JP5582066B2 - Compound semiconductor substrate, method of manufacturing compound semiconductor substrate, and light emitting device - Google Patents

Compound semiconductor substrate, method of manufacturing compound semiconductor substrate, and light emitting device Download PDF

Info

Publication number
JP5582066B2
JP5582066B2 JP2011046389A JP2011046389A JP5582066B2 JP 5582066 B2 JP5582066 B2 JP 5582066B2 JP 2011046389 A JP2011046389 A JP 2011046389A JP 2011046389 A JP2011046389 A JP 2011046389A JP 5582066 B2 JP5582066 B2 JP 5582066B2
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
semiconductor substrate
type
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011046389A
Other languages
Japanese (ja)
Other versions
JP2012186204A (en
Inventor
健滋 酒井
雅宣 高橋
淳 池田
政幸 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2011046389A priority Critical patent/JP5582066B2/en
Publication of JP2012186204A publication Critical patent/JP2012186204A/en
Application granted granted Critical
Publication of JP5582066B2 publication Critical patent/JP5582066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は化合物半導体基板及び化合物半導体基板の製造方法並びに発光素子に関し、具体的には、通電による順方向電圧の上昇を抑制し、かつ高輝度を実現できる発光素子を安定して供給するための化合物半導体基板及び化合物半導体基板の製造方法並びに発光素子に関する。   The present invention relates to a compound semiconductor substrate, a method of manufacturing a compound semiconductor substrate, and a light emitting element, and more specifically, to stably supply a light emitting element that can suppress an increase in forward voltage due to energization and can realize high luminance. The present invention relates to a compound semiconductor substrate, a method for manufacturing the compound semiconductor substrate, and a light emitting element.

GaAs基板上に、発光層と電流拡散層とを形成した発光素子が従来知られている。
例えばGaAs基板上に、AlGaInPの4元からなる発光層とGaPからなる電流拡散層とを形成した発光素子が知られている。このGaP電流拡散層は、発光層側に有機金属気相成長法(Metal Organic Vapor Phase Epitaxy法、以下単にMOVPE法という)により比較的薄い電流拡散層(以下、薄膜電流拡散層という)を形成した後に、ハイドライド気相成長法(Hydride Vapor Phase Epitaxy法、以下単にHVPE法という)により比較的厚い電流拡散層(以下、厚膜電流拡散層という)を形成することによって作製することができる。例えば、全体として200μm程度の厚さにまでGaP電流拡散層が成長されることがある。
A light-emitting element in which a light-emitting layer and a current diffusion layer are formed on a GaAs substrate is conventionally known.
For example, a light emitting element is known in which a light emitting layer composed of four elements of AlGaInP and a current diffusion layer composed of GaP are formed on a GaAs substrate. In this GaP current diffusion layer, a relatively thin current diffusion layer (hereinafter referred to as a thin film current diffusion layer) was formed on the light emitting layer side by metal organic vapor phase epitaxy (Metal Organic Vapor Phase Epitaxy, hereinafter simply referred to as MOVPE). Later, it can be formed by forming a relatively thick current diffusion layer (hereinafter referred to as a thick film current diffusion layer) by a hydride vapor phase epitaxy method (hereinafter referred to as HVPE method). For example, the GaP current diffusion layer may be grown to a thickness of about 200 μm as a whole.

さらに、AlGaInPからなる発光素子の更なる高輝度化を実現するために、光吸収性のGaAs基板を除去して、代わりに光透過性のGaP基板を接合する。その接合界面に高濃度にドーピングされたInGaP中間層を形成することにより、接合界面における素子直列抵抗を十分に低減でき、またそのスイッチング応答性も良好な発光素子が従来知られている(特許文献1)。   Further, in order to realize further increase in luminance of the light emitting element made of AlGaInP, the light-absorbing GaAs substrate is removed and a light-transmitting GaP substrate is bonded instead. By forming an InGaP intermediate layer doped at a high concentration at the junction interface, a light-emitting element that can sufficiently reduce the element series resistance at the junction interface and has good switching response has been known (Patent Literature). 1).

特開2007−324551号公報JP 2007-324551 A

本発明者らが鋭意研究を重ねた結果、上記のような直接接合型発光素子は、4元発光層とGaP基板の接合界面における酸素、炭素等の不純物濃度が製造バッチ毎に一定とならずに安定していないことが判った。
また、このような接合界面の酸素、炭素等の不純物は、通電を行うと4元発光層側へ拡散しキャリアを補償してしまう。これによって順方向電圧を上昇させ、製造された発光素子の順方向電圧に対する寿命特性を悪化させることが判った。
As a result of intensive studies by the present inventors, the above-described direct-junction light-emitting element has a concentration of impurities such as oxygen and carbon at the junction interface between the quaternary light-emitting layer and the GaP substrate that is not constant for each production batch. It was found that it was not stable.
Further, such an impurity such as oxygen and carbon at the junction interface diffuses to the quaternary light emitting layer side when energized and compensates for carriers. As a result, it has been found that the forward voltage is increased, and the lifetime characteristics of the manufactured light emitting device with respect to the forward voltage are deteriorated.

本発明は、上記課題に鑑みてなされたものであり、4元発光層とGaP基板との接合界面において酸素、炭素等の不純物が発生したとしても、通電した際に順方向電圧が上昇することを抑制し、これによって製造された発光素子の順方向電圧に対する寿命特性の悪化を抑制することができる化合物半導体基板及びその製造方法、並びにこのような化合物半導体基板から製造された発光素子を提供する。   The present invention has been made in view of the above problems, and even when impurities such as oxygen and carbon are generated at the junction interface between the quaternary light emitting layer and the GaP substrate, the forward voltage increases when energized. And a method for manufacturing the same, and a light-emitting device manufactured from such a compound semiconductor substrate are provided. .

上記目的を達成するために、本発明では、少なくともn型GaP基板上に(AlGa1−xIn1−yP(ただし、0<x<1,0<y<1)からなるn型クラッド層、活性層、p型クラッド層が順次積層された4元発光層を有し、該4元発光層の、前記n型GaP基板側の主表面(以後、第二主面ともいう)の反対側となる主表面(以後、第一主面ともいう)上に、電流拡散層であるp型GaP層が積層された化合物半導体基板であって、前記n型GaP基板と前記4元発光層との間に、前記n型クラッド層よりもキャリア濃度の高い、(AlGa1−xIn1−yP(ただし、0<x≦1,0<y<1)からなる高濃度キャリア層が形成されたものであることを特徴とする化合物半導体基板を提供する。 In order to achieve the above object, in the present invention, at least an (Al x Ga 1-x ) y In 1-y P (where 0 <x <1, 0 <y <1) is formed on an n-type GaP substrate. It has a quaternary light emitting layer in which an n-type cladding layer, an active layer, and a p-type cladding layer are sequentially laminated. The main surface of the quaternary light emitting layer on the n-type GaP substrate side (hereinafter also referred to as a second main surface). ), A compound semiconductor substrate in which a p-type GaP layer as a current diffusion layer is stacked on a main surface (hereinafter also referred to as a first main surface) opposite to the n-type GaP substrate and the quaternary element (Al x Ga 1-x ) y In 1-y P (where 0 <x ≦ 1, 0 <y <1), which has a higher carrier concentration than the n-type cladding layer. Provided is a compound semiconductor substrate in which a high concentration carrier layer is formed.

このように、n型GaP基板と4元発光層との間に高濃度キャリア層が形成された化合物半導体基板であれば、このような化合物半導体基板から製造された発光素子に通電した際に、n型GaP基板と4元発光層との間にある接合界面における酸素、炭素等の不純物が4元発光層へ拡散し、キャリアを補償したとしても、高濃度キャリア層により十分なキャリアが4元発光層へ供給される。このため、順方向電圧が上昇することを抑制し、これによって製造された発光素子の順方向電圧に対する寿命特性が悪化することを抑制することができる。   Thus, if a compound semiconductor substrate in which a high concentration carrier layer is formed between an n-type GaP substrate and a quaternary light emitting layer, when a light emitting element manufactured from such a compound semiconductor substrate is energized, Even if impurities such as oxygen and carbon at the junction interface between the n-type GaP substrate and the quaternary light emitting layer diffuse into the quaternary light emitting layer and compensate the carriers, sufficient carriers are quaternized by the high concentration carrier layer. Supplied to the light emitting layer. For this reason, it can suppress that a forward voltage rises and it can suppress that the lifetime characteristic with respect to the forward voltage of the light emitting element manufactured by this deteriorates.

またこのとき、前記高濃度キャリア層は、キャリア濃度が1.0×1018atoms/cm以上であることが好ましい。
また、前記高濃度キャリア層は、膜厚が500Å以上であることが好ましい。
At this time, the high concentration carrier layer preferably has a carrier concentration of 1.0 × 10 18 atoms / cm 3 or more.
The high-concentration carrier layer preferably has a thickness of 500 mm or more.

このように高濃度キャリア層が形成されれば、より確実に通電後の順方向電圧の上昇を抑制することができる。   If the high-concentration carrier layer is formed in this way, it is possible to more reliably suppress an increase in forward voltage after energization.

また本発明は、本発明の化合物半導体基板から製造されたことを特徴とする発光素子を提供する。   The present invention also provides a light emitting device manufactured from the compound semiconductor substrate of the present invention.

このように製造された発光素子であれば、順方向電圧に対する寿命特性が非常に良好であるため、高輝度な状態で長期間使用することができる。   A light emitting device manufactured in this way has a very good lifetime characteristic with respect to a forward voltage, and can be used for a long time in a high luminance state.

また本発明は、少なくとも、n型GaAs基板上に(AlGa1−xIn1−yP(ただし、0<x<1,0<y<1)からなるn型クラッド層、活性層、p型クラッド層を順次積層した4元発光層をエピタキシャル成長させる工程と、前記4元発光層の、前記n型GaAs基板側と反対側となる主表面(第一主面)上に、電流拡散層としてp型GaP層をエピタキシャル成長させる工程と、前記4元発光層からn型GaAs基板を除去する工程と、該n型GaAs基板が除去された側の前記4元発光層の主表面(第二主面)側にn型GaP基板を貼り合わせる工程とを有する化合物半導体基板の製造方法において、前記n型GaAs基板上に、前記4元発光層をエピタキシャル成長させる前に前記n型クラッド層よりもキャリア濃度の高い、(AlGa1−xIn1−yP(ただし、0<x≦1,0<y<1)からなる高濃度キャリア層を積層し、その後該高濃度キャリア層上に前記4元発光層をエピタキシャル成長させるか、または前記4元発光層の第二主面側に、前記n型GaP基板を貼り合わせる前に前記高濃度キャリア層を積層することによって、前記貼り合わせ工程において、前記高濃度キャリア層とn型GaP基板を貼り合わせ、前記n型GaP基板と前記4元発光層との間に前記高濃度キャリア層が形成された化合物半導体基板を製造することを特徴とする化合物半導体基板の製造方法を提供する。 Further, the present invention provides at least an n - type cladding layer made of (Al x Ga 1-x ) y In 1-y P (where 0 <x <1, 0 <y <1) on an n-type GaAs substrate, active A step of epitaxially growing a quaternary light emitting layer in which a layer and a p-type cladding layer are sequentially laminated, and a current on a main surface (first main surface) opposite to the n-type GaAs substrate side of the quaternary light emitting layer A step of epitaxially growing a p-type GaP layer as a diffusion layer; a step of removing an n-type GaAs substrate from the quaternary light-emitting layer; and a main surface (first surface) of the quaternary light-emitting layer on the side where the n-type GaAs substrate is removed. And a step of bonding an n-type GaP substrate to the second principal surface) side of the quaternary light-emitting layer on the n-type GaAs substrate before the quaternary light-emitting layer is epitaxially grown. Carry High density, (Al x Ga 1-x ) y In 1-y P ( However, 0 <x ≦ 1,0 <y <1) the high-concentration carrier layer laminated made of, then the high-concentration carrier layer The bonding step is performed by epitaxially growing the quaternary light emitting layer or laminating the high-concentration carrier layer on the second main surface side of the quaternary light emitting layer before bonding the n-type GaP substrate. Wherein the high concentration carrier layer and the n-type GaP substrate are bonded together to produce a compound semiconductor substrate in which the high concentration carrier layer is formed between the n-type GaP substrate and the quaternary light emitting layer. A method of manufacturing a compound semiconductor substrate is provided.

このような製造方法であれば、n型GaP基板と4元発光層との間に確実に前記高濃度キャリア層を形成することができる。これによって、通電した際の順方向電圧の上昇が抑制され、順方向電圧に対する寿命特性の良好な発光素子の原料となる化合物半導体基板を製造することができる。   With such a manufacturing method, the high-concentration carrier layer can be reliably formed between the n-type GaP substrate and the quaternary light emitting layer. Thereby, an increase in the forward voltage when energized is suppressed, and a compound semiconductor substrate serving as a raw material of a light-emitting element having good lifetime characteristics with respect to the forward voltage can be manufactured.

以上説明したように、本発明の化合物半導体基板は、n型GaP基板と4元発光層との間に、n型クラッド層よりもキャリア濃度の高い、(AlGa1−xIn1−yPからなる高濃度キャリア層が形成されているため、このような化合物半導体基板から製造された発光素子に通電した際に、n型GaP基板と4元発光層との間にある接合界面における酸素、炭素等の不純物が4元発光層へ拡散し、キャリアを補償したとしても、前記高濃度キャリア層により十分なキャリアが4元発光層へ供給されるため、順方向電圧の上昇を抑制することができる。
またn型GaAs基板上に、4元発光層をエピタキシャル成長させる前に前記高濃度キャリア層を積層し、その後該高濃度キャリア層上に4元発光層をエピタキシャル成長させるか、または4元発光層の第二主面側に、n型GaP基板を貼り合わせる前に前記高濃度キャリア層を積層することとすれば、確実にn型GaP基板と4元発光層との間に前記高濃度キャリア層が形成された高品質の化合物半導体基板を製造することができる。
さらにこのような化合物半導体基板から製造された発光素子は、順方向電圧に対する寿命特性が良好であるため、高輝度の状態で長期間使用することができる。
As described above, the compound semiconductor substrate of the present invention has (Al x Ga 1-x ) y In 1 having a carrier concentration higher than that of the n-type cladding layer between the n-type GaP substrate and the quaternary light emitting layer. Since a high-concentration carrier layer made of -yP is formed, a junction interface between the n-type GaP substrate and the quaternary light-emitting layer when a light-emitting element manufactured from such a compound semiconductor substrate is energized Even if impurities such as oxygen and carbon diffuse in the quaternary light-emitting layer and compensate carriers, sufficient carriers are supplied to the quaternary light-emitting layer by the high-concentration carrier layer, so that an increase in forward voltage is suppressed. can do.
Further, the high-concentration carrier layer is laminated on the n-type GaAs substrate before epitaxially growing the quaternary light-emitting layer, and then the quaternary light-emitting layer is epitaxially grown on the high-concentration carrier layer, or If the high-concentration carrier layer is laminated on the two principal surfaces before the n-type GaP substrate is bonded, the high-concentration carrier layer is surely formed between the n-type GaP substrate and the quaternary light emitting layer. The manufactured high quality compound semiconductor substrate can be manufactured.
Furthermore, a light-emitting element manufactured from such a compound semiconductor substrate has good lifetime characteristics with respect to a forward voltage, and thus can be used for a long time in a high luminance state.

本発明の化合物半導体基板の概略断面図の一例を示した図である。It is the figure which showed an example of the schematic sectional drawing of the compound semiconductor substrate of this invention. 本発明の発光素子の概略断面図の一例を示した図である。It is the figure which showed an example of the schematic sectional drawing of the light emitting element of this invention. 比較例1で製造された化合物半導体基板の概略断面図を示した図である。5 is a schematic cross-sectional view of a compound semiconductor substrate manufactured in Comparative Example 1. FIG. 比較例2で製造された化合物半導体基板の概略断面図を示した図である。6 is a schematic cross-sectional view of a compound semiconductor substrate manufactured in Comparative Example 2. FIG. 実施例及び比較例における各化合物半導体基板から製造された各ランプの順方向電圧の変化率を示した図である。It is the figure which showed the change rate of the forward voltage of each lamp | ramp manufactured from each compound semiconductor substrate in an Example and a comparative example. 本発明の化合物半導体基板の製造方法の工程フローの一例を示した図である。It is the figure which showed an example of the process flow of the manufacturing method of the compound semiconductor substrate of this invention.

以下に本発明の実施の形態を、図面を参照しながら具体的に説明するが、本発明はこれらのみに限定されるものではない。
図1は、本発明の化合物半導体基板の一例を示す概略図である。図1に示す本発明の化合物半導体基板1は、n型GaP基板2上に(AlGa1−xIn1−yP(ただし、0<x≦1,0<y<1)からなるn型高濃度キャリア層3が形成され、該高濃度キャリア層3の上に発光層4が形成されている。
そして該発光層4上に、MOVPE法によりp型GaP薄膜電流拡散層5が形成され、さらにその上にHVPE法によりp型GaP厚膜電流拡散層6が形成されている。
Embodiments of the present invention will be specifically described below with reference to the drawings, but the present invention is not limited to these embodiments.
FIG. 1 is a schematic view showing an example of a compound semiconductor substrate of the present invention. A compound semiconductor substrate 1 according to the present invention shown in FIG. 1 is formed from (Al x Ga 1-x ) y In 1-y P (where 0 <x ≦ 1, 0 <y <1) on an n-type GaP substrate 2. The n-type high concentration carrier layer 3 is formed, and the light emitting layer 4 is formed on the high concentration carrier layer 3.
A p-type GaP thin film current diffusion layer 5 is formed on the light emitting layer 4 by the MOVPE method, and a p-type GaP thick film current diffusion layer 6 is formed thereon by the HVPE method.

前記発光層4としては、例えばノンドープ(AlGa1−xIn1−yP(ただし、0≦x≦1,0<y<1)混晶からなる活性層42を、p型(AlGa1−zIn1−yP(ただし、x<z≦1)からなるp型クラッド層43と、n型(AlGa1−zIn1−yPからなるn型クラッド層41とで挟んだ4元発光層4とすることができる。
なお、ここでいう「ノンドープ」とは、「ドーパントの積極添加を行わない」という意味であり、化合物半導体基板の製造工程上、不可避的に混入するドーパント成分の含有(例えば1.0×1013〜1.0×1016atoms/cm程度)をも排除するものではない。
As the light emitting layer 4, for example, an active layer 42 made of a non-doped (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 1, 0 <y <1) mixed crystal is used as a p-type ( Al z Ga 1-z) y In 1-y P ( where the p-type cladding layer 43 made of x <z ≦ 1), made of n-type (Al z Ga 1-z) y In 1-y P n The quaternary light emitting layer 4 can be sandwiched between the mold cladding layers 41.
The term “non-doped” as used herein means “not to add dopants positively”, and includes a dopant component inevitably mixed in the manufacturing process of the compound semiconductor substrate (for example, 1.0 × 10 13). (About 1.0 × 10 16 atoms / cm 3 ) is not excluded.

このような化合物半導体基板1から製造された発光素子10に通電した際に、n型GaP基板2と4元発光層4との間にある接合界面における酸素、炭素等の不純物が4元発光層4へ拡散し、キャリアを補償して順方向電圧を上昇させ、順方向電圧に対する寿命特性を悪化させる可能性がある。
しかし、本発明ではn型GaP基板2と4元発光層4との間に、前記高濃度キャリア層3が形成されているので、該高濃度キャリア層3により十分なキャリアが4元発光層4へ供給される。このため、順方向電圧が上昇することを抑制し、寿命特性を良好なものとすることができる。
When the light emitting device 10 manufactured from such a compound semiconductor substrate 1 is energized, impurities such as oxygen and carbon at the junction interface between the n-type GaP substrate 2 and the quaternary light emitting layer 4 are quaternary light emitting layers. 4, the carrier voltage is compensated to increase the forward voltage, and the life characteristics with respect to the forward voltage may be deteriorated.
However, in the present invention, since the high-concentration carrier layer 3 is formed between the n-type GaP substrate 2 and the quaternary light-emitting layer 4, sufficient carriers are transferred to the quaternary light-emitting layer 4 by the high-concentration carrier layer 3. Supplied to. For this reason, it can suppress that a forward voltage rises and can make a lifetime characteristic favorable.

またこのとき、前記高濃度キャリア層3のキャリア濃度が1.0×1018atoms/cm以上であり、膜厚が500Å以上であれば、より確実に順方向電圧の上昇を抑制することができるため好ましい。 At this time, if the carrier concentration of the high-concentration carrier layer 3 is 1.0 × 10 18 atoms / cm 3 or more and the film thickness is 500 mm or more, the increase in the forward voltage can be more reliably suppressed. This is preferable because it is possible.

また、このような化合物半導体基板1を用いて、図2に示すような光学素子10を製造することができる。
この光学素子10においては、図1に示した化合物半導体基板1の厚膜電流拡散層6上の略中央に、4元発光層4に発光駆動電圧を印加するための第一電極11が形成され、該第一電極11の周囲の領域が4元発光層4からの光取出領域とされている。また、n型GaP基板2の第二主面側には第二電極12が全面に形成されている。また、第一電極11の中央部に電極ワイヤを接合するためのAu等にて構成されたボンディングパッド13が配置されている。
このように製造された発光素子10は、順方向電圧に対する寿命特性が良好であり、高輝度の状態で長期間使用することができる。
Moreover, the optical element 10 as shown in FIG. 2 can be manufactured using such a compound semiconductor substrate 1.
In this optical element 10, a first electrode 11 for applying a light emission driving voltage to the quaternary light emitting layer 4 is formed at substantially the center on the thick film current diffusion layer 6 of the compound semiconductor substrate 1 shown in FIG. A region around the first electrode 11 is a light extraction region from the quaternary light emitting layer 4. The second electrode 12 is formed on the entire surface of the n-type GaP substrate 2 on the second main surface side. A bonding pad 13 made of Au or the like for bonding an electrode wire is disposed at the center of the first electrode 11.
The light-emitting element 10 manufactured in this way has a good lifetime characteristic with respect to the forward voltage, and can be used for a long time in a high-brightness state.

尚、本発明における化合物半導体基板1の上記各層の間に、必要に応じて種々の層が挿入されても良い。   Various layers may be inserted between the above layers of the compound semiconductor substrate 1 in the present invention as necessary.

以下、図1に示した化合物半導体基板1の製造方法について、図6に示したフロー図を参照しながら説明する。
まず工程1に示すように、成長用基板としてn型GaAs基板を準備し、洗浄した後、MOVPEリアクターに入れ、前記n型GaAs基板上にn型GaAsバッファ層を0.1〜1.0μmエピタキシャル成長させる。
Hereinafter, a method of manufacturing the compound semiconductor substrate 1 shown in FIG. 1 will be described with reference to the flowchart shown in FIG.
First, as shown in step 1, an n-type GaAs substrate is prepared as a growth substrate, cleaned, and then placed in a MOVPE reactor, and an n-type GaAs buffer layer is epitaxially grown on the n-type GaAs substrate by 0.1 to 1.0 μm. Let

次いで、工程2に示すようにn型GaAsバッファ層上にAlGaInPからなるn型高濃度キャリア層3を、膜厚が0.05μm(500Å)以上となるように形成する。
次に工程3に示すように前記高濃度キャリア層3上に、4元発光層4として各々AlGaInPからなる、厚さ0.8〜4.0μmのn型クラッド層41、厚さ0.4〜2.0μmの活性層42及び厚さ0.8〜4.0μmのp型クラッド層43を、この順序にてエピタキシャル成長させる。尚、このとき高濃度キャリア層3のキャリア濃度を、例えば1.0×1018atoms/cm以上とし、n型クラッド層41のキャリア濃度より高くなるようにする。
Next, as shown in step 2, an n-type high concentration carrier layer 3 made of AlGaInP is formed on the n-type GaAs buffer layer so as to have a film thickness of 0.05 μm (500 mm) or more.
Next, as shown in step 3, an n-type clad layer 41 having a thickness of 0.8 to 4.0 μm and made of AlGaInP as the quaternary light emitting layer 4 is formed on the high-concentration carrier layer 3 and has a thickness of 0.4 to 4. An active layer 42 having a thickness of 2.0 μm and a p-type cladding layer 43 having a thickness of 0.8 to 4.0 μm are epitaxially grown in this order. At this time, the carrier concentration of the high concentration carrier layer 3 is set to, for example, 1.0 × 10 18 atoms / cm 3 or more so as to be higher than the carrier concentration of the n-type cladding layer 41.

尚、上記各層のエピタキシャル成長は、公知のMOVPE法により行なわれる。Al、Ga、In、Pの各成分源となる原料ガスとしては、これらに限定されるわけではないが、例えば以下のようなものを使用できる。
・Al源ガス:トリメチルアルミニウム(TMAl)、トリエチルアルミニウム(TEAl)など。
・Ga源ガス:トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)など。
・In源ガス:トリメチルインジウム(TMIn)、トリエチルインジウム(TEIn)など。
・P源ガス:トリメチルリン(TMP)、トリエチルリン(TEP)、ホスフィン(PH)など。
また、ドーパントガスとしては、以下のようなものを使用できる。
(p型ドーパント)
・Mg源:ビスシクロペンタジエニルマグネシウム(CpMg)など。
・Zn源:ジメチル亜鉛(DMZn)、ジエチル亜鉛(DEZn)など。
(n型ドーパント)
・Si源:モノシランなどのシリコン水素化物など。
The epitaxial growth of each of the above layers is performed by a known MOVPE method. Although not limited to these as source gas used as each component source of Al, Ga, In, and P, for example, the following can be used.
Al source gas: trimethylaluminum (TMAl), triethylaluminum (TEAl), etc.
Ga source gas: trimethylgallium (TMGa), triethylgallium (TEGa), etc.
In source gas: trimethylindium (TMIn), triethylindium (TEIn), etc.
P source gas: trimethyl phosphorus (TMP), triethyl phosphorus (TEP), phosphine (PH 3 ), etc.
Moreover, the following can be used as dopant gas.
(P-type dopant)
Mg source: biscyclopentadienyl magnesium (Cp 2 Mg), etc.
Zn source: dimethyl zinc (DMZn), diethyl zinc (DEZn), etc.
(N-type dopant)
Si source: silicon hydride such as monosilane.

次に工程4に進み、p型クラッド層43上に厚さ0.05〜1.0μmのp型GaP薄膜電流拡散層5をMOVPE法によりヘテロエピタキシャル成長させ、MOエピタキシャルウエーハを得る。更に、前記MOエピタキシャルウエーハ上に厚さ5μm〜200μmのp型GaP厚膜電流拡散層6を、HVPE法で気相成長する。   Next, the process proceeds to Step 4, and a p-type GaP thin film current diffusion layer 5 having a thickness of 0.05 to 1.0 μm is heteroepitaxially grown on the p-type cladding layer 43 by the MOVPE method to obtain an MO epitaxial wafer. Further, a p-type GaP thick film current diffusion layer 6 having a thickness of 5 μm to 200 μm is vapor-phase grown on the MO epitaxial wafer by HVPE.

HVPE法は、具体的には、容器内にてIII族元素である金属Gaを所定の温度に加熱保持しながら、その金属Ga上に塩化水素を導入することにより、下記(1)式の反応によりGaClを生成させ、キャリアガスであるHガスとともに基板上に供給する。
Ga(液体)+HCl(気体) → GaCl(気体)+1/2H(気体)‥‥(1)
成長温度は例えば640℃以上860℃以下に設定する。また、V族元素であるPは、例えばホスフィン(PH)をキャリアガスであるHともに基板上に供給する。さらに、p型ドーパントであるZnは、ジメチル亜鉛(DMZn)の形で供給して、下記(2)式のような反応によってn型GaPエピタキシャル層を形成するものである。
GaCl(気体)+PH3(気体)
→GaP(固体)+HCl(気体)+H2(気体)‥‥(2)
Specifically, in the HVPE method, the reaction of the following formula (1) is performed by introducing hydrogen chloride onto the metal Ga while heating and maintaining the metal Ga, which is a group III element, at a predetermined temperature in the container. Then, GaCl is generated and supplied onto the substrate together with H 2 gas which is a carrier gas.
Ga (liquid) + HCl (gas) → GaCl (gas) + 1 / 2H 2 (gas) (1)
The growth temperature is set to, for example, 640 ° C. or more and 860 ° C. or less. In addition, P, which is a group V element, supplies, for example, phosphine (PH 3 ) together with H 2 as a carrier gas onto the substrate. Furthermore, Zn which is a p-type dopant is supplied in the form of dimethylzinc (DMZn) and forms an n-type GaP epitaxial layer by a reaction such as the following formula (2).
GaCl (gas) + PH3 (gas)
→ GaP (solid) + HCl (gas) + H2 (gas) (2)

次に、工程5に示すようにエッチング等によりn型GaAs基板及びn型GaAsバッファ層を除去する。そして工程6に示すように、n型GaAs基板除去によって露出した高濃度キャリア層3にn型GaP基板2を貼り合せ、化合物半導体基板1を製造する。   Next, as shown in step 5, the n-type GaAs substrate and the n-type GaAs buffer layer are removed by etching or the like. Then, as shown in step 6, the n-type GaP substrate 2 is bonded to the high-concentration carrier layer 3 exposed by removing the n-type GaAs substrate, and the compound semiconductor substrate 1 is manufactured.

また、上記のようにn型GaAs基板と4元発光層4との間に高濃度キャリア層3を積層するのではなく、GaAs基板を除去した後、4元発光層4の第二主面側に、n型GaP基板2を貼り合わせる前に高濃度キャリア層3を積層することによって、高濃度キャリア層3とn型GaP基板2とを貼り合わせて化合物半導体基板1を製造することもできる。
また、4元発光層の第二主面側とn型GaP基板との間にn型GaInP層を挟んでも良い。
Further, instead of laminating the high-concentration carrier layer 3 between the n-type GaAs substrate and the quaternary light emitting layer 4 as described above, after removing the GaAs substrate, the second main surface side of the quaternary light emitting layer 4 In addition, by stacking the high concentration carrier layer 3 before the n-type GaP substrate 2 is bonded, the compound semiconductor substrate 1 can be manufactured by bonding the high concentration carrier layer 3 and the n-type GaP substrate 2 together.
An n-type GaInP layer may be sandwiched between the second main surface side of the quaternary light emitting layer and the n-type GaP substrate.

また、これに限定されるわけではないが、以上の工程が終了した後に以下のようにして発光素子10を製造することができる。
真空蒸着法により第一電極11及び第二電極12を形成し、更に第一電極11上にボンディングパッド13を配置して、適当な温度で電極定着用のベーキングを施す。その後、ダイシングによりチップ化し、第二電極12をAgペースト等の導電性ペーストを用いて支持体を兼ねた図示しない端子電極に固着する一方、ボンディングパッド13と別の端子電極とにまたがる形態でAu製のワイヤをボンディングし、更に樹脂モールドを形成することによって、上記化合物半導体基板1から、図2に示したような発光素子10を製造することができる。
Although not limited thereto, the light emitting device 10 can be manufactured as follows after the above steps are completed.
The first electrode 11 and the second electrode 12 are formed by vacuum vapor deposition, and the bonding pad 13 is further disposed on the first electrode 11, and baking for electrode fixing is performed at an appropriate temperature. Thereafter, the chip is formed by dicing, and the second electrode 12 is fixed to a terminal electrode (not shown) that also serves as a support by using a conductive paste such as an Ag paste, while Au Au is bonded to the bonding pad 13 and another terminal electrode. A light-emitting element 10 as shown in FIG. 2 can be manufactured from the compound semiconductor substrate 1 by bonding a manufactured wire and further forming a resin mold.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to this.

(実施例)
まず、以下のようにして図1に示すような化合物半導体基板を製造した。
MOVPE法により、厚さ280μmのn型GaAs基板上にn型GaAsバッファ層0.5μm、4元発光層3.0μm、p型GaP薄膜電流拡散層2.5μmを順次エピタキシャル成長させる。前記4元発光層は、キャリア濃度が0.8×1018atoms/cmであって、(Al0.85Ga0.150.45In0.55Pからなるn型クラッド層0.8μm、(Al0.1Ga0.90.45In0.55Pからなる活性層0.6μm、(Al0.85Ga0.150.45In0.55Pからなるp型クラッド層1.6μmを順次エピタキシャル成長させることにより構成される。
このとき、前記n型GaAsバッファ層と4元発光層(n型クラッド層)との間に、膜厚が0.3μm(3000Å)であって、キャリア濃度が1.0×1018atoms/cmの(Al0.85Ga0.150.45In0.55Pからなるn型高濃度キャリア層を積層する。その後、HVPE法により厚さ150μmのp型GaP厚膜電流拡散層を前記p型GaP薄膜電流拡散層上にエピタキシャル成長させ、n型GaAs基板の除去を行い、該n型GaAs基板が除去された4元発光層の第二主面側、すなわち高濃度キャリア層のn型クラッド層と反対側の主表面に厚さ200μmのn型GaP基板を接合させる。
尚、上記エピタキシャル成長の原料ガスとしては、トリメチルガリウム(TMGa)、トリメチルインジウム(TMIn)、トリメチルアルミニウム(TMAl)、ホスフィン(PH)及びアルシン(AsH)を使用した。
(Example)
First, a compound semiconductor substrate as shown in FIG. 1 was manufactured as follows.
By MOVPE, an n-type GaAs buffer layer of 0.5 μm, a quaternary light emitting layer of 3.0 μm, and a p-type GaP thin film current diffusion layer of 2.5 μm are sequentially epitaxially grown on a 280 μm thick n-type GaAs substrate. The quaternary light-emitting layer has a carrier concentration of 0.8 × 10 18 atoms / cm 3 and an n-type cladding layer formed of (Al 0.85 Ga 0.15 ) 0.45 In 0.55 P 0. 8 μm, active layer 0.6 μm made of (Al 0.1 Ga 0.9 ) 0.45 In 0.55 P, p-type made of (Al 0.85 Ga 0.15 ) 0.45 In 0.55 P The cladding layer is formed by sequentially epitaxially growing 1.6 μm.
At this time, the film thickness is 0.3 μm (3000 mm) between the n-type GaAs buffer layer and the quaternary light emitting layer (n-type cladding layer), and the carrier concentration is 1.0 × 10 18 atoms / cm. 3 n-type high-concentration carrier layers made of (Al 0.85 Ga 0.15 ) 0.45 In 0.55 P are stacked. Thereafter, a p-type GaP thick film current diffusion layer having a thickness of 150 μm is epitaxially grown on the p-type GaP thin film current diffusion layer by HVPE, and the n-type GaAs substrate is removed, whereby the n-type GaAs substrate is removed. An n-type GaP substrate having a thickness of 200 μm is bonded to the second main surface side of the original light emitting layer, that is, the main surface opposite to the n-type cladding layer of the high-concentration carrier layer.
Note that trimethylgallium (TMGa), trimethylindium (TMIn), trimethylaluminum (TMAl), phosphine (PH 3 ), and arsine (AsH 3 ) were used as source gases for the epitaxial growth.

このときの高濃度キャリア層とn型GaP基板との接合界面の不純物として、酸素6.0×1019atoms/cm、炭素4.0×1017atoms/cmが存在した。
このように製造された化合物半導体基板2枚のそれぞれから作成されたランプのうち7個ずつを選んで、該各ランプに温度85℃で100時間、50mAの電流を流した。このとき、前記各ランプにおける順方向電圧の上昇は全く発生しなかった。図5に、2枚の基板それぞれから製造された7個ずつのランプの順方向電圧変化率の平均値、最大値及び最小値を示す。
At this time, oxygen 6.0 × 10 19 atoms / cm 3 and carbon 4.0 × 10 17 atoms / cm 3 existed as impurities at the junction interface between the high-concentration carrier layer and the n-type GaP substrate.
Seven lamps were selected from each of the two lamps produced from the two compound semiconductor substrates thus manufactured, and a current of 50 mA was applied to each lamp at a temperature of 85 ° C. for 100 hours. At this time, no forward voltage increase occurred in each lamp. FIG. 5 shows the average value, maximum value, and minimum value of the forward voltage change rate of seven lamps manufactured from each of the two substrates.

(比較例1)
n型GaAs基板の除去を行わず、n型GaP基板も接合させず、さらに高濃度キャリア層も積層させなかったこと以外は実施例1と同様にして、図3に示すような化合物半導体基板を作成した。
このように製造された化合物半導体基板2枚のそれぞれから作成されたランプのうち7個ずつを選んで、該各ランプに温度85℃で100時間、50mAの電流を流した。このとき用いられた化合物半導体基板は、n型GaAs基板を除去せず、n型GaP基板と4元発光層を接合していないため、酸素、炭素等の不純物がこれらの接合界面に含まれておらず、前記各ランプにおける順方向電圧の上昇は全く発生しなかった。このときの結果を図5に示す。
(Comparative Example 1)
A compound semiconductor substrate as shown in FIG. 3 is formed in the same manner as in Example 1 except that the n-type GaAs substrate is not removed, the n-type GaP substrate is not bonded, and the high-concentration carrier layer is not laminated. Created.
Seven lamps were selected from each of the two lamps produced from the two compound semiconductor substrates thus manufactured, and a current of 50 mA was applied to each lamp at a temperature of 85 ° C. for 100 hours. The compound semiconductor substrate used at this time does not remove the n-type GaAs substrate and does not join the n-type GaP substrate and the quaternary light-emitting layer, so that impurities such as oxygen and carbon are included in these junction interfaces. No increase in forward voltage occurred in each lamp. The result at this time is shown in FIG.

(比較例2)
高濃度キャリア層を積層させなかったこと以外は実施例1と同様にして、図4に示すような化合物半導体基板を作成した。
このように製造された化合物半導体基板2枚のそれぞれから作成されたランプのうち7個ずつを選んで、該各ランプに温度85℃で100時間、50mAの電流を流した。このとき、最大で約17%、平均すると約2〜3%順方向電圧が上昇してしまった。このときの結果を図5に示す。
(Comparative Example 2)
A compound semiconductor substrate as shown in FIG. 4 was prepared in the same manner as in Example 1 except that the high concentration carrier layer was not laminated.
Seven lamps were selected from each of the two lamps produced from the two compound semiconductor substrates thus manufactured, and a current of 50 mA was applied to each lamp at a temperature of 85 ° C. for 100 hours. At this time, the forward voltage increased about 17% at the maximum, and about 2-3% on the average. The result at this time is shown in FIG.

比較例1では、n型GaP基板と4元発光層とを接合していないため、順方向電圧の上昇は発生しないが、n型GaAs基板を用いているため、輝度の低い発光素子となってしまう。比較例2では、n型GaP基板と4元発光層との接合界面に酸素、炭素等の不純物が含まれており、このような化合物半導体基板から製造されたランプ等の発光素子に通電した際に、これら不純物が4元発光層側へ拡散してn型キャリアを補償することにより、順方向電圧を上昇させ、順方向電圧寿命特性を悪化させてしまう。
しかし実施例では、高濃度キャリア層と4元発光層とを接合しているため、接合界面に酸素、炭素等の不純物が含まれており、比較例2と同様にこのような化合物半導体基板から製造されたランプ等の発光素子に通電した際に、これら不純物が4元発光層側へ拡散してn型キャリアが補償してしまうが、高濃度キャリア層から十分にキャリアが供給されるため、順方向電圧の変化は無く寿命特性が安定した高輝度の発光素子となった。
In Comparative Example 1, since the n-type GaP substrate and the quaternary light emitting layer are not joined, the forward voltage does not increase. However, since the n-type GaAs substrate is used, the light emitting element has low luminance. End up. In Comparative Example 2, the junction interface between the n-type GaP substrate and the quaternary light emitting layer contains impurities such as oxygen and carbon, and when a light emitting element such as a lamp manufactured from such a compound semiconductor substrate is energized In addition, these impurities diffuse to the quaternary light emitting layer side to compensate for n-type carriers, thereby increasing the forward voltage and deteriorating the forward voltage life characteristics.
However, in the example, since the high-concentration carrier layer and the quaternary light emitting layer are bonded, impurities such as oxygen and carbon are included in the bonding interface. When the light-emitting element such as the manufactured lamp is energized, these impurities diffuse to the quaternary light-emitting layer side and the n-type carrier compensates. However, since carriers are sufficiently supplied from the high-concentration carrier layer, There was no change in the forward voltage, and the light emitting device had a high luminance with stable life characteristics.

なお、本発明は上述した実施の形態に限定されるものではない。上述の実施の形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様の効果を奏するものはいかなるものであっても、本発明の技術的範囲に包含されることは無論である。   The present invention is not limited to the embodiment described above. The above-described embodiment is merely an example, and any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and has the same effect can be used. Of course, it is included in the technical scope of the present invention.

1…化合物半導体基板、 2…n型GaP基板、 3…高濃度キャリア層、
4…発光層、 5…薄膜電流拡散層、 6…厚膜電流拡散層、 10…発光素子、
11…第一電極、 12…第二電極、 13…ボンディングパッド、
41…n型クラッド層、 42…活性層、 43…p型クラッド層。
DESCRIPTION OF SYMBOLS 1 ... Compound semiconductor substrate, 2 ... N-type GaP substrate, 3 ... High concentration carrier layer,
4 ... Light emitting layer, 5 ... Thin film current diffusion layer, 6 ... Thick film current diffusion layer, 10 ... Light emitting element,
11 ... 1st electrode, 12 ... 2nd electrode, 13 ... Bonding pad,
41 ... n-type cladding layer, 42 ... active layer, 43 ... p-type cladding layer.

Claims (9)

n型GaP基板上に(AlGa1−xIn1−yP(ただし、0<x<1,0<y<1)からなるn型クラッド層、活性層、p型クラッド層が順次積層された4元発光層を有し、該4元発光層の、前記n型GaP基板側の主表面(第二主面)の反対側となる主表面(第一主面)上に、電流拡散層であるp型GaP層が積層された化合物半導体基板であって、
前記n型GaP基板と前記4元発光層との間に、前記n型クラッド層よりもキャリア濃度の高い、(AlGa1−xIn1−yP(ただし、0<x≦1,0<y<1)からなる高濃度キャリア層が形成されたものであることを特徴とする化合物半導体基板。
An n-type cladding layer, an active layer, and a p-type cladding layer made of (Al x Ga 1-x ) y In 1-y P (where 0 <x <1, 0 <y <1) are formed on an n-type GaP substrate. On the main surface (first main surface) opposite to the main surface (second main surface) on the n-type GaP substrate side of the quaternary light-emitting layer, which is sequentially laminated, A compound semiconductor substrate in which a p-type GaP layer as a current spreading layer is laminated,
(Al x Ga 1-x ) y In 1-y P (where 0 <x ≦ 1) between the n-type GaP substrate and the quaternary light emitting layer and having a higher carrier concentration than the n-type cladding layer. , 0 <y <1), and a high concentration carrier layer is formed.
前記高濃度キャリア層は、キャリア濃度が1.0×1018atoms/cm以上であることを特徴とする請求項1に記載の化合物半導体基板。 2. The compound semiconductor substrate according to claim 1, wherein the high concentration carrier layer has a carrier concentration of 1.0 × 10 18 atoms / cm 3 or more. 前記高濃度キャリア層は、膜厚が500Å以上であることを特徴とする請求項1または請求項2に記載の化合物半導体基板。   The compound semiconductor substrate according to claim 1, wherein the high-concentration carrier layer has a thickness of 500 mm or more. 前記請求項1乃至請求項3のいずれか1項に記載の化合物半導体基板から製造されたことを特徴とする発光素子。   A light emitting device manufactured from the compound semiconductor substrate according to any one of claims 1 to 3. n型GaAs基板上に(AlGa1−xIn1−yP(ただし、0<x<1,0<y<1)からなるn型クラッド層、活性層、p型クラッド層を順次積層した4元発光層をエピタキシャル成長させる工程と、
前記4元発光層の、前記n型GaAs基板側と反対側となる主表面(第一主面)上に、電流拡散層としてp型GaP層をエピタキシャル成長させる工程と、
前記4元発光層からn型GaAs基板を除去する工程と、
該n型GaAs基板が除去された側の前記4元発光層の主表面(第二主面)側にn型GaP基板を貼り合わせる工程とを有する化合物半導体基板の製造方法において、
前記n型GaAs基板上に、前記4元発光層をエピタキシャル成長させる前に前記n型クラッド層よりもキャリア濃度の高い、(AlGa1−xIn1−yP(ただし、0<x≦1,0<y<1)からなる高濃度キャリア層を積層し、その後該高濃度キャリア層上に前記4元発光層をエピタキシャル成長させるか、または前記4元発光層の第二主面側に、前記n型GaP基板を貼り合わせる前に前記高濃度キャリア層を積層することによって、前記貼り合わせ工程において、前記高濃度キャリア層とn型GaP基板を貼り合わせ、前記n型GaP基板と前記4元発光層との間に前記高濃度キャリア層が形成された化合物半導体基板を製造することを特徴とする化合物半導体基板の製造方法。
An n-type cladding layer, an active layer, and a p-type cladding layer made of (Al x Ga 1-x ) y In 1-y P (where 0 <x <1, 0 <y <1) are formed on an n-type GaAs substrate. A step of epitaxially growing a quaternary light emitting layer sequentially laminated;
A step of epitaxially growing a p-type GaP layer as a current diffusion layer on a main surface (first main surface) of the quaternary light emitting layer opposite to the n-type GaAs substrate side;
Removing the n-type GaAs substrate from the quaternary light emitting layer;
Bonding the n-type GaP substrate to the main surface (second main surface) side of the quaternary light emitting layer on the side from which the n-type GaAs substrate has been removed,
Before the quaternary light emitting layer is epitaxially grown on the n-type GaAs substrate, (Al x Ga 1-x ) y In 1-y P (where 0 <x A high-concentration carrier layer composed of ≦ 1,0 <y <1) is laminated, and then the quaternary light-emitting layer is epitaxially grown on the high-concentration carrier layer, or on the second main surface side of the quaternary light-emitting layer In the bonding step, the high concentration carrier layer and the n-type GaP substrate are bonded together by laminating the high concentration carrier layer before bonding the n-type GaP substrate. A method for producing a compound semiconductor substrate, comprising producing a compound semiconductor substrate in which the high-concentration carrier layer is formed between an original light-emitting layer.
前記高濃度キャリア層が単層からなることを特徴とする請求項1乃至請求項3のいずれか1項に記載の化合物半導体基板。The compound semiconductor substrate according to claim 1, wherein the high-concentration carrier layer is a single layer. 前記高濃度キャリア層が前記n型クラッド層と接していることを特徴とする請求項1乃至請求項3のいずれか1項に記載の化合物半導体基板。The compound semiconductor substrate according to claim 1, wherein the high-concentration carrier layer is in contact with the n-type cladding layer. 前記高濃度キャリア層が単層からなることを特徴とする請求項5に記載の化合物半導体基板の製造方法。6. The method of manufacturing a compound semiconductor substrate according to claim 5, wherein the high-concentration carrier layer is a single layer. 前記高濃度キャリア層が前記n型クラッド層と接していることを特徴とする請求項5に記載の化合物半導体基板の製造方法。6. The method of manufacturing a compound semiconductor substrate according to claim 5, wherein the high-concentration carrier layer is in contact with the n-type cladding layer.
JP2011046389A 2011-03-03 2011-03-03 Compound semiconductor substrate, method of manufacturing compound semiconductor substrate, and light emitting device Active JP5582066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046389A JP5582066B2 (en) 2011-03-03 2011-03-03 Compound semiconductor substrate, method of manufacturing compound semiconductor substrate, and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046389A JP5582066B2 (en) 2011-03-03 2011-03-03 Compound semiconductor substrate, method of manufacturing compound semiconductor substrate, and light emitting device

Publications (2)

Publication Number Publication Date
JP2012186204A JP2012186204A (en) 2012-09-27
JP5582066B2 true JP5582066B2 (en) 2014-09-03

Family

ID=47016041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046389A Active JP5582066B2 (en) 2011-03-03 2011-03-03 Compound semiconductor substrate, method of manufacturing compound semiconductor substrate, and light emitting device

Country Status (1)

Country Link
JP (1) JP5582066B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260136A (en) * 2008-04-18 2009-11-05 Toshiba Corp Semiconductor light-emitting element and method for manufacturing the same, and epitaxial wafer
JP2010045288A (en) * 2008-08-18 2010-02-25 Shin Etsu Handotai Co Ltd Light-emitting element and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012186204A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP4962840B2 (en) Light emitting device and manufacturing method thereof
JP4668225B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP4873381B2 (en) Light emitting device manufacturing method, compound semiconductor wafer, and light emitting device
JP4978577B2 (en) Method for manufacturing light emitting device
JP5640896B2 (en) Vapor growth method and method for manufacturing substrate for light emitting device
JP5582066B2 (en) Compound semiconductor substrate, method of manufacturing compound semiconductor substrate, and light emitting device
JP2011254015A (en) Compound semiconductor film vapor phase growth susceptor and compound semiconductor film forming method
JP5071484B2 (en) Compound semiconductor epitaxial wafer and manufacturing method thereof
WO2012120798A1 (en) Compound semiconductor substrate, method for producing compound semiconductor substrate, and light-emitting element
JP5251185B2 (en) Compound semiconductor substrate, light emitting device using the same, and method of manufacturing compound semiconductor substrate
JP5277646B2 (en) Method for manufacturing compound semiconductor substrate
JP4998396B2 (en) Method for manufacturing light emitting device
JP2004207549A (en) Method of manufacturing light emitting diode
WO2020209014A1 (en) Light emitting element and method of manufacturing light emitting element
JP5464057B2 (en) Epitaxial wafer manufacturing method
JP2010278262A (en) Method of manufacturing epitaxial wafer for light-emitting diode
JP2009176920A (en) EPITAXIAL WAFER FOR AlGaInP-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND ITS GROWTH METHOD
JP5387509B2 (en) Epitaxial wafer manufacturing method
JP5240658B2 (en) Compound semiconductor epitaxial wafer manufacturing method, compound semiconductor epitaxial wafer, and light emitting device
JP2010287818A (en) Method of manufacturing epitaxial wafer for semiconductor light-emitting device
JP2010225612A (en) Epitaxial wafer for light emitting diode, and method of manufacturing the same
JP2008021740A (en) Light emitting element, epitaxial wafer therefor, and method for manufacturing the same
JP2009218312A (en) Semiconductor light emitting device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5582066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250