WO2012164613A1 - スイッチング電源装置および半導体装置 - Google Patents

スイッチング電源装置および半導体装置 Download PDF

Info

Publication number
WO2012164613A1
WO2012164613A1 PCT/JP2011/003048 JP2011003048W WO2012164613A1 WO 2012164613 A1 WO2012164613 A1 WO 2012164613A1 JP 2011003048 W JP2011003048 W JP 2011003048W WO 2012164613 A1 WO2012164613 A1 WO 2012164613A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
value
power supply
input
signal
Prior art date
Application number
PCT/JP2011/003048
Other languages
English (en)
French (fr)
Inventor
政信 天野
一大 村田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2011/003048 priority Critical patent/WO2012164613A1/ja
Publication of WO2012164613A1 publication Critical patent/WO2012164613A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to a switching power supply device and a semiconductor device that control an output voltage by switching an input voltage through a switching element.
  • a switching power supply device having a semiconductor device that controls (stabilizes) a voltage is widely used.
  • Patent Document 1 describes a switching power supply device that reduces power consumption and improves power supply efficiency.
  • FIG. 40 is a diagram showing a circuit configuration of the switching power supply device described in Patent Document 1.
  • a control circuit 515 of the switching power supply device includes an error amplifier 522 that generates an error voltage signal VEAO consisting of a difference between the auxiliary power supply voltage Vcc and a reference voltage, and an element current detection signal detected by an element current detection circuit 523.
  • a device current detection comparator 524 that compares VCL and the error voltage signal VEAO is provided. Further, when the error voltage signal VEAO is smaller than the lower limit voltage value, the control circuit 515 stops outputting the switching signal to the switching element 514 to the switching signal control circuit 525, and the error voltage signal VEAO is set to the upper limit voltage value.
  • the light load detection circuit 540 for starting the output of the switching signal to the switching signal control circuit 525 is provided.
  • the switching power supply shown in the figure has a simple configuration and reduces the switching loss at light load, thereby reducing the power consumption and reliably improving the power supply efficiency in the switching power supply.
  • the switching power supply device described in Patent Document 1 has a problem in that an overshoot of the output voltage occurs at the momentary interruption.
  • the overshoot of the output voltage may stress the load circuit and cause a deterioration in the life of the load circuit or malfunction.
  • FIG. 41 shows a time chart at the moment of interruption.
  • Vin is a DC voltage input to the transformer 513.
  • Vo is an output voltage output from the output voltage generation circuit 516.
  • Vcc is an auxiliary power supply voltage generated by the power supply circuit 519 and applied to the control terminal Tc of the control circuit 515.
  • ID is a drain current flowing through the switching element 514.
  • the switching element 514 performs frequency-fixed PWM (Pulse-Width-Modulation) control.
  • the element current ID of the switching element 514 increases the ON time of the switching element while the drain current peak IDP remains constant in order to make the output power supplied to the load constant even when the input DC voltage Vin decreases. To go.
  • the on-duty (product of on-time and oscillation frequency) of the switching element 514 becomes longer until the maximum on-duty cycle MAXDC.
  • MAXDC is generally PWM control that repeats a switching operation at a constant frequency, and the ON time of the switching element 514 becomes too long, so that excessive power is supplied to the load or heat is generated in the switching element 514 and its peripheral components. It is provided to limit the on-time so that no damage occurs.
  • the input DC voltage Vin stops decreasing and starts increasing again. Even if the input DC voltage Vin rises, the on-duty of the switching element 514 continues to oscillate at the maximum on-duty cycle MAXDC.
  • the drain current ID in FIG. 41 changes as shown by a dotted line in accordance with VCC, but the input voltage decreases, and during the period from t2 to t4, the on-duty is oscillated at MAXDC. .
  • the switching element 514 oscillates at MAXDC while the input DC voltage Vin satisfies the following formula.
  • VOR is a reflected voltage and is expressed by Vo ⁇ Np / Ns (Np: primary winding number, Ns: secondary winding number), and is primary when the switching element 514 is turned off and a current flows through the secondary winding. This is the voltage generated on the side.
  • the on-duty is not limited to the maximum on-duty MAXDC, and oscillation is performed with the drain current corresponding to the feedback signal from the secondary side. It can be carried out.
  • the present invention solves the above-described conventional problems, and an object of the present invention is to provide a switching power supply device and a semiconductor device that reduce an overshoot of an output voltage that occurs at the time of a momentary interruption in the switching power supply device.
  • a switching power supply is a switching power supply that outputs a switching element to which an input DC voltage is supplied and the input DC voltage that is switched by the switching element.
  • An input / output conversion unit for converting to a DC voltage
  • an output voltage detection unit for detecting a voltage value of the output DC voltage and generating a feedback signal corresponding to the voltage value of the output DC voltage, and a voltage value of the input DC voltage
  • An input voltage determination unit that determines whether or not is less than or equal to a first threshold value
  • a control circuit that controls a switching operation of the switching element in accordance with the feedback signal, and a voltage value of the input DC voltage is the first threshold value
  • the feedback signal input to the control circuit exceeds a predetermined value for a period determined to be
  • a signal control unit for controlling the free or lower than no signal value.
  • This configuration can reduce the overshoot of the output voltage when returning from a momentary interruption. As a result, it is possible to reduce the stress applied to the circuit of the load device, which can cause the life of the circuit of the load device to deteriorate or malfunction.
  • the feedback signal has a voltage value that monotonously increases with respect to the output DC voltage
  • the signal control unit determines that the voltage value of the input DC voltage is equal to or less than the first threshold value. Controlling the feedback signal to a value not lower than the predetermined value for a period of time, wherein the predetermined value is substantially equal to a voltage value for preventing an overcurrent from flowing through the switching element. It may be a value.
  • the signal control unit during a period when the voltage value of the input DC voltage is determined to be less than or equal to the first threshold value, the feedback signal is a value that does not fall below the predetermined value, and Control may be made to a value that is higher than a predetermined value and less than an upper limit value, and the upper limit value may be a stop voltage value of the switching operation.
  • This configuration can suppress output overshoot while generating a slight return delay.
  • the signal control unit sets the feedback signal as the predetermined value during a period when the voltage value of the input DC voltage is determined to be equal to or less than the first threshold value, and the predetermined value is The voltage value may be substantially equal to the voltage value for preventing the overcurrent from flowing through the switching element.
  • the feedback signal has a voltage value that monotonously decreases with respect to the output DC voltage
  • the signal control unit determines that the voltage value of the input DC voltage is equal to or less than the first threshold value. Controlling the feedback signal to a value not exceeding the predetermined value for a period of time, wherein the predetermined value is substantially equal to a voltage value for preventing an overcurrent from flowing through the switching element. It may be a value.
  • the signal control unit has a value that does not exceed the predetermined value during the period when the voltage value of the input DC voltage is determined to be equal to or lower than the first threshold value, and Control is performed to a value higher than a lower limit value lower than a predetermined value, and the lower limit value may be a stop voltage value of the switching operation.
  • This configuration can suppress output overshoot while generating a slight return delay.
  • the signal control unit sets the feedback signal as the predetermined value during a period when the voltage value of the input DC voltage is determined to be equal to or less than the first threshold value, and the predetermined value is The voltage value may be substantially equal to the voltage value for preventing the overcurrent from flowing through the switching element.
  • the feedback signal has a voltage value that monotonously increases with respect to the output DC voltage
  • the signal control unit determines the signal value when the voltage value of the output DC voltage is less than a second threshold value.
  • the signal value may be a second level higher than the first level.
  • the feedback signal is low when the load is large and high when the load is small. Therefore, according to this configuration, it is possible to optimize output overshoot and recovery delay countermeasures according to the size of the load.
  • each of the second threshold value and the first level may be a voltage value substantially equal to a voltage value for preventing an overcurrent from flowing through the switching element.
  • the second level may be a voltage value of the feedback signal when a voltage value of the input DC voltage becomes equal to or lower than a first threshold value.
  • This configuration can suppress overshoot of the output voltage at light load.
  • the feedback signal has a voltage value that monotonously decreases with respect to the output DC voltage
  • the signal control unit determines the signal value when the voltage value of the output DC voltage is less than a second threshold value.
  • the signal value may be a second level lower than the first level.
  • the feedback signal becomes higher when the load is larger, and lower when the load is smaller. Therefore, according to this configuration, it is possible to optimize output overshoot and recovery delay countermeasures according to the size of the load.
  • each of the second threshold value and the first level may be a voltage value substantially equal to a voltage value for preventing an overcurrent from flowing through the switching element.
  • the second level may be a voltage value of the feedback signal when a voltage value of the input DC voltage becomes equal to or lower than a first threshold value.
  • This configuration can suppress overshoot of the output voltage at light load.
  • the signal control unit includes a first current supply circuit that extracts and supplies a current from the input DC voltage, and a first current interposed between the first current supply circuit and the feedback signal input terminal of the control circuit.
  • a switch and a switch control circuit that controls on and off of the first switch, the switch control circuit including a period during which the voltage value of the input DC voltage is determined to be less than or equal to the first threshold value, On / off of the first switch may be controlled so that the feedback signal has a signal value that does not exceed or does not fall below a predetermined value.
  • control circuit and the signal control unit operate using a voltage supplied from the feedback signal input terminal as a power supply voltage, and the signal control unit further turns on the first switch when the switching power supply device is activated.
  • An activation control circuit for turning on may be provided.
  • the first switch is used not only for controlling the level of the feedback signal but also for supplying the power supply voltage at the time of startup.
  • the first switch serves both as a feedback signal level control switch and a power supply voltage supply switch at the time of startup, so that it is not necessary to provide two switches, and the circuit area can be reduced.
  • control circuit and the signal control unit operate using a voltage supplied from the feedback signal input terminal as a power supply voltage
  • the signal control unit further includes the first current supply circuit and the feedback signal input terminal.
  • a startup control circuit that turns on the second switch when the switching power supply device is started up.
  • the first current supply circuit is used to supply current to both the first switch and the second switch, it is not necessary to provide two current supply circuits, and the circuit area can be reduced. Can do.
  • control circuit and the signal control unit operate using a voltage supplied from the feedback signal input terminal as a power supply voltage, and the signal control unit further extracts and supplies a current from the input DC voltage.
  • a second current supply circuit; a second switch interposed between the second current supply circuit and the feedback signal input terminal of the control circuit; and a start-up control circuit that turns on the second switch when the switching power supply device is started up And may be provided.
  • the input / output conversion unit includes a primary winding, a secondary winding, and an auxiliary winding
  • the control circuit supplies a power supply voltage to the control circuit and the signal control unit.
  • the signal control unit includes: Furthermore, a second switch interposed between the first current supply circuit and the first power supply terminal, and an activation control circuit for turning on the second switch when the switching power supply device is activated may be provided.
  • the power supply voltage is supplied from the auxiliary winding to the first power supply terminal via the second power supply terminal at times other than startup (that is, when the switching power supply device is in steady operation).
  • the auxiliary winding has a lower voltage than the primary winding, power consumption during steady operation can be reduced.
  • the first current supply circuit is also used as the first switch and the second switch, it is not necessary to provide two current supply circuits, and the circuit area can be reduced. In addition, feedback responsiveness is increased, and overshoot can be suppressed.
  • control circuit may include a power supply terminal that supplies a power supply voltage to the control circuit and the signal control unit, and the first current supply circuit may supply a voltage to the power supply terminal.
  • the input voltage determination unit (a) detects an ON time of the switching element in the switching operation, and (b) whether the detected ON time is a predetermined time or more, (b) the switching operation in the switching operation. It is determined whether or not the voltage value of the input DC voltage is equal to or less than the first threshold value by determining whether or not the ratio of the ON time to the switching period of the switching element is equal to or greater than a predetermined value. Also good.
  • the input voltage determination unit may determine whether the voltage value of the input DC voltage is equal to or less than the first threshold by measuring the input DC voltage.
  • the input voltage to be detected can be freely set, so the degree of freedom in power circuit design is improved and the input voltage is detected accurately. It becomes possible.
  • the fluctuation of the feedback signal may be delayed with respect to the fluctuation of the output DC voltage.
  • the switching power supply device includes: (a) a photocoupler provided in the output voltage detection unit that outputs the feedback signal; and (b) the control of the feedback signal generated by the output voltage detection unit. You may provide at least one of the feedback wiring for transmitting to a circuit, and the capacitive element by which one end was connected to the said feedback wiring.
  • the semiconductor device includes a switching element to which an input DC voltage is supplied, an input / output conversion unit that converts the input DC voltage switched by the switching element into an output DC voltage, and the output DC
  • a semiconductor device provided in a switching power supply device including an output voltage detection unit that detects a voltage value of a voltage and generates a feedback signal corresponding to the voltage value of the output DC voltage, wherein the voltage value of the input DC voltage is An input voltage determination unit that determines whether or not the voltage is equal to or lower than a first threshold; a control circuit that controls a switching operation of the switching element according to the feedback signal; The feedback signal input to the control circuit is increased by a predetermined value during the period determined to be And a signal control unit for controlling the et no or less than no value.
  • the switching power supply device and the semiconductor device of the present invention it is possible to reduce overshoot of the output voltage when returning from an instantaneous interruption. As a result, it is possible to reduce the stress applied to the circuit of the load device, which can cause the life of the circuit of the load device to deteriorate or malfunction.
  • FIG. 1A is a block diagram illustrating a configuration example of the switching power supply according to Embodiment 1 of the present invention.
  • FIG. 1B is a block diagram illustrating a configuration example of a signal control unit and its peripheral circuits in the switching power supply according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of a signal control unit in the semiconductor device of the first embodiment.
  • FIG. 3A is a detailed circuit diagram illustrating a configuration example of the switching power supply device according to the second embodiment.
  • FIG. 3B is a circuit diagram illustrating a detailed configuration example of the semiconductor device in FIG. 3A.
  • FIG. 4A is a diagram showing the relationship between the control terminal voltage and the drain current ID flowing through the switching element.
  • FIG. 4A is a diagram showing the relationship between the control terminal voltage and the drain current ID flowing through the switching element.
  • FIG. 4B is a diagram showing an ID waveform in the switching power supply device according to the second embodiment.
  • FIG. 5A is a circuit diagram showing a configuration example of an input voltage determination circuit in the semiconductor device of the second embodiment.
  • FIG. 5B is a diagram illustrating a waveform when each signal in FIG. 5A is changed.
  • FIG. 6 is a circuit diagram showing another configuration example of the input voltage determination circuit in the semiconductor device of the second embodiment.
  • FIG. 7A is a timing chart illustrating an operation at the time of a momentary interruption in the switching power supply device according to the second embodiment.
  • FIG. 7B is a diagram showing an ID waveform in the switching power supply according to the second embodiment.
  • FIG. 8 is an explanatory diagram of VC (holding voltage) in the switching power supply device according to the second embodiment.
  • FIG. 9 is a timing chart showing an operation at the moment of interruption when VR1 is changed in the switching power supply device of the second embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration example of the switching power supply device according to the second modification of the second embodiment.
  • FIG. 11 is a timing chart illustrating an operation at the time of a momentary interruption in the switching power supply device according to the second modification of the second embodiment.
  • FIG. 12 is a block diagram illustrating a schematic configuration of the switching power supply according to the third embodiment.
  • FIG. 13 is a circuit diagram showing a configuration example of the semiconductor device of the switching power supply device according to the third embodiment.
  • FIG. 14A is a diagram illustrating a relationship between the control terminal voltage VC and the reference voltage when Vin is equal to or lower than the first threshold value in the switching power supply device according to the third embodiment.
  • FIG. 14B is a diagram illustrating a relationship between the control terminal voltage VC and the reference voltage when Vin is equal to or lower than the first threshold value in the switching power supply device according to the third embodiment.
  • FIG. 15 is a table summarizing the relationship of FIG. 14A in the switching power supply device of the third embodiment.
  • FIG. 16 is a circuit diagram showing a configuration example of the switching power supply device according to the fourth embodiment.
  • FIG. 17 is a schematic diagram showing the oscillation frequency of the switching element with respect to the feedback voltage in the fourth embodiment.
  • FIG. 18 is a schematic diagram showing the oscillation frequency of the switching element with respect to the feedback current when the load changes in the fourth embodiment.
  • FIG. 19 is a timing chart illustrating an operation at the time of a momentary interruption in the switching power supply device according to the fourth embodiment.
  • FIG. 20A is a circuit diagram illustrating a configuration example of the switching power supply according to the fifth embodiment.
  • 20B is a circuit diagram illustrating a configuration example of the semiconductor device in FIG. 20A.
  • FIG. 21 is a diagram showing the relationship between the control terminal voltage VC and the drain current ID of the switching element 3 in the fifth embodiment.
  • FIG. 22 is a diagram showing the relationship between the control terminal voltage VC and the drain current ID of the switching element 3 when the load changes in the fifth embodiment.
  • FIG. 20A is a circuit diagram illustrating a configuration example of the switching power supply according to the fifth embodiment.
  • 20B is a circuit diagram illustrating a configuration example of the semiconductor device in FIG. 20A.
  • FIG. 21 is a diagram
  • FIG. 23 is a timing chart illustrating an operation at the time of a momentary interruption in the switching power supply device according to the fifth embodiment.
  • FIG. 24 is a timing chart showing the operation at the moment of interruption when VR2 is changed in the switching power supply device of the fifth embodiment.
  • FIG. 25 is a circuit diagram showing a configuration example of the switching power supply device according to the fifth embodiment.
  • FIG. 26 is a timing chart showing an operation at the momentary interruption in the switching power supply device according to the fifth embodiment.
  • FIG. 27 is a block diagram illustrating a configuration example of the switching power supply device according to the sixth embodiment.
  • FIG. 28A is a circuit diagram showing a configuration example of the switching power supply according to the sixth embodiment.
  • FIG. 28B is a circuit diagram showing a configuration example of the switching power supply device according to the sixth embodiment in FIG. 28A.
  • FIG. 28C is a diagram illustrating a connection example of the auxiliary current supply circuit, the internal circuit current supply circuit, and the primary winding.
  • FIG. 28D is a diagram illustrating a connection example of the auxiliary current supply circuit, the internal circuit current supply circuit, and the primary winding.
  • FIG. 28E is a diagram illustrating a connection example of the auxiliary current supply circuit, the internal circuit current supply circuit, and the primary winding.
  • FIG. 29A is a circuit diagram showing an example of an RCC switching power supply in the seventh embodiment.
  • FIG. 29B is a circuit diagram showing a configuration of the semiconductor device in FIG. 29A.
  • FIG. 30 is a block diagram illustrating a configuration example of a switching power supply device according to Modification A.
  • FIG. 31 is a block diagram illustrating a configuration example of the input voltage determination circuit in Modification A.
