WO2012165597A1 - Waste water treatment apparatus - Google Patents

Waste water treatment apparatus Download PDF

Info

Publication number
WO2012165597A1
WO2012165597A1 PCT/JP2012/064220 JP2012064220W WO2012165597A1 WO 2012165597 A1 WO2012165597 A1 WO 2012165597A1 JP 2012064220 W JP2012064220 W JP 2012064220W WO 2012165597 A1 WO2012165597 A1 WO 2012165597A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
granules
reactor
bubble
waste water
Prior art date
Application number
PCT/JP2012/064220
Other languages
French (fr)
Japanese (ja)
Inventor
卓巳 小原
正彦 堤
伸行 足利
山本 勝也
田村 博
納田 和彦
均 中沢
幸男 川口
敏一 橋本
幸志 ▲辻▼
Original Assignee
株式会社 東芝
日本下水道事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 日本下水道事業団 filed Critical 株式会社 東芝
Priority to CN201280035732.3A priority Critical patent/CN103889907B/en
Publication of WO2012165597A1 publication Critical patent/WO2012165597A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/104Granular carriers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • Embodiments described herein generally relate to a wastewater treatment apparatus that includes an anaerobic reactor and purifies organic wastewater such as sewage, agricultural wastewater, and factory wastewater with anaerobic microorganisms.
  • the waste water as raw water is driven by a pump 3 to drive the anaerobic reactor 121 from the raw water supply source 2 through the water pipe L1. Introduce to the bottom.
  • the reactor 121 contains anaerobic microorganisms aggregated in a granular shape in addition to water.
  • Granules composed of anaerobic microorganisms hereinafter “granule” means “granules composed of anaerobic microorganisms” unless otherwise stated
  • Aggregate layer 122 as a floor is formed.
  • organic pollutants in the wastewater are decomposed by the purification function of the microorganisms.
  • high-molecular organic pollutants such as carbohydrates, fats or proteins are converted into fatty acids according to the following formula (1) by acid-fermenting bacteria. It is decomposed into (RCOOH), amino acid (RCH (NH 2 ) COOH) and the like, and further decomposed into acetic acid (CH 3 COOH) according to the following formula (2). Then, acetic acid, by methane fermentation bacteria, is decomposed into methane (CH 4) and carbon dioxide (CO 2) according to the following equation (3).
  • the water that has passed through the aggregate layer 122 forms a supernatant 123 above the aggregate layer 122.
  • a support 124 and a string-like carrier 125 formed by attaching a large number of fibers to a string in a brush shape are installed in the reactor 121.
  • the carrier 125 is supported by the support 124 so as to be immersed in the supernatant 123.
  • a part of the anaerobic microorganisms carried from the aggregate layer 122 by the flow of water is attached to these carriers 125, and fine granules are formed.
  • the organic pollutant that has not been decomposed in the aggregate layer 122 is decomposed by contact with the anaerobic microorganisms supported on the carrier 125.
  • the water reaches the overflow section 127 provided in the anaerobic reactor 121.
  • the water overflowing from the overflow section 127 is discharged to the device 4 through the water pipe L2 for the next process.
  • the granules of the aggregate layer 122 have a particle diameter of, for example, 1 to 10 mm, and the sedimentation speed thereof is, for example, 1 to 20 m / h or more. Therefore, if the upward flow speed of water in the reactor 121 is equal to or lower than the sedimentation speed of the granules, the granules are not released from the aggregate layer 122.
  • the minute granule produced by breaking the granule has a particle diameter of 0.1 to 1 mm, for example, and has a lower sedimentation speed than the granule of the aggregate layer 122. Therefore, even if the relatively large granules are not released from the aggregate layer 122, the minute granules can be released from the aggregate layer 122. However, such fine granules adhere to the carrier 125. Therefore, the amount of anaerobic microorganisms that normally flow out of the reactor 121 is small.
  • Granules, microgranules and suspended solids behave as though the specific gravity is reduced when a large amount of bubbles are attached. That is, the sedimentation speed is lowered, and the rising linear speed is very large, for example, 0.01 to 1 m / sec (36 to 3600 m / h). When the ascending linear velocity increases in this way, the minute granules are not attached to the carrier 125 but are carried by the water overflowing the overflow section 127 and flow out of the reactor 121.
  • Granules or suspended solids 30 to which no bubbles are attached rise in the waste water as indicated by an arrow 134 and come into contact with the fibers 125c fixed to the string 125b. Since the granule or suspended solid 30 has a relatively low ascending linear velocity, it adheres to the fiber 125c. In FIG. 9, the reference number 30b is given to the granule or suspended substance 30 adhering to the fiber 125c.
  • a bubble adhering granule or floating substance 32 formed by adhering bubbles, for example, bubbles 31 made of methane gas, to the granule or floating substance 30 also comes into contact with the fiber 125c.
  • the bubble adhering granule or suspended substance 32 has a high ascending linear velocity as described above, it does not adhere to the fiber 125c and flows out of the reactor 121.
  • a gas-solid-liquid separation zone is provided at the center of the reactor 121 and a part of the water above the gas-solid-liquid separation zone is returned to the bottom of the reactor 121 together with the granules, the granules flow out of the reactor 121. There is a possibility that it can be prevented. However, since granules and suspended solids to which bubbles of methane gas are attached have a high ascending linear velocity, the circulation system sufficiently prevents the granules and suspended matter from flowing out of the reactor 121. I can't.
  • An object of the present invention is to provide a wastewater treatment apparatus that can sufficiently prevent granules and suspended substances from flowing out of a reactor.
  • the wastewater treatment apparatus generally includes a reactor main body having an inlet at the bottom, and supplies the wastewater into the reactor main body through the inlet, and causes the upward flow of the wastewater to flow into the reactor main body.
  • a supply device to be generated, an aggregate layer in which a plurality of granules each comprising an aggregate of anaerobic microorganisms are retained in the lower part of the reactor main body, and the upper part of the reactor main body above the aggregate layer Air bubbles adhere to the carrier installed and capable of supporting the anaerobic microorganisms, the discharge device for discharging the waste water above the carrier from the reactor body, and the granules or fragments thereof released from the aggregate layer.
  • the bubble adhering granule and the bubble adhering floating substance formed by adhering bubbles to the floating substance in the waste water, the waste water staying in the reactor main body and the upper part thereof Leading to the interface with the gas phase, where the bubble adhering granules are separated into the granules or fragments thereof and the bubbles, and the bubble adhering suspended substances are separated into the floating substances and the bubbles, The granule or a fragment thereof separated from the bubbles and the suspended substance separated from the bubbles are guided from the interface to a region sandwiched between the aggregate layer and the carrier without contacting the carrier. And a gas-solid-liquid separator.
  • granule refers to, for example, a bacterial aggregate in which anaerobic filamentous methane bacteria are intertwined into a granular shape having a diameter of several millimeters.
  • the granule stays in the lower part of the waste water treatment device to form a fluidized bed, decomposes water-soluble organic substances contained in the waste water, and generates methane gas as a main by-product.
  • suspended solids can stay in the reactor for a long time and be decomposed by anaerobic microorganisms, and therefore without reducing the quality of the treated water Stable operation is possible.
  • the schematic diagram for demonstrating the motion of the granule in the apparatus of FIG. The block diagram which shows the waste water treatment apparatus which concerns on 2nd Embodiment.
  • the block diagram which shows the conventional waste water treatment equipment The schematic diagram for demonstrating the motion of the granule in the apparatus shown in FIG.
  • the wastewater treatment apparatus generally includes a reactor main body, a supply apparatus, an aggregate layer, a carrier, a discharge apparatus, and a gas-solid-liquid separation apparatus.
  • the reactor body has an inlet at the bottom.
  • the supply device supplies waste water into the reactor main body through the inlet, and generates an upward flow of waste water in the reactor main body.
  • the aggregate layer is formed by a plurality of granules each consisting of anaerobic microorganism aggregates staying in the lower part of the reactor body.
  • the carrier is installed above the aggregate layer in the reactor main body, and can support anaerobic microorganisms.
  • the discharge device discharges the waste water above the carrier from the reactor body.
  • the gas-solid-liquid separator is a bubble-attached granule in which bubbles are attached to granules or fragments thereof released from the aggregate layer, and a bubble-attached suspended substance in which bubbles are attached to suspended matter in waste water. It leads to the interface between the waste water staying in the reactor body and the gas phase above it, where the bubble-attached granules are separated into granules or fragments thereof and the bubbles, and the bubble-attached suspended solids are suspended. Without contacting the carrier with granules or fragments thereof separated from the bubbles and suspended solids from the bubbles, to the region sandwiched between the aggregate layer and the carrier. Lead.
  • the gas-solid-liquid separation device guides the bubble-adhered granules and the bubble-adhered suspended solids to the gas-liquid interface in the reactor body.
  • the bubble adhering granules reach the gas-liquid interface, they are separated into granules or fragments thereof and bubbles.
  • the bubble-attached suspended substance reaches the gas-liquid interface, the suspended substance and bubbles are separated.
  • Granules separated from the bubbles or fragments thereof hereinafter referred to as bubble separation granules
  • suspended substances separated from the bubbles hereinafter referred to as bubble separation floating substances
  • the settling speeds of the bubble detachment granules and the bubble detachment suspended substances are much lower than the rising speeds of the bubble adhesion granules and the bubble adhesion suspended substances. Therefore, when a configuration in which the bubble detachment granule and the bubble detachment floating substance are in contact with the carrier is employed, if a large amount of the bubble adhesion granule and the bubble adhesion floating substance are generated, the carrier may be clogged. If the carrier is clogged, a large amount of granules and suspended solids may flow out of the reactor.
  • the gas-solid-liquid separation device guides the bubble detachment granules and the bubble detachment suspended substances from the gas-liquid interface to the region sandwiched between the aggregate layer and the carrier without contacting the carrier. . Therefore, it is difficult to cause clogging in the carrier accompanying the sedimentation thereof.
  • the gas-solid-liquid separation apparatus partitions the internal space of the reactor body between the aggregate layer and the carrier, and allows the bubble-adhered granules and the bubble-adhered suspended solids to contact the carrier from the region to the interface. You may guide. In this case, the movement of bubble adhering granules and bubble adhering suspended substances to the gas-liquid interface is promoted.
  • the gas-solid-liquid separator includes, for example, a first guide member and a path forming member.
  • the first guide member is, for example, installed between the aggregate layer and the carrier, and has a shape in which the lower surface tapers from below to above, and an opening is provided at a position corresponding to the top portion.
  • a gap is formed between the edge of the reactor and the inner peripheral surface of the reactor body.
  • the path forming member extends upward from the opening of the first guide member, and the bubble-adhering granules and the bubble-adhering suspended solids float without contacting the carrier from the region below the first guide member to the interface.
  • the path forming member includes an inner cylinder that forms a settling path, and an ascending path that surrounds the inner cylinder and guides part of the drainage that has passed through the aggregate layer from the region below the first guide member to the interface. And an outer cylinder formed between the two.
  • the gas-solid-liquid separator may further include a rectifying member protruding from the inner peripheral surface of the reactor main body toward the center between the aggregate layer and the outer edge of the first guide member.
  • the gas-solid-liquid separation device is installed above the carrier, has a shape in which the lower surface tapers from the bottom to the top, and has an opening at a position corresponding to the top thereof.
  • a second guide member that forms a gap with the inner peripheral surface may be further included.
  • the gas-solid-liquid separation device is installed above the carrier, has a shape in which the lower surface tapers from the bottom to the top, and has an opening at a position corresponding to the top thereof.
  • the guide member forming a gap with the inner peripheral surface, the granule separated from the bubbles or a fragment thereof, and the suspended matter separated from the bubbles settles without contacting the carrier from the interface to the region. And a path forming member that forms a settling path.
  • the gas-solid-liquid separation device may further include a surrounding member surrounded so as to isolate the interface from the surroundings.
  • the discharge device discharges waste water outside the enclosure member from the reactor main body.
  • the position of the upper end of the enclosure member is higher than the position of the liquid level.
  • the waste water treatment apparatus may further include an aerobic reactor that receives waste water discharged from the reactor main body by the discharge device and treats the waste water with aerobic microorganisms.
  • an aerobic reactor that receives waste water discharged from the reactor main body by the discharge device and treats the waste water with aerobic microorganisms.
  • the wastewater treatment apparatus 1 of this embodiment includes a raw water supply source 2, a pump 3, an anaerobic reactor 21, and an anaerobic treated water receiving unit 4.
  • the raw water supply source 2 is a facility for temporarily storing the inflowing wastewater by flowing in organic wastewater such as sewage from a wastewater generation source (not shown).
  • the outlet of the raw water supply source 2 and the inlet at the bottom of the anaerobic reactor 21 are connected via a water supply pipe L1, and the drainage is driven from the raw water supply source 2 through the water supply pipe L1 by driving the pump 3 as a supply device. 21 is introduced at the bottom.
  • the upper outlet of the anaerobic reactor 21 and the anaerobic treated water receiving unit 4 are connected via the water pipe L2, and the anaerobic treated water overflowed at the overflow section 27 passes through the water pipe L2 from the anaerobic reactor 21. It is supplied to the upper part of the anaerobic treated water receiving part 4 of the process.
  • the overflow section 27 and the water supply pipe L2 constitute a discharge device that discharges the wastewater from the reactor 21.
  • the uppermost discharge port of the anaerobic reactor 21 and a methane gas processing device or a methane gas recovery and utilization device are connected via a gas pipe L3. The gas is discharged to the methane gas processing device or the methane gas recovery and utilization device through the gas pipe L3.
  • the anaerobic reactor 21 has a reactor main body 21a including a conical lower portion and a cylindrical main body.
  • the above-described drainage introduction port is provided at the lowermost part of the conical lower portion of the reactor main body 21a.
  • the upper part of the reactor main body 21a is closed and the inside is sealed.
  • An overflow section 27 is provided in the upper part of the reactor main body 21a, and waste water overflowing from the overflow section 27, that is, treated water flows into the anaerobic treated water receiving section 4 through the water pipe L2. .
  • the anaerobic treated water receiving unit 4 corresponds to a part of equipment for performing the process of the next process, and is an aerobic reactor having aerobic microorganisms, for example.
  • the carrier 14 is disposed on the upper part of the reactor main body 21a. These carriers 14 have a string shape, and are suspended from a carrier support portion 24 arranged immediately below the overflow portion 27 with a space therebetween. Each carrier 14 includes a string 13 and a number of fibers 25 attached to the string 13 in a brush shape.
  • a region where the carrier 14 is installed in the internal space of the reactor main body 21a is referred to as a “carrier portion”.
  • the lower part of the internal space of the reactor body 21a is filled with anaerobic microorganism granules in an amount of about 1/4 (about 25%) of the effective volume of the anaerobic reactor (water volume when full). These granules form an aggregate layer 22.
  • the agglomerate layer 22 is a fluidized bed containing granules 30 generated by putting a predetermined anaerobic microorganism into the reactor main body 21a, causing it to settle and agglomerating.
  • water containing floating contaminants such as sewage is used as raw water
  • floating substances flowing into the aggregate layer 21 through the pipe L1 accumulate. Since the granule 30 of the aggregate layer 22 and the suspended solid having a large specific gravity are larger than the specific gravity of water, it stays in the drainage at the lower part of the reactor main body 21a and forms a fluidized bed.
  • this waste water treatment apparatus 1 has a gas-solid-liquid separation apparatus, which will be described later, the bubbles 31 are efficiently separated from the granules and suspended solids 30, and the granules into the treated water discharged from the reactor 21 and Mixing of floating substances can be suppressed.
  • the outflow prevention structure 10 as a gas-solid-liquid separator is provided in the reactor main body 21a.
  • the outflow prevention structure 10 is installed above the aggregate layer 22 in the reactor main body 21a, and suppresses outflow of granules and suspended substances 30 to the outside of the reactor.
  • the outflow prevention structure 10 guides the bubble adhesion granules and the bubble adhesion floating substance 32 to the interface between the waste water staying in the reactor main body and the gas phase above it, and the bubbles are removed at this interface.
  • the granulated particles or fragments thereof and the suspended substance are guided from the interface to a region sandwiched between the aggregate layer 22 and the carrier 14 without contacting the carrier 14.
  • the outflow prevention structure 10 partitions the internal space of the reactor main body 21a between the aggregate layer 22 and the carrier part, and without bringing the bubble adhesion granules and the bubble adhesion floating substance 32 into contact with the carrier 14. Lead from the region to the interface.
  • the outflow prevention structure 10 includes a guide member 11, a path forming member 12, and a surrounding member 16.
  • the guide member 11 is installed between the aggregate layer 22 and the carrier part.
  • the guide member 11 has a shape in which the lower surface tapers from the lower side to the upper side, and an opening is provided at a position corresponding to the top portion.
  • the guide member 11 forms a gap between the outer edge and the inner peripheral surface of the reactor main body 21a.
  • the path forming member 12 extends upward from the opening of the guide member 11.
  • the path forming member 12 is a granule or a fragment thereof separated from the bubbles, with the bubble adhering granules and the bubble adhering suspended substances 32 rising from the region below the guide member 11 to the gas-liquid interface without contacting the carrier 25. And a suspended substance separated from the bubbles form a path for sedimentation from the interface to a region below the guide member 11 without contacting the carrier 25.
  • the surrounding member 16 surrounds a part of the interface so as to isolate it from the surroundings.
  • the surrounding member 16 is connected to the upper end of the path forming member 12.
  • the guide member 11 is the lower conical portion 11 installed below the carrier portion, and the path forming member 12 is the upper cylindrical portion 12.
  • the lower conical part 11 has a conical shape that expands downward and opens at the top.
  • the lower cone portion 11 is located immediately above the aggregate layer 22 and directly below the carrier portion. That is, the lower cone part 11 is installed in a space sandwiched between the aggregate layer 22 and the carrier part.
  • the large-diameter portion of the lower cone portion 11 allows drainage to pass through the gap between the lower cone portion 11 and the reactor main body 21a, and prevents the bubble adhering granules and the suspended substance 32 from entering the carrier portion. Therefore, it is slightly smaller than the inner diameter of the cylindrical portion of the reactor main body 21a.
  • the upper cylindrical portion 12 has a lower end opening communicating with the opening of the lower conical portion 11, penetrating through the central portion of the carrier portion, and the upper liquid level 15, that is, the waste water staying in the reactor body 21 a and the upper portion thereof. It reaches the interface with the gas phase portion 28. Further, the upper end portion of the upper cylindrical portion 12 is continuous with the surrounding member 16.
  • the enclosing member 16 is provided so as to protrude upward from the liquid level 15, and its upper end is positioned higher than the liquid level 15.
  • the upper cylindrical portion 12 forms a granule and floating substance movement path that serves as the path 17 through which the bubble adhering granules and the floating substance 32 ascend and the path 19 through which the bubble separation granules and the floating substance 30 settle.
  • the surrounding member 16 forms the path
  • a gas phase part 28 is provided above the carrier part.
  • the methane gas that has floated to the liquid surface 15 is released to the gas phase portion 28.
  • the gas phase unit 28 communicates with a methane gas processing device (not shown) or a methane gas recovery device (not shown) via the uppermost outlet of the anaerobic reactor 21 and the gas pipe L3.
  • the inner diameter of the surrounding member 16 is the same as the inner diameter of the upper cylindrical portion 12, but other structures may be employed.
  • the inner diameter of the surrounding member 16 can be larger than the inner diameter of the upper cylindrical portion 12.
  • the area of the liquid surface 15 surrounded by the enclosing member 16 is increased, so that the air bubbles 31 are likely to be detached from the bubble adhering granules and floating substances 32 that have floated on the liquid surface 15 as shown in FIG.
  • the operation of this embodiment will be described.
  • the sewage is introduced into the bottom of the anaerobic reactor main body 21 a from the raw water supply source 2 through the water supply pipe L 1 by driving the pump 3, and anaerobic microorganisms in the anaerobic microbial aggregate layer 22 introduced into the anaerobic reactor 21.
  • the organic pollutant in the sewage is decomposed according to the reactions of the formulas (1) to (3), and the waste water is purified.
  • a part of the granules 30 in the anaerobic microorganism aggregate layer 22 has a large amount of bubbles 31 made of methane gas adhering to the surface, and bubbles adhering granules 32.
  • bubbles 31 made of methane gas adhering to the surface
  • bubbles adhering granules 32 Become.
  • water containing floating contaminants such as sewage is used as raw water
  • suspended solids that flow in through the pipe L1 also accumulate in the aggregate layer 21, and some of the suspended solids become bubble-attached suspended solids.
  • floating matter 32 is smaller than water, it raises at a very high ascending linear velocity.
  • the bubble adhering granules and the suspended matter 32 are collected by the lower cone portion 11 into the upper cylindrical portion 12 and reach the liquid level 15 above the anaerobic reactor 21 through the rising path 17 in the upper cylindrical portion 12. And floats to the liquid surface.
  • the bubble adhering granules and the suspended substance 32 are stirred at the liquid surface 15 and come into contact with the atmosphere of the gas phase portion 28 in the liquid surface 15 or the path 18 immediately below the liquid surface. As a result, the bubbles 31 made of methane gas are detached from the granules and the suspended matter 30.
  • the methane gas separated from the granules and the suspended solids 30 is temporarily stored in the gas phase portion 28, and the valve (not shown) of the gas pipe L3 is opened periodically or as necessary, so that the gas phase portion 28 is opened.
  • the methane gas is detoxified in the methane gas processing apparatus, or is used as an electrical energy source or a thermal energy source.
  • the bubble detachment granules and the suspended substance 30 have a specific gravity larger than the original specific gravity, that is, the specific gravity of water 1.0. Accordingly, the bubble detachment granules and the suspended substance 30 settle through the sedimentation path 19 at the original sedimentation rate and settle on the aggregate layer 22 below the anaerobic reactor.
  • the purified water passes through a gap between the lowermost end of the lower conical part 11 and the inner peripheral surface of the reactor main body 21a, and then passes upward through the carrier part. It passes through the unit 27 and the water supply pipe L2 sequentially, is discharged from the anaerobic reactor 21 as anaerobic reactor treated water, and is sent to the apparatus 4 (for example, an aerobic reactor) in the next step.
  • the apparatus 4 for example, an aerobic reactor
  • the granule and the suspended substance 30 that have passed upward through the gap between the inner peripheral surface of the reactor main body 21a come into contact with the carrier 14 when passing through the gap between the carriers 14. Thereby, the granules and the suspended solids 30 are captured by the carrier 14. Therefore, the granules and the suspended matter 30 stay inside the anaerobic reactor 21 without being accompanied by the treated water and flowing out of the reactor.
  • the effects of this embodiment are listed below.
  • (1) Installation and maintenance are easy by adopting a simple structure of the outflow prevention structure. Since the outflow prevention structure 10 can be composed of a single plate in which the lower conical part 11 and the upper cylindrical part 12 are integrated, there is an advantage that simple installation such as hanging from the upper part is possible. Further, when such an outflow prevention structure 10 is employed, even if the outflow prevention structure 10 is damaged or the inside of the reactor main body 21a becomes dirty, even when maintenance or cleaning is required, the reactor Since the outflow prevention structure 10 can be pulled out from the reactor by opening the lid on the upper part of the apparatus 21, operations such as cleaning the outflow prevention structure 10 can be performed outside the reactor.
  • the carrier is not limited to a string-like one.
  • meshes may be arranged above and below the carrier part, and a plastic carrier having a cylindrical shape, a spherical shape, a square shape, or the like may be installed in a region between the meshes.
  • the path forming member has a double tube structure including an outer cylinder 12 and an inner cylinder 20.
  • the outer cylinder 12 and the inner cylinder 20 are path forming members that form a rising path 41b in which the bubble adhering granules and the suspended matter 32 rise and a settling path 41d in which the bubble detaching granules 30 sink.
  • the outer cylinder 12 and the inner cylinder 20 form an ascending path 41b through which the bubble adhering granules and the suspended substance 32 ascend.
  • the outer cylinder 12 surrounds the inner cylinder 20 and forms a rising path 41b between them.
  • the upper end portion of the outer cylinder 12 is connected to a surrounding member 16 having substantially the same diameter as that of the outer tube 12.
  • the inner cylinder 20 forms a sedimentation path 41d in which the bubble separation granules 30 settle.
  • the inner cylinder 20 is inserted into the outer cylinder 12, the upper end is opened at the liquid level 15, and the lower end is opened in a region immediately above the aggregate layer 22. Further, the inner cylinder 20 is connected to an outflow prevention structure 10 ⁇ / b> A including the lower cone portion 11, the outer cylinder 12, and the surrounding member 16 by a connecting member (not shown).
  • the operation of this embodiment will be described.
  • the bubble adhering granules and suspended substances 32 are collected in the lower conical part 11 of the outflow prevention structure 10A by the buoyancy of the adhering bubbles 31 and pass from the path 41a through the path 41b of the outer cylinder 12 to the uppermost liquid level 15. Reach up to.
  • the bubble adhering granules and the floating substance 32 black circles in the figure
  • the bubble adhering granules and the floating substance 32 black circles in the figure
  • bubble separation granules and floating substances 30 (white circles in the figure).
  • the bubble detachment granules and the suspended substance 30 settle through the sedimentation path 41d and settle on the aggregate layer 22 at the bottom of the reactor.
  • the inner cylinder 20 is integrated with the outflow prevention structure 10A and a structure in which the inner cylinder 20 is suspended from the upper part is adopted, the installation and maintenance of the gas-solid-liquid separation device becomes easy.
  • the second outflow prevention structure 50 is installed below the lower cone portion 11.
  • the outflow prevention structure 50 is an annular member having a triangular cross section that protrudes from the inner peripheral surface of the reactor main body 21a toward the center.
  • the outflow prevention structure 50 serves as a rectifying member. Specifically, the outflow prevention structure 50 prevents the bubble adhering granules and suspended substances 32 from entering the carrier 14 through a slight gap between the lower cone portion 11 and the reactor main body 21a.
  • the outflow prevention structure 10B is the same as the outflow prevention structure 10A described with reference to FIG.
  • the outflow prevention structure 50 prevents the bubble adhering granules and the suspended substance 32 from entering the carrier portion through the path 41f between the lower cone portion 11 and the reactor main body 21a. Therefore, the bubble adhesion granules and the floating substance 32 are more effectively suppressed from flowing out of the reactor.
  • the outflow prevention structure 50 suppresses the bubble adhering granules and the suspended matter 32 from entering the carrier portion through the path 41f between the lower cone portion 11 and the reactor main body 21a. To do. Therefore, the granule outflow is further suppressed, and the deterioration of the quality of the treated water is further suppressed.
  • the gas-solid liquid separation apparatus further includes a third outflow prevention structure 51.
  • the outflow prevention structure 51 is disposed below the lower cone portion 11 and parallel to the lower cone portion 11.
  • the path 41h is blocked by the outflow prevention structure 51, and the bubble adhering granules and suspended substances move upward through the path 41a. Therefore, it is possible to prevent the granules and suspended substances from flowing out more completely.
  • an aerobic reactor 60 is installed at the subsequent stage of the anaerobic reactor 21.
  • the upper part of the aerobic reactor 60 is connected to the outlet of the anaerobic reactor 21 via the water supply pipe L2.
  • the aerobic reactor 60 processes the waste water that has been processed by the anaerobic reactor.
  • a carrier support 61 is provided on the upper part of the aerobic reactor 60.
  • a carrier 62 that is a string-like contact material is suspended from the carrier support portion 61.
  • the carrier 52 carries an aerobic microorganism.
  • a tank 64 is connected to a portion of the side wall of the reactor 60 adjacent to the gap 63 via a water supply pipe L4. Water treated in the reactor 60 is supplied to the tank 64 via a water supply pipe L4.
  • the organic pollutant in the sewage 1 is purified by the aggregate layer 22. Further, even when methane gas adheres to the granule and suspended matter and rises due to buoyancy, the gas-solid-liquid separation device suppresses the outflow of the granule and suspended matter, and is caused by the anaerobic microorganisms supported by the carrier 14. Purification is performed.
  • the water treated by the anaerobic reactor 21 is supplied from the anaerobic reactor 21 to the carrier 62 of the aerobic reactor 60 through the water supply pipe L4.
  • Organic pollutants remaining in the treated water and dissolved hydrogen sulfide generated by sulfate-reducing bacteria which are one type of anaerobic microorganisms in the anaerobic reactor 21 are reduced by aerobic microorganisms supported by the carrier 62. Decomposes according to the reactions of formulas (4) and (5).
  • the aerobic reactor 60 uses the string-like carrier 62, when a suspended substance contained in the sewage flows out or when microbacteria or bacterial groups of anaerobic microorganisms in the anaerobic reactor 21 are loaded, Even if the growth rate decreases or dies out due to fluctuations, contamination of sewage, etc., they are captured by the carrier 62. Therefore, they do not flow out into the treated water discharged from the aerobic reactor 60, and the quality of the treated water can be maintained well.
  • a string-like carrier is used as an example of a carrier for an aerobic reactor and an anaerobic reactor, but any carrier may be used as long as microorganisms are easily attached thereto.
  • a plastic carrier having a cylindrical shape, a spherical shape, a square shape, or the like that is generally commercially available for water treatment may be used instead of the string shape.
  • the gas-solid liquid separation apparatus is an outflow prevention structure 10E including a guide member 11A, a path forming member 20A, and a surrounding member 16A.
  • the guide member 11A is installed above the carrier part.
  • the guide member 11A has a shape in which the lower surface tapers from the lower side to the upper side, and an opening is provided at a position corresponding to the top part.
  • 11 A of guide members form the clearance gap between an outer edge and the internal peripheral surface of the reactor main body 21a.
  • the path forming member 20A contacts the carrier 14 from the gas-liquid interface to the region sandwiched between the aggregate layer 22 and the carrier part, where the granules or fragments thereof separated from the bubbles and the suspended substance separated from the bubbles are in contact with each other. It forms a sedimentation path that settles without doing.
  • the surrounding member 16A surrounds a part of the gas-liquid interface so as to isolate it from the surroundings.
  • the surrounding member 16A is connected to the opening of the guide member 11A.
  • the guide member 11A is the upper conical portion 11A installed above the carrier portion, and the line forming member 20A is the lower cylindrical portion 20A.
  • the upper conical portion 11A has a conical shape that expands downward and opens at the top.
  • the upper conical part 11A is located immediately above the carrier part.
  • the opening of the upper cone portion 11 ⁇ / b> A is below the liquid surface 15.
  • the large diameter portion of the upper conical portion 11A allows wastewater to pass through the gap between the upper conical portion 11A and the reactor main body 21a, and allows the bubble adhering granules and the suspended matter 32 to enter the overflow portion. In order to prevent this, it is slightly smaller than the inner diameter of the cylindrical portion of the reactor main body 21a.
  • the lower cylindrical portion 20A extends upward from the region sandwiched between the aggregate layer 22 and the carrier portion to the liquid level 15 so as to penetrate the opening of the upper conical portion 11A. There is a gap between the lower cylindrical portion 20A and the upper conical portion 11A at the position of the opening of the upper conical portion 11A.
  • the lower cylindrical portion 20A forms paths 41i to 41k and settling paths 41m and 41n. Further, the lower cylindrical portion 20 ⁇ / b> A forms a stirring path 41 l together with the surrounding member 16.
  • the surrounding member 16A surrounds a part of the liquid surface 15 so as to isolate it from the surroundings.
  • the surrounding member 16A is connected to the opening of the upper conical portion 11A.
  • the upper end of the upper cone portion 11 ⁇ / b> A is higher than the liquid level 15.
  • the operation of this embodiment will be described.
  • the bubble adhering granules and the suspended matter 32 pass through the aggregate layer 22 by the upward flow of the sewage, and then the liquid level via the path 41i, the carrier portion, the path 41k, or the path 41j. Reach 15
  • the bubble adhering granules and the suspended matter 32 become the bubble leaving granules and the suspended matter 30 by removing the methane gas.
  • the bubble detachment granules and the suspended substance 30 settle through the path 41m in the lower cylindrical portion 20A and return to the aggregate layer 22.
  • anaerobic microorganisms adhering to the carrier 14 cause a decomposition reaction of organic substances that could not be decomposed by the aggregate layer 22.
  • Methane gas is also generated during this decomposition process.
  • the gas generated in the carrier part may cause the granules and suspended substances attached to the carrier 14 to peel off, thereby reducing the quality of the treated water.
  • the upper conical portion 11A is installed above the carrier portion, it is possible to suppress the floating substance or granules separated from the carrier from flowing out of the reactor.
  • the bubble adhering granules and the suspended matter 30 can be transported to the vicinity of the liquid surface 15 using their buoyancy and the upward flow of drainage. .
  • the wastewater treatment apparatus shown in any of FIGS. 1 and 3 to 6 may be provided with a guide member 11A, a path forming member 20A, and a surrounding member 16A.
  • a guide member 11A a configuration in which the bubble detachment granules and the suspended solids 30 from which bubbles have been removed by being guided to the liquid level 15 by the guide member 11A are guided to the path forming member 12 or the inner cylinder 20 thereof.
  • the path forming member 20A and the surrounding member 16A can be omitted.

Abstract

Provided is a waste water treatment apparatus that can sufficiently prevent granules formed from aggregations of anaerobic microorganisms from flowing from a reactor. The waste water treatment apparatus (1) is provided with: a reactor main unit (21a) having an introduction opening in the bottom thereof; a supply device (3) that generates a rising flow of waste water; an aggregate layer (22) formed from accumulation of granules (30) in the lower part of the reactor main unit (21a); a carrier (14) that can support anaerobic microbes; an elimination device (27, L2) that eliminates waste water above the carrier (14) from the reactor main unit (21a); and a gas-solid-liquid separation device (10A) with which granules (32) with attached bubbles are introduced toward a surface boundary (15), the granules (30) and the bubbles separated, and the granules (30) that have been separated from the bubbles guided from the surface boundary (15) to an area sandwiched by the aggregate layer (22) and carrier (14) without coming into contact with the carrier (14).

Description

排水処理装置Wastewater treatment equipment
 ここに記載する実施形態は、一般には、嫌気リアクタを含み、下水、農業排水及び工場排水等の有機排水を嫌気性微生物により浄化処理する排水処理装置に関する。 Embodiments described herein generally relate to a wastewater treatment apparatus that includes an anaerobic reactor and purifies organic wastewater such as sewage, agricultural wastewater, and factory wastewater with anaerobic microorganisms.
 図8に示すように、嫌気性微生物を利用する従来の排水処理装置100では、原水としての排水を、ポンプ3を駆動することによって、原水供給源2から送水管L1を介して嫌気リアクタ121の底部へと導入する。リアクタ121は、水に加え、グラニュール状に凝集した嫌気性微生物を収容している。嫌気性微生物からなるグラニュール(以下、「グラニュール」は、断り書きがない限り、「嫌気性微生物からなるグラニュール」を意味している)は、リアクタ121の底部に滞留しており、流動床としての凝集体層122を形成している。 As shown in FIG. 8, in the conventional waste water treatment apparatus 100 using anaerobic microorganisms, the waste water as raw water is driven by a pump 3 to drive the anaerobic reactor 121 from the raw water supply source 2 through the water pipe L1. Introduce to the bottom. The reactor 121 contains anaerobic microorganisms aggregated in a granular shape in addition to water. Granules composed of anaerobic microorganisms (hereinafter “granule” means “granules composed of anaerobic microorganisms” unless otherwise stated) are retained at the bottom of the reactor 121 and flow. Aggregate layer 122 as a floor is formed.
 リアクタ121に導入された排水が嫌気性微生物と接触すると、当該微生物の浄化機能によって排水中の有機汚濁物質が分解される。この分解反応では、特開2009-028720号の段落0044に記載されているように、高分子の有機汚濁物質、例えば、炭水化物、脂肪又は蛋白質は、酸発酵菌により、下式(1)に従って脂肪酸(RCOOH)やアミノ酸(RCH(NH2)COOH)等へと分解され、更に、下式(2)に従って酢酸(CH3COOH)へと分解される。そして、酢酸は、メタン発酵菌により、下式(3)に従ってメタン(CH4)及び二酸化炭素(CO2)へと分解される。
Figure JPOXMLDOC01-appb-C000001
When the wastewater introduced into the reactor 121 comes into contact with anaerobic microorganisms, organic pollutants in the wastewater are decomposed by the purification function of the microorganisms. In this decomposition reaction, as described in paragraph 0044 of JP-A-2009-028720, high-molecular organic pollutants such as carbohydrates, fats or proteins are converted into fatty acids according to the following formula (1) by acid-fermenting bacteria. It is decomposed into (RCOOH), amino acid (RCH (NH 2 ) COOH) and the like, and further decomposed into acetic acid (CH 3 COOH) according to the following formula (2). Then, acetic acid, by methane fermentation bacteria, is decomposed into methane (CH 4) and carbon dioxide (CO 2) according to the following equation (3).
Figure JPOXMLDOC01-appb-C000001
 凝集体層122を通過した水は、凝集体層122の上方に上澄み123を形成する。リアクタ121内には、支持体124と、紐に多数の繊維をブラシ状に取り付けてなる紐状の担体125とが設置されている。担体125は、上澄み123に浸るように、支持体124によって支持されている。これら担体125には、水の流れによって凝集体層122から運ばれてきた嫌気性微生物の一部が付着しており、微小なグラニュールを形成している。凝集体層122において分解されなかった有機汚濁物質は、担体125に担持された嫌気性微生物と接触することにより分解される。 The water that has passed through the aggregate layer 122 forms a supernatant 123 above the aggregate layer 122. In the reactor 121, a support 124 and a string-like carrier 125 formed by attaching a large number of fibers to a string in a brush shape are installed. The carrier 125 is supported by the support 124 so as to be immersed in the supernatant 123. A part of the anaerobic microorganisms carried from the aggregate layer 122 by the flow of water is attached to these carriers 125, and fine granules are formed. The organic pollutant that has not been decomposed in the aggregate layer 122 is decomposed by contact with the anaerobic microorganisms supported on the carrier 125.
 その後、上記の水は、嫌気リアクタ121内に設けられた越流部127に到達する。越流部127から溢れ出た水は、次工程のために、送水管L2を介して装置4へと排出される。 Thereafter, the water reaches the overflow section 127 provided in the anaerobic reactor 121. The water overflowing from the overflow section 127 is discharged to the device 4 through the water pipe L2 for the next process.
 上述した排水処理装置は、グラニュールや原水由来の浮遊物質(Suspended Solids: SS)に気泡が付着することに起因して、それらのリアクタ外への流出を生じ易い。リアクタ外へと流出したグラニュールや浮遊物質は、最終製品としての水の品質を低下させる。これについて、以下に詳しく説明する。 The above-described wastewater treatment equipment is likely to cause outflow of the reactors due to bubbles adhering to suspended matter (Suspended Solids: SS) derived from granule or raw water. Granules and suspended solids that flow out of the reactor reduce the quality of the water as the final product. This will be described in detail below.
 凝集体層122のグラニュールは、例えば、1乃至10mmの粒子径を有しており、その沈降速度は、例えば、1乃至20m/h以上である。それ故、リアクタ121内における水の上向流速度がグラニュールの沈降速度以下であれば、グラニュールは凝集体層122から遊離しない。 The granules of the aggregate layer 122 have a particle diameter of, for example, 1 to 10 mm, and the sedimentation speed thereof is, for example, 1 to 20 m / h or more. Therefore, if the upward flow speed of water in the reactor 121 is equal to or lower than the sedimentation speed of the granules, the granules are not released from the aggregate layer 122.
 他方、このグラニュールが壊れることによって生じる微小グラニュールは、例えば、0.1乃至1mmの粒子径を有しており、凝集体層122のグラニュールよりも沈降速度が小さい。それ故、凝集体層122から比較的大きなグラニュールが遊離しない条件であっても、微小グラニュールは凝集体層122から遊離し得る。しかしながら、そのような微小グラニュールは、担体125に付着する。従って、通常、リアクタ121外へと流出する嫌気性微生物の量は少ない。 On the other hand, the minute granule produced by breaking the granule has a particle diameter of 0.1 to 1 mm, for example, and has a lower sedimentation speed than the granule of the aggregate layer 122. Therefore, even if the relatively large granules are not released from the aggregate layer 122, the minute granules can be released from the aggregate layer 122. However, such fine granules adhere to the carrier 125. Therefore, the amount of anaerobic microorganisms that normally flow out of the reactor 121 is small.
 但し、凝集体層22で、式(1)乃至(3)の反応が促進されると、メタンガスやCO2ガスが多量に発生する。これらのガスからなる気泡は、上記グラニュールや、リアクタ121の下部に未分解で残存している原水由来の浮遊物質に多量に付着する。また、この気泡は、担体125に担持された微小グラニュールにも付着する。 However, when the reactions of the formulas (1) to (3) are promoted in the aggregate layer 22, a large amount of methane gas and CO 2 gas is generated. A large amount of bubbles made of these gases adhere to the above-mentioned granules and floating substances derived from raw water remaining undecomposed in the lower part of the reactor 121. The bubbles also adhere to the fine granules carried on the carrier 125.
 グラニュール、微小グラニュール及び浮遊物質は、多量の気泡が付着すると、比重が小さくなったが如く振舞う。即ち、沈降速度が低下し、上昇線速度が例えば0.01乃至1m/sec(36乃至3600m/h)と非常に大きくなる。上昇線速度がこのように大きくなると、微小グラニュールは担体125に付着せずに、越流部127から溢れ出る水によって運ばれ、リアクタ121から流出することとなる。 Granules, microgranules and suspended solids behave as though the specific gravity is reduced when a large amount of bubbles are attached. That is, the sedimentation speed is lowered, and the rising linear speed is very large, for example, 0.01 to 1 m / sec (36 to 3600 m / h). When the ascending linear velocity increases in this way, the minute granules are not attached to the carrier 125 but are carried by the water overflowing the overflow section 127 and flow out of the reactor 121.
 これを模式化したのが、図9である。 
 気泡が付着していないグラニュール又は浮遊物質30は、矢印134で示すように排水中で上昇し、紐125bに固定された繊維125cと接触する。グラニュール又は浮遊物質30は、比較的低い上昇線速度を有しているので、繊維125cに付着する。図9には、繊維125cに付着したグラニュール又は浮遊物質30に、参照番号30bを付している。
This is schematically shown in FIG.
Granules or suspended solids 30 to which no bubbles are attached rise in the waste water as indicated by an arrow 134 and come into contact with the fibers 125c fixed to the string 125b. Since the granule or suspended solid 30 has a relatively low ascending linear velocity, it adheres to the fiber 125c. In FIG. 9, the reference number 30b is given to the granule or suspended substance 30 adhering to the fiber 125c.
 他方、グラニュール又は浮遊物質30に気泡、例えばメタンガスからなる気泡31が付着してなる気泡付着グラニュール又は浮遊物質32も、繊維125cと接触する。しかしながら、気泡付着グラニュール又は浮遊物質32は、前述の通り高い上昇線速度を有しているため、繊維125cに付着せずに、リアクタ121外へと流出する。 On the other hand, a bubble adhering granule or floating substance 32 formed by adhering bubbles, for example, bubbles 31 made of methane gas, to the granule or floating substance 30 also comes into contact with the fiber 125c. However, since the bubble adhering granule or suspended substance 32 has a high ascending linear velocity as described above, it does not adhere to the fiber 125c and flows out of the reactor 121.
 グラニュール及び浮遊物質32がリアクタ121外へ流出すると、以下の問題を生じ得る。 If the granules and suspended matter 32 flow out of the reactor 121, the following problems may occur.
 (a)凝集体層22の量、即ち、リアクタ121内の酸発酵菌やメタン発酵菌の量が低減し、式(1)乃至(3)の反応が抑制される。その結果、有機汚濁物質の浄化処理が不十分となり、リアクタ121から排出される水の品質が低下する。 (A) The amount of the aggregate layer 22, that is, the amount of acid-fermenting bacteria and methane-fermenting bacteria in the reactor 121 is reduced, and the reactions of formulas (1) to (3) are suppressed. As a result, the organic pollutant purification process becomes insufficient, and the quality of the water discharged from the reactor 121 decreases.
 (b)原水由来の浮遊性の有機汚濁物質が、式(1)の加水分解反応による可溶化を生じる前に、リアクタ121から流出する。 (B) The floating organic pollutant derived from the raw water flows out of the reactor 121 before being solubilized by the hydrolysis reaction of the formula (1).
 リアクタ121の中央部に気固液分離ゾーンを設け、その気固液分離ゾーンより上方にある水の一部をグラニュールとともにリアクタ121の底部へと戻せば、グラニュールがリアクタ121外へと流出するのを防止できる可能性がある。しかしながら、メタンガスからなる気泡が付着したグラニュール及び浮遊物質は、高い上昇線速度を有しているため、グラニュール及び浮遊物質のリアクタ121外への流出を上記の循環系によって十分に防止することはできない。 If a gas-solid-liquid separation zone is provided at the center of the reactor 121 and a part of the water above the gas-solid-liquid separation zone is returned to the bottom of the reactor 121 together with the granules, the granules flow out of the reactor 121. There is a possibility that it can be prevented. However, since granules and suspended solids to which bubbles of methane gas are attached have a high ascending linear velocity, the circulation system sufficiently prevents the granules and suspended matter from flowing out of the reactor 121. I can't.
 本発明の目的は、グラニュール及び浮遊物質がリアクタ外へと流出するのを十分に防止することができる排水処理装置を提供することにある。 An object of the present invention is to provide a wastewater treatment apparatus that can sufficiently prevent granules and suspended substances from flowing out of a reactor.
 実施形態に係る排水処理装置は、一般には、底部に導入口を有するリアクタ本体と、前記導入口を介して前記リアクタ本体内に排水を供給して、前記リアクタ本体内に前記排水の上昇流を生じさせる供給装置と、嫌気性微生物の凝集体から各々がなる複数のグラニュールが前記リアクタ本体内の下部に滞留してなる凝集体層と、前記リアクタ本体内において前記凝集体層よりも上方に設置され、前記嫌気性微生物を担持可能な担体と、前記担体の上方の前記排水を前記リアクタ本体から排出する排出装置と、前記凝集体層から遊離した前記グラニュール又はその断片に気泡が付着してなる気泡付着グラニュールと、前記排水中の浮遊物質に気泡が付着してなる気泡付着浮遊物質とを、前記リアクタ本体内に滞留している前記排水とその上方の気相との界面へと導き、そこで、前記気泡付着グラニュールを前記グラニュール又はその断片と前記気泡とに分離するとともに、前記気泡付着浮遊物質を前記浮遊物質と前記気泡とに分離し、前記気泡から分離した前記グラニュール又はその断片と前記気泡から分離した前記浮遊物質とを、前記担体に接触させることなしに、前記界面から前記凝集体層と前記担体とによって挟まれた領域へと導く気固液分離装置とを具備している。 The wastewater treatment apparatus according to the embodiment generally includes a reactor main body having an inlet at the bottom, and supplies the wastewater into the reactor main body through the inlet, and causes the upward flow of the wastewater to flow into the reactor main body. A supply device to be generated, an aggregate layer in which a plurality of granules each comprising an aggregate of anaerobic microorganisms are retained in the lower part of the reactor main body, and the upper part of the reactor main body above the aggregate layer Air bubbles adhere to the carrier installed and capable of supporting the anaerobic microorganisms, the discharge device for discharging the waste water above the carrier from the reactor body, and the granules or fragments thereof released from the aggregate layer. The bubble adhering granule and the bubble adhering floating substance formed by adhering bubbles to the floating substance in the waste water, the waste water staying in the reactor main body and the upper part thereof Leading to the interface with the gas phase, where the bubble adhering granules are separated into the granules or fragments thereof and the bubbles, and the bubble adhering suspended substances are separated into the floating substances and the bubbles, The granule or a fragment thereof separated from the bubbles and the suspended substance separated from the bubbles are guided from the interface to a region sandwiched between the aggregate layer and the carrier without contacting the carrier. And a gas-solid-liquid separator.
 なお、用語「グラニュール」は、例えば、嫌気性の糸状メタン菌が絡み合い、直径が数ミリメートルの粒状になった菌凝集物をいう。グラニュールは、排水処理装置の下部に滞留して流動床を形成し、排水中に含まれる水溶性の有機物を分解して、主な副生成物としてメタンガスを発生させる。 The term “granule” refers to, for example, a bacterial aggregate in which anaerobic filamentous methane bacteria are intertwined into a granular shape having a diameter of several millimeters. The granule stays in the lower part of the waste water treatment device to form a fluidized bed, decomposes water-soluble organic substances contained in the waste water, and generates methane gas as a main by-product.
 この排水処理装置によれば、グラニュールにガスが付着して浮上した場合であっても、大量のグラニュールをリアクタ外に流出させることがなく、それ故、リアクタ内の凝集体層や担体に付着した酸発酵菌やメタン発酵菌などの嫌気性微生物の量が不十分となるのを防止することができる。 According to this waste water treatment apparatus, even when gas adheres to the granule and floats, a large amount of granule does not flow out of the reactor. It is possible to prevent the amount of attached anaerobic microorganisms such as acid-fermenting bacteria and methane-fermenting bacteria from becoming insufficient.
 また、原水由来の浮遊物質の流出を抑制することにより、浮遊物質をリアクタ内に長く滞留させて、嫌気性微生物により分解させることができ、それ故、処理後の水の品質を低下させることなく、安定した運転が可能となる。 In addition, by suppressing the outflow of suspended solids derived from raw water, suspended solids can stay in the reactor for a long time and be decomposed by anaerobic microorganisms, and therefore without reducing the quality of the treated water Stable operation is possible.
第1実施形態に係る排水処理装置を示す構成ブロック図。The block diagram which shows the waste water treatment apparatus which concerns on 1st Embodiment. 図1の装置内でのグラニュールの動きを説明するための模式図。The schematic diagram for demonstrating the motion of the granule in the apparatus of FIG. 第2実施形態に係る排水処理装置を示す構成ブロック図。The block diagram which shows the waste water treatment apparatus which concerns on 2nd Embodiment. 第3実施形態に係る排水処理装置を示す構成ブロック図。The block diagram which shows the waste water treatment equipment which concerns on 3rd Embodiment. 第4実施形態に係る排水処理装置を示す構成ブロック図。The block diagram which shows the waste water treatment apparatus which concerns on 4th Embodiment. 第5実施形態に係る排水処理装置を示す構成ブロック図。The block diagram which shows the waste water treatment equipment which concerns on 5th Embodiment. 第6実施形態に係る排水処理装置を示す構成ブロック図。The block diagram which shows the waste water treatment apparatus which concerns on 6th Embodiment. 従来の排水処理装置を示す構成ブロック図。The block diagram which shows the conventional waste water treatment equipment. 図8に示す装置内でのグラニュールの動きを説明するための模式図。The schematic diagram for demonstrating the motion of the granule in the apparatus shown in FIG.
 実施形態に係る排水処理装置は、一般には、リアクタ本体と、供給装置と、凝集体層と、担体と、排出装置と、気固液分離装置とを具備している。リアクタ本体は、底部に導入口を有している。供給装置は、導入口を介してリアクタ本体内に排水を供給して、リアクタ本体内に排水の上昇流を生じさせる。凝集体層は、嫌気性微生物の凝集体から各々がなる複数のグラニュールがリアクタ本体内の下部に滞留してなる。担体は、リアクタ本体内において凝集体層よりも上方に設置され、嫌気性微生物を担持可能である。排出装置は、担体の上方の排水をリアクタ本体から排出する。気固液分離装置は、凝集体層から遊離したグラニュール又はその断片に気泡が付着してなる気泡付着グラニュールと、排水中の浮遊物質に気泡が付着してなる気泡付着浮遊物質とを、リアクタ本体内に滞留している排水とその上方の気相との界面へと導き、そこで、気泡付着グラニュールをグラニュール又はその断片と前記気泡とに分離するとともに、気泡付着浮遊物質を浮遊物質と気泡とに分離し、気泡から分離したグラニュール又はその断片と気泡から分離した浮遊物質とを、担体に接触させることなしに、上記界面から凝集体層と担体とによって挟まれた領域へと導く。 The wastewater treatment apparatus according to the embodiment generally includes a reactor main body, a supply apparatus, an aggregate layer, a carrier, a discharge apparatus, and a gas-solid-liquid separation apparatus. The reactor body has an inlet at the bottom. The supply device supplies waste water into the reactor main body through the inlet, and generates an upward flow of waste water in the reactor main body. The aggregate layer is formed by a plurality of granules each consisting of anaerobic microorganism aggregates staying in the lower part of the reactor body. The carrier is installed above the aggregate layer in the reactor main body, and can support anaerobic microorganisms. The discharge device discharges the waste water above the carrier from the reactor body. The gas-solid-liquid separator is a bubble-attached granule in which bubbles are attached to granules or fragments thereof released from the aggregate layer, and a bubble-attached suspended substance in which bubbles are attached to suspended matter in waste water. It leads to the interface between the waste water staying in the reactor body and the gas phase above it, where the bubble-attached granules are separated into granules or fragments thereof and the bubbles, and the bubble-attached suspended solids are suspended. Without contacting the carrier with granules or fragments thereof separated from the bubbles and suspended solids from the bubbles, to the region sandwiched between the aggregate layer and the carrier. Lead.
 上記の通り、この排水処理装置では、気固液分離装置は、気泡付着グラニュールと気泡付着浮遊物質とを、リアクタ本体内の気液界面へと導く。気泡付着グラニュールは、気液界面に到達すると、グラニュール又はその断片と気泡とに分離する。同様に、気泡付着浮遊物質は、気液界面に到達すると、浮遊物質と気泡とに分離する。気泡から分離したグラニュール又はその断片(以下、気泡離脱グラニュールという)と気泡から分離した浮遊物質(以下、気泡離脱浮遊物質という)とは沈降する。 As described above, in this wastewater treatment apparatus, the gas-solid-liquid separation device guides the bubble-adhered granules and the bubble-adhered suspended solids to the gas-liquid interface in the reactor body. When the bubble adhering granules reach the gas-liquid interface, they are separated into granules or fragments thereof and bubbles. Similarly, when the bubble-attached suspended substance reaches the gas-liquid interface, the suspended substance and bubbles are separated. Granules separated from the bubbles or fragments thereof (hereinafter referred to as bubble separation granules) and suspended substances separated from the bubbles (hereinafter referred to as bubble separation floating substances) settle.
 また、気泡離脱グラニュール及び気泡離脱浮遊物質の沈降速度は、気泡付着グラニュール及び気泡付着浮遊物質の上昇速度と比較して遥かに低い。それ故、気泡離脱グラニュール及び気泡離脱浮遊物質が担体と接触する構成を採用した場合、大量の気泡付着グラニュール及び気泡付着浮遊物質が生じると、担体における目詰まりを生じる可能性がある。担体が目詰まりすると、大量のグラニュール及び浮遊物質がリアクタ外へと流出する可能性がある。 Also, the settling speeds of the bubble detachment granules and the bubble detachment suspended substances are much lower than the rising speeds of the bubble adhesion granules and the bubble adhesion suspended substances. Therefore, when a configuration in which the bubble detachment granule and the bubble detachment floating substance are in contact with the carrier is employed, if a large amount of the bubble adhesion granule and the bubble adhesion floating substance are generated, the carrier may be clogged. If the carrier is clogged, a large amount of granules and suspended solids may flow out of the reactor.
 この排水処理装置では、気固液分離装置は、気泡離脱グラニュール及び気泡離脱浮遊物質を、担体に接触させることなしに、気液界面から凝集体層と担体とによって挟まれた領域へと導く。それ故、それらの沈降に伴う担体における目詰まりを生じ難い。 In this wastewater treatment device, the gas-solid-liquid separation device guides the bubble detachment granules and the bubble detachment suspended substances from the gas-liquid interface to the region sandwiched between the aggregate layer and the carrier without contacting the carrier. . Therefore, it is difficult to cause clogging in the carrier accompanying the sedimentation thereof.
 従って、上記の構成を採用すると、グラニュール及び浮遊物質がリアクタ外へと流出するのを十分に防止することができる。 Therefore, when the above configuration is adopted, it is possible to sufficiently prevent the granules and suspended substances from flowing out of the reactor.
 気固液分離装置は、リアクタ本体の内部空間を凝集体層と担体との間で仕切り、気泡付着グラニュール及び気泡付着浮遊物質を、担体に接触させることなしに、上記領域から上記界面へと導いてもよい。この場合、気泡付着グラニュール及び気泡付着浮遊物質の気液界面への移動が促進される。 The gas-solid-liquid separation apparatus partitions the internal space of the reactor body between the aggregate layer and the carrier, and allows the bubble-adhered granules and the bubble-adhered suspended solids to contact the carrier from the region to the interface. You may guide. In this case, the movement of bubble adhering granules and bubble adhering suspended substances to the gas-liquid interface is promoted.
 気固液分離装置は、例えば、第1案内部材と経路形成部材とを含んでいる。第1案内部材は、例えば、凝集体層と担体との間に設置され、下面が下方から上方へ向けて先細りした形状を有し、その頂部に対応した位置に開口が設けられており、外側の縁とリアクタ本体の内周面との間に隙間を形成している。経路形成部材は、例えば、第1案内部材の開口から上方へ延び、気泡付着グラニュール及び気泡付着浮遊物質が第1案内部材の下方の領域から上記界面へと担体に接触することなしに浮上し、気泡から分離したグラニュール若しくはその断片と気泡から分離した浮遊物質とが界面から上記領域へと担体に接触することなしに沈降する経路を形成するか、又は、気泡付着グラニュール及び気泡付着浮遊物質が上記領域から上記界面へと担体に接触することなしに浮上する上昇経路と、気泡から分離したグラニュール若しくはその断片と気泡から分離した浮遊物質とが上記界面から上記領域へと担体に接触することなしに沈降する沈降経路とを形成する。 The gas-solid-liquid separator includes, for example, a first guide member and a path forming member. The first guide member is, for example, installed between the aggregate layer and the carrier, and has a shape in which the lower surface tapers from below to above, and an opening is provided at a position corresponding to the top portion. A gap is formed between the edge of the reactor and the inner peripheral surface of the reactor body. For example, the path forming member extends upward from the opening of the first guide member, and the bubble-adhering granules and the bubble-adhering suspended solids float without contacting the carrier from the region below the first guide member to the interface. Form a path in which granules separated from bubbles or fragments thereof and suspended solids separated from bubbles settle without contacting the carrier from the interface to the above region, or bubble-attached granules and bubble-attached floating The ascending path where the substance floats from the region to the interface without contacting the carrier, the granule separated from the bubbles or fragments thereof, and the suspended matter separated from the bubbles contact the carrier from the interface to the region. And a sedimentation path that settles without doing so.
 この場合、気泡付着グラニュール及び気泡付着浮遊物質の大部分は、リアクタ本体内を上昇する過程において、気固液分離装置によって、気泡が除去される。気泡付着グラニュール及び気泡付着浮遊物質の一部は、第1案内部材の外側の縁とリアクタ本体の内周面との間の隙間を通って上昇するものの、その量は、案内部材を設置しない場合に比べると少ない。また、上記隙間を通った気泡付着グラニュール及び気泡付着浮遊物質の少なくとも一部は、担体によって補捉される。従って、上記の構成を採用した場合、リアクタ本体からのグラニュール及び浮遊物質の流出をより効果的に抑制することができる。 In this case, most of the bubble adhering granules and bubble adhering suspended solids are removed by the gas-solid-liquid separator in the process of rising in the reactor body. Although some of the bubble adhesion granules and the bubble adhesion floating substance rise through the gap between the outer edge of the first guide member and the inner peripheral surface of the reactor body, the amount does not install the guide member Less than the case. Further, at least a part of the bubble-adhered granules and the bubble-adhered suspended solids that have passed through the gap are captured by the carrier. Therefore, when the above configuration is adopted, the outflow of granules and suspended solids from the reactor main body can be more effectively suppressed.
 経路形成部材は、沈降経路を形成する内筒と、内筒を取り囲み、凝集体層を通過した排水の一部を第1案内部材の下方の領域から上記界面へと導く上昇経路を前記内筒との間に形成する外筒とを含んでいてもよい。このような二重管構造を採用すると、気泡を除去したグラニュール又はその断片及び気泡を除去した浮遊物質の沈降速度を速めることができる。 The path forming member includes an inner cylinder that forms a settling path, and an ascending path that surrounds the inner cylinder and guides part of the drainage that has passed through the aggregate layer from the region below the first guide member to the interface. And an outer cylinder formed between the two. By adopting such a double tube structure, it is possible to increase the sedimentation speed of the granule from which bubbles are removed or a fragment thereof and the suspended matter from which bubbles are removed.
 気固液分離装置は、凝集体層と第1案内部材の外側の縁との間に、リアクタ本体の内周面から中央に向けて突出した整流部材を更に含んでいてもよい。この構成を採用すると、気泡付着グラニュール及び気泡付着浮遊物質の一部が、第1案内部材の外側の縁とリアクタ本体の内周面との間の隙間を通過するのを抑制することができる。 The gas-solid-liquid separator may further include a rectifying member protruding from the inner peripheral surface of the reactor main body toward the center between the aggregate layer and the outer edge of the first guide member. By adopting this configuration, it is possible to suppress a part of the bubble adhesion granules and the bubble adhesion suspended substance from passing through the gap between the outer edge of the first guide member and the inner peripheral surface of the reactor body. .
 気固液分離装置は、担体の上方に設置され、下面が下方から上方へ向けて先細りした形状を有し、その頂部に対応した位置に開口が設けられており、外側の縁とリアクタ本体の内周面との間に隙間を形成している第2案内部材を更に含んでいてもよい。この構成を採用すると、例えば、上記隙間を通過した気泡付着グラニュール及び気泡付着浮遊物質を気液界面へと導いて、それらから気泡を除去することができる。また、担体から剥離したグラニュール又は浮遊物質がリアクタ本体から流出するのを抑制できる。 The gas-solid-liquid separation device is installed above the carrier, has a shape in which the lower surface tapers from the bottom to the top, and has an opening at a position corresponding to the top thereof. A second guide member that forms a gap with the inner peripheral surface may be further included. When this configuration is adopted, for example, the bubble-adhered granules and the bubble-adhered suspended solids that have passed through the gap can be guided to the gas-liquid interface, and the bubbles can be removed therefrom. In addition, it is possible to suppress the granule or suspended substance exfoliated from the carrier from flowing out of the reactor main body.
 気固液分離装置は、担体の上方に設置され、下面が下方から上方へ向けて先細りした形状を有し、その頂部に対応した位置に開口が設けられており、外側の縁とリアクタ本体の内周面との間に隙間を形成している案内部材と、気泡から分離したグラニュール又はその断片と気泡から分離した浮遊物質とが上記界面から上記領域へと担体に接触することなしに沈降する沈降経路を形成する経路形成部材とを含んでいてもよい。この構成を採用した場合、担体から剥離したグラニュール又は浮遊物質がリアクタ本体から流出するのを抑制できる。 The gas-solid-liquid separation device is installed above the carrier, has a shape in which the lower surface tapers from the bottom to the top, and has an opening at a position corresponding to the top thereof. The guide member forming a gap with the inner peripheral surface, the granule separated from the bubbles or a fragment thereof, and the suspended matter separated from the bubbles settles without contacting the carrier from the interface to the region. And a path forming member that forms a settling path. When this configuration is adopted, it is possible to suppress the granule or suspended substance separated from the carrier from flowing out of the reactor main body.
 気固液分離装置は、上記界面を周囲から隔離するように取り囲んだ囲い部材を更に含んでいてもよい。この場合、排出装置は、例えば、囲い部材の外側の排水をリアクタ本体から排出する。なお、囲い部材の上端の位置は、上記液面の位置よりも高い。この構成を採用すると、リアクタ本体からのグラニュール及び浮遊物質の流出をより効果的に抑制することができる。 The gas-solid-liquid separation device may further include a surrounding member surrounded so as to isolate the interface from the surroundings. In this case, for example, the discharge device discharges waste water outside the enclosure member from the reactor main body. Note that the position of the upper end of the enclosure member is higher than the position of the liquid level. By adopting this configuration, it is possible to more effectively suppress the outflow of granules and suspended substances from the reactor main body.
 排水処理装置は、排出装置によってリアクタ本体から排出された排水を受け入れて、排水を好気性微生物により処理する好気リアクタを更に具備していてもよい。この構成を採用すると、下水などの有機排水を効率よく低コストで浄化でき、法律により規制される排水基準を容易に満たすことができる。 The waste water treatment apparatus may further include an aerobic reactor that receives waste water discharged from the reactor main body by the discharge device and treats the waste water with aerobic microorganisms. By adopting this configuration, organic wastewater such as sewage can be purified efficiently and at low cost, and wastewater standards regulated by law can be easily satisfied.
 以下、実施形態に係る排水処理装置を、添付の図面を参照して説明する。 Hereinafter, a wastewater treatment apparatus according to an embodiment will be described with reference to the accompanying drawings.
 (第1実施形態)
 図1を参照して、第1実施形態について説明する。 
 本実施形態の排水処理装置1は、原水供給源2、ポンプ3、嫌気リアクタ21及び嫌気処理水受入部4を含んでいる。原水供給源2は、図示しない排水発生源から下水などの有機排水が流れ込み、流入した排水を一時的に貯留しておく設備である。原水供給源2の出口と嫌気リアクタ21の底部の導入口とは送水管L1を介して接続され、供給装置であるポンプ3の駆動により排水が原水供給源2から送水管L1を通って嫌気リアクタ21の底部に導入されるようになっている。また、嫌気リアクタ21の上部の排出口と嫌気処理水受入部4とは送水管L2を介して接続され、越流部27でオーバーフローした嫌気処理水が嫌気リアクタ21から送水管L2を通って次工程の嫌気処理水受入部4の上部に供給されるようになっている。なお、越流部27及び送水管L2は、排水をリアクタ21から排出する排出装置を構成している。また、嫌気リアクタ21の最上部の排出口と図示しないメタンガス処理装置又はメタンガス回収利用装置とはガス管L3を介して接続され、図示しないポンプの駆動によりメタンガスが嫌気リアクタ21の気相部28からガス管L3を通ってメタンガス処理装置又はメタンガス回収利用装置に排出されるようになっている。
(First embodiment)
A first embodiment will be described with reference to FIG.
The wastewater treatment apparatus 1 of this embodiment includes a raw water supply source 2, a pump 3, an anaerobic reactor 21, and an anaerobic treated water receiving unit 4. The raw water supply source 2 is a facility for temporarily storing the inflowing wastewater by flowing in organic wastewater such as sewage from a wastewater generation source (not shown). The outlet of the raw water supply source 2 and the inlet at the bottom of the anaerobic reactor 21 are connected via a water supply pipe L1, and the drainage is driven from the raw water supply source 2 through the water supply pipe L1 by driving the pump 3 as a supply device. 21 is introduced at the bottom. Further, the upper outlet of the anaerobic reactor 21 and the anaerobic treated water receiving unit 4 are connected via the water pipe L2, and the anaerobic treated water overflowed at the overflow section 27 passes through the water pipe L2 from the anaerobic reactor 21. It is supplied to the upper part of the anaerobic treated water receiving part 4 of the process. The overflow section 27 and the water supply pipe L2 constitute a discharge device that discharges the wastewater from the reactor 21. Further, the uppermost discharge port of the anaerobic reactor 21 and a methane gas processing device or a methane gas recovery and utilization device (not shown) are connected via a gas pipe L3. The gas is discharged to the methane gas processing device or the methane gas recovery and utilization device through the gas pipe L3.
 嫌気リアクタ21は、円錐状の下部及び円筒状の本体部を含んだリアクタ本体21aを有している。上述した排水導入口はリアクタ本体21aの円錐状下部の最下部に設けられている。リアクタ本体21aの上部は閉じられ、内部が密閉されている。 The anaerobic reactor 21 has a reactor main body 21a including a conical lower portion and a cylindrical main body. The above-described drainage introduction port is provided at the lowermost part of the conical lower portion of the reactor main body 21a. The upper part of the reactor main body 21a is closed and the inside is sealed.
 リアクタ本体21aの上部には越流部27が設けられており、越流部27から溢れ出た排水、即ち処理水が送水管L2を通って嫌気処理水受入部4に流れ込むようになっている。嫌気処理水受入部4は、次工程の処理を行うための設備の一部に該当し、例えば好気性微生物を有する好気リアクタである。 An overflow section 27 is provided in the upper part of the reactor main body 21a, and waste water overflowing from the overflow section 27, that is, treated water flows into the anaerobic treated water receiving section 4 through the water pipe L2. . The anaerobic treated water receiving unit 4 corresponds to a part of equipment for performing the process of the next process, and is an aerobic reactor having aerobic microorganisms, for example.
 また、リアクタ本体21aの上部には担体14が配置されている。これら担体14は、紐状であり、越流部27の直下に配置された担体支持部24に相互に間隔をあけて吊り下げられている。各担体14は、紐13と、これにブラシ状に取り付けられた多数の繊維25とを含んでいる。以下、リアクタ本体21aの内部空間のうち、これら担体14が設置された領域を「担体部」という。 Further, the carrier 14 is disposed on the upper part of the reactor main body 21a. These carriers 14 have a string shape, and are suspended from a carrier support portion 24 arranged immediately below the overflow portion 27 with a space therebetween. Each carrier 14 includes a string 13 and a number of fibers 25 attached to the string 13 in a brush shape. Hereinafter, a region where the carrier 14 is installed in the internal space of the reactor main body 21a is referred to as a “carrier portion”.
 リアクタ本体21aの内部空間のうち下方の部分には、嫌気性微生物グラニュールが嫌気リアクタの有効容積(満水時の水容積)の約1/4(約25%)の量で充填されており、これらグラニュールは凝集体層22を形成している。凝集体層22は、所定の嫌気性微生物をリアクタ本体21a内に投入し、沈殿させ、凝集させることによって生成されるグラニュール30を含んだ流動床である。下水などの浮遊性の汚濁物質を含む水を原水とする場合、この凝集体層21には、配管L1を介して流入する浮遊物質が蓄積する。凝集体層22のグラニュール30及び比重の大きな浮遊物質は、比重が水より大きいため、リアクタ本体21aの下部の排水中に滞留して流動床を形成する。 The lower part of the internal space of the reactor body 21a is filled with anaerobic microorganism granules in an amount of about 1/4 (about 25%) of the effective volume of the anaerobic reactor (water volume when full). These granules form an aggregate layer 22. The agglomerate layer 22 is a fluidized bed containing granules 30 generated by putting a predetermined anaerobic microorganism into the reactor main body 21a, causing it to settle and agglomerating. When water containing floating contaminants such as sewage is used as raw water, floating substances flowing into the aggregate layer 21 through the pipe L1 accumulate. Since the granule 30 of the aggregate layer 22 and the suspended solid having a large specific gravity are larger than the specific gravity of water, it stays in the drainage at the lower part of the reactor main body 21a and forms a fluidized bed.
 なお、排水中に含まれる有機成分がメタン発酵菌により分解される際に式(3)に従って発生するメタンガスや二酸化炭素ガスがグラニュール30や浮遊物質に付着すると、それらは、図2に示す気泡付着グラニュール及び気泡付着浮遊物質32となる。気泡付着グラニュール及び気泡付着浮遊物質32は、水より小さな比重を有しているが如く振舞う。即ち、気泡付着グラニュール及び気泡付着浮遊物質32は、リアクタ内の排水の上昇流にのって浮上し、リアクタ外に流出しやすくなる。しかしながら、この排水処理装置1は後述する気固液分離装置を有しているため、グラニュール及び浮遊物質30から気泡31を効率よく分離し、リアクタ21から排出される処理水中へのグラニュール及び浮遊物質の混入を抑制することができる。 When organic components contained in the wastewater are decomposed by the methane fermentation bacteria and methane gas or carbon dioxide gas generated according to the formula (3) adheres to the granules 30 or suspended solids, these are the bubbles shown in FIG. The adhering granule and the bubble adhering floating substance 32 are obtained. The bubble adhesion granules and the bubble adhesion suspended substance 32 behave as if they have a specific gravity smaller than that of water. That is, the bubble adhering granules and the bubble adhering floating substance 32 float on the rising flow of the waste water in the reactor and easily flow out of the reactor. However, since this waste water treatment apparatus 1 has a gas-solid-liquid separation apparatus, which will be described later, the bubbles 31 are efficiently separated from the granules and suspended solids 30, and the granules into the treated water discharged from the reactor 21 and Mixing of floating substances can be suppressed.
 リアクタ本体21a内には、気固液分離装置としての流出防止構造体10が設けられている。流出防止構造体10は、リアクタ本体21a内において凝集体層22よりも上方に設置され、グラニュール及び浮遊物質30のリアクタ外への流出を抑制する。ここでは、流出防止構造体10は、気泡付着グラニュール及び気泡付着浮遊物質32を、リアクタ本体内に滞留している排水とその上方の気相との界面へと導き、この界面において気泡が除去されたグラニュール又はその断片と浮遊物質とを、担体14に接触させることなしに、上記界面から凝集体層22と担体14とによって挟まれた領域へと導く。更に、流出防止構造体10は、リアクタ本体21aの内部空間を凝集体層22と担体部との間で仕切り、気泡付着グラニュール及び気泡付着浮遊物質32を、担体14に接触させることなしに、上記領域から上記界面へと導く。 The outflow prevention structure 10 as a gas-solid-liquid separator is provided in the reactor main body 21a. The outflow prevention structure 10 is installed above the aggregate layer 22 in the reactor main body 21a, and suppresses outflow of granules and suspended substances 30 to the outside of the reactor. Here, the outflow prevention structure 10 guides the bubble adhesion granules and the bubble adhesion floating substance 32 to the interface between the waste water staying in the reactor main body and the gas phase above it, and the bubbles are removed at this interface. The granulated particles or fragments thereof and the suspended substance are guided from the interface to a region sandwiched between the aggregate layer 22 and the carrier 14 without contacting the carrier 14. Furthermore, the outflow prevention structure 10 partitions the internal space of the reactor main body 21a between the aggregate layer 22 and the carrier part, and without bringing the bubble adhesion granules and the bubble adhesion floating substance 32 into contact with the carrier 14. Lead from the region to the interface.
 流出防止構造体10は、案内部材11と、経路形成部材12と、囲い部材16とを含んでいる。 The outflow prevention structure 10 includes a guide member 11, a path forming member 12, and a surrounding member 16.
 案内部材11は、凝集体層22と担体部との間に設置されている。案内部材11は、下面が下方から上方へ向けて先細りした形状を有し、その頂部に対応した位置に開口が設けられている。案内部材11は、外側の縁とリアクタ本体21aの内周面との間に隙間を形成している。 The guide member 11 is installed between the aggregate layer 22 and the carrier part. The guide member 11 has a shape in which the lower surface tapers from the lower side to the upper side, and an opening is provided at a position corresponding to the top portion. The guide member 11 forms a gap between the outer edge and the inner peripheral surface of the reactor main body 21a.
 経路形成部材12は、案内部材11の開口から上方へ延びている。経路形成部材12は、気泡付着グラニュール及び気泡付着浮遊物質32が案内部材11の下方の領域から気液界面へと担体25に接触することなしに浮上し、気泡から分離したグラニュール又はその断片と気泡から分離した浮遊物質とが上記界面から案内部材11の下方の領域へと担体25に接触することなしに沈降する経路を形成している。 The path forming member 12 extends upward from the opening of the guide member 11. The path forming member 12 is a granule or a fragment thereof separated from the bubbles, with the bubble adhering granules and the bubble adhering suspended substances 32 rising from the region below the guide member 11 to the gas-liquid interface without contacting the carrier 25. And a suspended substance separated from the bubbles form a path for sedimentation from the interface to a region below the guide member 11 without contacting the carrier 25.
 囲い部材16は、上記界面の一部を周囲から隔離するように取り囲んでいる。囲い部材16は、経路形成部材12の上端と繋がっている。 The surrounding member 16 surrounds a part of the interface so as to isolate it from the surroundings. The surrounding member 16 is connected to the upper end of the path forming member 12.
 ここでは、案内部材11は、担体部の下方に設置された下部円錐部11であり、経路形成部材12は上部円筒部12である。 Here, the guide member 11 is the lower conical portion 11 installed below the carrier portion, and the path forming member 12 is the upper cylindrical portion 12.
 下部円錐部11は、下方に向かって拡径し、頂部において開口した円錐形状をなしている。下部円錐部11は、凝集体層22の直上であり且つ担体部の直下に位置している。即ち、下部円錐部11は、凝集体層22と担体部との間に挟まれたスペースに設置されている。下部円錐部11の大径部は、排水が下部円錐部11とリアクタ本体21aとの間隙を通過することを可能とし、且つ、気泡付着グラニュール及び浮遊物質32が担体部へ侵入するのを防ぐべく、リアクタ本体21aの円筒部分の内径より少しだけ小さい。 The lower conical part 11 has a conical shape that expands downward and opens at the top. The lower cone portion 11 is located immediately above the aggregate layer 22 and directly below the carrier portion. That is, the lower cone part 11 is installed in a space sandwiched between the aggregate layer 22 and the carrier part. The large-diameter portion of the lower cone portion 11 allows drainage to pass through the gap between the lower cone portion 11 and the reactor main body 21a, and prevents the bubble adhering granules and the suspended substance 32 from entering the carrier portion. Therefore, it is slightly smaller than the inner diameter of the cylindrical portion of the reactor main body 21a.
 上部円筒部12は、その下端開口が下部円錐部11の開口に連通し、担体部の中央部分を貫通して上方の液面15、即ち、リアクタ本体21a内に滞留している排水とその上方の気相部28との界面に達している。更に、上部円筒部12の上端部は、囲い部材16に連続している。囲い部材16は、液面15より上方に突出するように設けられ、その上端は液面15より高いところに位置している。上部円筒部12は、気泡付着グラニュール及び浮遊物質32が上昇する経路17と気泡離脱グラニュール及び浮遊物質30が沈降する経路19とを兼ねたグラニュール及び浮遊物質移動経路を形成している。また、囲い部材16は、グラニュール及び浮遊物質30から気泡31が撹拌作用によって離脱する経路18(図2参照)を形成している。 The upper cylindrical portion 12 has a lower end opening communicating with the opening of the lower conical portion 11, penetrating through the central portion of the carrier portion, and the upper liquid level 15, that is, the waste water staying in the reactor body 21 a and the upper portion thereof. It reaches the interface with the gas phase portion 28. Further, the upper end portion of the upper cylindrical portion 12 is continuous with the surrounding member 16. The enclosing member 16 is provided so as to protrude upward from the liquid level 15, and its upper end is positioned higher than the liquid level 15. The upper cylindrical portion 12 forms a granule and floating substance movement path that serves as the path 17 through which the bubble adhering granules and the floating substance 32 ascend and the path 19 through which the bubble separation granules and the floating substance 30 settle. Moreover, the surrounding member 16 forms the path | route 18 (refer FIG. 2) from which the bubble 31 isolate | separates from a granule and the suspended | floating matter 30 by stirring action.
 嫌気リアクタ21内には、担体部の上方に気相部28が設けられている。液面15に浮上したメタンガスは、気相部28に開放される。気相部28は、嫌気リアクタ21の最上部の排出口及びガス管L3を介してメタンガス処理装置(図示せず)又はメタンガス回収装置(図示せず)に連通している。 In the anaerobic reactor 21, a gas phase part 28 is provided above the carrier part. The methane gas that has floated to the liquid surface 15 is released to the gas phase portion 28. The gas phase unit 28 communicates with a methane gas processing device (not shown) or a methane gas recovery device (not shown) via the uppermost outlet of the anaerobic reactor 21 and the gas pipe L3.
 本実施形態では、図示のように、囲い部材16の内径を上部円筒部12の内径と同じにしているが、他の構造を採用してもよい。例えば、囲い部材16の内径は、上部円筒部12の内径よりも大きくすることができる。このようにすると、囲い部材16で囲われる液面15の面積が増加するため、図2に示すように液面15に浮上した気泡付着グラニュール及び浮遊物質32から気泡31が離脱しやすくなる。 In the present embodiment, as illustrated, the inner diameter of the surrounding member 16 is the same as the inner diameter of the upper cylindrical portion 12, but other structures may be employed. For example, the inner diameter of the surrounding member 16 can be larger than the inner diameter of the upper cylindrical portion 12. In this case, the area of the liquid surface 15 surrounded by the enclosing member 16 is increased, so that the air bubbles 31 are likely to be detached from the bubble adhering granules and floating substances 32 that have floated on the liquid surface 15 as shown in FIG.
 本実施形態の作用を説明する。 
 下水は、ポンプ3の駆動により原水供給源2から送水管L1を介して嫌気リアクタ本体21aの底部に導入され、嫌気リアクタ21内に投入されている嫌気性微生物凝集体層22内の嫌気性微生物グラニュール30によって、下水中の有機性汚濁物質が式(1)乃至(3)の反応に従って分解され、排水が浄化される。
The operation of this embodiment will be described.
The sewage is introduced into the bottom of the anaerobic reactor main body 21 a from the raw water supply source 2 through the water supply pipe L 1 by driving the pump 3, and anaerobic microorganisms in the anaerobic microbial aggregate layer 22 introduced into the anaerobic reactor 21. By the granule 30, the organic pollutant in the sewage is decomposed according to the reactions of the formulas (1) to (3), and the waste water is purified.
 図2に示すように、分解・浄化処理後、嫌気性微生物凝集体層22内のグラニュール30の一部は、その表面にメタンガスからなる気泡31が多量に付着して気泡付着グラニュール32となる。下水などの浮遊性の汚濁物質を含む水を原水とする場合、この凝集体層21には、配管L1を介して流入する浮遊物質も蓄積し、その一部は気泡付着浮遊物質となる。また、この気泡付着グラニュール及び浮遊物質32は、比重が水よりも小さいことから、非常に高い上昇線速度で上昇する。この過程で、気泡付着グラニュール及び浮遊物質32は、下部円錐部11によって上部円筒部12へと集められ、上部円筒部12内の上昇経路17を通って嫌気リアクタ21上部の液面15まで到達し、液面に浮上する。 As shown in FIG. 2, after the decomposition / purification treatment, a part of the granules 30 in the anaerobic microorganism aggregate layer 22 has a large amount of bubbles 31 made of methane gas adhering to the surface, and bubbles adhering granules 32. Become. When water containing floating contaminants such as sewage is used as raw water, suspended solids that flow in through the pipe L1 also accumulate in the aggregate layer 21, and some of the suspended solids become bubble-attached suspended solids. Moreover, since the specific gravity of this bubble adhesion granule and the suspended | floating matter 32 is smaller than water, it raises at a very high ascending linear velocity. In this process, the bubble adhering granules and the suspended matter 32 are collected by the lower cone portion 11 into the upper cylindrical portion 12 and reach the liquid level 15 above the anaerobic reactor 21 through the rising path 17 in the upper cylindrical portion 12. And floats to the liquid surface.
 気泡付着グラニュール及び浮遊物質32は、この液面15において撹拌され、液面15又は液面直下の経路18において気相部28の大気と接触する。その結果、メタンガスからなる気泡31が、グラニュール及び浮遊物質30から離脱する。 The bubble adhering granules and the suspended substance 32 are stirred at the liquid surface 15 and come into contact with the atmosphere of the gas phase portion 28 in the liquid surface 15 or the path 18 immediately below the liquid surface. As a result, the bubbles 31 made of methane gas are detached from the granules and the suspended matter 30.
 グラニュール及び浮遊物質30から離脱したメタンガスは、気相部28に一時的に貯留され、ガス管L3のバルブ(図示せず)を定期的に又は必要に応じて開けることにより、気相部28から前述のメタンガス処理装置又はメタンガス回収利用装置へと排出される。このメタンガスは、メタンガス処理装置において、無害化処理されるか、又は、電気エネルギー源若しくは熱エネルギー源として利用される。 The methane gas separated from the granules and the suspended solids 30 is temporarily stored in the gas phase portion 28, and the valve (not shown) of the gas pipe L3 is opened periodically or as necessary, so that the gas phase portion 28 is opened. To the above-mentioned methane gas treatment device or methane gas recovery and utilization device. The methane gas is detoxified in the methane gas processing apparatus, or is used as an electrical energy source or a thermal energy source.
 また、気泡離脱グラニュール及び浮遊物質30は、本来の比重、即ち、水の比重1.0よりも大きな比重を有している。従って、気泡離脱グラニュール及び浮遊物質30は、本来の沈降速度で沈降経路19を通って沈降し、嫌気リアクタ下部の凝集体層22に沈殿する。 In addition, the bubble detachment granules and the suspended substance 30 have a specific gravity larger than the original specific gravity, that is, the specific gravity of water 1.0. Accordingly, the bubble detachment granules and the suspended substance 30 settle through the sedimentation path 19 at the original sedimentation rate and settle on the aggregate layer 22 below the anaerobic reactor.
 他方、浄化された水は、下部円錐部11の最下端と、リアクタ本体21aの内周面との間の間隙を通過し、その後、担体部を上向きに通過し、更に液面15、越流部27、送水管L2を順次通過して、嫌気リアクタ処理水として嫌気リアクタ21から排出され、次工程の装置4(例えば好気リアクタ)に送られる。 On the other hand, the purified water passes through a gap between the lowermost end of the lower conical part 11 and the inner peripheral surface of the reactor main body 21a, and then passes upward through the carrier part. It passes through the unit 27 and the water supply pipe L2 sequentially, is discharged from the anaerobic reactor 21 as anaerobic reactor treated water, and is sent to the apparatus 4 (for example, an aerobic reactor) in the next step.
 また、リアクタ本体21aの内周面との間の間隙を上向きに通過したグラニュール及び浮遊物質30は、担体14間の間隙を通過する際に、担体14と接触する。これにより、グラニュール及び浮遊物質30は、担体14に捕捉される。従って、グラニュール及び浮遊物質30は、処理水に随伴されてリアクタ外に流出することなく、嫌気リアクタ21の内部に留まる。 Further, the granule and the suspended substance 30 that have passed upward through the gap between the inner peripheral surface of the reactor main body 21a come into contact with the carrier 14 when passing through the gap between the carriers 14. Thereby, the granules and the suspended solids 30 are captured by the carrier 14. Therefore, the granules and the suspended matter 30 stay inside the anaerobic reactor 21 without being accompanied by the treated water and flowing out of the reactor.
 本実施形態の効果を以下に列記する。 
 (1)簡易構造の流出防止構造体の採用で、設置とメンテナンスとが容易である。 
 流出防止構造体10は、下部円錐部11と上部円筒部12とを一体化した単一の板で構成され得るので、上部に吊り下げる等の簡易な設置が可能であるという利点がある。また、このような流出防止構造体10を採用すると、流出防止構造体10が破損した場合やリアクタ本体21aの内部が汚れた場合に、メンテナンスやクリーニングが必要になったときであっても、リアクタ21の上部の蓋を開けることにより流出防止構造体10をリアクタ内から引き出すことができるため、流出防止構造体10に対する清掃等の作業をリアクタの外部で行うことができる。
The effects of this embodiment are listed below.
(1) Installation and maintenance are easy by adopting a simple structure of the outflow prevention structure.
Since the outflow prevention structure 10 can be composed of a single plate in which the lower conical part 11 and the upper cylindrical part 12 are integrated, there is an advantage that simple installation such as hanging from the upper part is possible. Further, when such an outflow prevention structure 10 is employed, even if the outflow prevention structure 10 is damaged or the inside of the reactor main body 21a becomes dirty, even when maintenance or cleaning is required, the reactor Since the outflow prevention structure 10 can be pulled out from the reactor by opening the lid on the upper part of the apparatus 21, operations such as cleaning the outflow prevention structure 10 can be performed outside the reactor.
 (2)紐状の担体の採用で、設置とメンテナンスとが容易である。 
 紐状の担体14を上部から吊り下げる構造を採用したので、上記(1)と同様に、設置とメンテナンスとが容易になる。また、担体14は、繊維25を含んでいるため、グラニュール30を容易に捕捉する。従って、グラニュール30のリアクタ外への流出防止を更に促進することができる。
(2) Use of a string-like carrier facilitates installation and maintenance.
Since the structure in which the string-like carrier 14 is suspended from the upper part is employed, installation and maintenance are facilitated as in the above (1). Moreover, since the support | carrier 14 contains the fiber 25, it capture | acquires the granule 30 easily. Therefore, prevention of the outflow of the granules 30 to the outside of the reactor can be further promoted.
 なお、担体は、紐状のもののみに限られる訳ではない。例えば、担体部の上方及び下方にメッシュを配置し、それらメッシュ間の領域に、円筒状、球状、角状などの形状を有しているプラスチック担体を設置してもよい。 Note that the carrier is not limited to a string-like one. For example, meshes may be arranged above and below the carrier part, and a plastic carrier having a cylindrical shape, a spherical shape, a square shape, or the like may be installed in a region between the meshes.
 (第2実施形態)
 次に、図3を参照して第2実施形態について説明する。なお、本実施形態と第1実施形態とに共通する事項については、説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. Note that a description of matters common to the present embodiment and the first embodiment will be omitted.
 図3に示すように、本実施形態の排水処理装置1Aでは、経路形成部材は、外筒12及び内筒20からなる二重管構造を有している。外筒12及び内筒20は、気泡付着グラニュール及び浮遊物質32が上昇する上昇経路41bと、気泡離脱グラニュール30が沈降する沈降経路41dとを形成する経路形成部材である。 As shown in FIG. 3, in the wastewater treatment apparatus 1 </ b> A of the present embodiment, the path forming member has a double tube structure including an outer cylinder 12 and an inner cylinder 20. The outer cylinder 12 and the inner cylinder 20 are path forming members that form a rising path 41b in which the bubble adhering granules and the suspended matter 32 rise and a settling path 41d in which the bubble detaching granules 30 sink.
 外筒12は、内筒20とともに、気泡付着グラニュール及び浮遊物質32が上昇する上昇経路41bを形成している。具体的には、外筒12は、内筒20を取り囲んでおり、それらの間に上昇経路41bを形成している。外筒12の上端部は、それとほぼ同径の囲い部材16に繋がっている。 The outer cylinder 12 and the inner cylinder 20 form an ascending path 41b through which the bubble adhering granules and the suspended substance 32 ascend. Specifically, the outer cylinder 12 surrounds the inner cylinder 20 and forms a rising path 41b between them. The upper end portion of the outer cylinder 12 is connected to a surrounding member 16 having substantially the same diameter as that of the outer tube 12.
 内筒20は、気泡離脱グラニュール30が沈降する沈降経路41dを形成している。内筒20は、外筒12の中に挿入され、上端が液面15において開口し、且つ、下端が凝集体層22の直上の領域において開口している。また、内筒20は、図示しない連結部材により、下部円錐部11と外筒12と囲い部材16とを含んだ流出防止構造体10Aに連結されている。 The inner cylinder 20 forms a sedimentation path 41d in which the bubble separation granules 30 settle. The inner cylinder 20 is inserted into the outer cylinder 12, the upper end is opened at the liquid level 15, and the lower end is opened in a region immediately above the aggregate layer 22. Further, the inner cylinder 20 is connected to an outflow prevention structure 10 </ b> A including the lower cone portion 11, the outer cylinder 12, and the surrounding member 16 by a connecting member (not shown).
 本実施形態の作用を説明する。 
 気泡付着グラニュール及び浮遊物質32は、付着した気泡31の浮力によって流出防止構造体10Aの下部円錐部11に集められ、経路41aから外筒12の経路41bを通過して最上部の液面15まで達する。次いで、気泡付着グラニュール及び浮遊物質32(図中の黒丸)は、撹拌経路41cにおいて撹拌作用により気泡が除去され、気泡離脱グラニュール及び浮遊物質30(図中の白丸)となって内筒20に流れ込む。その後、気泡離脱グラニュール及び浮遊物質30は、沈降経路41dを通って沈降し、リアクタ下部の凝集体層22に沈殿する。
The operation of this embodiment will be described.
The bubble adhering granules and suspended substances 32 are collected in the lower conical part 11 of the outflow prevention structure 10A by the buoyancy of the adhering bubbles 31 and pass from the path 41a through the path 41b of the outer cylinder 12 to the uppermost liquid level 15. Reach up to. Next, the bubble adhering granules and the floating substance 32 (black circles in the figure) are removed by the stirring action in the stirring path 41c, and become bubble separation granules and floating substances 30 (white circles in the figure). Flow into. Thereafter, the bubble detachment granules and the suspended substance 30 settle through the sedimentation path 41d and settle on the aggregate layer 22 at the bottom of the reactor.
 本実施形態の効果を説明する。 
 本実施形態では、外筒12と内筒20とからなる二重管構造を採用したことにより、気泡付着グラニュール及び浮遊物質32の上向流と、気泡離脱グラニュール及び浮遊物質107の下降流とを別々の経路に分けて通流させることが可能となる。それ故、グラニュールとメタンガスとの気液分離が促進される。その結果、メタンガスの回収効率が高まる。また、気泡付着グラニュール及び浮遊物質が減少するので、グラニュールの流出が抑制され、浮遊物質は嫌気リアクタ内に長く滞留する。従って、処理水の品質の低下は更に抑制され、浮遊物質の分解(メタンガス化)が更に促進される。
The effect of this embodiment will be described.
In the present embodiment, by adopting a double tube structure composed of the outer cylinder 12 and the inner cylinder 20, the upward flow of the bubble adhering granules and the suspended matter 32 and the downward flow of the bubble detaching granules and the suspended matter 107 are achieved. Can be divided into separate routes and allowed to flow. Therefore, gas-liquid separation between granules and methane gas is promoted. As a result, the recovery efficiency of methane gas is increased. In addition, since the bubble adhering granules and suspended substances are reduced, the outflow of granules is suppressed, and the suspended substances stay in the anaerobic reactor for a long time. Therefore, the deterioration of the quality of treated water is further suppressed, and the decomposition of suspended substances (methane gasification) is further promoted.
 また、内筒20を流出防止構造体10Aと一体化して、これを上部から吊り下げる構造構造を採用した場合、気固液分離装置の設置やメンテナンスが容易となる。 Further, when the inner cylinder 20 is integrated with the outflow prevention structure 10A and a structure in which the inner cylinder 20 is suspended from the upper part is adopted, the installation and maintenance of the gas-solid-liquid separation device becomes easy.
 (第3実施形態)
 次に、図4を参照して第3実施形態について説明する。なお、本実施形態と第2実施形態とに共通する事項については、説明を省略する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG. Note that a description of matters common to the present embodiment and the second embodiment will be omitted.
 図4に示すように、本実施形態の排水処理装置1Bでは、下部円錐部11の下方に第2の流出防止構造体50を設置している。この流出防止構造体50は、リアクタ本体21aの内周面から中央に向けて突出した、断面が三角形状の環状部材である。流出防止構造体50は、整流部材としての役割を果たす。具体的には、流出防止構造体50は、下部円錐部11とリアクタ本体21aとの間の僅かな間隙を通って担体14に侵入しようとする気泡付着グラニュール及び浮遊物質32を阻止する。なお、流出防止構造体10Bは、図3を参照しながら説明した流出防止構造体10Aと同様である。 As shown in FIG. 4, in the wastewater treatment apparatus 1 </ b> B of the present embodiment, the second outflow prevention structure 50 is installed below the lower cone portion 11. The outflow prevention structure 50 is an annular member having a triangular cross section that protrudes from the inner peripheral surface of the reactor main body 21a toward the center. The outflow prevention structure 50 serves as a rectifying member. Specifically, the outflow prevention structure 50 prevents the bubble adhering granules and suspended substances 32 from entering the carrier 14 through a slight gap between the lower cone portion 11 and the reactor main body 21a. The outflow prevention structure 10B is the same as the outflow prevention structure 10A described with reference to FIG.
 本実施形態の作用を説明する。 
 本実施形態では、流出防止構造体50は、気泡付着グラニュール及び浮遊物質32が下部円錐部11とリアクタ本体21aとの間の経路41fを通って担体部へ侵入するのを抑制する。従って、気泡付着グラニュール及び浮遊物質32のリアクタ外への流出が更に有効に抑制される。
The operation of this embodiment will be described.
In the present embodiment, the outflow prevention structure 50 prevents the bubble adhering granules and the suspended substance 32 from entering the carrier portion through the path 41f between the lower cone portion 11 and the reactor main body 21a. Therefore, the bubble adhesion granules and the floating substance 32 are more effectively suppressed from flowing out of the reactor.
 本実施形態の効果を説明する。 
 上記の通り、本実施形態では、流出防止構造体50は、気泡付着グラニュール及び浮遊物質32が下部円錐部11とリアクタ本体21aとの間の経路41fを通って担体部へ侵入するのを抑制する。従って、グラニュールの流出は更に抑制され、処理水の品質の低下は更に抑制される。
The effect of this embodiment will be described.
As described above, in this embodiment, the outflow prevention structure 50 suppresses the bubble adhering granules and the suspended matter 32 from entering the carrier portion through the path 41f between the lower cone portion 11 and the reactor main body 21a. To do. Therefore, the granule outflow is further suppressed, and the deterioration of the quality of the treated water is further suppressed.
 (第4実施形態)
 次に、図5を参照して第4実施形態について説明する。なお、本実施形態と第3実施形態とに共通する事項については、説明を省略する。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG. Note that a description of matters common to the present embodiment and the third embodiment will be omitted.
 図5に示すように、本実施形態の排水処理装置1Cでは、気固液分離装置は、第3の流出防止構造体51を更に含んでいる。流出防止構造体51は、下部円錐部11の下方に、下部円錐部11に対して平行に配置されている。 As shown in FIG. 5, in the wastewater treatment apparatus 1 </ b> C of the present embodiment, the gas-solid liquid separation apparatus further includes a third outflow prevention structure 51. The outflow prevention structure 51 is disposed below the lower cone portion 11 and parallel to the lower cone portion 11.
 本実施形態の効果を説明する。 
 流出防止構造体51が無い場合には、図4に示すように下降経路41eの流れと上昇経路41gの流れとが衝突することにより、図5に示す経路41hのように上向流が屈曲する場合がある。この屈曲した経路41hが生じた場合には、グラニュール及び浮遊物質の一部が経路41hを介して流出防止構造体10Cの外部に流出するおそれがある。
The effect of this embodiment will be described.
When the outflow prevention structure 51 is not present, the upward flow is bent as shown in the path 41h shown in FIG. 5 by the collision of the flow of the descending path 41e and the flow of the rising path 41g as shown in FIG. There is a case. When the bent path 41h is generated, there is a possibility that a part of the granule and the suspended substance flows out of the outflow prevention structure 10C through the path 41h.
 本実施形態の装置1Cでは、経路41hは流出防止構造体51によって遮断され、気泡付着グラニュール及び浮遊物質は経路41aを介して上方に移動する。従って、グラニュール及び浮遊物質の更に完全な流出防止を図ることが可能となる。 In the apparatus 1C of the present embodiment, the path 41h is blocked by the outflow prevention structure 51, and the bubble adhering granules and suspended substances move upward through the path 41a. Therefore, it is possible to prevent the granules and suspended substances from flowing out more completely.
 (第5実施形態)
 次に、図6を参照して第5実施形態について説明する。なお、本実施形態と第4実施形態とに共通する事項については、説明を省略する。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIG. Note that a description of matters common to the present embodiment and the fourth embodiment will be omitted.
 図6に示すように、本実施形態の排水処理装置1Dでは、嫌気リアクタ21の後段に好気リアクタ60を設置している。好気リアクタ60の上部は、送水管L2を介して嫌気リアクタ21の排出口に接続されている。好気リアクタ60は、嫌気リアクタが処理した排水を処理する。 As shown in FIG. 6, in the wastewater treatment apparatus 1 </ b> D of this embodiment, an aerobic reactor 60 is installed at the subsequent stage of the anaerobic reactor 21. The upper part of the aerobic reactor 60 is connected to the outlet of the anaerobic reactor 21 via the water supply pipe L2. The aerobic reactor 60 processes the waste water that has been processed by the anaerobic reactor.
 好気リアクタ60の上部には、担体支持部61が設けられている。担体支持部61には、紐状接触材である担体62が吊り下げられている。担体52は、好気性微生物を担持している。 A carrier support 61 is provided on the upper part of the aerobic reactor 60. A carrier 62 that is a string-like contact material is suspended from the carrier support portion 61. The carrier 52 carries an aerobic microorganism.
 リアクタ60の内部空間のうち、担体62が設置された領域の下方の領域は、下部空隙部63である。リアクタ60の側壁のうち空隙部63と隣接した部分には、送水管L4を介してタンク64が接続されている。タンク64には、リアクタ60で処理された水が、送水管L4を介して供給される。 In the internal space of the reactor 60, the area below the area where the carrier 62 is installed is a lower gap 63. A tank 64 is connected to a portion of the side wall of the reactor 60 adjacent to the gap 63 via a water supply pipe L4. Water treated in the reactor 60 is supplied to the tank 64 via a water supply pipe L4.
 本実施形態の作用を説明する。 
 嫌気リアクタ21では、図1乃至図5を参照しながら説明した通り、下水1中の有機性汚濁物質は、凝集体層22によって浄化される。また、グラニュール及び浮遊物質にメタンガスが付着結合して浮力により上昇した場合でも、気固液分離装置によりグラニュール及び浮遊物質の流出が抑制されるとともに、担体14によって担持された嫌気性微生物による浄化が行われる。
The operation of this embodiment will be described.
In the anaerobic reactor 21, as described with reference to FIGS. 1 to 5, the organic pollutant in the sewage 1 is purified by the aggregate layer 22. Further, even when methane gas adheres to the granule and suspended matter and rises due to buoyancy, the gas-solid-liquid separation device suppresses the outflow of the granule and suspended matter, and is caused by the anaerobic microorganisms supported by the carrier 14. Purification is performed.
 嫌気リアクタ21によって処理された水は、嫌気リアクタ21から送水管L4を通って好気リアクタ60の担体62へと供給される。この処理水中に残存する有機性汚濁物質や、嫌気リアクタ21内の嫌気性微生物の1種である硫酸還元菌により生じた溶存性の硫化水素は、担体62によって担持された好気性微生物により、下式(4)及び(5)の反応に従って分解する。 The water treated by the anaerobic reactor 21 is supplied from the anaerobic reactor 21 to the carrier 62 of the aerobic reactor 60 through the water supply pipe L4. Organic pollutants remaining in the treated water and dissolved hydrogen sulfide generated by sulfate-reducing bacteria which are one type of anaerobic microorganisms in the anaerobic reactor 21 are reduced by aerobic microorganisms supported by the carrier 62. Decomposes according to the reactions of formulas (4) and (5).
 有機汚濁物質+酸素→二酸化炭素+水
  ((Cxyz)+(x+y/4-z/2)O2→xCO2+y/2H2O) …(4)
 硫化水素+酸素→硫酸+水素イオン
  (H2S+2O2→SO4+2H+) …(5)
 本実施形態の効果を説明する。 
 嫌気リアクタ21のみならず、好気リアクタ60でも、式(4)のように有機性汚濁物質を浄化処理するため、殆どの有機性汚濁物質が除去された水が得られる。それ故、水の排出先である河川、湖沼、下水道等の水質保全に大きく寄与できる。また、好気リアクタ60は、紐状の担体62を用いているので、下水中に含まれる浮遊物質が流出した場合や、嫌気リアクタ21内の嫌気性微生物の微小な細菌又は細菌群が、負荷変動や下水中の阻害物質混入などにより増殖速度が低下したり死滅したりして流出した場合であっても、それらは担体62により捕獲される。それ故、それらが好気リアクタ60が排出する処理水中に流出することがなく、当該処理水の水質が良好に維持できる。
Organic pollutants + oxygen → carbon dioxide + water ((C x H y O z ) + (x + y / 4-z / 2) O 2 → xCO 2 + y / 2H 2 O) ... (4)
Hydrogen sulfide + oxygen → sulfuric acid + hydrogen ion (H 2 S + 2O 2 → SO 4 + 2H + ) (5)
The effect of this embodiment will be described.
Since not only the anaerobic reactor 21 but also the aerobic reactor 60 purifies the organic pollutant as shown in the formula (4), water from which most of the organic pollutant is removed is obtained. Therefore, it can greatly contribute to water quality conservation of rivers, lakes, sewers, etc., from which water is discharged. Further, since the aerobic reactor 60 uses the string-like carrier 62, when a suspended substance contained in the sewage flows out or when microbacteria or bacterial groups of anaerobic microorganisms in the anaerobic reactor 21 are loaded, Even if the growth rate decreases or dies out due to fluctuations, contamination of sewage, etc., they are captured by the carrier 62. Therefore, they do not flow out into the treated water discharged from the aerobic reactor 60, and the quality of the treated water can be maintained well.
 本実施形態では、好気リアクタ及び嫌気リアクタの担体として紐状の担体を一例として挙げたが、これら担体は微生物が付着し易いものであればどのようなものでもよい。例えば、紐状でなくとも一般的に水処理用に市販されている円筒状、球状、角状などのプラスチック担体であってもよい。 In this embodiment, a string-like carrier is used as an example of a carrier for an aerobic reactor and an anaerobic reactor, but any carrier may be used as long as microorganisms are easily attached thereto. For example, a plastic carrier having a cylindrical shape, a spherical shape, a square shape, or the like that is generally commercially available for water treatment may be used instead of the string shape.
 (第6実施形態)
 次に、図7を参照して第6実施形態について説明する。なお、本実施形態と第1実施形態とに共通する事項については、説明を省略する。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIG. Note that a description of matters common to the present embodiment and the first embodiment will be omitted.
 図7に示すように、本実施形態の排水処理装置1Eでは、気固液分離装置は、案内部材11Aと、経路形成部材20Aと、囲い部材16Aとを含んだ流出防止構造体10Eである。 As shown in FIG. 7, in the wastewater treatment apparatus 1E of the present embodiment, the gas-solid liquid separation apparatus is an outflow prevention structure 10E including a guide member 11A, a path forming member 20A, and a surrounding member 16A.
 案内部材11Aは、担体部の上方に設置されている。案内部材11Aは、下面が下方から上方へ向けて先細りした形状を有し、その頂部に対応した位置に開口が設けられている。案内部材11Aは、外側の縁とリアクタ本体21aの内周面との間に隙間を形成している。 The guide member 11A is installed above the carrier part. The guide member 11A has a shape in which the lower surface tapers from the lower side to the upper side, and an opening is provided at a position corresponding to the top part. 11 A of guide members form the clearance gap between an outer edge and the internal peripheral surface of the reactor main body 21a.
 経路形成部材20Aは、気泡から分離したグラニュール又はその断片と気泡から分離した浮遊物質とが、気液界面から、凝集体層22と担体部とに挟まれた領域へと、担体14に接触することなしに沈降する沈降経路を形成している。 The path forming member 20A contacts the carrier 14 from the gas-liquid interface to the region sandwiched between the aggregate layer 22 and the carrier part, where the granules or fragments thereof separated from the bubbles and the suspended substance separated from the bubbles are in contact with each other. It forms a sedimentation path that settles without doing.
 囲い部材16Aは、気液界面の一部を周囲から隔離するように取り囲んでいる。囲い部材16Aは、案内部材11Aの開口と繋がっている。 The surrounding member 16A surrounds a part of the gas-liquid interface so as to isolate it from the surroundings. The surrounding member 16A is connected to the opening of the guide member 11A.
 ここでは、案内部材11Aは、担体部の上方に設置された上部円錐部11Aであり、線路形成部材20Aは下部円筒部20Aである。 Here, the guide member 11A is the upper conical portion 11A installed above the carrier portion, and the line forming member 20A is the lower cylindrical portion 20A.
 上部円錐部11Aは、下方に向かって拡径し、頂部において開口した円錐形状をなしている。上部円錐部11Aは、担体部の直上に位置している。上部円錐部11Aの開口は、液面15の下方にある。上部円錐部11Aの大径部は、排水が上部円錐部11Aとリアクタ本体21aとの間隙を通過することを可能とし、且つ、気泡付着グラニュール及び浮遊物質32が越流部へ侵入するのを防ぐべく、リアクタ本体21aの円筒部分の内径より少しだけ小さい。 The upper conical portion 11A has a conical shape that expands downward and opens at the top. The upper conical part 11A is located immediately above the carrier part. The opening of the upper cone portion 11 </ b> A is below the liquid surface 15. The large diameter portion of the upper conical portion 11A allows wastewater to pass through the gap between the upper conical portion 11A and the reactor main body 21a, and allows the bubble adhering granules and the suspended matter 32 to enter the overflow portion. In order to prevent this, it is slightly smaller than the inner diameter of the cylindrical portion of the reactor main body 21a.
 下部円筒部20Aは、凝集体層22と担体部とに挟まれた領域から液面15まで、上部円錐部11Aの開口を貫くように上方に延びている。上部円錐部11Aの開口の位置において、下部円筒部20Aと上部円錐部11Aとの間には隙間がある。下部円筒部20Aは、経路41i乃至41kと、沈降経路41m及び41nとを形成している。更に、下部円筒部20Aは、囲い部材16とともに、撹拌経路41lを形成している。 The lower cylindrical portion 20A extends upward from the region sandwiched between the aggregate layer 22 and the carrier portion to the liquid level 15 so as to penetrate the opening of the upper conical portion 11A. There is a gap between the lower cylindrical portion 20A and the upper conical portion 11A at the position of the opening of the upper conical portion 11A. The lower cylindrical portion 20A forms paths 41i to 41k and settling paths 41m and 41n. Further, the lower cylindrical portion 20 </ b> A forms a stirring path 41 l together with the surrounding member 16.
 囲い部材16Aは、液面15の一部を周囲から隔離するように取り囲んでいる。囲い部材16Aは、上部円錐部11Aの開口部と繋がっている。上部円錐部11Aの上端は、液面15よりも高い。 The surrounding member 16A surrounds a part of the liquid surface 15 so as to isolate it from the surroundings. The surrounding member 16A is connected to the opening of the upper conical portion 11A. The upper end of the upper cone portion 11 </ b> A is higher than the liquid level 15.
 本実施形態の作用を説明する。 
 気泡付着グラニュール及び浮遊物質32は、下水の上向流によって、凝集体層22を通過し、その後、経路41i、担体部、経路41kを順次介して、又は、経路41jを介して、液面15に到達する。ここで、気泡付着グラニュール及び浮遊物質32は、メタンガスが除去されて気泡離脱グラニュール及び浮遊物質30となる。この気泡離脱グラニュール及び浮遊物質30は、下部円筒部20A内の経路41mを通って沈降し、凝集体層22へと戻る。
The operation of this embodiment will be described.
The bubble adhering granules and the suspended matter 32 pass through the aggregate layer 22 by the upward flow of the sewage, and then the liquid level via the path 41i, the carrier portion, the path 41k, or the path 41j. Reach 15 Here, the bubble adhering granules and the suspended matter 32 become the bubble leaving granules and the suspended matter 30 by removing the methane gas. The bubble detachment granules and the suspended substance 30 settle through the path 41m in the lower cylindrical portion 20A and return to the aggregate layer 22.
 担体部では、担体14に付着した嫌気性微生物により、凝集体層22で分解できなかった有機物の分解反応が生じる。この分解過程でもメタンガスが生じる。図1の構成の場合、この担体部で発生したガスにより、担体14に付着したグラニュールや浮遊物質を剥離させ、処理水の品質を低下させる可能性がある。これに対し、担体部の上方に上部円錐部11Aを設置すると、担体から剥離した浮遊物質又はグラニュールがリアクタ外へと流出するのを抑制することが可能となる。 In the carrier part, anaerobic microorganisms adhering to the carrier 14 cause a decomposition reaction of organic substances that could not be decomposed by the aggregate layer 22. Methane gas is also generated during this decomposition process. In the case of the configuration shown in FIG. 1, the gas generated in the carrier part may cause the granules and suspended substances attached to the carrier 14 to peel off, thereby reducing the quality of the treated water. On the other hand, when the upper conical portion 11A is installed above the carrier portion, it is possible to suppress the floating substance or granules separated from the carrier from flowing out of the reactor.
 また、上部円錐部11Aと下部円筒部20Aとを組み合わせると、気泡付着グラニュール及び浮遊物質30を、それらの浮力と排水の上昇流とを利用して、液面15の近傍まで運ぶことができる。 Further, when the upper conical portion 11A and the lower cylindrical portion 20A are combined, the bubble adhering granules and the suspended matter 30 can be transported to the vicinity of the liquid surface 15 using their buoyancy and the upward flow of drainage. .
 本実施形態において説明した技術は、第1乃至第5実施形態の何れかにおいて説明した技術と組み合わせることができる。例えば、図1及び図3乃至図6の何れかに示す排水処理装置に、案内部材11Aと経路形成部材20Aと囲い部材16Aとを設けてもよい。なお、この場合、案内部材11Aによって液面15へと導くことによって気泡が除去された気泡離脱グラニュール及び浮遊物質30を、経路形成部材12又はその内筒20へと導く構成を採用すれば、経路形成部材20A及び囲い部材16Aは省略することができる。 The technology described in this embodiment can be combined with the technology described in any of the first to fifth embodiments. For example, the wastewater treatment apparatus shown in any of FIGS. 1 and 3 to 6 may be provided with a guide member 11A, a path forming member 20A, and a surrounding member 16A. In this case, if a configuration is adopted in which the bubble detachment granules and the suspended solids 30 from which bubbles have been removed by being guided to the liquid level 15 by the guide member 11A are guided to the path forming member 12 or the inner cylinder 20 thereof, The path forming member 20A and the surrounding member 16A can be omitted.
 本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (9)

  1.  底部に導入口を有するリアクタ本体と、
     前記導入口を介して前記リアクタ本体内に排水を供給して、前記リアクタ本体内に前記排水の上昇流を生じさせる供給装置と、
     嫌気性微生物の凝集体から各々がなる複数のグラニュールが前記リアクタ本体内の下部に滞留してなる凝集体層と、
     前記リアクタ本体内において前記凝集体層よりも上方に設置され、前記嫌気性微生物を担持可能な担体と、
     前記担体の上方の前記排水を前記リアクタ本体から排出する排出装置と、
     前記凝集体層から遊離した前記グラニュール又はその断片に気泡が付着してなる気泡付着グラニュールと、前記排水中の浮遊物質に気泡が付着してなる気泡付着浮遊物質とを、前記リアクタ本体内に滞留している前記排水とその上方の気相との界面へと導き、そこで、前記気泡付着グラニュールを前記グラニュール又はその断片と前記気泡とに分離するとともに、前記気泡付着浮遊物質を前記浮遊物質と前記気泡とに分離し、前記気泡から分離した前記グラニュール又はその断片と前記気泡から分離した前記浮遊物質とを、前記担体に接触させることなしに、前記界面から前記凝集体層と前記担体とによって挟まれた領域へと導く気固液分離装置と
    を具備した排水処理装置。
    A reactor body having an inlet at the bottom;
    A supply device for supplying wastewater into the reactor body through the inlet, and generating an upward flow of the wastewater in the reactor body;
    An aggregate layer in which a plurality of granules each comprising an aggregate of anaerobic microorganisms are retained in the lower part of the reactor body;
    A carrier that is installed above the aggregate layer in the reactor body, and is capable of supporting the anaerobic microorganisms;
    A discharge device for discharging the waste water above the carrier from the reactor body;
    A bubble adhering granule in which air bubbles adhere to the granule or a fragment thereof released from the aggregate layer, and a bubble adhering floating substance in which air bubbles adhere to the floating substance in the waste water are contained in the reactor body. To the interface between the waste water staying in the gas phase and the gas phase thereabove, where the bubble adhering granules are separated into the granules or fragments thereof and the bubbles, and The aggregate layer is separated from the interface without contacting the carrier with the granules or fragments thereof separated from the bubbles and the suspended matter separated from the bubbles. A wastewater treatment apparatus comprising a gas-solid-liquid separation device that leads to a region sandwiched by the carrier.
  2.  前記気固液分離装置は、前記リアクタ本体の内部空間を前記凝集体層と前記担体との間で仕切り、前記気泡付着グラニュール及び前記気泡付着浮遊物質を、前記担体に接触させることなしに、前記領域から前記界面へと導く請求項1に記載の排水処理装置。 The gas-solid-liquid separation apparatus partitions the internal space of the reactor main body between the aggregate layer and the carrier, and without bringing the bubble adhesion granules and the bubble adhesion suspended solids into contact with the carrier. The waste water treatment apparatus according to claim 1, wherein the waste water treatment apparatus leads from the region to the interface.
  3.  前記気固液分離装置は、
     前記凝集体層と前記担体との間に設置され、下面が下方から上方へ向けて先細りした形状を有し、その頂部に対応した位置に開口が設けられており、外側の縁と前記リアクタ本体の内周面との間に隙間を形成している第1案内部材と、
     前記第1案内部材の前記開口から上方へ延び、前記気泡付着グラニュール及び前記気泡付着浮遊物質が前記第1案内部材の下方の領域から前記界面へと前記担体に接触することなしに浮上し、前記気泡から分離した前記グラニュール若しくはその断片と前記気泡から分離した前記浮遊物質とが前記界面から前記領域へと前記担体に接触することなしに沈降する経路を形成するか、又は、前記気泡付着グラニュール及び前記気泡付着浮遊物質が前記領域から前記界面へと前記担体に接触することなしに浮上する上昇経路と、前記気泡から分離した前記グラニュール若しくはその断片と前記気泡から分離した前記浮遊物質とが前記界面から前記領域へと前記担体に接触することなしに沈降する沈降経路とを形成する経路形成部材と
    を含んだ請求項1又は2に記載の排水処理装置。
    The gas-solid-liquid separator is
    Installed between the agglomerate layer and the carrier, the lower surface has a shape tapered from the bottom to the top, an opening is provided at a position corresponding to the top, the outer edge and the reactor body A first guide member forming a gap with the inner peripheral surface of
    Extending upward from the opening of the first guide member, the bubble-adhering granules and the bubble-adhering suspended material float from the region below the first guide member to the interface without contacting the carrier; The granule or a fragment thereof separated from the bubble and the suspended solid separated from the bubble form a path for sedimentation without contacting the carrier from the interface to the region, or the bubble adhesion The ascending path where the granules and the bubble-adhering suspended substance float from the region to the interface without contacting the carrier, the granule separated from the bubbles or fragments thereof, and the suspended substance separated from the bubbles And a path forming member that forms a settling path that settles without contacting the carrier from the interface to the region. Or waste water treatment apparatus according to 2.
  4.  前記経路形成部材は、前記沈降経路を形成する内筒と、前記内筒を取り囲み、前記凝集体層を通過した前記排水の一部を前記第1案内部材の下方の領域から前記界面へと導く上昇経路を前記内筒との間に形成する外筒とを含んだ請求項3に記載の排水処理装置。 The path forming member guides the inner cylinder that forms the settling path and a part of the drainage that surrounds the inner cylinder and passes through the aggregate layer from the region below the first guide member to the interface. The waste water treatment apparatus according to claim 3, further comprising an outer cylinder that forms an ascending path with the inner cylinder.
  5.  前記気固液分離装置は、前記凝集体層と前記第1案内部材の前記外側の縁との間に、前記リアクタ本体の内周面から中央に向けて突出した整流部材を更に含んだ請求項3又は4に記載の排水処理装置。 The gas-solid-liquid separator further includes a rectifying member protruding from an inner peripheral surface of the reactor main body toward a center between the aggregate layer and the outer edge of the first guide member. The wastewater treatment apparatus according to 3 or 4.
  6.  前記気固液分離装置は、前記担体の上方に設置され、下面が下方から上方へ向けて先細りした形状を有し、その頂部に対応した位置に開口が設けられており、外側の縁と前記リアクタ本体の内周面との間に隙間を形成している第2案内部材を更に含んだ請求項3乃至5の何れか1項に記載の排水処理装置。 The gas-solid-liquid separation device is installed above the carrier and has a shape in which a lower surface is tapered from below to above, an opening is provided at a position corresponding to the top, and an outer edge and the above-mentioned The wastewater treatment apparatus according to any one of claims 3 to 5, further comprising a second guide member that forms a gap with the inner peripheral surface of the reactor main body.
  7.  前記気固液分離装置は、
     前記担体の上方に設置され、下面が下方から上方へ向けて先細りした形状を有し、その頂部に対応した位置に開口が設けられており、外側の縁と前記リアクタ本体の内周面との間に隙間を形成している案内部材と、
     前記気泡から分離した前記グラニュール又はその断片と前記気泡から分離した前記浮遊物質とが前記界面から前記領域へと前記担体に接触することなしに沈降する沈降経路を形成する経路形成部材と
    を含んだ請求項1に記載の排水処理装置。
    The gas-solid-liquid separator is
    It is installed above the carrier, has a shape in which the lower surface tapers from below to above, and an opening is provided at a position corresponding to the top, and the outer edge and the inner peripheral surface of the reactor main body A guide member forming a gap therebetween;
    A path forming member that forms a settling path in which the granules or fragments thereof separated from the bubbles and the suspended matter separated from the bubbles settle without contacting the carrier from the interface to the region. The waste water treatment apparatus of Claim 1.
  8.  前記気固液分離装置は、前記界面を周囲から隔離するように取り囲んだ囲い部材を更に含み、前記排出装置は、前記囲い部材の外側の前記排水を前記リアクタ本体から排出する請求項3乃至7の何れか1項に記載の排水処理装置。 The gas-solid-liquid separation device further includes an enclosure member that surrounds the interface so as to isolate it from the surroundings, and the discharge device discharges the waste water outside the enclosure member from the reactor main body. The waste water treatment apparatus of any one of.
  9.  前記排出装置によって前記リアクタ本体から排出された前記排水を受け入れて、前記排水を好気性微生物により処理する好気リアクタを更に具備した請求項1乃至8の何れか1項に記載の排水処置装置。 The wastewater treatment apparatus according to any one of claims 1 to 8, further comprising an aerobic reactor that receives the wastewater discharged from the reactor main body by the discharger and treats the wastewater with aerobic microorganisms.
PCT/JP2012/064220 2011-06-01 2012-05-31 Waste water treatment apparatus WO2012165597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280035732.3A CN103889907B (en) 2011-06-01 2012-05-31 Drain treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-123611 2011-06-01
JP2011123611A JP5813377B2 (en) 2011-06-01 2011-06-01 Wastewater treatment equipment

Publications (1)

Publication Number Publication Date
WO2012165597A1 true WO2012165597A1 (en) 2012-12-06

Family

ID=47259449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064220 WO2012165597A1 (en) 2011-06-01 2012-05-31 Waste water treatment apparatus

Country Status (3)

Country Link
JP (1) JP5813377B2 (en)
CN (1) CN103889907B (en)
WO (1) WO2012165597A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152465A (en) * 2015-07-23 2015-12-16 李华 Tower type integrated treatment device for sewage treatment
CN111635087A (en) * 2020-05-18 2020-09-08 大庆华鑫达科技有限公司 Oil field sludge sewage environment-friendly treatment device
CN112978923A (en) * 2021-03-31 2021-06-18 华南理工大学 Mixed fluidized bed reactor and application thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091943B2 (en) * 2013-03-14 2017-03-08 株式会社東芝 Organic wastewater treatment equipment
CN103435152B (en) * 2013-07-22 2016-05-25 杭州师范大学 A kind of mixed filler layer anaerobic ammonia oxidation bioreactor
JP6104829B2 (en) * 2014-02-25 2017-03-29 株式会社東芝 Anaerobic water treatment system
EP3290396A1 (en) * 2016-09-02 2018-03-07 Paques I.P. B.V. Degassing device for anaerobic purification device
JP6872921B2 (en) * 2017-02-09 2021-05-19 学校法人 東洋大学 Nitrogen-containing wastewater treatment equipment and treatment method
JP7051141B2 (en) * 2020-08-24 2022-04-11 バイオ畜産研究合同会社 A methane gas separator having a scum trap function and a methane fermentation purification system using the methane gas separator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320189A (en) * 1993-05-18 1994-11-22 Komatsu Ltd Treatment of waste water
JPH0739896A (en) * 1993-07-30 1995-02-10 Ebara Res Co Ltd Anaerobic treatment of organic sewage
JP2001187394A (en) * 1999-12-28 2001-07-10 Sumitomo Heavy Ind Ltd Waste water treatment equipment
JP2005087907A (en) * 2003-09-18 2005-04-07 Kurita Water Ind Ltd Solid-liquid separation mechanism and organic waste water treatment apparatus
JP2009028720A (en) * 2007-07-04 2009-02-12 Toshiba Corp Aeration-less water treatment apparatus
JP2011067821A (en) * 2011-01-13 2011-04-07 Sumitomo Heavy Industries Environment Co Ltd Anaerobic treatment system and anaerobic treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057281C (en) * 1997-04-26 2000-10-11 张振家 High-effect anaerobic treatment device for waste water and method thereof
JP5610198B2 (en) * 2010-06-02 2014-10-22 国立大学法人 熊本大学 Waste liquid treatment equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320189A (en) * 1993-05-18 1994-11-22 Komatsu Ltd Treatment of waste water
JPH0739896A (en) * 1993-07-30 1995-02-10 Ebara Res Co Ltd Anaerobic treatment of organic sewage
JP2001187394A (en) * 1999-12-28 2001-07-10 Sumitomo Heavy Ind Ltd Waste water treatment equipment
JP2005087907A (en) * 2003-09-18 2005-04-07 Kurita Water Ind Ltd Solid-liquid separation mechanism and organic waste water treatment apparatus
JP2009028720A (en) * 2007-07-04 2009-02-12 Toshiba Corp Aeration-less water treatment apparatus
JP2011067821A (en) * 2011-01-13 2011-04-07 Sumitomo Heavy Industries Environment Co Ltd Anaerobic treatment system and anaerobic treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152465A (en) * 2015-07-23 2015-12-16 李华 Tower type integrated treatment device for sewage treatment
CN105152465B (en) * 2015-07-23 2017-09-05 李华 A kind of tower integrated treatment unit for sewage disposal
CN111635087A (en) * 2020-05-18 2020-09-08 大庆华鑫达科技有限公司 Oil field sludge sewage environment-friendly treatment device
CN111635087B (en) * 2020-05-18 2023-02-24 大庆华鑫达科技有限公司 Oil field sludge sewage environment-friendly treatment device
CN112978923A (en) * 2021-03-31 2021-06-18 华南理工大学 Mixed fluidized bed reactor and application thereof
CN112978923B (en) * 2021-03-31 2024-03-12 华南理工大学 Mixed fluidized bed reactor and application thereof

Also Published As

Publication number Publication date
CN103889907A (en) 2014-06-25
JP2012250159A (en) 2012-12-20
CN103889907B (en) 2016-05-18
JP5813377B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
WO2012165597A1 (en) Waste water treatment apparatus
US8721877B2 (en) Upflow reactor featuring controlled recirculation of biomass
US7850849B2 (en) Anaerobic reactor for the removal of long chain fatty acids from fat containing wastewater
JP6104829B2 (en) Anaerobic water treatment system
WO2016185533A1 (en) Water treatment system and water treatment method
KR20120005857A (en) Plant for treatment waste water
JP4571065B2 (en) Granular microbial sludge generation method and granular microbial sludge generation apparatus
US8663468B2 (en) Reactor for anaerobic purification of waste water including multi-phase separator devices
JP5666187B2 (en) Waste water treatment apparatus and waste water treatment method
JP5636862B2 (en) Waste water treatment equipment
KR20110060877A (en) The apparatus to treat municipal and industrial wastewater
CN206751600U (en) A kind of aerobic/anaerobic active sludge biological method sewage-treatment plant
US20180334401A1 (en) Plant for the purification of waste and/or process water by means of anaerobic microorganisms with a reactor tank and an external separation apparatus
CN105461079B (en) water purifying processor
JP6091943B2 (en) Organic wastewater treatment equipment
CN210528710U (en) Biochemical regulation and control reaction system
KR20110047453A (en) The method and apparatus to treat municipal and industrial wastewater
JP2006068632A (en) Apparatus for treating organic waste water
JP5801239B2 (en) Water treatment system
CN209397042U (en) Air-floating apparatus for sewage treatment
JP2015120169A (en) Water treatment system
JP2006122876A (en) Apparatus for treating water
JP5893187B2 (en) Water treatment system
JP2012050910A (en) Upflow type reaction tank, water treatment method using the reaction tank, and water treatment apparatus equipped with the reaction tank
JP2014205098A (en) Wastewater purification apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792258

Country of ref document: EP

Kind code of ref document: A1