WO2012167754A1 - 获得光网络链路性能参数的方法及装置 - Google Patents

获得光网络链路性能参数的方法及装置 Download PDF

Info

Publication number
WO2012167754A1
WO2012167754A1 PCT/CN2012/076740 CN2012076740W WO2012167754A1 WO 2012167754 A1 WO2012167754 A1 WO 2012167754A1 CN 2012076740 W CN2012076740 W CN 2012076740W WO 2012167754 A1 WO2012167754 A1 WO 2012167754A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical power
theoretical
actual
edfa
wave
Prior art date
Application number
PCT/CN2012/076740
Other languages
English (en)
French (fr)
Inventor
张森
韩建蕊
周恩波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12796867.5A priority Critical patent/EP2717496B1/en
Publication of WO2012167754A1 publication Critical patent/WO2012167754A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Definitions

  • the present invention relates to optical network technologies, and in particular, to a method and apparatus for obtaining performance parameters of an optical network link. Background technique
  • the intelligent optical network represented by Automatically Switched Optical Networks (ASON) separates the control plane from the network management system, and introduces some automatic control functions to the intelligent optical network to realize automatic connection management. .
  • ASON Automatically Switched Optical Networks
  • DWDM dense wavelength division multiplexing
  • OMS optical multiplex sections
  • Tx the origin (Tx) to WSS1 is the first OMS section.
  • the WSS2 to the receiving end (Rx) is the second OMS segment.
  • Each OMS contains multiple spans, each of which contains an Erbium-doped Fiber Amplifier (EDFA), fiber and attenuator.
  • EDFA Erbium-doped Fiber Amplifier
  • WSS Wavelength Selective Switch
  • the prior art uses a purely theoretical model for calculation, such as for signal transmission in an optical fiber, using a Stimulated Raman Scattering (SRS) model;
  • SRS Stimulated Raman Scattering
  • the signal is transmitted in the EDFA.
  • the EDFA model is used for calculation.
  • the attenuation amount set by the network manager is queried; for the transmission of the signal in the WSS, network The tube queries the amount of attenuation set.
  • Embodiments of the present invention provide a method and apparatus for obtaining performance parameters of an optical network link to improve accuracy of optical network performance parameters given by a theoretical model.
  • An embodiment of the present invention provides a method for obtaining performance parameters of an optical network link, including: acquiring actual optical power from each monitoring point on an optical network link;
  • An embodiment of the present invention further provides an apparatus for obtaining an optical network link performance parameter, including: an actual value obtaining unit, configured to obtain actual optical power from each monitoring point on an optical network link; and a theoretical value acquiring unit, configured to: Correspondingly obtaining the theoretical optical power of each monitoring point calculated by the theoretical model; a correcting unit, configured to utilize the actual optical power of the monitoring points and the corresponding theoretical optical power, to theoretically model the optical network link Correcting at least one of amplifier gain and link loss in the medium;
  • a performance parameter obtaining unit configured to obtain performance parameter values at each node on the optical network link from the modified theoretical model.
  • a method and device for obtaining performance parameters of an optical network link provided by an embodiment of the present invention
  • the actual optical power and theoretical optical power are monitored, and the theoretical model is corrected by using the actual optical power and the theoretical optical power, and the performance parameter values at the nodes of the optical network are obtained from the modified theoretical model, so that the performance of the theoretical model is obtained.
  • the parameters are more accurate, which solves the problem that the performance parameters calculated by the theoretical model in the prior art deviate greatly from the measured results, and improves the accuracy of the performance parameters given by the theoretical model.
  • FIG. 1 is a flowchart of a method for obtaining performance parameters of an optical network link according to an embodiment of the present invention
  • FIG. 2 is a signal power spectrum of any node in a link in a method for obtaining performance parameters of an optical network link according to an embodiment of the present invention
  • FIG. 3 and FIG. 4 are schematic diagrams of optical network links applied to a method for obtaining performance parameters of an optical network link according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a method for obtaining an optical network link performance parameter according to an embodiment of the present invention, which is specifically used for modifying a theoretical model of an optical network link shown in FIG. 4;
  • FIG. 6 is another flowchart for specifically modifying the theoretical model of the optical network link shown in FIG. 4 in the method for obtaining performance parameters of an optical network link according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of an error of an EDFA3 output and an OPM2 monitoring result calculated by a theoretical model in a method for obtaining an optical network link performance parameter according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of an apparatus for obtaining performance parameters of an optical network link according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for obtaining performance parameters of an optical network link according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step 11 Acquire actual optical power from each monitoring point on the optical network link.
  • OPM Optical Performance Monitor
  • ROADM Reconfigurable Optical Add/Drop Multiplexer
  • the monitoring device of the monitoring point can be EDFA, OPM, or other monitoring equipment or instrument.
  • the optical power can be single-wave optical power or combined optical power. Among them, EDFA monitors the actual combined optical power, and 0PM monitors the actual single-wave optical power.
  • the signal power spectrum of any node in the link can be as shown in FIG. 2.
  • the gray portion represents the amplified spontaneous spont aneous emission (ASE) noise accumulated in the link.
  • the combined optical power ( mw ) of the optical signal at the point can be expressed as the sum of the individual single-wave powers P I (mw) plus the power of the ASE (mw), that is,
  • the theoretical value can be obtained by theoretical model calculation, and the actual value can also be obtained by monitoring points.
  • the actual value is obtained by the monitoring point, such as obtaining the actual combined optical power monitored by the EDFA from each EDFA on each optical network link on the optical network link; or the OPM set from a part of the EDFA on the optical network link.
  • Obtain the actual single-wave optical power monitored by the OPM and obtain the actual combined optical power of the EDFA monitoring from the remaining EDFAs; or obtain the actual single-wave optical power monitored by the OPM from the OPM at each EDFA on the optical network link; or from the optical network chain
  • the actual single-wave optical power can be the single-wave actual optical power of the input and output of the amplifier, that is, the actual single-wave input and output optical power, and the actual combined optical power is the actual total input and output optical power.
  • Step 12 Correspondingly obtain the theoretical optical power of each monitoring point calculated by the theoretical model. If the EDFA itself can monitor the actual optical power, the theoretical optical power of the EDFA calculated by the theoretical model is obtained. If the OPM monitors the actual optical power of an EDFA, the theoretical optical power of the EDFA calculated by the theoretical model is obtained.
  • the theoretical optical power can be the single-wave theoretical optical power of the input and output, or the theoretical total input/output optical power.
  • Step 13 Using the actual optical power of the monitoring points and the corresponding theoretical optical power, correct at least one of an amplifier gain and a link loss in the theoretical model of the optical network link. Specifically, it may include:
  • the corrected theoretical single-wave input optical power is used to correct the link loss of the optical network link at the origin of the theoretical model.
  • the theoretical total input optical power is corrected, and the theoretical total input optical power after correction and the theoretical total corrected by the upper EDFA are used.
  • the optical power is output, and the VOA loss in the theoretical model or the loss of the span device between the EDFA and the upper EDFA is corrected.
  • the actual single-wave output optical power of the EDFA monitored by the OPM is subtracted from the corresponding theoretical single-wave output optical power calculated by the theoretical model, and the difference between the actual output optical power of each single wave and the theoretical output optical power is obtained;
  • step 13 may further include:
  • the theoretical output optical power of each single wave is again calculated by using the modified theoretical model, and the difference between the new actual output optical power of each single wave and the theoretical output optical power is obtained, until the difference is smaller than the threshold threshold.
  • the actual single-wave output optical power monitored by the last OPM is subtracted from the theoretical single-wave output optical power calculated by the theoretical model to obtain a single-wave difference value
  • the link loss in the optical multiplex section where the OPM is located is corrected by the deviation value in an average or weighted average manner until the deviation value is smaller than the threshold value.
  • Step 14 Obtain a performance parameter value at each node on the optical network link from the modified theoretical model.
  • the link loss in the theoretical model and at least one of the amplifiers, such as the EDFA gain are corrected, so that the performance parameters of the optical network calculated by the modified theoretical model, such as the theoretical optical power and the actual light at each node.
  • the power deviation is small and the OSNR is more accurate, which improves the accuracy of the theoretical model calculation results of the optical network link, and makes the link performance parameters obtained by the theoretical model more accurate.
  • the technical solution provided by this embodiment corrects the corresponding parameters in the theoretical model according to the actual single-wave output optical power monitored by the OPM and/or the actual combined optical power monitored by the EDFA, so as to reduce the accumulation of errors in the theoretical model calculation process as much as possible. To ensure the accuracy of the link model calculation results.
  • optical network link shown in FIG. 3 and FIG. 4 is taken as an example to further describe a method for obtaining optical network link performance parameters. There is no OPM in the optical network link shown in Figure 3. The monitoring functions at all EDFA nodes are performed by the E DFA.
  • the theoretical single-wave input optical power of the EDFA1 at the OMS1 originating Tx is corrected according to the actual total input optical power monitored by the EDFA1. Specifically, the theoretical total input optical power calculated by the theoretical model and the actual total input optical power monitored by the EDFA1. The difference is averaged to obtain the average value of the difference, and the theoretical single-wave input optical power of EDFA1 is added to the average value of the difference to obtain the corrected theoretical single-wave input optical power. If the light from the originating laser reaches ⁇ DFA1 through a series of devices or a long fiber, the corrected theoretical single-wave input optical power can be used to obtain a more accurate loss between the laser and the EDFA1, and the resulting loss is corrected.
  • Noise Power Specifically, the theoretical input optical power of EDFA1 is calculated using the EDFA model.
  • the theoretical single-wave output optical power of EDFA1 is calculated by the EDFA model, and the theoretical single-wave output optical power of EDFA1 is corrected according to the actual total output optical power monitored by EDFA 1, that is, the theoretical output optical power spectrum at EDFA1 is corrected.
  • the calculated theoretical single-wave output optical power of EDFA1 is ⁇ ⁇ (dBm)
  • the calculated ⁇ ⁇ (dBm) the actual total output optical power monitored by EDFA1
  • the actual combined optical power is P tal ( dBm )
  • N indicates that signals with N wavelengths are fed into the EDF A model
  • the theoretical single-wave output optical power and ASE optical power calculated by the modified theoretical model are:
  • the theoretical single-wave input optical power and the theoretical single-wave output optical power of each stage of EDFA calculated by the theoretical model are corrected according to the above method. Accordingly, each level of EDFA is increased in the theoretical model.
  • Benefit using the corrected theoretical single-wave input optical power and the corrected theoretical single-wave output optical power for correction. Specifically, a more accurate gain is calculated by using the corrected theoretical single-wave input optical power and the corrected theoretical single-wave output optical power, and the corresponding gain in the theoretical model is replaced by the obtained gain.
  • the single-wave optical power and OSNR at the end of the link are calculated, so that the corrected theoretical performance model can be used to calculate the accurate link performance parameters of each node, thereby evaluating the chain according to the link performance parameters of each node, such as optical power. Road performance.
  • the above-mentioned similar method is used for the VOA loss between EDFA1 and EDFA2.
  • the theoretical single-wave input optical power of the EDFA2 can be calculated by using the SRS model, and the model calculation result is corrected according to the actual total input optical power monitored by the EDFA 2, and the theoretical single-wave input optical power of the corrected EDFA 2 is obtained.
  • the theoretical input power spectrum of the modified EDFA2 is obtained.
  • the corrected theoretical input power spectrum of EDFA2 has little deviation from the actual input power spectrum of EDFA2.
  • the theoretical input power spectrum of the modified EDFA2 is accurate, and since the theoretical output optical power of EDFA1 has been corrected, it can be After the correction of the theoretical input power spectrum of EDFA2 and the theoretical output optical power of the modified EDFA1, the accurate link loss between EDFA1 and EDFA2 is obtained, including the loss of VOA.
  • the corresponding link loss in the theoretical model of the obtained link loss correction includes the VO A loss value, that is, the corresponding link loss value in the theoretical model is updated to the link loss obtained above, so that the corrected theoretical model can be used to calculate The theoretical input optical power of the EDFA2 is accurate.
  • the theoretical optical power can be calculated by a typical value, and since the attenuation value set by WSS for each wavelength can be obtained from the device, the theoretical single wave of the EDFA4 calculated by the theoretical model is obtained.
  • the input optical power is equal to the theoretical single-wave output optical power of the EDF A3 calculated by the theoretical model minus the fixed insertion loss of the VOA device and the WSS device, and subtracts the attenuation value of the VOA device and the WSS device for the single-wave setting.
  • the ideal theoretical model calculation step is the theoretical single-wave output optical power of EDFA3 minus the losses of WSS1 and WSS2, and the theoretical single-wave input optical power of EDFA 4 is obtained.
  • the loss values of WSS1 and WSS2 in the theoretical model are compared with WSS1
  • the theoretical total input optical power of EDFA4 calculated by the theoretical model is not equal to the actual total input optical power of EDFA4 monitored by EDFA4. Therefore, the fixed insertion loss of WSS1 and WSS2 in the theoretical model needs to be corrected. .
  • the calculation results of the power at W SS between the two amplifiers are corrected according to the actual total output optical power monitored by EDFA3 and the actual total input optical power monitored by EDFA4, and the two can be corrected based only on the actual total input optical power monitored by EDFA4.
  • the calculation of the power at the WSS between the amplifiers Assume that the EDFA3 output has three wavelengths, namely ⁇ , ⁇ 2 . ⁇ 3 , the theoretical output optical power of the EDFA3 calculated by the theoretical model is ldBm, 2dBm, 3dBm, and the theoretical output ASE power is -10dBm.
  • the typical fixed insertion loss of WSS1 and WSS 2 for all wavelengths is set to 5dB, and the set attenuation of WSSl for A, A 2 and A 3 is ldB, 2dB, 3dB, ⁇ 3 ⁇ 482, ⁇ 2 . ⁇ 3
  • the attenuation is Id B, 2dB, 3dB, and the loss of ASE for WSSl and WSS2 is set to 0.
  • the theoretical single-wave input optical power and theoretical ASE optical power calculated by the theoretical model to E DFA4 are:
  • the modified theoretical model is used to calculate the theoretical single-wave output optical power of EDFA3, until the theoretical single-wave input optical power of EDFA4 is calculated, and the light is obtained. More accurate performance parameters at each node on the network link.
  • the correction method is not limited to the calculation method given in the above embodiment, and the theoretical total input optical power of the EDFA4 calculated by the theoretical model is corrected by correcting the fixed insertion loss of WSS1 and WSS2 in the theoretical model. It is closer to the actual total input optical power of EDFA4 monitored by EDFA4.
  • OSNR does not change after passing through WSS, so no correction is made.
  • the single-wave optical power of the theoretical output of EDFA6 can be calculated (also called theoretical single-wave output optical power, the same below), and the gain of EDFA6 in the theoretical model is corrected according to the actual total output optical power monitored by EDFA6.
  • the modified theoretical model to calculate the single-wave optical power of the theoretical output of the EDFA6 close to the actual value (also known as the theoretical single-wave output optical power, the same below), so that the accurate performance parameters of each node in the link can be obtained.
  • optical power and OSNR Such as optical power and OSNR.
  • the optical network link in Figure 4 has an OPM.
  • the actual input and output optical power of the EDFA on the link can be monitored by the OPM or by the EDFA.
  • the method in the embodiment shown in Figure 3 above can be used to correct and obtain accurate link performance parameters. It is also possible to correct the calculation results of the theoretical model according to the actual single-wave power monitored by the OPM, and to correct the parameters in the theoretical model, so that the theoretical value calculated by the theoretical model is close to the actual value, so that the theoretical value calculated by the theoretical model is more accurate.
  • the actual single-wave output optical power monitored by OPM1 is used to correct the theoretical single-wave theoretical optical power of the input of EDFA1 calculated by the theoretical model. Since the light emitted directly from the originating laser has not passed What is EDFA, so the input light OSNR of EDFAl is infinite.
  • the theoretical single-wave output optical power of EDFA1 is calculated using the EDFA theoretical model, including the individual single-wave output optical power and noise power. Comparing the theoretical single-wave output optical power of EDFA1 calculated by the theoretical model with the actual single-wave output optical power monitored by OPM1 is less than a set threshold. If not, recalculate the theoretical single-wave input optical power; if the difference is less than the threshold, Then the theoretical model is obtained to calculate the near-actual value of EDFA1, that is, the accurate theoretical output optical power.
  • Step 51 Obtain the actual single-wave output optical power monitored by the OPM1.
  • Step 52 Obtain each theoretical single-wave input optical power P of the EDFA1.
  • X k represents the kth wavelength
  • i represents the input (input)
  • n represents the result of the nth calculation
  • the initial theoretical single-wave input optical power of EDFA1 is obtained by subtracting the total EDFA1 gain set in the theoretical model from the actual single-wave output optical power monitored by OPM1.
  • Step 53 Obtain each theoretical single-wave output optical power of the EDFA1. , Px k .
  • n is the same as the description in step 52, and the initial value is 0.
  • P is input into the theoretical model of EDFA1, and the initial theoretical single-wave output optical power of EDFA1 is calculated. .
  • Step 54 Compare the actual values monitored with the OPM to determine whether the difference between the two meets the threshold. Initially, compare. Whether the difference between each actual single-wave output optical power PZ m monitored by the OPM satisfies a threshold, that is, is less than a threshold. If yes, go to step 55. Otherwise, go to step 52 after n+1.
  • Step 55 Obtain accurate theoretical single-wave input optical power of EDFAl.
  • the modified P is used as the theoretical single-wave input optical power of the theoretical model of EDFAl
  • the theoretical single-wave output optical power of EDFA1 is calculated by E DFA model, and the theoretical single-wave output optical power and the actual single-wave output light monitored by OPM1 are calculated.
  • the difference in power PZ m is calculated.
  • step 54 if the calculated difference of each single wave is less than the set threshold threshold, the loop is stopped, and step 55 is performed; otherwise, the calculation of ⁇ , ⁇ .- ⁇ continues until the theoretical model calculates The difference between each theoretical single-wave output optical power and the actual single-wave output optical power monitored by ⁇ is less than the set threshold.
  • a _pz m if the calculated difference of each single wave is less than the set threshold threshold, the loop is stopped, and step 55 is performed; otherwise, the calculation of ⁇ , ⁇ .- ⁇ continues until the theoretical model calculates The difference between each theoretical single-wave output optical power and the actual single-wave output optical power monitored by ⁇ is less than the set threshold.
  • EDFA2 For the loss of fiber between EDFA1 and EDFA2, since the single-wave output power of EDFA1 is equal to the single-wave input optical power of EDFA2 after the attenuation of the fiber and device and the SRS effect of the fiber, EDFA2 can be obtained by SRS model calculation. Theoretical single-wave input optical power.
  • the theoretical input optical power of the EDFA2 calculated by the model is corrected based on the actual total input optical power monitored by EDFA2.
  • the EDFA model and the SRS model are called to gradually calculate the optical power spectrum of each node of the link (including the single-wave power spectrum and the power of the ASE) until the E is calculated.
  • the correction method in the first embodiment is also used to correct the input and output of each stage of the amplifier.
  • the output optical power spectrum of EDFA3 monitored by OPM2 is used to correct the calculation parameters of each span model of OMS1.
  • the actual optical power of each single wave of EDFA3 is monitored by OPM2, and the theoretical value of each span node in 0 MS 1 calculated by the theoretical model is corrected. These theoretical values include the input and output optical power and OSNR of each node in the OMS 1 calculated by the theoretical model.
  • Step 61 Acquire OPM2 to monitor each actual single-wave output optical power of the EDFA3.
  • Step 62 Obtain each theoretical single-wave output optical power P of the EDFA3 calculated by the theoretical model. Among them, the initial value of n is 0.
  • Step 63 compare.
  • the actual value monitored by OPM2 that is, the actual single-wave output optical power of EDFA3 determines whether the difference between the two meets the threshold, that is, is not greater than the threshold. When the difference satisfies the threshold, step 65 is performed; otherwise, step 64 is performed.
  • Step 64 The difference calculated in the above step 63 is allocated to each span device parameter in the OMS1, that is, the parameters of each span device in the OMS1 in the theoretical model are corrected, and then step 62 is performed.
  • the theoretical output optical power spectrum of EDFA3 calculated by the theoretical model is the theoretical single-wave output optical power.
  • the difference between the actual single-wave output optical power of the EDFA3 monitored by OPM2 is ⁇ ⁇ , and the difference ⁇ ⁇ can be considered to be due to the unknown wavelength-related characteristics of the devices in the link.
  • the average or weight can be used for correction.
  • the weighted average method is applied, if the attenuation amount set by the two cross-section VOAs is different, the attenuator in the two spans of 0.6 dB to OMS1 can be allocated according to the attenuation of the VOA itself, and does not necessarily need to be averaged.
  • EDFA3 recalculated using the theoretical model in the corrected theoretical power spectrum output link parameters, compared again ⁇ ⁇ satisfies the set threshold value, and if not the same approach can re-use ⁇ ⁇ iteration until ⁇ ⁇ satisfies The threshold is up.
  • Step 65 Obtain accurate theoretical single-wave output optical power of the EDFA3.
  • the threshold value of ⁇ is sufficient, the theoretical single-wave output optical power of the EDFA3 calculated by the theoretical model is close to the actual optical power value, and the accuracy is improved, thereby obtaining a more accurate OSNR, thereby performing the single-wave theoretical optical power at the end of the OMS1. Corrected. Among them, the output of EDFA3 is the end of OMS1.
  • the theoretical single-wave output optical power of the EDFA4 calculated by the theoretical model is corrected by the actual single-wave output optical power of the EDFA4 monitored by ⁇ 3.
  • the actual single-wave output optical power of the EDFA6 monitored by the OPM4 is used to correct the calculation result of the theoretical model of each span in the OMS2, and the correction method is as shown in FIG. 6 above. Description.
  • the EDFA model and the SRS model are called to gradually calculate the theoretical optical power spectrum of each node of the link.
  • E DFA cannot monitor the total input and output optical power of each amplifier, it can only be calculated according to the gain set in the theoretical model until the theoretical model calculates the theoretical output optical power spectrum of EDFA3.
  • the EDFA control accuracy in the link is not accurate, such as setting the EDFA to 20dB gain, the actual locking result may be 20.2dB.
  • the theoretical model calculation results have a corresponding deviation from the monitoring results in addition to the individual waves, and there is an overall mean deviation, called the multiplexed wave deviation.
  • the error of the EDFA3 output calculated by the theoretical model and the error of the OP M2 monitoring are shown in Fig. 7.
  • the solid fold line is the single wave deviation
  • the horizontal dotted line is the combined wave deviation. Therefore, the corrections based on the monitoring results of the OPM2 include the combined power correction and the single-wave power correction.
  • Hebrew The purpose of the power correction is to make the difference between the single-wave theoretical optical power calculated by the theoretical model and the actual single-wave optical power monitored by the OPM2 not all shift in the same direction.
  • the purpose of the single-wave correction is to calculate the theoretical model.
  • the difference between the single-wave theoretical optical power and the actual single optical power of the OPM2 is as close as possible to zero.
  • the multiplexer when the multiplexer is corrected, the actual single-wave output optical power monitored by the OPM2 is converted into a linear unit (mw) and then added, and the added result is converted into a logarithmic unit (dBm) to obtain the actual total of the EDFA3.
  • Output optical power P réelle (dBm) and then obtain the theoretical total output optical power P (dBm) calculated by the theoretical model in the same way, and then calculate the difference between the actual total output optical power 3 ⁇ 4 and the theoretical total output optical power ⁇ + ⁇ Combining error:
  • can be considered as the result of the inaccurate setting of the EDFA2 and EDFA3 in the theoretical model, and can also be considered as the fixed insertion loss of the device in the inter-segment.
  • the target gain values set by the amplifiers are not exactly the same in the process of correction, and the target gain value may be corrected by an average or weighted average method.
  • the weighted average means that if there are only 2 EDF As in the link, the target gains are 20 dB and 30 dB, respectively.
  • the target gains after EDFA correction are 20.2dB and 20.3dB, respectively.
  • the theoretical result of the OMS termination is recalculated with the theoretical model after the target gain is corrected, and the theoretical total output optical power closer to the actual optical power, that is, the more accurate theoretical total output optical power, is obtained.
  • a threshold can be set as the condition for convergence correction. If the calculated result of the theoretical model and the actual value monitored by OPM2 are greater than the threshold, the target gain of the EDFA is re-corrected until convergence. .
  • the insertion loss of the inter-segment device in the theoretical model can be corrected in the same manner as above.
  • the theoretical model calculation results are not considered to be in the same direction as the OPM2 monitoring.
  • the average deviation of the shift that is, the difference between the theoretical model calculation result of each single wave and the OPM2 monitoring result is shifted in the same direction.
  • the difference between the theoretical output optical power spectrum of EDFA3 calculated by the theoretical model and the actual output optical power spectrum monitored by OP M2 is ⁇ ⁇
  • the deviation of ⁇ ⁇ from the above combined error ⁇ is:
  • ⁇ ⁇ can be considered as the error between the characteristic parameter value and the actual parameter in the theoretical model of the device in the link.
  • the average or weighted average method can be used to distribute ⁇ ⁇ to each span correction.
  • the WDL characteristic parameters of the VOA device in the theoretical model and then recalculate the theoretical output optical power spectrum of EDFA3 using the theoretical model corrected by the link parameters, and compare the obtained ⁇ ⁇ ' to meet the set threshold. If not, it can be ⁇ ⁇ 'Re-iteratively calculate using the same processing method until ⁇ 'has reached the threshold.
  • the single-wave correction can be performed after the multiplex correction, or it can be performed simultaneously with the multiplex correction.
  • the technical solution provided by the foregoing embodiment corrects the parameters in the theoretical model by using the monitored actual optical power, and solves the problem in the prior art that the performance parameters of the optical transmission link are calculated by using the theoretical model, because the characteristic parameters of the device, such as gain or The error caused by inaccurate loss is too large, and the theoretical model is used to accurately estimate the power and OSNR of each point in the link.
  • FIG. 8 is a schematic structural diagram of an apparatus for obtaining performance parameters of an optical network link according to an embodiment of the present invention.
  • the apparatus 80 for obtaining optical network link performance parameters includes: an actual value acquisition unit 81, a theoretical value acquisition unit 82, a correction unit 83, and a performance parameter acquisition unit 84.
  • the actual value obtaining unit 81 is configured to obtain actual optical power from each monitoring point on the optical network link; the theoretical value obtaining unit 82 is configured to respectively acquire theoretical optical power of each monitoring point calculated by the theoretical model; and the correcting unit 83 is configured to utilize the Determining at least one of an amplifier gain and a link loss in the theoretical model of the optical network link by the actual optical power of each monitoring point and the corresponding theoretical optical power; the performance parameter obtaining unit 84 A performance parameter value at each node on the optical network link is obtained from the modified theoretical model.
  • the actual value obtaining unit 81 may be specifically configured to:
  • the correction unit may include:
  • a first correcting subunit configured to correct a theoretical single-wave input optical power of the first amplifier by using an actual total input optical power of a first amplifier on the optical network link;
  • a first subtraction subunit wherein an actual total output optical power of the EDFA monitored by the EDFA is subtracted from a theoretical total output optical power calculated by a theoretical model to obtain a difference;
  • An adding subunit configured to add the difference value to the theoretical output optical power to obtain a corrected theoretical total output optical power
  • a correction gain acquisition subunit configured to obtain a correction gain of the EDFA by using a theoretical total input optical power of the EDFA and the corrected theoretical total output optical power
  • the modifying unit may include:
  • a first comparison subunit for comparing actual total input optical power monitored by the EDFA with theoretical total input optical power calculated by a theoretical model
  • a third correcting subunit configured to correct the theoretical total input optical power when the actual total input optical power is inconsistent with the theoretical total input optical power, and use the corrected theoretical total input optical power and The theoretical total output optical power after the primary EDFA is corrected, and the VOA loss or the loss of the span device in the theoretical model between the EDFA and the upper EDFA is corrected.
  • the modifying unit may include:
  • a total gain obtaining subunit for summing the actual single input optical power of the EDFA monitored by the OPM, subtracting the actual total input optical power monitored by the EDFA to obtain a total gain of the EDFA; a total gain correction subunit, Used to replace the total gain of the EDFA in the theoretical model with the resulting total gain.
  • the modifying unit may include:
  • the second subtraction sub-unit is configured to subtract the actual single-wave output optical power of the EDFA monitored by the OPM from the corresponding theoretical single-wave output optical power calculated by the theoretical model, to obtain the actual output optical power and theoretical output of each single wave.
  • a second comparison subunit configured to compare a difference between an actual optical power of the single wave and a theoretical optical power with a preset threshold threshold
  • a fourth correcting subunit configured to correct a theoretical single wave input optical power of the EDFA in the theoretical model if the difference is at least one greater than the threshold threshold
  • a loss correction subunit configured to correct a link loss of the origin of the optical network link in the theoretical model by using the theoretical single-wave input optical power of the modified EDFA.
  • the modifying unit may further include:
  • a third sub-subunit for distributing the difference between the actual output optical power of each single wave and the theoretical output optical power in an average or weighted average manner to each span of the optical multiplex section where the OPM is located, to correspondingly Correcting the link loss of each span in the theoretical model;
  • a fifth correcting subunit configured to calculate the theoretical output optical power of each single wave again by using the modified theoretical model, and obtain a difference between the new actual output optical power of each single wave and the theoretical output optical power, until the difference The value is less than the threshold threshold.
  • the modifying unit may further include:
  • a fourth subtraction subunit wherein a sum of actual single-wave output optical powers monitored by the last OPM of the optical multiplex section in which the OPM is located is subtracted from a theoretical total output optical power obtained by the theoretical model to obtain a combined difference value ;
  • a sixth correcting subunit configured to correct, by means of the averaged or weighted average, the gain of the EDFA of the optical multiplex section where the OPM is located by using the combined difference value;
  • a fifth subtraction sub-unit for subtracting the actual single-wave output optical power monitored by the last OPM from the theoretical single-wave output optical power calculated by the theoretical model to obtain a single-wave difference value
  • a sixth subtraction subunit configured to subtract the single wave difference from the combined difference value to obtain a deviation value
  • a third comparison subunit configured to compare the deviation value with a preset threshold
  • a seventh correcting subunit configured to correct, in an average or weighted average manner, the link loss in the optical multiplex section where the OPM is located, in an average or weighted average manner, until the offset value is obtained, where the offset value is greater than the threshold value Less than the threshold.
  • the device for obtaining the optical network link performance parameter is obtained by the acquiring unit.
  • the actual optical power and the theoretical optical power are monitored, and the theoretical model is corrected by the correction unit using the actual optical power and the theoretical optical power, and the performance parameter acquisition unit obtains the performance parameter values at each node of the optical network from the modified theoretical model.
  • the performance parameters given by the theoretical model are more accurate, which solves the problem that the performance parameters calculated by the theoretical model in the prior art deviate greatly from the measured results, and improves the accuracy of the performance parameters given by the theoretical model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及一种获得光网络链路性能参数的方法及装置,通过获取监测的实际光功率及理论光功率,并通过利用实际光功率与理论光功率对理论模型进行修正,从修正后的理论模型获得光网络各节点处的性能参数值,使得理论模型给出的性能参数更加准确,解决了现有技术中理论模型计算的性能参数与实测结果偏差很大的问题,提高了理论模型给出的性能参数的准确性。

Description

获得光网络链路性能参数的方法及装置 本申请要求了 2011年 7月 1 日提交的, 申请号为 201110184200.3, 名称 为"获得光网络链路性能参数的方法及装置"的中国申请的优先权,其全部内容 通过引用结合在本申请中。 技术领域
本发明涉及光网络技术, 尤其涉及一种获得光网络链路性能参数的方法 及装置。 背景技术
以自动交换光网络 ( Automatically Switched Optical Networks , ASON )为 典型代表的智能化光网络, 从网管系统中分离出控制层平面, 给智能化光网 络引进了一部分的自动控制功能, 实现了自动连接管理。
例如某个采用密集型波分复用技术(DWDM ) 的光网络链路系统中, 总 共包含两个光复用段(Optical Multiplexer Section Layer, OMS ), 发端 ( Tx ) 到 WSS1为第一个 OMS段, WSS2到收端(Rx )为第二个 OMS段,每个 OMS 包含有多个跨段, 每个跨段内包含掺铒光纤放大器 (Erbium-doped Fiber Amplifier, EDFA ), 光纤和衰减器。 发端 ( Tx )信号经过多个放大器、 光波 长选择开关 (Wavelength Selective Switch, WSS )、 衰减器和光纤传输之后被 收端 (Rx ) 的接收机接收。
为了得到链路中任意点各波长信号的功率和 OSNR, 现有技术采用纯理 论模型进行计算, 比如对于信号在光纤中传输, 用受激拉曼散射( Stimulated Raman Scattering, SRS )模型计算; 对于信号在 EDFA中传输, 通过网管查 询放大器所设置的增益后, 用 EDFA模型进行计算; 对于信号在衰减器中的 传输, 则通过网管查询所设置的衰减量; 对于信号在 WSS中的传输, 通过网 管查询所设置的衰减量。
在现有技术用模型计算获得链路性能的过程中, 至少存在以下缺陷: 由 于链路中某些参数如 WSS器件、 VOA器件的固定插入损耗、 器件的波长相 关损耗(Wavelength Dependent Loss, WDL )特性、 EDFA控制精度误差等无 法准确获取, 导致理论模型计算结果的输入参数不准确, 因此在工程应用中 用理论模型计算通常会与实测结果偏差^艮大。 发明内容
本发明实施例提出一种获得光网络链路性能参数的方法及装置, 以提高 通过理论模型给出的光网络性能参数的准确性。
本发明实施例提供了一种获得光网络链路性能参数的方法, 包括: 从光网络链路上的各监测点获取实际光功率;
相应获取理论模型计算的各监测点的理论光功率;
利用所述各监测点的所述实际光功率及相应的所述理论光功率, 对所述 光网络链路在理论模型中的放大器增益及链路损耗中的至少一个参数进行修 正;
从修正后的理论模型获得所述光网络链路上各节点处的性能参数值。 本发明实施例还提供了一种获得光网络链路性能参数的装置, 包括: 实际值获取单元, 用于从光网络链路上的各监测点获取实际光功率; 理论值获取单元, 用于相应获取理论模型计算的各监测点的理论光功率; 修正单元, 用于利用所述各监测点的所述实际光功率及相应的所述理论 光功率, 对所述光网络链路在理论模型中的放大器增益及链路损耗中的至少 一个参数进行修正;
性能参数获取单元, 用于从修正后的理论模型获得所述光网络链路上各 节点处的性能参数值。
本发明实施例提供的获得光网络链路性能参数的方法及装置, 通过获取 监测的实际光功率及理论光功率, 并通过利用实际光功率与理论光功率对理 论模型进行修正, 从修正后的理论模型获得光网络各节点处的性能参数值, 使得理论模型给出的性能参数更加准确, 解决了现有技术中理论模型计算的 性能参数与实测结果偏差很大的问题, 提高了理论模型给出的性能参数的准 确性。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例中所需 要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的获得光网络链路性能参数的方法的流程图; 图 2为本发明实施例提供的获得光网络链路性能参数的方法中链路中任 意节点的信号功率谱的示意图;
图 3、图 4为本发明实施例提供的获得光网络链路性能参数的方法所应用 的光网络链路示意图;
图 5 为本发明实施例提供的获得光网络链路性能参数的方法中具体用于 图 4所示光网络链路理论模型修正的一种流程图;
图 6 为本发明实施例提供的获得光网络链路性能参数的方法中具体用于 图 4所示光网络链路理论模型修正的另一种流程图;
图 7 为本发明实施例提供的获得光网络链路性能参数的方法中理论模型 计算的 EDFA3输出的结果与 OPM2监测的误差示意图;
图 8 为本发明实施例提供的获得光网络链路性能参数的装置的结构示意 图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1 为本发明实施例提供的获得光网络链路性能参数的方法的流程图, 如图 1所示, 该方法包括:
步骤 11、 从光网络链路上的各监测点获取实际光功率。
通常链路中的某些站点会配置光性能监控( Optical Performance Monitor, OPM ) 模块用于监测各单波光功率, 特别是在可重构光分插复用器 ( Reconfigurable Optical Add/Drop Multiplexer, ROADM )前后。
为了获得链路的性能参数对链路性能进行评估, 在每个 0MS的发端(即 第一个放大器处 )和收端(即最后一个放大器处 )都有 0PM监测,基于 0PM 模块成本的考虑,工程应用中不会在每个放大器的位置都放置 0PM模块来监 控光功率。 但是在获得链路性能如传输代价时, 需要知道各跨段每个单波的 入纤光功率, 即放大器输出的各单波输出光功率, 还要知道链路中某些点的 光信号的 0SNR。
监测点的监测装置可以是 EDFA, 也可以是 OPM, 还可以是其他监测设 备或仪表, 光功率可以是单波光功率, 也可以是合波光功率。 其中, EDFA监 测的是实际合波光功率, 0PM监测的是实际单波光功率。
假设链路中有 N个波长的光信号, 则链路中任意节点的信号功率谱可如 图 2所示。 灰色部分表示链路中累积的放大的自发辐射噪声 (amplified spont aneous emission, ASE )噪声。 则该点光信号的合波光功率 (mw)可以表示为 各单波功率 P I (mw)之和加 ASE的功率 (mw) , 即
Ν
Ρ总 = P/ii + P
i=l
P、可以通过理论模型计算获得理论值, 也可以通过监测点获得实际值。 本步骤通过监测点获得实际值, 如从光网络链路上的各从光网络链路上 的各 EDFA获取 EDFA监测的实际合波光功率; 或者从光网络链路上的部分 EDFA处设置的 OPM获取 OPM监测的实际单波光功率, 及从其余的 EDFA 获取 EDFA监测的实际合波光功率; 或者从光网络链路上位于各 EDFA处的 OPM获取 OPM监测的实际单波光功率; 或者从光网络链路上的各节点处获 取监测设备或仪表监测的实际合波光功率或者实际单波光功率。 其中, 实际 单波光功率可为放大器的输入、 输出的单波实际光功率即实际单波输入输出 光功率, 实际合波光功率为实际总输入输出光功率。
步骤 12、 相应获取理论模型计算的各监测点的理论光功率。 如 EDFA本 身可监测实际光功率时, 则获取理论模型计算的该 EDFA的理论光功率。 如 OPM监测一 EDFA的实际光功率时, 则获取理论模型计算的该 EDFA的理论 光功率。 其中, 理论光功率可为输入、 输出的单波理论光功率, 也可为理论 总输入 /输出光功率。
步骤 13、利用所述各监测点的所述实际光功率及相应的所述理论光功率, 对所述光网络链路在理论模型中的放大器增益及链路损耗中的至少一个参数 进行修正。 具体地, 可包括:
利用所述光网络链路上的第一个放大器的实际总输入光功率修正所述第 一个放大器的理论单波输入光功率;
利用修正后的理论单波输入光功率修正所述光网络链路在理论模型中的 发端的链路损耗。
或者可包括:
用所述 EDFA监测的 EDFA的实际总输出光功率与理论模型计算的理论 总输出光功率相减, 得到差值;
将所述差值与所述理论输出光功率相加, 得到修正后的理论总输出光功 率;
利用所述 EDFA的理论总输入光功率与所述修正后的理论总输出光功率, 得到所述 EDFA的修正增益;
用所述修正增益替换所述 EDFA在所述理论模型中的原有增益。
或者可包括:
比较所述 EDFA监测的实际总输入光功率与理论模型计算的理论总输入 光功率;
在所述实际总输入光功率与理论总输入光功率不一致的情况下, 对所述 理论总输入光功率进行修正, 并利用修正后的理论总输入光功率及上一级 EDFA修正后的理论总输出光功率,对所述 EDFA与上一级 EDFA之间在理论 模型中的 VOA损耗或跨段器件的损耗进行修正。
或者可包括:
利用 OPM监测的 EDFA的实际单波输出光功率之和,减去所述 EDFA监 测的实际总输入光功率, 得到所述 EDFA的总增益;
用得到的所述总增益替换理论模型中所述 EDFA的总增益。
或者可包括:
用 OPM监测的 EDFA实际单波输出光功率与所述理论模型计算得到的相 应的理论单波输出光功率相减, 得到各单波的实际输出光功率与理论输出光 功率的差值;
比较所述各单波的实际光功率与理论光功率的差值与预先设定的阈值门 限;
在所述差值至少有一个大于所述阈值门限的情况下, 修正所述理论模型 中所述 EDFA的理论单波输入光功率;
利用修正后的所述 EDFA的理论单波输入光功率, 修正所述光网络链路 在理论模型中的发端的链路损耗。
进一步地, 步骤 13还可包括:
将所述各单波的实际输出光功率与理论输出光功率的差值以平均或加权 平均的方式分配到所述 OPM所在光复用段的各个跨段,以相应修正各个跨段 在所述理论模型中的链路损耗;
利用修正后的理论模型再次计算各单波的理论输出光功率, 并以此得到 各单波的新的实际输出光功率与理论输出光功率的差值, 直至差值小于所述 阈值门限。
或者还可包括:
用所述 OPM所在光复用段的最后一个 OPM监测的实际单波输出光功率 之和与所述理论模型得到的理论总输出光功率相减, 得到合波差值;
以平均或加权平均的方式用所述合波差值对所述 OPM 所在光复用段的 EDFA的增益进行爹正;
用所述最后一个 OPM监测的实际单波输出光功率与所述理论模型计算 得到的理论单波输出光功率相减, 得到单波差值;
用所述合波差值与所述单波差值相减, 得到偏差值;
比较所述偏差值与预先设定的阈值;
在所述偏差值大于所述阈值的情况下, 以平均或加权平均的方式用所述 偏差值修正所述 OPM所在光复用段内的链路损耗, 直至偏差值小于阈值。
步骤 14、 从修正后的理论模型获得所述光网络链路上各节点处的性能参 数值。 经过上述步骤 13对理论模型中的链路损耗及放大器如 EDFA增益中的 至少一个参数进行修正, 使得修正后的理论模型计算得到的光网络的性能参 数如各节点处的理论光功率与实际光功率偏差很小, OSNR 更加准确, 提高 了光网络链路的理论模型计算结果的准确性, 使得通过理论模型获得的链路 性能参数更加精确。
本实施例提供的技术方案根据 OPM监测的各实际单波输出光功率和 /或 EDFA监测的实际合波光功率来修正理论模型的中的相应参数,以尽可能降低 理论模型计算过程中误差的累积, 从而保证链路模型计算结果的准确性。
下面以图 3、 图 4所示光网络链路为例, 对获得光网络链路性能参数的方 法作进一步说明。 图 3所示的光网络链路中没有 OPM, 所有 EDFA节点处的监测功能由 E DFA执行。
OMS1发端 Tx各波长功率即 EDFA1的理论单波输入光功率根据 EDFA1 监测的实际总输入光功率进行修正, 具体地, 将理论模型计算出的理论总输 入光功率与 EDFA1监测的实际总输入光功率的差值进行平均, 得到差值平均 值, 将 EDFA1的理论单波输入光功率与差值平均值相加, 得到修正后的理论 单波输入光功率。若发端激光器发出的光经一系列器件或者很长的光纤到达 Ε DFA1 , 则利用修正后的理论单波输入光功率, 可得到激光器与 EDFA1 之间 的较准确的损耗, 利用得到的损耗修正该光网络链路在理论模型中的发端损 耗, 以使得理论模型计算出的 EDFA1的理论输入光功率更为准确。 由于发端 激光器直接发出来的光没有经过 EDFA1 , 所以 EDFA1的输入信号 OSNR为 无穷大。 计算出信号功率和 ASE功率就可以得出 OSNR, 0SNR = ¾¾
噪声功率 具体地, 利用 EDFA模型计算出 EDFA1的理论输入光功率。
利用 EDFA模型计算出 EDFA1的理论单波输出光功率, 根据 EDFA 1监 测的实际总输出光功率修正 EDFA1 的理论单波输出光功率, 即修正 EDFA1 处的理论输出光功率谱。 具体地, 假设计算得到的 EDFA1的理论单波输出光 功率为 ΡΛ ( dBm ), 计算得到的 Ρ^Ε ( dBm ), EDFA1监测得到的实际总输出 光功率即实际合波光功率为 P tal ( dBm ), N表示有 N个波长的信号送入 EDF A模型, 则修正理论模型计算的理论单波输出光功率和 ASE光功率为:
Δ = Pototal -10*logl0(∑100 PP- +100 PPase°)
k=l
p 1 ASE = p 1 ASEo + A
理论模型计算得到的每级 EDFA的理论单波输入光功率和理论单波输出 光功率, 都根据上述方法进行修正。 相应地, 每级 EDFA在理论模型中的增 益, 利用修正后的理论单波输入光功率及修正后的理论单波输出光功率进行 修正。 具体地, 利用修正后的理论单波输入光功率及修正后的理论单波输出 光功率计算得到较准确的增益, 利用得到的增益替换理论模型中对应的增益。 依次类推, 计算到链路末端各单波光功率和 OSNR, 从而可以利用修正后的 理论模型计算出各节点准确的链路性能参数, 从而根据各节点的链路性能参 数如光功率等评估出链路的性能。
对于 EDFA1到 EDFA2之间的 VOA损耗, 采用上述类似爹正方法。 具体 地, 利用 SRS模型可以计算得到 EDFA2的理论单波输入光功率, 根据 EDFA 2监测到的实际总输入光功率对模型计算结果进行修正, 得到修正后的 EDFA 2的理论单波输入光功率即得到修正后的 EDFA2的理论输入功率谱。 修正后 的 EDFA2的理论输入功率谱与 EDFA2的实际输入功率谱偏差很小, 可以认 为修正后的 EDFA2的理论输入功率谱是准确的, 且由于 EDFA1的理论输出 光功率已经被修正, 从而可以根据修正后 EDFA2的理论输入功率谱与修正后 的 EDFA1的理论输出光功率, 得到 EDFA1到 EDFA2之间准确链路损耗, 包 括 VOA的损耗。 用得到的链路损耗修正理论模型中相应的链路损耗包括 VO A损耗值, 即将理论模型中相应的链路损耗值更新为上述得到的链路损耗, 从而可以利用修正后的理论模型可以计算出准确的 EDFA2 的理论输入光功 率。
对于链路中的器件比如 VOA和 WSS的固定插入损耗可调用典型值计算 理论光功率, 且由于 WSS对每个波长设置的衰减值可以从设备查询得到, 因 此理论模型计算的 EDFA4的理论单波输入光功率, 等于理论模型计算的 EDF A3的理论单波输出光功率减去 VOA器件和 WSS器件的固定插入损耗,并减 去 VOA器件和 WSS器件对该单波设置的衰减值。
对于图 3所示的 EDFA4的理论输入输出光功率, 理想的理论模型计算步 骤是 EDFA3的理论单波输出光功率减去 WSS1和 WSS2的损耗, 得到 EDFA 4的理论单波输入光功率。 当理论模型中 WSS1和 WSS2的损耗值与 WSS1 和 WSS2的实际损耗偏差较大时, 利用理论模型计算得到的 EDFA4的理论总 输入光功率不等于 EDFA4监测的 EDFA4的实际总输入光功率, 因此, 需要 修正理论模型中 WSS1和 WSS2的固定插入损耗。具体根据 EDFA3监测的实 际总输出光功率和 EDFA4监测的实际总输入光功率修正这两个放大器之间 W SS处功率的计算结果,也可以仅根据 EDFA4监测的实际总输入光功率修正这 两个放大器之间 WSS处功率的计算结果。 假设 EDFA3输出有 3个波长, 分 别为 Α、 λ2. Λ3, 理论模型计算出的 EDFA3的理论输出光功率分别是 ldBm、 2dBm、 3dBm, 理论输出 ASE功率为 -lOdBm, 在理论模型中, WSS1和 WSS 2对所有波长的固定插入损耗典型值设置为 5dB, WSSl对 A、 A2、 A3的设置 衰减量分别为 ldB、 2dB、 3dB, \\¾82对 、 λ2. Α3的设置衰减量分别为 Id B、 2dB、 3dB, WSSl和 WSS2对 ASE的损耗设置为 0, 则理论模型计算到 E DFA4的理论单波输入光功率和理论 ASE光功率为:
Pinl =1-5*2-1-1 = -lldBm
p.n2 =2-5*2-2-2 = -12dBm
pin3 =3-5*2-3-3 = -13dBm
=-10-5*2 = -20dBm
理论模型计算到的 EDFA4的理论总输入光功率为:
Pinttal =10*logl0(10°1 1 +1001¾2 +1001¾ +1001*PASE) = -6.93dBm 假设 EDFA4监测到的实际总输入光功率为 -6dBm, 若将理论模型中的 W SS的固定插入损耗修正为 4.535dB,则修正后的理论单波输入光功率和理论 A
SE光功率为:
Pinl = 1 - 4.535 *2-1-1 = -10.07dBm
Pin2 =2-4.535 * 2- 2-2 = -11.07dBm
p.n3 =3-4.535*2-3-3 = -12.07dBm
P^E = -10 - 4.5.5 *2 = -19.07 dBm
修正后的理论模型计算到的 EDFA4的理论总输入光功率为: Pintotal = 10 * logl0(1001¾ + 100 1*P»2 + 100 1¾3 + 100 PPase ) =— 6dBm
修正一次理论模型中 WSS1和 WSS2的固定插入损耗后, 再利用修正后 的理论模型从 EDFA3 的理论单波输出光功率开始计算, 直到计算出 EDFA4 的理论各单波输入光功率, 从而得到了光网络链路上各节点处较准确的性能 参数。
本领域技术人员应理解为, 修正方法不限于上述实施例所给出的计算方 法, 只要通过修正理论模型中的 WSS1和 WSS2的固定插入损耗, 使得理论 模型计算出的 EDFA4的理论总输入光功率更接近 EDFA4监测的 EDFA4的实 际总输入光功率即可。
另外, OSNR在穿过 WSS之后不会发生变化, 所以不做修正。 OSNR只 有穿过放大器之后才会变化, 原因是放大器会产生新的噪声, 而如果只是穿 过衰减器件, 则信号和噪声功率(ASE )是一起被衰减的, 所以信号和噪声的 比值(OSNR ) 不会发生变化。
依次类推, 可以计算到 EDFA6的理论输出的各单波光功率(也可以称之 为理论单波输出光功率, 下同), 根据 EDFA6监测的实际总输出光功率修正 理论模型中 EDFA6的增益, 进而利用修正后的理论模型计算出接近实际值的 EDFA6的理论输出的各单波光功率(也可称之为理论单波输出光功率,下同), 从而可以得到链路中各节点准确的性能参数如光功率和 OSNR。
图 4中的光网络链路带有 OPM , 链路上的 EDFA的实际输入输出光功率 可由 OPM进行监测, 也可由 EDFA进行监测。
当采用 EDFA监测时, 可采用上述图 3所示实施例中的方法进行修正, 并获得准确的链路性能参数。还可以根据 OPM监测的实际各单波功率修正理 论模型计算结果, 并对理论模型中的参数进行修正, 从而使理论模型计算出 的理论值接近实际值, 使理论模型计算的理论值更加准确。
如, 利用 OPM1监测的实际单波输出光功率修正理论模型计算的 EDFA1 的输入的各单波理论光功率。 由于发端激光器直接发出来的光还没有经过任 何 EDFA, 所以 EDFAl的输入光 OSNR为无穷大。 利用 EDFA理论模型计算 出 EDFA1的理论单波输出光功率, 包括各单波输出光功率和噪声功率。 比较 理论模型计算的 EDFA1的理论单波输出光功率与 OPM1监测的实际单波输出 光功率差值是否小于设定阈值, 若不满足, 重新计算理论单波输入光功率; 若差值小于阈值, 则得到理论模型计算 EDFA1的接近实际值即准确的理论输 出光功率。
具体地, 如图 5所示, 包括以下步骤:
步骤 51、 获取 OPM1监测的各实际单波输出光功率。
步骤 52、 得到 EDFA1的各理论单波输入光功率 P 。其中, X k表示第 k 个波长, i表示输入(input ), n表示第 n次计算的结果, n=0为初始计算值, n=l表示修正 1次后的计算值, 以此类推。 初始时, 利用 OPM1监测的实际 单波输出光功率减去理论模型中预先设置的 EDFA1总增益, 得到 EDFA1的 初始理论单波输入光功率 。此处,如果有 EDFA1监测的实际总输入光功率, 则 OPM1监测的实际单波输出光功率之和减去 EDFA1监测的实际总输入光功 率, 得到准确的 EDFA1的总增益, 并以此修正理论模型中的 EDFA1的总增 益。
步骤 53、 得到 EDFA1的各理论单波输出光功率 。, Pxk。表示第 k个波 长的理论单波输出光功率。 其中, n同步骤 52中的说明, 初始值为 0。 初始 时, 将 P 输入 EDFA1的理论模型, 计算得到 EDFA1的初始理论单波输出光 功率 。。
步骤 54、比较 与 OPM监测的实际值,判断二者的差值是否满足阈值。 初始时, 比较 。与 OPM监测的各实际单波输出光功率 PZm的差值是否满足 阈值, 即小于阈值。 若是, 则执行步骤 55, 否则, 将 n+1后执行步骤 52。
其中, P。与 OPM监测的各实际单波输出光功率 PZm的差值为: 步骤 55、 得到准确的 EDFAl的各理论单波输入光功率。
具体地, 理论步骤 54中的差值修正 EDFA1的理论单波输入光功率: p1 = p° - ΛΡ1
以修正后的 P 作为 EDFAl的理论模型的理论单波输入光功率后,利用 E DFA模型计算出 EDFA1的理论单波输出光功率,计算理论单波输出光功率与 OPM1监测的实际单波输出光功率 PZm的差值。
上述步骤 54中, 如果计算出的各单波的差值均小于设定的阈值门限, 则 停止循环, 执行步骤 55; 否则, 继续计算 ΔΡ 、 Ρ^ .- Ρ^ , 直到理论模型计算 出的各理论单波输出光功率与 ΟΡΜ监测的各实际单波输出光功率的差值都 小于设定的阈值为止。 其中, a _pzm
假设第 n次时(n > 0 ), 理论模型计算出的各理论单波输出光功率与 OP M监测的各实际单波输出光功率的差值均小于设定的阈值, 则将! ^作为理论 模型的 EDFA1的理论单波输入光功率,从而再次利用理论模型计算到的 EDF A1的理论单波输出光功率,接近 EDFA1的实际单波输出光功率, 实现了对 E DFA1的理论单波输出光功率的修正。
对于 EDFA1到 EDFA2之间的光纤的损耗, 由于 EDFA1的各单波输出功 率经过光纤和器件的衰减以及光纤的 SRS效应之后,等于 EDFA2的各单波输 入光功率, 因此利用 SRS模型计算可以得到 EDFA2的理论单波输入光功率。
由于 EDFA2处没有 OPM , 因此根据 EDFA2监测到的实际总输入光功率 对模型计算的 EDFA2的理论输入光功率进行修正。 利用上述步骤 51-步骤 55 模型得到的 EDFA1的准确输入光功率,调用 EDFA模型和 SRS模型逐步计算 链路各节点的光功率谱(这里包括单波功率谱和 ASE的功率 ), 直到计算出 E DFA3的理论单波输出光功率。 计算过程中同样利用实施例一中的修正方法, 对每级放大器的输入和输出都做修正。
利用 OPM2监测到的 EDFA3的输出光功率谱,对 OMS1各跨段模型计算 参数进行修正。 OMS1内有两个跨段, 第一个跨段从 EDFA1到 EDFA2, 第二 个跨段从 EDFA2到 EDFA3。
利用 OPM2监测到 EDFA3的各单波实际光功率,修正理论模型计算的 0 MS 1内各跨段节点的理论值。 这些理论值包括理论模型计算的 OMS 1内各节 点的输入输出光功率和 OSNR。
具体地, 如图 6所示, 包括以下步骤:
步骤 61、 获取 OPM2监测 EDFA3的各实际单波输出光功率。
步骤 62、 获取理论模型计算的 EDFA3的各理论单波输出光功率 P 。其 中, n的初始值为 0。
步骤 63、 比较 。与 OPM2监测的实际值即 EDFA3的各实际单波输出光 功率, 判断二者的差值是否满足阈值即不大于阈值。 当差值满足阈值时, 执 行步骤 65; 否则, 执行步骤 64。
步骤 64、 将上述步骤 63 中计算出的差值分摊到 OMS1 内的各跨段器件 参数, 即对理论模型中 OMS1 内的各跨段器件参数进行修正, 然后, 执行步 骤 62。
假设理论模型计算的 EDFA3的理论输出光功率谱即各理论单波输出光功 率 。,与 OPM2监测的 EDFA3的各实际单波输出光功率的差值为 ΔΡΛ , 该差 值 ΔΡΛ可认为是由于链路中器件的波长相关特性未知造成的, 修正时, 可以采 用平均或者加权平均的方式, 将八? 分摊到理论模型中各个跨段修正 VOA器 件的 WDL特性参数。 例如, 对于波长 k, 得到的差值 ΔΡΛ=0.6(1Β, 该 OMS1 段有两个跨段,理论模型中每个跨段内的衰减器 VOA对所有波长的损耗都是 3dB, 因此, 可以根据差值 ΔΡΛ修正理论模型中的衰减器的损耗, 即修正为对 第 k个波长的衰减器的损耗为 (3+0.6/2 ) =3.3dB。 上述采用平均的方法分摊 差值。 采用加权平均的方法分摊时, 如果两个跨段 VOA本身设置的衰减量不 一样,可以按照 VOA本身的衰减量来分配 0.6dB到 OMS1两个跨段中的衰减 器, 而不一定需要平均。 利用理论模型中经过修正的链路参数重新计算一次 EDFA3的输出理论功 率谱, 再次比较 ΔΡΛ是否满足设定阈值, 如果不满足可以对 ΔΡΛ采用相同的处 理方法重新迭代计算, 直到 ΔΡΛ满足阈值为止。
步骤 65、 得到准确的 EDFA3的各理论单波输出光功率。 当 ΔΡ^ 足阈值 时, 理论模型计算的 EDFA3的各理论单波输出光功率 接近实际光功率值, 准确性得到提高, 从而得到更加准确的 OSNR, 从而对 OMS1的收端的单波 理论光功率进行了修正。 其中, EDFA3的输出即 OMS1的收端。
类似地,利用 ΟΡΜ3监测到的 EDFA4的各实际单波输出光功率修正理论 模型计算的 EDFA4的各理论单波输出光功率。 获取理论模型计算的 EDFA5 的理论光功率,修正方法类似上述 EDFA2。获取理论模型计算的 EDFA6的理 论输出光功率后,利用 OPM4监测到的 EDFA6的各实际单波输出光功率修正 OMS2内各跨段的理论模型的计算结果, 修正方法详见上述图 6所示的说明。
当图 4所示的带有 OPM站点的链路中,所有 EDFA都不能监测放大器的 总输入、 输出光功率时, 可以根据 OPM监测的实际单波输出光功率修正理论 模型的参数及其计算结果。 对于 EDFA1的理论单波输入光功率, 修正方法与 上述图 5所示单波修正方法完全一致。
得到理论模型计算的 EDFA1的准确的理论输入光功率以后, 调用 EDFA 模型和 SRS模型逐步计算链路各节点的理论光功率谱。 计算过程中, 由于 E DFA无法监测每级放大器的总输入、 输出光功率, 因此只能按照理论模型中 设置的增益进行计算, 直到理论模型计算出 EDFA3的理论输出光功率谱。 这 种情况下,由于链路中 EDFA控制精度不准确,比如设置 EDFA为 20dB增益, 实际工作的时候锁定结果可能为 20.2dB。
理论模型计算结果相对于监测结果除了各单波有相应的偏差, 还有一个 整体的平均偏差, 称为合波偏差。 理论模型计算的 EDFA3输出的结果与 OP M2监测的误差如图 7所示, 实折线为单波偏差,水平虚线为合波偏差。 因此, 根据 OPM2的监测结果进行的修正包括合波功率修正和单波功率修正。 合波 功率修正的目的是使理论模型计算的各单波理论光功率与 OPM2监测的各单 波实际光功率的差值不是都往同一个方向偏移, 单波修正的目的是使理论模 型的计算各单波理论光功率与 OPM2监测的各单波实际光功率的差值尽可能 趋于 0。
具体地, 合波修正时, 将 OPM2监测到的实际单波输出光功率换为线性 单位 (mw)之后相加, 再将相加的结果转换为对数单位 (dBm), 得到 EDFA3的 实际总输出光功率 P„ ( dBm ), 再按同样的方法得到理论模型计算的理论总 输出光功率 P ( dBm ), 然后计算实际总输出光功率 ¾与理论总输出光功率 Ι 的差值即合波误差:
ΑΡ = ρ测量 _ ρ计算
其中, ΔΡ可以认为是由于理论模型中 EDFA2、 EDFA3 的增益设置不准 造成的, 也可以认为是跨段内器件的固定插入损耗不准造成的。
假设将 ΔΡ处理为由于所有放大器控制精度不准引起的合波误差, 在修正 的过程中考虑到各放大器设置的目标增益值不完全一样, 可以采用平均或者 加权平均的方法去修正目标增益值。 加权平均是指如果链路中只有 2个 EDF A, 其目标增益分别为 20dB和 30dB。且假设理论模型计算的理论总输出光功 率 !^ 比 OPM2监测的实际总输出光功率 ¾多了 0.5dB, 则理论模型中两个
EDFA修正后的目标增益分别为 20.2dB和 20.3dB。 从 OMS段内第二个放大 器开始, 用目标增益爹正后的理论模型重新计算一次 OMS收端的结果, 得到 更接近实际光功率的理论总输出光功率, 即较准确的理论总输出光功率。
为了使合波增益修正更准确, 可以设定一个阈值作为合波修正收敛的条 件, 如果理论模型的计算结果与 OPM2监测的实际值误差大于该阈值, 则重 新修正 EDFA的目标增益, 直到收敛为止。 当将 ΔΡ处理为跨段内器件的插入 损耗不准确时, 可以采用以上相同的方式处理对理论模型中的跨段内器件的 插入损耗进行修正。
单波修正时, 不考虑理论模型计算结果与 OPM2监测整体向同一方向偏 移的平均偏差, 即不考虑各单波的理论模型计算结果与 OPM2监测结果之差 均向同一方向偏移。 假设理论模型计算的 EDFA3的理论输出光功率谱与 OP M2监测的实际输出光功率谱之差为 ΔΡΛ ,且 ΔΡΛ与上述合波误差 ΔΡ的偏差为:
ΔΡ = ΔΡΛ— ΔΡ
其中, ΔΡ ^可认为是由于链路中器件的理论模型中的特性参数值与实际 参数之间存在误差造成的,处理时可采用平均或者加权平均的方式,将 ΔΡ ^分 摊到各个跨段修正理论模型中 VOA器件的 WDL特性参数, 然后利用链路参 数修正过后的理论模型重新计算一次 EDFA3的理论输出光功率谱, 再次比较 得到的 ΔΡΛ'是否满足设定阈值,如果不满足,可以对 ΔΡΛ'采用相同的处理方法 重新迭代计算, 直到 ΔΡ '满足阈值为止。
当 ΔΡΛ '满足阈值即小于阈值时, 说明当前理论模型计算的 EDFA3的理论 输出光功率谱已经非常接近真实值即实际输出光功率谱, 可以认为理论模型 计算出的理论输出光功率就是准确的。
单波修正可以在合波修正之后实施, 也可以与合波修正同时实施。
类似地, 对理论模型中 OMS2内的各放大器的增益及跨段器件的损耗进 行修正。
上述实施例提供的技术方案利用监测的实际光功率对理论模型中的参数 进行修正, 解决了现有技术中利用理论模型计算光传输链路性能参数的过程 中, 由于器件的特性参数如增益或者损耗不准确造成的误差偏大问题, 实现 了利用理论模型准确评估出链路中各点信号的功率和 OSNR值。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。 图 8 为本发明实施例提供的获得光网络链路性能参数的装置的结构示意 图。 如图 8所示, 获得光网络链路性能参数的装置 80包括: 实际值获取单元 81、 理论值获取单元 82、 修正单元 83及性能参数获取单元 84。
实际值获取单元 81用于从光网络链路上的各监测点获取实际光功率; 理 论值获取单元 82用于相应获取理论模型计算的各监测点的理论光功率; 修正 单元 83用于利用所述各监测点的所述实际光功率及相应的所述理论光功率, 对所述光网络链路在理论模型中的放大器增益及链路损耗中的至少一个参数 进行修正; 性能参数获取单元 84用于从修正后的理论模型获得所述光网络链 路上各节点处的性能参数值。
所述实际值获取单元 81可具体用于:
从光网络链路上的各 EDFA获取 EDFA监测的实际合波光功率; 或者具体用于:
从光网络链路上的部分 EDFA处设置的 OPM获取 OPM监测的实际单波 光功率, 及从其余的 EDFA获取 EDFA监测的实际合波光功率;
或者具体用于:
从光网络链路上位于各 EDFA处的 OPM获取 OPM监测的实际单波光功 率;
或者具体用于:
从光网络链路上的各节点处获取监测设备或仪表监测的实际合波光功率 或者实际单波光功率。
所述修正单元可包括:
第一修正子单元, 用于利用所述光网络链路上的第一个放大器的实际总 输入光功率修正所述第一个放大器的理论单波输入光功率;
第二修正子单元, 用于利用修正后的理论单波输入光功率修正所述光网 络链路在理论模型中的发端的链路损耗。
或者可包括: 第一减法子单元, 用于用所述 EDFA监测的 EDFA的实际总输出光功率 与理论模型计算的理论总输出光功率相减, 得到差值;
加法子单元, 用于将所述差值与所述理论输出光功率相加, 得到修正后 的理论总输出光功率;
修正增益获取子单元, 用于利用所述 EDFA的理论总输入光功率与所述 修正后的理论总输出光功率, 得到所述 EDFA的修正增益;
替换子单元, 用于用所述修正增益替换所述 EDFA在所述理论模型中的 原有增益。
或者, 所述修正单元可包括:
第一比较子单元, 用于比较所述 EDFA监测的实际总输入光功率与理论 模型计算的理论总输入光功率;
第三修正子单元, 用于在所述实际总输入光功率与理论总输入光功率不 一致的情况下, 对所述理论总输入光功率进行修正, 并利用修正后的理论总 输入光功率及上一级 EDFA 爹正后的理论总输出光功率, 对所述 EDFA与上 一级 EDFA之间在理论模型中的 VOA损耗或跨段器件的损耗进行修正。
或者, 所述修正单元可包括:
总增益获得子单元,用于利用 OPM监测的 EDFA的实际单波输出光功率 之和, 减去所述 EDFA监测的实际总输入光功率, 得到所述 EDFA的总增益; 总增益修正子单元,用于用得到的所述总增益替换理论模型中所述 EDFA 的总增益。
或者, 所述修正单元可包括:
第二减法子单元,用于用 OPM监测的 EDFA实际单波输出光功率与所述 理论模型计算得到的相应的理论单波输出光功率相减, 得到各单波的实际输 出光功率与理论输出光功率的差值;
第二比较子单元, 用于比较所述各单波的实际光功率与理论光功率的差 值与预先设定的阈值门限; 第四修正子单元, 用于在所述差值至少有一个大于所述阈值门限的情况 下, 修正所述理论模型中所述 EDFA的理论单波输入光功率;
损耗修正子单元, 用于利用修正后的所述 EDFA的理论单波输入光功率, 修正所述光网络链路在理论模型中的发端的链路损耗。
进一步地, 所述修正单元还可包括:
第三减法子单元, 用于将所述各单波的实际输出光功率与理论输出光功 率的差值以平均或加权平均的方式分配到所述 OPM 所在光复用段的各个跨 段, 以相应修正各个跨段在所述理论模型中的链路损耗;
第五修正子单元, 用于利用修正后的理论模型再次计算各单波的理论输 出光功率, 并以此得到各单波的新的实际输出光功率与理论输出光功率的差 值, 直至差值小于所述阈值门限。
或者, 所述修正单元还可包括:
第四减法子单元, 用于用所述 OPM所在光复用段的最后一个 OPM监测 的实际单波输出光功率之和与所述理论模型得到的理论总输出光功率相减, 得到合波差值;
第六修正子单元, 用于以平均或加权平均的方式用所述合波差值对所述 OPM所在光复用段的 EDFA的增益进行修正;
第五减法子单元,用于用所述最后一个 OPM监测的实际单波输出光功率 与所述理论模型计算得到的理论单波输出光功率相减, 得到单波差值;
第六减法子单元, 用于用所述合波差值与所述单波差值相减, 得到偏差 值;
第三比较子单元, 用于比较所述偏差值与预先设定的阈值;
第七修正子单元, 用于在所述偏差值大于所述阈值的情况下, 以平均或 加权平均的方式用所述偏差值修正所述 OPM所在光复用段内的链路损耗,直 至偏差值小于阈值。
上述装置实施例中, 获得光网络链路性能参数的装置通过获取单元获取 监测的实际光功率及理论光功率, 并通过修正单元利用实际光功率与理论光 功率对理论模型进行修正, 通过性能参数获取单元从修正后的理论模型获得 光网络各节点处的性能参数值, 使得理论模型给出的性能参数更加准确, 解 决了现有技术中理论模型计算的性能参数与实测结果偏差很大的问题, 提高 了理论模型给出的性能参数的准确性。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利 要求 书
1、 一种获得光网络链路性能参数的方法, 其特征在于, 包括:
从光网络链路上的各监测点获取实际光功率;
相应获取理论模型计算的各监测点的理论光功率;
利用所述各监测点的所述实际光功率及相应的所述理论光功率, 对所述光 网络链路在理论模型中的放大器增益及链路损耗中的至少一个参数进行修正; 从修正后的理论模型获得所述光网络链路上各节点处的性能参数值。
2、 根据权利要求 1所述的获得光网络链路性能参数的方法, 其特征在于, 从光网络链路上的各监测点获取实际光功率包括:
从光网络链路上的各 EDFA获取 EDFA监测的实际合波光功率;
或者包括:
从光网络链路上的部分 EDFA处设置的 OPM获取 OPM监测的实际单波光 功率, 及从其余的 EDFA获取 EDFA监测的实际合波光功率;
或者包括:
从光网络链路上位于各 EDFA处的 OPM获取 OPM监测的实际单波光功率; 或者包括:
从光网络链路上的各节点处获取监测设备或仪表监测的实际合波光功率或 者实际单波光功率。
3、 根据权利要求 1或 2所述的获得光网络链路性能参数的方法, 其特征在 于, 利用所述各监测点的所述实际光功率及相应的所述理论光功率, 对所述光 网络链路在理论模型中的放大器增益及链路损耗中的至少一个参数进行修正, 包括:
利用所述光网络链路上的第一个放大器的实际总输入光功率修正所述第一 个放大器的理论单波输入光功率;
利用修正后的理论单波输入光功率修正所述光网络链路在理论模型中的发 端的链路损耗。
4、 根据权利要求 2所述的获得光网络链路性能参数的方法, 其特征在于, 利用所述各监测点的所述实际光功率及相应的所述理论光功率, 对所述光网络 链路在理论模型中的放大器增益及链路损耗中的至少一个参数进行修正, 包括: 用所述 EDFA监测的 EDFA的实际总输出光功率与理论模型计算的理论总 输出光功率相减, 得到差值;
将所述差值与所述理论输出光功率相加, 得到修正后的理论总输出光功率; 利用所述 EDFA的理论总输入光功率与所述修正后的理论总输出光功率, 得到所述 EDFA的修正增益;
用所述修正增益替换所述 EDFA在所述理论模型中的原有增益。
5、 根据权利要求 2所述的获得光网络链路性能参数的方法, 其特征在于, 利用所述各监测点的所述实际光功率及相应的所述理论光功率, 对所述光网络 链路在理论模型中的放大器增益及链路损耗中的至少一个参数进行修正, 包括: 比较所述 EDFA监测的实际总输入光功率与理论模型计算的理论总输入光 功率;
在所述实际总输入光功率与理论总输入光功率不一致的情况下, 对所述理 论总输入光功率进行修正, 并利用修正后的理论总输入光功率及上一级 EDFA 修正后的理论总输出光功率, 对所述 EDFA与上一级 EDFA之间在理论模型中 的 VOA损耗或跨段器件的损耗进行修正。
6、 根据权利要求 2所述的获得光网络链路性能参数的方法, 其特征在于, 利用所述各监测点的所述实际光功率及相应的所述理论光功率, 对所述光网络 链路在理论模型中的放大器增益及链路损耗中的至少一个参数进行修正, 包括: 利用 OPM监测的 EDFA的实际单波输出光功率之和,减去所述 EDFA监测 的实际总输入光功率, 得到所述 EDFA的总增益;
用得到的所述总增益替换理论模型中所述 EDFA的总增益。
7、 根据权利要求 2所述的获得光网络链路性能参数的方法, 其特征在于, 利用所述各监测点的所述实际光功率及相应的所述理论光功率, 对所述光网络 链路在理论模型中的放大器增益及链路损耗中的至少一个参数进行修正, 包括: 用 OPM监测的 EDFA实际单波输出光功率与所述理论模型计算得到的相应 的理论单波输出光功率相减, 得到各单波的实际输出光功率与理论输出光功率 的差值;
比较所述各单波的实际光功率与理论光功率的差值与预先设定的阈值门 限;
在所述差值至少有一个大于所述阈值门限的情况下, 修正所述理论模型中 所述 EDFA的理论单波输入光功率;
利用修正后的所述 EDFA的理论单波输入光功率, 修正所述光网络链路在 理论模型中的发端的链路损耗。
8、 根据权利要求 7所述的获得光网络链路性能参数的方法, 其特征在于, 利用所述各监测点的所述实际光功率及相应的所述理论光功率, 对所述光网络 链路在理论模型中的放大器增益及链路损耗中的至少一个参数进行修正, 还包 括:
将所述各单波的实际输出光功率与理论输出光功率的差值以平均或加权平 均的方式分配到所述 OPM所在光复用段的各个跨段, 以相应修正各个跨段在所 述理论模型中的链路损耗;
利用修正后的理论模型再次计算各单波的理论输出光功率, 并以此得到各 单波的新的实际输出光功率与理论输出光功率的差值, 直至差值小于所述阈值 门限。
9、 根据权利要求 7所述的获得光网络链路性能参数的方法, 其特征在于, 利用所述各监测点的所述实际光功率及相应的所述理论光功率, 对所述光网络 链路在理论模型中的放大器增益及链路损耗中的至少一个参数进行修正, 还包 括:
用所述 OPM所在光复用段的最后一个 OPM监测的实际单波输出光功率之 和与所述理论模型得到的理论总输出光功率相减, 得到合波差值; 以平均或加权平均的方式用所述合波差值对所述 OPM 所在光复用段的 EDFA的增益进行爹正;
用所述最后一个 OPM监测的实际单波输出光功率与所述理论模型计算得到 的理论单波输出光功率相减, 得到单波差值;
用所述合波差值与所述单波差值相减, 得到偏差值;
比较所述偏差值与预先设定的阈值;
在所述偏差值大于所述阈值的情况下, 以平均或加权平均的方式用所述偏 差值修正所述 OPM所在光复用段内的链路损耗, 直至偏差值小于阈值。
10、 一种获得光网络链路性能参数的装置, 其特征在于, 包括:
实际值获取单元, 用于从光网络链路上的各监测点获取实际光功率; 理论值获取单元, 用于相应获取理论模型计算的各监测点的理论光功率; 修正单元, 用于利用所述各监测点的所述实际光功率及相应的所述理论光 功率, 对所述光网络链路在理论模型中的放大器增益及链路损耗中的至少一个 参数进行修正;
性能参数获取单元, 用于从修正后的理论模型获得所述光网络链路上各节 点处的性能参数值。
11、根据权利要求 10所述的获得光网络链路性能参数的装置,其特征在于, 所述实际值获取单元具体用于:
从光网络链路上的各 EDFA获取 EDFA监测的实际合波光功率;
或者具体用于:
从光网络链路上的部分 EDFA处设置的 OPM获取 OPM监测的实际单波光 功率, 及从其余的 EDFA获取 EDFA监测的实际合波光功率;
或者具体用于:
从光网络链路上位于各 EDFA处的 OPM获取 OPM监测的实际单波光功率; 或者具体用于:
从光网络链路上的各节点处获取监测设备或仪表监测的实际合波光功率或 者实际单波光功率。
12、 根据权利要求 10或 11所述的获得光网络链路性能参数的装置, 其特 征在于, 所述修正单元包括:
第一修正子单元, 用于利用所述光网络链路上的第一个放大器的实际总输 入光功率修正所述第一个放大器的理论单波输入光功率;
第二修正子单元, 用于利用修正后的理论单波输入光功率修正所述光网络 链路在理论模型中的发端的链路损耗。
13、根据权利要求 11所述的获得光网络链路性能参数的装置,其特征在于, 所述修正单元包括:
第一减法子单元, 用于用所述 EDFA监测的 EDFA的实际总输出光功率与 理论模型计算的理论总输出光功率相减, 得到差值;
加法子单元, 用于将所述差值与所述理论输出光功率相加, 得到修正后的 理论总输出光功率;
修正增益获取子单元, 用于利用所述 EDFA的理论总输入光功率与所述修 正后的理论总输出光功率, 得到所述 EDFA的修正增益;
替换子单元, 用于用所述修正增益替换所述 EDFA在所述理论模型中的原 有增益。
14、根据权利要求 11所述的获得光网络链路性能参数的装置,其特征在于, 所述修正单元包括:
第一比较子单元, 用于比较所述 EDFA监测的实际总输入光功率与理论模 型计算的理论总输入光功率;
第三修正子单元, 用于在所述实际总输入光功率与理论总输入光功率不一 致的情况下, 对所述理论总输入光功率进行修正, 并利用修正后的理论总输入 光功率及上一级 EDFA 爹正后的理论总输出光功率, 对所述 EDFA 与上一级 EDFA之间在理论模型中的 VOA损耗或跨段器件的损耗进行修正。
15、根据权利要求 11所述的获得光网络链路性能参数的装置,其特征在于, 所述修正单元包括:
总增益获得子单元,用于利用 OPM监测的 EDFA的实际单波输出光功率之 和, 减去所述 EDFA监测的实际总输入光功率, 得到所述 EDFA的总增益; 总增益修正子单元, 用于用得到的所述总增益替换理论模型中所述 EDFA 的总增益。
16、根据权利要求 11所述的获得光网络链路性能参数的装置,其特征在于, 所述修正单元包括:
第二减法子单元,用于用 OPM监测的 EDFA实际单波输出光功率与所述理 论模型计算得到的相应的理论单波输出光功率相减, 得到各单波的实际输出光 功率与理论输出光功率的差值;
第二比较子单元, 用于比较所述各单波的实际光功率与理论光功率的差值 与预先设定的阈值门限;
第四修正子单元, 用于在所述差值至少有一个大于所述阈值门限的情况下, 修正所述理论模型中所述 EDFA的理论单波输入光功率;
损耗修正子单元, 用于利用修正后的所述 EDFA的理论单波输入光功率, 修正所述光网络链路在理论模型中的发端的链路损耗。
17、根据权利要求 16所述的获得光网络链路性能参数的装置,其特征在于, 所述修正单元还包括:
第三减法子单元, 用于将所述各单波的实际输出光功率与理论输出光功率 的差值以平均或加权平均的方式分配到所述 OPM所在光复用段的各个跨段, 以 相应修正各个跨段在所述理论模型中的链路损耗;
第五修正子单元, 用于利用修正后的理论模型再次计算各单波的理论输出 光功率, 并以此得到各单波的新的实际输出光功率与理论输出光功率的差值, 直至差值小于所述阈值门限。
18、根据权利要求 16所述的获得光网络链路性能参数的装置,其特征在于, 所述修正单元还包括: 第四减法子单元, 用于用所述 OPM所在光复用段的最后一个 OPM监测的 实际单波输出光功率之和与所述理论模型得到的理论总输出光功率相减, 得到 合波差值;
第六修正子单元, 用于以平均或加权平均的方式用所述合波差值对所述 OPM所在光复用段的 EDFA的增益进行修正;
第五减法子单元,用于用所述最后一个 OPM监测的实际单波输出光功率与 所述理论模型计算得到的理论单波输出光功率相减, 得到单波差值;
第六减法子单元, 用于用所述合波差值与所述单波差值相减, 得到偏差值; 第三比较子单元, 用于比较所述偏差值与预先设定的阈值; 第七修正子单元, 用于在所述偏差值大于所述阈值的情况下, 以平均或加 权平均的方式用所述偏差值修正所述 OPM所在光复用段内的链路损耗,直至偏 差值小于阈值。
PCT/CN2012/076740 2011-07-01 2012-06-12 获得光网络链路性能参数的方法及装置 WO2012167754A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12796867.5A EP2717496B1 (en) 2011-07-01 2012-06-12 Method and device for obtaining performance parameters of optical network link

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110184200.3 2011-07-01
CN201110184200.3A CN102299738B (zh) 2011-07-01 2011-07-01 获得光网络链路性能参数的方法及装置

Publications (1)

Publication Number Publication Date
WO2012167754A1 true WO2012167754A1 (zh) 2012-12-13

Family

ID=45359931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076740 WO2012167754A1 (zh) 2011-07-01 2012-06-12 获得光网络链路性能参数的方法及装置

Country Status (3)

Country Link
EP (1) EP2717496B1 (zh)
CN (1) CN102299738B (zh)
WO (1) WO2012167754A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671458A (zh) * 2019-10-15 2021-04-16 富士通株式会社 拉曼放大系统的传输损伤分解模型的建立方法、装置和系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299738B (zh) * 2011-07-01 2015-05-13 华为技术有限公司 获得光网络链路性能参数的方法及装置
CN103004109B (zh) * 2012-08-06 2016-03-02 华为技术有限公司 在线标定可配置站点波长相关衰减的方法、装置及系统
CN105812065A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 光纤通信系统中自动调节功率的方法和装置
CN105959059B (zh) * 2016-04-20 2019-03-15 山东信通电子股份有限公司 Pon网络光链路损耗在线精确测量方法
CN107276669B (zh) * 2017-06-17 2019-09-20 邹恒 超高速率超密集波分复用光信噪比监测方法及系统
CN111935562B (zh) * 2019-05-13 2022-06-10 烽火通信科技股份有限公司 一种spc智能路径的光功率调整方法及系统
CN112217561B (zh) * 2019-07-11 2022-06-03 烽火通信科技股份有限公司 C+l波段的光功率自动均衡方法及系统
CN111181636B (zh) * 2020-02-19 2021-05-11 北京邮电大学 光网络监测方法
EP4226524A1 (en) * 2020-10-07 2023-08-16 Telefonaktiebolaget LM Ericsson (publ) Determining gains for amplifiers in an optical network
CN113708835B (zh) * 2021-08-27 2022-10-21 烽火通信科技股份有限公司 一种osnr检测方法及装置
CN115441945A (zh) * 2022-08-19 2022-12-06 武汉邮电科学研究院有限公司 光功率预测方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7769302B1 (en) * 2007-03-13 2010-08-03 At&T Intellectual Property Ii, L.P. Method and apparatus for adjusting for polarization-induced, optical signal transients
CN102045114A (zh) * 2010-12-31 2011-05-04 深圳市虹远通信有限责任公司 一种上行光损增益自动补偿的方法及光纤直放站近端
CN102299738A (zh) * 2011-07-01 2011-12-28 华为技术有限公司 获得光网络链路性能参数的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922532B2 (en) * 2000-12-07 2005-07-26 Frederic Simard Optical performance monitoring for D/WDM networks
US20040052526A1 (en) * 2002-09-16 2004-03-18 Jones Kevan Peter Connection optimization and control in agile networks
CN100405782C (zh) * 2004-11-02 2008-07-23 北京大学 基于资源预测的光突发交换路由选路方法
US7627254B2 (en) * 2005-06-30 2009-12-01 Infinera Corporation Automated optical link power control
US20090214204A1 (en) * 2008-02-21 2009-08-27 Thomas Bengtsson Optical network monitoring using amplifier modeling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7769302B1 (en) * 2007-03-13 2010-08-03 At&T Intellectual Property Ii, L.P. Method and apparatus for adjusting for polarization-induced, optical signal transients
CN102045114A (zh) * 2010-12-31 2011-05-04 深圳市虹远通信有限责任公司 一种上行光损增益自动补偿的方法及光纤直放站近端
CN102299738A (zh) * 2011-07-01 2011-12-28 华为技术有限公司 获得光网络链路性能参数的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717496A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671458A (zh) * 2019-10-15 2021-04-16 富士通株式会社 拉曼放大系统的传输损伤分解模型的建立方法、装置和系统

Also Published As

Publication number Publication date
CN102299738B (zh) 2015-05-13
CN102299738A (zh) 2011-12-28
EP2717496A1 (en) 2014-04-09
EP2717496A4 (en) 2014-10-15
EP2717496B1 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2012167754A1 (zh) 获得光网络链路性能参数的方法及装置
JP6485189B2 (ja) 光伝送システムおよび光伝送装置
JP3802992B2 (ja) 波長多重光通信システム
JP5564692B2 (ja) 光伝送システム、及び、光ノード
US20070058984A1 (en) Network management system for an optical network
US8055129B2 (en) Alien wavelength channel balancing and line amplifier optimization
US8248689B2 (en) Distributed Raman amplifying system, start-up method thereof, and optical device
US20170005727A1 (en) Transmission loss measurement device, transmission loss measurement method, and optical transmission system
WO2013063936A1 (zh) 波分复用光网络扩容调测的方法及控制器
WO2014019631A1 (en) Method of optimizing optical signal quality in an optical communications link, optical network element and optical communications link
US20180205485A1 (en) Device and method for transmitting wavelength division multiplexed optical signal
US9300426B2 (en) Transmission apparatus, transmission system, and method of controlling average optical input power
US20050152693A1 (en) Method for per-channnel power control in a DWDM network by means of an algorithm for adjusting the power of a dummy signal and the input power of an optical amplifier via channel-average Q-factor measurement
JP5584143B2 (ja) 光増幅器
EP2345116A1 (en) Optical network amplifier node and method of channel power depletion compensation
JP6070101B2 (ja) 光増幅装置及び伝送システム
US8428463B2 (en) Apparatus and method for controlling a dynamic gain equalizer
US11968033B2 (en) Optical transmission device, optical transmission system, and optical transmitting power control method
US8908265B2 (en) Optical fiber amplifier comprising an embedded filter and a control method with improved feedforward control performance
CA2524832A1 (en) Method for pre-emphasizing an optical multiplex signal
JP4769443B2 (ja) 光増幅装置の制御装置及び制御方法
JP2018164198A (ja) 光伝送装置および光伝送方法
US8102595B2 (en) Optical transmission system with optical amplifier gain setup based on difference between signal loss and noise light loss
WO2005013518A1 (ja) ラマン光増幅器
CN117811652A (zh) 长途光网络的性能监控系统、方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796867

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012796867

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012796867

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE