WO2012167876A1 - Blutentnahmekanüle einer die herzfunktion ersetzenden oder unterstützenden pumpe - Google Patents

Blutentnahmekanüle einer die herzfunktion ersetzenden oder unterstützenden pumpe Download PDF

Info

Publication number
WO2012167876A1
WO2012167876A1 PCT/EP2012/002245 EP2012002245W WO2012167876A1 WO 2012167876 A1 WO2012167876 A1 WO 2012167876A1 EP 2012002245 W EP2012002245 W EP 2012002245W WO 2012167876 A1 WO2012167876 A1 WO 2012167876A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventricle
volume
heart
pressure
cannula
Prior art date
Application number
PCT/EP2012/002245
Other languages
English (en)
French (fr)
Inventor
Marc Hein
Greatex NICHOLAS
Roland GRAEFE
Ulrich Steinseifer
Original Assignee
Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) filed Critical Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Priority to US14/123,849 priority Critical patent/US20140114202A1/en
Priority to AU2012266809A priority patent/AU2012266809B2/en
Priority to EP12724909.2A priority patent/EP2717762A1/de
Priority to CA2842522A priority patent/CA2842522A1/en
Priority to CN201280035244.2A priority patent/CN103857326B/zh
Publication of WO2012167876A1 publication Critical patent/WO2012167876A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0265Measuring blood flow using electromagnetic means, e.g. electromagnetic flowmeter
    • A61B5/027Measuring blood flow using electromagnetic means, e.g. electromagnetic flowmeter using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02028Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0538Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6848Needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6869Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • A61M60/531Regulation using real-time patient data using blood pressure data, e.g. from blood pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • A61M60/554Regulation using real-time blood pump operational parameter data, e.g. motor current of blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/857Implantable blood tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3344Measuring or controlling pressure at the body treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3379Masses, volumes, levels of fluids in reservoirs, flow rates

