WO2012164827A1 - Vapor phase epitaxy method and light emitting element substrate manufacturing method - Google Patents

Vapor phase epitaxy method and light emitting element substrate manufacturing method Download PDF

Info

Publication number
WO2012164827A1
WO2012164827A1 PCT/JP2012/003001 JP2012003001W WO2012164827A1 WO 2012164827 A1 WO2012164827 A1 WO 2012164827A1 JP 2012003001 W JP2012003001 W JP 2012003001W WO 2012164827 A1 WO2012164827 A1 WO 2012164827A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor phase
layer
phase growth
substrate
compound semiconductor
Prior art date
Application number
PCT/JP2012/003001
Other languages
French (fr)
Japanese (ja)
Inventor
実 川原
智弘 秋山
和慶 西山
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2012164827A1 publication Critical patent/WO2012164827A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/44Gallium phosphide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a method for forming a compound semiconductor layer, and more particularly to a vapor phase growth method for growing a compound semiconductor layer on a substrate by a hydride vapor phase growth method and a method for manufacturing a substrate for a light emitting element.
  • a light-emitting element in which a light-emitting layer and a current diffusion layer are formed on a GaAs single crystal substrate is known.
  • a composition formula (Al x Ga 1-x ) y In 1-y P (provided that metal organic vapor phase phase epitaxy method, hereinafter simply referred to as MOVPE method) is used.
  • MOVPE method metal organic vapor phase phase epitaxy method
  • a light-emitting element in which a layer and a current diffusion layer (also referred to as a window layer) made of GaP are formed is known.
  • this GaP current diffusion layer As a method for forming this GaP current diffusion layer, after a relatively thin connection layer is formed on the light emitting layer side by MOVPE method, it is relatively thick by hydride vapor phase epitaxy method (hereinafter referred to simply as HVPE method).
  • HVPE method hydride vapor phase epitaxy method
  • the light emitted from the light emitting layer of such a light emitting element toward the substrate is absorbed by the GaAs substrate which is a growth substrate. Therefore, in order to extract the light emitted to the substrate side, the GaAs substrate is removed by wet etching, and a GaP current transparent to the light is formed on the surface of the light emitting layer on the side where the GaAs substrate is removed.
  • a technique for increasing the brightness of a manufactured light-emitting element by growing a diffusion layer (second current diffusion layer) is also conventionally known.
  • the growth rate of GaP on the surface of the light emitting layer on the side where the GaAs substrate has been removed varies, and as a result, the thickness of the GaP layer varies greatly between batches, and this is a defect in a light emitting device or the like manufactured thereafter. It has become a problem that it becomes the cause of this and becomes a big cause to reduce the yield.
  • the variation in the growth rate of GaP is caused by the growth of the GaP layer depending on the degree of deposition of GaP due to the source gas as shown in FIG. 3B on a member other than the substrate in the HVPE growth apparatus, for example, the susceptor. It is because it is inhibited.
  • the present invention has been made in view of such problems of the conventional method, and a hydride vapor phase growth method capable of suppressing the number of GaP deposited by a raw material gas on members other than the substrate in the HVPE growth apparatus, and
  • An object of the present invention is to provide a method for manufacturing a substrate for a light-emitting element capable of making the film thickness of an n-type GaP layer, which is a second current diffusion layer, uniform between batches.
  • the present invention provides a vapor phase growth method for epitaxially growing a III-V compound semiconductor layer on a substrate in a vapor phase growth apparatus by a hydride vapor phase growth method.
  • a vapor phase growth method characterized in that during the epitaxial growth of a group compound semiconductor layer, the epitaxial growth is interrupted at least once and gas etching in the vapor phase growth apparatus is performed.
  • the deposit can be removed by gas etching at a stage where the size of the deposit of the source gas generated on the susceptor or the like in the vapor phase growth apparatus is small, it is always possible to achieve epitaxial growth by this deposit.
  • the III-V compound semiconductor layer can be epitaxially grown while the influence is suppressed. Further, this makes the growth rate of each group III-V compound semiconductor layer uniform between batches, and as a result, variation in the thickness of each group III-V compound semiconductor layer between batches can be surely reduced. .
  • the gas etching in the vapor phase growth apparatus is performed twice or more during the epitaxial growth of the III-V compound semiconductor layer.
  • the group III-V compound semiconductor layer can be epitaxially grown while removing the deposits of the source gas generated on the member such as the susceptor in the vapor phase growth apparatus more efficiently.
  • HCl gas used as a source gas in a general hydride vapor phase growth method is used as an etching gas, the epitaxial growth of the III-V compound semiconductor layer and the gas etching in the vapor phase growth apparatus can be further performed. Can be done efficiently.
  • the III-V compound semiconductor layer can be a GaP layer.
  • a GaP layer is suitable as the III-V compound semiconductor layer in the hydride vapor phase growth method of the present invention.
  • an n-type cladding layer and an active layer made of (Al x Ga 1-x ) y In 1-y P (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) are formed on an n-type GaAs substrate.
  • a step of forming a light emitting layer by sequentially stacking a p-type cladding layer, a step of stacking a p-type GaP layer as a first current diffusion layer on the light emitting layer, and etching the n-type GaAs substrate.
  • the n-type GaP layer is laminated on the surface of the light emitting layer on the side where the n-type GaAs substrate is removed by the vapor phase growth method.
  • a method for manufacturing a substrate for a light emitting device is provided. .
  • an n-type GaP layer made of GaP having a lattice constant different from that of GaAs is formed on the light-emitting layer lattice-matched to GaAs of the n-type GaAs substrate.
  • the growth rate of the n-type GaP layer between batches can be made uniform, whereby the n-type GaP layer between batches can be made uniform.
  • the thickness variation can be surely reduced, and a high-quality light-emitting element substrate can be manufactured without reducing the yield.
  • the III-V group compound semiconductor layer is epitaxially grown in a state in which the influence of the deposition of the source gas generated on the susceptor or the like in the vapor phase growth apparatus on the epitaxial growth is reliably suppressed. It can be performed. Further, this makes the growth rate of each group III-V compound semiconductor layer uniform between batches, which can surely reduce the variation in the thickness of each group III-V compound semiconductor layer between batches. .
  • an n-type GaP layer made of GaP having a lattice constant different from that of GaAs is laminated on the light-emitting layer lattice-matched to GaAs on the n-type GaAs substrate.
  • the growth rate of the n-type GaP layer between batches can be made uniform, whereby the thickness of the n-type GaP layer between batches can be made uniform. It is possible to manufacture a high-quality light-emitting element substrate without reducing the variation in thickness and reducing the yield.
  • the GaAs substrate is removed by wet etching to extract the light emitted from the light emitting layer to the substrate side, and the light emission is performed.
  • Conventionally known is a method of growing a GaP current diffusion layer that is transparent to light on the surface of the layer from which the GaAs substrate has been removed.
  • an n-type GaP layer made of GaP having a lattice constant different from that of GaAs must be grown on a light-emitting layer lattice-matched to GaAs, which is the material of the n-type GaAs substrate. For this reason, it is difficult to grow a GaP layer under such conditions, and it is easily affected by disturbance factors such as deposition of a source gas generated in a member such as a susceptor in a vapor phase growth apparatus. This causes a variation in the growth rate of the GaP layer, that is, the thickness of the GaP layer, which causes a defect in a light emitting device manufactured thereafter, and causes a large decrease in yield.
  • the present inventors have conducted intensive studies, and as a result, the epitaxial growth was interrupted at least once while the III-V compound semiconductor layer was epitaxially grown on the substrate by hydride vapor phase epitaxy. Then, by performing gas etching in the vapor phase growth apparatus, it was found that the deposition of the source gas generated in a member such as a susceptor can be suppressed and the variation in the thickness of the GaP layer can be reduced, and the present invention has been completed.
  • FIG. 1 shows a barrel type vapor phase growth apparatus
  • the vapor phase growth method of the present invention can be applied to other vapor phase growth apparatuses such as a horizontal type and a vertical type. is there.
  • the vapor phase growth apparatus 1 includes a group III metal compound generation tube 3 for generating a group III metal compound inside the chamber 2.
  • This group III metal compound production tube 3 has a reservoir 4 in which a group III metal is mounted.
  • the group III metal compound production tube 3 is heated by the first heater 5.
  • the ratio of the mixture of these metals may be adjusted and mounted on the reservoir 4.
  • the vapor phase growth apparatus 1 further includes a group V element introduction pipe (not shown) for introducing a group V element, a rotatable susceptor 6 on which the substrate W is placed, and a gas discharge pipe (not shown) for discharging various gases. And a second heater 7 for heating the substrate W.
  • the III-V compound semiconductor layer is epitaxially grown as follows.
  • the substrate W is prepared and placed on the susceptor 6 in the vapor phase growth apparatus 1.
  • the substrate W is not particularly limited.
  • a III-V group compound semiconductor substrate such as GaAs, GaN, or GaP can be used.
  • III-V compound semiconductor layer is epitaxially grown on the substrate W by hydride vapor phase epitaxy.
  • III-V group compound semiconductor layer is not particularly limited, but can be, for example, a GaP layer.
  • the group III element metal Ga in the HVPE apparatus 1 is III.
  • the reaction of the following formula (1) GaCl is generated and supplied onto the substrate W together with H 2 gas which is a carrier gas.
  • the epitaxial growth temperature is set to, for example, 640 ° C. or more and 860 ° C. or less.
  • P which is a group V element supplies PH 3 (phosphine) onto the substrate together with H 2 which is a carrier gas.
  • GaP is produced
  • the epitaxial growth is interrupted at least once, preferably two times or more, more preferably five times or more, and gas etching in the vapor phase growth apparatus 1 is performed.
  • the timing for performing the gas etching is not particularly limited, but the first half of the epitaxial growth, which is a stage in which the number of precipitates generated in the member such as the susceptor 6 in the vapor phase growth apparatus 1 is relatively small and the size is relatively small. It is preferable to carry out in the part.
  • the gas etching is performed twice or more, it is preferable to perform the next gas etching at a stage where the number of precipitates generated again after performing the gas etching once is relatively small and the size is relatively small. In this way, it is possible to more effectively suppress the influence on the epitaxial growth due to the deposit of the source gas.
  • a method of performing gas etching in the vapor phase growth apparatus 1 during the epitaxial growth of the III-V group compound semiconductor layer first, as an epitaxial growth process, for example, a material is supplied under the gas supply conditions as shown in FIG. A gas and a carrier gas are supplied into the vapor phase growth apparatus 1, and the III-V compound semiconductor layer is epitaxially grown for a certain time (for example, 1 hour) by the above method.
  • the gas supply conditions are switched to the conditions shown in FIG. 1B, for example, and the gas etching in the vapor phase growth apparatus 1 is performed in a shorter processing time (for example, 3 minutes) than the epitaxial growth process. Do.
  • the III-V compound can be removed while removing the deposits of the source gas generated on the member such as the susceptor 6 in the vapor phase growth apparatus 1 more efficiently. This is preferable because the semiconductor layer can be epitaxially grown.
  • the general hydride vapor phase growth method uses HCl gas as a source gas. It is preferable because epitaxial growth of the semiconductor layer and gas etching in the vapor phase growth apparatus 1 can be performed more efficiently.
  • HCl gas is used as a group III metal as shown in FIG. Since it suffices that the metal Ga mounted on the reservoir 4 of the compound generation tube 3 is not brought into contact with the reservoir 4, it is very simple and efficient.
  • an n-type GaAs substrate 110 is prepared as a growth substrate, cleaned, and then placed in a MOVPE reactor, and an n-type GaAs buffer layer 120 is formed on the n-type GaAs substrate 110 by 0.1 to 1 Epitaxial growth is performed.
  • Step 2 (Al x Ga 1-x ) y In 1-y P (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ ) is formed on the n-type GaAs buffer layer 120 as the light emitting layer 130. 1), an n-type cladding layer 131 having a thickness of 0.8 to 4.0 ⁇ m, an active layer 132 having a thickness of 0.4 to 2.0 ⁇ m, and a p-type cladding layer 133 having a thickness of 0.8 to 4.0 ⁇ m. Are epitaxially grown in this order.
  • each layer is performed by a known MOVPE method.
  • source gas used as each component source of Al, Ga, In, and P
  • Al source gas trimethylaluminum (TMAl), triethylaluminum (TEAl), etc.
  • Ga source gas trimethylgallium (TMGa), triethylgallium (TEGa), etc.
  • In source gas trimethylindium (TMIn), triethylindium (TEIn), etc.
  • P source gas trimethyl phosphorus (TMP), triethyl phosphorus (TEP), phosphine (PH 3 ), etc.
  • dopant gas trimethyl phosphorus (TMP), triethyl phosphorus (TEP), phosphine (PH 3 ), etc.
  • P-type dopant Mg source biscyclopentadienyl magnesium (Cp 2 Mg), etc.
  • Zn source dimethyl zinc (DMZn), diethyl zinc (DEZn), etc.
  • N-type dopant Si source silicon hydride such as monosilane.
  • Step 3 a GaP connection layer 140 having a thickness of 0.05 to 2.0 ⁇ m is grown on the p-type cladding layer 133 by the MOVPE method, and further, a thickness serving as a first current diffusion layer is formed thereon.
  • a p-type GaP layer 150 of 5 ⁇ m to 200 ⁇ m is epitaxially grown by HVPE. Also in the epitaxial growth of the first current diffusion layer by the HVPE method, the vapor phase growth method of the present invention in which gas etching is performed in the middle can be applied.
  • Step 4 the n-type GaAs substrate 110 and the n-type GaAs buffer layer 120 are removed by etching or the like.
  • step 5 the n-type GaP layer 160, which is the second current diffusion layer, is epitaxially grown on the n-type cladding layer 131 exposed by the removal of the n-type GaAs substrate by the HVPE method. To manufacture.
  • the epitaxial growth is interrupted at least once, preferably twice or more, more preferably five times or more during the epitaxial growth of the n-type GaP layer 160.
  • the n-type GaP layer 160 is epitaxially grown while performing gas etching in the vapor phase growth apparatus.
  • the gas phase Since the deposits of the source gas generated in the susceptor and other members are removed by gas etching in the growth apparatus, they are not easily affected by such deposits. As a result, the growth rate of the n-type GaP layer between batches can be made uniform, and thus the variation in the thickness of the n-type GaP layer between batches can be reliably reduced, and high quality can be achieved without reducing the yield.
  • a substrate for a light emitting element can be manufactured.
  • n-type GaAs single crystal substrate having a thickness of 200 ⁇ m is prepared, an n-type GaAs buffer layer is epitaxially grown on each of the substrates by 0.5 ⁇ m, and a light emitting layer (Al 0.85 Ga 0 is formed on the n-type GaAs buffer layer. .15 ) 0.45 In 0.55 P n-type cladding layer (1.0 ⁇ m), (Al 0.1 Ga 0.9 ) 0.45 In 0.55 P active layer (0.6 ⁇ m) ), P-type cladding layer (1.0 ⁇ m) made of (Al 0.85 Ga 0.15 ) 0.45 In 0.55 P was laminated in this order by the MOVPE method.
  • a p-type GaP layer as a first current diffusion layer was grown on the p-type cladding layer.
  • the p-type GaP layer was formed to a thickness of 100 ⁇ m by the HVPE method after forming a 2.0 ⁇ m-thick p-type GaP connection layer on the light emitting layer side by the MOVPE method.
  • the n-type GaAs single crystal substrate is removed by wet etching, and an n-type GaP layer as a second current diffusion layer is formed on the surface of the light emitting layer on the side where the n-type GaAs single crystal substrate is removed.
  • Such a light emitting element substrate was manufactured five times (5 batches).
  • the number of batches in this example was 10.
  • the number of GaP deposited on the susceptor in each batch is a number even after 4 hours have passed since the epitaxial growth of the n-type GaP layer was started.
  • the size was relatively small.
  • the number of GaP deposited on the susceptor in each batch is 150 to 200 in 3 hours after the epitaxial growth of the n-type GaP layer is started.
  • the size was relatively large.
  • the epitaxial growth is interrupted at least once during the epitaxial growth. It can be seen that by performing the gas etching inside, the group III-V compound semiconductor layer can be epitaxially grown in a state where the influence of the precipitates on the member such as the susceptor in the vapor phase growth apparatus on the epitaxial growth is suppressed. This also shows that the growth rate of each group III-V compound semiconductor layer between batches is made uniform, and this makes it possible to reliably reduce the variation in thickness of each group III-V compound semiconductor layer between batches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention is a vapor phase epitaxy method whereby a group III-V compound semiconductor layer is epitaxially formed upon a substrate within a vapor phase epitaxy device by a hydride vapor phase epitaxy method. During epitaxial growth of the group III-V compound semiconductor layer, at least one iteration of the epitaxial growth is interrupted and gas etching is carried out within the vapor phase epitaxy device. It is thus possible to control a GaP deposition number by raw gas to a member other than a substrate within an HVPE growth device.

Description

気相成長方法及び発光素子用基板の製造方法Vapor growth method and method for manufacturing substrate for light emitting device
 本発明は、化合物半導体層の形成方法に関し、特にハイドライド気相成長法で基板上に化合物半導体層を成長させる気相成長方法及び発光素子用基板の製造方法に関する。 The present invention relates to a method for forming a compound semiconductor layer, and more particularly to a vapor phase growth method for growing a compound semiconductor layer on a substrate by a hydride vapor phase growth method and a method for manufacturing a substrate for a light emitting element.
 従来、GaAs単結晶基板上に、発光層と電流拡散層とを形成した発光素子が知られている。
 例えばn型GaAs単結晶基板上に、有機金属気相成長法(Metal Organic Vapor Phase Epitaxy法、以下単にMOVPE法という)により組成式(AlGa1-xIn1-yP(ただし、0≦x≦1,0≦y≦1)にて表される化合物にて各々構成されたn型クラッド層、活性層、p型クラッド層がこの順序で積層されたダブルへテロ構造からなる発光層と、GaPからなる電流拡散層(窓層とも言う)を形成した発光素子が知られている。
Conventionally, a light-emitting element in which a light-emitting layer and a current diffusion layer are formed on a GaAs single crystal substrate is known.
For example, on an n-type GaAs single crystal substrate, a composition formula (Al x Ga 1-x ) y In 1-y P (provided that metal organic vapor phase phase epitaxy method, hereinafter simply referred to as MOVPE method) is used. Light emission having a double hetero structure in which an n-type cladding layer, an active layer, and a p-type cladding layer each composed of a compound represented by 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) are stacked in this order. A light-emitting element in which a layer and a current diffusion layer (also referred to as a window layer) made of GaP are formed is known.
 このGaP電流拡散層を形成する方法として、発光層側にMOVPE法により比較的薄く接続層を形成した後に、ハイドライド気相成長法(Hydride Vapor Phase Epitaxy法、以下単にHVPE法という)により比較的厚く第一の電流拡散層を形成する方法が、例えば特許文献1等に開示されている。 As a method for forming this GaP current diffusion layer, after a relatively thin connection layer is formed on the light emitting layer side by MOVPE method, it is relatively thick by hydride vapor phase epitaxy method (hereinafter referred to simply as HVPE method). A method of forming the first current diffusion layer is disclosed in, for example, Patent Document 1 and the like.
 また、このような発光素子の発光層から放たれた基板側への光は、成長用基板であるGaAs基板により吸収されてしまう。そこでこの基板側へ放出される光を取り出すために、前記GaAs基板を湿式エッチングにより除去して、前記発光層の、前記GaAs基板が除去された側の表面に、光に対して透明なGaP電流拡散層(第二の電流拡散層)を成長することにより、製造される発光素子の高輝度化を図る技術も従来知られている。 Further, the light emitted from the light emitting layer of such a light emitting element toward the substrate is absorbed by the GaAs substrate which is a growth substrate. Therefore, in order to extract the light emitted to the substrate side, the GaAs substrate is removed by wet etching, and a GaP current transparent to the light is formed on the surface of the light emitting layer on the side where the GaAs substrate is removed. A technique for increasing the brightness of a manufactured light-emitting element by growing a diffusion layer (second current diffusion layer) is also conventionally known.
米国特許 5,008,718号公報US Patent No. 5,008,718
 しかしながら、前記発光層の、前記GaAs基板が除去された側の表面へのGaPの成長速度がバラツキ、その結果GaP層の厚さがバッチ間で大きくバラツキ、これがその後製造される発光素子等の不良の原因となり、歩留まりを落とす大きな原因となることが問題となっていた。このGaPの成長速度のバラツキは、HVPE成長装置内の基板以外の部材、例えばサセプタ上に図3(b)に示すような原料ガスによるGaPの析出が生じると、その程度によりGaP層の成長が阻害されるために生じるものである。 However, the growth rate of GaP on the surface of the light emitting layer on the side where the GaAs substrate has been removed varies, and as a result, the thickness of the GaP layer varies greatly between batches, and this is a defect in a light emitting device or the like manufactured thereafter. It has become a problem that it becomes the cause of this and becomes a big cause to reduce the yield. The variation in the growth rate of GaP is caused by the growth of the GaP layer depending on the degree of deposition of GaP due to the source gas as shown in FIG. 3B on a member other than the substrate in the HVPE growth apparatus, for example, the susceptor. It is because it is inhibited.
 また、GaPのサセプタ上の析出数と、基板上のGaP層の成長速度との間には図2に示すような相関があり、GaPの析出数が多いと基板上のGaP層の成長速度が遅くなり、逆に析出数が少ないと基板上のGaP層の成長速度が速くなることが分かっているが、このGaPの析出数を制御する方法は従来知られていなかった。 Further, there is a correlation as shown in FIG. 2 between the number of GaP precipitates on the susceptor and the growth rate of the GaP layer on the substrate, and when the number of GaP precipitation is large, the growth rate of the GaP layer on the substrate increases. On the contrary, it is known that when the number of precipitations is small, the growth rate of the GaP layer on the substrate increases, but a method for controlling the number of GaP precipitations has not been known.
 本発明はこのような従来方法の問題点に鑑みてなされたものであり、HVPE成長装置内の基板以外の部材への原料ガスによるGaPの析出数を抑制することができるハイドライド気相成長方法及び、第二の電流拡散層であるn型GaP層の膜厚をバッチ間において均一化することができる発光素子用基板の製造方法を提供することを目的とする。 The present invention has been made in view of such problems of the conventional method, and a hydride vapor phase growth method capable of suppressing the number of GaP deposited by a raw material gas on members other than the substrate in the HVPE growth apparatus, and An object of the present invention is to provide a method for manufacturing a substrate for a light-emitting element capable of making the film thickness of an n-type GaP layer, which is a second current diffusion layer, uniform between batches.
 上記目的を達成するために、本発明では、気相成長装置内で基板上に、III-V族化合物半導体層をハイドライド気相成長法によってエピタキシャル成長させる気相成長方法であって、前記III-V族化合物半導体層のエピタキシャル成長途中に、少なくとも1回該エピタキシャル成長を中断して前記気相成長装置内のガスエッチングを行うことを特徴とする気相成長方法を提供する。 In order to achieve the above object, the present invention provides a vapor phase growth method for epitaxially growing a III-V compound semiconductor layer on a substrate in a vapor phase growth apparatus by a hydride vapor phase growth method. Provided is a vapor phase growth method characterized in that during the epitaxial growth of a group compound semiconductor layer, the epitaxial growth is interrupted at least once and gas etching in the vapor phase growth apparatus is performed.
 このようにすれば、気相成長装置内のサセプタ等の部材に生じる原料ガスの析出物の大きさが小さい段階において、該析出物をガスエッチングにより除去できるため、常にこの析出物によるエピタキシャル成長への影響を抑制した状態で前記III-V族化合物半導体層のエピタキシャル成長を行うことができる。
 さらにこれによって、バッチ間における各III-V族化合物半導体層の成長速度を均一なものとし、その結果バッチ間における各III-V族化合物半導体層の厚さのバラツキを確実に低減することができる。
In this way, since the deposit can be removed by gas etching at a stage where the size of the deposit of the source gas generated on the susceptor or the like in the vapor phase growth apparatus is small, it is always possible to achieve epitaxial growth by this deposit. The III-V compound semiconductor layer can be epitaxially grown while the influence is suppressed.
Further, this makes the growth rate of each group III-V compound semiconductor layer uniform between batches, and as a result, variation in the thickness of each group III-V compound semiconductor layer between batches can be surely reduced. .
 またこのとき、前記気相成長装置内のガスエッチングを、前記III-V族化合物半導体層のエピタキシャル成長途中に2回以上行うことが好ましい。 At this time, it is preferable that the gas etching in the vapor phase growth apparatus is performed twice or more during the epitaxial growth of the III-V compound semiconductor layer.
 このようにすれば、より確実に前記気相成長装置内のサセプタ等の部材に生じる原料ガスの析出物を除去することができ、これによってバッチ間における前記III-V族化合物半導体層の成長速度をより均一なものとし、バッチ間における前記III-V族化合物半導体層の厚さのバラツキをより確実に低減することができる。 In this way, it is possible to more reliably remove the deposits of the source gas generated on the member such as the susceptor in the vapor phase growth apparatus, and thereby the growth rate of the III-V compound semiconductor layer between batches. And the variation in the thickness of the III-V compound semiconductor layer between batches can be more reliably reduced.
 またこのとき、前記III-V族化合物半導体層のエピタキシャル成長途中に、前記気相成長装置内のガスエッチングを行う方法として、前記III-V族化合物半導体層をエピタキシャル成長させるエピタキシャル成長工程と、該エピタキシャル成長工程よりも処理時間の短い、前記気相成長装置内のガスエッチング工程と、を交互に繰り返すことができる。 At this time, as a method of performing gas etching in the vapor phase growth apparatus during the epitaxial growth of the III-V compound semiconductor layer, an epitaxial growth step of epitaxially growing the III-V compound semiconductor layer, and Also, the gas etching process in the vapor phase growth apparatus having a short processing time can be alternately repeated.
 このようにすれば、より効率的に前記気相成長装置内のサセプタ等の部材に生じる原料ガスの析出物を除去しながら前記III-V族化合物半導体層をエピタキシャル成長させることができるため好ましい。 This is preferable because the group III-V compound semiconductor layer can be epitaxially grown while removing the deposits of the source gas generated on the member such as the susceptor in the vapor phase growth apparatus more efficiently.
 またこのとき、前記気相成長装置内のガスエッチングを、HClガスを用いて行うことが好ましい。 At this time, it is preferable to perform gas etching in the vapor phase growth apparatus using HCl gas.
 このようにすれば、一般的なハイドライド気相成長法において原料ガスとして用いられるHClガスをエッチングガスとして用いるため、前記III-V族化合物半導体層のエピタキシャル成長と気相成長装置内のガスエッチングをより効率的に行うことができる。 In this way, since HCl gas used as a source gas in a general hydride vapor phase growth method is used as an etching gas, the epitaxial growth of the III-V compound semiconductor layer and the gas etching in the vapor phase growth apparatus can be further performed. Can be done efficiently.
 またこのとき、前記III-V族化合物半導体層をGaP層とすることができる。 At this time, the III-V compound semiconductor layer can be a GaP layer.
 このように、本発明のハイドライド気相成長方法における前記III-V族化合物半導体層としては、GaP層が好適である。 Thus, a GaP layer is suitable as the III-V compound semiconductor layer in the hydride vapor phase growth method of the present invention.
 また、本発明では、n型GaAs基板上に(AlGa1-xIn1-yP(ただし、0≦x≦1,0≦y≦1)からなるn型クラッド層、活性層、p型クラッド層を順次積層することによって発光層を形成する工程と、該発光層上に第一の電流拡散層であるp型GaP層を積層する工程と、前記n型GaAs基板をエッチングにより除去する工程と、前記発光層の、前記n型GaAs基板が除去された側の表面に第二の電流拡散層であるn型GaP層を積層する工程と、を有する発光素子用基板の製造方法であって、前記n型GaP層の積層工程において、上記の気相成長方法によって、前記発光層の、前記n型GaAs基板が除去された側の表面にn型GaP層を積層することを特徴とする発光素子用基板の製造方法を提供する。 In the present invention, an n-type cladding layer and an active layer made of (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) are formed on an n-type GaAs substrate. A step of forming a light emitting layer by sequentially stacking a p-type cladding layer, a step of stacking a p-type GaP layer as a first current diffusion layer on the light emitting layer, and etching the n-type GaAs substrate. And a step of laminating an n-type GaP layer as a second current diffusion layer on the surface of the light-emitting layer on the side where the n-type GaAs substrate is removed. In the step of laminating the n-type GaP layer, the n-type GaP layer is laminated on the surface of the light emitting layer on the side where the n-type GaAs substrate is removed by the vapor phase growth method. A method for manufacturing a substrate for a light emitting device is provided. .
 このような発光素子用基板の製造方法におけるn型GaP層の積層工程において、n型GaAs基板のGaAsに格子整合された発光層上に、GaAsと格子定数の異なるGaPからなるn型GaP層を積層する場合であっても、本発明の気相成長方法を用いることにより、バッチ間における前記n型GaP層の成長速度を均一にすることができ、これによってバッチ間における前記n型GaP層の厚さのバラツキを確実に低減し、歩留まりを落とすことなく高品質な発光素子用基板を製造することができる。 In the stacking process of the n-type GaP layer in such a method for manufacturing a substrate for a light-emitting element, an n-type GaP layer made of GaP having a lattice constant different from that of GaAs is formed on the light-emitting layer lattice-matched to GaAs of the n-type GaAs substrate. Even in the case of stacking, by using the vapor phase growth method of the present invention, the growth rate of the n-type GaP layer between batches can be made uniform, whereby the n-type GaP layer between batches can be made uniform. The thickness variation can be surely reduced, and a high-quality light-emitting element substrate can be manufactured without reducing the yield.
 以上説明したように、本発明は、気相成長装置内のサセプタ等の部材に生じる原料ガスの析出物の、エピタキシャル成長への影響を確実に抑制した状態で前記III-V族化合物半導体層のエピタキシャル成長を行うことができる。
 さらにこれによって、バッチ間における各III-V族化合物半導体層の成長速度を均一なものとし、これによってバッチ間における各III-V族化合物半導体層の厚さのバラツキを確実に低減することができる。
 また、発光素子用基板の製造方法におけるn型GaP層の積層工程において、n型GaAs基板のGaAsに格子整合された発光層上に、GaAsと格子定数の異なるGaPからなるn型GaP層を積層する場合であっても、本発明の気相成長方法を用いることにより、バッチ間における前記n型GaP層の成長速度を均一にすることができ、これによってバッチ間における前記n型GaP層の厚さのバラツキを確実に低減し、歩留まりを落とすことなく高品質な発光素子用基板を製造することができる。
As described above, according to the present invention, the III-V group compound semiconductor layer is epitaxially grown in a state in which the influence of the deposition of the source gas generated on the susceptor or the like in the vapor phase growth apparatus on the epitaxial growth is reliably suppressed. It can be performed.
Further, this makes the growth rate of each group III-V compound semiconductor layer uniform between batches, which can surely reduce the variation in the thickness of each group III-V compound semiconductor layer between batches. .
In the step of laminating the n-type GaP layer in the method for manufacturing a substrate for light-emitting elements, an n-type GaP layer made of GaP having a lattice constant different from that of GaAs is laminated on the light-emitting layer lattice-matched to GaAs on the n-type GaAs substrate. Even in this case, by using the vapor phase growth method of the present invention, the growth rate of the n-type GaP layer between batches can be made uniform, whereby the thickness of the n-type GaP layer between batches can be made uniform. It is possible to manufacture a high-quality light-emitting element substrate without reducing the variation in thickness and reducing the yield.
本発明に係るハイドライド気相成長方法を適応できるハイドライド気相成長装置の概略断面図及びガスフローの一例を示した図である。It is the figure which showed the schematic sectional drawing and the example of gas flow of the hydride vapor phase growth apparatus which can apply the hydride vapor phase growth method which concerns on this invention. 気相成長装置内でサセプタ上に生じるGaPの析出数と、基板上のGaP層の膜厚との相関を示した図である。It is the figure which showed the correlation with the precipitation number of GaP which arises on a susceptor within a vapor phase growth apparatus, and the film thickness of the GaP layer on a board | substrate. 本発明及び従来方法において、サセプタ上に時間経過と共に生じる原料ガスの析出物の様子を示した概略図である。It is the schematic which showed the mode of the deposit of the raw material gas which arises on a susceptor with time in this invention and the conventional method. 本発明の発光素子用基板の製造方法の工程フローの一例を示した図である。It is the figure which showed an example of the process flow of the manufacturing method of the board | substrate for light emitting elements of this invention.
 前述したように、特許文献1等に記載されている方法によって製造された発光素子において、発光層から基板側へ放出される光を取り出すために、GaAs基板を湿式エッチングにより除去して、前記発光層の、前記GaAs基板が除去された側の表面に、光に対して透明なGaP電流拡散層を成長する方法が従来知られている。 As described above, in the light emitting device manufactured by the method described in Patent Document 1 or the like, the GaAs substrate is removed by wet etching to extract the light emitted from the light emitting layer to the substrate side, and the light emission is performed. Conventionally known is a method of growing a GaP current diffusion layer that is transparent to light on the surface of the layer from which the GaAs substrate has been removed.
 しかしながら、このような方法においては、n型GaAs基板の材料であるGaAsに格子整合した発光層上に、GaAsとは格子定数の異なるGaPからなるn型GaP層を成長させなければならない。このため、このような条件下におけるGaP層の成長は困難であり、気相成長装置内のサセプタ等の部材に生じる原料ガスの析出のような外乱要因に影響され易い。そしてこれによって、GaP層の成長速度すなわちGaP層の厚さにバラツキが生じ、その後製造される発光素子の不良の原因となり、歩留まりを落とす大きな原因となることが問題となっていた。 However, in such a method, an n-type GaP layer made of GaP having a lattice constant different from that of GaAs must be grown on a light-emitting layer lattice-matched to GaAs, which is the material of the n-type GaAs substrate. For this reason, it is difficult to grow a GaP layer under such conditions, and it is easily affected by disturbance factors such as deposition of a source gas generated in a member such as a susceptor in a vapor phase growth apparatus. This causes a variation in the growth rate of the GaP layer, that is, the thickness of the GaP layer, which causes a defect in a light emitting device manufactured thereafter, and causes a large decrease in yield.
 このような問題点に鑑みて、本発明者らが鋭意検討した結果、基板上にIII-V族化合物半導体層をハイドライド気相成長法によってエピタキシャル成長させている途中に、少なくとも1回該エピタキシャル成長を中断して気相成長装置内のガスエッチングを行うことにより、サセプタ等の部材に生じる原料ガスの析出を抑制し、GaP層の厚さのバラツキを低減できることを見出し、本発明を完成させた。 In view of these problems, the present inventors have conducted intensive studies, and as a result, the epitaxial growth was interrupted at least once while the III-V compound semiconductor layer was epitaxially grown on the substrate by hydride vapor phase epitaxy. Then, by performing gas etching in the vapor phase growth apparatus, it was found that the deposition of the source gas generated in a member such as a susceptor can be suppressed and the variation in the thickness of the GaP layer can be reduced, and the present invention has been completed.
 以下に本発明の気相成長方法の実施形態を図面に基づき詳細に説明するが、本発明はこれのみに限定されるものではない。 Hereinafter, embodiments of the vapor phase growth method of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
 まず、本発明の気相成長方法を適応することができる気相成長装置について、図1を参照しながら簡単に説明する。尚、図1にはバレル型の気相成長装置を示しているが、その他水平型や縦型等の気相成長装置であっても、本発明の気相成長方法を適応させることが可能である。 First, a vapor phase growth apparatus capable of applying the vapor phase growth method of the present invention will be briefly described with reference to FIG. Although FIG. 1 shows a barrel type vapor phase growth apparatus, the vapor phase growth method of the present invention can be applied to other vapor phase growth apparatuses such as a horizontal type and a vertical type. is there.
 気相成長装置1は、チャンバー2の内部に、III族金属化合物を生成するIII族金属化合物生成管3を具備する。このIII族金属化合物生成管3は内部に、III族金属を搭載したリザーバ4を有するものである。また、III族金属化合物生成管3は第一のヒーター5によって加熱される。複数のIII族金属元素を含むIII-V族化合物半導体層を形成する場合にはそれらの金属の混合物の比率を調整してリザーバ4に搭載すればよい。 The vapor phase growth apparatus 1 includes a group III metal compound generation tube 3 for generating a group III metal compound inside the chamber 2. This group III metal compound production tube 3 has a reservoir 4 in which a group III metal is mounted. The group III metal compound production tube 3 is heated by the first heater 5. When forming a group III-V compound semiconductor layer containing a plurality of group III metal elements, the ratio of the mixture of these metals may be adjusted and mounted on the reservoir 4.
 気相成長装置1は、さらに、V族元素を導入するV族元素導入管(不図示)と、基板Wを載置する回転自在のサセプタ6と、各種ガスを排出するガス排出管(不図示)と、基板Wを加熱する第二のヒーター7等を具備する。 The vapor phase growth apparatus 1 further includes a group V element introduction pipe (not shown) for introducing a group V element, a rotatable susceptor 6 on which the substrate W is placed, and a gas discharge pipe (not shown) for discharging various gases. And a second heater 7 for heating the substrate W.
 このような構造を有する気相成長装置1を用いて、以下のようにIII-V族化合物半導体層のエピタキシャル成長を行う。 Using the vapor phase growth apparatus 1 having such a structure, the III-V compound semiconductor layer is epitaxially grown as follows.
 まず、基板Wを準備して気相成長装置1内のサセプタ6上に載置する。この基板Wとしては、特には限定されないが、例えばGaAs、GaN、GaP等のIII-V族化合物半導体基板とすることができる。 First, the substrate W is prepared and placed on the susceptor 6 in the vapor phase growth apparatus 1. The substrate W is not particularly limited. For example, a III-V group compound semiconductor substrate such as GaAs, GaN, or GaP can be used.
 その後、基板W上にハイドライド気相成長法によってIII-V族化合物半導体層をエピタキシャル成長させる。このIII-V族化合物半導体層としては特には限定されないが、例えばGaP層とすることができる。 Thereafter, a III-V compound semiconductor layer is epitaxially grown on the substrate W by hydride vapor phase epitaxy. The III-V group compound semiconductor layer is not particularly limited, but can be, for example, a GaP layer.
 上記ハイドライド気相成長法によるIII-V族化合物半導体層のエピタキシャル成長方法としては、例えばIII-V族化合物半導体層をGaP層とする場合、HVPE装置1内にてIII族元素である金属GaをIII族金属化合物生成管3内のリザーバ4に搭載し、第一のヒーター5によって所定の温度に加熱保持しながら、その金属Ga上に塩化水素を導入することにより、下記(1)式の反応によりGaClを生成させ、キャリアガスであるHガスとともに基板W上に供給する。
 
 Ga(液体)+HCl(気体) → GaCl(気体)+1/2H(気体) (1)
 
As an epitaxial growth method of the III-V compound semiconductor layer by the hydride vapor phase epitaxy method, for example, when the III-V compound semiconductor layer is a GaP layer, the group III element metal Ga in the HVPE apparatus 1 is III. By mounting hydrogen chloride on the metal Ga while being heated to a predetermined temperature by the first heater 5 while being mounted on the reservoir 4 in the group metal compound production tube 3, the reaction of the following formula (1) GaCl is generated and supplied onto the substrate W together with H 2 gas which is a carrier gas.

Ga (liquid) + HCl (gas) → GaCl (gas) + 1 / 2H 2 (gas) (1)
 エピタキシャル成長温度は例えば640℃以上860℃以下に設定する。また、V族元素であるPは、PH(ホスフィン)をキャリアガスであるHとともに基板上に供給する。そして下記(2)の反応によりGaPを生成させ、基板上に積層させる。
 
  GaCl(気体)+PH(気体)
      → GaP(固体)+HCl(気体)+H(気体)      (2)
 
The epitaxial growth temperature is set to, for example, 640 ° C. or more and 860 ° C. or less. Further, P which is a group V element supplies PH 3 (phosphine) onto the substrate together with H 2 which is a carrier gas. And GaP is produced | generated by reaction of following (2), and is laminated | stacked on a board | substrate.

GaCl (gas) + PH 3 (gas)
→ GaP (solid) + HCl (gas) + H 2 (gas) (2)
 このようにして基板W上にIII-V族化合物半導体層をエピタキシャル成長させる場合に、原料ガスの全てが基板W上のエピタキシャル成長に供給されるわけではなく、サセプタ6上等にも堆積が生じる。そこで本発明では、エピタキシャル成長の途中で、少なくとも1回、好ましくは2回以上、より好ましくは5回以上該エピタキシャル成長を中断して気相成長装置1内のガスエッチングを行う。 In this way, when the III-V compound semiconductor layer is epitaxially grown on the substrate W, not all of the source gas is supplied to the epitaxial growth on the substrate W, and deposition also occurs on the susceptor 6 and the like. Therefore, in the present invention, during the epitaxial growth, the epitaxial growth is interrupted at least once, preferably two times or more, more preferably five times or more, and gas etching in the vapor phase growth apparatus 1 is performed.
 ここで、本発明者らが鋭意研究した結果、気相成長装置内のサセプタ等の部材に生じる原料ガスの析出物の数及び大きさは、エピタキシャル成長の後半部において共に著しく増加することを見出した。
 すなわち、ガスエッチングを行うタイミングとしては、特には限定されないが、気相成長装置1内のサセプタ6等の部材に生じた析出物の数が比較的少なく、大きさの比較的小さい段階であるエピタキシャル成長の前半部において行うことが好ましい。またガスエッチングを2回以上行う場合、一度ガスエッチングを行った後に再び生じた析出物の数が比較的少なく、大きさの比較的小さい段階で次のガスエッチングを行うことが好ましい。このようにすれば、より効果的に原料ガスの析出物によるエピタキシャル成長への影響を抑制することができる。
Here, as a result of intensive studies by the present inventors, it has been found that the number and size of source gas precipitates generated on members such as a susceptor in a vapor phase growth apparatus increase remarkably in the latter half of epitaxial growth.
That is, the timing for performing the gas etching is not particularly limited, but the first half of the epitaxial growth, which is a stage in which the number of precipitates generated in the member such as the susceptor 6 in the vapor phase growth apparatus 1 is relatively small and the size is relatively small. It is preferable to carry out in the part. Further, when the gas etching is performed twice or more, it is preferable to perform the next gas etching at a stage where the number of precipitates generated again after performing the gas etching once is relatively small and the size is relatively small. In this way, it is possible to more effectively suppress the influence on the epitaxial growth due to the deposit of the source gas.
 また、III-V族化合物半導体層のエピタキシャル成長途中に、気相成長装置1内のガスエッチングを行う方法としては、まずエピタキシャル成長工程として、例えば図1(a)に示したようなガス供給条件で原料ガス及びキャリアガスを気相成長装置1内に供給し、上記の方法でIII-V族化合物半導体層を一定時間(例えば1時間)エピタキシャル成長させる。次にガスエッチング工程として、ガス供給条件を例えば図1(b)に示したような条件に切り替えて、エピタキシャル成長工程よりも短い処理時間(例えば3分)で気相成長装置1内のガスエッチングを行う。そしてこれらエピタキシャル成長工程とガスエッチング工程を交互に繰り返すこととすれば、より効率的に気相成長装置1内のサセプタ6等の部材に生じる原料ガスの析出物を除去しながら前記III-V族化合物半導体層をエピタキシャル成長させることができるため好ましい。 Further, as a method of performing gas etching in the vapor phase growth apparatus 1 during the epitaxial growth of the III-V group compound semiconductor layer, first, as an epitaxial growth process, for example, a material is supplied under the gas supply conditions as shown in FIG. A gas and a carrier gas are supplied into the vapor phase growth apparatus 1, and the III-V compound semiconductor layer is epitaxially grown for a certain time (for example, 1 hour) by the above method. Next, as the gas etching process, the gas supply conditions are switched to the conditions shown in FIG. 1B, for example, and the gas etching in the vapor phase growth apparatus 1 is performed in a shorter processing time (for example, 3 minutes) than the epitaxial growth process. Do. If the epitaxial growth step and the gas etching step are alternately repeated, the III-V compound can be removed while removing the deposits of the source gas generated on the member such as the susceptor 6 in the vapor phase growth apparatus 1 more efficiently. This is preferable because the semiconductor layer can be epitaxially grown.
 また、前記気相成長装置1内のガスエッチングに用いるエッチングガスとして、HClガスを用いれば、一般的なハイドライド気相成長法においては、原料ガスとしてHClガスを用いるため、前記III-V族化合物半導体層のエピタキシャル成長と気相成長装置1内のガスエッチングをより効率的に行うことができるため好ましい。
 特に前述のようにエピタキシャル成長工程とガスエッチング工程を繰り返す方法を用いる場合には、エピタキシャル成長工程からガスエッチング工程へとガス供給条件を切り替える際に、図1(b)のようにHClガスをIII族金属化合物生成管3のリザーバ4に搭載された金属Gaに接触させないように流せば良いため、非常に簡便であり効率的である。
Further, when HCl gas is used as an etching gas used for gas etching in the vapor phase growth apparatus 1, the general hydride vapor phase growth method uses HCl gas as a source gas. It is preferable because epitaxial growth of the semiconductor layer and gas etching in the vapor phase growth apparatus 1 can be performed more efficiently.
In particular, when the method of repeating the epitaxial growth process and the gas etching process as described above is used, when the gas supply condition is switched from the epitaxial growth process to the gas etching process, HCl gas is used as a group III metal as shown in FIG. Since it suffices that the metal Ga mounted on the reservoir 4 of the compound generation tube 3 is not brought into contact with the reservoir 4, it is very simple and efficient.
 ここで、以下に本発明の発光素子用基板の製造方法の実施形態を、図4に示したフロー図に基づき詳細に説明するが、本発明はこれに限定されるものではない。 Here, an embodiment of the method for manufacturing a substrate for a light-emitting element of the present invention will be described in detail below based on the flowchart shown in FIG. 4, but the present invention is not limited to this.
 まず工程1に示すように、成長用基板としてn型GaAs基板110を準備し、洗浄した後、MOVPEリアクターに入れ、前記n型GaAs基板110上にn型GaAsバッファ層120を0.1~1.0μmエピタキシャル成長させる。 First, as shown in step 1, an n-type GaAs substrate 110 is prepared as a growth substrate, cleaned, and then placed in a MOVPE reactor, and an n-type GaAs buffer layer 120 is formed on the n-type GaAs substrate 110 by 0.1 to 1 Epitaxial growth is performed.
 次に工程2に示すように前記n型GaAsバッファ層120上に、発光層130として各々(AlGa1-xIn1-yP(ただし、0≦x≦1,0≦y≦1)からなる、厚さ0.8~4.0μmのn型クラッド層131、厚さ0.4~2.0μmの活性層132及び厚さ0.8~4.0μmのp型クラッド層133を、この順序にてエピタキシャル成長させる。 Next, as shown in Step 2, (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 1, 0 ≦ y ≦) is formed on the n-type GaAs buffer layer 120 as the light emitting layer 130. 1), an n-type cladding layer 131 having a thickness of 0.8 to 4.0 μm, an active layer 132 having a thickness of 0.4 to 2.0 μm, and a p-type cladding layer 133 having a thickness of 0.8 to 4.0 μm. Are epitaxially grown in this order.
 尚、上記各層のエピタキシャル成長は、公知のMOVPE法により行なわれる。Al、Ga、In、Pの各成分源となる原料ガスとしては、これらに限定されるわけではないが、例えば以下のようなものを使用できる。
・Al源ガス:トリメチルアルミニウム(TMAl)、トリエチルアルミニウム(TEAl)など。
・Ga源ガス:トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)など。
・In源ガス:トリメチルインジウム(TMIn)、トリエチルインジウム(TEIn)など。
・P源ガス:トリメチルリン(TMP)、トリエチルリン(TEP)、ホスフィン(PH)など。
 また、ドーパントガスとしては、以下のようなものを使用できる。
(p型ドーパント)
・Mg源:ビスシクロペンタジエニルマグネシウム(CpMg)など。
・Zn源:ジメチル亜鉛(DMZn)、ジエチル亜鉛(DEZn)など。
(n型ドーパント)
・Si源:モノシランなどのシリコン水素化物など。
The epitaxial growth of each layer is performed by a known MOVPE method. Although not limited to these as source gas used as each component source of Al, Ga, In, and P, for example, the following can be used.
Al source gas: trimethylaluminum (TMAl), triethylaluminum (TEAl), etc.
Ga source gas: trimethylgallium (TMGa), triethylgallium (TEGa), etc.
In source gas: trimethylindium (TMIn), triethylindium (TEIn), etc.
P source gas: trimethyl phosphorus (TMP), triethyl phosphorus (TEP), phosphine (PH 3 ), etc.
Moreover, the following can be used as dopant gas.
(P-type dopant)
Mg source: biscyclopentadienyl magnesium (Cp 2 Mg), etc.
Zn source: dimethyl zinc (DMZn), diethyl zinc (DEZn), etc.
(N-type dopant)
Si source: silicon hydride such as monosilane.
 次に工程3に進み、p型クラッド層133上に厚さ0.05~2.0μmのGaP接続層140をMOVPE法により成長させ、更にその上に、第一の電流拡散層である厚さ5μm~200μmのp型GaP層150を、HVPE法でエピタキシャル成長する。このHVPE法による第一電流拡散層のエピタキシャル成長においても、途中でガスエッチングを行う本発明の気相成長方法を適用することができる。 Next, the process proceeds to Step 3, where a GaP connection layer 140 having a thickness of 0.05 to 2.0 μm is grown on the p-type cladding layer 133 by the MOVPE method, and further, a thickness serving as a first current diffusion layer is formed thereon. A p-type GaP layer 150 of 5 μm to 200 μm is epitaxially grown by HVPE. Also in the epitaxial growth of the first current diffusion layer by the HVPE method, the vapor phase growth method of the present invention in which gas etching is performed in the middle can be applied.
 次に、工程4に示すようにエッチング等によりn型GaAs基板110及びn型GaAsバッファ層120を除去する。そして工程5に示すように、n型GaAs基板除去によって露出したn型クラッド層131上に、第二の電流拡散層であるn型GaP層160をHVPE法でエピタキシャル成長させ、発光素子用基板100を製造する。 Next, as shown in Step 4, the n-type GaAs substrate 110 and the n-type GaAs buffer layer 120 are removed by etching or the like. Then, as shown in step 5, the n-type GaP layer 160, which is the second current diffusion layer, is epitaxially grown on the n-type cladding layer 131 exposed by the removal of the n-type GaAs substrate by the HVPE method. To manufacture.
