WO2012167569A1 - 以太网环中的链路倒换方法、节点及系统 - Google Patents

以太网环中的链路倒换方法、节点及系统 Download PDF

Info

Publication number
WO2012167569A1
WO2012167569A1 PCT/CN2011/082760 CN2011082760W WO2012167569A1 WO 2012167569 A1 WO2012167569 A1 WO 2012167569A1 CN 2011082760 W CN2011082760 W CN 2011082760W WO 2012167569 A1 WO2012167569 A1 WO 2012167569A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
bandwidth
port
ethernet ring
information
Prior art date
Application number
PCT/CN2011/082760
Other languages
English (en)
French (fr)
Inventor
谢荣
黄毅青
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180002585.5A priority Critical patent/CN102726006B/zh
Priority to PCT/CN2011/082760 priority patent/WO2012167569A1/zh
Priority to CN201280003266.0A priority patent/CN103190121B/zh
Priority to EP20120792571 priority patent/EP2775669A4/en
Priority to PCT/CN2012/073491 priority patent/WO2012163173A1/zh
Publication of WO2012167569A1 publication Critical patent/WO2012167569A1/zh
Priority to US14/286,551 priority patent/US20140254347A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a link switching method, a node, and a system in an Ethernet ring. Background technique
  • the Ethernet ring does not exhibit a closed-loop state.
  • Some links in the Ethernet ring are in the blocked standby link, as shown in Figure 1 (a), where the link ⁇ ⁇ is reserved.
  • Link, link ⁇ e « B is the normal working link.
  • the link in the Ethernet ring is usually switched through the ring-automatic protection switching (R-APS) protocol.
  • Loca l Area Network, LAN provides protection.
  • Ring Protect ion Swi tching is based on the R-APS protocol, and the R-APS protocol is transmitted between nodes to implement protocol interworking and protection switching of each node in the ring network. Specifically, at least one link is set as the backup link in the Ethernet ring. As shown in Figure 1 (a), the link between nodes A and D is the standby link, and the node is blocked under normal working conditions.
  • Link switching can be triggered only in the case of a link failure or manual forced switching, so that the backup link is large. Part of the time is idle, and the bandwidth of the alternate link cannot be fully utilized.
  • Summary of the invention The embodiments of the present invention provide a link switching method, a node, and a system in an Ethernet ring, which can fully utilize the bandwidth of the standby link and improve the utilization of the link bandwidth in the Ethernet ring.
  • a link switching method in an Ethernet ring including:
  • the current node is the lowest bandwidth node, blocking the port with the lowest bandwidth among the ports belonging to the Ethernet ring on the current node;
  • the port belonging to the Ethernet ring on the current node is opened.
  • a node which is one of the nodes in the Ethernet ring, the node includes:
  • a node determining unit configured to determine, according to bandwidth information of the current node and bandwidth information corresponding to other nodes in the received Ethernet ring, whether the current node is the lowest bandwidth node;
  • a blocking unit configured to block, when the node determining unit determines that the current node is the lowest bandwidth node, the port with the lowest bandwidth among the ports belonging to the Ethernet ring on the current node;
  • an opening unit configured to: when the node determining unit determines that the current node is not the lowest bandwidth node, open a port that belongs to the Ethernet ring on the current node.
  • a link switching system in an Ethernet ring comprising: at least three nodes; the node forming an Ethernet ring through a port on the node and a link connected to the port, and in the The data is transmitted in the Ethernet ring and participates in link switching in the Ethernet ring.
  • the node is configured to determine, according to bandwidth information of the current node and bandwidth information corresponding to other nodes in the received Ethernet ring. If the current node is the lowest bandwidth node, if the current node is the lowest bandwidth node, block the port with the lowest bandwidth among the ports belonging to the Ethernet ring on the current node; if the current node is not the lowest bandwidth node , the port belonging to the Ethernet ring on the current node is opened.
  • the link where the node is located can adaptively block the link with lower bandwidth according to the change of the bandwidth, compared with the technology in the prior art that triggers the link switching only when the link fails or the manual command is switched. Select a link with a higher bandwidth as the working link, so as to make full use of the idle bandwidth on the standby link and improve the utilization efficiency of the network bandwidth.
  • FIG. 1 is a schematic diagram of a link switching system in an Ethernet ring in the background art
  • FIG. 2 is a flowchart of a link switching method in an Ethernet ring according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a link switching method in an Ethernet ring according to Embodiment 2 of the present invention
  • FIG. 4 is a flowchart of a link switching method in another Ethernet ring according to Embodiment 2 of the present invention
  • 5 is a schematic diagram of a node composition in Embodiment 3 of the present invention
  • FIG. 6 is a schematic diagram of another node composition in Embodiment 3 of the present invention.
  • Figure ⁇ is a schematic diagram showing the composition of a link switching system in an Ethernet ring in Embodiment 3 of the present invention.
  • the Ethernet ring is a ring network topology composed of multiple nodes. Each node in the Ethernet ring forms a physical or logical ring topology to implement point-to-point, point-to-multipoint, and multi-point to multi-point services. transmission. Normally, the Ethernet ring does not present a closed-loop state. Some links in the Ethernet ring are in the blocked standby link, as shown in Figure 7 (a), where the link ⁇ ⁇ ) is reserved. Link. When the bandwidth of each link in the Ethernet ring changes, in order to make full use of the idle bandwidth of the standby link, perform link switching in the Ethernet ring, open a link with a higher bandwidth, and block a link with a lower bandwidth. Thereby increasing the bandwidth utilization of the Ethernet ring.
  • the embodiment of the invention provides a link switching method in an Ethernet ring. As shown in FIG. 2, the method includes:
  • the bandwidth information corresponding to the current node may be the bandwidth information corresponding to the port with the lowest bandwidth among the ports participating in the current link switching on the current node.
  • the bandwidth information corresponding to other nodes can also determine the bandwidth information of the node itself in the same manner. It should be noted that in a network composed of nodes, one node may participate in a multi-layer Ethernet ring at the same time, and there may be multiple ports on the current node. In the description of the present invention, only one layer of Ethernet ring is described. The node in the layer and the port that belongs to the layer of the Ethernet ring. The node or port that belongs to the other layer of the Ethernet ring does not participate in the link switching mechanism of the layer Ethernet ring. It is not considered in the link switching scheme of this layer.
  • the bandwidth information of the current node is compared with the bandwidth information of other nodes, and it is determined whether the bandwidth of the current node is the lowest bandwidth in the network ring. If only the nodes with the same bandwidth and the lowest bandwidth exist in the network ring, and the current node is one of them, the information may be compared according to other information of the node, such as the physical address and name of the node. Determine whether the link where the current node is located should be blocked first.
  • the port participating in the current link switching on the current node refers to the port of the current node and the current layer Ethernet ring. .
  • each node has two ports belonging to the current ring, which are east port and west port. If it is determined in step 101 that the current node is the lowest bandwidth node, the port with the lowest bandwidth among the upper two ports is selected, and the port with the lowest bandwidth is blocked.
  • the current node is not the lowest bandwidth node, the other nodes in the network ring have lower bandwidth.
  • the lowest bandwidth node will complete the blocking of its own port.
  • the current node can provide a higher bandwidth, so it opens.
  • the port participating in the current link switchover on the current node.
  • the port participating in the current link switch mentioned here is still the port belonging to the current ring.
  • Whether the current node is the node with the lowest bandwidth, and whether the link of the current node is opened or blocked is compared with the technology in the prior art that the link switching is triggered only when the link fails or the manual command is switched.
  • the link with lower bandwidth can be adaptively blocked according to the change of the bandwidth, and the link with higher bandwidth is selected as the working link, thereby fully utilizing the idle bandwidth on the standby link and improving the utilization efficiency of the network bandwidth.
  • the embodiment of the present invention provides a link switching method in an Ethernet ring. As shown in FIG. 3, the method includes: 201. Receive a bandwidth information packet sent by another node in an Ethernet ring, where the bandwidth information packet includes Sending node information and bandwidth information corresponding to the sending node of the bandwidth information packet.
  • the bandwidth information packet may include: a bandwidth change packet and a node online packet, which are obtained by extending the R-APS protocol.
  • the existing R-APS protocol packet format is shown in Table 1. It is used to implement state interworking between nodes.
  • the R-APS protocol message contains 12 bytes, of which four bits are request fields, 6 bytes are node information, and there are 24 bytes of reserved fields at the end.
  • the bandwidth information is added to the R-APS protocol packet, and two request fields are defined to identify the bandwidth information packet.
  • Table 3 the representation of the bandwidth information packet obtained based on the R-APS protocol packet extension. It uses 4 of the 24 reserved bytes to hold the bandwidth information of the node so that the bandwidth information can be exchanged between the nodes.
  • the bandwidth usage of the Ethernet ring can be learned by broadcasting the bandwidth information packets carrying the bandwidth information and receiving the bandwidth information packets broadcast by other nodes. As a result, the link with a lower bandwidth in the ring is blocked, and the link with a higher bandwidth in the Ethernet ring is opened.
  • the link is switched according to the bandwidth to improve the link bandwidth utilization. For example, as shown in Figure 7 (a), due to AM microwave modulation between node C and node D, or because the link between nodes C and D has a LAG group member, The barrier causes the link OB bandwidth to decrease. At this time, as shown in FIG. 7(b), node C and node D can block the lower bandwidth link O9, and the corresponding node A and node D stop blocking the standby link, thereby making the spare link with higher bandwidth. Luke ⁇ is added to the service transmission of the network ring.
  • Each node in the Ethernet ring can be pre-configured with a network ring bandwidth database.
  • node information and bandwidth information corresponding to other nodes in the network ring can be stored, or The node information and bandwidth information of the current node are stored in the network ring bandwidth database.
  • the network ring bandwidth database may only store bandwidth information and node information corresponding to nodes with the lowest bandwidth among other nodes in the network ring.
  • the ring bandwidth database can be a string of digital information, a list, a histogram, a network map, or other form.
  • the ring database can be stored in memory or stored in other storage devices.
  • the network ring database records the bandwidth information and the node information corresponding to the node with the lowest bandwidth among the other nodes except the current node, or records the node information and bandwidth information corresponding to each node of the network ring where the current node is located, so as to be based on the network ring.
  • the information recorded in the bandwidth database optimizes the link configuration, opening a link with a higher bandwidth and blocking a link with a lower bandwidth.
  • the specific implementation method may be: receiving the other nodes sent in the current network ring After the bandwidth information packet, the node with the lowest bandwidth is compared according to the bandwidth information and the node information carried in the bandwidth information packet. If the bandwidth is the same, the node with the smallest node ID can be compared according to the node ID as the node with the lowest bandwidth among the other nodes. The bandwidth information and the node information corresponding to the node with the lowest bandwidth among the other nodes obtained in the comparison are stored in the network ring database of the current node.
  • the current node A has a sequence of priorities when receiving bandwidth information messages of other nodes.
  • the bandwidth information and the node information of the Node B are stored in the memory as a network ring bandwidth database.
  • the bandwidth information packet of the node C is received, and the bandwidth information and the node information of the node C are compared with the bandwidth information and the node information of the recorded Node B in the memory. If the bandwidth of the node B is low, the information about the node C may not be used. What is the record, if the bandwidth of the node C is low, the information about the stored Node B in the memory is replaced with the information about the node C.
  • the bandwidth information and node information corresponding to the node with the lowest bandwidth among other nodes are always recorded.
  • step 203 Compare bandwidth information of the current node with bandwidth information in the network ring bandwidth database, and determine whether the current node is the lowest bandwidth node. If the bandwidth information of the current node is the lowest bandwidth node of the network ring bandwidth database. If the bandwidth information is the same, step 204 is performed; if the current node is the lowest bandwidth node, step 205 is performed; if the current node is not the lowest bandwidth node, step 208 is performed.
  • the result of comparing the bandwidth information of the current node with the bandwidth information in the network ring bandwidth database is as follows: If the current node is the lowest bandwidth node, the bandwidth on the current node is blocked in order to improve the bandwidth utilization. If the current node is not the lowest bandwidth node, the blocked port is opened on the current node. If the current node is not connected to the port, the current node is not the lowest bandwidth node. If there are multiple nodes with lower bandwidth and the same bandwidth, it is impossible to determine which node should be blocked according to the bandwidth. Therefore, you can make further comparisons based on other information, such as nodes. ID, etc., select the node that should be blocked from the node with the lowest bandwidth.
  • the bandwidth information of the current node may be directly The only recorded bandwidth information in the network ring bandwidth database is compared to determine whether the current node is the node with the lowest bandwidth in the ring. If the bandwidth information of the current node is the same as the bandwidth information in the network ring database, the current node information may be further compared with the node information recorded in the network ring bandwidth database by step 204 to determine whether the current node is the lowest bandwidth node.
  • the comparison between the bandwidths in step 203 cannot determine the node with the lowest bandwidth in the ring, further comparison can be made according to other information, and the node with the lowest bandwidth should be blocked. Node. Further judgment can be made based on the node ID, the node name, the geographical location of the node, and the like. For example, in the extended R-APS protocol packet, the ID of each node is carried, and the node ID is stored in the network ring bandwidth database. If the bandwidth of both nodes is 300M, the node with the smaller ID value can be blocked as the lowest bandwidth node according to the size of the node ID.
  • step 205 Compare the bandwidth of the port that belongs to the Ethernet ring on the current node, and determine the port with the lowest bandwidth. If the bandwidth of the port on the current node that belongs to the Ethernet ring is the same, go to step 206. To determine the port with the lowest bandwidth, go to step 207.
  • the current node may have multiple ports.
  • the bandwidth change packet or the node online packet is sent, the bandwidth corresponding to the port with the lower bandwidth on the current node is used. Therefore, when the port is blocked, the port can be blocked accordingly.
  • a port with a lower bandwidth on the current node For example, as shown in FIG. 7, after determining that node C is the lowest bandwidth node, node C compares the bandwidths of the upper two ports, wherein the bandwidth of the east port is 300M, and the bandwidth of the west port is 400M. The result is that the bandwidth of the eastbound port is lower, so step 207 can be performed to block the eastbound port on node C.
  • step 205 further comparison may be performed according to other information corresponding to the port, such as port ID and port priority. For example, after determining that node X is the lowest bandwidth node, node C compares the bandwidths of the two ports above, and the bandwidth of the east port and the west port is 200M, and it is impossible to determine which port should be blocked. In this case, the ID of the eastbound port: 00000001 can be compared with the ID of the westbound port: 00000010. The result of the comparison is that the ID of the eastbound port is the smallest, so the eastbound port can be blocked as the lowest bandwidth port.
  • port ID and port priority For example, after determining that node X is the lowest bandwidth node, node C compares the bandwidths of the two ports above, and the bandwidth of the east port and the west port is 200M, and it is impossible to determine which port should be blocked. In this case, the ID of the eastbound port: 00000001 can be compared with the ID of the westbound port: 00000010. The result of the comparison is that the
  • the current node After the current node blocks the port with the lowest bandwidth, it only blocks one end of the link with the lowest bandwidth.
  • the current node may also send a message that the link is blocked to the other end of the link, and notify the node at the other end of the link to block the corresponding port. For example, as shown in FIG. 7, node C detects that its bandwidth is the lowest in the ring, and determines that the port with the lowest bandwidth on node C is the east port. This blocks the eastbound port on node C. At the same time, the node C sends a message blocking the link O ⁇ ) to the node D. After receiving the blocking message, the node D blocks the westbound port on the node D.
  • step 208 Determine whether there is a port that is blocked in the port that belongs to the Ethernet ring on the current node. If the port that belongs to the Ethernet ring on the current node has a blocked port, perform the step. 209. If there is no blocked port in the port that belongs to the Ethernet ring on the current node, go to step 210.
  • step 203 it is determined in step 203 that the current node is not the lowest bandwidth node, so the link where the current node is located can be fully utilized by step 209 or 210.
  • the bandwidth of the blocked port on the current node can also be fully utilized because the bandwidth of the current node is not the lowest bandwidth in the ring. Therefore, the link with higher bandwidth in the ring is enabled, and the link with lower bandwidth in the ring is blocked.
  • the related operations of link switching may not be performed.
  • the bandwidth information packet is inter-connected, and the network ring bandwidth database of each node is updated in time, and the newly-onlined node is added to the link switching mechanism, where the bandwidth information packet includes: a bandwidth change packet and a node uplink.
  • the link switching method may further include:
  • the node is online to mean that a new node is added to the Ethernet ring.
  • nodes A, B there are originally 4 nodes in the Ethernet ring, which are nodes A, B, (and 0. Due to actual needs, another one is not shown in Figure 7 (a).
  • Node X The node X is connected to the node B and added to the Ethernet ring. The action of the node X being added to the Ethernet ring is called the node X uplink.
  • the network ring bandwidth database of other nodes in the ring is not There is information about the current node. Therefore, when the current node goes online, the node online message can be broadcast to other nodes in the ring.
  • the node online message contains the node information and bandwidth information of the current node. After receiving the broadcast packet, the other nodes pass the online identification of the node in the packet (that is, the request field).
  • the online message of the node is identified, and the related information corresponding to the current online node carried in the online message of the node is stored in the respective network ring database. Or comparing the bandwidth information and the node information corresponding to the node currently on the line with the bandwidth information and the node information corresponding to the node with the lowest bandwidth among the other nodes stored in the network ring database, and storing only the related information corresponding to the node with the lower bandwidth.
  • the network ring bandwidth database because there is no bandwidth information of other nodes in the network ring bandwidth database corresponding to the current node, the other nodes in the network ring can also send the bandwidth change packet in the form of broadcast after receiving the online message of the node.
  • the node information and the bandwidth information of each node are transmitted back to the currently online node, so that the current node receives and saves the bandwidth information of other nodes, or selects the bandwidth information of the node to be saved according to the bandwidth information of other nodes.
  • the bandwidth of each link in the ring is changed. The link switching operations in steps 201 to 210 should be performed again.
  • the port with the smallest bandwidth may be selected according to the bandwidth corresponding to each port on the current node, and if the bandwidth is the same, the further According to the port ID, select the port with the smaller port ID as the port with the lowest bandwidth.
  • the bandwidth corresponding to the port with the lowest bandwidth on the current node is selected as the bandwidth of the current node, and the bandwidth information of the current node is written into the bandwidth change packet, the node online packet, or the network ring bandwidth database corresponding to the current node.
  • bandwidth change packet When the bandwidth of the current node changes, broadcast, to the other nodes in the Ethernet ring, a bandwidth change packet corresponding to the current node, where the bandwidth change packet includes a bandwidth change identifier, and the Node information and bandwidth information of the current node.
  • the bandwidth of each link in the Ethernet ring changes accordingly. Therefore, the changed bandwidth is written into the bandwidth change packet and broadcasted, so that other nodes can receive the bandwidth.
  • Change the packet update its network ring bandwidth database, and re-determine the link that should be blocked, and complete the corresponding link switching.
  • the bandwidth of one node in the ring is changed.
  • the order of the bandwidth of each link in the network ring also changes. The link switching operations in steps 201 to 210 should be performed again.
  • the current node receives the uplink message of the node sent by the other node in the Ethernet ring
  • the other node that participates in the current link switching broadcasts the bandwidth change packet corresponding to the current node, so that the current node sends the bandwidth change packet corresponding to the current node.
  • the node that sends the packet to the node updates the network ring bandwidth database according to the bandwidth change message.
  • the node information and the bandwidth information carried in the online message of the node are written into the network ring bandwidth database of the current node, or reported according to the node.
  • the node information and bandwidth information carried in the text determine the nodes with the smallest bandwidth among other nodes and store related information.
  • the node information and the bandwidth information of the current node are written into the bandwidth change message, and the bandwidth change message is broadcasted, so that the node just received the line receives the bandwidth change message and updates its network ring bandwidth database.
  • the order of the bandwidth of each link in the ring is also changed. The link switching operations in steps 201 to 210 should be performed again.
  • the link switching mechanism can be With forced switching and SF warning as the priority, the node does not trigger link switching due to the notification of bandwidth change.
  • the bandwidth change packet corresponding to the node broadcasted by the node with the link failure is detected, and the link bandwidth of the node is reported as 0; when the failed link is restored.
  • the node re-broadcasts the bandwidth change packet and reports the current link bandwidth of the node.
  • the specific description of some steps in the embodiment of the present invention may refer to the corresponding content in Embodiment 1, and the embodiment of the present invention will not be described again.
  • the link with lower bandwidth can be adaptively blocked according to the change of the bandwidth, and the link with higher bandwidth is selected as the working link, thereby fully utilizing the idle bandwidth on the standby link and improving the utilization efficiency of the network bandwidth.
  • the embodiment of the present invention provides a node, which can be applied to an Ethernet ring, which is one of multiple nodes in an Ethernet ring.
  • Each node in the Ethernet ring exchanges bandwidth information and implements link switching, as shown in FIG.
  • the node includes: a node determining unit 31, a blocking unit 32, and an opening unit 33.
  • the node determining unit 31 is configured to determine, according to bandwidth information of the current node and bandwidth information corresponding to other nodes in the received Ethernet ring, whether the current node is the lowest bandwidth node.
  • the blocking unit 32 is configured to block, when the node determining unit 31 determines that the current node is the lowest bandwidth node, the port with the lowest bandwidth among the ports belonging to the Ethernet ring on the current node.
  • the opening unit 33 is configured to open a port belonging to the Ethernet ring on the current node when the node determining unit 31 determines that the current node is not the lowest bandwidth node.
  • the node determining unit 31 includes: a receiving module 31 1 , a storage module 31 2 , and a first determining module 31 3 .
  • the receiving module 31 1 is configured to receive a bandwidth information packet sent by another node in the Ethernet ring, where the bandwidth information packet includes node information and bandwidth information corresponding to the sending node that sends the bandwidth information packet.
  • the storage module 31 2 is configured to store, in the bandwidth information database, the node information and the bandwidth information carried in the bandwidth information packet received by the receiving module 31 1 .
  • the first determining module 31 3 is configured to compare the bandwidth information of the current node with the bandwidth information in the network ring bandwidth database, and determine whether the current node is the lowest bandwidth node.
  • the node determining unit 31 further includes: a second determining module 314.
  • the second determining module 314 is configured to: when the first determining module 31 determines that the bandwidth information of the current node is the same as the bandwidth information of the node with the lowest bandwidth in the network ring bandwidth database, the node information of the current node is The node information corresponding to the node with the lowest bandwidth is compared, and the node that is preferentially blocked is determined and used as the lowest bandwidth node.
  • the blocking unit 32 includes: a first comparison module 321 , a second comparison module 322 , and a blocking module 32 3 .
  • the first comparison module 321 is configured to compare ports of the current node that belong to the Ethernet ring. The size of the bandwidth, which determines the port with the lowest bandwidth.
  • the second comparison module 322 is configured to compare, when the first comparison module 321 determines that the bandwidth of the port belonging to the Ethernet ring on the current node is the same, compare the port corresponding to the port belonging to the Ethernet ring on the current node. Information, identify the port that is preferentially blocked and use it as the port with the lowest bandwidth.
  • the blocking module 323 is configured to block the port with the lowest bandwidth determined by the first comparing module 321 or the second comparing module 322.
  • the opening unit 33 includes: a port judging module 331 and an opening module 332.
  • the port judging module 331 is configured to determine whether there is a blocked port in the port that belongs to the Ethernet ring on the current node.
  • the module 332 is configured to stop blocking the blocked port when the port determining module 331 determines that there is a blocked port in the port that belongs to the Ethernet ring on the current node.
  • the opening module 332 is further configured to: when the port determining module 331 determines that there is no blocked port in the port that belongs to the Ethernet ring on the current node, does not perform related operations of link switching.
  • the bandwidth information packet includes: a bandwidth change packet and a node uplink message.
  • the node further includes: a node uplink unit 34 and a bandwidth changing unit 35.
  • the node-on-line unit 34 is configured to: when the current node is online, broadcast, to the other node in the Ethernet ring, a node online message corresponding to the current node, where the node online message includes a node online identifier, Node information and bandwidth information of the current node.
  • the bandwidth change unit 35 is configured to: when the bandwidth of the current node changes, broadcast a bandwidth change packet corresponding to the current node to another node in the Ethernet ring, where the bandwidth change packet includes a bandwidth.
  • a change identifier, node information of the current node, and bandwidth information is configured to: when the bandwidth of the current node changes, broadcast a bandwidth change packet corresponding to the current node to another node in the Ethernet ring, where the bandwidth change packet includes a bandwidth.
  • the bandwidth change unit 35 is further configured to: when the current node receives the node uplink sent by another node in the Ethernet ring, broadcast to the other nodes in the Ethernet ring.
  • the bandwidth change packet corresponding to the current node is configured, so that the node that sends the online message of the node updates the network ring bandwidth database according to the bandwidth change message.
  • the embodiment of the present invention further provides a link switching system in an Ethernet ring, including: at least three nodes.
  • a link switching system in an Ethernet ring includes four nodes, and the node forms a network ring through a port on the node and a link connected to the port.
  • the data is transmitted in the ring and participates in the current link switching.
  • the node is configured to determine, according to the bandwidth information of the current node, the bandwidth information corresponding to the other nodes that are involved in the current link switching, whether the current node is the lowest bandwidth node; if the current node is the lowest bandwidth node, Blocking the port with the lowest bandwidth among the ports participating in the current link switching on the current node; if the current node is not the lowest bandwidth node, the port participating in the current link switching on the current node is opened.
  • the link switching system in the node and the Ethernet ring determines whether the current node is the node with the lowest bandwidth on each node, and determines whether to open or block the link where the current node is located, and the prior art.
  • the link with lower bandwidth can be adaptively blocked according to the change of the bandwidth, and the link with higher bandwidth is selected as the work. The link, thereby making full use of the idle bandwidth on the standby link, and improving the utilization efficiency of the network bandwidth.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明实施例公开了一种以太网环中的链路倒换方法、节点及系统,涉及通信技术领域,能够充分利用备用链路的带宽,提高以太网环中链路带宽的利用率。本发明的方法包括:根据当前节点的带宽信息和接收到的以太网环中的其他节点对应的带宽信息确定当前节点是否为最低带宽节点;若当前节点为最低带宽节点,则阻塞当前节点上属于以太网环的端口中带宽最低的端口;若当前节点不为最低带宽节点,则打开当前节点上属于以太网环的端口。本发明实施例主要用于以太网环中的链路倒换的过程中。

Description

以太网环中的 倒换方法、 节点及系统 技术领域
本发明涉及通信技术领域, 尤其涉及一种以太网环中的链路倒换方法、 节点及系统。 背景技术
通常情况下, 以太网环并不呈现闭环的状态, 在以太网环中有部分链路 是处于阻塞状态的备用链路, 如图 1 ( a )所示, 其中链路 Α· ί)为备用链路, 链路 Α· Β· e« B为正常工作链路。 为了保证环形网络中链路的稳定性, 通常 会通过网环自动保护倒换 ( Ring-Automat ic Protect ion Swi tching , R-APS ) 协议对以太网环中的链路进行倒换, 对以太网局域网 (Loca l Area Network, LAN )业务提供保护。
Ring Protect ion Swi tching, ERPS ), 是基于 R-APS协议在各节点之间互发 R-APS协议 ·艮文, 实现的环形网络中各节点的协议互通和保护倒换。 具体的, 在以太网环中设定至少一条链路作为备用链路, 如图 1 ( a ) 中所示, 节点 A 与 D之间的链路为备用链路, 在正常工作状态下阻塞节点 A与节点 D上与备 用链路相连的端口, 使得业务通过节点 A和 D的另一侧端口进行传输, 此时 业务的传输路径可以为 Α· Β· e» β0 当以太网环中某段链路或某个节点发生 故障时, 如图 1 ( b ) 中所示, 节点 A与 B之间的链路发生故障, 解除节点 A 和 D上的端口阻塞,使得无法通过故障链路 Α· Β传输的业务,通过 Α· β· e» B 的路径进行传输, 从而通过链路倒换保护以太网环中的业务传输。
在实现上述以太网环中的链路倒换的过程中, 发明人发现现有技术中至 少存在如下问题: 只有在链路故障或人工强制倒换的情况下才能触发链路倒 换, 使得备用链路大部分时间都被闲置, 不能充分利用备用链路的带宽。 发明内容 本发明的实施例提供一种以太网环中的链路倒换方法、 节点及系统, 能 够充分利用备用链路的带宽, 提高以太网环中链路带宽的利用率。
为达到上述目的, 本发明的实施例采用如下技术方案:
一种以太网环中的链路倒换方法, 包括:
根据当前节点的带宽信息和接收到的以太网环中的其他节点对应的带宽 信息确定所述当前节点是否为最低带宽节点;
若所述当前节点为最低带宽节点, 则阻塞所述当前节点上属于所述以太 网环的端口中带宽最低的端口;
若所述当前节点不为最低带宽节点, 则打开所述当前节点上属于所述以 太网环的端口。
一种节点, 该节点是以太网环中的节点之一, 该节点包括:
节点确定单元, 用于根据当前节点的带宽信息和接收到的以太网环中的 其他节点对应的带宽信息确定当前节点是否为最低带宽节点;
阻塞单元, 用于在所述节点确定单元确定当前节点为最低带宽节点时, 阻塞当前节点上属于所述以太网环的端口中带宽最低的端口;
打开单元, 用于在所述节点确定单元确定当前节点不为最低带宽节点时, 打开当前节点上属于所述以太网环的端口。
一种以太网环中的链路倒换系统, 其特征在于, 包括: 至少三个节点; 所述节点通过所述节点上的端口以及与所述端口相连的链路构成以太网 环并在所述以太网环中进行数据传输, 并参与所述以太网环中的链路倒换; 所述节点, 用于根据当前节点的带宽信息和接收到的以太网环中的其他 节点对应的带宽信息确定所述当前节点是否为最低带宽节点; 若所述当前节 点为最低带宽节点, 则阻塞所述当前节点上属于所述以太网环的端口中带宽 最低的端口; 若所述当前节点不为最低带宽节点, 则打开所述当前节点上属 于所述以太网环的端口。 每个节点上判断当前节点是否为带宽最低的节点, 确定是否打开或阻塞当前 节点所在的链路, 与现有技术中只有在链路失效或人工命令倒换的情况下才 会触发链路倒换的技术相比, 可以根据带宽的变化自适应地将带宽较低的链 路阻塞, 选择带宽较高的链路作为工作链路, 从而充分利用备用链路上的闲 置带宽, 提高网络带宽的利用效率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为背景技术中的一种以太网环中的链路倒换系统示意图;
图 2为本发明实施例 1的以太网环中的链路倒换方法流程图;
图 3为本发明实施例 2中的以太网环中的一种链路倒换方法流程图; 图 4为本发明实施例 2中的另一种以太网环中的链路倒换方法流程图; 图 5为本发明实施例 3中的一种节点组成示意图;
图 6为本发明实施例 3中的另一种节点组成示意图;
图 Ί为本发明实施例 3 中的一种以太网环中的链路倒换系统的组成示意 图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
以太网环是由多个节点共同构成的环形网络拓朴结构, 以太网环中各个 节点形成物理或逻辑的环拓朴结构, 实现点到点、 点到多点、 多点到多点的 业务传输。 通常情况下, 以太网环并不呈现闭环的状态, 在以太网环中有部 分链路是处于阻塞状态的备用链路, 如图 7 ( a )所示, 其中链路 Α· ί)为备用 链路。 当以太网环中各链路的带宽发生变化时, 为了充分利用备用链路的闲 置带宽, 进行以太网环中的链路倒换, 打开带宽较高的链路, 阻塞带宽较低 的链路, 从而提高以太网环的带宽利用率。
实施例 1
本发明实施例提供一种以太网环中的链路倒换方法, 如图 2所示, 包括:
101、 才艮据当前节点的带宽信息和接收到的以太网环中的其他节点对应的 带宽信息确定所述当前节点是否为最低带宽节点。
其中, 所述当前节点对应的带宽信息可以为当前节点上参与当前链路倒 换的端口中带宽最低的端口对应的带宽信息。 对应的, 其他节点对应的带宽 信息也可以采用相同的方式确定节点本身的带宽信息。 需要说明的是, 在各 个节点构成的网络中, 一个节点可能同时参与多层以太网环, 当前节点上也 可能会有多个端口, 在本发明的描述中, 仅描述其中一层以太网环中的节点 及属于该层以太网环的端口, 属于其他层以太网环的节点或端口不参与该层 以太网环的链路倒换机制, 不在该层链路倒换方案的考虑范围内。
具体的, 将当前节点的带宽信息与其他节点的带宽信息进行比较, 确定 当前节点的带宽是否是网环中的最低带宽。 若仅根据带宽信息进行比较时, 网环中存在多个带宽相同又是最低的节点, 并且当前节点也是其中之一, 则 可以根据节点的其他信息, 例如节点的物理地址、 名称等信息进行比较, 确 定是否应优先阻塞当前节点所在链路。
102、 若所述当前节点为最低带宽节点, 则阻塞所述当前节点上属于所述 以太网环的端口中带宽最低的端口。
其中, 节点上可以有多个端口, 其中部分端口用于其他层的以太网环, 这里所说的当前节点上参与当前链路倒换的端口是指当前节点上属与当前层 以太网环的端口。 例如, 每个节点有两个属于当前网环的端口, 分别为东向 端口和西向端口。 若在步骤 101 中确定当前节点为最低带宽节点, 则选择以 上两个端口中带宽最低的端口, 并阻塞该带宽最低的端口。
103、 若所述当前节点不为最低带宽节点, 则打开所述当前节点上属于所 述以太网环的端口。
其中, 若当前节点不为最低带宽节点, 说明在网环中还有其他节点的带 宽更低, 该最低带宽节点会完成自身端口的阻塞, 当前节点所能提供的链路 带宽较高, 因此打开当前节点上参与当前链路倒换的端口。 这里所说的参与 当前链路倒换的端口依然是属于当前网环的端口。 断当前节点是否为带宽最低的节点, 确定是否打开或阻塞当前节点所在的链 路, 与现有技术中只有在链路失效或人工命令倒换的情况下才会触发链路倒 换的技术相比, 可以根据带宽的变化自适应地将带宽较低的链路阻塞, 选择 带宽较高的链路作为工作链路, 从而充分利用备用链路上的闲置带宽, 提高 网络带宽的利用效率。
实施例 2
本发明实施例提供一种以太网环中的链路倒换方法, 如图 3所示, 包括: 201、 接收以太网环中的其他节点发送的带宽信息报文, 所述带宽信息报 文中包含发送所述带宽信息报文的发送节点对应的节点信息和带宽信息。
其中, 带宽信息报文可以包括: 带宽变化报文和节点上线报文, 是基于 R-APS协议扩展得到的报文形式。 现有的 R-APS协议报文形式如表 1所示, 用 于实现节点之间的状态互通。 该 R-APS协议报文包含 12个字节, 其中有四位 是请求字段, 有 6个字节是节点信息, 在末尾还有 24个字节的保留字段。
Figure imgf000007_0001
表 1
在现有的 R-APS协议报文中, 仅规定了 5种请求字段。 不包含节点的带 宽信息。 如表 2所示, 为 R-APS协议报文中规定的 5种请求字段及其含义。
位置 (f i e ld ) 值 ( va lue ) 描述 ( descr i pt ion )
1101 强制倒换 ( forced swi tch )
1110 事件 ( event ) 请求字段 1011 信号失效(Signal fail )
( request ) 0111 人工倒换 ( manual switch)
0000 无请求 (no request ) 其他(Other ) 为将来国际标准扩展而保留 表 2
为了提高以太网环中链路带宽的利用率, 将带宽信息加入到 R-APS协议 报文中, 并定义两个请求字段, 用于标识带宽信息报文。 如表 3 所示, 为基 于 R-APS协议报文扩展得到的带宽信息报文的表现形式。 其中利用 24个保留 字节中的 4 个字节, 用于保存节点的带宽信息, 以便在节点之间互通带宽信 息。
Figure imgf000008_0001
表 3
在扩展后的 R-APS 协议报文中, 还定义了两个新增的请求字段, 如表 4 所示, 分别为用于标识节点带宽变化报文的 0001和用于标识节点上线报文的 0010。
Figure imgf000008_0002
表 4
通过网环中的各个节点广播携带带宽信息的带宽信息报文, 和接收其他 节点广播的带宽信息报文, 可以得知以太网环中的带宽使用情况。 从而阻塞 网环中带宽较低的链路, 打开以太网环中带宽较高的链路, 根据带宽大小倒 换链路, 充分提高链路带宽利用率。 例如, 如图 7 (a) 所示, 由于在节点 C 和节点 D之间 AM微波调制, 或由于节点 C和 D之间的链路发生 LAG组成员故 障, 导致链路 O B带宽降低。 此时, 如图 7 ( b )所示, 节点 C和节点 D可以 阻塞该带宽较低的链路 O 9, 相应的节点 A和节点 D停止阻塞备用链路, 从 而使得带宽较高的备用链路 Α· β加入到网环的业务传输中。
202、 将接收到的所述带宽信息报文中携带的节点信息和带宽信息对应存 储在网环带宽数据库中。
其中, 以太网环中的每个节点都可以预设有一个网环带宽数据库, 在当 前节点的网环带宽数据库中可以存储有网环中的其他节点对应的节点信息以 及带宽信息, 也可以将当前节点的节点信息和带宽信息存储在所述网环带宽 数据库中。 需要说明的是, 为了节省存储空间, 该网环带宽数据库中还可以 只存储网环中其他节点中带宽最低的节点对应的带宽信息和节点信息。 该网 环带宽数据库可以为一串数字信息、 列表、 柱状图、 网络图或其他形式, 该 网环数据库可以存储在内存中, 也可以存储在其他存储器件中。 该网环数据 库中记录有除当前节点外的其他节点中带宽最低的节点对应的带宽信息和节 点信息, 或者记录有当前节点所在网环的各个节点对应的节点信息和带宽信 息, 以便根据网环带宽数据库中记录的信息优化链路配置, 打开带宽较高的 链路, 阻塞带宽较低的链路。
另外, 若当前节点的网环数据库中仅存储除当前节点外的其他节点中带 宽最低的节点对应的带宽信息和节点信息, 具体的实现方法可以为: 在接收 到当前网环中其他节点发送的带宽信息报文后, 根据带宽信息报文中携带的 带宽信息和节点信息, 比较出带宽最低的节点。 若带宽相同, 可以根据节点 ID比较出节点 ID最小的节点作为其他节点中带宽最低的节点。将比较得到的 其他节点中带宽最低的节点对应的带宽信息和节点信息存储在当前节点的网 环数据库中。 例如, 当前节点 A在接收其他节点的带宽信息报文时, 具有先 后次序。 在接到节点 B的带宽信息报文后, 将节点 B的带宽信息和节点信息 存储到内存中, 作为网环带宽数据库。 之后, 再接收到节点 C 的带宽信息报 文, 将节点 C的带宽信息和节点信息与内存中已记录的节点 B的带宽信息和 节点信息进行比较。 若节点 B的带宽较低则可以不对节点 C的相关信息做任 何记录, 若节点 C的带宽较低则将内存中已存储的节点 B的相关信息替换为 节点 C 的相关信息。 以此类推, 始终只记录其他节点中带宽最低的节点对应 的带宽信息和节点信息。
203、 将当前节点的带宽信息与所述网环带宽数据库中的带宽信息进行比 较, 判断当前节点是否为最低带宽节点; 若当前节点的带宽信息与所述网环 带宽数据库中带宽最低的节点的带宽信息相同, 则执行步骤 204; 若所述当前 节点为最低带宽节点, 则执行步骤 205; 若所述当前节点不为最低带宽节点, 则执行步骤 208。
其中, 将当前节点的带宽信息与所述网环带宽数据库中的带宽信息进行 比较的结果有以下三种: 若所述当前节点为最低带宽节点, 则为了提高带宽 利用率阻塞当前节点上带宽较低的链路, 通过网环中其他带宽较高的链路进 行业务阐述; 若所述当前节点不为最低带宽节点, 则打开当前节点上已阻塞 的端口, 当然如果当前节点的端口均未被阻塞, 则不用采取任何操作; 若网 环中有多个带宽较低的节点, 并且带宽大小相同, 说明仅根据带宽大小无法 确定应阻塞哪个节点, 因此可以根据其他信息做进一步的比较, 例如节点 ID 等, 从带宽最低的节点中选择应阻塞的节点。
需要说明的是, 若在步骤 202 中当前节点的网环带宽数据库中仅记录了 其他节点中带宽最低的节点对应的带宽信息和节点信息, 则在步骤 203 中可 以直接将当前节点的带宽信息和网环带宽数据库中唯一记录的带宽信息进行 比较, 便可以判断当前节点是否为网环中带宽最低的节点。 若当前节点的带 宽信息与网环数据库中的带宽信息相同, 则可以通过步骤 204 将当前节点信 息与网环带宽数据库中记录的节点信息进一步比较以确定当前节点是否为最 低带宽节点。
204、 将所述当前节点的节点信息与所述带宽最低的节点对应的节点信息 进行比较, 确定优先阻塞的节点并将其作为最低带宽节点。
其中, 若步骤 203 中通过带宽大小的比较无法确定网环中带宽最低的节 点, 则可以根据其他信息做进一步的比较, 从带宽最低的节点中选择应阻塞 的节点。 可以根据节点 ID、 节点名称、 节点所在的地理位置等等信息做进一 步判断。 例如, 在扩展后的 R-APS协议报文中, 携带有各个节点的 ID, 将节 点 ID存储在网环带宽数据库中。 若两个节点的带宽均为 300M时, 便可根据 节点 ID的大小, 将 ID值较小的节点作为最低带宽节点, 进行阻塞。
205、 比较所述当前节点上属于所述以太网环的端口的带宽大小, 确定带 宽最低的端口; 若所述当前节点上属于所述以太网环的端口的带宽相同, 则 执行步骤 206; 若能够确定带宽最低的端口, 则执行步骤 207。
其中, 当前节点上可能有多个端口, 在发送带宽变化报文或节点上线报 文时, 采用的是当前节点上带宽较低的端口对应的带宽, 因此在阻塞端口时, 也可以相应的阻塞当前节点上带宽较低的端口。 例如, 如图 7 所示, 在确定 节点 C为最低带宽节点后, 节点 C将其上两个端口的带宽进行比较, 其中东 向端口的带宽为 300M, 西向端口的带宽为 400M, 比较后的结果为东向端口的 带宽较低, 因此可以执行步骤 207 , 阻塞节点 C上的东向端口。
206、 比较所述当前节点上属于所述以太网环的端口对应的端口信息, 确 定优先阻塞的端口并将其作为带宽最低的端口。
其中, 如果在步骤 205 中仅根据带宽大小无法确定带宽最低的端口, 则 可以根据端口对应的其他信息, 例如端口 ID、 端口优先级等, 进行进一步的 比较。 例如, 在确定节点 X为最低带宽节点后, 节点 C将其上两个端口的带 宽进行比较, 其东向端口和西向端口的带宽均为 200M, 无法确定应阻塞哪个 端口。 此时可以将东向端口的 ID: 00000001与西向端口的 ID: 00000010进 行比较, 比较后的结果为东向端口的 ID最小, 因此可以将东向端口作为带宽 最低端口进行阻塞。
207、 阻塞所述带宽最低的端口。
其中, 当前节点对其上带宽最低的端口进行阻塞之后, 只是阻塞了带宽 最低的链路的一端。 当前节点还可以将链路阻塞的消息发送给链路的另一端, 通知链路另一端的节点阻塞对应的端口。 例如, 如图 7所示, 节点 C检测到 自身的带宽在网环中最低, 并确定节点 C上带宽最低的端口为东向端口, 因 此阻塞节点 C上的东向端口。 同时, 节点 C将阻塞链路 O ί)的消息发送给节 点 D, 节点 D在接收到阻塞消息之后, 对节点 D上的西向端口进行阻塞。
208、 判断所述当前节点上属于所述以太网环的端口中是否存在已被阻塞 的端口; 若所述当前节点上属于所述以太网环的端口中存在已被阻塞的端口, 则执行步骤 209;若所述当前节点上属于所述以太网环的端口中不存在已被阻 塞的端口, 则执行步骤 210。
其中, 在步骤 203 中已经确定当前节点不是带宽最低节点, 因此可以通 过步骤 209或 210充分利用当前节点所在的链路。
209、 停止阻塞所述已被阻塞的端口。
其中, 由于当前节点的带宽不是网环中最低的带宽, 所以当前节点上已 被阻塞的端口的带宽也可以被充分利用。 从而启用网环中带宽较高的链路, 阻塞网环中带宽较低的链路。
210、 不进行链路倒换的相关操作。
其中, 若当前节点不是最低带宽节点, 当前节点上也没有已阻塞的端口, 则可以不进行链路倒换的相关操作。
进一步的, 通过带宽信息报文的互通, 及时更新各节点的网环带宽数据 库, 并将刚上线的节点加入到链路倒换机制中, 所述带宽信息报文包括: 带 宽变化报文和节点上线报文。 如图 4所示, 该链路倒换方法还可以包括:
211、 当所述当前节点上线时, 向所述以太网环中的其他节点广播所述当 前节点对应的节点上线报文, 其中所述节点上线报文中包含节点上线标识、 所述当前节点的节点信息和带宽信息。
可以理解的是, 节点上线是指有新的节点加入到所述以太网环中。 例如, 如图 7 ( a )所示, 以太网环中原本有 4个节点, 分别为节点 A、 B、 ( 和0。 由于实际需要, 另外加设一个在图 7 ( a ) 中未画出的节点 X。 该节点 X与节 点 B相连, 加入到该以太网环中。 上述节点 X加入到以太网环中的动作就被 称为节点 X上线。
其中, 在当前节点上线之前, 网环中其他节点的网环带宽数据库中并没 有当前节点的相关信息, 因此在当前节点上线时, 可以向网环中的其他节点 广播节点上线报文。 该节点上线报文中包含当前节点的节点信息和带宽信息。 其他节点在接收到广播报文后, 通过报文中的节点上线标识 (即请求字段
0001 )识别该节点上线报文, 将节点上线报文中携带的当前上线的节点对应 的相关信息存储到各自的网环数据库中。 或者将当前上线的节点对应的带宽 信息和节点信息与网环数据库中已存储的其他节点中带宽最低的节点对应的 带宽信息和节点信息进行比较, 仅将带宽较低的节点对应的相关信息存储在 网环带宽数据库中。 然后, 由于当前节点对应的网环带宽数据库中也没有其 他节点的带宽信息, 网环中的其他节点在接收到节点上线报文后, 还可以通 过广播的形式发送带宽变化报文, 将网环中各个节点自身的节点信息和带宽 信息回传给当前上线的节点, 以便当前节点接收并保存其他节点的带宽信息, 或者根据其他节点的带宽信息选择需要保存的节点的带宽信息。 另外, 有新 的节点上线, 网环中各链路的带宽发生变化, 应当重新执行步骤 201 至 210 的链路倒换操作。
另外, 在确定当前节点的带宽信息时, 也可以根据以上步骤 205 和 206 的方法, 先根据当前节点上的各端口对应的带宽大小, 选择其中带宽最小的 端口, 若带宽大小相同, 则可以进一步根据端口 ID, 选择端口 ID较小的端口 作为带宽最低的端口。 选择当前节点上带宽最低的端口对应的带宽作为当前 节点的带宽, 将当前节点的带宽信息写入当前节点对应的带宽变化报文、 节 点上线报文或网环带宽数据库中。
212、 当所述当前节点的带宽发生变化时, 向所述以太网环中的其他节点 广播所述当前节点对应的带宽变化报文, 其中所述带宽变化报文中包含带宽 变化标识、 所述当前节点的节点信息和带宽信息。
其中, 在当前节点的带宽发生变化时, 以太网环中各链路的带宽高低次 序也会相应的变化, 因此将变化后的带宽写入带宽变化报文并广播出去, 以 便其他节点接收该带宽变化报文, 更新其网环带宽数据库, 并重新判断应阻 塞的链路, 完成相应的链路倒换。 另外, 网环中有一个节点的带宽发生变化, 网环中各链路的带宽大小次序也会发生变化, 应当重新执行步骤 201 至 210 的链路倒换操作。
213、 当所述当前节点接收到以太网环中的其他节点发送的节点上线报文 时, 向所述参与当前链路倒换的其他节点广播所述当前节点对应的带宽变化 报文, 以使得发送所述节点上线报文的节点根据所述带宽变化报文更新网环 带宽数据库。
其中, 当接收到网环中其他节点发送的节点上线报文时, 将该节点上线 报文中携带的节点信息和带宽信息写入到当前节点的网环带宽数据库中, 或 者根据该节点上线报文中携带的节点信息和带宽信息确定其他节点中带宽最 小的节点并存储相关信息。 然后, 将当前节点的节点信息和带宽信息写入带 宽变化报文, 将该带宽变化报文广播, 以便刚上线的节点接收该带宽变化报 文并更新其网环带宽数据库。 另外, 有新的节点上线, 网环中各链路的带宽 大小次序也会发生变化, 应当重新执行步骤 201至 210的链路倒换操作。
可以理解的是,当 ERPS环上接收到用户下发的强制倒换( forced swi tch, FS ) 的命令或者检测到链路失效(S igna l Fa i l , SF ) 的警告时, 链路倒换机 制可以以强制倒换和 SF警告为优先, 节点不会因带宽变化的通知而触发链路 倒换。 另外, 在某条链路失效时, 还可以检测到链路失效的节点在环内广播 的该节点对应的带宽变化报文, 报告该节点的链路带宽为 0; 当失效的链路恢 复时, 该节点重新广播带宽变化报文, 报告该节点当前的链路带宽。
需要说明的是, 本发明实施例中部分步骤的具体描述可以参考实施例 1 中对应内容, 本发明实施例将不再——贅述。 断当前节点是否为带宽最低的节点, 确定是否打开或阻塞当前节点所在的链 路, 与现有技术中只有在链路失效或人工命令倒换的情况下才会触发链路倒 换的技术相比, 可以根据带宽的变化自适应地将带宽较低的链路阻塞, 选择 带宽较高的链路作为工作链路, 从而充分利用备用链路上的闲置带宽, 提高 网络带宽的利用效率。 实施例 3
本发明实施例提供一种节点, 可以应用于以太网环中, 是以太网环中多 个节点中的一个, 以太网环中的各个节点互通带宽信息并实现链路倒换, 如 图 5所示, 该节点包括: 节点确定单元 31、 阻塞单元 32、 打开单元 33。
节点确定单元 31 , 用于根据当前节点的带宽信息和接收到的以太网环中 的其他节点对应的带宽信息确定当前节点是否为最低带宽节点。
阻塞单元 32 ,用于在所述节点确定单元 31确定当前节点为最低带宽节点 时, 阻塞当前节点上属于所述以太网环的端口中带宽最低的端口。
打开单元 33 ,用于在所述节点确定单元 31确定当前节点不为最低带宽节 点时, 打开当前节点上属于所述以太网环的端口。
进一步的, 如图 6所示, 所述节点确定单元 31包括: 接收模块 31 1、 存 储模块 31 2、 第一判断模块 31 3。
接收模块 31 1 , 用于接收所述以太网环中的其他节点发送的带宽信息报 文, 所述带宽信息报文中包含发送所述带宽信息报文的发送节点对应的节点 信息和带宽信息。
存储模块 31 2 ,用于将所述接收模块 31 1接收到的所述带宽信息报文中携 带的节点信息和带宽信息对应存储在网环带宽数据库中。
第一判断模块 31 3 ,用于将当前节点的带宽信息与所述网环带宽数据库中 的带宽信息进行比较, 判断当前节点是否为最低带宽节点。
进一步的, 所述节点确定单元 31还包括: 第二判断模块 314。
第二判断模块 314 ,用于在所述第一判断模块 31 3判断当前节点的带宽信 息与所述网环带宽数据库中带宽最低的节点的带宽信息相同时, 将所述当前 节点的节点信息与所述带宽最低的节点对应的节点信息进行比较, 确定优先 阻塞的节点并将其作为最低带宽节点。
进一步的,所述阻塞单元 32包括:第一比较模块 321、第二比较模块 322、 阻塞模块 32 3。
第一比较模块 321 ,用于比较所述当前节点上属于所述以太网环的端口的 带宽大小, 确定带宽最低的端口。
第二比较模块 322 ,用于在所述第一比较模块 321确定当前节点上属于所 述以太网环的端口的带宽相同时, 比较所述当前节点上属于所述以太网环的 端口对应的端口信息, 确定优先阻塞的端口并将其作为带宽最低的端口。
阻塞模块 323 ,用于阻塞所述第一比较模块 321或第二比较模块 322确定 的所述带宽最低的端口。
进一步的, 所述打开单元 33包括: 端口判断模块 331、 打开模块 332。 端口判断模块 331 ,用于判断所述当前节点上属于所述以太网环的端口中 是否存在已被阻塞的端口。
打开模块 332 ,用于在所述端口判断模块 331判断当前节点上属于所述以 太网环的端口中存在已被阻塞的端口时, 停止阻塞所述已被阻塞的端口。
所述打开模块 332 ,还用于在所述端口判断模块 331判断当前节点上属于 所述以太网环的端口中不存在已被阻塞的端口时, 不进行链路倒换的相关操 作。
在本实施例中, 所述带宽信息报文包括: 带宽变化报文和节点上线报文。 进一步的, 该节点还包括: 节点上线单元 34、 带宽变化单元 35 。
节点上线单元 34 , 用于在所述当前节点上线时, 向所述以太网环中的其 他节点广播所述当前节点对应的节点上线报文, 其中所述节点上线报文中包 含节点上线标识、 所述当前节点的节点信息和带宽信息。
带宽变化单元 35 , 用于在所述当前节点的带宽发生变化时, 向所述以太 网环中的其他节点广播所述当前节点对应的带宽变化报文, 其中所述带宽变 化报文中包含带宽变化标识、 所述当前节点的节点信息和带宽信息。
进一步的, 所述带宽变化单元 35还用于: 在所述当前节点接收到所述以 太网环中的其他节点发送的节点上线 4艮文时, 向所述以太网环中的其他节点 广播所述当前节点对应的带宽变化报文, 以使得发送所述节点上线报文的节 点根据所述带宽变化报文更新网环带宽数据库。
需要说明的是, 本发明实施例提供的节点中部分功能模块的具体描述可 以参考实施例 1和实施例 2中对应内容, 本发明实施例将不再——贅述。 本发明实施例还提供一种以太网环中的链路倒换系统, 包括: 至少三个 节点。
例如, 如图 7所示为一种以太网环中的链路倒换系统, 包含 4个节点, 所述节点通过所述节点上的端口以及与所述端口相连的链路构成网环并在网 环中进行数据传输, 并参与当前链路倒换。
所述节点, 用于根据当前节点的带宽信息和接收到的参与当前链路倒换 的其他节点对应的带宽信息确定所述当前节点是否为最低带宽节点; 若所述 当前节点为最低带宽节点, 则阻塞所述当前节点上参与当前链路倒换的端口 中带宽最低的端口; 若所述当前节点不为最低带宽节点, 则打开所述当前节 点上参与当前链路倒换的端口。
需要说明的是, 本发明实施例提供的以太网环中的链路倒换系统中节点 及节点中各功能模块的描述, 可以参考实施例 1、 实施例 2和实施例 3中节点 部分的对应内容, 本发明实施例这里将不再——贅述。
本发明实施例提供的节点和以太网环中的链路倒换系统, 通过在每个节 点上判断当前节点是否为带宽最低的节点, 确定是否打开或阻塞当前节点所 在的链路, 与现有技术中只有在链路失效或人工命令倒换的情况下才会触发 链路倒换的技术相比, 可以根据带宽的变化自适应地将带宽较低的链路阻塞, 选择带宽较高的链路作为工作链路, 从而充分利用备用链路上的闲置带宽, 提高网络带宽的利用效率。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件, 但 很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本 质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该 计算机软件产品存储在可读取的存储介质中, 如计算机的软盘, 硬盘或光盘 等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方法。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求 书
1、 一种以太网环中的链路倒换方法, 其特征在于, 包括:
根据当前节点的带宽信息和接收到的以太网环中的其他节点对应的带宽信 息确定所述当前节点是否为最低带宽节点;
若所述当前节点为最低带宽节点, 则阻塞所述当前节点上属于所述以太网 环的端口中带宽最低的端口;
若所述当前节点不为最低带宽节点, 则打开所述当前节点上属于所述以太 网环的端口。
2、 根据权利要求 1所述的以太网环中的链路倒换方法, 其特征在于, 所述 根据当前节点的带宽信息和接收到的以太网环中的其他节点对应的带宽信息确 定当前节点是否为最低带宽节点, 包括:
接收以太网环中的其他节点发送的带宽信息报文, 所述带宽信息报文中包 含发送所述带宽信息报文的发送节点对应的节点信息和带宽信息;
将接收到的所述带宽信息报文中携带的节点信息和带宽信息对应存储在网 环带宽数据库中;
将当前节点的带宽信息与所述网环带宽数据库中的带宽信息进行比较, 判 断当前节点是否为最低带宽节点。
3、 根据权利要求 1或 2所述的以太网环中的链路倒换方法, 其特征在于, 所述将接收到的所述带宽信息报文中携带的节点信息和带宽信息对应存储在网 环带宽数据库中, 包括:
根据接收到的所述带宽信息报文中携带的节点信息和带宽信息, 确定以太 网环中的其他节点中带宽最低的节点;
将所述以太网环中的其他节点中带宽最低的节点对应的节点信息和带宽信 息存储在网环带宽数据库中。
4、 根据权利要求 1-3中任一项所述的以太网环中的链路倒换方法, 其特征 在于, 在将当前节点的带宽信息与所述网环带宽数据库中的带宽信息进行比较, 判断当前节点是否为最低带宽节点之后, 还包括: 若当前节点的带宽信息与所述网环带宽数据库中带宽最低的节点的带宽信 息相同, 则将所述当前节点的节点信息与所述带宽最低的节点对应的节点信息 进行比较, 确定优先阻塞的节点并将其作为最低带宽节点。
5、 根据权利要求 1-4中任一项所述的以太网环中的链路倒换方法, 其特征 在于, 所述阻塞当前节点上属于所述以太网环的端口中带宽最低的端口, 包括: 比较所述当前节点上属于所述以太网环的端口的带宽大小, 确定带宽最低 的端口;
若所述当前节点上属于以太网环的端口的带宽相同, 则比较所述当前节点 上属于以太网环的端口对应的端口信息, 确定优先阻塞的端口并将其作为带宽 最低的端口;
阻塞所述带宽最低的端口。
6、 根据权利要求 1-5中任一项所述的以太网环中的链路倒换方法, 其特征 在于, 所述打开当前节点上属于所述以太网环的端口, 包括:
判断所述当前节点上属于所述以太网环的端口中是否存在已被阻塞的端 口;
若所述当前节点上属于所述以太网环的端口中存在已被阻塞的端口, 则停 止阻塞所述已被阻塞的端口;
若所述当前节点上属于所述以太网环的端口中不存在已被阻塞的端口, 则 不进行链路倒换的相关操作。
7、 根据权利要求 1-6中任一项所述的以太网环中的链路倒换方法, 其特征 在于, 所述带宽信息报文包括: 带宽变化报文和节点上线报文; 该方法还包括: 当所述当前节点上线时, 向所述参与当前链路倒换的其他节点广播所述当 前节点对应的节点上线报文, 其中所述节点上线报文中包含节点上线标识、 所 述当前节点的节点信息和带宽信息;
当所述当前节点的带宽发生变化时, 向所述以太网环中的其他节点广播所 述当前节点对应的带宽变化报文, 其中所述带宽变化报文中包含带宽变化标识、 所述当前节点的节点信息和带宽信息。
8、 根据权利要求 1-7中任一项所述的以太网环中的链路倒换方法, 其特征 在于, 所述当前节点对应的带宽信息为当前节点上属于所述以太网环的端口中 带宽最低的端口对应的带宽信息。
9、 根据权利要求 1-8中任一项所述的以太网环中的链路倒换方法, 其特征 在于, 还包括:
当所述当前节点接收到所述以太网环中的其他节点发送的节点上线报文 时, 向所述以太网环中的其他节点广播所述当前节点对应的带宽变化报文, 以 使得发送所述节点上线报文的节点根据所述带宽变化报文更新网环带宽数据 库。
10、 一种节点, 该节点是以太网环中的节点之一, 其特征在于, 该节点包 括:
节点确定单元, 用于根据当前节点的带宽信息和接收到的以太网环中的其 他节点对应的带宽信息确定当前节点是否为最低带宽节点;
阻塞单元, 用于在所述节点确定单元确定当前节点为最低带宽节点时, 阻 塞当前节点上属于所述以太网环的端口中带宽最低的端口;
打开单元, 用于在所述节点确定单元确定当前节点不为最低带宽节点时, 打开当前节点上属于所述以太网环的端口。
11、 根据权利要求 10所述的节点, 其特征在于, 所述节点确定单元包括: 接收模块, 用于接收以太网环中的其他节点发送的带宽信息报文, 所述带 宽信息报文中包含发送所述带宽信息报文的发送节点对应的节点信息和带宽信 息;
存储模块, 用于将所述接收模块接收到的所述带宽信息报文中携带的节点 信息和带宽信息对应存储在网环带宽数据库中;
第一判断模块, 用于将当前节点的带宽信息与所述网环带宽数据库中的带 宽信息进行比较, 判断当前节点是否为最低带宽节点。
12、 根据权利要求 1 0或 11所述的节点, 其特征在于, 所述存储模块还用 于: 在所述接收模块接收以太网环中的其他节点发送的带宽信息报文之后, 将 所述以太网环中的其他节点中带宽最低的节点对应的节点信息和带宽信息存储 在网环带宽数据库中; 将当前节点的带宽信息与所述网环带宽数据库中的带宽 信息进行比较, 判断当前节点是否为最低带宽节点。
13、 根据权利要求 10-12 中任一项所述的节点, 其特征在于, 所述节点确 定单元还包括:
第二判断模块, 用于在所述第一判断模块判断当前节点的带宽信息与所述 网环带宽数据库中带宽最低的节点的带宽信息相同时, 将所述当前节点的节点 信息与所述带宽最低的节点对应的节点信息进行比较, 确定优先阻塞的节点并 将其作为最低带宽节点。
14、 根据权利要求 10-13 中任一项所述的节点, 其特征在于, 所述阻塞单 元包括:
第一比较模块, 用于比较所述当前节点上属于所述以太网环的端口的带宽 大小, 确定带宽最低的端口;
第二比较模块, 用于在所述第一比较模块确定当前节点上属于所述以太网 环的端口的带宽相同时, 比较所述当前节点上属于所述以太网环的端口对应的 端口信息, 确定优先阻塞的端口并将其作为带宽最低的端口;
阻塞模块, 用于阻塞所述第一比较模块或第二比较模块确定的所述带宽最 氐的端口。
15、 根据权利要求 10-14 中任一项所述的节点, 其特征在于, 所述打开单 元包括:
端口判断模块, 用于判断所述当前节点上属于所述以太网环的端口中是否 存在已被阻塞的端口;
打开模块, 用于在所述端口判断模块判断当前节点上属于所述以太网环的 端口中存在已被阻塞的端口时, 停止阻塞所述已被阻塞的端口;
所述打开模块, 还用于在所述端口判断模块判断当前节点上属于所述以太 网环的端口中不存在已被阻塞的端口时, 不进行链路倒换的相关操作。
16、 根据权利要求 10-15 中任一项所述的节点, 其特征在于, 所述带宽信 息报文包括: 带宽变化报文和节点上线报文; 该节点还包括:
节点上线单元, 用于在所述当前节点上线时, 向所述以太网环中的其他节 点广播所述当前节点对应的节点上线报文, 其中所述节点上线报文中包含节点 上线标识、 所述当前节点的节点信息和带宽信息;
带宽变化单元, 用于在所述当前节点的带宽发生变化时, 向所述以太网环 中的其他节点广播所述当前节点对应的带宽变化报文, 其中所述带宽变化报文 中包含带宽变化标识、 所述当前节点的节点信息和带宽信息。
17、 根据权利要求 10-16 中任一项所述的节点, 其特征在于, 所述带宽变 化单元还用于: 在所述当前节点接收到所述以太网环中的其他节点发送的节点 上线报文时, 向所述以太网环中的其他节点广播所述当前节点对应的带宽变化 报文, 以使得发送所述节点上线报文的节点根据所述带宽变化报文更新网环带 宽数据库。
18、 一种以太网环中的链路倒换系统, 其特征在于, 包括: 至少三个如权 利要求 10-17中任一项所述的节点;
所述节点通过所述节点上的端口以及与所述端口相连的链路构成以太网环 并在所述以太网环中进行数据传输, 并参与所述以太网环中的链路倒换。
PCT/CN2011/082760 2011-11-23 2011-11-23 以太网环中的链路倒换方法、节点及系统 WO2012167569A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180002585.5A CN102726006B (zh) 2011-11-23 2011-11-23 以太网环中的链路倒换方法、节点及系统
PCT/CN2011/082760 WO2012167569A1 (zh) 2011-11-23 2011-11-23 以太网环中的链路倒换方法、节点及系统
CN201280003266.0A CN103190121B (zh) 2011-11-23 2012-04-01 以太网环保护倒换方法、节点及系统
EP20120792571 EP2775669A4 (en) 2011-11-23 2012-04-01 ETHERNET RING CHANGE PROCEDURES, NODES AND SYSTEM
PCT/CN2012/073491 WO2012163173A1 (zh) 2011-11-23 2012-04-01 以太网环保护倒换方法、节点及系统
US14/286,551 US20140254347A1 (en) 2011-11-23 2014-05-23 Ethernet Ring Protection Switching Method, Node, and System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082760 WO2012167569A1 (zh) 2011-11-23 2011-11-23 以太网环中的链路倒换方法、节点及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073491 Continuation WO2012163173A1 (zh) 2011-11-23 2012-04-01 以太网环保护倒换方法、节点及系统

Publications (1)

Publication Number Publication Date
WO2012167569A1 true WO2012167569A1 (zh) 2012-12-13

Family

ID=46950482

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2011/082760 WO2012167569A1 (zh) 2011-11-23 2011-11-23 以太网环中的链路倒换方法、节点及系统
PCT/CN2012/073491 WO2012163173A1 (zh) 2011-11-23 2012-04-01 以太网环保护倒换方法、节点及系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073491 WO2012163173A1 (zh) 2011-11-23 2012-04-01 以太网环保护倒换方法、节点及系统

Country Status (4)

Country Link
US (1) US20140254347A1 (zh)
EP (1) EP2775669A4 (zh)
CN (1) CN102726006B (zh)
WO (2) WO2012167569A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780964B1 (en) 2012-01-23 2017-10-03 Cisco Technology, Inc. System and method for ring protection switching over adaptive modulation microwave links
WO2012126412A2 (zh) * 2012-04-28 2012-09-27 华为技术有限公司 以太网环保护倒换方法、网络设备及系统
US9161259B2 (en) 2013-03-20 2015-10-13 Cisco Technology, Inc. System and method for layer 3 ring protection with adaptive bandwidth microwave links in a network environment
US9392526B2 (en) * 2013-05-28 2016-07-12 Cisco Technology, Inc. Protection against fading in a network ring
US9319240B2 (en) * 2013-09-24 2016-04-19 Ciena Corporation Ethernet Ring Protection node
US9984028B2 (en) 2014-10-31 2018-05-29 Arris Enterprises Llc Redundancy for port extender chains
CN105591859B (zh) * 2015-09-02 2019-03-01 新华三技术有限公司 为erps环动态调整阻塞端口的方法和装置
JP6554405B2 (ja) * 2015-11-26 2019-07-31 株式会社日立製作所 リングネットワークシステム、及び、ネットワークノード
CN105763483B (zh) * 2016-02-19 2019-01-22 新华三技术有限公司 一种报文发送方法和装置
CN106911585B (zh) * 2017-04-24 2019-08-13 西安电子科技大学 一种环形以太网的负载均衡剪枝方法
US11025537B2 (en) * 2017-12-04 2021-06-01 Is5 Communications, Inc. Multiple RSTP domain separation
CN108322375B (zh) * 2017-12-27 2021-03-12 瑞斯康达科技发展股份有限公司 一种以太网环保护倒换方法、节点及系统
WO2019134750A1 (en) * 2018-01-05 2019-07-11 Huawei Technologies Co., Ltd. Microwave node for an erp network
CN110545198B (zh) * 2018-05-29 2022-11-18 北京华为数字技术有限公司 Erps环路的破环方法及主节点
JP2021097344A (ja) * 2019-12-18 2021-06-24 日本電気株式会社 ネットワーク装置、通知方法及び通知プログラム
CN113055266A (zh) * 2019-12-27 2021-06-29 中兴通讯股份有限公司 一种业务的传输方法及装置、存储介质、电子装置
CN114866394A (zh) * 2022-04-28 2022-08-05 杭州迪普科技股份有限公司 Frrp环自动选举阻塞端口方法和装置
CN115714698B (zh) * 2022-09-26 2024-04-16 重庆长安汽车股份有限公司 车载以太网的环网通信方法、装置、车辆及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232428A (zh) * 2007-01-23 2008-07-30 华为技术有限公司 一种以太网环保护方法及装置
CN101695046A (zh) * 2009-10-16 2010-04-14 杭州华三通信技术有限公司 一种设置rrpp阻塞点的方法及设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2574944A (en) * 1947-12-10 1951-11-13 Automatic Elect Lab All relay automatic telephone system trunk selection
JP3659977B2 (ja) * 1996-12-06 2005-06-15 テルコーディア テクノロジーズ インコーポレイテッド 存続可能な複数波長光通信ネットワーク用のリング間交差接続
US7369504B2 (en) * 2002-12-12 2008-05-06 Alcatel Canada, Inc. Bandwidth management of resilient packet ring network
CN100370780C (zh) * 2004-01-17 2008-02-20 华为技术有限公司 一种在弹性分组环网上自动调整业务路径的方法
CN101232427A (zh) * 2007-01-23 2008-07-30 华为技术有限公司 一种以太网环保护方法及装置
US7876688B2 (en) * 2007-03-30 2011-01-25 Nokia Corporation Traffic protection in a communication network
KR20080089285A (ko) * 2007-03-30 2008-10-06 한국전자통신연구원 이더넷 링 네트워크에서의 보호 절체 방법
JP2009231906A (ja) * 2008-03-19 2009-10-08 Nec Corp データ伝送システム、伝送装置、およびプロテクション制御方法
CN101399737A (zh) * 2008-10-21 2009-04-01 中兴通讯股份有限公司 用于以太环网的链路聚合组的保护方法及装置
US8149692B2 (en) * 2008-12-31 2012-04-03 Ciena Corporation Ring topology discovery mechanism
JP5267160B2 (ja) * 2009-01-28 2013-08-21 富士通株式会社 ノード装置、リングネットワーク及び予備パスの帯域制御方法
KR20100093499A (ko) * 2009-02-16 2010-08-25 한국전자통신연구원 링 네트워크에서의 보호 절체 방법 및 장치
US20100290340A1 (en) * 2009-05-15 2010-11-18 Electronics And Telecommunications Research Institute Method for protection switching
CN101583057B (zh) * 2009-06-11 2013-08-07 中兴通讯股份有限公司 网络选路方法及装置
JP5434318B2 (ja) * 2009-07-09 2014-03-05 富士通株式会社 通信装置および通信パス提供方法
CN101605102B (zh) * 2009-07-16 2012-03-14 杭州华三通信技术有限公司 一种irf堆叠中的负载分担方法及装置
KR101252828B1 (ko) * 2009-07-24 2013-04-11 한국전자통신연구원 Vlan기반 브리지의 이더넷 링 네트워크 관리 방법
US20110044166A1 (en) * 2009-08-18 2011-02-24 Electronics And Telecommunications Research Institute Method for operating node in ethernet ring network
CN101640646B (zh) * 2009-09-01 2012-05-23 中兴通讯股份有限公司 以太环网保护倒换方法及装置
JP5471240B2 (ja) * 2009-09-28 2014-04-16 日本電気株式会社 スイッチ装置、リングネットワークシステム、通信制御方法、および装置のプログラム
EP2553881B1 (en) * 2010-03-30 2015-01-21 Telefonaktiebolaget LM Ericsson (publ) Method for protection against superloops in an ethernet ring
US8509061B2 (en) * 2011-03-23 2013-08-13 Ciena Corporation Systems and methods for scaling performance of Ethernet ring protection protocol
US8427976B1 (en) * 2011-12-04 2013-04-23 Ofinno Technology, LLC Carrier information exchange between base stations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232428A (zh) * 2007-01-23 2008-07-30 华为技术有限公司 一种以太网环保护方法及装置
CN101695046A (zh) * 2009-10-16 2010-04-14 杭州华三通信技术有限公司 一种设置rrpp阻塞点的方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITU-T: "Ethernet ring protection switching", RECOMMENDATION ITU-T G.8032/Y.1344, March 2010 (2010-03-01) *

Also Published As

Publication number Publication date
CN102726006A (zh) 2012-10-10
EP2775669A1 (en) 2014-09-10
CN102726006B (zh) 2015-03-18
US20140254347A1 (en) 2014-09-11
WO2012163173A1 (zh) 2012-12-06
EP2775669A4 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2012167569A1 (zh) 以太网环中的链路倒换方法、节点及系统
CN102148677B (zh) 一种更新地址解析协议表项的方法及核心交换机
US9385944B2 (en) Communication system, path switching method and communication device
US20080205302A1 (en) Preventing data traffic connectivity between endpoints of a network segment
CN100512128C (zh) 保护组播转发路径的方法和系统和业务路由器
WO2007115493A1 (fr) Procédé, dispositif et système pour réaliser la commutation dans le réseau à double anneau de réseau vpls
WO2008089701A1 (fr) Procédé, dispositif et système de protection d'anneau
WO2009111969A1 (zh) 以太环网中边缘端口阻塞的方法、以太环网系统和设备
WO2008089633A1 (fr) Procédé et appareil pour protéger un anneau éthernet
WO2014079088A1 (zh) 基于链状网络的冗余实现方法及节点
WO2012149862A1 (zh) 环网故障切换方法和装置
US20140050092A1 (en) Load sharing method and apparatus
EP2533470B1 (en) Method and equipment for preventing repeated refreshing of ethernet ring node address table
WO2011095101A1 (zh) 一种分组传送网络的线性1:n保护方法、装置和系统
CN102088400A (zh) 虚拟专用网络中运营商边界设备及切换方法
US8681604B2 (en) Address refresh method and system
WO2010102490A1 (zh) 以太环网中交换节点端口的地址刷新方法及交换节点
CN102238069B (zh) 一种链路切换过程中的数据处理方法和装置
WO2012126412A2 (zh) 以太网环保护倒换方法、网络设备及系统
CN101022391A (zh) Rpr桥冗余保护方法及rpr桥环设备
CN102957588A (zh) 防止广播风暴的环网保护实现方法及系统
CN101340377B (zh) 一种用于二层网络数据传输的方法、装置及其系统
WO2008095360A1 (fr) Méthode et système de commutation rapide en cas de défaillance d'une liaison d'un réseau privé virtuel
CN103190121A (zh) 以太网环保护倒换方法、节点及系统
US10489236B2 (en) Method and system for managing a communication network

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002585.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867324

Country of ref document: EP

Kind code of ref document: A1