WO2012164710A1 - 非調質コネクティングロッド用棒鋼 - Google Patents

非調質コネクティングロッド用棒鋼 Download PDF

Info

Publication number
WO2012164710A1
WO2012164710A1 PCT/JP2011/062655 JP2011062655W WO2012164710A1 WO 2012164710 A1 WO2012164710 A1 WO 2012164710A1 JP 2011062655 W JP2011062655 W JP 2011062655W WO 2012164710 A1 WO2012164710 A1 WO 2012164710A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
connecting rod
content
ferrite
less
Prior art date
Application number
PCT/JP2011/062655
Other languages
English (en)
French (fr)
Inventor
長谷川 達也
安則 小那覇
勇 斎藤
Original Assignee
新日鐵住金株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 本田技研工業株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112013030244-5A priority Critical patent/BR112013030244B1/pt
Priority to JP2013517767A priority patent/JP5858996B2/ja
Priority to PCT/JP2011/062655 priority patent/WO2012164710A1/ja
Publication of WO2012164710A1 publication Critical patent/WO2012164710A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • F16C7/023Constructions of connecting-rods with constant length for piston engines, pumps or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/62Low carbon steel, i.e. carbon content below 0.4 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof
    • F16C9/045Connecting-rod bearings; Attachments thereof the bearing cap of the connecting rod being split by fracturing

Definitions

  • the present invention relates to a steel bar for non-tempered connecting rod containing Cu, Ni and Mo. More specifically, the present invention is a non-tempered connecting rod for automobile engines and the like that can be easily cut and hot forged and requires good machinability, fracture splitting property and fatigue resistance. It relates to the steel bar used for the material.
  • a connecting rod 1 such as an automobile engine shown in FIG. 1 is an engine component that connects a piston and a crankshaft, and plays a role of transmitting explosive force to a drive shaft. ing. For this reason, the connecting rod is required to have high fatigue strength. In particular, with the recent increase in engine output, fatigue strength required for connecting rods is increasing.
  • Carbon steels for machine structural use such as S48C specified in JIS are stable and have a large fatigue limit ratio (fatigue strength in terms of tensile strength) when subjected to quenching and tempering heat treatment (hereinafter referred to as “tempering treatment”). (Value divided by) can be secured. For this reason, the conventional connecting rod has been manufactured by tempering a carbon steel material for mechanical structure such as S48C.
  • the basic chemical composition is 0.35% C-0.4% Si-0.95% Mn-0.04% S-0.5% Cr-0.1% V in mass%.
  • Non-tempered connecting rod made of steel is used.
  • the connecting rod 1 is conventionally processed by cutting the bolt hole 9 and finishing the rod 2 and the cap 3 that have been hot forged in separate processes, respectively.
  • the crankshaft (not shown) is sandwiched, and the rod 2 and the cap 3 are assembled together by bolts 4. Therefore, although the tempering process can be omitted, it is not as satisfactory in terms of cost reduction as the “cracking connecting rod” described below.
  • both the rod 2 and the cap 3 are integrally formed by hot forging, and then the bolt hole 9 A so-called “cracking connecting rod” that is processed and then cracked (broken and split) into the rod 2 and the cap 3 at the large end portion 5 is employed in some vehicle types.
  • a method is applied in which a jig is inserted into a portion (for example, the N portion in FIG. 1) of the large end hole 7 of the integrally formed material and stress is applied to cause fracture.
  • cracked connecting rod 1 that is, “cracking connecting rod”
  • the rod 2 and the cap 3 are used to connect the crankshaft. It is only necessary to match the fracture surfaces after clamping and to connect the rod 2 and the cap 3 with the bolt 4.
  • the fracture surface of the cracking connecting rod is a brittle fracture surface
  • the cutting process of the mating surface, which is the part sandwiching the crankshaft becomes unnecessary, and the manufacturing cost can be reduced, and the cracking connecting rod is connected at the fracture surface. Therefore, it has excellent fastening rigidity (that is, strength).
  • the non-refined cracking connecting rod of Patent Document 1 has a high C content and is inferior in machinability as compared with a connecting rod obtained by tempering a conventional carbon steel material for mechanical structure. For this reason, the industry's request to improve machinability for bolt hole machining cannot always be met. Furthermore, the fatigue strength of the non-refined cracking connecting rod of Patent Document 1 is 0.35% C-0.4% in terms of the fatigue strength of the connecting rod obtained by tempering the carbon steel material for mechanical structure and the aforementioned mass%. It is inferior to the fatigue strength of a non-tempered connecting rod having a basic chemical composition of Si-0.95% Mn-0.04% S-0.5% Cr-0.1% V.
  • Non-tempered connecting rod with a basic chemical composition of 0.04% S-0.5% Cr-0.1% V has fatigue resistance equal to or better than non-tempered connecting rods, and has excellent machinability. The demand for tempered connecting rods is extremely high.
  • Patent Document 2 a non-tempered connecting rod made of Pb-free steel and excellent in machinability, cracking properties and fatigue resistance and its A manufacturing method was proposed.
  • the “electric furnace” method contains Cu, Ni and Mo as impurities in the main raw material scrap. Therefore, when the content of the Cu, Ni and Mo in the steel bar is increased, the hot forgeability when processing into a connecting rod shape (decrease in ductility during hot forging) and bolt hole processing, etc. There is concern about a decrease in machinability.
  • the non-tempered connecting rod can secure the desired strength in the state that the steel bar as the raw material is formed into a predetermined shape by hot forging. It is manufactured by hot rolling a molten steel. Therefore, the steel bar that is the material also becomes hard in the state of being hot-rolled.
  • hot forging the connecting rod the steel bar is first cut to a predetermined length. If the steel bar is hard, the life of a cutting tool such as a saw blade, a cutting grindstone or a shear is shortened. Therefore, when the content of Cu, Ni, and Mo is increased in the steel bar that is the material, there is a concern that the life of the cutting tool when cutting the steel bar is shortened.
  • Patent Document 3 and Patent Document 4 shown below are disclosed as techniques for using non-tempered steel containing Cu, Ni and Mo as a material for “cracking connecting rod”.
  • Patent Document 3 contains specific amounts of C, Si, Mn, S, P, Cu, Ni, Cr, V, Ti, sol-Al, and N, and if necessary, Pb, Te, Ca , “High-strength non-heat treated steel” is disclosed that contains one or more of Bi, Nb, Zr, and B, the balance being inevitable impurities and Fe, and having a ferrite pearlite structure.
  • the non-tempered steel proposed in Patent Document 3 has not been sufficiently considered for hot forgeability.
  • Patent Document 4 contains specific amounts of C, Si, Mn, Cr, S, P, V, sol-Al, N, and O, and if necessary, Pb, Te, Ca, Bi, Cu "Non-tempered steel for hot forging that is easy to break and separate" is disclosed which contains one or more of Ni, Mo, Ti, Nb and Zr, and the balance is Fe and impurities.
  • the non-tempered steel proposed in Patent Document 4 does not contain Ti as an essential element, so that the ferrite is not strengthened by Ti carbide and is inferior in cracking properties.
  • the non-tempered steel proposed in Patent Document 4 may contain Ti as an optional element, the disclosed steel has a low Ti content, so that the strengthening of ferrite by Ti carbide is insufficient. Inferior in cracking property.
  • the present invention has been made in view of the above situation, and its purpose is to perform cutting and hot forging easily even if it contains Cu, Ni and Mo in order to use scrap as a steelmaking raw material. It is possible to provide a steel bar for a non-tempered connecting rod, which is used for a non-tempered connecting rod such as an automobile engine, which requires good machinability, cracking properties and fatigue resistance.
  • the gist of the present invention resides in the steel rods for non-tempered connecting rods shown in (1) and (2) below.
  • a steel bar for non-tempered connecting rod % By mass C: 0.25 to 0.35%, Si: 0.40 to 0.70%, Mn: more than 0.65% and 0.90% or less, P: 0.040 to 0.070%, S: 0.040 to 0.130%, Cr: 0.10 to 0.30%, Cu: 0.05 to 0.40%, Ni: 0.05-0.30%, Mo: 0.01 to 0.15%, V: 0.12 to 0.20%, Ti: more than 0.150% and 0.200% or less, Al: 0.002 to 0.100% and N: 0.020% or less,
  • the balance consists of Fe and impurities, Fn1 represented by the following formula ⁇ 1> is a chemical composition satisfying 0.60 to 0.80 and Fn2 represented by the following formula ⁇ 2> is 7 or more, 90% or more of the structure is a ferrite pearlite structure, and the ratio of ferrite in the ferrite pearlite structure is 40% or more.
  • Fn1 C + (Si / 10) + (Mn / 5) + (5Cr / 22) + 1.65V- (5S / 7) + (Cu / 33) + (Ni / 20) + (Mo / 10) ... ⁇ 1>
  • Fn2 (Mn + Ti) / S ... ⁇ 2>
  • the element symbols in the ⁇ 1> and ⁇ 2> formulas represent the content (mass%) of the element in steel.
  • Impurity in “Fe and impurities” as the remainder refers to those mixed from raw materials or production environment when industrially producing steel materials.
  • “Ferrite / pearlite structure” refers to a mixed structure of ferrite and pearlite. Each phase described above can be identified by observation using an optical microscope or an electron microscope.
  • the steel bar for non-tempered connecting rod of the present invention can be easily cut and hot forged, and is required to have good machinability, cracking property and fatigue resistance, such as an automobile engine. Suitable as a material for quality connecting rods.
  • FIG. 1 It is a figure which shows an example of a connecting rod. It is a figure explaining the dimension measurement location for derivation
  • “A” in the figure is the inner diameter of the large end hole 7 of the connecting rod measured in the longitudinal direction of the connecting rod, and “b” and “c” are 87 ° with respect to “a”, respectively. And an inner diameter when measured at an angle of 93 °.
  • C 0.25 to 0.35%
  • C has the effect
  • the C content is preferably 0.30% or less.
  • Si 0.40 to 0.70% Si is effective for deoxidizing steel and has an effect of increasing the strength of the steel by solid solution strengthening. However, if the content is less than 0.40%, the above effect is poor. On the other hand, even if Si is contained in excess of 0.70%, the above effect is saturated and the cost is increased. Moreover, the hot forgeability of steel is reduced. Therefore, the Si content is set to 0.40 to 0.70%.
  • the Si content is preferably 0.50% or more.
  • Mn More than 0.65% and 0.90% or less Mn has a deoxidizing action of steel and an action of improving the strength of steel. In order to obtain these effects, it is necessary to contain Mn in an amount exceeding 0.65%. However, when the content of Mn exceeds 0.90%, the hot forgeability of the steel decreases. Further, the hardenability becomes too high to form a bainite structure, resulting in a decrease in cracking properties and machinability. Therefore, the Mn content is more than 0.65% and not more than 0.90%. The Mn content is preferably 0.70% or more, and preferably 0.85% or less. The content of Mn is more preferably 0.80% or less.
  • P 0.040 to 0.070% P segregates at the grain boundaries to embrittle the steel, and has a function of making the fracture surface during cracking of the connecting rod a brittle fracture surface.
  • the P content needs to be 0.040% or more. However, if the content exceeds 0.070%, the hot forgeability of the steel decreases. Therefore, the P content is set to 0.040 to 0.070%.
  • S 0.040 to 0.130%
  • S is one of the important elements for the present invention, and has the effect of increasing the machinability of steel by forming sulfides with Mn and Ti.
  • the S content needs to be 0.040% or more.
  • the S content is set to 0.040 to 0.130%.
  • the present invention aims to further reduce the material cost by using scrap as a raw material. Therefore, it must be avoided that the reduction in hot ductility due to Cu, Ni and Mo contained in the scrap overlaps with the reduction in hot ductility due to the inclusion of a large amount of S. Therefore, in the present invention, as will be described later, the balance between the “Mn + Ti” amount that is the sum of the Mn and Ti contents and the S content is optimized.
  • Cr 0.10 to 0.30% Cr has an effect of increasing strength. In order to obtain this effect sufficiently, the Cr content needs to be 0.10% or more. However, if the Cr content exceeds 0.30%, a bainite structure is formed, and cracking properties and machinability are lowered. Therefore, the Cr content is set to 0.10 to 0.30%.
  • the Cr content is preferably 0.20% or less.
  • V 0.12 to 0.20%
  • V is one of the important elements in the present invention. That is, V has the effect of precipitating as a carbide in ferrite and improving the strength. In order to obtain this effect, the V content needs to be 0.12% or more. However, even if V is contained in an amount exceeding 0.20%, the above-described effect is hardly increased, and the cost is extremely increased. Therefore, the V content is set to 0.12 to 0.20%.
  • the V content is preferably 0.13% or more, and preferably 0.18% or less.
  • Ti more than 0.150% and 0.200% or less
  • the present invention is characterized by containing Ti in addition to V, and Ti is one of the important elements in the present invention. That is, similarly to the above V, Ti precipitates as a carbide in the ferrite to increase the strength, and further has a function of significantly strengthening the ferrite by containing it in combination with V. By strengthening the ferrite, it is possible to ensure a good cracking property in the ferrite / pearlite structure. Furthermore, the strengthening of ferrite leads to the suppression of the occurrence of fatigue cracks, so that the fatigue strength can be increased. Ti also has the effect of forming sulfides to improve machinability and increase hot ductility.
  • TiN nitride
  • Al 0.002 to 0.100%
  • Al is an element effective as a deoxidizer for steel.
  • Ti and V are contained in combination as described above.
  • Ti preferentially bonds with N to form TiN.
  • Ti forms an oxide because of its strong deoxidizing power.
  • Al is contained in order to deoxidize the steel with Al to stabilize the deoxidation, and at the same time, to form Ti and ensure Ti effective for strengthening the ferrite.
  • the Al content is set to 0.002 to 0.100%.
  • the Al content is preferably 0.050% or less.
  • Ti is added after deoxidizing sufficiently with Al, that is, addition
  • a predetermined amount of Al and Ti is preferably contained in the order of Al and Ti.
  • N 0.020% or less
  • Ti and V are contained in combination, and the ferrite is greatly strengthened by precipitation of carbides.
  • N preferentially forms Ti and nitride.
  • an upper limit is set for the N content to 0.020% or less.
  • the N content is preferably 0.012% or less, and the smaller the better.
  • Fn1 0.60 to 0.80
  • the content of each element is in the above range, and Fn1 represented by the following formula ⁇ 1> needs to satisfy 0.60 to 0.80.
  • Fn1 C + (Si / 10) + (Mn / 5) + (5Cr / 22) + 1.65V- (5S / 7) + (Cu / 33) + (Ni / 20) + (Mo / 10) ... ⁇ 1>.
  • the element symbol in the above formula ⁇ 1> represents the content (mass%) of the element in steel.
  • Fn2 7 or more
  • the hot ductility decreases as the S content increases.
  • the scrap used as a raw material contains Cu, Ni and Mo, and the hot ductility is lowered by these elements.
  • Fn2 represented by the following ⁇ 2> formula needs to satisfy 7 or more.
  • the element symbol in the above formula ⁇ 2> represents the content (mass%) of the element in steel.
  • Fn2 represented by the formula ⁇ 2> is preferably 22 or less.
  • One of the steel bars of the present invention includes the above elements, the balance being Fe and impurities, and Fn1 represented by the above formula ⁇ 1> represented by 0.60 to 0.80 and the above formula ⁇ 2> Fn2 has a chemical composition satisfying 7 or more.
  • Another one of the steel bars of the present invention has a chemical composition containing at least one element selected from Pb and Te instead of a part of Fe of the steel bar.
  • Pb 0.30% or less
  • Pb has an action of enhancing the machinability of steel, and therefore Pb may be contained to obtain this effect.
  • the Pb content exceeds 0.30%, the hot forgeability is reduced. Therefore, when Pb is contained, the content is set to 0.30% or less.
  • the Pb content is preferably 0.02% or more.
  • Pb is not included.
  • Te 0.30% or less Te has an effect of improving the machinability of steel, and therefore Te may be contained to obtain this effect. However, if the Te content exceeds 0.30%, the hot forgeability is reduced. Therefore, when Te is contained, the content is set to 0.30% or less.
  • the Te content is preferably 0.10% or less.
  • the Te content is preferably set to 0.002% or more.
  • (B) Structure of steel bar for non-tempered connecting rod In the steel bar of the present invention, 90% or more of the structure must be a ferrite / pearlite structure, and the ferrite ratio in the ferrite / pearlite structure must be 40% or more. This is to facilitate the cutting of a steel bar, which is a material for hot forging the connecting rod, into a predetermined length and to extend the life of a cutting tool such as a saw blade, a cutting grindstone, or a shear.
  • the steel bar becomes hard and difficult to cut. Specifically, when the steel bar is cut with the cutting tool, the tool is damaged or / and worn, resulting in deterioration of productivity or being unable to cut to a predetermined length. For this reason, it is necessary to make 90% or more of the structure of the bar steel into a ferrite pearlite structure so that the bainite structure and the martensite structure can be substantially ignored.
  • the pearlite contains cementite, so if the percentage of hard pearlite increases and exceeds 60%, it is difficult to cut the steel bar to the specified length. There is. Therefore, in order to make it easy to cut the steel bar to a predetermined length, the pearlite ratio in the ferrite pearlite structure must be suppressed to 60% or less, that is, the ferrite ratio needs to be 40% or more.
  • the non-heat treated connecting rod steel bar according to the present invention can be manufactured, for example, through the following steps (a) to (c).
  • a scrap is used as a melting raw material, and a steel having the chemical composition described in the above item (A) is melted to obtain a steel ingot or slab.
  • the steel ingot and cast slab are subjected to ingot rolling as necessary to form a steel slab.
  • a steel ingot, slab or steel slab is heated to 1000-1300 ° C. and hot-rolled to obtain a predetermined steel bar (round bar or square bar) size.
  • “Temperature” and “average cooling rate” in the above steps (b) and (c) indicate the temperature and average cooling rate on the surface of the material to be treated in each step, respectively.
  • the steel ingot, slab or steel slab may be heated to 1000 ° C. or higher in order to improve the efficiency of hot rolling by processing in the austenite region.
  • the heating temperature is more preferably 1100 ° C. or higher. If the heating temperature is too high, austenite grains grow, the interfacial area of grains forming ferrite formation nuclei becomes small, and the ferrite area ratio becomes low. For this reason, the upper limit of the heating temperature of the steel ingot, slab or steel slab may be 1300 ° C.
  • a temperature range of 800 to 500 ° C. at which ferrite-pearlite transformation occurs is cooled at an average cooling rate of 0.8 ° C./second or less. Therefore, generation of bainite and martensite can be easily suppressed. Furthermore, the pearlite ratio in the ferrite-pearlite structure can be suppressed to 60% or less.
  • the average cooling rate in the above temperature range is more preferably 0.6 ° C./second or less. In an industrial mass production process, the average cooling rate in the above temperature range is preferably 0.2 ° C./second or more from the viewpoint of productivity.
  • the cooling in the temperature range below 500 ° C. may be any cooling pattern.
  • the steel bar of the present invention is used as a raw material, a non-tempered connecting rod having good machinability, cracking properties and fatigue resistance can be easily produced by a normal hot forging method.
  • Steels 1 to 22 having the chemical composition shown in Table 1 were melted by a normal method using a 3 ton electric furnace to obtain steel ingots.
  • Steels 3 to 8 and Steel 22 are steels that satisfy the chemical composition defined in the present invention.
  • Steel 1, Steel 2 and Steels 9 to 21 are comparative steels outside the range of the chemical composition defined in the present invention.
  • Steel 1 and Steel 2 are steels substantially equivalent to cracking connecting rod steels disclosed in Patent Document 1 and already put into practical use in Europe, and non-adjustments used in some vehicle models.
  • the above steel ingot was heated to 1250 ° C. and then hot rolled to obtain a steel piece of 180 mm ⁇ 180 mm. Next, it was hot-rolled into a round bar with a diameter of 30 mm under the conditions shown in Table 2 assuming that a hot forging material was produced.
  • Table 2 specifically shows the heating temperature of hot rolling, the finishing temperature of hot rolling, and the average cooling rate in the temperature range of 800 to 500 ° C. after finishing of hot rolling.
  • the average cooling rate in the above temperature range was adjusted by changing the air cooling conditions. Cooling in the temperature range below 500 ° C. was allowed to cool in the atmosphere.
  • a cutting test was performed by cutting each steel bar having a diameter of 30 mm with a cutting grindstone using a high-speed cutting machine. Specifically, a cutting test was conducted by installing a normal cutting grindstone having an outer diameter of 455 mm, an inner diameter of 30 mm, and a thickness of 3.5 mm in a normal automatic high-speed cutting machine having a grindstone rotational speed of 1650 rpm.
  • Steel 2 is steel based on non-tempered steel for connecting rods used in some vehicle types.
  • the steel 2 could be cut 500 times with one cutting grindstone. For this reason, it was judged that it is industrially equivalent if the life of the cutting wheel is ⁇ 10% with respect to the above 500 times. That is, if the life of the cutting wheel is less than 450 times (90%), it is difficult to cut from steel 2. If it is 450 to 550 times (90 to 110%), it is equivalent to steel 2 and 550 times (110%). Each test number was evaluated so that it was easier to cut than steel 2 if it exceeded.
  • a cylindrical test piece having a diameter of 15 mm and a length of 22.5 mm was collected from the central part of the steel bar having a diameter of 30 mm, and the hot forgeability was investigated. Specifically, the columnar test piece is heated to 1250 ° C., cooled in the air, and heated to 1100 ° C. until the length becomes 30% (6.75 mm) in the axial direction. I did. After the above installation, the presence or absence of cracks on the surface of the test piece was visually examined. The above investigation was conducted five times for each test number, and the crack occurrence frequency was displayed as a percentage.
  • the crack occurrence frequency was 60% (that is, cracks were recognized in 3 out of 5 hot upsets), so the evaluation criteria for hot forgeability were “Crack occurrence frequency is 60%”. In the case of the crack occurrence frequency exceeding 60%, the hot forgeability was inferior, and it was judged unsuitable as a material for non-tempered connecting rods such as automobile engines. For this reason, the investigation which manufactures the following actual connecting rod was not conducted.
  • a connecting rod was manufactured and investigated in order to make it an evaluation standard for cracking properties.
  • a steel bar having a diameter of 30 mm and a length of 300 mm was heated to 1250 ° C., and an integrally formed material of a rod 2 and a cap 3 having a total length of 170 mm shown in FIG. 1 was produced by hot forging. Cooling after hot forging was allowed to cool in the atmosphere.
  • HV Vickers hardness
  • the diameter of the parallel part shown in FIG. 3 from the flange part 6 (the central part of the large end part 5 and the small end part 8) of the rod 2 of the integrally formed material is 3 mm
  • the length of the parallel part is 11 mm
  • the grip part diameter A 6mm-shaped fatigue test piece was cut out and subjected to a fatigue test by load-controlled tension and compression using an electrohydraulic servo-type fatigue tester in a room temperature atmosphere with a stress ratio of -1 and a repetition rate of 10 to 20 Hz. Fatigue strength (hereinafter referred to as “ ⁇ w”) was measured. The maximum intensity of the number of repetitions is not broken in 10 seven times and the fatigue strength.
  • Machinability was evaluated by bolt hole machining. That is, the bolt hole 9 (through hole) of FIG. 1 is drilled in the large end portion 5 of each integrally formed material with a drill, and the corner wear amount (wear amount of the outermost drill portion) after drilling 300 pieces is measured. And evaluated. In addition, the above-mentioned corner wear amount in the case of test number 2 made of steel 2 is used as a reference value. If the wear amount is within 110% of the reference value, the machinability is “good” and exceeds 110% of the reference value. In this case, the machinability was evaluated as “bad”.
  • the machinability of steel that does not contain Pb and Ca which are free machinability imparting elements, is superior to the machinability of steel 2 containing Pb and Ca. Even if it is inferior, if the degree is 10%, it is determined that productivity on an industrial scale is equivalent.
  • the wear amount may be smaller than 90% of the reference value. In that case, the machinability was “excellent”.
  • Drill 8mm diameter straight shank drill with P20 carbide, Rotation speed: 1200rpm, Feed: 0.15mm / rev, Lubrication: Water-soluble lubricant.
  • cracking is shown in FIG. 6 was performed in the same manner using the apparatus described in 6. That is, first, a jig was inserted into the large end hole 7 of FIG. Next, the jig was operated so that a tensile load was applied in an impact direction in the direction of the arrow a in FIG. 2, and the rod 2 and the cap 3 were cracked by a notch provided in the N part. Note that the integrally formed material of test number 2 made of steel 2 and the integrally formed material of test number 13 made of steel 13 not containing Ti can be cracked to the rod 2 and the cap 3. There wasn't.
  • Test number 1 is made of steel 1 corresponding to cracking connecting rod steel that has already been put to practical use in Europe. The cracking property was determined to be good when the fracture surface was of the same level and the amount of fracture strain was smaller than the value of test number 1 (0.15 mm).
  • the above-mentioned breaking strain amount refers to “a ⁇ ⁇ (b + c) / 2 ⁇ ” after cracking when the cracked rod 2 and cap 3 are matched at the fracture surface and the values a to c shown in FIG. 2 are measured. Minus the value of “a ⁇ ⁇ (b + c) / 2 ⁇ ” before cracking.
  • a is the inner diameter of the large end hole 7 of the connecting rod when measured in the longitudinal direction of the connecting rod
  • b and c are 87 ° with respect to “a”, respectively.
  • an inner diameter when measured at an angle of 93 °.
  • the steel bar having the chemical composition and structure defined in the present invention can be easily cut and hot forged.
  • the connecting rod manufactured by hot forging using a steel bar having the chemical composition and structure defined in the present invention has good machinability, cracking properties and fatigue resistance.
  • the steel bar for non-tempered connecting rod of the present invention can be easily cut and hot forged, and is required to have good machinability, cracking property and fatigue resistance, such as an automobile engine. Suitable as a material for quality connecting rods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

 C:0.25~0.35%、Si:0.40~0.70%、Mn:0.65%超~0.90%、P:0.040~0.070%、S:0.040~0.130%、Cr:0.10~0.30%、Cu:0.05~0.40%、Ni:0.05~0.30%、Mo:0.01~0.15%、V:0.12~0.20%、Ti:0.150%超~0.200%、Al:0.002~0.100%、N≦0.020%を含み、必要に応じてさらに、Pb≦0.30%とTe≦0.30%の1種以上を含み、〔0.60≦C+(Si/10)+(Mn/5)+(5Cr/22)+1.65V-(5S/7)+(Cu/33)+(Ni/20)+(Mo/10)≦0.80〕および〔(Mn+Ti)/S≧7〕を満たす化学組成で、組織の90%以上がフェライト・パーライト組織で、かつ該フェライト・パーライト組織におけるフェライトの割合が40%以上である非調質コネクティングロッド用棒鋼は、容易に切断および熱間鍛造を行うことができ、良好な、被削性、クラッキング性および耐疲労特性が必要とされる、自動車エンジンなどの非調質コネクティングロッドの素材として好適である。

Description

非調質コネクティングロッド用棒鋼
 本発明は、Cu、NiおよびMoを含有する非調質コネクティングロッド用棒鋼に関する。詳しくは、本発明は、容易に切断および熱間鍛造を行うことができるとともに、良好な、被削性、破断分割性および耐疲労特性が必要とされる、自動車エンジンなどの非調質コネクティングロッドの素材に用いる棒鋼に関する。
 図1に一例を示す自動車エンジンなどのコネクティングロッド1(以下、「コンロッド」ということがある。)は、ピストンとクランクシャフトを連結するエンジン部品であり、爆発力を駆動軸に伝達する役割を担っている。このため、コンロッドには高い疲労強度が要求される。特に、近年のエンジンの高出力化にともなって、コンロッドに要求される疲労強度はますます大きくなっている。
 コンロッドのボルト穴9ならびに、ピストンおよびクランクシャフトと連結する部分は切削加工される。このため、コンロッドの素材には良好な被削性が要求される。
 JISに規定されたS48Cなどの機械構造用炭素鋼鋼材は、焼入れ-焼戻しの熱処理(以下、「調質処理」という。)を施せば、安定して大きな疲労限度比(疲労強度を引張強度で除した値)が確保できる。このため、従来のコンロッドは、S48Cなどの機械構造用炭素鋼鋼材を調質処理して製造されてきた。
 しかしながら、最近の厳しい経済情勢を反映して、各種自動車部品の製造コスト低減の動きが活発化しており、この動きはエンジン部品であるコンロッドにおいても例外ではなくなってきている。このため、製造コストが嵩む調質処理を行うことなく、前記機械構造用炭素鋼鋼材を調質処理した場合と同等の疲労限度比が得られる非調質のコンロッドに対する要望が大きくなっている。一部の車種では、質量%で、0.35%C-0.4%Si-0.95%Mn-0.04%S-0.5%Cr-0.1%Vを基本の化学組成とする鋼を素材とする非調質のコンロッドが採用されている。
 一方、コンロッド1は、従来、別々の工程で熱間鍛造されたロッド2とキャップ3に対して、各々切削加工によるボルト穴9の加工と仕上げ加工を施した後、ロッド2とキャップ3とでクランクシャフト(図示せず)を挟み、ロッド2とキャップ3とをボルト4によって結合して組み立てられている。したがって、調質処理を省略することは達成できるが、次に述べる、「クラッキングコンロッド」ほどにはコスト低減の点で満足のいくものではない。
 このため、最近では、素材である鋼の非調質鋼化に加えて、さらに一層の製造コスト低減のために、ロッド2とキャップ3の両者を熱間鍛造で一体成形した後、ボルト穴9加工を施し、その後に大端部5でロッド2とキャップ3にクラッキング(破断分割)するいわゆる「クラッキングコンロッド」が一部の車種で採用されている。
 上記のクラッキングには、一体成形材の大端部の穴7の分割したい部位(例えば、図1におけるN部)に治具を挿入し、応力を負荷して破断させる方法が適用される。
 クラッキングされたコンロッド1(つまり、「クラッキングコンロッド」)は、クラッキングした際の破断面が脆性破面であれば、それをクランクシャフトと連結する際には、ロッド2とキャップ3とでクランクシャフトを挟み込んだ後、破断面を合わせ、ロッド2とキャップ3とをボルト4によって結合するだけでよい。
 したがって、クラッキングコンロッドは、その破断面が脆性破面であれば、クランクシャフトを挟む部分である合わせ面の切削加工が不要になって製造コストを低減することができるし、破断面で連結が行われるので、締結剛性(すなわち、強度)に優れている。
 上記のクラッキングコンロッドについては、特許文献1に開示された、質量%で0.7%程度のC(炭素)を含む非調質鋼を素材とするものが欧州で既に実用化されている。しかし、特許文献1の非調質のクラッキングコンロッドは、Cの含有量が高く従来の機械構造用炭素鋼鋼材を調質処理したコンロッドに比べて被削性が劣る。このため、ボルト穴加工のための被削性を高めたいという産業界の要望には必ずしも応えきれていない。さらに、特許文献1の非調質のクラッキングコンロッドの疲労強度は、機械構造用炭素鋼鋼材を調質処理したコンロッドの疲労強度および、前記の質量%で、0.35%C-0.4%Si-0.95%Mn-0.04%S-0.5%Cr-0.1%Vを基本の化学組成とする非調質のコンロッドの疲労強度と比較して劣っている。
 そこで、特許文献1と同等以上の破断分割性(以下、「クラッキング性」という。)を有するとともに、前記の質量%で、0.35%C-0.4%Si-0.95%Mn-0.04%S-0.5%Cr-0.1%Vを基本の化学組成とする非調質のコンロッドと同等以上の耐疲労特性を有し、かつ、被削性にも優れた非調質のコンロッドに対する要望が極めて大きくなっている。
 上記産業界からの要望に応えて、本発明者等は、特許文献2において、被削性、クラッキング性および耐疲労特性に優れた、Pb非添加鋼を素材とする非調質のコンロッドとその製造方法を提案した。
 特許文献2に開示された技術に基づいて、「高炉-転炉」法によって溶製した鋼を、熱間圧延して棒鋼を得、該棒鋼を熱間鍛造して製造した非調質のコンロッドは、被削性、クラッキング性および耐疲労特性に優れるという産業界の要望を満足するものであった。このため、特許文献2の非調質のコンロッドは、一部の自動車の「クラッキングコンロッド」に採用され、日本国にて実用化されている。
 しかしながら、クラッキングコンロッドの需要が増えるにつれ、原料としてスクラップを利用し、「電気炉」法で溶製した鋼を素材とすることでコストを一層低減して、非調質のコンロッドを製造したいという要望が高まってきた。
 鉄鉱石を主原料とする「高炉-転炉」法の場合とは異なり、「電気炉」法の場合には、主原料であるスクラップにCu、NiおよびMoが不純物として含有される。したがって、素材である棒鋼において、このCu、NiおよびMoの含有量が多くなると、コンロッド形状に加工する際の熱間鍛造性の低下(熱間鍛造時の延性低下)およびボルト穴加工などの際の被削性の低下が懸念される。
 また、非調質のコンロッドは、素材である棒鋼を熱間鍛造によって所定形状に成形したままの状態で、所望の強度を確保できるものであるが、既に述べたように、素材である棒鋼は、溶製した鋼を、熱間圧延することによって製造される。したがって、素材である棒鋼についても、熱間圧延したままの状態では硬くなる。コンロッドを熱間鍛造する際には、まず棒鋼を所定長さに切断するが、棒鋼が硬いと、鋸刃、切断砥石またはシャーなどの切断工具の寿命が短くなる。そのため、素材である棒鋼において、Cu、NiおよびMoの含有量が多くなると、棒鋼を切断する際の切断工具の寿命が短くなることも懸念される。
 Cu、NiおよびMoを含有する非調質鋼を「クラッキングコンロッド」の素材に用いる技術としては、次に示す特許文献3および特許文献4が開示されている。
 特許文献3には、特定量の、C、Si、Mn、S、P、Cu、Ni、Cr、V、Ti、sol-AlおよびNを含有し、必要に応じてさらに、Pb、Te、Ca、Bi、Nb、ZrおよびBのうちの1種以上を含有し、残部が不可避的不純物およびFeから成り、フェライトパーライト組織を有する「高強度非調質鋼」が開示されている。しかしながら、特許文献3で提案された非調質鋼は、熱間鍛造性について十分な配慮がなされたものではない。
 特許文献4には、特定量の、C、Si、Mn、Cr、S、P、V、sol-Al、NおよびOを含有し、必要に応じてさらに、Pb、Te、Ca、Bi、Cu、Ni、Mo、Ti、NbおよびZrのうちの1種以上を含有し、残部がFeおよび不純物からなる「破断分離が容易な熱間鍛造用非調質鋼」が開示されている。しかしながら、特許文献4で提案された非調質鋼は、必須元素としてTiを含まないため、Ti炭化物によるフェライトの強化がなされずクラッキング性に劣る。また、特許文献4で提案された非調質鋼は、任意元素としてTiを含んでもよいものの、その開示されている鋼のTi含有量は少ないため、Ti炭化物によるフェライトの強化が不十分であり、クラッキング性に劣る。
米国特許第5135587号公報 特開2004-301324号公報 特開2004-277817号公報 特開2002-256394号公報
Z.Iida et al.:Review of Automotive Engineering、27(2006)pp.439-443
 本発明は、上記現状に鑑みてなされたもので、その目的は、製鋼原料としてスクラップを利用するために、Cu、NiおよびMoを含有していても、容易に切断および熱間鍛造を行うことができるとともに、良好な、被削性、クラッキング性および耐疲労特性が必要とされる、自動車エンジンなどの非調質コネクティングロッドに用いる、非調質コネクティングロッド用棒鋼を提供することである。
 本発明の要旨は、下記(1)および(2)に示す非調質コネクティングロッド用棒鋼にある。
 (1)非調質コネクティングロッド用棒鋼であって、
質量%で、
C:0.25~0.35%、
Si:0.40~0.70%、
Mn:0.65%を超えて0.90%以下、
P:0.040~0.070%、
S:0.040~0.130%、
Cr:0.10~0.30%、
Cu:0.05~0.40%、
Ni:0.05~0.30%、
Mo:0.01~0.15%、
V:0.12~0.20%、
Ti:0.150%を超えて0.200%以下、
Al:0.002~0.100%および
N:0.020%以下を含み、
残部はFeおよび不純物からなり、
下記<1>式で表わされるFn1が0.60~0.80および下記<2>式で表わされるFn2が7以上を満たす化学組成であり、
組織の90%以上がフェライト・パーライト組織で、かつ該フェライト・パーライト組織におけるフェライトの割合が40%以上である、
ことを特徴とする非調質コネクティングロッド用棒鋼。
  Fn1=C+(Si/10)+(Mn/5)+(5Cr/22)+1.65V-(5S/7)+(Cu/33)+(Ni/20)+(Mo/10)・・・<1>
 Fn2=(Mn+Ti)/S・・・<2>
ここで、<1>式および<2>式中の元素記号は、その元素の鋼中含有量(質量%)を表す。
 (2)化学組成が、Feの一部に代えて、質量%で、
Pb:0.30%以下および
Te:0.30%以下
のうちから選ばれる1種以上を含有する、
ことを特徴とする上記(1)に記載の非調質コネクティングロッド用棒鋼。
 残部としての「Feおよび不純物」における「不純物」とは、鉄鋼材料を工業的に製造する際に、原料または製造環境などから混入するものを指す。
 「フェライト・パーライト組織」とは、フェライトとパーライトの混合組織をいう。前記した各相は、光学顕微鏡または電子顕微鏡を用いた観察によって同定することができる。
 本発明の非調質コネクティングロッド用棒鋼は、容易に切断および熱間鍛造を行うことができ、良好な、被削性、クラッキング性および耐疲労特性が必要とされる、自動車エンジンなどの非調質コネクティングロッドの素材として好適である。
コンロッドの一例を示す図である。 コンロッドの破断歪量の導出のための寸法測定箇所を説明する図である。図中の「a」は、コンロッドの大端部の穴7について、コンロッドの長手方向に測定した場合の内径であり、「b」および「c」は、「a」に対してそれぞれ、87°の角度で測定した場合の内径および93°の角度で測定した場合の内径である。 実施例で用いた疲労試験片の形状を示す図である。図中の数値は寸法(単位:mm)を示す。
 以下、本発明の各要件について詳しく説明する。
 (A)非調質コネクティングロッド用棒鋼の化学組成:
 以下の説明において、各元素の含有量の「%」表示は「質量%」を意味する。
 C:0.25~0.35%
 Cは、鋼の強度を高める作用を有し、0.25%以上含有させることで効果が得られる。しかし、その含有量が0.35%を超えると、強度が高くなりすぎて被削性が低下する。したがって、Cの含有量を0.25~0.35%とした。Cの含有量は0.30%以下とすることが好ましい。
 Si:0.40~0.70%
 Siは、鋼の脱酸に有効であるとともに固溶強化によって鋼の強度を高める効果を有する。しかし、その含有量が0.40%未満では上記の効果に乏しい。一方、Siを0.70%を超えて含有させても上記の効果は飽和し、コストが嵩むばかりである。しかも、鋼の熱間鍛造性が低下する。したがって、Siの含有量を0.40~0.70%とした。Siの含有量は0.50%以上とすることが好ましい。
 Mn:0.65%を超えて0.90%以下
 Mnは、鋼の脱酸作用を有するとともに、鋼の強度を向上させる作用を有する。これらの効果を得るためには、0.65%を超える量のMnを含有させる必要がある。しかし、Mnの含有量が0.90%を超えると、鋼の熱間鍛造性が低下する。さらに、焼入れ性が高くなりすぎてベイナイト組織を生じ、クラッキング性および被削性の低下をきたす。したがって、Mnの含有量を0.65%を超えて0.90%以下とした。Mnの含有量は0.70%以上とすることが好ましく、また0.85%以下とすることが好ましい。Mnの含有量は、0.80%以下とすることがさらに好ましい。
 P:0.040~0.070%
 Pは、結晶粒界に偏析して鋼を脆化させ、コンロッドのクラッキングの際の破面を脆性破面とする作用を有する。この効果を得るには、Pの含有量を0.040%以上とする必要がある。しかし、その含有量が0.070%を超えると、鋼の熱間鍛造性が低下する。したがって、Pの含有量を0.040~0.070%とした。
 S:0.040~0.130%
 Sは、本発明にとって重要な元素の一つであり、MnおよびTiとともに硫化物を形成して鋼の被削性を高める作用を有する。この効果を得るには、Sの含有量を0.040%以上とする必要がある。しかし、Sの含有量が0.130%を超えると、鋼の熱間鍛造性が低下する。したがって、Sの含有量を0.040~0.130%とした。優れた被削性を確保するためには、0.070%を超える量のSを含有させることが好ましい。
 Sについては、その含有量が多くなるほど熱間延性が低下することが知られている。本発明は、原料にスクラップを用いることで素材コストの一層の低減を目指している。したがって、スクラップ中に含まれるCu、NiおよびMoによる熱間延性の低下と、多量のS含有による熱間延性の低下とが重畳することは、是非とも避けなければならない。このため、本発明においては、後述するように、MnとTiの含有量の和である「Mn+Ti」量とS含有量とのバランスを適正化する。
 Cr:0.10~0.30%
 Crは、強度を高める作用を有する。この効果を十分に得るには、Crの含有量を0.10%以上とする必要がある。しかし、Crの含有量が0.30%を超えると、ベイナイト組織を生じ、クラッキング性および被削性の低下をきたす。したがって、Crの含有量を0.10~0.30%とした。Crの含有量は0.20%以下とすることが好ましい。
 V:0.12~0.20%
 Vは、本発明において重要な元素の一つである。すなわち、Vは、フェライト中に炭化物として析出して強度を向上させる作用を有する。この効果を得るには、Vの含有量を0.12%以上とする必要がある。しかし、Vを0.20%を超えて含有させても前記した効果の増大はほとんどなく、コストが極めて大きくなってしまう。したがって、Vの含有量を0.12~0.20%とした。Vの含有量は0.13%以上とすることが好ましく、また0.18%以下とすることが好ましい。
 Ti:0.150%を超えて0.200%以下
 本発明は、Vに加えてTiを含有することを特徴としており、Tiは、本発明において重要な元素の一つである。すなわち、上記のVと同様に、Tiは、フェライト中に炭化物として析出して強度を高め、さらに、Vと複合して含有させることによってフェライトを大幅に強化する作用を有する。このフェライトの強化によって、フェライト・パーライト組織における良好なクラッキング性を確保することができる。さらに、フェライトの強化は疲労亀裂発生の抑制につながるため、疲労強度を高めることもできる。また、Tiには硫化物を形成して被削性を改善するとともに熱間延性を高める作用もある。しかしながら、Tiは、Nと優先的に結合して窒化物(TiN)を形成するので、上記の各作用効果を得るには、窒化物を形成した後に、鋼中に多量のフリーTiが存在していることが必要不可欠となる。このため、Tiを0.150%を超えて含有させる必要がある。しかし、Tiの含有量が0.200%を超えると、却って熱間鍛造性の低下を招く。したがって、Tiの含有量を0.150%を超えて0.200%以下とした。
 Al:0.002~0.100%
 Alは、鋼の脱酸剤として有効な元素である。本発明の特徴の一つは、上述したようにTiとVを複合して含有させることである。しかしながら、上述のとおり、Tiは、Nと優先的に結合してTiNを形成する。さらに、Tiは、脱酸力が強いため酸化物を形成する。このため、炭化物を形成するTiの割合が相対的に減少して、Vとともにフェライトを強化するのに有効なTiの歩留りが低下して製造コストの上昇を招くことが懸念される。そこで、本発明においては、Alで鋼を脱酸して脱酸の安定化を図ると同時に、炭化物を形成してフェライトの強化に効くTiを確保するために、Alを含有させる。しかしながら、Alの含有量が0.002%未満では所望の効果が得られない。一方、0.100%を超える量のAlを含有させても上記の効果が飽和するのでコストが嵩む。したがって、Alの含有量を0.002~0.100%とした。Alの含有量は0.050%以下とすることが好ましい。
 Alで鋼を脱酸して脱酸の安定化を図ると同時に、TiがVとともにフェライトを強化する作用を確保するためには、Alで十分脱酸してからTiを添加する、すなわち、添加順序をAl、Tiの順として、所定量のAlとTiを含有させるのがよい。
 N:0.020%以下
 上述したように、本発明の特徴の一つは、TiとVを複合して含有させ、炭化物の析出によってフェライトを大幅に強化することである。TiとVが複合含有された状態では、Nは、優先的にTiと窒化物を形成する。上記炭化物の析出によるフェライトの大幅強化のためには、窒化物を形成した後に、鋼中に多量のフリーTiが存在していることが必要不可欠となる。このため、Nの含有量に上限を設けて0.020%以下とした。Nの含有量は0.012%以下とすることが好ましく、少なければ少ないほどよい。
 Cu:0.05~0.40%
 Ni:0.05~0.30%
 Mo:0.01~0.15%
 本発明においては、産業界からの一層のコスト低減という要望に応えるために、スクラップを原料として使用することを前提としている。スクラップには、不純物としてCu、NiおよびMoが含有される。不純物としてのCu、NiおよびMoの含有量が多い場合には、コンロッド形状に加工する際の熱間鍛造性が低下するとともにボルト穴加工などの際の被削性が低下する。このため、Cu、NiおよびMoの含有量に上限を設けて、それぞれの含有量を、0.40%以下、0.30%以下および0.15%以下とした。一方、Cu、NiおよびMoの各含有量の下限を厳しく管理することは、高価なスクラップを使う必要が生じ、却って製造コストの上昇を招く。したがって、Cu、NiおよびMoの含有量に下限を設けて、それぞれの含有量を、0.05%以上、0.05%以上および0.01%以上とした。
 Fn1:0.60~0.80
 本発明の棒鋼は、個々の元素の含有量が前記の範囲にあって、しかも、下記の<1>式で表されるFn1が0.60~0.80を満たす必要がある。
  Fn1=C+(Si/10)+(Mn/5)+(5Cr/22)+1.65V-(5S/7)+(Cu/33)+(Ni/20)+(Mo/10)・・・<1>。
 Fn1が、0.80を超える場合にはコンロッドの被削性が低下し、一方、0.60未満の場合には強度が低くなって疲労強度も低くなるからである。
 既に述べたとおり、上記の<1>式中の元素記号は、その元素の鋼中含有量(質量%)を表す。
 Fn2:7以上
 0.040~0.130%のSを含有させて被削性を高める本発明において、Sの含有量が多くなるほど熱間延性が低下する。さらに、原料として用いるスクラップ中には、Cu、NiおよびMoが含まれ、これらの元素による熱間延性の低下が生じる。このため、個々の元素の含有量および上記のFn1が所定の範囲を満たすだけでは、Sの含有による熱間延性の低下と、Cu、NiおよびMoによる熱間延性の低下とが重畳して、良好な熱間鍛造性が確保できないことがある。したがって、本発明の棒鋼は、さらに下記の<2>式で表わされるFn2が7以上を満たす必要がある。この条件を満たすことで、Sによる被削性改善効果を確保したうえで良好な熱間鍛造性が得られるので、容易に所定のコンロッド形状に加工することができる。
  Fn2=(Mn+Ti)/S・・・<2>。
 既に述べたとおり、上記の<2>式中の元素記号は、その元素の鋼中含有量(質量%)を表す。
 <2>式で表わされるFn2は、22以下であることが好ましい。
 本発明の棒鋼の一つは、上記元素のほか、残部がFeおよび不純物からなり、かつ、前記<1>式で表わされるFn1が0.60~0.80および前記<2>式で表わされるFn2が7以上を満たす化学組成を有するものである。
 本発明の棒鋼の他の一つは、上記棒鋼のFeの一部に代えて、PbおよびTeのうちから選ばれる1種以上の元素を含有する化学組成を有するものである。
 以下、任意元素である上記PbおよびTeの作用効果と、含有量の限定理由について説明する。
 Pb:0.30%以下
 Pbは、鋼の被削性を高める作用を有するので、この効果を得るためにPbを含有してもよい。しかしながら、Pbの含有量が0.30%を超えると、熱間鍛造性の低下を招く。したがって、Pbを含有させる場合には、その含有量を0.30%以下とした。
 一方、前記したPbの被削性向上効果を安定して得るためには、Pbの含有量は0.02%以上とすることが好ましい。
 地球環境保全などの理由でPbの使用が制限される場合には、Pbを非含有とする。
 Te:0.30%以下
 Teは、鋼の被削性を高める作用を有するので、この効果を得るためにTeを含有してもよい。しかしながら、Teの含有量が0.30%を超えると、熱間鍛造性の低下を招く。したがって、Teを含有させる場合には、その含有量を0.30%以下とした。Teの含有量は0.10%以下とすることが望ましい。
 一方、前記したTeの被削性向上効果を安定して得るためには、Teの含有量は0.002%以上とすることが好ましい。
 (B)非調質コネクティングロッド用棒鋼の組織:
 本発明の棒鋼においては、組織の90%以上がフェライト・パーライト組織で、かつ該フェライト・パーライト組織におけるフェライトの割合が40%以上でなければならない。これは、コンロッドを熱間鍛造する際の素材となる棒鋼の所定長さへの切断を行いやすくし、鋸刃、切断砥石またはシャーなどの切断工具の寿命を延長するためである。
 組織がベイナイトまたは/およびマルテンサイトの場合、棒鋼の硬さが高くなり切断しにくくなる。具体的には、上記切断工具により棒鋼を切断する場合に、工具に損傷または/および摩耗が生じて、生産性の悪化を招いたり、所定長さへの切断ができなくなってしまう。このために、実質的にベイナイト組織やマルテンサイト組織を無視できるレベルとして、棒鋼の組織の90%以上をフェライト・パーライト組織にする必要がある。
 棒鋼の組織の90%以上がフェライト・パーライト組織であっても、パーライトにはセメンタイトを含むために、硬いパーライトの割合が多くなって60%を超えると、棒鋼を所定長さに切断し難い場合がある。したがって棒鋼を所定長さに切断しやすくするために、上記のフェライト・パーライト組織におけるパーライトの割合を60%以下に抑える、つまり、フェライトの割合を40%以上とする必要がある。
 本発明に係る非調質コネクティングロッド用棒鋼は、例えば、次の(a)~(c)の工程を経ることで製造することができる。
 (a)溶解原料にスクラップを使用して、前記(A)項に記載の化学組成を有する鋼を溶製した後に鋼塊または鋳片とする。鋼塊および鋳片は、必要に応じ分塊圧延を行い、鋼片とする。
 (b)鋼塊、鋳片または鋼片を1000~1300℃に加熱して、熱間圧延を施して、所定の棒鋼(丸棒または角棒)サイズとする。
 (c)所定の棒鋼サイズに熱間圧延して仕上げた後、800~500℃の温度域を0.8℃/秒以下の平均冷却速度で冷却する。
 上記の(b)および(c)の工程における「温度」および「平均冷却速度」はそれぞれ、各工程での被処理材の表面での温度および平均冷却速度を指す。
 上記(b)の工程において、オーステナイト域で加工して熱間圧延の効率を高めるために、鋼塊、鋳片または鋼片を1000℃以上に加熱すればよい。上記の加熱温度は、1100℃以上とすることがより好ましい。加熱温度が高すぎると、オーステナイト粒が成長し、フェライト生成核となる粒界面積が小さくなってフェライト面積率が低くなる。このため、該鋼塊、鋳片または鋼片の加熱温度の上限は1300℃にすればよい。
 上記(c)の工程において、所定の棒鋼サイズに熱間圧延して仕上げた後、フェライト・パーライト変態が生じる800~500℃の温度域を0.8℃/秒以下の平均冷却速度で冷却することによって、容易に、ベイナイトおよびマルテンサイトの発生を抑制することができる。さらに、フェライト・パーライト組織におけるパーライトの割合を60%以下に抑えることができる。上記の温度域における平均冷却速度は、0.6℃/秒以下とすればより好ましい。工業的な量産工程においては、生産性の観点から、上記の温度域における平均冷却速度は、0.2℃/秒以上とするのがよい。
 500℃では、既にフェライト・パーライト変態が実質的に完了している。このため、500℃を下回る温度域での冷却は、どのような冷却パターンであってもよい。
 本発明の棒鋼を素材とすれば、通常の熱間鍛造方法によって、良好な、被削性、クラッキング性および耐疲労特性を有する非調質のコンロッドを容易に製造することができる。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学組成を有する鋼1~22を通常の方法で3トン電気炉を用いて溶製し、鋼塊とした。
 表1において、鋼3~8および鋼22は、本発明で規定される化学組成を満足する鋼である。一方、鋼1、鋼2および鋼9~21は、本発明で規定される化学組成の範囲を外れる比較例の鋼である。
 比較例の鋼のうち鋼1および鋼2はそれぞれ、特許文献1で開示され欧州で既に実用化されているクラッキングコンロッド用鋼にほぼ相当する鋼および、一部の車種で採用されている非調質のコンロッド用の、0.35%C-0.4%Si-0.95%Mn-0.04%S-0.5%Cr-0.1%Vを基本の化学組成とする鋼に被削性改善の目的でPbとCaを添加した鋼である。
Figure JPOXMLDOC01-appb-T000001
 上記の鋼塊を1250℃に加熱した後熱間圧延し、180mm×180mmの鋼片とした。次いで、熱間鍛造用素材を製作することを想定して、表2の条件で直径30mmの丸棒に熱間圧延した。
 表2に、熱間圧延の加熱温度、熱間圧延の仕上げ温度および、熱間圧延の仕上げ後の800~500℃の温度域での平均冷却速度を具体的に示す。上記温度域での平均冷却速度は風冷条件を変化することにより調整した。500℃を下回る温度域の冷却は、大気中での放冷とした。
Figure JPOXMLDOC01-appb-T000002
 このようにして得た直径30mmの棒鋼から各種の試験片を採取して、ミクロ組織、ロックウェルC硬さ(以下、「HRC」という。)および熱間鍛造性を調査した。また、直径30mmの棒鋼の切断試験も行った。
 先ず、前記した直径30mmの各棒鋼から、長さ方向に垂直な面全面を観察面とするミクロ試験片を切り出し、鏡面研磨してナイタル腐食した後、倍率を400倍とした光学顕微鏡で表面近傍(表面から3mmの位置)を5視野、R/2(「R」は、棒鋼の半径)近傍(表面から7.5mmの位置)を5視野、合計10視野観察して、ミクロ組織における相の判定を行った。さらに、同じ観察視野のミクロ組織を写真撮影し、通常の方法で画像解析して、フェライト・パーライト組織の割合、フェライト・パーライト組織におけるフェライトの割合を測定した。そして、10視野の算術平均値を求めた。
 また、長さ方向に垂直な面を試験面とする試験片を切り出して研磨した後、R/2部を90°間隔で4点のHRCを測定し、その4点の算術平均値を求めた。
 直径30mmの各棒鋼を高速切断機を用いて切断砥石で切断して切断試験を行った。具体的には、砥石回転数1650rpmの通常の自動高速切断機に、外径455mm、内径30mm、厚さ3.5mmの通常の切断砥石を設置して切断試験を行った。
 既に述べたように、鋼2は、一部の車種で採用されている非調質のコンロッド用鋼をベースとする鋼である。該鋼2については、一枚の切断砥石で500回切断することができた。このため、上記の500回に対して±10%の切断砥石の寿命であれば工業的に同等であると判断した。すなわち、切断砥石の寿命が、450回(90%)未満であれば鋼2より切断され難く、450~550回(90~110%)であれば鋼2と同等、550回(110%)を超えれば鋼2より切断されやすい、という位置づけで各試験番号の評価を行った。
 さらに、直径30mmの棒鋼中心部から、長さ方向に平行に、直径が15mmで長さが22.5mmの円柱状の試験片を採取し、熱間鍛造性を調査した。具体的には、上記円柱状の試験片を1250℃に加熱し、大気中で冷却して1100℃になった時点で軸方向に30%の長さ(6.75mm)になるまで熱間据込みを行った。上記の据込みを行った後、試験片表面での割れ発生の有無を目視で調査した。上記の調査を各試験番号について5回行い、割れ発生頻度を百分率で表示した。
 上述の鋼2については、割れ発生頻度が60%(つまり、5回の熱間据込みのうちで、3回において割れが認められた。)であったので、熱間鍛造性の評価基準を「割れ発生頻度60%」とした。上記60%を超える割れ発生頻度の場合には、熱間鍛造性が劣るとして、自動車エンジンなどの非調質のコンロッドの素材として不適と判断した。このため、次に述べる実際のコンロッドを製造する調査は行わなかった。ただし、特許文献1のクラッキングコンロッド用鋼にほぼ相当する鋼1については、クラッキング性の評価基準とするためにコンロッドを製造して調査を行った。
 熱間鍛造性の調査において、割れ発生頻度が60%以下であった試験番号については、実際のコンロッドを製造し、必要な特性が得られているかどうかを判定した。
 先ず、前記直径30mmで長さ300mmの棒鋼を1250℃に加熱して、図1に示す全長170mmのロッド2とキャップ3の一体成形材を熱間鍛造で作製した。熱間鍛造後の冷却は大気中放冷とした。
 次いで、大端部5のN部に応力集中係数3を有する切り欠きを設けた。
 このようにして得た切り欠きのついた一体成形材を用いてビッカース硬さ(以下、「HV」という。)、耐疲労特性、被削性およびクラッキング性を調査した。
 すなわち、前記した各一体成形材の大端部5のN部(切り欠きを設けた箇所)から、素材である直径30mmの棒鋼の長さ方向に垂直であった面を切り出して鏡面研磨した後、98.07Nの試験力でHVを測定した。
 また、一体成形材のロッド2の桿部6(大端部5と小端部8の中央部)から図3に示す平行部の直径が3mm、平行部の長さが11mm、つかみ部の直径が6mmの形状の疲労試験片を切り出し、電気油圧サーボ式疲労試験機を用いて、室温大気中で、応力比を-1、繰り返し速度を10~20Hzとして、荷重制御引張圧縮による疲労試験を行い、疲労強度(以下、「σw」という。)を測定した。繰り返し数が10回において破断しない最大の強度を疲労強度とした。
 鋼2を素材とする試験番号2のσwの値(375MPa)を基準性能とし、これ以上のσwが得られた場合に耐疲労特性が良好と判断した。
 被削性は、ボルト穴加工で評価した。すなわち、各一体成形材の大端部5に図1のボルト穴9(貫通孔)をドリルで穿孔し、300個穿孔した後のドリルのコーナー摩耗量(ドリル最外周部の摩耗量)を測定して評価した。なお、鋼2を素材とする試験番号2の場合の上記コーナー摩耗量を基準値とし、摩耗量が前記基準値の110%以内なら被削性は「良好」、前記基準値の110%を超える場合は被削性が「不良」と評価した。これは、快削性付与元素であるPbやCaを含まない鋼の被削性が、PbとCaを含む鋼2の被削性に比べて優れるとは考え難く、摩耗量が前記基準値より劣ってもその程度が10%であれば工業的な規模での生産性が同等と判断したことによる。なお、Pbまたは/およびTeを含有させた本発明鋼においては、摩耗量が前記基準値の90%より小さくなる場合がある。その場合は被削性が「優良」とした。
 穿孔条件は次に示すとおりである。
  ドリル:P20超硬の直径8mmのストレートシャンクドリル、
 回転数:1200rpm、
 送り:0.15mm/rev、
 潤滑:水溶性潤滑剤。
 また、クラッキングは、非特許文献1のFig.6に記載の装置を用い、同様の方法で行った。すなわち、まず前記一体成形材の図1の大端部の穴7の中に治具を挿入した。次に、図2のaの矢印の方向に引張荷重が衝撃的に加わるように治具を作動させ、N部に設けた切り欠きで、ロッド2とキャップ3にクラッキングした。なお、鋼2を素材とする試験番号2の一体成形材、およびTiを含有していない鋼13を素材とする試験番号13の一体成形材については、ロッド2とキャップ3にクラッキングすることができなかった。
 クラッキング後、破断面を観察するとともに破断歪量を測定してクラッキング性を評価し、その破断面が欧州で既に実用化されているクラッキングコンロッド用鋼に相当する鋼1を素材とする試験番号1と同程度の破面で、かつ、破断歪量が試験番号1の値(0.15mm)よりも小さい場合にクラッキング性が良好であるとした。上記の破断歪量とは、クラッキング後のロッド2とキャップ3を破断面で合わせ、図2に示すa~cの値を測定した場合、クラッキング後の「a-{(b+c)/2}」の値からクラッキング前の「a-{(b+c)/2}」の値を引いたものをいう。ここで、「a」は、コンロッドの大端部の穴7について、コンロッドの長手方向に測定した場合の内径であり、「b」および「c」は、「a」に対してそれぞれ、87°の角度で測定した場合の内径および93°の角度で測定した場合の内径である。
 表3に、上記の各試験結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、本発明で定める化学組成と組織を有する棒鋼は、容易に切断および熱間鍛造することができる。
 さらに、本発明で定める化学組成と組織を有する棒鋼を用いて熱間鍛造で製造したコンロッドは、良好な、被削性、クラッキング性および耐疲労特性を有していることも明らかである。
 本発明の非調質コネクティングロッド用棒鋼は、容易に切断および熱間鍛造を行うことができ、良好な、被削性、クラッキング性および耐疲労特性が必要とされる、自動車エンジンなどの非調質コネクティングロッドの素材として好適である。
 1:コンロッド、 
 2:ロッド、 
 3:キャップ、 
 4:ボルト、 
 5:大端部、 
 6:桿部 
 7:大端部の穴
 8:小端部
 9:ボルト穴

Claims (2)

  1.  非調質コネクティングロッド用棒鋼であって、
    質量%で、
    C:0.25~0.35%、
    Si:0.40~0.70%、
    Mn:0.65%を超えて0.90%以下、
    P:0.040~0.070%、
    S:0.040~0.130%、
    Cr:0.10~0.30%、
    Cu:0.05~0.40%、
    Ni:0.05~0.30%、
    Mo:0.01~0.15%、
    V:0.12~0.20%、
    Ti:0.150%を超えて0.200%以下、
    Al:0.002~0.100%および
    N:0.020%以下を含み、
    残部はFeおよび不純物からなり、
    下記<1>式で表わされるFn1が0.60~0.80および下記<2>式で表わされるFn2が7以上を満たす化学組成であり、
    組織の90%以上がフェライト・パーライト組織で、かつ該フェライト・パーライト組織におけるフェライトの割合が40%以上である、
    ことを特徴とする非調質コネクティングロッド用棒鋼。
     Fn1=C+(Si/10)+(Mn/5)+(5Cr/22)+1.65V-(5S/7)+(Cu/33)+(Ni/20)+(Mo/10)・・・<1>
     Fn2=(Mn+Ti)/S・・・<2>
    ここで、<1>式および<2>式中の元素記号は、その元素の鋼中含有量(質量%)を表す。
  2.  化学組成が、Feの一部に代えて、質量%で、
    Pb:0.30%以下および
    Te:0.30%以下
    のうちから選ばれる1種以上を含有する、
    ことを特徴とする請求項1に記載の非調質コネクティングロッド用棒鋼。
PCT/JP2011/062655 2011-06-02 2011-06-02 非調質コネクティングロッド用棒鋼 WO2012164710A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112013030244-5A BR112013030244B1 (pt) 2011-06-02 2011-06-02 Barra de aço para uma biela não-tratada termicamente
JP2013517767A JP5858996B2 (ja) 2011-06-02 2011-06-02 非調質コネクティングロッド用棒鋼
PCT/JP2011/062655 WO2012164710A1 (ja) 2011-06-02 2011-06-02 非調質コネクティングロッド用棒鋼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062655 WO2012164710A1 (ja) 2011-06-02 2011-06-02 非調質コネクティングロッド用棒鋼

Publications (1)

Publication Number Publication Date
WO2012164710A1 true WO2012164710A1 (ja) 2012-12-06

Family

ID=47258595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062655 WO2012164710A1 (ja) 2011-06-02 2011-06-02 非調質コネクティングロッド用棒鋼

Country Status (3)

Country Link
JP (1) JP5858996B2 (ja)
BR (1) BR112013030244B1 (ja)
WO (1) WO2012164710A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059664A1 (ja) * 2014-10-17 2016-04-21 新日鐵住金株式会社 クラッキングコンロッド用圧延鋼材
WO2017159738A1 (ja) * 2016-03-16 2017-09-21 新日鐵住金株式会社 非調質棒鋼
CN110184527A (zh) * 2018-05-31 2019-08-30 江阴兴澄特种钢铁有限公司 一种用于制作发动机摇臂的高强度级别非调质钢棒材及其制造方法
KR102178711B1 (ko) * 2019-07-03 2020-11-13 주식회사 포스코 강도 및 충격인성이 우수한 비조질 선재 및 그 제조방법
CN112195394A (zh) * 2020-09-01 2021-01-08 陕钢集团产业创新研究院有限公司 一种屈强比≤0.8的mg600级锚杆钢及其生产方法
CN113621882A (zh) * 2021-08-12 2021-11-09 宝武杰富意特殊钢有限公司 一种中碳非调质钢及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256394A (ja) * 2001-03-02 2002-09-11 Daido Steel Co Ltd 破断分離が容易な熱間鍛造用非調質鋼
JP2004277817A (ja) * 2003-03-14 2004-10-07 Daido Steel Co Ltd 破断分離に適した高強度非調質鋼及びこれを用いた鍛造部品
JP2009221590A (ja) * 2008-03-19 2009-10-01 Honda Motor Co Ltd 破断分離型コンロッド及びそれに用いる非調質鋼

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256394A (ja) * 2001-03-02 2002-09-11 Daido Steel Co Ltd 破断分離が容易な熱間鍛造用非調質鋼
JP2004277817A (ja) * 2003-03-14 2004-10-07 Daido Steel Co Ltd 破断分離に適した高強度非調質鋼及びこれを用いた鍛造部品
JP2009221590A (ja) * 2008-03-19 2009-10-01 Honda Motor Co Ltd 破断分離型コンロッド及びそれに用いる非調質鋼

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570487B2 (en) 2014-10-17 2020-02-25 Nippon Steel Corporation Rolled steel material for fracture splitting connecting rod
KR20170068576A (ko) * 2014-10-17 2017-06-19 신닛테츠스미킨 카부시키카이샤 크랙킹 커넥팅 로드용 압연 강재
JPWO2016059664A1 (ja) * 2014-10-17 2017-08-17 新日鐵住金株式会社 クラッキングコンロッド用圧延鋼材
KR101955839B1 (ko) * 2014-10-17 2019-03-07 신닛테츠스미킨 카부시키카이샤 크랙킹 커넥팅 로드용 압연 강재
WO2016059664A1 (ja) * 2014-10-17 2016-04-21 新日鐵住金株式会社 クラッキングコンロッド用圧延鋼材
WO2017159738A1 (ja) * 2016-03-16 2017-09-21 新日鐵住金株式会社 非調質棒鋼
JPWO2017159738A1 (ja) * 2016-03-16 2018-12-13 新日鐵住金株式会社 非調質棒鋼
CN110184527A (zh) * 2018-05-31 2019-08-30 江阴兴澄特种钢铁有限公司 一种用于制作发动机摇臂的高强度级别非调质钢棒材及其制造方法
KR102178711B1 (ko) * 2019-07-03 2020-11-13 주식회사 포스코 강도 및 충격인성이 우수한 비조질 선재 및 그 제조방법
CN112195394A (zh) * 2020-09-01 2021-01-08 陕钢集团产业创新研究院有限公司 一种屈强比≤0.8的mg600级锚杆钢及其生产方法
CN112195394B (zh) * 2020-09-01 2022-02-18 陕钢集团产业创新研究院有限公司 一种屈强比≤0.8的mg600级锚杆钢及其生产方法
CN113621882A (zh) * 2021-08-12 2021-11-09 宝武杰富意特殊钢有限公司 一种中碳非调质钢及其制备方法
CN113621882B (zh) * 2021-08-12 2022-07-01 宝武杰富意特殊钢有限公司 一种中碳非调质钢及其制备方法

Also Published As

Publication number Publication date
BR112013030244B1 (pt) 2021-06-15
BR112013030244A2 (pt) 2016-12-06
JP5858996B2 (ja) 2016-02-10
JPWO2012164710A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
JP7063386B2 (ja) 鋼材、鍛造熱処理品、及び、鍛造熱処理品の製造方法
JP5858996B2 (ja) 非調質コネクティングロッド用棒鋼
JP5563926B2 (ja) 摩擦圧接に適した機械構造用鋼材および衝撃特性、曲げ疲労特性に優れた摩擦圧接部品
CN108779534B (zh) 非调质棒钢
JP6652019B2 (ja) 高周波焼入用の機械構造用鋼及び高周波焼入鋼部品
JP6614393B2 (ja) 非調質棒鋼
EP1605071A1 (en) Non-quenched/tempered connecting rod and method of producing the same
JP5319374B2 (ja) 一体型クランク軸およびその製造方法
US20180245172A1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP3416869B2 (ja) 被削性に優れた低延性非調質鋼材
JP6597945B1 (ja) 鋼材
JP2012057213A (ja) 摩擦圧接用機械構造用鋼および摩擦圧接部品
JP3988661B2 (ja) 非調質鋼
JP4255861B2 (ja) 非調質コネクティングロッド及びその製造方法
JP2018165403A (ja) 低サイクル疲労強度および被削性に優れた浸炭用鋼材および浸炭部品
JP3988662B2 (ja) 非調質鋼
JP6617852B2 (ja) 熱間鍛造用棒鋼
CN112204161B (zh) 钢活塞用钢材
JP6825605B2 (ja) 浸炭部材
JP2004277841A (ja) 非調質鋼
JP5755965B2 (ja) コネクティングロッド用鋼及びコネクティングロッド
JP6939835B2 (ja) 浸炭部材
JP4292375B2 (ja) クラッキングコンロッド用非調質鋼
JPH11199968A (ja) 被削性に優れた高強度・低延性非調質鋼材
JP2000017377A (ja) 空冷マルテンサイト鋼およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517767

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013030244

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 11866480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112013030244

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131125