WO2012167428A1 - 水冷散热次高频变压器及其散热装置 - Google Patents

水冷散热次高频变压器及其散热装置 Download PDF

Info

Publication number
WO2012167428A1
WO2012167428A1 PCT/CN2011/075454 CN2011075454W WO2012167428A1 WO 2012167428 A1 WO2012167428 A1 WO 2012167428A1 CN 2011075454 W CN2011075454 W CN 2011075454W WO 2012167428 A1 WO2012167428 A1 WO 2012167428A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectifier
plate
water
diode
positive
Prior art date
Application number
PCT/CN2011/075454
Other languages
English (en)
French (fr)
Inventor
韩玉琦
陈志伟
熊平
韩沛文
陈景瑜
Original Assignee
深圳市鸿栢科技实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市鸿栢科技实业有限公司 filed Critical 深圳市鸿栢科技实业有限公司
Priority to CN2011800412928A priority Critical patent/CN103299377A/zh
Priority to EP11867431.6A priority patent/EP2706542B1/en
Priority to US14/119,923 priority patent/US20140104912A1/en
Priority to PCT/CN2011/075454 priority patent/WO2012167428A1/zh
Priority to CN201120571830.1U priority patent/CN202632963U/zh
Publication of WO2012167428A1 publication Critical patent/WO2012167428A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/16Water cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances
    • H01F38/085Welding transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F2027/408Association with diode or rectifier

Definitions

  • This invention relates to a transformer, and more particularly to a high frequency transformer for use in a spot welding machine.
  • the traditional resistance welding power source is mainly AC and DC power frequency spot welding machine. It is to control the welding current by adjusting the conduction angle of the thyristor. It is technically mature, but bulky. Because it is a single-phase input, it has high energy consumption, low efficiency and poor dynamic performance, and the control accuracy is not high.
  • the IF inverter resistance welding appeared.
  • the power supply was upgraded from the original single phase to three phases.
  • the operating frequency of the transformer was raised from 50HZ to about 1000HZ.
  • the medium frequency resistance welder is greatly reduced in size and efficiency is also improved.
  • the splicing efficiency of DC medium frequency resistance welding is significantly higher than that of the AC spot welding machine, and the energy saving is 60%-70%. However, its volume and weight are still significantly larger.
  • the sub-high frequency inverter spot welder improves the operating frequency of the inverter (5-20KHZ) based on the intermediate frequency spot welder, reduces the volume and weight of the transformer, and has better performance than the intermediate frequency spot welder. Dynamic response, higher control accuracy and smaller size.
  • the inventors have found that the above conventional high-frequency transformer has the following disadvantages: heat dissipation is difficult, and as the output power increases, the temperature rise of the transformer is high, the rectifier diode is easily damaged, and it is difficult to increase the output power.
  • the spot welding machine is reverse transformer, which is bulky and low in power, and can not meet the requirements of high current and high power of the spot welding machine of the hanging spot welding machine.
  • One of the objects of the present invention is to reduce the temperature rise of the transformer while increasing the output power of the transformer;
  • the second object of the present invention is to reduce the transformer volume while increasing the output power of the transformer.
  • a water-cooled heat-dissipating sub-high frequency transformer comprising a magnetic core, a primary wire package, a secondary wire package, a secondary terminal of the transformer, and a rectifier circuit connected to the secondary terminal of the transformer, wherein
  • the rectifier circuit includes a planar rectifying rectifier diode, a diode positive terminal lead plate, a rectifier negative output plate, and a rectifier positive output plate, wherein the rectifier negative output plate is also a center tap of the transformer, and the transformer is The current is rectified by the planar rectifying rectifier, connected to the positive output plate of the rectifier, and the current is output by the positive output plate of the rectifier, and the positive rectifier plate of the planar rectifier diode, the positive output plate of the rectifier, and
  • the rectifier negative output board is a copper plate structure with a certain thickness inside which is provided with a heat dissipating water channel.
  • the water-cooled heat-dissipating sub-high frequency transformer comprises two parallel sub-transformers, each sub-transformer comprising one to three sets of primary line packages and one to three sets of secondary line packages; each set of primary lines comprises three sub-line packages, each set of secondary lines It contains two secondary wire packages, and the two secondary wire packages are connected end to end; each secondary wire package first and last lead wires are respectively connected with two diode positive terminal lead plates placed in parallel above and below; The end of the package connects the center tap terminal of the secondary package to the negative output board of the rectifier; the two diode positive terminal plates are connected to the positive terminal of the planar rectifier diode, and the negative terminal is connected to the rectifier positive output plate.
  • the rectifier positive output plate is located between the two diode positive terminal lead plates, one planar rectifier diode is located between the upper diode positive terminal lead plate and the rectifier positive output plate, and the other planar rectifier diode is located at the lower diode positive terminal lead Between the board and the rectifier positive output board, such that the two diode positive terminal lead plates and the A positive output current three copper plates were tightly the two planar rectifier diode rectifying the intermediate pressure.
  • the secondary wire package is wound with a copper tube having a diameter of 4 to 10 mm, and the copper tube and the copper tube are The rectifying diode positive electrode lead-out plate, the rectifier positive output plate and the heat-dissipating water channel of the rectifier negative output plate are connected.
  • the center tap terminal of the secondary wire package of the sub-transformer is soldered to the rectifier negative output plate, wherein two output terminals are soldered together with the upper diode positive terminal lead plate, and the remaining two output terminals and the lower diode are positive Extreme lead plates are soldered together.
  • the diode positive terminal lead plate, the rectifier negative output plate and the rectifier positive plate are plate-like structures, and are made of 10-15 mm thick copper plates, wherein the plate-like structures are internally provided with through holes, and the composition is used as a heat dissipation water circulation.
  • the flowing cooling water channels are connected to the copper tubes constituting the secondary wire package.
  • a heat dissipating device includes a connected water outlet, a water inlet and a heat dissipating water channel, wherein: the water inlet is disposed on the negative output plate of the rectifier, and the water outlet is disposed on the positive output plate of the rectifier.
  • the heat dissipating water channel is disposed inside the rectifier negative output plate, the rectifier positive output plate and the diode positive terminal lead plate, wherein the rectifier negative output plate, the rectifier positive output plate and the diode positive terminal lead plate are all plates having a certain thickness.
  • a plurality of through holes are formed to constitute a heat dissipating water channel which circulates as the heat dissipating water, and the heat dissipating water passage communicates with the copper tube which constitutes the secondary line package of the transformer.
  • the working process of the cooling water in the heat dissipating device is as follows:
  • the cooling water in the heat dissipating device has a working flow: the cooling water flows from the water inlet of the negative electrode output plate of the rectifier into the heat dissipating water channel on the negative plate of the rectifier, and then is divided into three to six paths: Two of the way from the heat dissipation channel on the negative plate of the rectifier enter the heat dissipation channel on the positive output plate of the rectifier, and then are integrated into the water outlet of the plate, and the remaining paths are from the heat dissipation channel on the negative plate of the rectifier.
  • the working process of the cooling water in the heat dissipating device is: entering the heat dissipating water channel from the water inlet of the negative electrode output plate of the rectifier into the negative electrode output plate of the rectifier, passing through the negative electrode output plate of the rectifier
  • the cooling water channel is divided into A, B, C., 1)
  • the four water channels are connected in parallel, and then flow into the heat dissipation water channel on the positive output plate of the rectifier, and finally flow to the water outlet of the positive output plate of the rectifier and then flow out.
  • the water channel and the pipeline of the water-cooling heat dissipating device are connected by an insulating rubber tube with a self-locking joint
  • the self-locking joint includes a self-locking head and a self-locking sleeve
  • the self-locking head and the rubber tube are matched with the rubber tube.
  • the cylindrical surface is larger than the inner diameter of the rubber tube, and the inner diameter of the self-locking sleeve is smaller than the outer diameter of the rubber tube after being inserted into the self-locking head.
  • the rectifier diode uses a planar rectifier diode to reduce the number of rectifier diodes and greatly reduce the size of the transformer. Only four planar rectifier diodes are required to meet the current output of 12000A.
  • the diode positive terminal lead terminal and the rectifier positive output terminal and the rectifier negative terminal are both designed as a copper plate structure having a certain thickness and provided with a heat dissipating water channel, and the two planar rectifying diodes are tightly pressed by the above three copper plates. In the middle, it can ensure good contact between the copper plate and the diode, and can ensure the good transfer of current and heat.
  • the new water-cooling heat dissipating device enables the heat inside the transformer to dissipate heat in time, reduces the temperature rise of the radiator, and prolongs the service life of components such as rectifier diodes and magnetic cores inside the transformer.
  • the core temperature can be controlled within 60
  • the temperature of the rectifier diode is controlled within 80 C.
  • the system has temperature sensor monitoring, so that the overall temperature of the transformer is greatly reduced, and the output current fluctuation range is small. The effect of temperature rise on the transformer is reduced.
  • the inventive invention uses a rubber tube and a self-locking joint to connect the pipe and water of the heat sink
  • the channel reduces the connection space when the water connection inside the transformer is connected.
  • the transformer volume is reduced to a certain extent.
  • the sealing of the water connection is ensured.
  • the invention creatively uses the copper tube to wind the secondary wire package of the transformer, and connects the cooling water in the pipe with the heat dissipation water channel of other parts of the transformer, thereby saving the installation of the heat pipe on the secondary wire package. Space, heat dissipation is also very good.
  • FIG. 1 is a schematic view showing the overall structure of a water-cooling heat-dissipating transformer and a heat sink according to the present invention
  • FIG. 2 is a schematic view showing the position of a water passage interface of the heat dissipation device of the present invention
  • FIG. 3 is a schematic flow chart of water flow of a water-cooling heat sink according to the present invention.
  • FIG. 4 is a schematic structural view of a secondary sub-transformer and a lead plate of the present invention.
  • FIG. 5 is a schematic structural view of a secondary sub-transformer and a lead plate of the present invention.
  • FIG. 6 is a schematic structural view of a planar rectifier diode of the present invention.
  • Figure 7 is a schematic view showing the structure of the self-locking joint of the present invention.
  • a water-cooling heat-dissipating sub-high frequency transformer and a heat dissipating device thereof comprising: a rectifier negative output board; 2. a rectifier positive output board; 3. a diode The lead plate on the positive electrode; 5, the lead plate on the positive pole of the diode; 4. The lower lead plate of the diode positive electrode; 6. The lower lead plate of the diode positive electrode; 7 the center tap of the transformer; 8. The magnetic core of the transformer; 9. The positive terminal of the transformer diode; Transformer primary line package; 11, planar rectifier diode; 12, planar rectifier diode; 13, self-locking joint; 14, self-locking sleeve; 15, insulating rubber tube.
  • a water-cooled heat-dissipating sub-high frequency transformer includes a primary wire package (10), a secondary wire package (9al, 9a2, 9b1, 9b2, 9c K 9c2, 9dl, 9d2), and a rectifier circuit connected to the secondary wire package,
  • the rectifier circuit includes a planar rectifier diode (11, 22), and a diode positive terminal lead plate (3, 4, 5, 6), a rectifier negative output plate (1) and a rectifier positive output plate (2), wherein the rectifier negative output plate is also a center tap of the transformer, and the transformer secondary current passes through the planar rectification After the diode is rectified, it is connected to the positive output plate of the rectifier, and the current is outputted by the positive output plate of the rectifier, and the positive electrode lead plate of the diode, the positive output plate of the rectifier and the negative output plate of the rectifier are internally provided with heat dissipation.
  • a copper plate structure having a certain thickness of a water channel comprising two parallel sub-transformers, each sub-transformer covered wire comprises two secondary line packages (9al and 9a2), and two secondary line packages are connected end to end; each secondary The first and last leads of the wire package are respectively connected with two diode positive terminal plates (3, 4) placed in parallel above and below; the center tap terminal (7a) of the secondary wire package and the rectifier are connected at the end connection of the two secondary wire packages.
  • the negative output plate (1) is connected; the two diode positive terminal plates are connected to the positive rectifier diode terminals (3, 4), and the negative terminal is connected to the rectifier positive output plate (2), as shown in Figs.
  • the rectifier positive output plate (2) is located between the upper and lower diode positive terminal lead plates
  • the upper planar rectifier diode (11) is located between the upper diode positive terminal lead plate and the rectifier positive output plate
  • the planar rectifier diode (12) is located between the lower diode positive terminal lead plate and the rectifier positive output plate.
  • the three copper plates tightly press the two rectifier diodes (pressure is 20000N/C itf) to ensure the copper plate. Good contact between the two tubes, ensures good heat transfer effect and current).
  • the secondary line package (9a.l, 9a.2, 9b1, 9b2, 9cl, 9c2, 9dl,
  • a copper tube having a diameter of 4 to 10 mm is wound, and the copper tube is in communication with the heat-dissipating water channel of the rectifier secondary anode lead plate, the rectifier positive output plate, and the rectifier negative output plate.
  • the two sub-transformer secondary are the left sub-transformer secondary and the right sub-transformer secondary, respectively, wherein the centers of the two sub-line packages (9al, 9a2, 9b1, 9b2) of the left sub-transformer
  • the tap terminal (7a) is soldered to the rectifier negative output plate (1), and the other four lead terminals are connected to the diode positive terminal lead plates (3, 4); and, the two diode positive terminals
  • the heat dissipating water channel in the lead plate is in communication with the copper tube constituting the secondary wire package and the heat dissipating tube in the negative electrode output plate of the rectifier.
  • the center tap terminals (7b) of the two sets of secondary line packages (9a3, 9a4, 9b3, 9b4) of the right sub-transformer are soldered together with the rectifier negative output board (1), and the other four are taken out.
  • the terminals are soldered together with the diode positive terminal strips (5) and (6); and, the heat dissipating water channels in the two diode positive terminal lead plates, and the copper tubes constituting the secondary wire package, and the rectifier negative electrode
  • the heat pipes in the output board are connected to each other.
  • the diode positive terminal lead plates (3, 4, 5, 6), the rectifier negative output plate (1) and the rectifier positive output plate (2) are all plate-like structures, and are 10-15 mm thick.
  • the copper plate is made of a copper plate, and the inside of the plate-like structure is provided with a through hole, which is formed as a heat dissipation channel through which the heat-dissipating water circulates, and the heat-dissipating water channels and the copper tube constituting the secondary wire package are in communication with each other.
  • a heat dissipating device includes a connected water outlet, a water inlet and a heat dissipating water channel, wherein the water inlet is disposed on the rectifier negative output plate (Z1), and the water outlet is disposed on the rectifier positive electrode.
  • the heat dissipating water channel is disposed inside the rectifier negative output board, the rectifier positive output board and the diode positive end lead plate, wherein the rectifier negative output board, the rectifier positive output board and the diode positive end lead
  • the plates are all plate-shaped structures having a certain thickness, and a plurality of through holes are formed in the inside of the plate-like structure to form a heat-dissipating water channel circulating as heat-dissipating water, and the heat-dissipating water channel and the copper tube constituting the transformer secondary line package are formed. Connected.
  • the working flow of the cooling water in the heat dissipating device is: pressure is 0, 3Mpa cooling water enters the rectifier negative output plate from the rectifier negative output plate inlet port (Z1), and passes through the rectifier negative output plate to divide the water channel. It is divided into four water channels of A, B, C, and D, which are connected in parallel, and then flow into the rectifier output plate of the rectifier and flow out.
  • the specific flow direction of the four-way parallel branch is as follows:
  • the diode 4 flows into the diode positive terminal lead plate 4 until the water outlet of the rectifier positive plate (A3), and then flows into the water inlet (A4) of the rectifier positive output plate 2. Then, the outlet of the rectifier positive output plate (Z2) flows out.
  • the B channel from the water inlet (Z1) of the rectifier negative output plate 1 into the water inlet (B2) flowing into the water outlet (B1) through the right channel of the plate into the diode positive terminal lead plate 5,
  • the diode positive terminal lead plate 5 two water channels are divided into one, and the other directly flows into the secondary wire package unit 9cl, 9c2 (taking away the heat of the secondary wire package and the primary wire package), and then flows into the diode positive terminal lead plate 6, through the diode.
  • the water path in the positive pole lead plate 6 (taking part of the heat of the diode positive terminal lead plate 6) flows into the water inlet (A4) of the rectifier positive output plate 2 to the water outlet (B3) of the plate.
  • the C path from the water inlet (Z1) of the rectifier negative output plate 1 into the water channel through the left channel of the plate into its water outlet (A3) into the inlet of the rectifier positive output plate 2 (A4), through the rectifier
  • the water path on the left side of the positive output board takes away the heat of the negative side of the rectifier diode on the left side, and flows out from the water outlet (Z2) of the positive output board of the rectifier;
  • the rectifier positive plate and the rectifier negative plate and the diode positive lead between the rectifier, and their water connection with the secondary copper-clad tube are made of insulating rubber tube (outer diameter 13mm) , the inner diameter of 6. 5 ⁇ ) is connected, the rubber tube is connected by a self-locking joint, and the self-locking joint comprises a self-locking head (13) and a self-locking sleeve (14).
  • the self-locking head and the rubber tube (15) have two inverted cone grooves in the matching part, the notch is an acute angle, and the groove and the groove have a partial matching cylindrical surface, and the cylindrical surface is larger than the inner diameter of the rubber tube by 1, 8 with ⁇ , self-locking sleeve The inner diameter is smaller than the outer diameter of the rubber tube by 0, 2 mm after being inserted into the self-locking head.
  • the rubber tube when assembling, the rubber tube is sleeved into the self-locking head, so that the rubber tube is tightly wrapped with the self-locking head, and the cylindrical surface and the rubber tube have no clearance fit, thereby ensuring the sealing of the connection.
  • the self-locking sleeve is smaller than the rubber tube after the opening is 0 2mm.
  • the core temperature can be controlled within 60 , and the temperature of the rectifier diode is controlled within 80 ⁇ .
  • the system is monitored by a temperature sensor, so that the overall temperature of the transformer is greatly reduced and the output current fluctuation range is small. The effect of temperature rise on the transformer is reduced.
  • the invention reduces the connection space when the water connection inside the transformer is connected.
  • the transformer volume is reduced to a certain extent.
  • the sealing of the water connection is ensured.

Abstract

一种水冷散热次高频变压器,包括磁芯(8)、初级线包(10)、次级线包(9a1、9a2、9b1、9b2、9c1、9c2、9d1、9d2)、变压器次级引出端子以及与变压器次级引出端子相连的整流管电路。该整流管电路包括平面型整流二极管(11、12)、二极管正极引出板(3、4、5、6)、整流器正极输出板(2)和整流器负极输出板(1)。该整流器负极输出板也即变压器的中心抽头。变压器次级电流经该平面型整流二极管整流后,连接到整流器正极输出板,电流由该整流器正极输出板输出。该平面型整流二极管正极引出板、整流器正极输出板和整流器负极输出板均为内部设有散热水道的具有一定厚度的铜板结构。

Description

说 明 书 水冷散热次高频变压器及其散热装置 本发明涉及一种变压器, 尤其是一种点焊机使用的高频变压器。
背景技术
传统的电阻焊电源主要是交流、 直流工频点焊机, 是通过调整可控硅 导通角的大小来完成焊接电流的控制, 技术上比较成熟, 但体积庞大。 因为 是单相输入, 能耗高、 效率低且动态性能差, 控制精度不高。
到了八九年代出现了中频逆变电阻焊, 供电由原来的单相提升为三相, 变压器的工作频率由 50HZ提升到 1000HZ左右。 中频电阻焊机的体积大为减 少, 效率也有所提升。 直流中频电阻焊的悍接效率比交流点焊机有明显的提 高, 节能在 60%— 70%以上。但其体积和重量仍然明显偏大。 次高频逆变点焊 机是在中频点焊机的基础上提高了逆变器的工作频率 (5— 20KHZ) , 降低了 变压器的体积和重量, 与中频点焊机相比具有更好的动态响应、 更高控制精 度和更小的体积。
发明人发现, 上述传统高频变压器存在如下缺点: 散热困难, 随着输出 功率的增加,变压器的温升很高,整流二极管极易损坏,很难提高输出功率。 目前悬挂点焊机逆变压器, 体积大, 功率低, 不能很好的满足悬挂点焊机的 点焊机大电流、 高功率的要求。
发明内容
本发明的发明目的之一是在提高变压器输出功率的同时, 减少变压器的 温升; 本发明的发明目的之二是在提高变压器输出功率的同时, 减小变压器体 积。
本发明提供如下技术方案: 一种水冷散热次高频变压器, 包括磁芯、 初 级线包、 次级线包、 变压器次级引出端子以及与变压器次级引出端子相连的 整流管电路, 其特征在于: 所述整流管电路包括平面型整流整流二级管、 二 极管正极端引线板、 整流器负极输出板和整流器正极输出板, 其中, 所述整 流器负极输出板也即变压器的中心抽头, 所述变压器次级电流经所述平面型 整流整流二级管整流后, 连接到所述整流器正极输出板, 电流由该整流器正 极输出板输出, 且, 所述平面型整流二极管正极引出板、 整流器正极输出板 和整流器负极输出板均为内部设有散热水道的具有一定厚度的铜板结构。
所述水冷散热次高频变压器包括两个并联的子变压器, 每个子变压器包 含一至三组初级线包和一至三组次级线包; 每组初级线包含有三个子线包, 每组次级线包含有两个次级线包, 且两个次级线包是首尾相连; 每个次级线 包首、 尾引线分别接两个上下平行放置的二极管正极端引线板; 在两个次级 线包的首尾连接处将次级线包的中心抽头端子与整流器的负极输出板连接; 两个二极管正极端引线板与平面型整流整流二极管正极端相连接, 负极端与 整流器正极输出板相连接, 所述整流器正极输出板位于两个二极管正极端引 线板中间, 一个平面型整流二极管位于所述上层二极管正极端引线板和整流 器正极输出板之间, 另一个平面型整流二极管位于下层二极管正极端引线板 和整流器正极输出板之间, 这样, 所述两块二极管正极端引线板和所述整流 器正极输出板共三块铜板紧紧的将两个整流平面型整流二极管压在中间。
所述次级线包采用直径为 4一 10毫米的紫铜管绕制, 且, 该紫铜管与所 述整流二级管正极引出板、整流器正极输出板和整流器负极输出板中的散热 水道相通。
所述子变压器的次级线包的中心抽头端子与所述整流器负极输出板焊 接在一起, 其中两个输出端子与上层二极管正极端引线板焊接在一起, 其余 的两个输出端子与下层二极管正极端引线板焊接在一起。
所述二极管正极端引线板、整流器负极输出板和整流器正极板为板状结 构,采用 10-15毫米厚的紫铜板制成,其中,这些板状结构的内部设有通孔, 组成作为散热水循环流动的散热水道, 且, 这些散热水道与组成次级线包的 紫铜管是相互连通的。
一种散热装置, 包括连通的出水口、 入水口和散热水道, 其特征在于: 所述入水口设于所述整流器负极输出板上, 所述出水口设于所述整流器正极 输出板上, 所述散热水道设于所述整流器负极输出板、 整流器正极输出板和 二极管正极端引线板内部, 其中, 所述整流器负极输出板、 整流器正极输出 板和二极管正极端引线板均为具有一定厚度的板状结构, 在上述板状结构的 内部设有若干通孔, 组成作为散热水循环流动的散热水道, 且, 所述散热水 道与组成变压器次级线包的紫铜管相连通。
所述散热装置中冷却水的工作流程为: 所述散热装置中冷却水的工作流 程为: 冷却水从整流器负极输出板上的入水口流入整流器负极板上的散热水 道, 然后分成三至六路: 其中两路从所述整流器负极板上的散热水道出来进 入所述整流器正极输出板上的散热水道, 然后汇总到该板的出水口, 余下的 几路是从所述整流器负极板上的散热水道出来到一组平面型整流二极管正 极板上的散热水道后, 再分两路到两至三个次级线包, 然后到另一组平面型 整流二极管正极板上的散热水道, 再流到所述整流器正极输出板上的散热水 道, 再汇集到所述整流器正极输出板上的出水口。 所述散热装置中冷却水的工作流程为: 所述散热装置中冷却水的工作流 程为: 从整流器负极输出板上的入水口进入整流器负极输出板上的散热水 道, 通过整流器负极输出板上的散热水道, 分为 A、 B、 C.、 1) 四路水路分支 并连, 后流入整流器正极输出板上的散热水道内, 最后汇集到所述整流器正 极输出板上的出水口后流出。
所述水冷散热装置的各个水道和管道之间用带自锁接头的绝缘橡胶管 连接, 所述自锁接头包括自锁头和自锁套, 且, 所述自锁头与橡胶管配合部 分设有两道倒锥槽, 槽口为锐角, 槽与槽之间有部分配合圆柱面, 圆柱面比 橡胶管内径大, 自锁套内径比插入自锁头后涨开橡胶管的外径小。
本发明的有益效果在于:
第一、 整流二极管采用平面型整流二极管, 减少整流二极管数量, 大幅 度减小变压器体积。 只需要用四只平面型整流二极管即可满足输出 12000A 的电流。
第二, 将二极管正极端引线端子和整流器正极输出端子以及整流器负极 端子都设计成具有一定厚度的且设有散热水道的铜板结构, 通过上述三块铜 板紧紧的将两个平面型整流二极管压在中间, 既能保证铜板与二级管之间良 好接触, 又能保证电流及热量的良好传递效果。
第三, 新型的水冷散热装置使变压器内部热量得以及时散热, 降低散热 器温升, 延长变压器内部整流二极管及磁芯等元件的使用寿命。 磁芯温度可 控制在 60Γ以内, 整流二极管的温度控制在 80 C以内。 系统有温度传感器 监控, 这样变压器整体温度大幅度下降, 输出电流波动范围小。 减小了温升 对变压器的影响。
第四, 本发明创造性采用橡胶管和自锁接头来连接散热装置的管道和水 道, 缩小了变压器内部水路连接时的连接空间。 使变压器体积得到一定的縮 小。 同时保证了水路连接的密封性。
第五, 本发明创造性的将变压器的次级线包采用紫铜管绕制, 且将管内 的冷却水与变压器其他部位的散热水道相连通, 既节省了在次级线包上安装 散热管的空间, 散热效果也非常好。
附图说明
图 1为本发明水冷散热变压器及散热装置总体结构示意图。
图 2为本发明的散热装置水路接口位置示意图;
图 3为本发明的水冷散热装置水流流程示意图;
图 4为本发明的左子变压器次级及引线板的结构示意图;
图 5为本发明的右子变压器次级及引线板的结构示意图;
图 6为本发明的平面型整流二级管结构示意图;
图 7为本发明的自锁接头结构示意图
具体实施方式
下面结合附图和实施例进一步说明本发明; 如图 1所示, 一种水冷散 热次高频变压器及其散热装置, 它包括 1、整流器负极输出板; 2、 整流器正 极输出板; 3、 二极管正极上引线板; 5、 二极管正极上引线板; 4、 二极管 正极下引线板; 6、 二极管正极下引线板; 7变压器中心抽头; 8、 变压器磁 芯; 9、 变压器二极管正极引出端子; 10、 变压器初级线包; 11、 平面型整 流二级管; 12、 平面型整流二级管; 13、 自锁接头; 14、 自锁套; 15、 绝缘 橡胶管。
一种水冷散热次高频变压器包括初级线包(10)、 次级线包 (9al、 9a2、 9bl、 9b2、 9c K 9c2、 9dl、 9d2)、 以及与次级线包相连的整流管电路, 所 述整流管电路包括平面型整流二级管 (11、 22), 二极管正极端引线板 (3、 4、 5、 6)、 整流器负极输出板 (1 ) 和整流器正极输出板 (2), 其中, 所述 整流器负极输出板也即变压器的中心抽头, 所述变压器次级电流经所述平面 型整流二级管整流后, 连接到所述整流器正极输出板, 电流由该整流器正极 输出板输出, 且, 所述二级管正极引出板、 整流器正极输出板和整流器负极 输出板均为内部设有散热水道的具有一定厚度的紫铜板结构。 所述水冷散热次高频变压器包括两个并联的子变压器, 每个子变压器包 线包含有两个次级线包(9al和 9a2), 且两个次级线包是首尾相连; 每个次 级线包首、 尾引线分别接两个上下平行放置的二极管正极端引线板(3、 4); 在两个次级线包的首尾连接处将次级线包的中心抽头端子 (7a)与整流器的 负极输出板(1)连接; 两个二极管正极端引线板与平面型整流二极管正极端 (3、 4)相连接, 负极端与整流器正极输出板 (2 ) 相连接, 如图 1、 4、 5所 示, 所述整流器正极输出板 (2 ) 位于上下两个二极管正极端引线板中间, 上平面型整流二极管(11 )位于所述上层二极管正极端引线板和整流器正极 输出板之间, 下平面型整流二极管(12)位于下层二极管正极端引线板和整 流器正极输出板之间, 三块铜板紧紧的将两个整流二极管压紧 (压力为 20000N/ C itf ), 保证紫铜板与二级管之间良好接触, 也就保证了电流及热量 的良好传递效果)。
如图 4和图 5所示, 次级线包 (9a.l、 9a.2、 9bl、 9b2、 9cl、 9c2、 9dl、
9d2) 采用直径为 4一 10毫米的紫铜管绕制, 且, 该紫铜管与所述整流二级 管正极引出板、 整流器正极输出板和整流器负极输出板中的散热水道相通。
如图 4、 5所示, 两个子变压器次级分别为左子变压器次级和右子变压 器次级, 其中, 左子变压器的两组次级线包 (9al、 9a2、 9bl、 9b2) 的中心 抽头端子 (7a) 与所述整流器负极输出板 (1 ) 焊接在一起, 另四个引出端 子与二极管正极端引线板 (3、 4) 悍接在一起; 且, 所述两个二极管正极端 引线板内的散热水道, 与组成次级线包的紫铜管, 以及所述整流器负极输出 板内的散热管是相互连通的。
如图 5所示, 右子变压器的两组次级线包 (9a3、 9a4、 9b3、 9b4) 的 中心抽头端子 (7b) 与所述整流器负极输出板 (1 ) 焊接在一起, 另四个引 出端子与二极管正极端引线板 (5)和 (6 ) 焊接在一起; 且, 所述两个二极 管正极端引线板内的散热水道, 与组成次级线包的紫铜管, 以及所述整流器 负极输出板内的散热管是相互连通的。
如图 1 所示, 所述二极管正极端引线板 (3、 4、 5、 6)、 整流器负极输 出板 (1 ) 和整流器正极输出板 (2 )均为板状结构, 采用 10-15毫米厚的紫 铜板制成, 其中, 这些板状结构的内部设有通孔, 组成作为散热水循环流动 的散热水道, 且, 这些散热水道与组成次级线包的紫铜管是相互连通的。
如图 2所示, 一种散热装置, 包括连通的出水口、 入水口和散热水道, 所述入水口设于所述整流器负极输出板(Z1 )上, 所述出水口设于所述整流 器正极输出板 (Z2)上, 所述散热水道设于所述整流器负极输出板、 整流器 正极输出板和二极管正极端引线板内部, 其中, 所述整流器负极输出板、 整 流器正极输出板和二极管正极端引线板均为具有一定厚度的板状结构, 在上 述板状结构的内部设有若干通孔,组成作为散热水循环流动的散热水道,且, 所述散热水道与组成变压器次级线包的紫铜管相连通。
如图 2所示, 所述散热装置中冷却水的工作流程为: 压力为 0, 3Mpa冷 却水从整流器负极输出板入水口 (Z1 )进入整流器负极输出板, 通过整流器 负极输出板中分水路, 分为 A、 B、 C、 D 四路水路分支并连, 后流入整流器 正极输出板汇流后流出。 四路并联支路具体流向如下:
如图 2和图 3所示 路: 从整流器负极输出板 1的入水口 (Z1 )进入经 该板左边水道流入其出水口( A1 ),流入二极管正极端引线板 3的入水口 ( A2 ), 在二极管正极端引线板 3中分两路水路,一路直接流入次级线包(9bl、 9b2) (带走次级线包及初级线包的热量),再流入二极管正极端引线板 4,经二极 管正极端引线板 4中的水路 (带走二极管正极端引线板 4的热量), 流入整 流器正极输出板的出水口 (A3 ), 另一路经二极管正极端引线板 3水路 (带 走引线板 3的部分热量), 进入次级线包 (9al、 9a2)? 经次级线包 (带走次 级线包 9al、 9a2及初级线包的热量)后, 流入二极管正极端引线板 4, 直到 整流器正极板的出水口(A3),然后,流入整流器正极输出板 2的入水口(A4)。 再由整流器正极输出板出水口 (Z2 ) 流出。
如图 2和图 3所示 B路: 从整流器负极输出板 1的入水口 (Z1 )进入经 该板右边水道流入其出水口(B1 )流入二极管正极端引线板 5的入水口(B2 ), 在二极管正极端引线板 5中分两路水路, 一路直接流入次级线包单元 9cl、 9c2 (带走次级线包及初级线包的热量), 再流入二极管正极端引线板 6, 经 二极管正极端引线板 6中的水路 (带走二极管正极端引线板 6的部分热量) 到该板的出水口 (B3 ) 流入整流器正极输出板 2 的入水口 (A4)。 另一路经 二极管正极端引线板 5水路(带走引线板 5的热量),进入次级线包 9dl、9d2, 经次级线包(带走次级线包及初级线包的热量) 后, 流入二极管正极端引线 板 6, 直到该板的出水口 (B3)流入整流器正极输出板 2的入水口 (B4)。 再 由整流器正极输出板出水口 (Z2) 流出。
如图 2和图 3所示 C路: 从整流器负极输出板 1的入水口 (Z1 )进入经 该板左边水道流入其出水口 (A3) 流入整流器正极输出板 2入水口 (A4), 经整流器正极输出板左侧水路 (带走左边整流二极管负极发热量), 由整流 器正极输出板出水口 (Z2) 流出;
如图 2和图 3所示 C路: 从整流器负极输出板 1的入水口 (Z1 )进入经 该板右边水道流入其出水口 (B3) 流入整流器正极输出板 2入水口 (B4), 经整流器正极输出板右侧水路 (带走右边整流二极管负极发热量), 由整流 器正极输出板出水口 (Z2) 流出。
如图 2和图 Ί所示, 整流器中整流器正极板和整流器负极板以及二极管 正极引线之间, 以及它们与组成次级线包紫铜管之间的水路连接, 采用绝缘 橡胶管 (外径 13mm, 内径 6. 5ΠΜ)连接, 橡胶管采用自锁接头连接, 自锁接 头包含自锁头 (13) 和自锁套 (14)。 自锁头与橡胶管 (15 ) 配合部分有两 道倒锥槽, 槽口为锐角, 槽与槽之间有部分配合圆柱面, 圆柱面比橡胶管内 径大 1, 8隨}, 自锁套内径比插入自锁头后涨开橡胶管的外径小 0, 2mm。
如图 7所示,装配时,将橡胶管套入自锁头,使橡胶管紧紧包裹自锁头, 圆柱面与橡胶管无间隙配合, 保证了连接的密封性。 自锁套比涨开后的橡胶 管小 0 2mm, 当自锁套套入涨开口的橡胶管后, 将橡胶管压紧, 使其无向外 扩涨的空间, 同时部分橡胶嵌入自锁头倒锥槽内。 使橡胶管无法丛自锁头上 脱出。
磁芯温度可控制在 60Ό以内, 整流二极管的温度控制在 80Ό以内。 系 统有温度传感器监控, 这样变压器整体温度大幅度下降, 输出电流波动范围 小。 减小了温升对变压器的影响。
本发明缩小了变压器内部水路连接时的连接空间。使变压器体积得到一 定的缩小。 同时保证了水路连接的密封性。
只需要用 4只平面型整流二极管即可满足输出 12000A的电流, 而外形 尺寸只有: 300腿 *168!碰 *100mm; 比传统变压器体积上缩小很多。
虽然本发明的优选实例被以作为例证的目的进行披露, 但本领域的 技术人员可以理解各种修改、 添加和替换是可能的, 只要其不脱离所附 权利要求中详述的本发明的精神和范围

Claims

1、 一种水冷散热次高频变压器, 包括磁芯、 初级线包、 次级线包、 以 及与次级线包相连的整流管电路, 其特征在于: 所述整流管电路包括平面型 整流二极管、二极管正极端引线板、整流器负极输出板和整流器正极输出板, 其中, 所述整流器负极输出板也即变压器的中心抽头, 所述变压器次级电流 经所述平面型整流二极管整流后, 连接到所述整流器正极输出板, 电流由该 整流器正极输出板输出, 且, 所述整流二级管正极引出板、 整流器正极输出 板和整流器负极输出板均为内部设有散热水道的具有一定厚度的铜板结构。
2、 根据权利要求 1 所述的水冷散热次高频变压器, 其特征在于: 包括 两个并联的子变压器, 每个子变压器包含一至三组初级线包和一至三组次级 线包; 每组初级线包含有三个子线包, 每组次级线包含有两个次级线包, 且 两个次级线包是首尾相连; 每个次级线包首、 尾引线分别接两个上下平行放 置的二极管正极端引线板; 在两个次级线包的首尾连接处将次级线包的中心 抽头端子与整流器的负极输出板连接; 两个二极管正极端引线板与平板整流 二极管正极端相连接, 负极端与整流器正极输出板相连接, 所述整流器正极 输出板位于两个二极管正极端引线板中间, 一个平面型整流二极管位于所述 上层二极管正极端引线板和整流器正极输出板之间, 另一个平面型整流二极 管位于下层二极管正极端引线板和整流器正极输出板之间, 这样, 所述两块 二极管正极端引线板和所述整流器正极输出板共三块铜板紧紧的将两个平 面型整流二极管压在中间。
3、 根据权利要求 1或 2所述的水冷散热次高频变压器, 其特征在于: 所述次级线包采用直径为 4一 10毫米的紫铜管绕制, 且, 该紫铜管与所述整 流二级管正极引出板、 整流器正极输出板和整流器负极输出板中的散热水道 相通。
4、 根据权利要求 2或 3所述的水冷散热次高频变压器, 其特征在于: 所述子变压器的次级线包的中心抽头端子与所述整流器负极输出板焊接在 一起, 其中两个输出端子与上层二极管正极端引线板焊接在一起, 其余的两 个输出端子与下层二极管正极端引线板焊接在一起。
5、 根据权利要求 2或 3所述的水冷散热次高频变压器, 其特征在于: 所述二极管正极端引线板、 整流器负极输出板和整流器正极输出板均为板状 结构, 采用 10 15毫米厚的紫铜板制成, 其中, 这些板状结构的内部设有通 孔, 组成作为散热水循环流动的散热水道, 且, 这些散热水道与组成次级线 包的紫铜管是相互连通的。
6、 一种散热装置, 包括连通的出水口、 入水口和散热水道, 其特征在 于; 所述入水口设于所述整流器负极输出板上, 所述出水口设于所述整流器 正极输出板上, 所述散热水道设于所述整流器负极输出板、 整流器正极输出 板和二极管正极端引线板内部, 其中, 所述整流器负极输出板、 整流器正极 输出板和二极管正极端引线板均为具有一定厚度的板状结构, 在上述板状结 构的内部设有若千通孔, 组成作为散热水循环流动的散热水道, 且, 所述散 热水道与组成变压器次级线包的紫铜管相连通。
7、 据权利要求 6所述的散热装置, 其特征在于, 所述散热装置中冷却 水的工作流程为: 冷却水从整流器负极输出板上的入水口流入整流器负极板 上的散热水道, 然后分成三至六路: 其中两路从所述整流器负极板上的散热 水道出来进入所述整流器正极输出板上的散热水道, 然后汇总到该板的出水 口, 余下的几路是丛所述整流器负极板上的散热水道出来到一组平面型整流 二极管正极板上的散热水道后, 再分两路到两至三个次级线包, 然后到另一 组平面型整流二极管正极板上的散热水道, 再流到所述整流器正极输出板上 的散热水道, 再汇集到所述整流器正极输出板上的出水口。
8、 根据权利要求 6所述的散热装置, 其特征在于, 所述散热装置中冷 却水的工作流程为: 从整流器负极输出板上的入水口进入整流器负极输出板 上的散热水道, 通过整流器负极输出板上的散热水道, 分为 A、 B、 C.、 D 四 路水路分支并连, 后流入整流器正极输出板上的散热水道内, 最后汇集到所 述整流器正极输出板上的出水口后流出。
9、 根据权利要求 6所述的散热装置, 其特征在于: 所述水冷散热装置 的各个水道和管道之间用带自锁接头的绝缘橡胶管连接, 所述自锁接头包括 自锁头和自锁套, 且, 所述自锁头与橡胶管配合部分设有两道倒锥槽, 槽口 为锐角, 槽与槽之间有部分配合圆柱面, 圆柱面比橡胶管内径大。
PCT/CN2011/075454 2011-06-08 2011-06-08 水冷散热次高频变压器及其散热装置 WO2012167428A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2011800412928A CN103299377A (zh) 2011-06-08 2011-06-08 水冷散热次高频变压器及其散热装置
EP11867431.6A EP2706542B1 (en) 2011-06-08 2011-06-08 Sub-high frequency transformer with water-cooled heat dissipation
US14/119,923 US20140104912A1 (en) 2011-06-08 2011-06-08 Water cooling sub-high frequency transformer and cooling device thereof
PCT/CN2011/075454 WO2012167428A1 (zh) 2011-06-08 2011-06-08 水冷散热次高频变压器及其散热装置
CN201120571830.1U CN202632963U (zh) 2011-06-08 2011-12-31 水冷散热次高频变压器及其散热装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075454 WO2012167428A1 (zh) 2011-06-08 2011-06-08 水冷散热次高频变压器及其散热装置