Definitions

  • Blood collection cannula of a heart function replacing or
  • the invention relates to a blood collection cannula for connecting a
  • the invention further relates to a measuring device for monitoring the
  • Ventricular contractions and / or the function of a cardiac function replacing or supporting pump as well as a method for adjusting the flow rate and / or the delivery pressure of the cardiac function replacing or supporting pump, which conveys blood by means of a blood collection cannula from a ventricle of the heart and into the aorta of the Heart into it.
  • a pump to support the heart function, such as continuously operating centrifugal pumps or any other type of pump.
  • a pump delivers blood from a ventricle of the heart, e.g. from the left ventricle, for which purpose a blood collection cannula is inserted into the ventricle, in particular in the apex region of the heart, through which the blood is conveyed from the ventricle into the pump.
  • the pump When connected to the left ventricle, the pump then delivers the blood to the aorta.
  • the blood collection cannula of the aforementioned publication in this case has a pressure sensor at the end of the blood collection cannula, which lies in the ventricle. It has been found here that ventricular contractions can be evaluated based on the pressure and motor lead of the pump.
  • volume flow / delivery pressure is substantially constant and is initially adjusted by experienced clinical staff.
  • the volume flow / delivery pressure should be large enough to ensure sufficient cardiac support, but not too high to avoid collapse of the ventricle.
  • This setting may e.g. be detected with additional sensors that are introduced for this purpose briefly in the heart, but can not remain there for a long time.
  • sensors have drift problems over time, and an optimum volumetric flow rate of the pump can also vary depending on other variables, e.g. in dependency of
  • a blood sampling cannula of the type mentioned at the same end of the cannula lying in the ventricle also has a volume sensor for measuring in addition to the pressure sensor the volume and / or volume changes of the ventricle in at least a portion of the ventricle.
  • the ventricular contraction can be monitored and evaluated, in particular the work done by the heart in the left ventricle.
  • Volume sensor is detected an absolute reading, but it is
  • the work done by the heart and left ventricle is the area of a closed line in the P-V diagram of the ventricular contraction at each heartbeat. This area is independent of the absolute pressure or volume size, so that the detection of changes in these quantities is sufficient to determine a measure of the work.
  • volume change in the ventricular part and the total volume a relationship, in particular a linear relationship exists. This relationship can be taken into account in the evaluation of the volumetric measured values.
  • the invention thus offers the possibility of the sensors on the
  • Blood collection cannula to monitor the ventricular contraction at any time
  • the measured values of volume and pressure in the ventricle can be tapped at any time on the blood sampling cannula, e.g. for the purpose of external evaluation or by evaluation with a to the
  • Blood collection cannula or measuring device provided on the pump. It can be such a doctor at any time a change in the pumping speed or the volume flow / delivery pressure to be made, which s.den
  • Measured values or the calculated ventricular work or heart work or their temporal change can be monitored.
  • the heart work initially increases, namely on such an area in which the heart works work to open the aortic valve against the pressure of the pumping into the aorta until the heart work significantly decreases, from one
  • the volume flow / delivery pressure of the pump so that an operating point of the pump is reached, in which the heart valve during the heartbeats remains closed.
  • this operating point may be e.g. can be found by falling below a maximum measured heart work by a certain amount, percentage or absolute, or even by
  • Increase in cardiac work e.g., difference quotient of cardiac work and
  • Volume sensor is designed as a pin which is pointing away from the cannula end, in particular into the interior of the ventricle and on his
  • Surface has two electrodes spaced apart in the direction of stretching of the pen, by means of which a potential difference is applied to the electrodes by applying a potential difference
  • the pressure sensor may, for example, also be arranged on the pin or at the end of the cannula.
  • the length of Stiftes and the arrangement of the electrodes to be chosen so that the
  • Electrodes that define the measurement area are located centrally in the ventricle,
  • hearts can vary in size from person to person, it can be provided here to provide different designs of blood collection cannulae, from which a suitable one can be selected depending on the size of the heart.
  • the cannula itself has at its end located in the ventricle on the outer surface two spaced apart in Kangenerumblete electrodes, by means of which by applying a potential difference, a current flow through the blood of the ventricle can be generated and between which at least two measuring electrodes are arranged, with which one between the measuring electrodes at a current flow
  • Pressure sensor also located at the end of the cannula.
  • Messelelektroden the volume of the ventricle in a range around each considered measuring electrodes around are determined. This results from the fact that more blood (larger volume) has a lower resistance and thereby the voltage drop is smaller than with a smaller blood volume, which surrounds the measuring electrodes.
  • the distance between the electrodes to which the potential difference is applied to produce a current flow need not be as large as the entire ventricular length, so a volume sensor need not extend through the entire ventricular volume, so as to have a plurality of Measuring electrodes (pairs) to calculate the entire volume of the ventricle.
  • a monitored ventricular component length in particular less than or equal to 50% of the total ventricular length between cardiac apex and aortic valve may be sufficient.
  • at least two measuring electrodes are provided to determine the part blood volume arranged around it, from which, for example extrapolation allows the actual volume to be calculated on the basis of the linear relationship mentioned above.
  • a measuring device which can be connected to the pressure sensor and the volume sensor of a blood collection cannula of the described type according to the invention and which is adapted to detect pressure changes and volume changes of a ventricle, ie the measured values of the aforementioned sensors, thus in particular to measure and save.
  • the measuring device generates a voltage difference between the two outermost of the electrodes, in order to generate a current flow and during the heartbeats measures the at least one voltage drop across the at least two measuring electrodes arranged therebetween, as well as simultaneously the pressure by means of the pressure sensor.
  • the measuring device can be set up in a development, from measured volume changes and pressure changes a measure of the
  • Such a measure may e.g. be provided to a treating physician, e.g. by a readout of the data from the measuring device or a display or it is used directly to control the pump.
  • a measuring device can be set up to output a control signal from measured volume changes and pressure changes for a volumetric flow / delivery pressure to be set for a pump replacing or supporting the cardiac function, e.g. a signal for speed control.
  • volume changes in the ventricular contractions are detected and from these changes a measure of the current heart work is determined and adjusted in dependence of this measure, the flow / delivery pressure of the pump and / or adjusted.
  • the detected measured values can be supplied, for example, to a filtering and / or evaluation logic in the measuring apparatus or an algorithm in order to obtain the
  • Volume flow or delivery pressure can in particular be such that the aortic heart valve of the left ventricle in the ventricular contractions
  • this can be done by observing the amount of cardiac work above the volume flow / delivery pressure or the rotational speed of the pump to determine the point at which the heart work increases with increasing
  • Volume sensor are each arranged on one element, namely the blood collection cannula of the heart pump and this element during the duration of
  • the sensors will not cause additional stress, as would be the case if sensors were placed through the aorta into the heart.
  • the invention is very well suited for long-term monitoring of the heart function supporting or replacing pump as well as the supported ventricle.
  • a change in cardiac work can also be determined, e.g. by calculating the derivative of the volume sensor signal (or the volume calculated therefrom) over time. Minimum values of this change are highly sensitive to systole or contraction of the ventricle.
  • the measuring device is set up to carry out all the steps described for the method, in particular for which e.g. in the measuring device
  • Microprocessor can be provided and software for performing the respective steps.
  • FIG. 1 shows symbolizes the lower apex area of a heart with a blood withdrawal cannula 4 inserted in the left ventricle 1
  • Blood collection cannula 4 is connected to a pump 2, e.g.
  • a continuously running centrifugal pump takes blood from the left ventricle 1 of the heart and delivers it into the aorta, increasing the pressure in the aorta.
  • the pressure side of the pump 2 and the connection to the aorta are not shown here.
  • the heart Due to the inherent ventricular contraction, the heart promotes the blood against this pressure through the aortic valve, until a pressure is generated in the aorta by the pump against which the heart no longer pumps. From this pressure, the heart is relieved and the pumping function is taken over by the pump.
  • At the blood collection cannula 4 is both a pressure sensor 7b and a
  • volume sensor 3b arranged.
  • the volume sensor 3b is formed by a pin 3b, which at least partially projects from the cannula into the ventricle 1 and has a plurality of electrodes 5, 6 on its outer side, which are axially spaced apart.
  • the pressure sensor 7b is arranged here at the outer end of the pin 3b.
  • a potential difference or voltage may be applied to create a current flow through the surrounding blood.
  • a linear relationship can be calculated back to the entire volume in a development.
  • This relationship can e.g. in an upstream step, with a sensor that measures the entire heart volume. Such a step can also be omitted.
  • Figure 2 shows an alternative in which the aforementioned electrodes 5 and 6 are not disposed on a pin which is fixed to the cannula end, but here the same electrodes 5, 6 are arranged directly on the outside of the cannula 4, which is correspondingly far inserted into the ventricle 2.
  • the measurement of the (partial) volume of the ventricle takes place in the same way.
  • the pressure sensor 7a is arranged inside the outer end of the cannula 4 in this embodiment.
  • FIG. 3 shows a P-V diagram in the case of a heartbeat of the heart
  • the work WL that applies the heart results from the area of the closed polyline and may be e.g. be calculated by integration. Obviously, this area is independent of the absolute values of pressure and volume, so that in the invention no absolutely calibrated sensors for
  • volume determination is possible, the determined measure of heart work is not an absolute size. However, FIG. 4 shows here that the measured
  • Figure 5 shows the relationship between the heart work on the Y-axis and the speed of the pump, which has an influence on the flow rate and delivery pressure of the pump.
  • the curve A shows the relationship based on the cardiac work, which was determined in determining the total ventricular volume and curve B, taking into account only a partial volume, which can be done with the above volume sensor.
  • this point P can e.g. can be determined by comparing the slope of the heart work with a stored comparison value. If the negative slope is smaller or the slope amount greater than the comparison value, then this operating point of the pump is reached or exceeded. Also can be rehearsed on a change of sign in the slope. In the plateau region, the slope is slightly positive, whereas in the vicinity of the point P the slope becomes strongly negative.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • Anesthesiology (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Electromagnetism (AREA)
  • External Artificial Organs (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Die Erfindung betrifft eine Blutentnahmekanüle (4) zur Verbindung einer die Herzfunktion unterstützenden oder die Herzfunktion ersetzenden Pumpe (2) mit dem inneren Volumen eines Herzventrikels (1), insbesondere des linken Ventrikels, die an ihrem im Ventrikel liegenden Kanülenende einen Drucksensor (7a, 7b) aufweist zur Messung des Ventrikeldrucks und/oder von Ventrikeldruckdifferenzen und die an demselbem Kanülenende einen Volumensensor (3a, 3b, 5, 6) aufweist zur Messung des Volumens und/oder von Volumenänderungen des Ventrikels (1) in zumindest einem Teilbereich des Ventrikels. Die Erfindung betrifft weiterhin eine Meßvorrichtung zur Überwachung der Ventrikelkontraktionen und/oder der Funktion einer die Herzfunktion ersetzenden oder unterstützenden Pumpe, die an den Drucksensor (7a, 7b) und den Volumensensor einer Blutentnahmekanüle nach einem der vorherigen Ansprüche anschließbar / angeschlossen ist und eingerichtet ist, Druckänderungen und Volumenänderungen eines Ventrikels (1) während des Herzschlags zu erfassen.

Description

Blutentnahmekanüle einer die Herzfunktion ersetzenden oder
unterstützenden Pumpe
Die Erfindung betrifft eine Blutentnahmekanüle zur Verbindung einer die
Herzfunktion unterstützenden oder die Herzfunktion ersetzenden Pumpe mit dem inneren Volumen eines Herzventrikels, insbesondere des linken Ventrikels, die an ihrem im Ventrikel liegenden Kanülenende einen Drucksensor aufweist zur Messung des Ventrikeldrucks und/oder von Ventrikeldruckdifferenzen.
Die Erfindung betrifft weiterhin eine Meßvorrichtung zur Überwachung der
Ventrikelkontraktionen und/oder der Funktion einer die Herzfunktion ersetzenden oder unterstützenden Pumpe sowie auch ein Verfahren zur Einstellung des Volumenstroms und/oder des Förderdrucks einer die Herzfunktion ersetzenden oder unterstützenden Pumpe, die mittels einer Blutentnahmekanüle Blut aus einem Ventrikel des Herzens herausfördert und in die Aorta des Herzens hineinfördert.
Beispielsweise aus der Veröffentlichung WO 2008/140034 der Tokio Medical and Dental University ist es bekannt, zur Unterstützung der Herzfunktion Pumpen einzusetzen, wie beispielsweise kontinuierlich arbeitende Kreiselpumpen oder auch jegliche anderen Arten von Pumpe. Eine solche Pumpe fördert Blut aus einem Ventrikel des Herzens, z.B. aus dem linken Ventrikel heraus, wofür in das Ventrikel, insbesondere im Apex-Bereich des Herzens eine Blutentnahmekanüle eingesetzt wird, durch die das Blut aus dem Ventrikel in die Pumpe gefördert wird. Die Pumpe fördert beim Anschluß an das linke Ventrikel das Blut sodann in die Aorta.
BESTÄTIGUNGSKOPIE Die Blutentnahmekanüle der vorgenannten Veröffentlichung weist dabei einen Drucksensor auf an dem Ende der Blutentnahmekanüle, das im Ventrikel liegt. Es wurde hier herausgefunden, dass Ventrikelkontraktionen anhand des Druckes und der Motorleitung der Pumpe bewertet werden können.
Bei neueren, die Herzfunktion unterstützenden und/oder ersetzenden Pumpen werden beispielsweise kontinuierlich laufende Kreiselpumpen eingesetzt. Hierbei ist es wichtig, den von der Rotationsgeschwindigkeit der Pumpe abhängenden Volumenstrom und/oder Förderdruck so einzustellen, dass das Herz optimal unterstützt wird, insbesondere die Ventrikelkontraktion entlastet wird, um dem Herzen so die Möglichkeit zur Erholung oder Ausheilung zu geben oder aber die Zeit bis zu einer Transplantation zu überbrücken.
Bislang wurden beispielsweise Pumpen eingesetzt, deren
Rotationsgeschwindigkeit und somit Volumenstrom / Förderdruck im Wesentlichen konstant ist und anfänglich von erfahrenem Klinikpersonal eingestellt wird. Hierbei ist der Volumenstrom / Förderdruck groß genug zu wählen, um eine ausreichende Herzunterstützuung zu gewährleisten, aber nicht zu hoch, um ein Kollabieren des Ventrikels zu vermeiden. Diese Einstellung kann z.B. mit zusätzlichen Sensoren ermittelt werden, die zu diesem Zweck kurzzeitig ins Herz eingeführt werden, jedoch dort nicht über längere Zeit verbleiben können. Zudem haben Sensoren Driftprobleme mit der Zeit, wobei ein optimaler Volumenstrom der Pumpe auch in Abhängigkeit weiterer Größen variieren kann, z.B. in Abhängigkeit der
Temperatur, Blutviskosität etc. Daher gibt es bislang keine zur
Langzeitüberwachung taugliche Vorrichtung zur Herzunterstützung.
Es ist somit eine Aufgabe der Erfindung, eine Vorrichtung und ein Verfahren bereit zustellen, mittels denen der Volumenstrom / der Förderdruck der Pumpe zum Zweck optimaler Herzunterstützung bzw. die Ventrikelkontraktion jederzeit überwacht werden kann.
Diese Aufgabe wird zum Einen dadurch gelöst, dass eine Blutentnahmekanüle der eingangs genannten Art an demselbem im Ventrikel liegenden Kanülenende zusätzlich zu dem Drucksensor noch einen Volumensensor aufweist zur Messung des Volumens und/oder von Volumenänderungen des Ventrikels in zumindest einem Teilbereich des Ventrikels.
Wesentlich ist es für die Erfindung, dass somit jederzeit, d.h. solange wie eine die Herzfunktion unterstützende Pumpe verwendet wird, die Ventrikelkontraktion überwacht und bewertet werden kann, insbesondere die Arbeit, die das Herz im linken Ventrikel leistet.
Hierbei ist es nicht notwendig, dass mit dem Drucksensor bzw. dem
Volumensensor ein absoluter Messwert erfasst wird, sondern es ist
erfindungsgemäß ausreichend, Änderungen von Druck und Volumen bestimmen zu können.
So wurde herausgefunden, dass die vom Herz bzw. linken Ventrikel geleistete Arbeit sich ergibt durch die Fläche eines geschlossenen Linienzuges im P-V- Diagramm der Ventrikelkontraktion bei jedem Herzschlag. Diese Fläche ist unabhängig von der absoluten Druck- bzw. Volumengröße, so dass die Erfassung von Änderungen dieser Größen ausreichend ist, um ein Maß für die Arbeit zu ermitteln.
Dabei bedarf es auch nicht der Überwachung des gesamten Volumens des Ventrikels, sondern es ist ausreichend, einen Teil des Ventrikelvolumens hinsichtlich der Volumenänderung zu vermessen, da zwischen der
Volumenänderung im Ventrikelteil und dem Gesamtvolumen ein Zusammenhang, insbesondere ein linearer Zusammenhang besteht. Dieser Zusammenhang kann bei der Auswertung der Volumenmesswerte kalkulatorisch berücksichtigt werden.
Die Erfindung bietet somit die Möglichkeit, durch die Sensoren an der
Blutentnahmekanüle die Ventrikelkontraktion jederzeit zu überwachen,
insbesondere hinsichtlich der Ventrikelarbeit, da die Messwerte von Volumen und Druck im Ventrikel jederzeit an der Blutentnahmekanüle abgreifbar sind, z.B. zum Zwecke der externen Auswertung oder durch Auswertung mit einer an die
Blutentnahmekanüle oder an der Pumpe vorgesehenen Meßvorrichtung. Es kann so ein behandelnder Arzt jederzeit eine Änderung der Pumpgeschwindigkeit bzw. des Volumenstroms / Förderdrucks vorgenommen werden, was an den
Messwerten bzw. der berechneten Ventrikelarbeit bzw. Herzarbeit oder deren zeitlicher Änderung überwacht werden kann.
Hier zeigt sich, dass mit zunehmendem Volumenstrom bzw. zunehmender
Pumpgeschwindigkeit über einen anfänglichen Bereich die Herzarbeit zunächst zunimmt, nämlich über einen solchen Bereich, in dem das Herz Arbeit aufbringt, um die Aorta-Klappe gegen den Druck der in die Aorta fördernden Pumpe zu öffnen, bis dass die Herzarbeit signifikant abnimmt, ab einem
Volumenstrom/Förderdruck, bei welchem die Herzklappe geschlossen bleibt.
Durch Beobachtung der Herzarbeit oder deren Änderung (zeitlicher Ableitung) anhand der gemessenen Sensorwerte und das Feststellen des signifikanten Abfallens der Herzarbeit kann somit der Volumenstrom / Förderdruck der Pumpe so gewählt werden, dass ein Arbeitspunkt der Pumpe erreicht wird, in welchem die Herzklappe während der Herzschläge geschlossen bleibt.
In Abhängigkeit des Volumenstroms / Förderdrucks kann dieser Arbeitspunkt z.B. gefunden werden durch Unterschreiten einer maximalen gemessenen Herzarbeit um einen bestimmten Betrag, prozentual oder absolut, oder auch durch
Feststellung bzw. Überschreitung einer bestimmten festgelegten negativen
Steigung der Herzarbeit (z.B. Differenzenquotient von Herzarbeit und
Pumpgeschwindigkeit / Volumenstrom).
In einer Ausführung der Erfindung kann es vorgesehen sein, dass der
Volumensensor ausgebildet ist als ein Stift, der vom Kanülenende wegweisend, insbesondere in das Innere des Ventrikels erstreckt ist und der auf seiner
Oberfläche zwei in Stifterstreckungsrichtung beabstandete Elektroden aufweist, mittels denen durch Anlage einer Potentialdifferenz an den Elektroden ein
Stromfluß durch das Blut des Ventrikels erzeugbar ist und der wenigstens zwei zwischen diesen Elektroden angeordnete Messelektroden aufweist, mit denen ein zwischen den Messelektroden bei einem Stromfluss auftretender Spannungsabfall messbar ist. Hier kann der Drucksensor z.B. ebenfalls an dem Stift angeordnet sein oder am Kanülenende. Vorteilhaft kann bei dieser Ausführung die Länge des Stiftes und die Anordnung der Elektroden darauf so gewählt sein, dass die
Elektroden, die den Messbereich definieren, zentral im Ventrikel liegen,
insbesondere um genauere Meßergebnisse zu liefern. Da Herzen von Mensch zu Mensch unterschiedlich groß sein können, kann es hier vorgesehen sein, verschiedene Ausführungen von Blutentnahmekanülen bereit zustellen, aus denen in Abhängigkeit der Herzgröße eine passende ausgewählt werden können.
In einer anderen Ausführung kann es auch vorgesehen sein, dass die Kanüle selbst an Ihrem im Ventrikel liegenden Ende auf der äußeren Oberfläche zwei in Kanülenerstreckung beabstandete Elektroden aufweist, mittels denen durch Anlage einer Potentialdifferenz ein Stromfluß durch das Blut des Ventrikels erzeugbar ist und zwischen denen wenigstens zwei Messelektroden angeordnet sind, mit denen ein zwischen den Messelektroden bei einem Stromfluss
auftretender Spannungsabfall messbar ist. In dieser Ausführung ist der
Drucksensor ebenfalls am Kanülenende angeordnet.
So kann mittels des Spannungsabfalls zwischen wenigstens zwei
Messelelektroden das Volumen des Ventrikels in einem Bereich um die jeweils betrachteten Meßelektroden herum bestimmt werden. Dies ergibt sich daraus, dass mehr Blut (größeres Volumen) einen geringeren Widerstand hat und dadurch der Spannungsabfall kleiner ist als bei einem geringeren Blutvolumen, das die Messelektroden umgibt.
Wie eingangs erwähnt muss der Abstand zwischen den Elektroden, an denen die Potentialdifferenz zur Erzeugung eines Stromflusses angelegt wird, nicht so groß sein, wie die gesamte Ventrikellänge, ein Volumensensor muss sich also nicht durch das gesamte Ventrikelvolumen hindurch erstrecken, um so mit einer Vielzahl von Messelektroden(-paaren) das gesamte Volumen des Ventrikels zu berechnen.
Vielmehr kann eine überwachte Ventrikelteillänge, insbesondere kleiner gleich 50% der Ventrikelgesamtlänge zwischen Herzapex und Aortaklappe ausreichend sein. In diesem Bereich sind sodann wenigstens zwei Meßelektroden vorgesehen, um das darum angeordnete Teilblutvolumen zu bestimmen, aus dem sich z.B. durch Extrapolation das tatsächliche Volumen berechnen lässt aufgrund des eingangs genannten linearen Zusammenhangs.
Erfindungsgemäß kann es vorgesehen sein, eine Meßvorrichtung einzusetzen, die an den Drucksensor und den Volumensensor einer Blutentnahmekanüle der beschriebenen erfindungsgemäßen Art anschließbar ist und die eingerichtet ist, Druckänderungen und Volumenänderungen eines Ventrikels, also die Messwerte der vorgenannten Sensoren zu erfassen, insbesondere also zu messen und zu speichern. Hierfür erzeugt die Messvorrichtung zwischen den zwei äußersten der Elektroden eine Spannungsdifferenz, um einen Stromfluß zu erzeugen und misst während der Herzschläge den wenigstens einen Spannungsabfall über den wenigstens zwei dazwischen angeordneten Messelektroden sowie auch gleichzeitig den Druck mittels des Drucksensors.
So kann die Meßvorrichtung in einer Weiterbildung eingerichtet sein, aus gemessenen Volumenänderungen und Druckänderungen ein Maß für die
Herzarbeit zu berechnen. Ein solches Maß kann z.B. einem behandelnden Arzt zur Verfügung gestellt werden, z.B. durch einen Auslesevorgang der Daten aus der Messvorrichtung oder eine Anzeige oder es wird direkt zur Steuerung / Regelung der Pumpe verwendet. So kann weiterhin eine Meßvorrichtung eingerichtet sein, aus gemessenen Volumenänderungen und Druckänderungen ein Stellsignal auszugeben für einen einzustellenden Volumenstrom / Förderdruck einer die Herzfunktion ersetzenden oder unterstützenden Pumpe, also z.B. ein Signal zur Geschwindigkeitsregelung.
Es kann daher mit der Erfindung ein Steuer- oder Regelverfahren durchgeführt werden, bei dem mittels eines im Ventrikel liegenden an der Blutentnahmekanüle angeordneten Drucksensors und Volumensensors die Druck- und
Volumenänderungen bei den Ventrikelkontraktionen erfasst werden und aus diesen Änderungen ein Maß für die aktuelle Herzarbeit ermittelt wird und in Abhängigkeit dieses Maßes der Volumenstrom / Förderdruck der Pumpe eingestellt und/oder eingeregelt wird. Hierfür können die erfassten Messwerte z.B. einer Filter- und/oder Auswertelogik in der Meßvorrichtung oder einem Algorithmus zugeführt werden, um die
Herzarbeit zu bestimmen. Die Einstellung und/oder Einregelung des
Volumenstroms bzw. Förderdrucks kann insbesondere so erfolgen, dass die Aorta-Herzklappe des linken Ventrikels bei den Ventrikelkontraktionen
geschlossen ist / bleibt.
Wie erwähnt kann dies durch Beobachtung des Maßes der Herzarbeit über dem Volumenstrom / Förderdruck bzw. der Rotationsgeschwindigkeit der Pumpe erfolgen, um den Punkt zu ermitteln, ab dem die Herzarbeit mit steigendem
Volumenstrom signifikant fällt. Ab diesem Punkt ist die Aorta-Klappe geschlossen.
Hier ist es als besonders vorteilhaft anzusehen, dass erfindungsgemäß keine absoluten Meßwerte von Druck und Volumen benötigt werden, um ein Maß für die Herzarbeit zu bestimmen. Daher wirken sich auch evtl. Sensordrifts, die mit der Zeit auftreten können bei der Erfindung nicht negativ aus. Weil Druck- und
Volumensensor jeweils an einem Element, nämlich der Blutentnahmekanüle der Herzpumpe angeordnet sind und dieses Element während der Dauer der
Herzunterstützung appliziert bleibt, verursachen die Sensoren keine zusätzliche Belastung, wie dies der Fall wäre, wenn Sensoren durch die Aorta ins Herz gelegt würden.
Daher eignet sich die Erfindung sehr gut für eine Langzeitüberwachung der die Herzfunktion unterstützenden oder ersetzenden Pumpe sowie des unterstützten Ventrikels.
Zusätzlich zur Herzarbeit kann auch eine Änderung der Herzarbeit bestimmt werden, z.B. durch Berechnung der Ableitung des Volumensensorsignals (bzw. des daraus berechneten Volumens) mit der Zeit. Minimalwerte dieser Änderung sind stark sensitiv hinsichtlich der Systole bzw. Kontraktion des Ventrikels.
Maximalwerte dieser Änderung sind sensitiv bzgl. der Diastole bzw. des
Füllvorgangs des Ventrikels. So können auch aus diesen Werten Rückschlüsse gezogen werden auf die Ventrikelfunktion. Auch anhand dieser Werte kann es vorgesehen sein, die Geschwindigkeit der Pumpe einzustellen bzw. einzuregeln und so Volumenstrom bzw. Förderdruck zu ändern.
Allgemein ist die Messvorrichtung eingerichtet, alle zum Verfahren beschriebenen Schritte auszuführen, insbesondere wofür z.B. in der Messvorrichtung ein
Mikroprozessor vorgesehen sein kann und eine Software zur Durchführung der jeweiligen Schritte.
Ausführungsbeispiele der Erfindung werden nachfolgend beschrieben:
Die Figur 1 zeigt symbolisiert den unteren Apexbereich eines Herzens mit einer im linken Ventrikel 1 eingesetzten Blutentnahmekanüle 4. Durch die
Blutentnahmekanüle 4 wird mit einer Pumpe 2, z.B. einer kontinuierlich laufenden Kreiselpumpe Blut aus dem linken Ventrikel 1 des Herzen entnommen und in die Aorta zugeführt, so dass sich der Druck in der Aorta erhöht. Die Druckseite der Pumpe 2 und die Verbindung zur Aorta sind hier nicht gezeigt.
Durch die herzeigene Ventrikelkontraktion fördert das Herz das Blut gegen diesen Druck durch die Aorta-Klappe, bis dass in der Aorta durch die Pumpe ein Druck erzeugt ist, gegen den das Herz nicht mehr pumpt. Ab diesem Druck ist das Herz entlastet und die Pumpfunktion wird durch die Pumpe übernommen.
An der Blutentnahmekanüle 4 ist sowohl ein Drucksensor 7b als auch ein
Volumensensor 3b angeordnet. Hier ist der Volumensensor 3b ausgebildet durch einen Stift 3b, der von der Kanüle ins Ventrikel 1 zumindest zum Teil hineinragt und mehrere Elektroden 5,6 auf seiner Außenseite aufweist, die axial beabstandet sind. Der Drucksensor 7b ist hier am äußeren Ende des Stiftes 3b angeordnet.
Zwischen den am weitesten auseinander liegenden Elektroden 5 kann eine Potentialdifferenz bzw. Spannung angelegt werden, um einen Stromfluss durch das umgebenden Blut zu erzeugen.
In Abhängigkeit des umgebenden Blutvolumens sinkt oder steigt der
Spannungsabfall, der zwischen jeweils zwei Elektroden 6 messbar ist, von denen wenigstens zwei zwischen den Elektroden 5 vorgesehen sind. Der Spannungsabfall eines oder auch mehrerer Paare von Elektroden 6 bildet somit ein Maß für das Volumen des Blutes, das um diese Elektroden 6 angeordnet ist.
Mit einem bevorzugt linearen Zusammenhang kann in einer Weiterbildung auf das gesamte Volumen zurückgerechnet werden. Dieser Zusammenhang kann z.B. in einem vorgelagerten Schritt ermittelt werden mit einem Sensor, der das ganze Herzvolumen misst. Ein solcher Schritt kann auch entfallen.
Die Figur 2 zeigt eine Alternative, bei der die vorgenannten Elektroden 5 und 6 nicht auf einen Stift angeordnet sind, der an dem Kanülenende befestigt ist, sondern hier sind dieselben Elektroden 5, 6 direkt auf der Aussenseite der Kanüle 4 angeordnet, die hierfür entsprechend weit in das Ventrikel 2 eingeschoben ist. Die Messung des (Teil-) Volumens des Ventrikels erfolgt auf die gleiche Art und Weise. Der Drucksensor 7a ist in dieser Ausführung innen am äußeren Ende der Kanüle 4 angeordnet.
Die Figur 3 zeigt ein P-V-Diagramm bei einem Herzschlag des Herzens
hinsichtlich der Messwerte Druck P und Volumen V, die im Ventrikel erfasst wurden. Die Arbeit WL, die das Herz aufbringt, ergibt sich aus der Fläche des geschlossenen Linienzuges und kann z.B. durch Integration berechnet werden. Ersichtlich ist diese Fläche unabhängig von den Absolutwerten von Druck und Volumen, so dass bei der Erfindung keine absolut geeichten Sensoren zum
Einsatz kommen müssen. Wie erwähnt kann auch von der Vermessung eines Teilvolumenbereichs des Ventrikels auf das Gesamtvolumen geschlossen werden.
Da mit einem Volumen-Sensor der vorbeschriebenen Art keine absolute
Volumenbestimmung möglich ist, ist auch das ermittelte Maß für die Herzarbeit keine absolute Größe. Die Figur 4 zeigt hier jedoch, dass die gemessene
Herzarbeit und die tatsächliche Herzarbeit linear zusammenhängen und daher die aus dem erfindungsgemäßen Verfahren mit der erfindungsgemäßen
Messvorrichtung berechneten Herzarbeit herangezogen werden kann und die Pumpe zur Steuern oder zu regeln. Die Figur 5 zeigt den Zusammenhang zwischen der Herzarbeit auf der Y-Achse und der Geschwindigkeit der Pumpe, welche Einfluß hat auf Volumenstrom bzw. Förderdruck der Pumpe. Die Kurve A zeigt den Zusammenhang anhand der Herzarbeit, die ermittelt wurde bei Bestimmung des gesamten Ventrikelvolumens und Kurve B bei Berücksichtigung lediglich eines Teilvolummens, was mit obigem Volumensensor erfolgen kann.
Erkennbar ist hier, dass beide Kurven A,B zunächst mit steigender
Rotationsgeschwindigkeit leicht ansteigen und ab derselben Geschwindigkeit stark abfallen. Ab diesem Punkt, der hier als Punkt P markiert ist, ist die Aorta-Klappe geschlossen und die Herzarbeit nimmt ab. Ab hier liegt eine effektive
Herzunterstützung vor. Es ist daher bevorzugt, durch Vermessung von (Teil- )Volumenänderung und Druckänderung die Herzarbeit gemäß der Kurve B zu bestimmen und eine Pumpgeschwindigkeit zu wählen, ab der die Klappe der Aorta geschlossen ist.
Da hier die Herzarbeit von einem linksseitigen Plateau in einen stark fallenden Bereich übergeht, kann dieser Punkt P z.B. ermittelt werden durch Vergleich der Steigung der Herzarbeit mit einem gespeicherten Vergleichswert. Ist die negative Steigung kleiner oder der Steigungsbetrag größer als der Vergleichswert, so ist dieser Arbeitspunkt der Pumpe erreicht bzw. überschritten. Auch kann geprobt werden auf einen Vorzeichenwechsel in der Steigung. Im Plateaubereich ist die Steigung leicht positiv, wohingegen in der Umgebung des Punktes P die Steigung stark negativ wird.
Hier sind verschiedene Möglichkeiten denkbar, um die Punkt P rechnerisch aus den Messwerten zu bestimmen. Auch kann es je nach vorliegender medizinischer Indikation vorgesehen sein, den Punkt P mehr oder weniger weit in Richtung zu höheren Geschwindigkeiten zu überschreiten. Diese Maß der Überschreitung kann z.B. durch einen Arzt festgelegt werden und als Regelparameter in der Meßvorrichtung gespeichert sein.

Claims

Patentansprüche
1. Blutentnahmekanüle (4) zur Verbindung einer die Herzfunktion
unterstützenden oder die Herzfunktion ersetzenden Pumpe (2) mit dem inneren Volumen eines Herzventrikels (1), insbesondere des linken Ventrikels, die an ihrem im Ventrikel liegenden Kanülenende einen Drucksensor (7a, 7b) aufweist zur Messung des Ventrikeldrucks und/oder von
Ventrikeldruckdifferenzen, dadurch gekennzeichnet, dass sie an demselbem Kanülenende einen Volumensensor (3a, 3b, 5,6) aufweist zur Messung des Volumens und/oder von Volumenänderungen des Ventrikels (1) in zumindest einem Teilbereich des Ventrikels.
2. Blutentnahmekanüle nach Anspruch 1 , dadurch gekennzeichnet, dass der Volumensensor (3a, 3b, 5,6) ausgebildet ist als ein Stift (3a), der vom
Kanülenende wegweisend, insbesondere in das Innere des Ventrikels (1) erstreckt ist und der auf seiner Oberfläche zwei in Stifterstreckungsrichtung beabstandete Elektroden (5) aufweist, mittels denen durch Anlage einer Potentialdifferenz ein Stromfluß durch das Blut des Ventrikels (1 ) erzeugbar ist und der wenigstens zwei zwischen diesen Elektroden (5) angeordnete
Messelektroden (6) aufweist, mit denen ein zwischen den Messelektroden (6) bei einem Stromfluss auftretender Spannungsabfall messbar ist.
3. Blutentnahmekanüle nach Anspruch 1 , dadurch gekennzeichnet, dass die
Kanüle (4) selbst an Ihrem im Ventrikel liegenden Ende auf der äußeren Oberfläche zwei in Kanülenerstreckung beabstandete Elektroden (5) aufweist, mittels denen durch Anlage einer Potentialdifferenz ein Stromfluß durch das Blut des Ventrikels erzeugbar ist und zwischen denen wenigstens zwei Messelektroden (6) angeordnet sind, mit denen ein zwischen den
Messelektroden (6) bei einem Stromfluss auftretender Spannungsabfall messbar ist.
4. Meßvorrichtung zur Überwachung der Ventrikelkontraktionen und/oder der Funktion einer die Herzfunktion ersetzenden oder unterstützenden Pumpe, dadurch gekennzeichnet, dass sie an den Drucksensor (7a, 7b) und den Volumensensor einer Blutentnahmekanüle nach einem der vorherigen Ansprüche anschließbar / angeschlossen ist und eingerichtet ist,
Druckänderungen und Volumenänderungen eines Ventrikels (1 ) während des Herzschlags zu erfassen.
5. Meßvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass sie
eingerichtet ist, aus gemessenen Volumenänderungen und Druckänderungen ein Maß für die Herzarbeit und/oder die Änderung der Herzarbeit zu berechnen.
6. Meßvorrichtung nach einem der vorherigen Ansprüche 4 oder 5, dadurch gekennzeichnet, dass sie eingerichtet ist, aus gemessenen
Volumenänderungen und Druckänderungen ein Stellsignal auszugeben für einen einzustellenden Volumenstrom und/oder Förderdruck einer die
Herzfunktion ersetzenden oder unterstützenden Pumpe (2).
7. Verfahren zur Einstellung des Volumenstroms und/oder Förderdrucks einer die Herzfunktion ersetzenden oder unterstützenden Pumpe (2), die mittels einer Blutentnahmekanüle (4) Blut aus einem Ventrikel (1 ) des Herzens herausfördert und in die Aorta des Herzens hineinfördert, dadurch
gekennzeichnet, dass mittels eines im Ventrikel liegenden an der
Blutentnahmekanüle (4) angeordneten Drucksensors (7a, 7b) und
Volumensensors (3a, 3b, 5, 6) die Druck- und Volumenänderungen bei den Ventrikelkontraktionen erfasst werden und aus diesen Änderungen ein Maß für die aktuelle Herzarbeit und/oder die Änderung der Herzarbeit ermittelt wird und in Abhängigkeit dieses Maßes der Volumenstrom und/oder der
Förderdruck der Pumpe (2) eingestellt und/oder eingeregelt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Einstellung und/oder Einregelung so erfolgt, dass die Aorta-Herzklappe des linken Ventrikels (1 ) bei den Ventrikelkontraktionen geschlossen ist / bleibt.
PCT/EP2012/002245 2011-06-10 2012-05-25 Blutentnahmekanüle einer die herzfunktion ersetzenden oder unterstützenden pumpe WO2012167876A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/123,849 US20140114202A1 (en) 2011-06-10 2012-05-25 Blood withdrawal cannula of a pump replacing or assisting activity of the heart
AU2012266809A AU2012266809B2 (en) 2011-06-10 2012-05-25 Blood withdrawal cannula of a pump replacing or assisting activity of the heart
EP12724909.2A EP2717762A1 (de) 2011-06-10 2012-05-25 Blutentnahmekanüle einer die herzfunktion ersetzenden oder unterstützenden pumpe
CA2842522A CA2842522A1 (en) 2011-06-10 2012-05-25 Blood-drawing cannula of a pump replacing or assisting cardiac action
CN201280035244.2A CN103857326B (zh) 2011-06-10 2012-05-25 补偿或支持心脏功能的泵的采血套管针

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011106142.1 2011-06-10
DE102011106142A DE102011106142A1 (de) 2011-06-10 2011-06-10 Blutentnahmekanüle einer die Herzfunktion ersetzenden oder unterstützenden Pumpe

Publications (1)

Publication Number Publication Date
WO2012167876A1 true WO2012167876A1 (de) 2012-12-13

Family

ID=46201561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/002245 WO2012167876A1 (de) 2011-06-10 2012-05-25 Blutentnahmekanüle einer die herzfunktion ersetzenden oder unterstützenden pumpe

Country Status (7)

Country Link
US (1) US20140114202A1 (de)
EP (1) EP2717762A1 (de)
CN (1) CN103857326B (de)
AU (1) AU2012266809B2 (de)
CA (1) CA2842522A1 (de)
DE (1) DE102011106142A1 (de)
WO (1) WO2012167876A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796156A1 (de) * 2013-04-24 2014-10-29 ETH Zurich Biomedizinische Vorrichtung zum Pumpen von Blut eines Patienten oder eines Tieres durch einen sekundären intra- oder extrakorporalen Blutkreislauf
EP3721801A1 (de) 2019-04-12 2020-10-14 ETH Zurich Kardiale vorrichtung, verfahren und computerprogrammprodukt
US11529062B2 (en) 2017-06-09 2022-12-20 Abiomed, Inc. Determination of cardiac parameters for modulation of blood pump support

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2950310C (en) 2014-05-29 2022-07-19 St. Vincent's Hospital Sydney Limited Ventricular assist device method and apparatus
EP2962710A1 (de) * 2014-07-03 2016-01-06 Berlin Heart GmbH Verfahren und Herzunterstützungssystem zur Bestimmung eines Auslassdrucks
EP3197517B1 (de) * 2014-09-23 2019-10-23 St Vincent's Hospital Sydney Limited Vorrichtung zur bestimmung einer aortenklappenöffnung
DE102018208936A1 (de) * 2018-06-06 2019-12-12 Kardion Gmbh Bestimmvorrichtung und Verfahren zum Bestimmen einer Viskosität eines Fluids
DE102018208931A1 (de) * 2018-06-06 2019-12-12 Kardion Gmbh Vorrichtung zum Bestimmen eines Herzzeitvolumens für ein Herzunterstützungssystem, Herzunterstützungssystem und Verfahren zum Bestimmen eines Herzzeitvolumens
DE102018208913A1 (de) * 2018-06-06 2019-12-12 Kardion Gmbh Verfahren zum Betreiben eines implantierten, ventrikulären Unterstützungssystems
CN113573631A (zh) 2019-01-16 2021-10-29 阿比奥梅德公司 使用机器学习模型的左心室容积和心脏输出估计
CN110404128A (zh) * 2019-07-18 2019-11-05 张海军 有反馈功能的无极变速自供能人工心脏辅助装置
DE112021004350T5 (de) * 2020-10-07 2023-06-01 Abiomed Europe Gmbh Elektrodenaufbaupatch für Leitfähigkeits- und Durchlässigkeitsmessungen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143109A (ja) * 2000-11-13 2002-05-21 Natl Space Development Agency Of Japan 小動物埋設用心室容積および心室圧同時連続測定テレメトリー装置
US20020173693A1 (en) * 2001-05-16 2002-11-21 Levram Medical Devices, Ltd Single cannula ventricular-assist method and apparatus
US20100160801A1 (en) * 2007-05-10 2010-06-24 Setsuo Takatani Cardiac function change evaluating device
DE102009047845A1 (de) * 2009-09-30 2011-03-31 Abiomed Europe Gmbh Herzunterstützungssystem

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964694A (en) * 1997-04-02 1999-10-12 Guidant Corporation Method and apparatus for cardiac blood flow assistance
US7238151B2 (en) * 2002-02-26 2007-07-03 Frazier O Howard Permanent heart assist system
US20040044288A1 (en) * 2002-09-03 2004-03-04 Miguel Gorenberg Apparatus and method for non-invasive monitoring of cardiac output
WO2005051838A2 (en) * 2003-11-19 2005-06-09 Transoma Medical, Inc. Feedback control of ventricular assist devices
CN1768701A (zh) * 2005-07-21 2006-05-10 高春平 集成化、智能型生理信号传感器
EP2136706A1 (de) * 2007-04-18 2009-12-30 Medtronic, Inc. Permanent implantierbare medizinische elektroleitungen mit aktivbefestigung und entsprechende verfahren zur nichtfluoroskopischen implantation
US20100041984A1 (en) * 2008-08-12 2010-02-18 James Edward Shapland Impedance sensing device and catheter system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143109A (ja) * 2000-11-13 2002-05-21 Natl Space Development Agency Of Japan 小動物埋設用心室容積および心室圧同時連続測定テレメトリー装置
US20020173693A1 (en) * 2001-05-16 2002-11-21 Levram Medical Devices, Ltd Single cannula ventricular-assist method and apparatus
JP2003047656A (ja) * 2001-05-16 2003-02-18 Levram Medical Devices Ltd 心室補助装置及び心室補助方法
US20100160801A1 (en) * 2007-05-10 2010-06-24 Setsuo Takatani Cardiac function change evaluating device
DE102009047845A1 (de) * 2009-09-30 2011-03-31 Abiomed Europe Gmbh Herzunterstützungssystem

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796156A1 (de) * 2013-04-24 2014-10-29 ETH Zurich Biomedizinische Vorrichtung zum Pumpen von Blut eines Patienten oder eines Tieres durch einen sekundären intra- oder extrakorporalen Blutkreislauf
WO2014173527A1 (en) * 2013-04-24 2014-10-30 Eth Zurich Biomedical apparatus for pumping blood of a human or an animal patient through a secondary intra- or extracorporeal blood circuit
US9669147B2 (en) 2013-04-24 2017-06-06 Eth Zurich Biomedical apparatus for pumping blood of a human or an animal patient through a secondary intra- or extracorporeal blood circuit
US11529062B2 (en) 2017-06-09 2022-12-20 Abiomed, Inc. Determination of cardiac parameters for modulation of blood pump support
EP3721801A1 (de) 2019-04-12 2020-10-14 ETH Zurich Kardiale vorrichtung, verfahren und computerprogrammprodukt
WO2020207840A1 (en) 2019-04-12 2020-10-15 Eth Zurich Cardiac device, method and computer program product

Also Published As

Publication number Publication date
CA2842522A1 (en) 2012-12-13
CN103857326B (zh) 2015-12-02
DE102011106142A1 (de) 2012-12-27
US20140114202A1 (en) 2014-04-24
EP2717762A1 (de) 2014-04-16
AU2012266809A1 (en) 2014-01-09
AU2012266809B2 (en) 2016-07-14
CN103857326A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
EP2717762A1 (de) Blutentnahmekanüle einer die herzfunktion ersetzenden oder unterstützenden pumpe
EP2384138B1 (de) Vorrichtung zum ermitteln und/oder überwachen einer fisteldurchgängigkeit basierend auf einer amplitude des herzdrucksignals während einer blutbehandlung
EP1813188B1 (de) System zum Einrichten einer Dilutionsmessstelle
EP3801674B1 (de) Implantierbares, ventrikuläres unterstützungssystem
WO2017032751A1 (de) Herzpumpe sowie verfahren zum betrieb einer herzpumpe
DE102016001710B4 (de) Gerät zur extrakorporalen Blutbehandlung mit einer Auswerte- und Steuereinheit
EP2303355B1 (de) Vorrichtung zur peritonealdialyse
EP2962710A1 (de) Verfahren und Herzunterstützungssystem zur Bestimmung eines Auslassdrucks
EP3181163A1 (de) Blutpumpe zur herzunterstützung und verfahren zu ihrem betrieb
DE102011102872B4 (de) Blutbehandlungsvorrichtung
EP2884892A1 (de) VORRICHTUNG ZUR BESTIMMUNG DER REGIONALEN VERTEILUNG EINES MAßES FÜR DIE LUNGENPERFUSION
EP4048336B1 (de) Dialysesystem mit kontinuierlicher glukose-überwachung
EP3344317A1 (de) Beatmungsvorrichtung mit fehlererfassung für durchflusssensoren
DE102013018366B4 (de) Überwachungsvorrichtung zur Überwachung des Zustands des Kreislaufes eines Patienten und Computerprogramm-Produkt für diese Überwachung
DE102005007592A1 (de) Vorrichtung zur Bestimmung kardiopulmonaler Volumina und Flüsse eines Lebewesens
DE102014004480B4 (de) Verfahren und Vorrichtung zur Regelung des Körperinnendrucks bei Verwendung einer medizintechnischen Pumpe
DE102010015664A1 (de) Verfahren und Vorrichtung zur Bestimmung des Fistelflusses einer Fistel für die Dialysebehandlung
WO2019011822A1 (de) Verfahren und vorrichtungen zum kalibrieren einer pumpe für die blutbehandlung
EP4213908A1 (de) Verfahren zum identifizieren des typs eines medizinischen filters, und vorrichtungen
EP3522961B1 (de) Vorrichtung zur intraoperativen bestimmung der widerstandsbeiwerte von verschiedenen medizinischen instrumenten bei der verwendung einer medizintechnischen fluidpumpe
WO2015158843A1 (de) Verfahren zum entfernen von blut aus einem extrakorporalen blutkreislauf unter druckkontrolle sowie vorrichtungen
EP3576805B1 (de) Anordnung mit einer blutpumpe, einer steuereinheit und einem gerät zur übermittlung der messwerte
DE102018100697A1 (de) Einrichtung zur Bestimmung einer Kenngröße zur Diagnose des Hydrozephalus und anderer Störungen des Hirndrucks
EP3305345B1 (de) Vorrichtung zur rezirkulationsmessung
WO2023072674A1 (de) Verfahren und vorrichtung zur automatisierten charakterisierung von ösophaguskathetern mit ballonsonde

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12724909

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14123849

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2842522

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012266809

Country of ref document: AU

Date of ref document: 20120525

Kind code of ref document: A