  • FIG. 32 is a block diagram illustrating another configuration example of the input voltage determination circuit in Modification A.
  • FIG. 33A is a block diagram illustrating a configuration example of a switching power supply device in Modification B.
  • FIG. 33B is a circuit diagram illustrating a configuration example of the semiconductor device in FIG. 33A.
  • FIG. 34 is a block diagram illustrating a configuration example of a switching power supply device in Modification C.
  • FIG. 35 is a block diagram illustrating a configuration example of the switching power supply device in Modification D.
  • FIG. 36 is a block diagram illustrating a configuration example of the switching power supply device according to Modification E.
  • FIG. 37 is a block diagram illustrating a configuration example of the switching power supply device in Modification F.
  • FIG. 38 is a block diagram illustrating a configuration example of a switching power supply device according to Modification G.
  • FIG. 39A is a block diagram illustrating a configuration example of a switching power supply device according to Modification H.
  • FIG. 39B is a circuit diagram illustrating a configuration example of the semiconductor device in FIG. 39A.
  • FIG. 40 is a diagram illustrating a circuit configuration of a switching power supply device according to a conventional technique.
  • FIG. 41 is a time chart showing the operation at the moment of interruption in the conventional technique.
  • Embodiment 1 A switching power supply apparatus according to Embodiment 1 of the present invention will be schematically described based on FIGS. 1A and 1B.
  • FIG. 1A is a block diagram illustrating a schematic configuration example of the switching power supply according to the first embodiment.
  • the switching power supply device includes a switching element 3 to which an input DC voltage is supplied, an input / output conversion unit 200 that converts the input DC voltage Vin switched by the switching element 3 into an output DC voltage, and an output DC voltage.
  • Output voltage detection unit 5 that detects a voltage value of the output DC voltage and generates a feedback signal corresponding to the voltage value of the output DC voltage, and an input voltage that determines whether or not the voltage value of the input DC voltage Vin is equal to or less than the first threshold
  • the determination circuit 10 includes a control circuit 140 that controls the switching operation of the switching element 3 in accordance with a feedback signal. Note that the input voltage determination circuit 10, the control circuit 140, and the signal control unit 160 may be formed in the one-chip semiconductor device 15. The output DC voltage is also simply called output voltage.
  • the input / output conversion unit 200 includes the transformer 2 and the output voltage generation circuit 4, and converts the input DC voltage Vin switched by the switching element 3 into an output DC voltage.
  • the control circuit 140 includes a feedback control circuit 8 and a switching control circuit 9, and controls the switching operation of the switching element 3 so that the output DC voltage becomes constant according to the feedback signal.
  • the signal control unit 160 is a signal value that does not exceed or falls below a predetermined value of the feedback signal input to the control circuit 140 during a period when the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value.
  • the signal value refers to a voltage value when the feedback signal is a voltage signal, and refers to a current value when the feedback signal is a current signal.
  • the feedback signal is input to the control terminal (CONTROL terminal in the figure) of the semiconductor device 15, and the voltage is called the control terminal voltage VC.
  • the voltage held at a value different from the original voltage of the feedback signal is VC. This is called (holding voltage).
  • the input voltage determination circuit 10 determines whether or not the voltage value of the input DC voltage Vin is equal to or lower than the first threshold value, that is, whether or not an instantaneous interruption has occurred.
  • a period in which it is determined that a momentary interruption has occurred (a period in which the voltage value of the input DC voltage Vin is determined to be less than or equal to the first threshold), and the feedback signal input to the control circuit 140 is the predetermined value. Is controlled to a signal value that does not exceed or falls below.
  • the predetermined value is preferably a voltage value substantially equal to a voltage value for preventing an overcurrent from flowing through the switching element 3.
  • the feedback signal has a voltage value that monotonically increases with respect to the output DC voltage, and a case that has a voltage value that monotonously decreases with respect to the output DC voltage. is there.
  • FIG. 8 is an explanatory diagram of the predetermined value in the former case. That is, it is an explanatory diagram showing the relationship between the drain current peak value IDP of the switching element 3 and the control terminal voltage VC and the predetermined value.
  • control terminal voltage VC (min) is the voltage value of the control terminal voltage VC when the drain current peak value IDP flowing through the switching element 3 is minimum.
  • VC (ILIMIT) is a voltage value of the control terminal voltage VC when the drain current peak value IDP becomes the overcurrent protection level ILIMIT, that is, a voltage value for preventing an overcurrent from flowing through the switching element 3.
  • VC (OFF) is a control terminal voltage at which the operation of the control circuit 140 stops when the voltage becomes lower than this (control terminal voltage at which the oscillation of the switching element 3 stops).
  • VC (min), VC (ILIMIT), and VC (OFF) are 6.2 V, 5.9 V, and 5.1 V, respectively.
  • the drain current peak value IDP changes according to the change of the control terminal voltage VC.
  • the ILIMIT fixed area (II) even if the control terminal voltage VC changes, the drain current peak value IDP flowing through the switching element 3 is fixed at the overcurrent protection level (ILIMIT).
  • the predetermined value is, for example, (C) in the figure, and is a voltage value substantially equal to a voltage value for preventing an overcurrent from flowing through the switching element 3.
  • the substantially equal voltage values here are preferably within a range of plus or minus 20%, and more preferably plus or minus 10%.
  • the signal control unit 160 outputs a feedback signal for a period during which the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value. Control is made so that the signal value does not fall below the predetermined value (that is, the value does not fall below (C) in FIG. 8).
  • the signal control unit 160 sets the feedback signal to a value that does not fall below the predetermined value and the predetermined value during a period in which the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value. It is desirable to control to a value lower than the upper limit value (within the range of (C) and (B) in FIG. 8) higher than the obtained value.
  • the upper limit value is preferably a switching operation stop voltage value (VC (min)).
  • the signal control unit 160 may set the feedback signal to the above-described predetermined value during a period in which the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value.
  • the signal control unit 160 performs a feedback signal during a period in which the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value. Is controlled to a value not exceeding the predetermined value. At this time, the signal control unit 160 sets the feedback signal to a value that does not exceed the predetermined value and the predetermined value during a period in which the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value. It is desirable to control to a value higher than the lower limit value lower than the obtained value. This lower limit value is preferably the stop voltage value of the switching operation. Note that the signal control unit 160 may set the feedback signal to the predetermined value during a period in which the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value.
  • FIG. 1B is a block diagram illustrating a configuration example of the signal control unit 160 and its peripheral circuits in the switching power supply device according to the first embodiment.
  • the signal control unit 160 controls the switch 13 when receiving a signal from the voltage source (also referred to as an auxiliary power source) 12, a switch 13 that forms a path between the auxiliary power source 12 and the feedback signal line, and the input voltage determination circuit 10. And a switch control circuit 14 for performing the operation.
  • the switch control circuit 14 controls the on / off of the switch 13 during the period when the voltage value of the input DC voltage Vin is determined to be equal to or lower than the first threshold value, so that the feedback signal exceeds the predetermined value. Set to a value that does not fall or falls below.
  • the input voltage determination circuit 10 When instantaneous interruption occurs, when the input DC voltage Vin decreases, the input voltage determination circuit 10 outputs a signal to the signal control unit 160 when the input voltage becomes lower than the set first threshold value.
  • the switch control circuit 14 when the switch control circuit 14 receives the output signal from the input voltage determination circuit 10, the switch 13 that forms a path between the auxiliary power supply 12 and the feedback signal line is turned on, and the output voltage detector 5 provides feedback. Control is performed so that the feedback signal input to the control circuit 8 is held at a set voltage (the above signal value). When the feedback signal reaches the set voltage, it is no longer controlled by the output voltage detector 5 and does not change with respect to the output voltage Vo. At this time, the error voltage signal output from the feedback control circuit 8 is also held at a predetermined voltage.
  • the switch 13 that forms a path between the auxiliary power supply 12 and the feedback signal line is turned off, so that the feedback signal is again controlled by the output voltage detector 5 according to the output voltage Vo, and is output from the feedback control circuit 8.
  • the error voltage signal to be changed also changes according to the feedback signal.
  • the signal control unit 160 controls the feedback signal to be held at a preset voltage value that does not exceed or does not fall below the predetermined value.
  • the switching control circuit 9 of the semiconductor device 15 can instantaneously control the switching element 3 with respect to the delay in the response of the feedback signal to the output voltage Vo when the instantaneous interruption is restored. Shooting can be prevented.
  • the voltage at which the feedback signal is held by the signal control unit 160 is desirably a voltage that does not cause a rise delay of the output voltage.
  • the feedback signal decreases when the output voltage decreases.
  • the feedback signal increases when the output voltage Vo decreases. Even in this case, the same effect can be obtained for the overshoot of the output voltage Vo.
  • FIG. 2 is a block diagram illustrating a schematic configuration example of the switching power supply according to the second embodiment. This figure mainly differs from FIG. 1A and FIG. 1B in that a signal control unit 161 is provided instead of the signal control unit 160 and that the signal control unit 161 has a start-up circuit 7. Since the same components are denoted by the same reference numerals, the description thereof will be omitted, and different points will be mainly described below.
  • the startup circuit 7 is a circuit that generates a startup voltage when the switching power supply device is started up, and is connected to the power supply terminal VDD until the voltage of the power supply terminal VDD of the semiconductor device 151 reaches the startup voltage at which the switching element 3 starts to oscillate. The capacitor 6a thus charged is charged.
  • the starting circuit 7 shows an example in which the starting voltage is generated from the input DC voltage Vin.
  • FIG. 3A is a detailed circuit diagram showing a configuration example of the switching power supply device according to the second embodiment.
  • FIG. 3B is a circuit diagram showing a detailed configuration example of the semiconductor device 151 in FIG. 3A.
  • the input / output conversion unit 200 includes a transformer 2 (primary winding 21 a, auxiliary winding 21 b, secondary winding 21 c), a diode 22, and an output capacitor 23.
  • the output voltage detector 5 includes resistors 24 to 26, capacitors 28, 32 and 49, a shunt regulator 29, a photocoupler 27 (photodiode 27 a and phototransistor 27 b), and a diode 31.
  • the semiconductor device 151 includes a control circuit 140, a signal control unit 161, an input voltage determination circuit 10, and an overcurrent protection reference power supply 43.
  • the control circuit 140 includes a feedback control circuit 8 (error amplifier 33, resistor), an oscillator 34, a device current detection comparator 36, and a switching control circuit 40 (RS flip-flop circuit 37, NAND circuit 38, gate). It comprises a driver 39) and an element current detection circuit 35.
  • the signal controller 161 includes a first reference power supply 44, a switch control circuit 14 (VEAO comparator 41, AND circuit 42), a start circuit 7 (start control circuit 7a, switch 7b), and an internal circuit current. It comprises a supply circuit 7 c and a switch 13.
  • an output voltage detection circuit using a photocoupler 27 is employed. This is because, in the prior art, particularly in a configuration using a photocoupler, an overshoot of the output voltage Vo at the time of a momentary breakage is likely to occur. Therefore, in this embodiment, a switching power supply device having such a configuration is described. I do.
  • the input DC voltage Vin is input from the input power source 1 and applied to the primary winding 21a of the transformer 2.
  • the input DC voltage Vin is supplied with current through the internal circuit current supply circuit 7c included in the signal control unit 161, and the capacitor 49 connected to the control terminal (CONTROL) of the semiconductor device 151 is charged.
  • the semiconductor device 151 performs a switching operation by the switching element 3 based on the control terminal voltage VC of the semiconductor device 151 so that the output voltage Vo to the load 30 is stabilized at a predetermined voltage. That is, the control terminal voltage VC that determines the drain current peak value IDP flowing through the switching element 3 changes according to the output current Io required by the load 30.
  • control terminal in FIGS. 3A and 3B has a role of a VDD terminal, and supplies a bias current to the internal circuit of the semiconductor device 151.
  • FIG. 4A is a diagram showing the relationship between the control terminal voltage VC and the drain current peak value IDP flowing through the switching element 3.
  • the drain current peak value IDP changes according to the change of the control terminal voltage VC.
  • the semiconductor device 151 is connected to the switching element 3 as shown in FIG. 4A. Control is performed to lower the flowing drain current peak value IDP, and the energy supplied to the load 30 is reduced.
  • the drain current peak value IDP is controlled to increase. .
  • the drain current peak value IDP flowing through the switching element 3 according to the output current Io is controlled.
  • the drain current peak value IDP that flows through the switching element 3 even when the control terminal voltage VC changes is fixed at the overcurrent protection level (ILIMIT).
  • the overcurrent protection level is set as the upper limit value of the drain current peak value IDP flowing through the switching element 3 so that the current flowing through the switching element 3 does not flow too much and causes the deterioration or destruction of the switching element 3. Yes.
  • the control terminal voltage VC is reduced. While in the region (II), the drain current peak value IDP of the switching element 3 is held at the overcurrent protection level (ILIMIT).
  • FIG. 4B shows the change in the control terminal voltage VC when the load fluctuates, and the lower part of FIG. 4B shows the change in the drain current ID when the load fluctuates.
  • the input DC voltage Vin is applied in advance, the energy required by the load 30 is supplied to the load by the switching operation of the switching element 3, and the output voltage Vo is stabilized at a predetermined value.
  • T1 An instantaneous interruption occurs and the input DC voltage Vin begins to decrease.
  • the drain current ID of the switching element 3 can be expressed as follows using the input DC voltage Vin, the inductance L of the transformer 2, and the time Ton when the switching element 3 is on.
  • the output power Po supplied to the load 30 by the switching operation of the switching element 3 using the oscillation frequency fosc of the switching element 3, the power supply efficiency ⁇ , and the inductance L of the transformer is as follows.
  • the output power Po is controlled by changing the drain current ID flowing through the switching element 3.
  • the drain current peak value IDP does not change, and the output power supplied to the load 30 is controlled to be constant.
  • the drain current peak value IDP does not change, but from the expression (1), when the input DC voltage Vin decreases, the ON time of the switching element 3 increases in proportion.
  • a signal having the maximum on-duty cycle MAXDC is referred to as a MAXDC signal.
  • the maximum on-duty cycle MAXDC is generally used in PWM control in which a switching operation at a constant frequency is repeated. As a result, the on-time of the switching element 3 becomes too long. It is provided to limit the on-time so that heat generation and destruction of peripheral parts do not occur.
  • the maximum on-duty cycle MAXDC has the following relationship between the maximum on-time Tonmax, the PWM control oscillation frequency fosc, and the period T.
  • T3 The input DC voltage Vin stops decreasing and starts increasing again.
  • the drain current ID is not controlled by the control terminal voltage VC because the on-duty of the switching element 3 is limited by MAXDC. That is, in the normal operation, the drain current ID in FIG. 41 changes like a dotted line according to VCC, but the input voltage decreases, and the on-duty is oscillated at MAXDC during the period from t2 to t4. Yes.
  • T4 When the input voltage increases and becomes equal to or higher than the input voltage satisfying the above-described formula (B), the control circuit 140 starts the PWM control again.
  • the switching element 3 oscillates while the switching element 3 is fixed at the overcurrent protection level (ILIMIT), power is supplied to the load 30, and the output voltage Vo reaches a predetermined voltage.
  • the drain current peak value IDP starts to change according to the change of the control terminal voltage VC, and before the instantaneous interruption occurs. It returns to the drain current peak value IDP (FIG. 7B (d)).
  • a large-capacitance capacitor 49 is connected to the control terminal of the semiconductor device 151. This is to prevent a start-up failure by delaying the time during which the control terminal voltage VC decreases.
  • the continuous mode refers to a mode in which a switching current always flows in the transformer when the switching element 3 is on / off in the switching power source.
  • the discontinuous mode refers to a mode in which there is a period during which no switching current flows in the transformer when the switching element 3 is in an on / off operation in the switching power supply. At this time, the on-duty Don of the switching element 3 Varies depending on the load.
  • the signal control unit 161 determines that the voltage value of the input DC voltage Vin is equal to or lower than the first threshold (the maximum on-duty cycle MAXDC in FIG. 7A). By controlling the feedback signal to a value that does not fall below the predetermined value, the delay time described above is shortened, so that the occurrence of overshoot can be reduced.
  • FIGS. 3A and 3B The configuration of each part in FIGS. 3A and 3B is as follows.
  • the semiconductor device 151 is composed of three terminals: a high voltage terminal (DRAIN terminal), a GND terminal (SOURCE terminal), and a control terminal (CONTROL terminal) for inputting a control signal.
  • the error amplifier 33 is supplied with the error voltage signal VEAO obtained by comparing the input control terminal voltage VC and the reference voltage to the negative input of the device current detection comparator 36.
  • the voltage VLIMIT of the overcurrent protection reference power supply 43 is applied to the minus input of the other element current detection comparator 36.
  • the detection voltage VCL output from the element current detection circuit 35 connected to the drain of the switching element 3 is given to the plus input of the element current detection comparator 36.
  • the element current detection circuit 35 detects the current flowing through the switching element 3, converts the detected current into a voltage signal, and outputs it as a detection voltage VCL.
  • the element current detection comparator 36 When the element current detection signal VCL reaches the lower one of the voltage VLIMIT of the overcurrent protection reference power supply 43 and the error voltage signal VEAO, the element current detection comparator 36 outputs the output signal to the RS flip-flop circuit 37. Output to the reset terminal.
  • the switching control circuit 40 receives the clock signal CLK from the oscillator 34 at the set terminal S, the RS flip-flop circuit 37 that receives the output signal from the device current detection comparator 36 at the reset terminal R, and the first input terminal.
  • the output signal from the start control circuit 7a is received, the output signal from the oscillator 34 (maximum on-duty cycle MAXDC) is received at the second input terminal, and the output from the output terminal Q of the RS flip-flop circuit 26 is received at the third input terminal.
  • a NAND circuit 38 that receives the output signal and a gate driver 39 that receives the output signal of the NAND circuit 38 and outputs a control signal obtained by inverting and amplifying the received output signal to the gate of the switching element 3.
  • the switching control circuit 40 includes the NAND circuit 38, an H signal indicating activation of the switching power supply device is input from the activation control circuit 7a, and an H signal indicating the maximum on-duty cycle MAXDC is input from the oscillator 34.
  • the switching element 3 is turned on only when the H signal is input from the output terminal Q of the RS flip-flop circuit 37, and the switching element 3 is turned off otherwise.
  • the error voltage signal VEAO output from the error amplifier 33 is used for detecting the element current even if the error voltage signal VEAO exceeds the voltage VLIMIT of the overcurrent protection reference power supply 43 due to the voltage VLIMIT of the overcurrent protection reference power supply 43. In the comparator 36, this VLIMIT prevents the overcurrent from flowing through the switching element 3.
  • the potential of the drain terminal of the switching element 3 is used for the auxiliary power supply 12 of the signal control unit 161 through the internal circuit current supply circuit 7c.
  • the switch 13 of the signal control unit 161 is disposed between the internal circuit current supply circuit 7 c connected to the drain terminal of the switching element 3 used as the auxiliary power supply 12 and the control terminal, and is controlled by the switch control circuit 14.
  • the internal circuit current supply circuit 7c serves to convert a high voltage applied to the drain terminal into a low voltage so that a current can be supplied to the internal circuit.
  • the switch control circuit 14 includes a VEAO comparator 41 and an AND circuit 42.
  • the signal output from the error amplifier 33 is input to the plus side of the input of the VEAO comparator 41, and the voltage VR1 of the first reference power supply 44 is given to the minus side.
  • the switch control circuit 14 does not exceed or falls below a predetermined value of the feedback signal input to the control circuit 140 during a period when the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value. Control to no signal value. That is, it also has a function of maintaining the voltage of the control terminal voltage VC so as not to fall below VC (ILIMIT) so that the drain current peak value IDP does not exceed ILIMIT.
  • ILIMIT drain current peak value
  • the AND circuit 42 receives the output signal of the VEAO comparator 41 and the signal output from the input voltage determination circuit 10. The output signal of the AND circuit 42 controls on / off of the switch 13 of the signal control unit 161 as the output signal of the switch control circuit 14.
  • the input voltage determination circuit 10 uses the gate signal of the switching element 3 and the MAXDC signal output from the oscillator 34 as input signals, and the input DC voltage Vin of the input power supply 1 decreases from those signals to a preset voltage. When this is detected, an H signal is output to the input terminal of the AND circuit 42 of the switch control circuit 14.
  • FIG. 5A is a circuit diagram showing a configuration example of the input voltage determination circuit 10 in the semiconductor device of the second embodiment.
  • the gate signal of the switching element 3 is input to the delay time generation circuit 67.
  • the input of the AND circuit 68 b receives a signal obtained by inverting the MAXDC signal from the oscillator 34 by the inverter 68 a and a signal output from the delay time generation circuit 67 after the gate signal of the switching element 3 is delayed.
  • FIG. 5B is a time chart showing the signal in FIG. 5A as a waveform.
  • the A signal is a signal obtained by inverting the MAXDC signal by an inverter
  • the B signal is a signal output from the delay time generation circuit 67 after the gate signal of the switching element 3 is delayed.
  • the C signal is an output signal of the AND circuit 68b.
  • H is output from the output signal C from the AND circuit as shown in FIG. 5B.
  • the signal output from the AND circuit 68 b is input as a set signal of the RS flip-flop circuit 66.
  • an output signal having this delay time as a pulse is input to the set signal of the RS flip-flop circuit 66 from the output of the AND circuit 68b.
  • the reset signal of the RS flip-flop circuit 66 includes an H pulse signal in accordance with the period of the oscillator 34 when the on-duty of the gate signal of the switching element 3 is not the maximum on-duty cycle MAXDC. Is output.
  • the on-duty of the gate signal of the switching element 3 is the maximum on-duty cycle MAXDC
  • the H signal is output to the Q signal of the RS flip-flop circuit 66, and the on-duty is the maximum.
  • an L signal is output as the Q signal.
  • FIG. 6 is a circuit diagram showing another configuration example of the input voltage determination circuit 10 in the semiconductor device of the second embodiment.
  • the difference from the input voltage determination circuit 10 of FIG. 5A is that a Ton1 signal having a positive pulse width of the on time Ton1 generated by the on time generation circuit 69 is used instead of the MAXDC signal of the oscillator 34.
  • the ON time of the gate signal of the switching element 3 becomes the ON time Ton1 generated by the ON time generation circuit 69 in the same way as the input voltage determination circuit 10 in FIG. 5A, the Q signal of the RS flip-flop circuit 66 is An H signal is output.
  • Ton1 the ON time of the gate signal of the switching element 3
  • Ton1 the ON time generation circuit
  • the on-time Ton1 generated by the on-time generation circuit 69 is on when the maximum on-duty cycle MAXDC is on. Must be set below the hour.
  • the on-time generation circuit 69 with an on-duty generation circuit, it is possible to set the threshold value of the input DC voltage Vin with a threshold value that is not MAXDC.
  • the input DC voltage Vin of the input power supply 1 is applied, the capacitor 49 connected to the control terminal of the semiconductor device 151 in FIG. 3B is charged by the activation circuit 7 of the semiconductor device 151, and the control terminal voltage VC is activated. The voltage reaches the voltage, and the switching element 3 starts to oscillate.
  • T1 An instantaneous interruption occurs, and the input DC voltage Vin of the input power source 1 starts to decrease. Even when the input DC voltage Vin decreases, the same output power supplied to the load 30 is controlled, so that the drain current ID of the switching element 3 does not change, and the input DC voltage is obtained from the equation (1). As Vin decreases, the on-duty of the switching element 3 increases.
  • the VEAO comparator 41 of the switch control circuit 14 in the VEAO comparator 41 of the switch control circuit 14, the control terminal voltage VC decreases, and the error voltage signal VEAO converted from the control terminal voltage VC by the error amplifier 33 is the voltage of the first reference power supply 44.
  • the VEAO comparator 41 inputs an H output signal to the AND circuit.
  • the control terminal voltage VC rises, but the error voltage signal VEAO is lowered by the action of the error amplifier 33, so that the output signal of the VEAO comparator 41 is inverted to L. For this reason, the L signal is output from the AND circuit 42 and the switch 13 is turned off again. Therefore, the charging current flowing from the drain terminal of the switching element 3 to the control terminal is cut, and the control terminal voltage VC starts to decrease again.
  • the switch 13 of the signal control unit 161 is turned on to form a path for passing a charging current to the control terminal, and the control terminal voltage VC is To rise.
  • control terminal voltage VC is VC. (Holding voltage), see VC waveform in FIG. 7A).
  • T4 Further, when the input DC voltage Vin rises, the on-duty of the switching element 3 becomes equal to or less than the maximum on-duty cycle MAXDC, and the control circuit 140 performs PWM control. When the on-duty of the switching element 3 is not the maximum on-duty cycle MAXDC, the input voltage determination circuit 10 outputs an L signal. As a result, L is input to the AND circuit 42, so that L is output from the AND circuit 42 and the switch 13 is turned off.
  • control terminal voltage VC is lower than VC (LIMIT), but is higher than the conventional control terminal voltage VC indicated by a broken line.
  • the switching element 3 is oscillated in a state where it is fixed at the overcurrent protection level (ILIMIT). Become.
  • the switching power supply according to the first modification of the second embodiment is almost the same as the switching power supply of the second embodiment, but has a higher VC (holding voltage) than the vicinity of VLIMIT as compared with the first embodiment. It is different.
  • FIG. 9 shows a case where the first reference voltage VR of the VEAO comparator 41 is set higher than VLIMIT, that is, when VC (holding voltage), that is, the predetermined value is set higher than VC (ILIMIT). The timing chart is shown.
  • H is input to one side of the AND circuit 42.
  • the error voltage signal VEAO is lower than VR.
  • the H signal is output from the VEAO comparator 41 and the H signal is input to the other side of the AND circuit 42.
  • the switch 13 is turned on by the H signal from the output of the AND circuit 42, and the control is performed.
  • the terminal voltage VC increases.
  • the drain current ID of the switching element 3 is controlled to decrease.
  • the drain current peak value IDP decreases
  • the on-duty of the switching element 3 is not the maximum on-duty cycle MAXDC, and the PWM control is performed again.
  • the input DC voltage Vin rises, the on-duty of the switching element 3 is not controlled by the maximum on-duty cycle MAXDC, and the switching element 3 can be PWM-controlled.
  • the output voltage Vo is lowered, the current supply to the phototransistor 27b of the photocoupler 27 is not performed, and the control terminal voltage VC is lowered by the power consumed by the semiconductor device 151. Since the drain voltage peak value IDP of the switching element 3 is low due to the high control terminal voltage VC, the output power Po supplied to the load 30 is also small.
  • the rise delay time of the output voltage Vo is several msec. This is a level that does not pose a problem of delay in rising of the output voltage Vo. Therefore, when VC (holding voltage) is set within the normal operating range of the control terminal voltage VC, the rise delay time of the output voltage Vo is not a problem.
  • the switching power supply according to the second modification of the second embodiment is substantially the same as the switching power supply according to the second embodiment, but the first negative input of the VEAO comparator 41 is the same as that of the second embodiment. The difference is that the voltage VLIMIT of the overcurrent protection reference power supply 43 is input instead of the voltage VR1 of the reference power supply 44.
  • FIG. 10 is a circuit diagram showing a configuration example of the switching power supply device according to the second modification of the second embodiment.
  • the difference between the switching power supply of the second modification of the second embodiment in FIG. 10 and the switching power supply of the second embodiment is that a signal control unit 162 is provided instead of the signal control unit 161, and the switch control circuit 14.
  • This is a negative input of the VEAO comparator 41 in the second embodiment.
  • This is the same as the voltage VLIMIT of the overcurrent protection reference power supply 43 of the device current detection comparator 36 in the second modification of the second embodiment. It has become.
  • the H signal from the input voltage determination circuit 10 is output, the error voltage signal VEAO becomes lower than VLIMIT, and the H signal is output from the VEAO comparator 41, so that the H signal is output from the AND circuit 42.
  • the switch 13 is turned on.
  • the signal control unit 162 performs control to hold the error voltage signal VEAO at VLIMIT.
  • VC holding voltage
  • IMIT VC
  • the control terminal voltage VC is held at a predetermined VC (holding voltage) because the input voltage decreases and the on-duty becomes the maximum on-duty cycle MAXDC.
  • the negative input of the VEAO comparator 41 is the voltage VLIMIT of the overcurrent protection reference power supply 43, so that the control terminal voltage VC is held at VC (ILIMIT).
  • the switching element 3 continues to oscillate when the drain current peak value IDP is ILIMIT, and power is supplied to the load 30 so that the output voltage Vo rises to a predetermined output voltage.
  • control terminal voltage VC is reduced by the power consumed by the semiconductor device 152 until the current is supplied from the phototransistor 27b of the photocoupler 27.
  • the output voltage Vo rises to a predetermined voltage
  • current is supplied from the phototransistor 27b of the photocoupler 27, and the control terminal voltage VC starts to rise.
  • control terminal voltage VC decreases until the output voltage Vo rises from VC (ILIMIT), but after the output voltage Vo rises, the control terminal voltage VC immediately rises to VC (ILIMIT) and PWM. Can shift to control.
  • the switching power supply device according to the third embodiment is substantially the same as the switching power supply device according to the second embodiment. However, compared with the switching power supply device according to the second embodiment, VC (The difference is that the level of (holding voltage) is changed.
  • the feedback signal has a voltage value that monotonously increases with respect to the output DC voltage
  • the signal control unit sets the signal value to the first value when the voltage value of the output DC voltage is less than a second threshold value.
  • the signal value is set to a second level higher than the first level).
  • each of the second threshold value and the first level is a voltage value substantially equal to a voltage value for preventing an overcurrent from flowing through the switching element 3.
  • FIG. 12 is a block diagram showing a schematic configuration of the switching power supply according to the third embodiment.
  • 1A and 1B has substantially the same configuration, but includes a semiconductor device 153 instead of the semiconductor device 15 and a signal control unit 163 instead of the signal control unit 160.
  • the signal control unit 163 in the semiconductor device 153 sets the signal value to the first level, and when the voltage value of the output DC voltage is equal to or more than the second threshold value, The difference is that the signal value is a second level higher than the first level.
  • FIG. 13 is a circuit diagram showing a configuration example of the semiconductor device of the switching power supply according to the third embodiment. This figure is different from FIG. 3B in that a voltage holding circuit 210 is provided instead of the first reference power supply 44.
  • the voltage holding circuit 210 constantly monitors the level of the error voltage signal VEAO, and when the instantaneous interruption is detected by the input voltage determination circuit 10 (when the input DC voltage Vin reaches the first threshold value), the voltage holding circuit 210 detects the error voltage signal VEAO. A reference potential corresponding to the level of the error voltage signal VEAO immediately before the hour is generated. In other words, when the maximum on-duty cycle MAXDC is detected, the reference potential corresponding to the level of the error voltage signal VEAO at the time of detection is generated. Thereby, for example, the level of the feedback signal when the maximum on-duty cycle MAXDC is detected can be set to the above signal value.
  • FIG. 14A shows the control terminal voltage VC when the maximum on-duty cycle MAXDC is detected (that is, when the input DC voltage Vin becomes the first threshold value) when the feedback signal has a voltage value that monotonously increases with respect to the output DC voltage. It is a figure which shows the relationship between a reference voltage.
  • the vertical axis in the figure indicates the VC maintenance level, that is, the signal value.
  • the horizontal axis shows the value of the control terminal voltage VC when the maximum on-duty cycle MAXDC is detected (that is, when the input DC voltage Vin becomes the first threshold value).
  • the signal control unit 163 sets the signal value to the first level when the voltage value of the output DC voltage is less than the second threshold value, and the voltage value of the output DC voltage is equal to or greater than the second threshold value. In this case, the signal value is set to a second level higher than the first level.
  • each of the second threshold value and the first level may be a voltage value substantially equal to a voltage value for preventing an overcurrent from flowing through the switching element 3.
  • FIG. 15 is a table summarizing the relationship between the magnitude of “load” in FIG. 14A and “control terminal voltage VC”, “error voltage signal VEAO”, and “reference potential VR”.
  • the reference potential VR of the VEAO comparator 41 is obtained. Indicates that it is maintained at a low level.
  • the reference potential VR of the VEAO comparator 41 is Maintained at a high level.
  • the switching power supply device changes the level of the reference potential VR and thus VC (holding voltage) according to the magnitude of the load when the input DC voltage Vin becomes the first threshold value. Can do.
  • the level of VC (holding voltage) can be optimized according to the magnitude of the load when the input DC voltage Vin becomes the first threshold value.
  • FIG. 14B is a diagram showing the relationship between the control terminal voltage VC and the reference voltage when the maximum on-duty cycle MAXDC is detected when the feedback signal has a voltage value that monotonously decreases with respect to the output DC voltage. This figure differs from FIG. 14A in that the increasing direction of the control terminal voltage VC is opposite.
  • the switching power supply device according to the fourth embodiment is substantially the same as the switching power supply device according to the second embodiment, but differs from the switching device according to the second embodiment in the switching control method of the switching elements. Specifically, the switching element control method is PWM control in the second embodiment, but the fourth embodiment is different in that it is PFM control.
  • a switching power supply device according to a fourth embodiment of the present invention will be described with reference to the drawings.
  • FIG. 16 is a circuit diagram showing a configuration example of the switching power supply device according to the fourth embodiment.
  • 3B is different from the switching power supply device of FIG. 3B in that a semiconductor device 154 is provided instead of the semiconductor device 151 and a signal control unit 164 is provided instead of the signal control unit 161, and the other configuration is the same.
  • the signal control unit 164 may be the same as the signal control unit 161.
  • the error voltage signal VEAO obtained by comparing the control terminal voltage VC and the reference voltage by the error amplifier 33 is input to the oscillation frequency adjusting circuit 45.
  • the oscillation frequency adjustment circuit 45 oscillates the clock signal CLK according to a difference in which the voltage of the error voltage signal VEAO output from the error amplifier 33 exceeds a reference voltage set inside the oscillation frequency adjustment circuit 45 not shown here. Change the frequency.
  • the element current detection circuit 35 detects a current flowing through the switching element 3 and outputs an element current detection signal VCL.
  • the device current detection comparator 46 compares the voltage VLIMIT of the current protection reference power supply with the device current detection signal VCL, and when both signals become equal, the output signal is sent to the reset terminal of the RS flip-flop circuit 37. Output.
  • FIG. 17 is a diagram showing the relationship between the control terminal voltage VC and the oscillation frequency.
  • fosc_max is an oscillation frequency when the drain current peak value IDP becomes ILIMIT.
  • VC (fosc_max) corresponds to VC (ILIMIT) in FIG. 4A
  • VC (fosc_min) corresponds to VC (min) in FIG. 4A.
  • the oscillation frequency changes according to the change of the control terminal voltage VC. For example, when the load 30 is lightened, the output voltage Vo rises, and when the current flowing through the phototransistor 27b of the photocoupler 27 increases, the control terminal voltage VC rises. Therefore, the semiconductor device 154 is configured as shown in FIG.
  • Control is performed to lower the oscillation frequency, and the power supplied to the load 30 is reduced.
  • the control terminal voltage VC also decreases, so control is performed to increase the oscillation frequency.
  • the oscillation frequency of the switching element 3 is controlled, so that the output voltage Vo can be stabilized at a constant value even when the load 30 becomes heavy.
  • FIG. 18 shows the waveforms of the control terminal voltage VC and the oscillation frequency of the switching element 3 when the load 30 changes.
  • the oscillation frequency is increased by lowering the control terminal voltage VC, and the maximum oscillation frequency is reached when the control terminal voltage VC is equal to or lower than VC (fosc_max) under heavy load.
  • VC VC
  • the oscillation frequency decreases from the maximum oscillation frequency fosc_max.
  • the drain current ID of the switching element 3 is determined by the voltage VLIMIT of the overcurrent protection reference power supply 43 of the element current detection comparator 46, and is kept fixed even if the control terminal voltage VC changes.
  • the drain current ID of the switching element 3 is controlled based on the above-described formula (2).
  • the output power is controlled by controlling the oscillation frequency fosc of the switching element 3. Po is adjusted.
  • FIG. 19 is a timing chart for explaining the operation at the momentary interruption in the switching power supply device of the fourth embodiment.
  • the only difference is whether the parameter for adjusting the output power Po supplied to the load 30 is the drain current ID of the switching element 3 or the oscillation frequency fosc. That is, in FIG. 19, only the waveform of the drain current peak value IDP of the switching element of FIG. 7A is changed to the waveform of the oscillation frequency fosc, and the overshoot of the output voltage Vo is effective by the same mechanism as in the second embodiment. .
  • the difference between the drain current peak value IDP of the switching element 3 and the oscillation frequency fosc is a parameter for adjusting the output power Po supplied to the load 30.
  • the oscillation frequency fosc changes so as to change, and overshoot of the output voltage Vo can be prevented.
  • the switching power supply according to the fifth embodiment is different from the switching power supply according to the second embodiment in that the control direction of the feedback signal is opposite.
  • the feedback signal has a voltage value that monotonously decreases with respect to the output DC voltage.
  • the signal control unit controls the feedback signal to a value that does not exceed the predetermined value during a period in which the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value.
  • the predetermined value may be a voltage value substantially equal to a voltage value for preventing an overcurrent from flowing through the switching element. .
  • a switching power supply device according to a fifth embodiment of the present invention will be described with reference to the drawings.
  • FIG. 20A is a circuit diagram showing a configuration example of the switching power supply device according to the fifth embodiment.
  • 20B is a circuit diagram illustrating a configuration example of the semiconductor device 155 in FIG. 20A.
  • 20B is different from FIG. 3B in that a semiconductor device 155 is provided instead of the semiconductor device 151 and a signal control unit 165 is provided instead of the signal control unit 161.
  • the same constituent elements as those of the switching power supply device of the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the constant current source 47 is connected to the control terminal, and a constant current flows out from the control terminal.
  • the phototransistor 27 b of the photocoupler 27 is connected to the cathode of the diode 31, the capacitor 49, and the control terminal of the semiconductor device 155.
  • the error amplifier 48 is an error amplifier, and the control terminal voltage VC of the semiconductor device 155 is given as a positive input. A predetermined reference voltage set in advance is applied to the negative input terminal of the error amplifier 48.
  • the error amplifier 48 is an error voltage signal obtained by comparing the input control terminal voltage VC with the reference voltage. VEAO is output to the negative input of the device current detection comparator 36.
  • 21 and 22 are diagrams showing the relationship between the control terminal voltage VC and the drain current ID of the switching element 3 in the fifth embodiment.
  • the direction of the control terminal voltage VC is different from that in FIGS. 4A and 4B.
  • the drain current peak value IDP of the switching element 3 changes according to the change of the control terminal voltage VC.
  • the semiconductor device 155 is configured as shown in FIG.
  • the drain current peak value IDP is controlled to decrease, and the energy supplied to the load 30 is reduced.
  • the control terminal voltage VC increases. Therefore, the drain current peak value IDP is controlled to increase. .
  • the drain current ID of the switching element 3 is controlled, so that the output voltage Vo can be stabilized at a constant value even when the load 30 becomes heavy.
  • the drain current peak value IDP of the switching element 3 is fixed at ILIMIT. After the load 30 becomes a heavy load, the output voltage Vo decreases, and the control terminal voltage VC decreases until the drain current peak value IDP of the switching element 3 reaches the overcurrent protection level. Remains at the overcurrent protection level (ILIMIT).
  • FIG. 22 shows a state of waveforms of the control terminal voltage VC and the drain current ID of the switching element when the load 30 is changed.
  • the drain current peak value IDP is increased by increasing the control terminal voltage VC, and when the control terminal voltage VC is less than or equal to VC (ILIMIT), the overcurrent protection level ILIMIT is reached.
  • the control terminal voltage VC decreases and exceeds VC (ILIMIT)
  • the drain current peak value IDP decreases from the overcurrent protection level ILIMIT.
  • the only difference between the timing chart of the fifth embodiment of FIG. 23 and the timing chart of the first embodiment of FIG. 7A is whether the control terminal voltage VC monotonously increases or monotonously decreases with respect to the load fluctuation. That is, in the second embodiment, when the load becomes heavy and the output voltage Vo decreases, the control terminal voltage VC increases, whereas in the fifth embodiment, the load becomes heavy and the output voltage Vo decreases. Sometimes the control terminal voltage VC rises.
  • the control terminal voltage VC is controlled to a signal value that does not exceed or falls below a predetermined value, so that the overshoot of the output voltage Vo is performed as in Embodiment 1 of FIG. 7A. Has the same effect to prevent.
  • VC holding voltage
  • IMIT VC
  • FIG. 25 is a circuit diagram showing a configuration example of the switching power supply device according to the second modification of the fifth embodiment.
  • the difference between the switching power supply device of the fifth embodiment and the switching power supply device of the fifth embodiment in FIG. 25 is that a semiconductor device 156 is provided instead of the semiconductor device 155, and a signal control unit is provided instead of the signal control unit 165. It differs from the point provided with 166. Only the negative input of the VEAO comparator 41 in the switch control circuit 14 in the semiconductor device 156 is different, and the negative input of the VEAO comparator 41 is different from that of the device current detection comparator 36 in the second modification of the fifth embodiment. This is in common with the voltage VLIMIT of the overcurrent protection reference power supply 43.
  • the switch control circuit 14 receives a signal from the input voltage determination circuit 10
  • the signal control unit 166 performs control such that the error voltage signal VEAO is held at VLIMIT.
  • timing chart of FIG. 26 differs from the timing chart of FIG. 23 only in the VC (holding voltage) regarding the operation at the momentary interruption in the switching power supply device of FIG.
  • VC holding voltage
  • VC IMIT
  • control terminal voltage VC is different from FIG. 10 only in whether it is monotonously decreasing or monotonically increasing, and the same effect as in FIG. 10 can be obtained with respect to output voltage overshoot.
  • FIG. 27 is a block diagram illustrating a configuration example of the switching power supply device according to the sixth embodiment.
  • the switch 13 is connected to the input terminal VIn via the feedback signal line and the auxiliary current supply circuit 13a.
  • FIG. 28A is a circuit diagram showing a configuration example of the switching power supply according to the sixth embodiment.
  • FIG. 28B is a circuit diagram illustrating a configuration example of the semiconductor device 158 in FIG. 28A.
  • FIG. 28B is different from FIG. 3B in that a semiconductor device 158 is provided instead of the semiconductor device 151 and a signal control unit 167 is provided instead of the signal control unit 161.
  • the same constituent elements as those of the switching power supply device of the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the semiconductor device 158 has an input terminal (Vin terminal) in addition to three terminals of a DRAIN terminal, a SOURCE terminal, and a control terminal (CONTROL terminal).
  • the difference from the second embodiment in FIG. 3A is only the auxiliary power supply 12 connected to the switch 13 in the signal control unit 167.
  • the input voltage Vin supply line as the auxiliary power supply 12 is connected to the input terminal Vin of the semiconductor device 158, and is connected to the switch 13 via the auxiliary current supply circuit 13a inside the semiconductor device 158.
  • the signal control unit 167 takes out the current from the input DC voltage Vin via the Vin terminal and supplies the auxiliary current supply circuit (first current supply circuit) 13a, and the feedback signal input terminal of the auxiliary current supply circuit 13a and the control circuit 140.
  • a first switch 13 interposed between the CONTROL terminal and a switch control circuit 14 for controlling on and off of the first switch 13;
  • the switch control circuit 14 sets the feedback signal to a signal value that does not exceed or falls below a predetermined value during a period in which the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value.
  • the first switch between the 1 current supply circuit and the feedback signal input terminal is turned on and off.
  • the control circuit 140 and the signal control unit 167 operate using the voltage supplied from the feedback signal input terminal CONTROL as the power supply voltage.
  • the signal control unit 167 further includes an internal circuit current supply circuit (second current supply circuit) 7c that extracts and supplies a current from the input DC voltage Vin via the DRAIN terminal, an internal circuit current supply circuit 7c, and a control circuit 140.
  • a second switch 7b interposed between the feedback signal input terminal CONTROL and an activation control circuit 7a for turning on the second switch 7b when the switching power supply device is activated are provided.
  • the auxiliary current supply circuit (first current supply circuit) 13a is connected to the Vin terminal, and the internal circuit current supply circuit 7c is connected to the DRAIN terminal. That is, as shown in FIG. 28C, the auxiliary current supply circuit (first current supply circuit) 13a is at one end of the primary winding 21a, and the internal circuit current supply circuit (second current supply circuit) 7c is at the primary winding 21a. It may be connected to the other end.
  • both the auxiliary current supply circuit (first current supply circuit) 13a and the internal circuit current supply circuit (second current supply circuit) 7c are connected to one end or the other end of the primary winding 21a. It may be connected.
  • both the auxiliary current supply circuit (first current supply circuit) 13a and the internal circuit current supply circuit (second current supply circuit) 7c are connected to each other via a common terminal (Vin or DRAIN).
  • the secondary winding 21a may be connected to one end or the other end.
  • a switching power supply device according to a seventh embodiment will be described with reference to the drawings.
  • FIG. 29A is a circuit diagram showing an example of an RCC (Ringing-Choke-Converter) switching power supply according to the present invention.
  • FIG. 29B is a circuit diagram showing a configuration of the semiconductor device 159 in FIG. 29A.
  • the semiconductor device 159 has a transformer reset detection terminal (TR terminal) in addition to three terminals of a DRAIN terminal, a SOURCE terminal, and a control terminal (CONTROL terminal).
  • TR terminal transformer reset detection terminal
  • CONTROL terminal CONTROL terminal
  • the voltage at the transformer reset detection terminal is detected, and a signal output from the transformer reset detection circuit 76 is given to the transformer reset pulse generation circuit 77.
  • the auxiliary winding 21 b of the transformer 2 is connected to the control terminal of the semiconductor device 159 via the diode 31 and the photocoupler 27.
  • the capacitor 72 connected between the input and output of the switching element 3 is for determining the magnitude and period of resonance by the transformer 2.
  • the Zener diode 83 serves to prevent the transformer reset detection terminal from becoming a negative voltage.
  • a voltage divided by the resistors 80 and 81 of the bias winding voltage is applied to the transformer reset detection terminal, and the capacitor 82 is biased. It plays a role of delaying the phase of vibration of the winding voltage.
  • the drain terminal voltage of the switching element 3 decreases, and the voltage of the bias winding 21b of the transformer 2 decreases from positive to negative.
  • the one-shot pulse output from the transformer reset pulse generation circuit 77 detected by the transformer reset detection circuit 76 is input to the set terminal of the RS flip-flop circuit 37, and the switching element 3 is turned on.
  • the first difference is that the clock signal of the oscillator 34 is input to the set side of the RS flip-flop circuit 37 or the 77 one-shot pulse signal from the transformer reset generation circuit is input. Yes, the effect on overshoot that occurs at the moment of interruption is the same as in the second embodiment.
  • a maximum on-time generation circuit 78 is provided instead of a circuit that generates a MAXDC signal.
  • a maximum on-time generation circuit 78 for generating a maximum on-time signal having an arbitrarily set pulse width is provided instead of the MAXDC signal. Plays the same role as the MAXDC signal.
  • 29A can be considered by replacing the on-time generation circuit 69 of the input voltage determination circuit 10 of FIG. 6 with this maximum on-time generation circuit 78.
  • the signal control unit 161 Output a signal.
  • the switch control circuit 14 maintains the input voltage signal of the feedback control circuit 8 at a voltage that does not cause a rise delay of the output voltage. Controls the switch 13 between the input signal line of the feedback control circuit 8 and the auxiliary power supply 12.
  • the auxiliary power source 12 in the signal control unit 161 can be easily formed by using the high potential side of the switching element 3 or the input power source.
  • FIG. 29B as shown in FIG.
  • the switch 13 is connected to the DRAIN terminal via the internal circuit current supply circuit 7c.
  • the input voltage determination circuit 10 detects the decrease in the input voltage because the on-time of the switching element 3 has increased, so that the input voltage can be reduced without increasing the number of terminals of the switching power supply semiconductor device. It can be detected that the threshold value is 1.
  • the signal control unit 161 controls the feedback signal output from the output voltage detection unit 5 by the auxiliary power supply, so that it is turned on at the bottom of the fixed frequency PWM control, PFM control, and the switching element. Like quasi-resonant control, it can be applied regardless of the control method.
  • switching power supply device in each embodiment can be variously modified, and may be modified as follows, for example.
  • FIG. 30 is a block diagram illustrating a configuration example of the switching power supply device in Modification A.
  • the input voltage determination circuit 10 in the semiconductor device 15a in the same figure is connected to the input DC voltage Vin line.
  • FIG. 31 is a circuit diagram showing a configuration example of the input voltage determination circuit 10 in FIG. In FIG. 31, the voltage divided from Vin by the resistors 64 and 65 is input to the positive side of the input voltage detection comparator 62, and the voltage VR2 of the second reference power supply 63 is input to the negative side. .
  • the input voltage detection comparator 62 is switch-controlled. Output to the circuit 14.
  • a decrease in input voltage can be detected without using MAXDC, so that a threshold different from the threshold determined by MAXDC can be provided.
  • the threshold value of the input voltage determination circuit 10 can be set outside the semiconductor device 15a, and the input voltage detection accuracy is improved.
  • Modification B In FIG. 3B, the first switch 13 and the second switch 7b are provided separately, but in Modification B, a configuration example in which these switches are shared by one switch will be described.
  • FIG. 33A is a block diagram showing a configuration example of a switching power supply device in which the first switch 13 and the second switch 7b are shared.
  • FIG. 33B is a circuit diagram showing a configuration example of the semiconductor device 15b in FIG. 33A.
  • FIG. 33B is different from FIG. 3B in that a semiconductor device 15 b is provided instead of the semiconductor device 151 and a signal control unit 168 is provided instead of the signal control unit 161.
  • the signal control unit 168 extracts the current from the input DC voltage Vin and supplies the internal circuit current supply circuit 7c, and between the internal circuit current supply circuit 7c and the feedback signal input terminal of the semiconductor device 15b. And a switch control circuit 14 for controlling on and off of the first switch 13.
  • the switch control circuit 14 sets the feedback signal to a signal value that does not exceed or does not fall below a predetermined value during a period when the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value. Controls switch on and off.
  • the control circuit 140 and the signal control unit 168 operate using the voltage supplied from the feedback signal input terminal as the power supply voltage of the semiconductor device 15b.
  • the signal control unit 168 includes an activation control circuit 7a that controls on and off of the first switch when the switching power supply device is activated.
  • the switching element 3 oscillates before starting, and when the switch control circuit 14 operates, the switching element 3 continuously oscillates. Since the control timings are different from each other, it is possible to share these switches with one switch.
  • an OR circuit that receives the output signals from the activation control circuit 7a and the switch control circuit 14 as input signals is added, and the output signal from the OR circuit is common. This can be realized by turning on / off the switch.
  • the first switch 13 By sharing the first switch 13 with the second switch 7b, one switch can be reduced, the circuit configuration is simplified, and the circuit area of the semiconductor device 15b can be reduced.
  • the circuit area can be reduced in this respect as well.
  • Modification C In Modification C, a configuration example in which the first switch 13 and the second switch 7b are separately provided and the two switches also serve as the internal circuit current supply circuit 7c is described with respect to the configurations of FIGS. 33A and 33B. .
  • FIG. 34 is a block diagram showing a configuration example of a switching power supply apparatus in which two switches also serve as the internal circuit current supply circuit 7c.
  • FIG. 34 differs from FIG. 3B in that a semiconductor device 15 c is provided instead of the semiconductor device 151 and a signal control unit 169 is provided instead of the signal control unit 161.
  • a signal control unit 169 in the semiconductor device 15c includes an internal circuit current supply circuit 7c that extracts and supplies a current from an input DC voltage Vin, a feedback signal input terminal of the internal circuit current supply circuit 7c, and the semiconductor device 15b. And a switch control circuit 14 for controlling on and off of the first switch 13.
  • the switch control circuit 14 sets the feedback signal to a signal value that does not exceed or does not fall below a predetermined value during a period when the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value.
  • the switch 13 is turned on and off.
  • the control circuit 140 and the signal control unit 169 operate using the voltage supplied from the feedback signal input terminal as the power supply voltage.
  • the signal control unit 169 further includes a second switch 7b interposed between the internal circuit current supply circuit 7c and the feedback signal input terminal, and an activation control circuit 7a that turns on the second switch 7b when the switching power supply device is activated. Is provided.
  • the first current supply circuit also serves to supply current to both the first switch and the second switch. Therefore, it is not necessary to provide two current supply circuits, and the circuit area is reduced. be able to.
  • Modification D In Modification D, a configuration example in which the power supply terminal VDD is provided and the start-up circuit is simplified will be described with respect to FIG.
  • FIG. 35 is a block diagram showing a configuration example of a switching power supply device having a power supply terminal VDD and a simplified startup circuit.
  • FIG. 35 differs from FIG. 3B in that a semiconductor device 15 d is provided instead of the semiconductor device 151 and a signal control unit 16 a is provided instead of the signal control unit 161.
  • a signal control unit 16a in the semiconductor device 15d includes an internal circuit current supply circuit 7c that extracts and supplies a current from an input DC voltage Vin, an internal circuit current supply circuit 7c, and a feedback signal input terminal of the semiconductor device 15d. And a switch control circuit 14 for controlling on and off of the first switch 13.
  • the switch control circuit 14 sets the feedback signal to a signal value that does not exceed or does not fall below a predetermined value during a period when the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value.
  • the switch 13 is turned on and off.
  • the control circuit 140 has a power supply terminal VDD for supplying a power supply voltage to the control circuit 140 and the signal control unit 16a, and an internal circuit current supply circuit (first current supply circuit) 7c is directly connected to the power supply terminal VDD for control. Power is supplied to the circuit 140.
  • a capacitor 6a is connected to the power supply terminal VDD. At startup, the capacitor 6a is charged by the current supplied from the internal circuit current supply circuit 7c. When the capacitor 6a reaches the startup voltage, the operations of the control circuit 140 and the signal control unit 16a are started.
  • the control circuit 140 and the signal control unit 16a operate using the voltage supplied from the power supply terminal VDD instead of the voltage from the feedback signal input terminal as the power supply voltage.
  • a signal in which the feedback signal does not exceed or falls below a predetermined value using the voltage at the VDD terminal as the voltage source while the voltage value of the input DC voltage Vin is determined to be the first threshold value.
  • Modification E In Modification E, a configuration example including two power supply terminals VCC and VDD will be described with respect to the configuration of FIG.
  • FIG. 36 is a block diagram showing a configuration example of a switching power supply device having two power supply terminals VCC and VDD. 35 differs from FIG. 3B in that a semiconductor device 15e is provided instead of the semiconductor device 151, and a signal control unit 16b is provided instead of the signal control unit 161.
  • a signal control unit 16b in the semiconductor device 15e includes an internal circuit current supply circuit 7c that extracts and supplies a current from an input DC voltage Vin, an internal circuit current supply circuit 7c, and a feedback signal input terminal of the semiconductor device 15e. And a switch control circuit 14 for controlling on and off of the first switch 13.
  • the switch control circuit 14 sets the feedback signal to a signal value that does not exceed or does not fall below a predetermined value during a period when the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value.
  • the switch 13 is turned on and off.
  • the transformer 2 has a primary winding, a secondary winding, and an auxiliary winding.
  • the auxiliary winding generates no voltage when the switching element 3 starts up before starting the switching operation, and generates a voltage after the switching element 3 starts the switching operation.
  • the voltage generated in the auxiliary winding is lower than that of the primary winding and the secondary winding.
  • the semiconductor device 15e includes an internal circuit current supply circuit 170.
  • the control circuit 140 (semiconductor device 15e) includes a first power supply terminal VDD and a second power supply terminal VCC.
  • the first power supply terminal VDD is a terminal for supplying the voltage supplied from the internal circuit current supply circuit 170 to the control circuit 140 and the signal control unit 16b as a power supply voltage.
  • a capacitor 6a is connected to the first power supply terminal VDD.
  • the second power supply terminal VCC is connected to the auxiliary winding via a rectifying / smoothing diode and a capacitor (not shown here), and is connected via the internal circuit current supply circuit 170 when the switching power supply is not activated. This is a terminal for supplying a voltage to the first power supply terminal VDD.
  • the signal control unit 16b further includes a second switch 7b interposed between the internal circuit current supply circuit (first current supply circuit) 7c and the first power supply terminal VDD, and a second switch 7b when the switching power supply device is activated. And an activation control circuit 7a to be turned on.
  • the control circuit 140 and the signal control unit 16b operate using the voltage supplied from the power supply terminal VDD instead of the voltage from the feedback signal input terminal as the power supply voltage.
  • the voltage of the first power supply terminal VDD is generated by the activation circuit 7 when the switching power supply device is activated.
  • a voltage obtained by rectifying and smoothing the voltage of the auxiliary winding is supplied through the internal circuit current supply circuit 170 as the voltage of the first power supply terminal VDD during the operation after the startup.
  • the voltage of the VDD terminal is generated from the voltage of the auxiliary winding lower than the input voltage, so that power saving can be achieved.
  • the first power supply terminal VDD is separated from the feedback signal input terminal, a large capacity serving as a delay element is connected to the power supply terminal VDD, so that the response of the feedback signal becomes faster and recovery from a momentary interruption is achieved.
  • the control terminal responds immediately, and the overshoot of the output voltage can be suppressed.
  • the internal circuit current supply circuit 7c is shared by the first switch 13 and the second switch 7b, the circuit area of the semiconductor device 15e can be reduced as compared with the case where two flow supply circuits are provided.
  • one end of the first switch 13 is connected to the internal circuit current supply circuit 7c, but is connected to a line connected to the VDD terminal or a line connected to the VCC terminal in the internal circuit of the semiconductor device 15e. It is good as composition.
  • Modification F In Modification F, a configuration example in which another current supply unit is added to FIG. 35 will be described.
  • FIG. 37 is a block diagram illustrating a configuration example of a switching power supply device including two current supply units. Compared with FIG. 35, the figure shows that an auxiliary current supply circuit in the signal control unit 16c is added to the semiconductor device 15f. Except for this point, it is the same as FIG. 35, so the following description will focus on the differences.
  • the signal control unit 16c includes an auxiliary current supply circuit (second current supply circuit) that extracts and supplies a current from the input DC voltage Vin.
  • auxiliary current supply circuit second current supply circuit
  • the control circuit 140 includes a power supply terminal VDD that receives supply of power supply voltage from the internal circuit current supply circuit (first current supply circuit) 7c.
  • a capacitor 6a is connected to the power supply terminal VDD.
  • the internal circuit current supply circuit 7c for supplying the power supply voltage and the auxiliary current supply circuit 13a for controlling the level of the feedback signal are individually provided, the respective supply currents or supply voltages are optimized. Can be made and design easier.
  • the transformer 2 does not require an auxiliary winding, it is suitable for simplification and switching of the transformer and miniaturization of the device.
  • connection form of the auxiliary current supply circuit 13a, the internal circuit current supply circuit 7c, and the primary winding of the transformer 2 may be any of FIGS. 28C, 28D, and 28E.
  • Modification G In Modification G, a configuration example in which another current supply unit is added to FIG. 36 will be described.
  • FIG. 38 is a block diagram illustrating a configuration example of a switching power supply device including two current supply units. Compared with FIG. 36, the figure shows that the auxiliary current supply circuit 13 a in the signal control unit 16 d is added to the semiconductor device 15 g. Except for this point, the configuration is the same as that of FIG.
  • the transformer 2 has a primary winding, a secondary winding, and an auxiliary winding.
  • the signal control unit 16d in the semiconductor device 15g further includes a power supply terminal VCC that receives power from the auxiliary winding through a rectifying and smoothing diode and a capacitor, and an internal circuit current supply that supplies the voltage of the power supply terminal VCC to the power supply terminal VDD.
  • a power supply voltage for operating the circuit 170, the control circuit 140, and the signal control unit 16d a current is extracted from the power supply terminal VDD that receives the stabilized voltage supplied from the internal circuit current supply circuit 170 and the primary winding.
  • the activation circuit 7 is configured by the second switch 7b and the activation control circuit 7a.
  • the control circuit 140 and the signal control unit 16d operate using the voltage supplied from the power supply terminal VDD instead of the voltage from the feedback signal input terminal as the power supply voltage.
  • the first power supply terminal VDD is separated from the feedback signal input terminal, a large capacity serving as a delay element is connected to the power supply terminal VDD, so that the response of the feedback signal becomes faster and recovery from a momentary interruption is achieved.
  • the control terminal responds immediately, and the overshoot of the output voltage can be suppressed.
  • the internal circuit current supply circuit 7c for supplying the power supply voltage and the auxiliary current supply circuit 13a for controlling the level of the feedback signal are individually provided, so that each supply current or supply voltage is optimized. Can be made and design easier.
  • connection form of the auxiliary current supply circuit 13a, the internal circuit current supply circuit 7c, and the primary winding of the transformer 2 may be any of FIGS. 28C, 28D, and 28E.
  • Modification H In Modification H, a configuration example in the case where the feedback signal is not a voltage signal but a current signal will be described.
  • FIG. 39A is a block diagram illustrating a configuration example of a switching power supply device in which the feedback signal is a current signal.
  • FIG. 39B is a circuit diagram showing a configuration example of the semiconductor device 15h in FIG. 39A.
  • 39A and 39B differ mainly from FIG. 37 in that the semiconductor device 15g is provided instead of the semiconductor device 15f ”and the signal control unit 16d is provided instead of the signal control unit 16c. The difference is that the signal is not a voltage signal but a current signal. Except for the components related to this point, the configuration is basically the same as that of FIG.
  • the output voltage detection unit 5 in FIG. 39A is configured to generate a feedback signal whose current value increases in accordance with the output voltage Vo. As the output voltage Vo increases, the current of the feedback signal also increases.
  • the signal control unit 16d is different in that it includes a current source 12a instead of the auxiliary current supply circuit 13a of FIG. Thereby, the signal control unit 16d exceeds the predetermined value for the current value of the feedback signal input to the control circuit 140 during the period in which the voltage value of the input DC voltage Vin is determined to be equal to or less than the first threshold value. Control to a signal level (current value) that does not fall or fall below. Specifically, the signal level (current value) is controlled by superimposing the current on the feedback signal by controlling on and off of the switch 13.
  • the control circuit 140 includes, for example, an IV conversion circuit 8a instead of the feedback control circuit 8 of FIG.
  • the IV conversion circuit generates an error voltage signal VEAO by converting the current of the feedback signal into a voltage.
  • the invention can be implemented as in the case where the feedback signal is a voltage signal.
  • the switching element 3 may be built in the semiconductor device 15h or may be configured to be externally attached to the semiconductor device 15h.
  • the switching power supply device and the semiconductor device according to the present invention have been described based on the embodiment, the present invention is not limited to this embodiment. Unless it deviates from the meaning of this invention, the form which carried out the various deformation
  • the switching power supply device of the present invention includes a switching element to which an input DC voltage is supplied, an input / output conversion unit that converts the input DC voltage switched by the switching element into an output DC voltage, and a voltage value of the output DC voltage An output voltage detection unit that generates a feedback signal corresponding to the voltage value of the output DC voltage, and an input voltage determination unit that determines whether the voltage value of the input DC voltage is equal to or less than a first threshold value A control circuit that controls a switching operation of the switching element in accordance with the feedback signal; and a time period during which a voltage value of the input DC voltage is determined to be equal to or lower than the first threshold value.
  • a signal control unit that controls the feedback signal to a value that does not exceed or does not fall below a predetermined signal value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 スイッチング電源装置は、瞬断時に発生する出力電圧のオーバーシュートを低減できる装置であり、入力直流電圧が供給されるスイッチング素子(3)と、スイッチング素子(3)によりスイッチングされた入力直流電圧を出力直流電圧に変換する入出力変換部(200)と、出力直流電圧の電圧値を検出し、出力直流電圧の電圧値に対応するフィードバック信号を生成する出力電圧検出部(5)と、入力直流電圧の電圧値が第1閾値以下であるか否かを判定する入力電圧判定回路(10)と、フィードバック信号に応じてスイッチング素子(3)のスイッチング動作を制御する制御回路(140)と、入力直流電圧の電圧値が第1閾値以下であると判定されている期間、制御回路(140)に入力されるフィードバック信号を予め定められた信号値を上回らない又は下回らない値に制御する信号制御部(160)とを備える。

Description

スイッチング電源装置および半導体装置
 本発明は、入力電圧に対してスイッチング素子を通じてスイッチングすることにより出力電圧を制御するスイッチング電源装置および半導体装置に関するものである。
 従来から、家電製品等の一般家庭用機器には、その電源装置として、消費電力の低減化による電力効率の向上等の目的から、半導体(トランジスタなどのスイッチング素子)によるスイッチング動作を利用して出力電圧を制御(安定化など)する半導体装置を有するスイッチング電源装置が広く用いられている。
 たとえば特許文献1には、消費電力を削減して電源効率を向上させるスイッチング電源装置が記載されている。
 図40は、特許文献1に記載されたスイッチング電源装置の回路構成を示す図である。同図において、スイッチング電源装置の制御回路515は、補助電源電圧Vccと基準電圧との差からなる誤差電圧信号VEAOを生成する誤差増幅器522と、素子電流検出回路523により検出される素子電流検出信号VCLと誤差電圧信号VEAOとを比較する素子電流検出用比較器524とを有している。さらに、制御回路515は、誤差電圧信号VEAOが下限電圧値よりも小さい場合に、スイッチング信号制御回路525に対してスイッチング素子514へのスイッチング信号の出力を停止し、誤差電圧信号VEAOが上限電圧値よりも大きい場合に、スイッチング信号制御回路525に対してスイッチング信号の出力を開始する軽負荷検出回路540を有している。
 これにより、同図のスイッチング電源装置は、簡単な構成で、軽負荷時のスイッチング損失を減らすことにより、消費電力を削減してスイッチング電源装置における電源効率を確実に向上させている。
特開2001-224169号公報
 しかしながら、特許文献1に記載のスイッチング電源装置では、瞬断時に出力電圧のオーバーシュートが発生するという問題がある。出力電圧のオーバーシュートは、負荷の回路にストレスを与え、負荷の回路の寿命劣化や誤動作を引き起こす可能性がある。
 図41は、瞬断時におけるタイムチャートを示す。同図において、Vinはトランス513に入力される直流電圧である。Voは出力電圧生成回路516から出力される出力電圧である。Vccは電源回路519により生成され、制御回路515の制御端子Tcに印加される補助電源電圧である。IDはスイッチング素子514を流れるドレイン電流である。スイッチング素子514は、周波数固定のPWM(Pulse-Width-Modulation)制御が行われる。
 時刻t1において、瞬断が発生して、入力直流電圧Vinが低下しはじめる。
 スイッチング素子514の素子電流IDは、入力直流電圧Vinが低下したときにも、負荷へ供給される出力電力を一定にするために、ドレイン電流ピークIDPが一定のままスイッチング素子のオン時間は長くなっていく。
 時刻t2では、最大オンデューティーサイクルMAXDCまで、スイッチング素子514のオンデューティー(オン時間と発振周波数の積)が長くなる。
 MAXDCは、一般的に一定周波数のスイッチング動作を繰り返すPWM制御では、スイッチング素子514のオン時間が長くなりすぎることによって、負荷に過剰な電力供給がされたり、スイッチング素子514やその周辺部品での発熱や破壊が起こらないように、オン時間を制限するために設けられている。
 時刻t3において、入力直流電圧Vinの低下が止まり、再び上昇を開始する。入力直流電圧Vinが上昇しても、スイッチング素子514のオンデューティーは、最大オンデューティーサイクルMAXDCで発振しつづける。
 図41において、t2~t4の期間、ドレイン電流IDは、スイッチング素子514のオンデューティーがMAXDCで制限されており、VCCによって制御されない。すなわち、図41におけるドレイン電流IDは、通常動作時には、VCCに応じて、点線のように変化するが、入力電圧が低下し、t2~t4の期間は、オンデューティーはMAXDCで発振を行っている。
 入力直流電圧Vinが下記の式を満たしている間、スイッチング素子514は、MAXDCで発振する。VORは、反射電圧であり、Vo×Np/Ns(Np:一次側巻数、Ns:二次側巻数)で表され、スイッチング素子514がオフし、二次側巻線に電流が流れるときに一次側に発生する電圧である。
     MAXDC<VOR/(Vin+VOR)・・・(A)
 その後、入力電圧が上昇し、下記の式を満たすようになると、ドレイン電流IDは制御端子Tcのレベルによって決まる。
     MAXDC>VOR/(Vin+VOR)・・・(B)
これらの式より、
(1)入力電圧が上昇しても、式(A)を満たす間は、MAXDCで発振する。
(2)入力電圧がさらに上昇し、式(B)の範囲になると、スイッチング素子514は、過電流保護レベル、もしくは、デューティー制御され、ドレイン電流IDは制御端子Tcのレベルによって決まる。
 時刻t4において、入力直流電圧Vinが上昇し、式(B)の範囲に入ると、オンデューティーは最大オンデューティーMAXDCに制限されずに、2次側からのフィードバック信号に応じたドレイン電流で発振を行うことができる。
 ここで、負荷状態をフォトカプラを使って、制御端子Tcにフィードバックを行うときや、制御端子Tcに容量がついているとき、これらが遅延要素となり、制御端子Tcの電圧上昇が遅くなり、また、その遅延の間に、制御端子Tcの電圧は低下する。このとき、制御端子Tcの電圧が、Vcc(過電流保護レベル)より低い電圧になっていることで、スイッチング素子514は過電流保護レベルで発振し続ける。
 その結果、出力電圧が上昇し、フォトトランジスタに電流が供給されて、制御端子Tcの電圧がVcc(過電流保護レベル)まで上昇する間に、負荷30には過大な出力電力Poが供給されてしまうので、出力電圧Voのオーバーシュートが発生する。
 このようなオーバーシュートは、負荷回路にとって好ましいものではなく、負荷回路にストレスがかかり、負荷回路の寿命劣化や誤動作の可能性がある。
 本発明は、上記従来の問題点を解決するものであり、スイッチング電源装置において、瞬断時に発生する出力電圧のオーバーシュートを低減するスイッチング電源装置および半導体装置を提供することを目的とする。
 上記の課題を解決するため本発明の一形態に係るスイッチング電源装置は、スイッチング電源装置であって、入力直流電圧が供給されるスイッチング素子と、前記スイッチング素子によりスイッチングされた前記入力直流電圧を出力直流電圧に変換する入出力変換部と、前記出力直流電圧の電圧値を検出し、前記出力直流電圧の電圧値に対応するフィードバック信号を生成する出力電圧検出部と、前記入力直流電圧の電圧値が第1閾値以下であるか否かを判定する入力電圧判定部と、前記フィードバック信号に応じて前記スイッチング素子のスイッチング動作を制御する制御回路と、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記制御回路に入力される前記フィードバック信号を予め定められた値を上回らない又は下回らない信号値に制御する信号制御部とを備える。
 この構成によれば、瞬断から復帰するときの出力電圧のオーバーシュートを低減することができる。その結果、負荷装置の回路にかかるストレスであって、負荷装置の回路の寿命劣化や誤動作させる可能性があるストレスを低減することができる。
 ここで、前記フィードバック信号は、前記出力直流電圧に対して単調増加する電圧値を有し、前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を前記予め定められた値を下回らない値に制御し、前記予め定められた値は、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値であってもよい。
 ここで、前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を、前記予め定められた値を下回らない値、かつ、前記予め定められた値より高い上限値未満の値に制御し、前記上限値は、前記スイッチング動作の停止電圧値であってもよい。
 この構成によれば、復帰遅れをわずかに発生しながらも、出力オーバーシュートを抑制できる。
 ここで、前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を前記予め定められた値とし、前記予め定められた値は、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値であってもよい。
 この構成によれば、瞬断からの復帰遅れを発生させなくすることができる。
 ここで、前記フィードバック信号は、前記出力直流電圧に対して単調減少する電圧値を有し、前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を前記予め定められた値を上回らない値に制御し、前記予め定められた値は、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値であってもよい。
 ここで、前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を、前記予め定められた値を上回らない値、かつ、前記予め定められた値より低い下限値より高い値に制御し、前記下限値は、前記スイッチング動作の停止電圧値であってもよい。
 この構成によれば、復帰遅れをわずかに発生しながらも、出力オーバーシュートを抑制できる。
 ここで、前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を前記予め定められた値とし、前記予め定められた値は、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値であってもよい。
 この構成によれば、瞬断からの復帰遅れを発生させなくすることができる。
 ここで、前記フィードバック信号は、前記出力直流電圧に対して単調増加する電圧値を有し、前記信号制御部は、前記出力直流電圧の電圧値が第2閾値未満の場合、前記信号値を第1レベルとし、前記出力直流電圧の電圧値が前記第2閾値以上の場合、前記信号値を前記第1レベルより高い第2レベルとしてもよい。
 一般に、フィードバック信号は負荷が大きければ低くなり、負荷が小さければ高くなる。従って、この構成によれば、負荷の大きさに応じて出力オーバーシュート及び復帰遅れ対策を最適化することができる。
 ここで、前記第2閾値および前記第1レベルはそれぞれ、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値であってもよい。
 この構成によれば、重負荷時には、PWM制御にすぐに移行できる電圧に保持することで、オーバーシュートを抑えることができる。
 ここで、前記第2レベルは、前記入力直流電圧の電圧値が第1閾値以下になった時の前記フィードバック信号の電圧値であってもよい。
 この構成によれば、軽負荷時の出力電圧のオーバーシュートを抑えることができる。
 ここで、前記フィードバック信号は、前記出力直流電圧に対して単調減少する電圧値を有し、前記信号制御部は、前記出力直流電圧の電圧値が第2閾値未満の場合、前記信号値を第1レベルとし、前記出力直流電圧の電圧値が前記第2閾値以上の場合、前記信号値を前記第1レベルより低い第2レベルとしてもよい。
 一般に、フィードバック信号は負荷が大きければ高くなり、負荷が小さければ低くる。従って、この構成によれば、負荷の大きさに応じて出力オーバーシュート及び復帰遅れ対策を最適化することができる。
 ここで、前記第2閾値および前記第1レベルはそれぞれ、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値であってもよい。
 この構成によれば、重負荷時には、PWM制御にすぐに移行できる電圧に保持することで、オーバーシュートを抑えることができる。
 ここで、前記第2レベルは、前記入力直流電圧の電圧値が第1閾値以下になった時の前記フィードバック信号の電圧値であってもよい。
 この構成によれば、軽負荷時の出力電圧のオーバーシュートを抑えることができる。
 ここで、前記信号制御部は、前記入力直流電圧から電流を取り出して供給する第1電流供給回路と、前記第1電流供給回路と前記制御回路のフィードバック信号入力端子との間に介在する第1スイッチと、前記第1スイッチのオン及びオフを制御するスイッチ制御回路とを備え、前記スイッチ制御回路は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を予め定められた値を上回らない又は下回らない信号値にするように、前記第1スイッチのオンおよびオフを制御してもよい。
 ここで、前記制御回路および前記信号制御部は、前記フィードバック信号入力端子から供給される電圧を電源電圧として動作し、前記信号制御部は、さらに、前記スイッチング電源装置の起動時に前記第1スイッチをオンにする起動制御回路を備えてもよい。
 この構成によれば、第1スイッチは、フィードバック信号のレベル制御に用いられるだけでなく、起動時の電源電圧供給用にも用いられる。つまり、第1スイッチは、フィードバック信号のレベル制御用のスイッチと、起動時の電源電圧供給用スイッチとを兼用するので、2つのスイッチも備える必要がなく、回路面積を小さくすることができる。
 ここで、前記制御回路および前記信号制御部は、前記フィードバック信号入力端子から供給される電圧を電源電圧として動作し、前記信号制御部は、さらに、前記第1電流供給回路と前記フィードバック信号入力端子との間に介在する第2スイッチと、前記スイッチング電源装置の起動時に前記第2スイッチをオンにする起動制御回路とを備えてもよい。
 この構成によれば、第1電流供給回路は、第1スイッチと第2スイッチの双方に電流を供給することを兼用するので、2つの電流供給回路を備える必要がなく、回路面積を小さくすることができる。
 ここで、前記制御回路および前記信号制御部は、前記フィードバック信号入力端子から供給される電圧を電源電圧として動作し、前記信号制御部は、さらに、前記入力直流電圧から電流を取り出して供給する第2電流供給回路と、前記第2電流供給回路と前記制御回路のフィードバック信号入力端子との間に介在する第2スイッチと、前記スイッチング電源装置の起動時に前記第2スイッチをオンにする起動制御回路とを備えてもよい。
 この構成によれば、2つのスイッチと2つの電流供給回路を供えるので、フィードバック信号のレベル制御と、起動時の電源電圧供給とのそれぞれに必要な電流、スイッチ特性を個別に設定でき、回路設計を容易にすることができる。
 ここで、前記入出力変換部は、1次巻線と、2次巻線と、補助巻線とを有し、前記制御回路は、前記制御回路および前記信号制御部へ電源電圧を供給する第1電源端子と、前記補助巻線に接続され、前記スイッチング電源装置の起動時以外の時に第1電源端子へ電源電圧を供給するための第2電源端子とを有し、前記信号制御部は、さらに、前記第1電流供給回路と前記第1電源端子との間に介在する第2スイッチと、前記スイッチング電源装置の起動時に前記第2スイッチをオンにする起動制御回路とを備えてもよい。
 この構成によれば、起動時以外(つまりスイッチング電源装置が定常動作するとき)は、補助巻線から第2電源端子を介して第1電源端子に電源電圧が供給される。通常、補助巻線は1次巻線よりも低電圧なので、定常動作時における消費電力を低減することができる。また、第1電流供給回路は、第1スイッチと第2スイッチに兼用されるので2つの電流供給回路を備える必要がなく、回路面積を小さくすることができる。また、フィードバックの応答性が速くなり、オーバーシュートを抑制できる。
 ここで、前記制御回路は、前記制御回路および前記信号制御部へ電源電圧を供給する電源端子を有し、前記第1電流供給回路は、前記電源端子に電圧を供給してもよい。
 この構成によれば、フィードバックの応答性が速くなり、オーバーシュートを抑制できる。
 ここで、前記入力電圧判定部は、(a)前記スイッチング動作における前記スイッチング素子のオン時間を検出し、検出したオン時間が所定の時間以上であるか否か、(b)前記スイッチング動作における前記スイッチング素子のスイッチング周期に対するオン時間の割合が所定値以上であるか否かのいずれかを判定することによって、前記入力直流電圧の電圧値が前記第1閾値以下であるか否かを判定してもよい。
 この構成によれば、入力電圧を直接測定する必要がないので、入力電圧を測定するための、抵抗などの部品追加や入力端子の追加、入力電圧が高い場合であっても耐圧の高い部品を用いる必要がなくなり、コストダウンできる。
 ここで、前記入力電圧判定部は、前記入力直流電圧を測定することにより、前記入力直流電圧の電圧値が前記第1閾値以下であるか否かを判定してもよい。
 入力電圧を検出するために入力検出端子を設ける場合には、検出したい入力電圧を自由に設定することができるので、電源回路設計での自由度が向上し、また、入力電圧を精度よく検出することが可能となる。
 ここで、前記フィードバック信号の変動は、前記出力直流電圧の変動に対して遅延してもよい。
 ここで、前記スイッチング電源装置は、(a)前記出力電圧検出部に備えられ、前記フィードバック信号を出力するフォトカプラ、および、(b)前記出力電圧検出部で生成された前記フィードバック信号を前記制御回路に伝達するためのフィードバック配線と、一端が前記フィードバック配線に接続された容量素子、の少なくとも一方を備えてもよい。
 また、本発明の一形態における半導体装置は、入力直流電圧が供給されるスイッチング素子と、前記スイッチング素子によりスイッチングされた前記入力直流電圧を出力直流電圧に変換する入出力変換部と、前記出力直流電圧の電圧値を検出し、前記出力直流電圧の電圧値に対応するフィードバック信号を生成する出力電圧検出部とを備えるスイッチング電源装置に備えられる半導体装置であって、前記入力直流電圧の電圧値が第1閾値以下であるか否かを判定する入力電圧判定部と、前記フィードバック信号に応じて前記スイッチング素子のスイッチング動作を制御する制御回路と、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記制御回路に入力される前記フィードバック信号を予め定められた値を上回らない又は下回らない値に制御する信号制御部とを備える。
 この構成によれば、この半導体装置をスイッチング電源装置に適用することで、上記スイッチング電源装置と同様の効果が奏される。
 本発明のスイッチング電源装置および半導体装置によれば、瞬断からの復帰するときの出力電圧のオーバーシュートを低減することができる。その結果、負荷装置の回路にかかるストレスであって、負荷装置の回路の寿命劣化や誤動作させる可能性があるストレスを低減することができる。
図1Aは、本発明の実施の形態1のスイッチング電源装置の一構成例を示すブロック図である。 図1Bは、本発明の実施の形態1のスイッチング電源装置における、信号制御部の構成例とその周辺回路とを示すブロック図である。 図2は、同実施の形態1の半導体装置における信号制御部の構成例を示すブロック図である。 図3Aは、本実施の形態2のスイッチング電源装置の一構成例を示す詳細な回路図である。 図3Bは、図3A中の半導体装置の詳細な構成例を示す回路図である。 図4Aは、コントロール端子電圧とスイッチング素子に流れるドレイン電流IDの関係を示した図である。 図4Bは、同実施の形態2のスイッチング電源装置におけるIDの波形を示す図である。 図5Aは、実施の形態2の半導体装置における入力電圧判定回路の一構成例を示す回路図である。 図5Bは、図5Aにおける各信号が変化したときの波形を表した図である。 図6は、実施の形態2の半導体装置における入力電圧判定回路の別の一構成例を示す回路図である。 図7Aは、同実施の形態2のスイッチング電源装置における瞬断時の動作を示すタイミングチャートである。 図7Bは、同実施の形態2のスイッチング電源装置におけるIDの波形を示す図である。 図8は、同実施の形態2のスイッチング電源装置におけるVC(保持電圧)の説明図である。 図9は、同実施の形態2のスイッチング電源装置におけるVR1を変えたときの瞬断時の動作を示すタイミングチャートである。 図10は、同実施の形態2の変形例2のスイッチング電源装置の一構成例を示す回路図である。 図11は、同実施の形態2の変形例2のスイッチング電源装置における瞬断時の動作を示すタイミングチャートである。 図12は、実施の形態3に係るスイッチング電源装置の概略構成を示すブロック図である。 図13は、実施の形態3に係るスイッチング電源装置の半導体装置の一構成例を示す回路図である。 図14Aは、同実施の形態3のスイッチング電源装置におけるVinが第1閾値以下になったときのコントロール端子電圧VCと基準電圧との関係を示す図である。 図14Bは、同実施の形態3のスイッチング電源装置におけるVinが第1閾値以下になったときのコントロール端子電圧VCと基準電圧との関係を示す図である。 図15は、同実施の形態3のスイッチング電源装置における図14Aの関係をまとめた表である。 図16は、同実施の形態4のスイッチング電源装置の一構成例を示す回路図である。 図17は、同実施の形態4におけるフィードバック電圧に対するスイッチング素子の発振周波数を示す模式図である。 図18は、同実施の形態4における、負荷が変化したときのフィードバック電流に対するスイッチング素子の発振周波数を示す模式図である。 図19は、同実施の形態4のスイッチング電源装置における瞬断時の動作を示すタイミングチャートである。 図20Aは本実施の形態5のスイッチング電源装置の一構成例を示す回路図である。 図20Bは、図20A中の半導体装置の構成例を示す回路図である。 図21は、実施の形態5におけるコントロール端子電圧VCとスイッチング素子3のドレイン電流IDとの関係を示した図である。 図22は、実施の形態5における、負荷が変化したときのコントロール端子電圧VCとスイッチング素子3のドレイン電流IDとの関係を示した図である。 図23は、同実施の形態5のスイッチング電源装置における瞬断時の動作を示すタイミングチャートである。 図24は、同実施の形態5のスイッチング電源装置におけるVR2を変えたときの瞬断時の動作を示すタイミングチャートである。 図25は、同実施の形態5のスイッチング電源装置の一構成例を示す回路図である。 図26は、同実施の形態5のスイッチング電源装置における瞬断時の動作を示すタイミングチャートである。 図27は、同実施の形態6のスイッチング電源装置の一構成例を示すブロック図である。 図28Aは、同実施の形態6のスイッチング電源装置の一構成例を示す回路図である。 図28Bは、図28A中の同実施の形態6のスイッチング電源装置の一構成例を示す回路図である。 図28Cは、補助電流供給回路および内部回路電流供給回路と、1次巻線との接続例を示す図である。 図28Dは、補助電流供給回路および内部回路電流供給回路と、1次巻線との接続例を示す図である。 図28Eは、補助電流供給回路および内部回路電流供給回路と、1次巻線との接続例を示す図である。 図29Aは、同実施の形態7におけるRCC方式のスイッチング電源の一例を示す回路図である。 図29Bは、図29A中の半導体装置の構成を示す回路図である。 図30は、変形例Aにおけるスイッチング電源装置の構成例を示すブロック図である。 図31は、変形例Aにおける入力電圧判定回路の構成例を示すブロック図である。 図32は、変形例Aにおける入力電圧判定回路の他の構成例を示すブロック図である。 図33Aは、変形例Bにおけるスイッチング電源装置の構成例を示すブロック図である。 図33Bは、図33A中の半導体装置の一構成例を示す回路図である。 図34は、変形例Cにおけるスイッチング電源装置の構成例を示すブロック図である。 図35は、変形例Dにおけるスイッチング電源装置の構成例を示すブロック図である。 図36は、変形例Eにおけるスイッチング電源装置の構成例を示すブロック図である。 図37は、変形例Fにおけるスイッチング電源装置の構成例を示すブロック図である。 図38は、変形例Gにおけるスイッチング電源装置の構成例を示すブロック図である。 図39Aは、変形例Hにおけるスイッチング電源装置の構成例を示すブロック図である。 図39Bは、図39A中の半導体装置の一構成例を示す回路図である。 図40は、従来技術におけるスイッチング電源装置の回路構成を示す図である。 図41は、従来技術における瞬断時の動作を示すタイムチャートである。
 (実施の形態1)
 本発明の実施の形態1におけるスイッチング電源装置について図1A、図1Bに基づいて概略説明する。
 図1Aは、実施の形態1に係るスイッチング電源装置の概略的な構成例を示すブロック図である。同図のようにスイッチング電源装置は、入力直流電圧が供給されるスイッチング素子3と、スイッチング素子3によりスイッチングされた入力直流電圧Vinを出力直流電圧に変換する入出力変換部200と、出力直流電圧の電圧値を検出し、出力直流電圧の電圧値に対応するフィードバック信号を生成する出力電圧検出部5と、入力直流電圧Vinの電圧値が第1閾値以下であるか否かを判定する入力電圧判定回路10と、フィードバック信号に応じて前記スイッチング素子3のスイッチング動作を制御する制御回路140とを備える。なお、入力電圧判定回路10、制御回路140および信号制御部160は、1チップの半導体装置15内に形成されていてもよい。出力直流電圧は単に出力電圧とも呼ぶ。
 入出力変換部200は、変圧器2および出力電圧生成回路4を備え、スイッチング素子3によりスイッチングされた入力直流電圧Vinを出力直流電圧に変換する。
 制御回路140は、フィードバック制御回路8およびスイッチング制御回路9を備え、フィードバック信号に応じて、出力直流電圧が一定になるようにスイッチング素子3のスイッチング動作を制御する。
 信号制御部160は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、制御回路140に入力されるフィードバック信号を予め定められた値を上回らない又は下回らない信号値に制御する。ここで、信号値は、フィードバック信号が電圧信号である場合は電圧値をいい、フィードバック信号が電流信号である場合は電流値をいう。フィードバック信号は、半導体装置15のコントロール端子(同図のCONTROL端子)に入力され、その電圧をコントロール端子電圧VCと呼び、特に、フィードバック信号の元の電圧とは異なる値に保持された電圧をVC(保持電圧)と呼ぶ。
 以上の構成によれば、入力電圧判定回路10によって、入力直流電圧Vinの電圧値が第1閾値以下であるか否か、つまり、瞬断が発生しているか否かが判定される。瞬断が発生していると判定される期間(入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間)制御回路140に入力されるフィードバック信号は前記予め定められた値を上回らない又は下回らない信号値に制御される。ここで、前記予め定められた値は、スイッチング素子3に過電流が流れることを防止するための電圧値と実質的に等しい電圧値であることが望ましい。
 また、フィードバック信号は、出力電圧検出部5の構成に依存して、出力直流電圧に対して単調増加する電圧値を有する場合と、出力直流電圧に対して単調減少する電圧値を有する場合とがある。
 図8は、前者の場合の前記予め定められた値の説明図である。つまり、スイッチング素子3のドレイン電流ピーク値IDPとコントロール端子電圧VCとの関係および前記予め定められた値を示す説明図である。
 同図において、コントロール端子電圧VC(min)は、スイッチング素子3に流れるドレイン電流ピーク値IDPが最小となるときのコントロール端子電圧VCの電圧値である。VC(ILIMIT)は、ドレイン電流ピーク値IDPが過電流保護レベルILIMITになるときのコントロール端子電圧VCの電圧値、つまり、スイッチング素子3に過電流が流れることを防止するための電圧値である。VC(OFF)は、これ以上電圧が低くなると、制御回路140の動作が停止するコントロール端子電圧(スイッチング素子3の発振が停止するコントロール端子電圧)である。同図では、VC(min)、VC(ILIMIT)、VC(OFF)がそれぞれ6.2V、5.9V、5.1Vである例を示している。
 FB制御エリア(I)では、コントロール端子電圧VCの変化に応じてドレイン電流ピーク値IDPが変化する。ILIMIT固定エリア(II)では、コントロール端子電圧VCが変化してもスイッチング素子3に流れるドレイン電流ピーク値IDPは過電流保護レベル(ILIMIT)で固定される。
 前記予め定められた値は、例えば、同図の(C)であり、スイッチング素子3に過電流が流れることを防止するための電圧値と実質的に等しい電圧値である。ここでいう実質的に等しい電圧値は、プラスマイナス20%の範囲内が望ましく、さらには、プラスマイナス10%がもっと望ましい。
 前者の場合、つまり出力直流電圧に対して単調増加する電圧値を有する場合、信号制御部160は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、フィードバック信号を前記予め定められた値を下回らない信号値(つまり、図8の(C)を下回らない値)に制御する。
 好ましくは、信号制御部160は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、フィードバック信号を、前記予め定められた値を下回らない値、かつ、前記予め定められた値より高い上限値未満の値(図8の(C)と(B)の範囲内)に制御することが望ましい。この上限値は、スイッチング動作の停止電圧値(VC(min))であることが望ましい。
 また、信号制御部160は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、フィードバック信号を上記の予め定められた値としてもよい。
 一方、後者の場合つまり出力直流電圧に対して単調減少する電圧値を有する場合、信号制御部160は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、フィードバック信号を前記予め定められた値を上回らない値に制御する。このとき、信号制御部160は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、フィードバック信号を、前記予め定められた値を上回らない値、かつ、前記予め定められた値より低い下限値より高い値に制御することが望ましい。この下限値は、スイッチング動作の停止電圧値であることがのぞましい。なお、信号制御部160は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、フィードバック信号を前記予め定められた値としてもよい。
 以上の構成によれば、瞬断から復帰するときの出力電圧のオーバーシュートを低減することができる。その結果、負荷装置の回路にかかるストレスであって、負荷装置の回路の寿命劣化や誤動作させる可能性があるストレスを低減することができる。
 図1Bは、実施の形態1のスイッチング電源装置における信号制御部160の構成例とその周辺の回路とを示すブロック図である。
 信号制御部160は、電圧源(補助電源ともいう)12と、補助電源12とフィードバック信号ラインにパスを形成するスイッチ13と、入力電圧判定回路10からの信号を受けたときにスイッチ13を制御するスイッチ制御回路14とを有している。
 スイッチ制御回路14は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、スイッチ13のオンおよびオフを制御することによって、フィードバック信号が前記予め定められた値を上回らない値または下回らない値にする。
 図1A、図1Bの実施の形態1のスイッチング電源装置において、瞬断時の動作について説明する。
 瞬断が発生した場合、入力直流電圧Vinが低下すると、入力電圧判定回路10において、入力電圧が設定された第1閾値より低くなったときに、信号制御部160に信号を出力する。
 信号制御部160において、入力電圧判定回路10からの出力信号をスイッチ制御回路14が受け取ると、補助電源12とフィードバック信号ラインにパスを形成するスイッチ13をオンして、出力電圧検出部5からフィードバック制御回路8に入力されるフィードバック信号を、設定された電圧(上記の信号値)に保持するように制御する。フィードバック信号が設定された電圧になると、出力電圧検出部5によって制御されなくなり、出力電圧Voに対して変化しなくなる。このとき、フィードバック制御回路8から出力される誤差電圧信号も、所定の電圧で保持される。
 瞬断から復帰し、入力直流電圧Vinが所定の電圧まで上昇すると、入力電圧判定回路10からの出力信号を停止する。
 これにより、補助電源12とフィードバック信号ラインにパスを形成するスイッチ13はオフするので、再びフィードバック信号は出力電圧検出部5によって出力電圧Voに応じて制御されようになり、フィードバック制御回路8から出力される誤差電圧信号もフィードバック信号に応じて変化する。
 このように、入力直流電圧Vinが低下している間、前記予め定められた値を上回らない又は下回らない信号値にフィードバック信号を予め設定された電圧に保持するように信号制御部160が制御することで、瞬断復帰時には出力電圧Voに対するフィードバック信号の応答性の遅れに対して、瞬時に半導体装置15のスイッチング制御回路9は、スイッチング素子3を制御できるようになるので、出力電圧Voのオーバーシュートを防ぐことができる。
 なお、フィードバック信号が信号制御部160によって保持される電圧は出力電圧の立ち上がり遅れが発生しない程度の電圧が望ましい。
 なお、上述の実施の形態1のスイッチング電源装置では、フィードバック信号は出力電圧が低下する際には低下することを特徴としたが、出力電圧Voが低下する際にフィードバック信号が上昇するような構成にした場合でも、出力電圧Voのオーバーシュートに対して同様の効果がある。
 (実施の形態2)
 本発明の実施の形態2のスイッチング電源装置を、図面に基づいて説明する。
 図2は、実施の形態2に係るスイッチング電源装置の概略的な構成例を示すブロック図である。同図は、図1A、図1Bと比べて信号制御部160の代わりに信号制御部161を備える点、信号制御部161が起動回路7を有している点が主に異なっている。同じ構成要素には同じ符号を付しているので説明を省略し、以下異なる点を中心に説明する。
 起動回路7は、スイッチング電源装置の起動時に起動電圧を生成する回路であり、半導体装置151の電源端子VDDの電圧が、スイッチング素子3が発振を開始する起動電圧に達するまで、電源端子VDDに接続されたコンデンサ6aを充電する。同図では、起動回路7は、入力直流電圧Vinから起動電圧を生成する例を示している。
 図3Aは本実施の形態2のスイッチング電源装置の一構成例を示す詳細な回路図である。また、図3Bは、図3A中の半導体装置151の詳細な構成例を示す回路図である。
 図3Aに示されるように、入出力変換部200は、変圧器2(1次巻線21a、補助巻線21b、2次巻線21c)と、ダイオード22と、出力コンデンサ23とから構成される。また、出力電圧検出部5は、抵抗24~26と、コンデンサ28、32及び49と、シャントレギュレータ29と、フォトカプラ27(フォトダイオード27a、フォトトランジスタ27b)と、ダイオード31とから構成される。
 また、図3Bに示されるように、半導体装置151は、制御回路140と、信号制御部161と、入力電圧判定回路10と、過電流保護基準電源43とを備える。ここで、制御回路140は、フィードバック制御回路8(誤差増幅器33、抵抗)と、発振器34と、素子電流検出用比較器36と、スイッチング制御回路40(RSフリップフロップ回路37、NAND回路38、ゲートドライバ39)と、素子電流検出回路35とから構成される。また、信号制御部161は、第1の基準電源44と、スイッチ制御回路14(VEAO用比較器41、AND回路42)と、起動回路7(起動制御回路7a、スイッチ7b)と、内部回路電流供給回路7cと、スイッチ13とから構成される。
 ここで説明するスイッチング電源装置においては、フォトカプラ27を用いた出力電圧検出回路の構成をとっている。これは、従来技術では、特にフォトカプラを使った構成において、瞬断時の出力電圧Voのオーバーシュートが発生しやすいため、本実施形態では、あえてこのような構成をとったスイッチング電源装置で説明を行う。
 以下、前記のように構成されたスイッチング電源装置の動作について説明する。
 図3A、図3Bにおいて、まず、入力電源1から入力直流電圧Vinが入力され、変圧器2の1次巻線21aに印加される。このとき、入力直流電圧Vinは、信号制御部161に含まれる内部回路電流供給回路7cを介して電流供給され、半導体装置151のコントロール端子(CONTROL)に接続されたコンデンサ49が充電される。
 その後、半導体装置151のコントロール端子電圧VCが起動電圧に達すると、半導体装置151が動作を開始する。これにより、スイッチング素子3へのスイッチング動作の制御が開始されるとともに、起動制御回路7aがスイッチ7bを停止する。
 半導体装置151は、負荷30に対する出力電圧Voが所定の電圧で安定化するように、半導体装置151のコントロール端子電圧VCに基づいて、スイッチング素子3によるスイッチング動作する。すなわち、負荷30が必要とする出力電流Ioに応じて、スイッチング素子3に流れるドレイン電流ピーク値IDPを決めるコントロール端子電圧VC電圧が変化する。
 ここで、図3A、図3Bにおけるコントロール端子は、VDD端子の役割を持っており、半導体装置151の内部回路にバイアス電流を供給するものとする。
 図4Aは、コントロール端子電圧VCとスイッチング素子3に流れるドレイン電流ピーク値IDPの関係を示した図である。図4Aにおいて、領域(I)では、コントロール端子電圧VCの変化に応じてドレイン電流ピーク値IDPが変化する。例えば、負荷30が軽くなるときには、出力電圧Voが上昇して、フォトトランジスタ27bに流れる電流が上昇すると、コントロール端子電圧VCも上昇するので、半導体装置151は、図4Aのようにスイッチング素子3に流れるドレイン電流ピーク値IDPを下げるように制御し、負荷30へ供給するエネルギーが低減する。負荷30が重くなるときは、逆に、出力電圧Voが低下して、フォトトランジスタ27bに流れる電流が減少すると、コントロール端子電圧VCも減少するので、ドレイン電流ピーク値IDPを上昇するように制御する。このような帰還がなされることで、出力電流Ioに応じた、スイッチング素子3に流れるドレイン電流ピーク値IDPが制御される。
 図4Aの領域(II)では、コントロール端子電圧VCが変化してもスイッチング素子3に流れるドレイン電流ピーク値IDPは過電流保護レベル(ILIMIT)で固定されている。過電流保護レベルは、スイッチング素子3に流れる電流が、流れすぎてスイッチング素子3の劣化や破壊を起こさないようにするために、スイッチング素子3に流れるドレイン電流ピーク値IDPの上限値として設定されている。負荷30が重負荷になり、出力電圧Voが低下して下がるときに、スイッチング素子3に流れるドレイン電流ピーク値IDPが過電流保護レベルまでコントロール端子電圧VCが低下したとしても、コントロール端子電圧VCが領域(II)にある間はスイッチング素子3のドレイン電流ピーク値IDPは過電流保護レベル(ILIMIT)で保持される。
 図4B上段は、負荷が変動したときのコントロール端子電圧VCの変化を、図4B下段は、負荷が変動したときのドレイン電流IDの変化を示す図である。図4Aにおいて、スイッチング素子3に流れるドレイン電流ピーク値IDPが最小となるときの半導体装置151のコントロール端子電圧VC(min)、ドレイン電流ピーク値IDPが過電流保護レベルILIMITになるときのコントロール電圧VCをVC(ILIMIT)と定義する。
 次に、スイッチング電源装置において、従来技術において、瞬断が発生するときの動作を図7Aのタイミングチャートを用いて、より詳しく説明する。
 図7Aのはじめの状態では、入力直流電圧Vinがあらかじめ印加されており、スイッチング素子3のスイッチング動作により、負荷30が必要としているエネルギーが負荷に供給され、出力電圧Voは所定の値で安定化しているとする。
 図7Aにおいて、t1~t4の順で、スイッチング電源装置の動作を説明する。ここでは、非連続モード時の動作で説明する。
 t1:瞬断が発生して、入力直流電圧Vinが低下しはじめる。
 スイッチング素子3のドレイン電流IDは、入力直流電圧Vinと変圧器2のインダクタンスLと、スイッチング素子3がオンしている時間Tonを使って、下記の通り表わせる。
 ID=Vin/L*Ton・・・(1)
 また、スイッチング素子3の発振周波数fosc、電源効率η、トランスのインダクタンスLを使って、スイッチング素子3のスイッチング動作によって負荷30へ供給される出力電力Poは次の通りである。
 Po=(L*ID^2*η*fosc)/2・・・(2)
 例えば、一定周波数でスイッチング動作を繰り返すPWM(pulse-Width-Modulation)制御の電源においては、スイッチング素子3に流れるドレイン電流IDを変化させることで、出力電力Poを制御する。
 次に、入力電圧が低下したときに供給される出力電力Poについて考える。
 今、入力直流電圧Vinが低下したときにも、ドレイン電流ピーク値IDPは変化せず、負荷30へ供給される出力電力は一定になるように制御される。
 このとき、ドレイン電流ピーク値IDPは変化しないが、式(1)より、入力直流電圧Vinが低下するときには、スイッチング素子3のオン時間が比例して、長くなっていく。
 今、入力直流電圧Vinが低下したときにも、負荷30へ供給される出力電力は一定であり、式(2)より、ドレイン電流ピーク値IDPは変化しない。すると、式(2)において、ドレイン電流ピーク値IDPは一定なので、入力直流電圧Vinの低下にともない、スイッチング素子3のオン時間Tonは長くなっていく(図7Bの(a))。
 t2:スイッチング素子3のオンデューティーDonは、オン時間Tonと発振周波数foscの積で表わすことができるので(Don=Ton×fosc)、入力電圧が低下することでオン時間が長くなると、オンデューティーDonも大きくなる。
 そして、オンデューティーDonは、半導体装置151の内部で設定されている、最大デューティーサイクルMAXDCまで大きくなる。なお、最大オンデューティーサイクルMAXDCを有する信号をMAXDC信号と呼ぶ。
 最大オンデューティーサイクルMAXDCは、一般的に一定周波数のスイッチング動作を繰り返すPWM制御において、スイッチング素子3のオン時間が長くなりすぎることによって、負荷30に過剰な電力供給がされたり、スイッチング素子3やその周辺部品での発熱や破壊が起こらないように、オン時間を制限するために設けられている。
 最大オンデューティーサイクルMAXDCは、最大オン時間TonmaxとPWM制御の発振周波数fosc、および周期Tには下記の関係がある。
 MAXDC=Tonmax/T=Tonmax*fosc  (3)
 すなわち、最大オンデューティーサイクルMAXDCが設定されることで、同時に最大となるときのオン時間Tonmaxが決まる。
 これにより、入力直流電圧Vinが低下しても、オン時間Tonはこれ以上長くならないので、スイッチング素子3に流れる電流波形の傾きが小さくなり、式(1)より、ドレイン電流ピーク値IDPは低下する。(図7B(b))
 ドレインIDが低下すると、式(2)にもとづき、出力電力Poが減り、出力電圧Voが低下しはじめる。出力電圧Voが低下すると、フォトカプラ27のフォトトランジスタ27bに流れる電流が流れなくなり、コントロール端子への電流供給がなくなるので、コントロール端子電圧Vcも低下していく。
 t3:入力直流電圧Vinの低下が止まり、再び上昇を開始する。
 入力直流電圧Vinが上昇しても、図7Aの第1の閾値以上になるまで、コントロール端子電圧Vcに応じたPWM制御は行われず、オンデューティーは、最大オンデューティーサイクルMAXDCで発振しつづける。
 図7Aにおいて、t2~t4の期間、ドレイン電流IDは、スイッチング素子3のオンデューティーがMAXDCで制限されており、コントロール端子電圧VCによって制御されない。すなわち、図41におけるドレイン電流IDは、通常動作時には、VCCに応じて、点線のように変化するが、入力電圧が低下し、t2~t4の期間は、オンデューティーはMAXDCでの発振になっている。
 t4:入力電圧が上昇し、前述した式(B)を満たす入力電圧以上になると、制御回路140は、PWM制御を再び開始する。
     MAXDC>VOR/(Vin+VOR)・・・(B)
 t4になると、制御回路140はPWM制御を開始するが、コントロール端子電圧VCはVC(LIMIT)よりも低いので、ドレイン電流IDは過電流保護レベル(ILIMIT)に固定された状態で、スイッチング素子3は発振する。(図7B(c))
 その後、入力直流電圧Vinは初期状態にまで戻っても、出力電圧Voは所定の出力電圧Voに達するまで、フォトカプラ27のフォトトランジスタ27bに電流が流れないので、すぐにコントロール端子電圧VCは上昇しない。
 このため、スイッチング素子3は、過電流保護レベル(ILIMIT)に固定された状態で、スイッチング素子3は発振し、負荷30に電力が供給され、出力電圧Voは所定の電圧に達する。
 出力電圧Voが所定の電圧付近に達すると、フォトカプラ27のフォトトランジスタ27bに電流が流れ出すので、コントロール端子電圧も上昇しはじめるが、コントロール端子電圧VCがVC(ILIMIT)に達するまでは(図7Aの破線)、過電流保護レベル(ILIMIT)に固定された状態で、スイッチング素子3は発振を続ける。その結果、負荷30には過剰な出力電力Poが供給されてしまうので、出力電圧Voのオーバーシュートが発生する。
 コントロール端子電圧VCがVC(ILIMIT)以上になり、図4Aにおける、領域(I)になると、コントロール端子電圧VCの変化に応じてドレイン電流ピーク値IDPが変化しはじめ、瞬断が発生する前のドレイン電流ピーク値IDPに戻る(図7B(d))。
 通常、半導体装置151のコントロール端子には、大きな容量のコンデンサ49が接続されている。これは、コントロール端子電圧VCが低下する時間を遅くすることで、起動不良を起こさないようにするためである。
 図3Aのように出力電圧検出部5にフォトカプラ27が使用されているとき、補助巻線電圧VCCが立ち上がっても、出力電圧Voが所定の電圧付近に達するまでは、フォトダイオード27aに電流が流れずに、コントロール端子電圧Vcが上昇するのに遅延時間が発生する。