Publications (1)

Publication Number Publication Date
WO2012167428A1 true WO2012167428A1 (zh) 2012-12-13

Family

ID=47295341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075454 WO2012167428A1 (zh) 2011-06-08 2011-06-08 水冷散热次高频变压器及其散热装置

Country Status (4)

Country Link
US (1) US20140104912A1 (zh)
EP (1) EP2706542B1 (zh)
CN (1) CN103299377A (zh)
WO (1) WO2012167428A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787129A (zh) * 2004-12-10 2006-06-14 中山市怡能电气有限公司 高频开关变压器
CN101645659A (zh) * 2009-09-21 2010-02-10 鹏煜威科技(深圳)有限公司 一种整流组件及次级整流变压器
CN101800123A (zh) * 2010-03-23 2010-08-11 深圳市鸿栢科技实业有限公司 一种电阻焊高频变压器
CN201796715U (zh) * 2010-03-23 2011-04-13 深圳市鸿栢科技实业有限公司 一种电阻焊高频变压器
JP4687930B2 (ja) * 2009-09-10 2011-05-25 株式会社向洋技研 溶接トランス

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH673188A5 (zh) * 1987-08-03 1990-02-15 Schlatter Ag
JP2672238B2 (ja) * 1992-11-06 1997-11-05 本田技研工業株式会社 溶接機用トランス
CN2262280Y (zh) * 1995-12-11 1997-09-10 江苏省建湖县电子器材厂 新型隔离变压器
JP4085362B2 (ja) * 2002-05-23 2008-05-14 東海ゴム工業株式会社 接続確認機能付きクイックコネクタ
JP2005274120A (ja) * 2004-02-24 2005-10-06 Showa Denko Kk 液冷式冷却板
DE102004030845A1 (de) * 2004-06-25 2006-01-12 Harms & Wende Gmbh U. Co Kg Schweißstromwandler
CN200979295Y (zh) * 2006-11-13 2007-11-21 郦洪武 变压器磁通量可调的电热水器
JP2008130657A (ja) * 2006-11-17 2008-06-05 Obara Corp インバータトランスの外皮冷却構造
CN101364471B (zh) * 2007-08-08 2011-06-08 深圳市宝安联华实业有限公司 手持式中高频感应加热设备的工作变压器及制作方法
CA2740972C (en) * 2008-10-15 2018-05-29 John Swift Building-integrated solar thermal micro-channel absorber and method of manufacturing thereof
US8955552B2 (en) * 2009-07-24 2015-02-17 Parker-Hannifin Corporation Fire resistant hose assembly
CN101630917A (zh) * 2009-08-20 2010-01-20 石新春 一体化高频整流装置
DE202009012960U1 (de) * 2009-09-25 2009-12-03 Nimak Gmbh Stromquelle für ein Widerstandsschweißgerät
US20140029200A1 (en) * 2010-06-14 2014-01-30 Marc A. Annacchino High voltage power supply system and method
CN202632963U (zh) * 2011-06-08 2012-12-26 深圳市鸿栢科技实业有限公司 水冷散热次高频变压器及其散热装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787129A (zh) * 2004-12-10 2006-06-14 中山市怡能电气有限公司 高频开关变压器
JP4687930B2 (ja) * 2009-09-10 2011-05-25 株式会社向洋技研 溶接トランス
CN101645659A (zh) * 2009-09-21 2010-02-10 鹏煜威科技(深圳)有限公司 一种整流组件及次级整流变压器
CN101800123A (zh) * 2010-03-23 2010-08-11 深圳市鸿栢科技实业有限公司 一种电阻焊高频变压器
CN201796715U (zh) * 2010-03-23 2011-04-13 深圳市鸿栢科技实业有限公司 一种电阻焊高频变压器

Also Published As

Publication number Publication date
EP2706542A1 (en) 2014-03-12
US20140104912A1 (en) 2014-04-17
EP2706542A4 (en) 2014-05-07
CN103299377A (zh) 2013-09-11
EP2706542B1 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
CN105097209A (zh) 磁性元件
US8952286B2 (en) Resistance welding high frequency transformer and spot welding machine
CN208444729U (zh) 一种变比及过电流能力可调的平面变压器
WO2022148229A1 (zh) 一种低压大电流的电源装置
CN202632963U (zh) 水冷散热次高频变压器及其散热装置
CN201466976U (zh) 一体化高频整流装置
WO2012167428A1 (zh) 水冷散热次高频变压器及其散热装置
CN103042290B (zh) 微型防热防潮焊机
CN202169436U (zh) 水冷散热高频变压器及其散热装置
CN215356681U (zh) 一种低压大电流焊接电源装置
CN201233799Y (zh) 一种整流变压器
TWM509967U (zh) 整合式電源轉換模組
CN209993450U (zh) 一种易于散热的电感器
CN202231625U (zh) 水冷散热高频整流器及其散热装置
CN210722670U (zh) 内建散热通道的变压器
TWI736041B (zh) 內建散熱通道的變壓器
CN101409141A (zh) 一种整流变压器及其使用方法
CN216388988U (zh) 变压装置
CN215069549U (zh) 一种高压灯主变骨架
WO2016154793A1 (zh) 逆变直流电阻焊机高频变压器
CN215377145U (zh) 一种散热型变压器铁芯
CN211150290U (zh) 一种开关电源结构
KR101508247B1 (ko) 콤팩트화된 대용량정류기시스템
CN216216566U (zh) 整流装置
JPH10106849A (ja) 水冷変圧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14119923

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011867431

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE