない場合、回転電流による回転トルクはロータ210には発生しない。しかしながら上記した永久磁石212とステータコイル223との間に磁力が生じ、これがロータ210の回転を妨げるブレーキトルクとしてロータ210に作用する。この永久磁石212のために生じるブレーキトルクはロータ210の回転に対して図12に示すように変動する。ブレーキトルクがゼロとなるのは、ステータコイル223(突極222)と永久磁石212のN極若しくはS極が対向する場合である。しかしながらロータ210が回転し、それによってN極若しくはS極と突極222とが対向位置から離れると、それを妨げるブレーキトルクが発生する。なお上記の磁力のためにロータ210の回転を促進するトルクも発生する。しかしながらロータ210の回転を妨げる方向のトルクが問題となるため、本実施形態ではこのトルクを主として論じている。 Unlike this configuration, in order to suppress excessive heat generation of the upper switches 34, 36, 38, all upper stages in a specific angle range such as 60 ° -120 °, 180 ° -240 °, 300 ° -360 °, etc. When the switches 34, 36, and 38 are turned off, the following problems may occur. As shown in FIG. 2, the rotor 210 has a plurality of permanent magnets 212, and a stator coil 223 wound around the salient pole 222 is provided around the permanent magnets 212. When no rotating current flows through the stator coil 223, no rotating torque is generated in the rotor 210 due to the rotating current. However, a magnetic force is generated between the permanent magnet 212 and the stator coil 223 described above, and this acts on the rotor 210 as a brake torque that prevents the rotation of the rotor 210. The brake torque generated due to the permanent magnet 212 varies as shown in FIG. The brake torque becomes zero when the stator coil 223 (the salient pole 222) and the N pole or S pole of the permanent magnet 212 face each other. However, when the rotor 210 rotates and thereby the N-pole or S-pole and the salient pole 222 are separated from the opposed positions, a brake torque is generated that prevents the rotation. Note that torque that promotes rotation of the rotor 210 is also generated due to the magnetic force. However, since the torque in a direction that prevents the rotation of the rotor 210 is a problem, this torque is mainly discussed in the present embodiment.
 図13に示すように3つのホール素子61~63の内の真ん中に位置する第3ホール素子63は、自身に最も近い突極222と機械角で7.5°(電気角で30°)ずれるように配置されている。したがって図14の(a)欄に示すように永久磁石212の4つのN極が突極222と対向している状態において第1ホール素子61がN極とS極との間に位置し、第1ホール素子61の出力レベルがHiレベルからLoレベル、若しくは、LoレベルからHiレベルへと変化する。そして図14の(b)欄に示すようにロータ210が60°回転すると永久磁石212の4つのS極が突極222と対向し、第3ホール素子63がN極とS極との間に位置してその出力レベルが変化する。以下同様にして図14の(c)~(f)欄に示すようにロータ210が60°回転する毎に永久磁石212の4つのN極若しくはS極が突極222と対向し、3つのホール素子61~63の内の1つがN極とS極との間に位置してその出力レベルが変化する。以上により、ロータ210が60°、120°、180°、240°、300°、360°(0°)回転した際に永久磁石212のN極若しくはS極が突極222と対向してブレーキトルクがゼロとなる。そしてこれら6つの回転角度の際に3つのホール素子61~63の内の1つの出力レベルが反転する。 As shown in FIG. 13, the third Hall element 63 located in the middle of the three Hall elements 61 to 63 deviates by 7.5 ° in mechanical angle (30 ° in electrical angle) from the salient pole 222 closest to itself. Are arranged as follows. Accordingly, as shown in the column (a) of FIG. 14, the first Hall element 61 is located between the N pole and the S pole in a state where the four N poles of the permanent magnet 212 are opposed to the salient pole 222. The output level of the 1 hall element 61 changes from the Hi level to the Lo level, or from the Lo level to the Hi level. 14B, when the rotor 210 rotates 60 °, the four south poles of the permanent magnet 212 face the salient pole 222, and the third hall element 63 is located between the north and south poles. Position and change its output level. Similarly, as shown in the columns (c) to (f) of FIG. 14, every time the rotor 210 rotates 60 degrees, the four north or south poles of the permanent magnet 212 face the salient pole 222, and three holes One of the elements 61 to 63 is located between the N pole and the S pole, and its output level changes. As described above, when the rotor 210 is rotated by 60 °, 120 °, 180 °, 240 °, 300 °, 360 ° (0 °), the N pole or S pole of the permanent magnet 212 faces the salient pole 222, and the brake torque Becomes zero. At these six rotation angles, the output level of one of the three Hall elements 61 to 63 is inverted.
 上記したようにモータ200の出力軸はクランクシャフト330に連れ回されて回転する。しかしながら内燃機関300での燃焼駆動が終了すると、クランクシャフト330とともにモータ200の出力軸の回転も弱まる。その回転が静止するほどに弱まると、上記のブレーキトルクのためにその回転方向が一瞬逆転した後、N極若しくはS極が突極222と対向するようにロータ210が停止する虞がある。この際、例えば図15に示すように第3ホール素子63の出力レベルが反転した後に元に戻ると、それによってセンサ信号処理部40とプリドライバ32にてロータ210が逆回転したと判定される。するとプリドライバ32はモータ200の実回転方向とトルク方向とが相違すると判定し、通常モードから発電モードへと切り換わる。そしてその動作を終了する。上記した変形例の場合、プリドライバ32は発電モードにおいて60°-120°、180°-240°、300°-360°などの特定の角度範囲でステータコイル224~226に回転電流を流さない。例えば図15に示すようにモータ200が回転角度180°-240°の範囲にて停止した場合、再起動時においてプリドライバ32はこの角度範囲に対応した制御信号をスイッチ34~39に出力する。この際に電源のプラス端子側に位置する全ての上段スイッチ34,36,38がオフ状態に制御されるため、ステータコイル224~226に回転電流が流れない。この結果ロータ210に回転トルクが生じず、ロータ210を回転することができなくなる。 As described above, the output shaft of the motor 200 is rotated by the crankshaft 330 and rotates. However, when the combustion drive in the internal combustion engine 300 ends, the rotation of the output shaft of the motor 200 as well as the crankshaft 330 weakens. If the rotation becomes weak enough to stop, the rotor 210 may stop so that the N pole or the S pole faces the salient pole 222 after the rotation direction is reversed momentarily due to the brake torque. At this time, for example, as shown in FIG. 15, when the output level of the third Hall element 63 is reversed and then returned to the original level, it is determined that the rotor 210 is reversely rotated by the sensor signal processing unit 40 and the pre-driver 32. . Then, the pre-driver 32 determines that the actual rotation direction of the motor 200 is different from the torque direction, and switches from the normal mode to the power generation mode. Then, the operation ends. In the case of the above-described modification, the pre-driver 32 does not pass a rotating current through the stator coils 224 to 226 in a specific angle range such as 60 ° -120 °, 180 ° -240 °, 300 ° -360 ° in the power generation mode. For example, as shown in FIG. 15, when the motor 200 stops within a range of a rotation angle of 180 ° -240 °, the pre-driver 32 outputs a control signal corresponding to this angle range to the switches 34 to 39 at the time of restart. At this time, since all the upper switches 34, 36, and 38 located on the positive terminal side of the power supply are controlled to be in an OFF state, no rotating current flows through the stator coils 224 to 226. As a result, no rotational torque is generated in the rotor 210, and the rotor 210 cannot be rotated.
 これに対して本実施形態に係るプリドライバ32は、上記したように発電モードにおいて制御対象となる下段スイッチに3つのパルスを出力する毎に制御対象となる上段スイッチに入力する制御信号の電圧レベルを変化する。したがって図16の時間t8に示すように再起動時においてステータコイル224~226に回転電流が流れ、これによってロータ210が回転される。 In contrast, the pre-driver 32 according to the present embodiment, as described above, outputs the voltage level of the control signal input to the upper switch to be controlled every time three pulses are output to the lower switch to be controlled in the power generation mode. Change. Therefore, as shown at time t8 in FIG. 16, a rotational current flows through the stator coils 224 to 226 at the time of restarting, whereby the rotor 210 is rotated.
 次にプリドライバ32の概略構成を図17に基づいて説明する。プリドライバ32は基準信号生成部70、PWM駆動信号生成部71、制御判定部72、発電制御部73、メモリ74、および、スイッチ駆動回路75を有する。基準信号生成部70は下段スイッチ35,37,39に入力する制御信号のパルス周期を定めるものであり、PWM駆動信号生成部71は下段スイッチ35,37,39に入力する制御信号のパルス幅(または、デューティ比)を定めるものである。図18に示すように基準信号生成部70は基準信号として周期が一定の三角波を生成し、この三角波をPWM駆動信号生成部71に出力する。PWM駆動信号生成部71には上記した三角波とともに回転制御処理部31の制御情報が入力される。この制御情報には目標回転数と現在回転数とに基づくデューティ比が含まれているが、これは図18に直線で示すように目標回転数と現在回転数とに電圧レベルの依存する信号(以下、デューティ信号と示す)である。PWM駆動信号生成部71はデューティ信号と三角波とを比較し、前者が後者よりも電圧レベルの高い場合にHiレベル、反対の場合にLoレベルとなるPWM駆動信号を生成する。このPWM駆動信号のパルス周期は三角波によって定まるが、パルス幅はデューティ信号によって定まる。目標回転数と現在回転数との乖離が大きい場合、デューティ信号の電圧レベルは高まり、PWM駆動信号のパルス幅が長くなる。これとは反対に目標回転数と現在回転数との乖離が小さい場合、デューティ信号の電圧レベルは低まり、PWM駆動信号のパルス幅が短くなる。スイッチ駆動回路75はPWM駆動信号のパルス幅およびパルス周期に基づいて下段スイッチ35,37,39をオンオフ制御するが、そのオン時間はPWM駆動信号のパルス幅に依存する。すなわちPWM駆動信号のパルス幅が長くなると下段スイッチ35,37,39のオン時間が長くなり、PWM駆動信号のパルス幅が短くなると下段スイッチ35,37,39のオン時間が短くなる。 Next, a schematic configuration of the pre-driver 32 will be described with reference to FIG. The pre-driver 32 includes a reference signal generation unit 70, a PWM drive signal generation unit 71, a control determination unit 72, a power generation control unit 73, a memory 74, and a switch drive circuit 75. The reference signal generation unit 70 determines the pulse period of the control signal input to the lower switches 35, 37, 39, and the PWM drive signal generation unit 71 sets the pulse width of the control signal input to the lower switches 35, 37, 39 ( Alternatively, the duty ratio is determined. As shown in FIG. 18, the reference signal generation unit 70 generates a triangular wave having a constant period as a reference signal, and outputs this triangular wave to the PWM drive signal generation unit 71. Control information of the rotation control processing unit 31 is input to the PWM drive signal generation unit 71 together with the above-described triangular wave. This control information includes a duty ratio based on the target rotational speed and the current rotational speed, which is a signal whose voltage level depends on the target rotational speed and the current rotational speed as shown by a straight line in FIG. Hereinafter, it is indicated as a duty signal). The PWM drive signal generation unit 71 compares the duty signal and the triangular wave, and generates a PWM drive signal that becomes Hi level when the former has a higher voltage level than the latter, and becomes Lo level when the other is opposite. The pulse period of this PWM drive signal is determined by a triangular wave, but the pulse width is determined by a duty signal. When the difference between the target rotational speed and the current rotational speed is large, the voltage level of the duty signal increases and the pulse width of the PWM drive signal becomes long. On the other hand, when the difference between the target rotational speed and the current rotational speed is small, the voltage level of the duty signal is lowered and the pulse width of the PWM drive signal is shortened. The switch drive circuit 75 performs on / off control of the lower switches 35, 37, and 39 based on the pulse width and pulse period of the PWM drive signal, and the on-time depends on the pulse width of the PWM drive signal. That is, when the pulse width of the PWM drive signal is increased, the ON time of the lower switches 35, 37, 39 is increased, and when the pulse width of the PWM drive signal is decreased, the ON time of the lower switches 35, 37, 39 is decreased.
 制御判定部72は発電制御部73の動作モードを通常モードにするかそれとも発電モードにするかを判定するものである。この制御判定部72は図19に示すフローチャートにしたがって動作モードの判定を行う。先ずステップS10において制御判定部72は回転制御処理部31から入力される制御情報、および、センサ信号処理部40から入力される回転角信号とセンサ信号を読み込む。そして制御判定部72はステップS20へと進む。 The control determination unit 72 determines whether the operation mode of the power generation control unit 73 is the normal mode or the power generation mode. The control determination unit 72 determines the operation mode according to the flowchart shown in FIG. First, in step S10, the control determination unit 72 reads the control information input from the rotation control processing unit 31, and the rotation angle signal and sensor signal input from the sensor signal processing unit 40. Then, the control determination unit 72 proceeds to step S20.
 ステップS20へ進むと制御判定部72は読み込んだセンサ信号、および、図6に示す関係に基づいてロータ210の回転方向を判定する。そして制御判定部72はステップS30へと進む。 In step S20, the control determination unit 72 determines the rotation direction of the rotor 210 based on the read sensor signal and the relationship shown in FIG. Then, the control determination unit 72 proceeds to step S30.
 ステップS30へ進むと制御判定部72は読み込んだ回転角信号に基づいてモータ200の現在回転数を検出し、その現在回転数が記憶している閾値よりも高いか否かを判定する。すなわち制御判定部72はロータ210の回転数(または、回転速度)が発電制御を行えるほどに速いか否かを判定する。回転数が閾値よりも高いと判定すると制御判定部72はステップS40へと進み、回転数が閾値以下であると判定すると制御判定部72はステップS50へと進む。 In step S30, the control determination unit 72 detects the current rotation speed of the motor 200 based on the read rotation angle signal, and determines whether the current rotation speed is higher than a stored threshold value. That is, the control determination unit 72 determines whether or not the rotation speed (or rotation speed) of the rotor 210 is fast enough to perform power generation control. If it is determined that the rotational speed is higher than the threshold value, the control determination unit 72 proceeds to step S40, and if it is determined that the rotational speed is equal to or less than the threshold value, the control determination unit 72 proceeds to step S50.
 なおブレーキトルクのためにロータ210が一瞬逆方向に回転した後に停止する場合、その信号の切り換わりは一瞬で起こるため、回転数が上記した閾値よりも十分に高いと制御判定部72は判定する。したがってブレーキトルクのためにロータ210が逆回転した場合、制御判定部72はステップS50へと進む。 Note that when the rotor 210 stops after momentarily rotating in the reverse direction due to brake torque, the signal switching occurs instantaneously, so the control determination unit 72 determines that the rotation speed is sufficiently higher than the above-described threshold value. . Therefore, when the rotor 210 rotates in reverse due to the brake torque, the control determination unit 72 proceeds to step S50.
 ステップS40へ進むと制御判定部72は動作モードを通常モードにすることを決定し、その情報を含むモード信号を発電制御部73に出力する。そしてその動作を終了する。本実施形態のモード信号は、通常モードの場合にLoレベル、発電モードの場合にHiレベルに設定される。 In step S40, the control determination unit 72 determines to set the operation mode to the normal mode, and outputs a mode signal including the information to the power generation control unit 73. Then, the operation ends. The mode signal of the present embodiment is set to Lo level in the normal mode and Hi level in the power generation mode.
 フローを遡り、ステップS30において回転数が閾値よりも高いと判定してステップS50へ進むと制御判定部72は、ロータ210の回転方向とトルク方向とが異なるか否かを判定する。回転方向とトルク方向とが同一であると判定すると制御判定部72はステップS40へと進み、モード信号の電圧レベルをLoレベルに設定する。これとは異なり回転方向とトルク方向とが異なると判定すると制御判定部72はステップS60へと進む。 When going back in the flow and determining that the rotational speed is higher than the threshold value in step S30 and proceeding to step S50, the control determination unit 72 determines whether or not the rotational direction of the rotor 210 is different from the torque direction. If it is determined that the rotation direction and the torque direction are the same, the control determination unit 72 proceeds to step S40 and sets the voltage level of the mode signal to the Lo level. In contrast, if it is determined that the rotation direction and the torque direction are different, the control determination unit 72 proceeds to step S60.
 ステップS60へ進むと制御判定部72は動作モードを発電モードにすることを決定し、モード信号の電圧レベルをHiレベルに設定する。そしてその動作を終了する。 In step S60, the control determination unit 72 determines that the operation mode is set to the power generation mode, and sets the voltage level of the mode signal to the Hi level. Then, the operation ends.
 発電制御部73は制御対象となるインバータ33のスイッチのオンオフ状態を決定するものである。発電制御部73には上記した基準信号としての三角波とモード信号が入力される。図20に示すように発電制御部73は電圧レベルの一定な比較信号を有しており、この比較信号と基準信号とを比較して、デューティ比50%のスイッチ信号を生成する。このスイッチ信号のパルス周期はPWM駆動信号のパルス周期と同一であり、下段スイッチ35,37,39それぞれが断続的にオン状態となる間隔と同一である。発電制御部73はスイッチ信号の立下りエッジをカウントし、そのカウント数をメモリ74に記憶する。そして発電制御部73はカウント数がN(例えば、3)までカウントアップされるとカウント数をリセットしてゼロへと戻す。発電制御部73はカウント数をリセットするとともにメモリ74に記憶されているスイッチオフ信号の電圧レベルを定めるフラグを0から1若しくは1から0へと書き換える。発電制御部73はモード信号の電圧レベルがLoレベルの場合に通常モードになり、上記のフラグに依らずに出力信号(例えば、スイッチオフ信号)をLoレベルにする。しかしながらモード信号の電圧レベルがHiレベルの場合に発電制御部73は発電モードになり、フラグに応じてスイッチオフ信号の電圧レベルを変化させる。すなわち発電制御部は発電モードにおいてフラグが1の場合にスイッチオフ信号をHiレベルにし、その反対にフラグが0の場合にスイッチオフ信号をLoレベルにする。 The power generation control unit 73 determines the on / off state of the switch of the inverter 33 to be controlled. The power generation control unit 73 receives the triangular wave and the mode signal as the reference signal described above. As shown in FIG. 20, the power generation control unit 73 has a comparison signal having a constant voltage level, and compares the comparison signal with a reference signal to generate a switch signal with a duty ratio of 50%. The pulse period of this switch signal is the same as the pulse period of the PWM drive signal, and is the same as the interval at which the lower switches 35, 37 and 39 are intermittently turned on. The power generation control unit 73 counts the falling edge of the switch signal and stores the count number in the memory 74. Then, when the count number is counted up to N (for example, 3), the power generation control unit 73 resets the count number and returns it to zero. The power generation control unit 73 resets the count number and rewrites the flag that determines the voltage level of the switch-off signal stored in the memory 74 from 0 to 1 or from 1 to 0. The power generation control unit 73 enters the normal mode when the voltage level of the mode signal is the Lo level, and sets the output signal (for example, the switch-off signal) to the Lo level regardless of the flag. However, when the voltage level of the mode signal is the Hi level, the power generation control unit 73 enters the power generation mode and changes the voltage level of the switch-off signal according to the flag. That is, the power generation control unit sets the switch-off signal to Hi level when the flag is 1 in the power generation mode, and sets the switch-off signal to Lo level when the flag is 0.
 スイッチ駆動回路75はセンサ信号、スイッチオフ信号、および、PWM駆動信号に基づいてスイッチ34~39に出力する制御信号を生成するものである。スイッチ駆動回路75は図6に示すセンサ信号と回転角度の関係、および、図7に示すセンサ信号と制御信号の関係を記憶している。スイッチ駆動回路75は図6に示す関係とセンサ信号とに基づいて回転角度を算出し、図7に示す関係と算出した回転角度に基づいて制御対象となるインバータ33のスイッチを特定する。そしてスイッチ駆動回路75はPWM駆動信号に基づいて制御対象となっている下段スイッチにパルス状の制御信号を出力する。またスイッチ駆動回路75は図7に示す関係とスイッチオフ信号に基づいて制御対象となる上段スイッチに制御信号を出力する。スイッチオフ信号がLoレベルの場合、スイッチ駆動回路75は制御対象となる上段スイッチにHiレベルの制御信号を出力し、オン状態にする。上記したように発電制御部73が通常モードの場合、スイッチオフ信号は常時Loレベルである。そのためスイッチ駆動回路75は図7に記号Hiで示すように制御対象の上段スイッチにHiレベルの制御信号を出力する。これとは異なり発電制御部73が発電モードの場合、スイッチオフ信号はHiレベルとLoレベルとに変化する。スイッチオフ信号がHiレベルの場合、スイッチ駆動回路75は制御対象となる上段スイッチにLoレベルの制御信号を出力し、オフ状態にする。そのためスイッチ駆動回路75は図10に記号Phで示すように、スイッチオフ信号の電圧レベルが切り換わる毎に制御対象の上段スイッチに出力する制御信号の電圧レベルをHiレベルからLoレベル若しくはLoレベルからHiレベルへと切り換える。 The switch drive circuit 75 generates a control signal to be output to the switches 34 to 39 based on the sensor signal, the switch-off signal, and the PWM drive signal. The switch drive circuit 75 stores the relationship between the sensor signal and the rotation angle shown in FIG. 6, and the relationship between the sensor signal and the control signal shown in FIG. The switch drive circuit 75 calculates the rotation angle based on the relationship shown in FIG. 6 and the sensor signal, and specifies the switch of the inverter 33 to be controlled based on the relationship shown in FIG. 7 and the calculated rotation angle. Then, the switch drive circuit 75 outputs a pulsed control signal to the lower switch that is the control target based on the PWM drive signal. The switch drive circuit 75 outputs a control signal to the upper switch to be controlled based on the relationship shown in FIG. 7 and the switch-off signal. When the switch-off signal is at the Lo level, the switch drive circuit 75 outputs a Hi-level control signal to the upper switch to be controlled and turns it on. As described above, when the power generation control unit 73 is in the normal mode, the switch-off signal is always at the Lo level. Therefore, the switch drive circuit 75 outputs a Hi level control signal to the upper switch to be controlled, as indicated by the symbol Hi in FIG. In contrast, when the power generation control unit 73 is in the power generation mode, the switch-off signal changes between the Hi level and the Lo level. When the switch-off signal is at the Hi level, the switch drive circuit 75 outputs a Lo-level control signal to the upper switch to be controlled to turn it off. Therefore, as indicated by symbol Ph in FIG. 10, the switch drive circuit 75 changes the voltage level of the control signal output to the upper switch to be controlled from the Hi level to the Lo level or the Lo level each time the voltage level of the switch-off signal is switched. Switch to Hi level.
 次に、図21に基づいて発電制御部73の信号処理を詳説する。先ずステップS110において発電制御部73はモード信号がHiレベルか否かを判定する。モード信号がHiレベルではないと判定した場合、発電制御部73は通常モードになりステップS120へと進む。これとは異なりモード信号がHiレベルであると判定した場合、発電制御部73は発電モードになりステップS130へと進む。 Next, the signal processing of the power generation control unit 73 will be described in detail based on FIG. First, in step S110, the power generation control unit 73 determines whether or not the mode signal is at the Hi level. If it is determined that the mode signal is not at the Hi level, the power generation control unit 73 enters the normal mode and proceeds to step S120. On the other hand, when it is determined that the mode signal is at the Hi level, the power generation control unit 73 enters the power generation mode and proceeds to step S130.
 ステップS120へ進むと発電制御部73はメモリ74に記憶されていたカウント数をリセットし、ステップS140へと進む。 When proceeding to step S120, the power generation control unit 73 resets the count number stored in the memory 74, and proceeds to step S140.
 ステップS140へ進むと発電制御部73はメモリ74に記憶されているスイッチオフ信号のフラグを0にして、スイッチオフ信号をLoレベルにする。上記したステップS110,S120,S140を通常モードの発電制御部73が繰り返している間、スイッチ駆動回路75はスイッチ34~39を図7に示す関係に基づいて開閉制御する。 In step S140, the power generation control unit 73 sets the switch-off signal flag stored in the memory 74 to 0 and sets the switch-off signal to Lo level. While the power generation control unit 73 in the normal mode repeats the above steps S110, S120, and S140, the switch drive circuit 75 controls the switches 34 to 39 to open and close based on the relationship shown in FIG.
 フローを少し遡りステップS110においてモード信号はHiレベルであると判定してステップS130へ進むと、発電制御部73はメモリ74に記憶されているカウント数を取得する。そして発電制御部73はステップS150へと進む。 When the flow goes back a little and it is determined in step S110 that the mode signal is Hi level and the process proceeds to step S130, the power generation control unit 73 acquires the count number stored in the memory 74. Then, the power generation control unit 73 proceeds to step S150.
 ステップS150へ進むと発電制御部73はメモリ74に記憶されているスイッチオフ信号のフラグを取得して、スイッチオフ信号状態を確認する。そして発電制御部73はステップS160へと進む。 In step S150, the power generation control unit 73 acquires the switch-off signal flag stored in the memory 74 and confirms the switch-off signal state. Then, the power generation control unit 73 proceeds to step S160.
 ステップS160へ進むと発電制御部73はステップS130にて取得したカウント数がN(例えば、3)以上か否かを判定する。カウント数がNよりも小さいと判定すると発電制御部73はステップS170へと進む。これとは異なりカウント数がN以上であると判定すると発電制御部73はステップS180へと進む。 When the process proceeds to step S160, the power generation control unit 73 determines whether or not the count number acquired in step S130 is N (for example, 3) or more. If it is determined that the count number is smaller than N, the power generation control unit 73 proceeds to step S170. On the other hand, if it is determined that the count number is N or more, the power generation control unit 73 proceeds to step S180.
 ステップS170へ進むと発電制御部73はカウント数を1だけ増加(または、インクリメント)して、それをメモリ74に記憶する。そして発電制御部73はステップS220へと進む。 In step S170, the power generation control unit 73 increases (or increments) the count number by 1 and stores it in the memory 74. Then, the power generation control unit 73 proceeds to step S220.
 ステップS180へ進むと発電制御部73はステップS150にて取得したスイッチオフ信号のフラグが1であり、スイッチオフ信号はHiレベルであるか否かを判定する。スイッチオフ信号はHiレベルではないと判定すると発電制御部73はステップS190へと進む。これとは異なりスイッチオフ信号はHiレベルであると判定すると発電制御部73はステップS200へと進む。 In step S180, the power generation control unit 73 determines whether the switch-off signal flag acquired in step S150 is 1, and the switch-off signal is at the Hi level. If it is determined that the switch-off signal is not at the Hi level, the power generation control unit 73 proceeds to step S190. On the other hand, if it is determined that the switch-off signal is at the Hi level, the power generation control unit 73 proceeds to step S200.
 ステップS190へ進むと発電制御部73はスイッチオフ信号のフラグを1にしてそれをメモリ74に記憶する。そして発電制御部73はスイッチオフ信号の電圧レベルをHiレベルにし、ステップS210へと進む。 In step S190, the power generation control unit 73 sets the switch-off signal flag to 1 and stores it in the memory 74. Then, the power generation control unit 73 sets the voltage level of the switch-off signal to the Hi level, and proceeds to step S210.
 ステップS200へ進むと発電制御部73はスイッチオフ信号のフラグを0にしてそれをメモリ74に記憶する。そして発電制御部73はスイッチオフ信号の電圧レベルをLoレベルにし、ステップS210へと進む。 In step S200, the power generation control unit 73 sets the switch-off signal flag to 0 and stores it in the memory 74. Then, the power generation control unit 73 sets the voltage level of the switch-off signal to the Lo level, and proceeds to step S210.
 ステップS210へ進むと発電制御部73はメモリ74に記憶されていたカウント数をリセットし、ステップS220へと進む。 When proceeding to step S210, the power generation control unit 73 resets the count number stored in the memory 74, and proceeds to step S220.
 ステップS220へ進むと発電制御部73はスイッチオフ信号のフラグは1であり、スイッチオフ信号はHiレベルか否かを判定する。スイッチオフ信号はHiレベルではないと判定すると発電制御部73はステップS230へと進む。これとは異なりスイッチオフ信号はHiレベルであると判定すると発電制御部73はステップS240へと進む。 In step S220, the power generation control unit 73 determines whether the switch-off signal flag is 1, and the switch-off signal is at the Hi level. If it is determined that the switch-off signal is not at the Hi level, the power generation control unit 73 proceeds to step S230. On the other hand, if it is determined that the switch-off signal is at the Hi level, the power generation control unit 73 proceeds to step S240.
 ステップS230へ進むと発電制御部73はスイッチオフ信号をLoレベルにする。そしてその動作を終了する。 In step S230, the power generation control unit 73 sets the switch-off signal to Lo level. Then, the operation ends.
 ステップS240へ進むと発電制御部73はスイッチオフ信号をHiレベルにする。そしてその動作を終了する。上記したステップS110,S130,S150~S240を発電モードの発電制御部73が繰り返している間、スイッチ駆動回路75はスイッチ34~39を図7に示す関係とスイッチオフ信号の電圧レベルにより図9に示す関係となるように開閉制御する。 In step S240, the power generation control unit 73 sets the switch-off signal to the Hi level. Then, the operation ends. While the above-described steps S110, S130, and S150 to S240 are repeated by the power generation control unit 73 in the power generation mode, the switch drive circuit 75 sets the switches 34 to 39 in FIG. 9 according to the relationship shown in FIG. Open / close control is performed so as to satisfy the relationship shown.
 通常モードの発電制御部73は図21のステップS110,S120,S140を順次繰り返し、スイッチオフ信号の電圧レベルをLoレベルに固定する。これに対して発電モードの発電制御部73は図21のステップS110、S130,S150~S240を順次繰り返し、スイッチオフ信号の電圧レベルを変化させる。 The normal mode power generation control unit 73 sequentially repeats steps S110, S120, and S140 of FIG. 21 to fix the voltage level of the switch-off signal at the Lo level. On the other hand, the power generation control unit 73 in the power generation mode sequentially repeats steps S110, S130, and S150 to S240 in FIG. 21 to change the voltage level of the switch-off signal.
 通常モードから発電モードに切り換わった直後の発電制御部73が初めてステップS130へと進んだ場合、メモリ74に記憶されているカウント数はゼロである。そしてステップS150へと進んだ場合、メモリ74に記憶されているスイッチオフ信号のフラグは0であり、スイッチオフ信号の電圧レベルはLoレベルである。したがってステップS160へと進んだ場合、カウント数はゼロなので発電制御部73はステップS170へと進み、スイッチ回数をインクリメントする。そして発電制御部73はステップS220に進むとスイッチオフ信号はLoレベルなのでステップS230へと進み、Loレベルのスイッチオフ信号を出力する。この処理をN回(例えば、3回)繰り返した後、再びステップS160へと進むと、スイッチ回数がN回以上となっているので、発電制御部73はステップS180へと進む。この際スイッチオフ信号はLoレベルなので、発電制御部73はステップS190へと進み、スイッチオフ信号のフラグを1にして、スイッチオフ信号をHiレベルにする。これにより例えば図10に示すように制御対象となっているU相上段スイッチ34に入力される制御信号の電圧レベルがHiレベルからLoレベルへと変化される。 When the power generation control unit 73 immediately after switching from the normal mode to the power generation mode proceeds to step S130 for the first time, the count number stored in the memory 74 is zero. When the process proceeds to step S150, the flag of the switch-off signal stored in the memory 74 is 0, and the voltage level of the switch-off signal is Lo level. Therefore, when the process proceeds to step S160, since the count number is zero, the power generation control unit 73 proceeds to step S170 and increments the number of switches. When the power generation control unit 73 proceeds to step S220, the switch-off signal is Lo level, so the process proceeds to step S230 and outputs a Lo-level switch-off signal. After repeating this process N times (for example, 3 times) and then proceeding to step S160 again, the power generation control unit 73 proceeds to step S180 because the number of switches is N or more. At this time, since the switch-off signal is at the Lo level, the power generation control unit 73 proceeds to step S190, sets the switch-off signal flag to 1, and sets the switch-off signal to the Hi level. As a result, for example, as shown in FIG. 10, the voltage level of the control signal input to the U-phase upper switch 34 to be controlled is changed from the Hi level to the Lo level.
 この後にステップS210へ進むと発電制御部73はスイッチ回数をリセットする。発電制御部73はステップS220に進むとスイッチオフ信号はHiレベルなのでステップS240へと進み、Hiレベルのスイッチオフ信号を出力する。この後に発電制御部73が再びステップS130へと進んだ場合、メモリ74に記憶されているカウント数はゼロである。そしてステップS150へと進んだ場合、メモリ74に記憶されているスイッチオフ信号のフラグは1であり、スイッチオフ信号の電圧レベルはHiレベルである。したがってステップS160へと進んだ場合、カウント数はゼロなので発電制御部73はステップS170へと進み、スイッチ回数をインクリメントする。そして発電制御部73はステップS220に進むとスイッチオフ信号はHiレベルなのでステップS240へと進み、Hiレベルのスイッチオフ信号を出力する。この処理をN回(3回)繰り返した後、再びステップS160へと進むと、スイッチ回数がN回以上となっているので、発電制御部73はステップS180へと進む。この際スイッチオフ信号はHiレベルなので、発電制御部73はステップS200へと進み、スイッチオフ信号のフラグを0にして、スイッチオフ信号をLoレベルにする。これにより例えば図10に示すように制御対象となっているU相上段スイッチ34に入力される制御信号の電圧レベルがLoレベルからHiレベルへと変化される。 Thereafter, when the process proceeds to step S210, the power generation control unit 73 resets the number of switches. When the power generation control unit 73 proceeds to step S220, since the switch-off signal is at the Hi level, the power generation control unit 73 proceeds to step S240 and outputs a Hi-level switch-off signal. If the power generation control unit 73 thereafter proceeds to step S130 again, the count number stored in the memory 74 is zero. When the process proceeds to step S150, the flag of the switch-off signal stored in the memory 74 is 1, and the voltage level of the switch-off signal is Hi level. Therefore, when the process proceeds to step S160, since the count number is zero, the power generation control unit 73 proceeds to step S170 and increments the number of switches. When the power generation control unit 73 proceeds to step S220, since the switch-off signal is at the Hi level, the power generation control unit 73 proceeds to step S240 and outputs a Hi-level switch-off signal. After repeating this process N times (three times) and then proceeding to step S160 again, the power generation control unit 73 proceeds to step S180 because the number of switches is N or more. At this time, since the switch-off signal is at the Hi level, the power generation control unit 73 proceeds to step S200, sets the switch-off signal flag to 0, and sets the switch-off signal to the Lo level. As a result, for example, as shown in FIG. 10, the voltage level of the control signal input to the U-phase upper switch 34 to be controlled is changed from the Lo level to the Hi level.
 次に、本実施形態に係るモータ制御装置100の作用効果を説明する。上記したようにプリドライバ32は発電モードにおいて、所定の回転角度範囲だけモータ200が回転する間にステータコイル223を電源と断続的に接続して通電している。これによればブレーキトルクのためにモータ200が一瞬逆回転し、プリドライバ32が通常モードから発電モードに一時的に切り換わったとしても、再起動時に回転トルクを発生することができる。これによりカム位相を、内燃機関300の再始動に適した位相に調整することができる。 Next, functions and effects of the motor control device 100 according to the present embodiment will be described. As described above, in the power generation mode, the pre-driver 32 is energized by intermittently connecting the stator coil 223 to the power source while the motor 200 rotates by a predetermined rotation angle range. According to this, even when the motor 200 reversely rotates momentarily due to the brake torque and the pre-driver 32 is temporarily switched from the normal mode to the power generation mode, the rotational torque can be generated at the time of restart. As a result, the cam phase can be adjusted to a phase suitable for restarting the internal combustion engine 300.
 また上記したようにプリドライバ32は発電モードにおいて所定の回転角度範囲だけモータ200が回転する間にステータコイル223への通電を断続的にしている。これによれば上段スイッチ34,36,38に過度な電流の流れることが抑制され、上段スイッチ34,36,38の過度な発熱が抑制される。 As described above, the pre-driver 32 intermittently energizes the stator coil 223 while the motor 200 rotates by a predetermined rotation angle range in the power generation mode. According to this, it is possible to suppress an excessive current flow through the upper switches 34, 36, and 38, and it is possible to suppress excessive heat generation of the upper switches 34, 36, and 38.
 より具体的に言えば、プリドライバ32は発電モードにおいてモータ200が所定の回転角度範囲だけ回転する間にステータコイル223と電源のプラス端子とを断続的にM回接続しつつ、プラス端子と接続されている際にマイナス端子を断続的にN回接続する。そのためモータが所定の回転角度範囲だけ回転する間にステータコイルとプラス端子とを常時接続しつつ、マイナス端子を断続的にN回接続する構成と比べて、上段スイッチ34,36,38に過度な電流の流れることが抑制される。この結果、上段スイッチ34,36,38の過度な発熱が抑制される。 More specifically, the pre-driver 32 is connected to the positive terminal while intermittently connecting the stator coil 223 and the positive terminal of the power source M times while the motor 200 rotates by a predetermined rotation angle range in the power generation mode. When connected, the negative terminal is connected N times intermittently. Therefore, the upper switches 34, 36, and 38 are excessive compared to the configuration in which the negative terminal is intermittently connected N times while the stator coil and the positive terminal are always connected while the motor rotates by a predetermined rotation angle range. Current flow is suppressed. As a result, excessive heat generation of the upper switches 34, 36, 38 is suppressed.
 以上、本開示の好ましい実施形態について説明したが、本開示は上記した実施形態になんら制限されることなく、本開示の主旨を逸脱しない範囲において、種々変形して実施することが可能である。 The preferred embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present disclosure.
 (第1変形例)
 図10に示すように本実施形態では制御対象となっている上段スイッチがオフ状態においても、制御対象となっている下段スイッチが断続的にN回オフ状態に制御する例を示した。しかしながらこれとは異なり、図22にて破線で示すように、制御対象となっている上段スイッチがオフ状態の場合、制御対象となっている下段スイッチをオフ状態に制御してもよい。この場合、下段スイッチのスイッチング回数が減るため、インバータ33の発熱が抑制される。なおこのような制御を実施する場合、スイッチ駆動回路75はHiレベルのスイッチオフ信号が入力されている際にスイッチ34~39の全てをオフ状態に制御する。
(First modification)
As shown in FIG. 10, in the present embodiment, an example in which the lower switch as the control target is intermittently controlled to the OFF state N times even when the upper switch as the control target is in the off state is shown. However, unlike this, as indicated by a broken line in FIG. 22, when the upper switch as the control target is in the OFF state, the lower switch as the control target may be controlled to be in the OFF state. In this case, since the switching frequency of the lower switch is reduced, heat generation of the inverter 33 is suppressed. When performing such control, the switch drive circuit 75 controls all of the switches 34 to 39 to be in an OFF state when a Hi level switch-off signal is input.
 (第2変形例)
 本実施形態では制御対象の上段スイッチを断続的にオン状態に制御する例を示した。しかしながらこれとは異なり、図23に示すように、制御対象となっている上段スイッチを常時オン状態にしてもよい。この場合、制御対象となっている下段スイッチを断続的にオン状態にすることと連続的にオフ状態にすることを順次繰り返す。この場合、上記の第1変形例と比べて上段スイッチのスイッチング回数が減るため、インバータ33の発熱が抑制される。なお、このような制御を実施する場合、スイッチ駆動回路75はスイッチオフ信号の電圧レベルに依らすに制御対象となる上段スイッチを常時オン状態に制御する。そしてスイッチ駆動回路75はHiレベルのスイッチオフ信号が入力されている際に下段スイッチ35、37、39をオフ状態に制御する。
(Second modification)
In this embodiment, the example which controls the upper stage switch of a control object to an ON state intermittently was shown. However, unlike this, as shown in FIG. 23, the upper switch as the control target may be always on. In this case, the lower switch to be controlled is repeatedly turned on and continuously turned off sequentially. In this case, since the number of switching times of the upper switch is reduced as compared with the first modified example, heat generation of the inverter 33 is suppressed. When such control is performed, the switch drive circuit 75 always controls the upper switch to be controlled to be in an on state depending on the voltage level of the switch-off signal. The switch drive circuit 75 controls the lower switches 35, 37, and 39 to be in an OFF state when a Hi level switch-off signal is input.
 (その他の変形例)
 本実施形態ではプリドライバ32がセンサ信号に基づいてモータ200の回転方向を検出する例を示した。しかしながらプリドライバ32にセンサ信号処理部40にて検出されたモータ200の回転方向が入力される構成を採用することもできる。
(Other variations)
In the present embodiment, an example in which the pre-driver 32 detects the rotation direction of the motor 200 based on the sensor signal is shown. However, a configuration in which the rotation direction of the motor 200 detected by the sensor signal processing unit 40 is input to the pre-driver 32 may be employed.
 本実施形態では回転角センサ60がセンサ素子としてホール素子を有する例を示した。しかしながらセンサ素子としては磁気信号を電気信号に変換する磁電変換素子であれば適宜採用することができる。またセンサ素子の数として3つの例を示したが、センサ素子の数としては3つ以上である必要はない。 In the present embodiment, the rotation angle sensor 60 has a Hall element as a sensor element. However, any sensor element can be used as long as it is a magnetoelectric conversion element that converts a magnetic signal into an electric signal. In addition, although three examples are shown as the number of sensor elements, the number of sensor elements need not be three or more.
 本実施形態ではドライバ20が状態判定部50を有する例を示した。しかしながらドライバ20は状態判定部50を有していなくともよい。 In the present embodiment, an example in which the driver 20 includes the state determination unit 50 is shown. However, the driver 20 may not have the state determination unit 50.
 本実施形態では回転角信号が3つのセンサ信号の内の少なくとも1つの電圧レベルが変化する毎に電圧レベルが所定時間変化して元に戻るパルス信号である例を示した。しかしながら回転角信号としては上記例に限定されず、3つのセンサ信号の電圧レベルの変化頻度に応じて電圧レベルの変動する信号でもよい。この変形例の場合、センサ信号処理部40は3つのセンサ信号の電圧レベルの変化頻度に対応する電圧レベルの関係を記憶しており、センサ信号の電圧レベルの変化頻度を検出した後、上記の関係に基づいた電圧レベルの信号を回転角信号として出力する。そして電子制御装置10、回転制御処理部31、および、プリドライバ32それぞれは、回転角信号の電圧レベルに対応する回転数の関係を記憶しており、この関係と入力される回転角信号の電圧レベルとに基づいて回転数を検出する。 In the present embodiment, an example is shown in which the rotation angle signal is a pulse signal in which the voltage level changes for a predetermined time each time at least one of the three sensor signals changes. However, the rotation angle signal is not limited to the above example, and may be a signal whose voltage level fluctuates according to the change frequency of the voltage levels of the three sensor signals. In the case of this modification, the sensor signal processing unit 40 stores the relationship of the voltage level corresponding to the change frequency of the voltage level of the three sensor signals, and after detecting the change frequency of the voltage level of the sensor signal, A voltage level signal based on the relationship is output as a rotation angle signal. Each of the electronic control device 10, the rotation control processing unit 31, and the pre-driver 32 stores the relationship of the rotation speed corresponding to the voltage level of the rotation angle signal, and this relationship and the voltage of the input rotation angle signal. The number of revolutions is detected based on the level.
 本実施形態では特に言及していなかったが、上記の機能を有するモータ制御装置100は、アイドリングストップを行う車両に好適である。アイドリングストップを行う車両の場合、エンジンを停止した後に短時間で再始動することが求められる。この際に例えばエンジンを停止した後に一度プリドライバ32の動作モードを強制的に通常モードにする場合、その処理に時間がかかる。そのためエンジンを短時間で再始動できなくなる虞がある。これに対して本実施形態で示したようにモータ制御装置100ではブレーキトルクによるモータ200の停止に依らずにプリドライバ32によって回転トルクを発生することができる。これにより上記の比較構成とは異なり、短時間で内燃機関300の再始動に適した位相にカム位相を調整し、それによってエンジンを短時間で再始動することができる。 Although not particularly mentioned in the present embodiment, the motor control device 100 having the above function is suitable for a vehicle that performs idling stop. In the case of a vehicle that performs idling stop, it is required to restart in a short time after stopping the engine. At this time, for example, when the operation mode of the pre-driver 32 is forcibly set to the normal mode once after the engine is stopped, the processing takes time. Therefore, there is a possibility that the engine cannot be restarted in a short time. On the other hand, as shown in the present embodiment, the motor control device 100 can generate the rotational torque by the pre-driver 32 without depending on the stop of the motor 200 due to the brake torque. Thus, unlike the above-described comparative configuration, the cam phase can be adjusted to a phase suitable for restarting the internal combustion engine 300 in a short time, whereby the engine can be restarted in a short time.
 ここで、この出願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のセクション(あるいはステップと言及される)から構成され、各セクションは、たとえば、S10と表現される。さらに、各セクションは、複数のサブセクションに分割されることができる、一方、複数のセクションが合わさって一つのセクションにすることも可能である。さらに、このように構成される各セクションは、デバイス、モジュール、ミーンズとして言及されることができる。 Here, the flowchart described in this application or the process of the flowchart is configured by a plurality of sections (or referred to as steps), and each section is expressed as S10, for example. Further, each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section. Further, each section configured in this manner can be referred to as a device, module, or means.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (4)

  1.  クランクシャフト(330)およびカムシャフト(320)それぞれとバルブタイミング変換部(310)を介して機械的に連結されたモータ(200)の駆動を制御することで、前記クランクシャフトに対する前記カムシャフトの位相を調整するモータ制御装置であって、
     前記モータは、前記バルブタイミング変換部に連結された出力軸と、前記出力軸が固定されるロータ(210)と、前記ロータの周りに設けられたステータ(220)と、を有し、前記ロータは永久磁石(212)を備え、前記ステータはステータコイル(223~226)を備えており、
     前記ステータコイルに電流を流して磁束を発生させ、その磁束を前記永久磁石に作用させることで、前記出力軸の回転を促進する若しくは妨げる回転トルクを前記ロータに生じさせるインバータ(33)と、
     前記モータの回転角度と前記モータの回転方向とに依存する回転信号を出力する回転角検出部(40,60)と、
     前記回転信号に基づいて前記インバータを構成する複数のスイッチング素子(34~39)を開閉制御することで前記ステータコイルと電源のプラス端子およびマイナス端子それぞれとの接続を制御して前記ステータコイルに流れる電流を制御し、前記回転トルクの発生を制御するモータ制御部(32)と、
     前記モータ制御部に前記回転トルクの増減方向を指示する指示部(31)と、を有し、
     前記モータ制御部は、前記指示部から指示された前記回転トルクの増減方向が前記モータの回転を促進する方向の場合に通常モードになり、前記回転トルクの増減方向が前記モータの回転を妨げる方向の場合に発電モードになり、
     前記モータ制御部は、
     Mを1以上の自然数とし、Nを2以上の自然数とすると、
     前記通常モードにおいて前記モータの回転角度に依らずに前記ステータコイルを前記電源のプラス端子とマイナス端子それぞれに接続し、
     前記発電モードにおいて所定の回転角度範囲だけ前記モータが回転する間に前記ステータコイルを断続的にM回前記プラス端子に接続しつつ、前記ステータコイルが前記プラス端子に接続されている際に前記ステータコイルを前記マイナス端子に断続的にN回接続するモータ制御装置。
    The camshaft phase relative to the crankshaft is controlled by controlling the driving of the motor (200) mechanically connected to the crankshaft (330) and the camshaft (320) via the valve timing converter (310). A motor control device for adjusting
    The motor includes an output shaft coupled to the valve timing conversion unit, a rotor (210) to which the output shaft is fixed, and a stator (220) provided around the rotor, and the rotor Comprises a permanent magnet (212), the stator comprises a stator coil (223-226),
    An inverter (33) for generating a rotating torque in the rotor that promotes or prevents rotation of the output shaft by causing a current to flow through the stator coil to generate a magnetic flux and causing the magnetic flux to act on the permanent magnet;
    A rotation angle detector (40, 60) for outputting a rotation signal depending on the rotation angle of the motor and the rotation direction of the motor;
    Based on the rotation signal, a plurality of switching elements (34 to 39) constituting the inverter are controlled to be opened and closed to control connection between the stator coil and each of the positive terminal and the negative terminal of the power source and flow to the stator coil. A motor control unit (32) for controlling current and controlling generation of the rotational torque;
    An instruction unit (31) for instructing the motor control unit to increase or decrease the rotational torque,
    The motor control unit is in a normal mode when the increase / decrease direction of the rotational torque instructed by the instruction unit is a direction for promoting the rotation of the motor, and the increase / decrease direction of the rotational torque prevents the motor from rotating. In the case of
    The motor controller is
    When M is a natural number of 1 or more and N is a natural number of 2 or more,
    In the normal mode, the stator coil is connected to the positive terminal and the negative terminal of the power source regardless of the rotation angle of the motor,
    The stator coil is connected to the positive terminal M times intermittently while the stator coil is intermittently connected to the positive terminal while the motor rotates in a predetermined rotation angle range in the power generation mode. A motor control device that connects the coil to the negative terminal intermittently N times.
  2.  前記モータ制御部は前記発電モードにおいて前記ステータコイルが前記プラス端子に接続されていない際に前記ステータコイルと前記マイナス端子とを非接続状態にする請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein the motor control unit disconnects the stator coil and the minus terminal when the stator coil is not connected to the plus terminal in the power generation mode.
  3.  クランクシャフト(330)およびカムシャフト(320)それぞれとバルブタイミング変換部(310)を介して機械的に連結されたモータ(200)の駆動を制御することで、前記クランクシャフトに対する前記カムシャフトの位相を調整するモータ制御装置であって、
     前記モータは、前記バルブタイミング変換部に連結された出力軸と、前記出力軸が固定されるロータ(210)と、前記ロータの周りに設けられたステータ(220)と、を有し、前記ロータは永久磁石(212)を備え、前記ステータはステータコイル(223~226)を備えており、
     前記ステータコイルに電流を流して磁束を発生させ、その磁束を前記永久磁石に作用させることで、前記出力軸の回転を促進する若しくは妨げる回転トルクを前記ロータに生じさせるインバータ(33)と、
     前記モータの回転角度と前記モータの回転方向とに依存する回転信号を出力する回転角検出部(40,60)と、
     前記回転信号に基づいて前記インバータを構成する複数のスイッチング素子(34~39)を開閉制御することで前記ステータコイルと電源のプラス端子およびマイナス端子それぞれとの接続を制御して前記ステータコイルに流れる電流を制御し、前記回転トルクの発生を制御するモータ制御部(32)と、
     前記モータ制御部に前記回転トルクの増減方向を指示する指示部(31)と、を有し、
     前記モータ制御部は、前記指示部から指示された前記回転トルクの増減方向が前記モータの回転を促進する方向の場合に通常モードになり、前記回転トルクの増減方向が前記モータの回転を妨げる方向の場合に発電モードになり、
     前記モータ制御部は、
     Nを2以上の自然数とすると、
     前記通常モードにおいて前記モータの回転角度に依らずに前記ステータコイルを前記プラス端子と前記マイナス端子それぞれに接続し、
     前記発電モードにおいて前記モータの回転角度に依らずに前記ステータコイルを前記プラス端子に接続しつつ、所定の回転角度範囲だけ前記モータが回転する間に前記ステータコイルを前記マイナス端子に断続的にN回接続した後に前記マイナス端子を断続的にN回接続した時間の分だけ前記ステータコイルと前記マイナス端子とを連続的に非接続状態にすることを少なくとも一回行うモータ制御装置。
    The camshaft phase relative to the crankshaft is controlled by controlling the driving of the motor (200) mechanically connected to the crankshaft (330) and the camshaft (320) via the valve timing converter (310). A motor control device for adjusting
    The motor includes an output shaft coupled to the valve timing conversion unit, a rotor (210) to which the output shaft is fixed, and a stator (220) provided around the rotor, and the rotor Comprises a permanent magnet (212), the stator comprises a stator coil (223-226),
    An inverter (33) for generating a rotating torque in the rotor that promotes or prevents rotation of the output shaft by causing a current to flow through the stator coil to generate a magnetic flux and causing the magnetic flux to act on the permanent magnet;
    A rotation angle detector (40, 60) for outputting a rotation signal depending on the rotation angle of the motor and the rotation direction of the motor;
    Based on the rotation signal, a plurality of switching elements (34 to 39) constituting the inverter are controlled to be opened and closed to control connection between the stator coil and each of the positive terminal and the negative terminal of the power source and flow to the stator coil A motor control unit (32) for controlling current and controlling generation of the rotational torque;
    An instruction unit (31) for instructing the motor control unit to increase or decrease the rotational torque,
    The motor control unit is in a normal mode when the increase / decrease direction of the rotational torque instructed by the instruction unit is a direction for promoting the rotation of the motor, and the increase / decrease direction of the rotational torque prevents the motor from rotating. In the case of
    The motor controller is
    When N is a natural number of 2 or more,
    In the normal mode, the stator coil is connected to each of the plus terminal and the minus terminal regardless of the rotation angle of the motor,
    While the stator coil is connected to the plus terminal regardless of the rotation angle of the motor in the power generation mode, the stator coil is intermittently connected to the minus terminal while the motor rotates by a predetermined rotation angle range. A motor control device that performs at least one time that the stator coil and the minus terminal are continuously disconnected from each other for an amount of time that the minus terminal is intermittently connected N times after being connected once.
  4.  前記モータの駆動を制御することで、アイドリングストップを行う内燃機関(300)の前記クランクシャフトに対する前記カムシャフトの位相を調整する請求項1~3いずれか1項に記載のモータ制御装置。 The motor control device according to any one of claims 1 to 3, wherein a phase of the camshaft with respect to the crankshaft of the internal combustion engine (300) that performs idling stop is adjusted by controlling driving of the motor.
PCT/JP2016/000389 2015-02-02 2016-01-27 Motor control apparatus WO2016125456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015018551A JP2016142182A (en) 2015-02-02 2015-02-02 Motor control device
JP2015-018551 2015-02-02

Publications (1)

Publication Number Publication Date
WO2016125456A1 true WO2016125456A1 (en) 2016-08-11

Family

ID=56563811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000389 WO2016125456A1 (en) 2015-02-02 2016-01-27 Motor control apparatus

Country Status (2)

Country Link
JP (1) JP2016142182A (en)
WO (1) WO2016125456A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461235B2 (en) 2020-07-01 2024-04-03 株式会社アイシン Valve opening/closing timing control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131684A (en) * 2006-11-16 2008-06-05 Fujitsu General Ltd Driving system of electric motor
JP2009062837A (en) * 2007-09-04 2009-03-26 Denso Corp Valve timing adjusting apparatus
JP2014047694A (en) * 2012-08-31 2014-03-17 Honda Motor Co Ltd Control device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131684A (en) * 2006-11-16 2008-06-05 Fujitsu General Ltd Driving system of electric motor
JP2009062837A (en) * 2007-09-04 2009-03-26 Denso Corp Valve timing adjusting apparatus
JP2014047694A (en) * 2012-08-31 2014-03-17 Honda Motor Co Ltd Control device of internal combustion engine

Also Published As

Publication number Publication date
JP2016142182A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP4269341B2 (en) Valve timing adjustment device
US8076899B2 (en) Valve timing control apparatus
JP6468266B2 (en) Switched reluctance motor controller
WO2015093574A1 (en) Engine unit and vehicle
JP3906429B2 (en) Synchronous motor drive
JP6332056B2 (en) Motor control device
JP2015135105A (en) Vehicular four-stroke engine unit and vehicle
JP2005133708A (en) Valve characteristic adjusting device
JP5115590B2 (en) Motor control device, valve timing adjusting device, and energization control method for inverter circuit
JP2017031808A (en) Engine unit and vehicle
TWI663327B (en) Engine unit and straddle type vehicle
JP2004101234A (en) Rotation detecting apparatus
CN108111089B (en) Control device for switched reluctance motor
WO2016125456A1 (en) Motor control apparatus
JP6976203B2 (en) Brushless motor
JP2013036391A (en) Motor-driven valve timing variable device
WO2014051011A1 (en) Electromagnetic rotating device, engine assembly, and engine vehicle
JP6528638B2 (en) Electronic control unit
WO2020012679A1 (en) Drive device for three-phase rotating electric machine and three-phase rotating electric machine unit
JP6365334B2 (en) Motor control device
JP6398865B2 (en) Motor control device
JP2016092855A (en) Motor controller
JP7211302B2 (en) valve timing adjuster
JP2004201456A (en) Brushless motor and control method therefor
JP2015117677A (en) Engine unit and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746289

Country of ref document: EP

Kind code of ref document: A1