 ここで、工程5において、本発明の気相成長法を用いることによって、n型GaP層160のエピタキシャル成長途中に、少なくとも1回、好ましくは2回以上、より好ましくは5回以上エピタキシャル成長を中断して気相成長装置内のガスエッチングを行いながらn型GaP層160をエピタキシャル成長させる。 Here, in Step 5, by using the vapor phase growth method of the present invention, the epitaxial growth is interrupted at least once, preferably twice or more, more preferably five times or more during the epitaxial growth of the n-type GaP layer 160. The n-type GaP layer 160 is epitaxially grown while performing gas etching in the vapor phase growth apparatus.
 これにより、n型GaAs基板110のGaAsによって格子整合された発光層130のn型クラッド層131上に、GaAsと格子定数の異なるGaPからなるn型GaP層160を積層しても、前記気相成長装置内のガスエッチングによってサセプタ等の部材に生じる原料ガスの析出物が除去されているため、このような析出物による影響を受けにくい。これによって、バッチ間における前記n型GaP層の成長速度を均一にすることができ、従ってバッチ間における前記n型GaP層の厚さのバラツキを確実に低減し、歩留まりを落とすことなく高品質な発光素子用基板を製造することができる。 Thus, even if the n-type GaP layer 160 made of GaP having a lattice constant different from that of GaAs is laminated on the n-type cladding layer 131 of the light emitting layer 130 lattice-matched by GaAs of the n-type GaAs substrate 110, the gas phase Since the deposits of the source gas generated in the susceptor and other members are removed by gas etching in the growth apparatus, they are not easily affected by such deposits. As a result, the growth rate of the n-type GaP layer between batches can be made uniform, and thus the variation in the thickness of the n-type GaP layer between batches can be reliably reduced, and high quality can be achieved without reducing the yield. A substrate for a light emitting element can be manufactured.
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these.
(実施例)
 厚さ200μmのn型GaAs単結晶基板を用意し、該基板上にそれぞれn型GaAsバッファ層を0.5μmエピタキシャル成長させ、該n型GaAsバッファ層上に、発光層として(Al0.85Ga0.150.45In0.55Pにからなるn型クラッド層(1.0μm)、(Al0.1Ga0.90.45In0.55Pからなる活性層(0.6μm)、(Al0.85Ga0.150.45In0.55Pからなるp型クラッド層(1.0μm)をMOVPE法によってこの順序で積層した。そして該p型クラッド層上に、第一の電流拡散層であるp型GaP層を成長させた。このp型GaP層は、発光層側にMOVPE法により厚さ2.0μmのp型GaP接続層を形成した後に、HVPE法により厚さ100μmで形成した。
(Example)
An n-type GaAs single crystal substrate having a thickness of 200 μm is prepared, an n-type GaAs buffer layer is epitaxially grown on each of the substrates by 0.5 μm, and a light emitting layer (Al 0.85 Ga 0 is formed on the n-type GaAs buffer layer. .15 ) 0.45 In 0.55 P n-type cladding layer (1.0 μm), (Al 0.1 Ga 0.9 ) 0.45 In 0.55 P active layer (0.6 μm) ), P-type cladding layer (1.0 μm) made of (Al 0.85 Ga 0.15 ) 0.45 In 0.55 P was laminated in this order by the MOVPE method. Then, a p-type GaP layer as a first current diffusion layer was grown on the p-type cladding layer. The p-type GaP layer was formed to a thickness of 100 μm by the HVPE method after forming a 2.0 μm-thick p-type GaP connection layer on the light emitting layer side by the MOVPE method.
 次に前記n型GaAs単結晶基板を湿式エッチングにより除去して、前記発光層の、前記n型GaAs単結晶基板が除去された側の表面に、第二の電流拡散層であるn型GaP層を次の条件でハイドライド気相成長法によりエピタキシャル成長させ、発光素子用基板を製造した。
<条件>
 図1(a)に示したようなガス流量で、1時間エピタキシャル成長を行った後、図1(b)に示したようなガス条件に切り替えてHClガスによって3分間気相成長装置内のガスエッチングを行い、このサイクルを5回繰り返して(エピタキシャル成長1hr×5回、エッチング4回)、厚さ150μmを目標として前記n型GaP層のエピタキシャル成長を行った。
Next, the n-type GaAs single crystal substrate is removed by wet etching, and an n-type GaP layer as a second current diffusion layer is formed on the surface of the light emitting layer on the side where the n-type GaAs single crystal substrate is removed. Was epitaxially grown by hydride vapor phase growth under the following conditions to produce a substrate for a light emitting device.
<Conditions>
After epitaxial growth is performed for 1 hour at a gas flow rate as shown in FIG. 1A, the gas conditions shown in FIG. 1B are changed to the gas conditions shown in FIG. This cycle was repeated 5 times (epitaxial growth 1 hr × 5 times, etching 4 times), and the n-type GaP layer was epitaxially grown with a target thickness of 150 μm.
 このような発光素子用基板の製造を5回(5バッチ)行った。本実施例の1バッチの枚数は10枚とした。各バッチにおいて製造した10枚の発光素子用基板におけるn型GaP層の厚さの平均値を計測した結果、以下のようになった。
  1回目: 153μm
  2回目: 151μm
  3回目: 154μm
  4回目: 151μm
  5回目: 152μm
Such a light emitting element substrate was manufactured five times (5 batches). The number of batches in this example was 10. As a result of measuring the average value of the thickness of the n-type GaP layer in the 10 light emitting element substrates manufactured in each batch, it was as follows.
1st time: 153μm
Second time: 151μm
3rd: 154μm
4th time: 151μm
5th: 152μm
 このとき、図3(a)に示したように、n型GaP層のエピタキシャル成長を開始してから4時間経過した後であっても、各バッチにおいてサセプタ上に析出したGaPの数はいずれも数個であり、大きさは比較的小さいものであった。また、各バッチにおいて製造した発光素子用基板におけるn型GaP層の厚さの平均値の最大値と最小値との差Rは、R=3μmであり、バッチ間におけるn型GaP層の厚さのバラツキが後述する比較例に比べて劇的に良くなっていることが分かる。 At this time, as shown in FIG. 3A, the number of GaP deposited on the susceptor in each batch is a number even after 4 hours have passed since the epitaxial growth of the n-type GaP layer was started. The size was relatively small. Moreover, the difference R between the maximum value and the minimum value of the average value of the thickness of the n-type GaP layer in the light emitting element substrate manufactured in each batch is R = 3 μm, and the thickness of the n-type GaP layer between the batches It can be seen that the variation is dramatically improved as compared with the comparative example described later.
(比較例)
 発光層の、n型GaAs単結晶基板が除去された側の表面に、第二の電流拡散層であるn型GaP層をエピタキシャル成長させる際に、該エピタキシャル成長途中で気相成長装置内のガスエッチングを行わなかったこと以外は実施例と同様にして発光素子用基板の製造を5回(5バッチ)行った。各バッチの仕込枚数は10枚とした。このとき、n型GaP層の厚さは150μmを目標とし、5時間通してエピタキシャル成長を行った。各バッチにおいて製造した発光素子用基板におけるn型GaP層の厚さの平均値を計測した結果、以下のようになった。
  1回目: 146μm
  2回目: 149μm
  3回目: 168μm
  4回目: 141μm
  5回目: 158μm
(Comparative example)
When the n-type GaP layer as the second current diffusion layer is epitaxially grown on the surface of the light emitting layer on the side where the n-type GaAs single crystal substrate is removed, gas etching in the vapor phase growth apparatus is performed during the epitaxial growth. A substrate for a light emitting element was manufactured 5 times (5 batches) in the same manner as in Example except that it was not performed. The number of sheets prepared for each batch was 10. At this time, the thickness of the n-type GaP layer was set to 150 μm, and epitaxial growth was performed for 5 hours. As a result of measuring the average value of the thickness of the n-type GaP layer in the light emitting device substrate manufactured in each batch, it was as follows.
1st time: 146μm
Second time: 149μm
3rd: 168μm
4th time: 141μm
5th: 158μm
 このとき、図3(b)に示したように、n型GaP層のエピタキシャル成長を開始してから3時間後には各バッチにおいてサセプタ上に析出したGaPの数はいずれも150~200個あり、大きさは図3(b)に示したように比較的大きいものばかりであった。また、各バッチにおいて製造した発光素子用基板におけるn型GaP層の厚さの平均値の最大値と最小値との差Rは、R=27μmであり、バッチ間におけるn型GaP層の厚さのバラツキが非常に大きいことが分かる。 At this time, as shown in FIG. 3B, the number of GaP deposited on the susceptor in each batch is 150 to 200 in 3 hours after the epitaxial growth of the n-type GaP layer is started. As shown in FIG. 3B, the size was relatively large. Moreover, the difference R between the maximum value and the minimum value of the average thickness of the n-type GaP layer in the light emitting device substrate manufactured in each batch is R = 27 μm, and the thickness of the n-type GaP layer between batches It can be seen that the variation of is very large.
 以上のことから、気相成長装置内で基板上にIII-V族化合物半導体層をハイドライド気相成長法によってエピタキシャル成長させる際に、エピタキシャル成長途中に、少なくとも1回該エピタキシャル成長を中断して気相成長装置内のガスエッチングを行うことにより、気相成長装置内のサセプタ等の部材における析出物によるエピタキシャル成長への影響を抑制した状態でIII-V族化合物半導体層のエピタキシャル成長を行うことができることがわかる。
 またこれによって、バッチ間における各III-V族化合物半導体層の成長速度を均一なものとし、これによってバッチ間における各III-V族化合物半導体層の厚さのバラツキを確実に低減できることがわかる。
From the above, when the III-V compound semiconductor layer is epitaxially grown on the substrate in the vapor phase growth apparatus by the hydride vapor phase growth method, the epitaxial growth is interrupted at least once during the epitaxial growth. It can be seen that by performing the gas etching inside, the group III-V compound semiconductor layer can be epitaxially grown in a state where the influence of the precipitates on the member such as the susceptor in the vapor phase growth apparatus on the epitaxial growth is suppressed.
This also shows that the growth rate of each group III-V compound semiconductor layer between batches is made uniform, and this makes it possible to reliably reduce the variation in thickness of each group III-V compound semiconductor layer between batches.
 なお、本発明は上述した実施の形態に限定されるものではない。上述の実施の形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様の効果を奏するものはいかなるものであっても、本発明の技術的範囲に包含されることは無論である。 Note that the present invention is not limited to the embodiment described above. The above-described embodiment is merely an example, and any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and has the same effect can be used. Of course, it is included in the technical scope of the present invention.

Claims (6)

  1.  気相成長装置内で基板上に、III-V族化合物半導体層をハイドライド気相成長法によってエピタキシャル成長させる気相成長方法であって、前記III-V族化合物半導体層のエピタキシャル成長途中に、少なくとも1回該エピタキシャル成長を中断して前記気相成長装置内のガスエッチングを行うことを特徴とする気相成長方法。 A vapor phase growth method for epitaxially growing a group III-V compound semiconductor layer on a substrate in a vapor phase growth apparatus by a hydride vapor phase growth method, wherein at least once during the epitaxial growth of the group III-V compound semiconductor layer A vapor phase growth method characterized in that the epitaxial growth is interrupted and gas etching in the vapor phase growth apparatus is performed.
  2.  前記気相成長装置内のガスエッチングを、前記III-V族化合物半導体層のエピタキシャル成長途中に2回以上行うことを特徴とする請求項1に記載の気相成長方法。 2. The vapor phase growth method according to claim 1, wherein the gas etching in the vapor phase growth apparatus is performed twice or more during the epitaxial growth of the group III-V compound semiconductor layer.
  3.  前記III-V族化合物半導体層のエピタキシャル成長途中に、前記気相成長装置内のガスエッチングを行う方法として、前記III-V族化合物半導体層をエピタキシャル成長させるエピタキシャル成長工程と、該エピタキシャル成長工程よりも処理時間の短い、前記気相成長装置内のガスエッチング工程と、を交互に繰り返すことを特徴とする請求項2に記載の気相成長方法。 As a method of performing gas etching in the vapor phase growth apparatus during the epitaxial growth of the III-V compound semiconductor layer, an epitaxial growth process for epitaxially growing the III-V compound semiconductor layer, and a processing time longer than that of the epitaxial growth process. 3. The vapor phase growth method according to claim 2, wherein a short gas etching step in the vapor phase growth apparatus is alternately repeated.
  4.  前記気相成長装置内のガスエッチングを、HClガスを用いて行うことを特徴とする請求項1乃至請求項3のいずれか1項に記載の気相成長方法。 4. The vapor phase growth method according to claim 1, wherein the gas etching in the vapor phase growth apparatus is performed using HCl gas. 5.
  5.  前記III-V族化合物半導体層をGaP層とすることを特徴とする請求項1乃至請求項4のいずれか1項に記載の気相成長方法。 The vapor phase growth method according to any one of claims 1 to 4, wherein the III-V compound semiconductor layer is a GaP layer.
  6.  n型GaAs基板上に(AlGa1-xIn1-yP(ただし、0≦x≦1,0≦y≦1)からなるn型クラッド層、活性層、p型クラッド層を順次積層することによって発光層を形成する工程と、該発光層上に第一の電流拡散層であるp型GaP層を積層する工程と、前記n型GaAs基板をエッチングにより除去する工程と、前記発光層の、前記n型GaAs基板が除去された側の表面に第二の電流拡散層であるn型GaP層を積層する工程と、を有する発光素子用基板の製造方法であって、
     前記n型GaP層の積層工程において、請求項5に記載の気相成長方法によって、前記発光層の、前記n型GaAs基板が除去された側の表面にn型GaP層を積層することを特徴とする発光素子用基板の製造方法。
    An n-type cladding layer, an active layer, and a p-type cladding layer made of (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) are formed on an n-type GaAs substrate. Forming a light emitting layer by sequentially laminating, a step of laminating a p-type GaP layer as a first current diffusion layer on the light emitting layer, a step of removing the n-type GaAs substrate by etching, Laminating an n-type GaP layer, which is a second current diffusion layer, on the surface of the light-emitting layer on the side where the n-type GaAs substrate has been removed, and a method for producing a substrate for a light-emitting element,
    6. In the step of laminating the n-type GaP layer, an n-type GaP layer is laminated on the surface of the light emitting layer on the side where the n-type GaAs substrate is removed by the vapor phase growth method according to claim 5. The manufacturing method of the board | substrate for light emitting elements.
PCT/JP2012/003001 2011-05-30 2012-05-08 Vapor phase epitaxy method and light emitting element substrate manufacturing method WO2012164827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011120811A JP5640896B2 (en) 2011-05-30 2011-05-30 Vapor growth method and method for manufacturing substrate for light emitting device
JP2011-120811 2011-05-30

Publications (1)

Publication Number Publication Date
WO2012164827A1 true WO2012164827A1 (en) 2012-12-06

Family

ID=47258705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003001 WO2012164827A1 (en) 2011-05-30 2012-05-08 Vapor phase epitaxy method and light emitting element substrate manufacturing method

Country Status (3)

Country Link
JP (1) JP5640896B2 (en)
TW (1) TW201312788A (en)
WO (1) WO2012164827A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668446A (en) * 2013-11-25 2014-03-26 东莞市中镓半导体科技有限公司 Controllable precursor passage
CN106238414A (en) * 2016-07-30 2016-12-21 东莞市中镓半导体科技有限公司 A kind of support for cleaning Source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335276B (en) * 2022-03-10 2022-05-27 南昌凯捷半导体科技有限公司 940nm reverse polarity infrared LED epitaxial wafer and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231643A (en) * 2001-02-01 2002-08-16 Sharp Corp Apparatus for manufacturing iii-v compound semiconductor and iii-v compound semiconductor manufacturing method
JP2003517416A (en) * 1999-05-07 2003-05-27 シービーエル テクノロジーズ インコーポレイテッド Continuous hydride vapor phase epitaxy
JP2010027914A (en) * 2008-07-22 2010-02-04 Shin Etsu Handotai Co Ltd Method of fabricating light emitting element and light emitting element
JP2011508428A (en) * 2007-12-20 2011-03-10 エス. オー. アイ. テック シリコン オン インシュレーター テクノロジーズ Method of in-situ chamber cleaning process for mass production of semiconductor materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4424497B2 (en) * 2005-02-15 2010-03-03 日立電線株式会社 Method for manufacturing nitride semiconductor crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517416A (en) * 1999-05-07 2003-05-27 シービーエル テクノロジーズ インコーポレイテッド Continuous hydride vapor phase epitaxy
JP2002231643A (en) * 2001-02-01 2002-08-16 Sharp Corp Apparatus for manufacturing iii-v compound semiconductor and iii-v compound semiconductor manufacturing method
JP2011508428A (en) * 2007-12-20 2011-03-10 エス. オー. アイ. テック シリコン オン インシュレーター テクノロジーズ Method of in-situ chamber cleaning process for mass production of semiconductor materials
JP2010027914A (en) * 2008-07-22 2010-02-04 Shin Etsu Handotai Co Ltd Method of fabricating light emitting element and light emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668446A (en) * 2013-11-25 2014-03-26 东莞市中镓半导体科技有限公司 Controllable precursor passage
CN106238414A (en) * 2016-07-30 2016-12-21 东莞市中镓半导体科技有限公司 A kind of support for cleaning Source

Also Published As

Publication number Publication date
JP5640896B2 (en) 2014-12-17
TW201312788A (en) 2013-03-16
JP2012248756A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
US20020155712A1 (en) Method of fabricating group-III nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
JP2003243302A (en) Group iii nitride semiconductor crystal, manufacturing method thereof, and group iii nitride semiconductor epitaxial wafer
JP5640896B2 (en) Vapor growth method and method for manufacturing substrate for light emitting device
WO2002017369A1 (en) Method of fabricating group-iii nitride semiconductor crystal, metho of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
WO2016020990A1 (en) Nitride semiconductor template and light emitting element
JP4873381B2 (en) Light emitting device manufacturing method, compound semiconductor wafer, and light emitting device
JP4978577B2 (en) Method for manufacturing light emitting device
JP2009149483A (en) Nitride semiconductor free-standing substrate and manufacturing process of nitride semiconductor free-standing substrate
JP2011254015A (en) Compound semiconductor film vapor phase growth susceptor and compound semiconductor film forming method
JP5277646B2 (en) Method for manufacturing compound semiconductor substrate
WO2009116232A1 (en) Compound semiconductor substrate, light emitting element using compound semiconductor substrate, and method for manufacturing compound semiconductor substrate
JP4998396B2 (en) Method for manufacturing light emitting device
US9786498B2 (en) Method for the production of a nitride compound semiconductor layer
JPH07283436A (en) Iii-v compound semiconductor and light-emitting element
JP4241051B2 (en) III-V compound semiconductor layer growth method and semiconductor light emitting device manufacturing method
JP5278323B2 (en) Manufacturing method of high brightness light emitting diode
WO2012120798A1 (en) Compound semiconductor substrate, method for producing compound semiconductor substrate, and light-emitting element
JP5464057B2 (en) Epitaxial wafer manufacturing method
JP5582066B2 (en) Compound semiconductor substrate, method of manufacturing compound semiconductor substrate, and light emitting device
JP5387509B2 (en) Epitaxial wafer manufacturing method
JP5338748B2 (en) Compound semiconductor substrate manufacturing method and compound semiconductor substrate
JP5240658B2 (en) Compound semiconductor epitaxial wafer manufacturing method, compound semiconductor epitaxial wafer, and light emitting device
JP5182396B2 (en) Nitride semiconductor free-standing substrate and light emitting device
JP4193379B2 (en) Method for producing group 3-5 compound semiconductor
JPH07157392A (en) Vapor growth method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793218

Country of ref document: EP

Kind code of ref document: A1