 また、出力電圧Voが立ち上がり、フォトダイオード27aに電流が流れ、フォトトランジスタ27bに電流が流れはじめても、半導体装置151のコントロール端子には大きな容量のコンデンサ49が接続されているため、コントロール端子電圧VCはすぐに持ち上がらない。スイッチング電源装置の半導体装置151内部において、誤差増幅器33ではコントロール端子電圧VCを検出するため、出力電圧Voに対して、コントロール端子電圧VCに遅延時間が発生する。
 これらのことが原因となり、出力電圧Voのオーバーシュートが発生する。
 上記では、非連続モードの例を用いて説明したが、連続モードの場合も、入力電圧が低下するときには、同様に、オンデューティーがMAXDCまで変化し、出力電圧の低下が発生するので、連続モードのときも非連続モードと同様に、出力電圧のオーバーシュートが発生する。
 連続モードとは、スイッチング電源において、スイッチング素子3がオン・オフ動作しているときに、トランスに常にスイッチング電流が流れているモードのことをいい、このときのスイッチング素子3のオンデューティーDonは、Don=VOR/(Vin+VOR)となる。
 非連続モードは、スイッチング電源において、スイッチング素子3がオン・オフ動作しているときに、トランスにスイッチング電流が流れない期間が存在するモードのことをいい、このとき、スイッチング素子3のオンデューティーDonは、負荷によって変化する。
 これに対して、本実施の形態におけるスイッチング電源装置では、信号制御部161が、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間(図7Aの最大オンデューティーサイクルMAXDCになる期間)、フィードバック信号を前記予め定められた値を下回らない値に制御することにより、上記述べた遅延時間を短縮するので、オーバーシュートの発生を低減することができる。
 図3A、図3Bの各部の構成は以下の通りである。
 この半導体装置151は、スイッチング素子3の高電圧端子(DRAIN端子)とGND端子(SOURCE端子)および制御信号を入力するためのコントロール端子(CONTROL端子)の3端子で構成されている。
 誤差増幅器33は、入力されるコントロール端子電圧VCと基準電圧とを比較して得られる誤差電圧信号VEAOを、素子電流検出用比較器36のマイナス入力に与えられる。もう一方の素子電流検出用比較器36のマイナス入力には、過電流保護基準電源43の電圧VLIMITが与えられている。
 素子電流検出用比較器36のプラス入力には、スイッチング素子3のドレインに接続された素子電流検出回路35から出力される検出電圧VCLが与えられている。素子電流検出回路35は、スイッチング素子3に流れる電流を検出し、検出した電流を電圧信号に変換して、検出電圧VCLとして出力する。
 素子電流検出用比較器36は、素子電流検出信号VCLが過電流保護基準電源43の電圧VLIMITと誤差電圧信号VEAOの電圧のうちの低い方の電圧に達すると、出力信号をRSフリップフロップ回路37のリセット端子へ出力する。
 スイッチング制御回路40は、セット端子Sに発振器34からのクロック信号CLKを受け、リセット端子Rに素子電流検出用比較器36からの出力信号を受けるRSフリップフロップ回路37と、第1の入力端子に起動制御回路7aからの出力信号を受け、第2の入力端子に発振器34からの出力信号(最大オンデューティサイクルMAXDC)を受け、第3の入力端子にRSフリップフロップ回路26の出力端子Qからの出力信号を受けるNAND回路38と、NAND回路38の出力信号を受け、受けた出力信号を反転増幅した制御信号をスイッチング素子3のゲートに出力するゲートドライバ39とから構成されている。このスイッチング制御回路40は、NAND回路38を備えることにより、起動制御回路7aからスイッチング電源装置の起動を示すH信号が入力され、かつ、発振器34から最大オンデューティサイクルMAXDCを示すH信号が入力され、かつ、RSフリップフロップ回路37の出力端子QからH信号が入力されているときにだけスイッチング素子3をオンにし、それ以外のときにはスイッチング素子3をオフにする。
 誤差増幅器33から出力される誤差電圧信号VEAOは、過電流保護基準電源43の電圧VLIMITによって、その誤差電圧信号VEAOがこの過電流保護基準電源43の電圧VLIMIT以上になっても、素子電流検出用比較器36では、このVLIMITによって、スイッチング素子3に過電流が流れることが防止される。
 信号制御部161の補助電源12には、内部回路電流供給回路7cを通じて、スイッチング素子3のドレイン端子の電位が利用される。信号制御部161のスイッチ13は、補助電源12として利用されるスイッチング素子3のドレイン端子に接続される内部回路電流供給回路7cとコントロール端子の間に配置され、スイッチ制御回路14によって制御される。
 内部回路電流供給回路7cは、内部回路に電流を供給できるよう、ドレイン端子に印加される高電圧を低電圧に変換する役割を果たす。
 スイッチ制御回路14は、VEAO用比較器41とAND回路42で構成されている。VEAO用比較器41の入力のプラス側には、誤差増幅器33から出力された信号が入力され、マイナス側には、第1の基準電源44の電圧VR1が与えられている。これにより、スイッチ制御回路14は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、制御回路140に入力されるフィードバック信号を予め定められた値を上回らない又は下回らない信号値に制御する。すなわち、ドレイン電流ピーク値IDPがILIMITを超えないようにコントロール端子電圧VCの電圧をVC(ILIMIT)を下らないように維持する機能も有する。
 AND回路42には、VEAO用比較器41の出力信号と入力電圧判定回路10から出力された信号が入力される。AND回路42の出力信号が、スイッチ制御回路14の出力信号として、信号制御部161のスイッチ13のオンオフを制御する。
 入力電圧判定回路10は、スイッチング素子3のゲート信号と発振器34から出力されるMAXDC信号を入力信号とし、それらの信号から入力電源1の入力直流電圧Vinが低下し、予め設定された電圧まで低下したことを検出した際にはHの信号を、スイッチ制御回路14のAND回路42の入力端子に出力する。
 図5Aは、実施の形態2の半導体装置における入力電圧判定回路10の一構成例を示す回路図である。
 スイッチング素子3のゲート信号は、遅れ時間発生回路67に入力される。AND回路68bの入力には、発振器34からのMAXDC信号をインバータ68aにより反転させた信号、と、スイッチング素子3のゲート信号が遅れ時間発生回路67により遅れて出力された信号が入力される。
 図5Bは、図5Aにおける信号を波形で表したタイムチャートである。A信号は、MAXDC信号をインバータにより反転させた信号であり、B信号はスイッチング素子3のゲート信号が遅れ時間発生回路67により遅れて出力された信号である。C信号はAND回路68bの出力信号である。
 入力電圧が低下し、スイッチング素子3のオンデューティーが最大オンデューティーサイクルMAXDCに達すると、図5Bのように、AND回路からの出力信号CからHが出力される。
 AND回路68bから出力された信号は、RSフリップフロップ回路66のセット信号として入力される。これにより、スイッチング素子3のゲート信号のオンデューティーが最大オンデューティーサイクルMAXDCであるときには、AND回路68bの出力からはこの遅れ時間をパルスとした出力信号がRSフリップフロップ回路66のセット信号に入力される。
 RSフリップフロップ回路66のリセット信号には、ここでは図示しないが、スイッチング素子3のゲート信号のオンデューティーが最大オンデューティーサイクルMAXDCではないときに、発振器34の周期に合わせて、Hのパルス信号が出力される。
 このような構成にすることで、スイッチング素子3のゲート信号のオンデューティーが最大オンデューティーサイクルMAXDCであるときには、RSフリップフロップ回路66のQ信号にはHの信号が出力され、そのオンデューティーが最大オンデューティーサイクルMAXDCでないときには、Q信号にはLの信号が出力される。
 図6は、実施の形態2の半導体装置における入力電圧判定回路10の別の一構成例を示す回路図である。図5Aの入力電圧判定回路10との違いは、発振器34のMAXDC信号の代わりにオン時間生成回路69によって生成されるオン時間Ton1の正パルス幅を有するTon1信号が使われている。
 図5Aのときの入力電圧判定回路10と同じ考え方で、スイッチング素子3のゲート信号のオン時間がオン時間生成回路69により生成されたオン時間Ton1になると、RSフリップフロップ回路66のQ信号にはHの信号が出力される。このように、オン時間生成回路のオン時間Ton1を設定することで、オン時間によって、入力電源1の入力直流電圧Vinを検出する閾値を設定することが可能である。
 なお、スイッチング素子3のゲート信号は最大オンデューティーサイクルMAXDCであるときのオン時間以上に長くはならないので、オン時間生成回路69によって生成されるオン時間Ton1は最大オンデューティーサイクルMAXDCであるときのオン時間以下に設定する必要がある。
 また、オン時間生成回路69をオンデューティー生成回路に置き換えることで、MAXDCではない閾値で、入力直流電圧Vinの閾値を設定することが可能である。
 このように、入力直流電圧が第1閾値以下になったことを、オンデューティーもしくはオン時間が広くなることを利用することで、入力電圧測定用の検出端子や部品を追加しなくてもよい。
 次に、本実施の形態2の半導体装置151を備えたスイッチング電源装置における瞬断時の動作について、図7Aのタイミングチャートを基により詳細に説明する。
 ここでは、入力電源1の入力直流電圧Vinが印加され、半導体装置151の起動回路7により、図3Bにおいて、半導体装置151のコントロール端子に接続されたコンデンサ49は充電され、コントロール端子電圧VCは起動電圧にまで達し、スイッチング素子3が発振を開始している状態とする。
 t1:瞬断が発生して、入力電源1の入力直流電圧Vinが低下しはじめる。入力直流電圧Vinが低下したときも、負荷30へ供給される同じ出力電力になるように制御されるので、スイッチング素子3のドレイン電流IDは変化せずに、式(1)より、入力直流電圧Vinの低下に伴い、スイッチング素子3のオンデューティーは大きくなる。
 t2:スイッチング素子3のオンデューティーが大きくなり、最大オンデューティーサイクルMAXDCに達すると、それ以上大きくならないように制限されるので、スイッチング素子3に流れる電流波形の傾き(=Vin/L)が小さくなり、スイッチング素子3のドレイン電流IDは低下していく(図7B(b)参照)。
 ドレイン電流ピーク値IDPが低下すると、負荷30に供給される出力電力Poが減るので、出力電圧Voが低下しはじめる。出力電圧Voが低下すると、フォトカプラ27のフォトトランジスタ27bに流れる電流が流れなくなり、半導体装置151のコントロール端子に電流供給がなくなるので、コントロール端子電圧VCは、半導体装置151で消費される電力により低下していく。
 t3:入力直流電圧Vinは低下が止まり、上昇しはじめる。入力直流電圧Vinが上昇することで、スイッチング素子3の電流波形の傾き(=Vin/L)は大きくなるが、スイッチング素子のオンデューティーは、最大オンデューティーサイクルMAXDCで制限されたまま発振しつづける。
 t2~t4において、実施の形態2においては、入力電圧判定回路10ではスイッチング素子3のオンデューティーは最大オンデューティーサイクルMAXDCになっているので、Hの信号をAND回路42に入力する。
 図3Bにおいて、スイッチ制御回路14のVEAO用比較器41では、コントロール端子電圧VCが低下して、誤差増幅器33によりコントロール端子電圧VCから変換された誤差電圧信号VEAOが第1の基準電源44の電圧VR1に達すると、VEAO用比較器41はHの出力信号をAND回路42に入力する。
 AND回路42の二つの入力端子にH信号が入力されることで、AND回路42からHの出力信号が出力され、信号制御部161のスイッチ13はオンする。すなわち、スイッチ制御回路14は、スイッチ13をオンし、スイッチング素子3のドレイン端子から、内部回路電流供給回路7cを経由して、コントロール端子に充電電流を流すパスを形成する。
 これにより、コントロール端子電圧VCは上昇するが、誤差増幅器33の働きにより、誤差電圧信号VEAOを下げるので、VEAO用比較器41の出力信号はLに反転する。このため、AND回路42からLの信号が出力され、再びスイッチ13はオフするので、スイッチング素子3のドレイン端子からコントロール端子に流れる充電電流はカットされ、コントロール端子電圧VCは再び低下し始める。しかし、再び、誤差電圧信号VEAOが第1の基準電源44の電圧VR1に達すると、信号制御部161のスイッチ13はオンし、コントロール端子に充電電流を流すパスが形成され、コントロール端子電圧VCは上昇する。
 このような動作を繰り返しながら、入力電圧判定回路10がH信号を出力している間は、前記フィードバック信号を予め定められた値を上回らない又は下回らない値に制御する(コントロール端子電圧VCをVC(保持電圧)で保持する。図7AのVC波形を参照)。
 t4:さらに、入力直流電圧Vinが上昇することで、スイッチング素子3のオンデューティーは最大オンデューティーサイクルMAXDC以下になり、制御回路140はPWM制御を行うようになる。スイッチング素子3のオンデューティーが最大オンデューティーサイクルMAXDCでなくなることで、入力電圧判定回路10はLの信号を出力する。これにより、AND回路42にはLが入力されるので、AND回路42からLが出力され、スイッチ13はオフされる。
 信号制御部161の働きにより、コントロール端子電圧VCは、VC(LIMIT)よりも低いが、破線で示した従来のコントロール端子電圧VCよりも高い電圧になっている。
 図7Aで、t4の後、入力直流電圧Vinは所定の電圧まで戻っても、出力電圧Voは所定の出力電圧まで達しておらず、フォトカプラ27のフォトトランジスタ27bに電流が流れず、すぐにコントロール端子電圧VCは上昇しない。しかし、スイッチング素子3はドレイン電流ピーク値IDPが過電流保護レベル(ILIMIT)で発振するので、すぐに出力電圧Voは所定の電圧に達する。出力電圧Voが所定の電圧に達すると、フォトダイオード27aに電流が流れることで、フォトトランジスタ27bに電流が流れ出すので、コントロール端子電圧VCも上昇しはじめる。
 このとき、コントロール端子電圧VCは、従来のスイッチング電源装置のコントロール端子電圧VCより高い電圧になっているので、スイッチング素子3は過電流保護レベル(ILIMIT)に固定された状態で発振する時間が短くなる。
 その結果、負荷30に供給される出力電力Poが従来よりも小さく抑えることができるので、出力電圧Voのオーバーシュートが抑制することができる。
 なお、従来の回路のようにフォトカプラを使用していないときも、コントロール端子に容量などの遅延を発生させる要素がある場合、出力電圧のオーバーシュートは起こりえるので、この実施の形態にすることで、課題を解決できる。
 (実施の形態2の変形例1)
 実施の形態2の変形例1に係るスイッチング電源装置は、ほぼ実施の形態2のスイッチング電源装置と同じであるが、実施の形態1と比較して、VC(保持電圧)をVLIMIT近傍より高い電圧とした点が異なる。図9は、VEAO用比較器41の第1の基準電圧VRをVLIMITより高く設定した場合、すなわち、VC(保持電圧)つまり前記予め定められた値をVC(ILIMIT)より高い電圧に設定したときのタイミングチャートを示している。
 図9に示すとおり、t2でオンデューティーが最大オンデューティーサイクルMAXDCになると、次のように動作する。
 オンデューティーが最大オンデューティーサイクルMAXDCなので、AND回路42の片側にはHが入力されているが、例えば、オンデューティーが最大オンデューティーサイクルMAXDCになったときに、誤差電圧信号VEAOがVRよりも低いときには、VEAO用比較器41からH信号が出力され、AND回路42のもう一方にもHの信号が入力され、その結果、AND回路42の出力からHの信号により、スイッチ13をオンし、コントロール端子電圧VCが上昇する。
 この信号制御部161の働きによりコントロール端子電圧VCが上昇すると、スイッチング素子3のドレイン電流IDは下がるように制御される。ここで、ドレイン電流ピーク値IDPが下がることで、スイッチング素子3のオンデューティーは最大オンデューティーサイクルMAXDCではなくなり、再びPWM制御が行われる。しかし、入力直流電圧Vinが低下していくので、スイッチング素子3の電流波形の傾き(=Vin/L)は小さくなり、再びオンデューティーは最大オンデューティーサイクルMAXDCになる。このような動作を繰り返した結果、図9のVCの波形のように、設定されたVC(保持電圧)まで上昇していく。
 t4で、入力直流電圧Vinが上昇して、スイッチング素子3のオンデューティーが最大オンデューティーサイクルMAXDCで制御されなくなり、スイッチング素子3はPWM制御が可能となる。このとき、出力電圧Voは低下しているので、フォトカプラ27のフォトトランジスタ27bの電流供給が行われず、半導体装置151で消費される電力によりコントロール端子電圧VCは低下していく。コントロール端子電圧VCが高いことで、スイッチング素子3のドレイン電流ピーク値IDPは低くなっているので、負荷30に供給される出力電力Poも小さい。
 その後、出力電圧Voが上昇し、所定の電圧まで立ち上がると、フォトカプラ27のフォトトランジスタ27bの電流供給が行われるようになりコントロール端子電圧VCは上昇していき、通常動作時のコントロール端子電圧VCに復帰する。
 このように、VC(保持電圧)をVC(ILIMIT)よりも高く設定することで、瞬断から復帰するとき、スイッチング素子3のドレイン電流が低い状態で発振をスタートするので、過電流保護レベル(ILIMIT)に固定された状態で発振する時間が短くなる、もしくは、なくなる。その結果、瞬断からの復帰時、出力電圧Voの立ち上がりにわずかに遅れが発生するが、負荷30に供給される出力電力Poは従来よりも小さく抑えることができ、出力電圧Voのオーバーシュートを抑制することができる。
 なお、VC(保持電圧)がスイッチング素子3のドレイン電流が最小であるコントロール端子電圧VCで設定される場合(図4AのVC(min)にあたる場合)でも、出力電圧Voの立ち上がり遅れ時間は数msec程度であり、出力電圧Voの立ち上がり遅れの問題にならないレベルである。よって、VC(保持電圧)がコントロール端子電圧VCの通常動作範囲内に設定されているときには、出力電圧Voの立ち上がり遅れ時間は問題とならない。
 (実施の形態2の変形例2)
 実施の形態2の変形例2に係るスイッチング電源装置は、ほぼ実施の形態2のスイッチング電源装置と同じであるが、実施の形態2と比較して、VEAO用比較器41のマイナス入力に第1の基準電源44の電圧VR1に代わり過電流保護基準電源43の電圧VLIMITが入力されている点が異なる。
 図10は本実施の形態2の変形例2のスイッチング電源装置の一構成例を示す回路図である。
 図10における実施の形態2の変形例2のスイッチング電源装置と、実施の形態2のスイッチング電源装置との違いは、信号制御部161の代わりに信号制御部162を備える点と、スイッチ制御回路14におけるVEAO用比較器41のマイナス入力になっている点とであり、これは、実施の形態2の変形例2では素子電流検出用比較器36の過電流保護基準電源43の電圧VLIMITと共通になっている。入力電圧判定回路10からのHの信号が出力され、誤差電圧信号VEAOがVLIMITより低くなって、VEAO用比較器41よりHの信号が出力されることで、AND回路42からH信号が出力される。このとき、スイッチ13はオンする。このため、信号制御部162により誤差電圧信号VEAOをVLIMITで保持するような制御がかかる。
 次に、実施の形態2の変形例2のタイミングチャートに基づいて、瞬断時の動作を説明する。図11では、VC(保持電圧)はVC(ILIMIT)と実質的に等しい値になっている。
 実施の形態2ではコントロール端子電圧VCは、入力電圧が低下し、オンデューティーが最大オンデューティーサイクルMAXDCになることで、予め定められたVC(保持電圧)で保持されていたのに対し、実施の形態2の変形例2ではVEAO用比較器41のマイナス入力が過電流保護基準電源43の電圧VLIMITになっていることで、コントロール端子電圧VCはVC(ILIMIT)で保持される。
 図11において、t4で入力直流電圧Vinが上昇し、スイッチング素子3のオンデューティーが最大オンデューティーサイクルMAXDCでなくなると、入力電圧判定回路10からの出力信号がLに切り替わる。
 その後、スイッチング素子3はドレイン電流ピーク値IDPがILIMITで発振を続け、負荷30に電力が供給されて、出力電圧Voが所定の出力電圧まで上昇する。
 このとき、フォトカプラ27のフォトトランジスタ27bから電流供給が行われるまで、半導体装置152で消費される電力によりコントロール端子電圧VCが低下する。出力電圧Voが所定の電圧まで立ち上がると、フォトカプラ27のフォトトランジスタ27bから電流供給が行われるようになり、コントロール端子電圧VCが上昇しはじめる。
 ここで、VC(ILIMIT)から出力電圧Voが立ち上がるまでの間、コントロール端子電圧VCは低下するが、出力電圧Voが立ち上がった後は、コントロール端子電圧VCは直ちにVC(ILIMIT)まで上昇し、PWM制御に移行できる。
 これにより、瞬断復帰時に、出力電圧Voの立ち上がり遅れがなく、負荷30に過剰な出力電力Poが供給されなくなり、出力電圧Voのオーバーシュートを防ぐことができる。
 (実施の形態3)
 実施の形態3に係るスイッチング電源装置は、実施の形態2に係るスイッチング電源装置とほぼ同じであるが、実施の形態2に係るスイッチング電源装置と比較して、負荷の大きさに応じてVC(保持電圧)のレベルを変更する点が異なる。
 具体的には、フィードバック信号は前記出力直流電圧に対して単調増加する電圧値を有するものとし、信号制御部は、出力直流電圧の電圧値が第2閾値未満の場合、前記信号値を第1レベルとし、出力直流電圧の電圧値が前記第2閾値以上の場合、前記信号値を前記第1レベルより高い第2レベルとする)。
 より具体的には、第2閾値および第1レベルはそれぞれ、スイッチング素子3に過電流が流れることを防止するための電圧値と実質的に等しい電圧値である。
 図12は、実施の形態3に係るスイッチング電源装置の概略構成を示すブロック図である。同図は、図1A、図1Bと比べて、ほぼ同じ構成であるが、半導体装置15の代わりに半導体装置153を備える点と、信号制御部160の代わりに信号制御部163を備える点とが異なる。半導体装置153内の信号制御部163が、出力直流電圧の電圧値が第2閾値未満の場合、前記信号値を第1レベルとし、出力直流電圧の電圧値が前記第2閾値以上の場合、前記信号値を前記第1レベルより高い第2レベルとする点が異なっている。
 図13は、実施の形態3に係るスイッチング電源装置の半導体装置の一構成例を示す回路図である。同図は、図3Bと比べて、第1の基準電源44の代わりに電圧保持回路210を備える点が異なる。
 電圧保持回路210は、常に誤差電圧信号VEAOのレベルを監視しており、入力電圧判定回路10により瞬断が検出された時(入力直流電圧Vinが第1閾値をなったとき)に、当該検出時の直前の誤差電圧信号VEAOのレベルに応じた基準電位を生成する。言い換えると、最大オンデューティーサイクルMAXDCを検出した場合に、当該検出時の誤差電圧信号VEAOのレベルに応じた基準電位を生成する。これにより、例えば、最大オンデューティーサイクルMAXDCを検出したときのフィードバック信号のレベルを、上記の信号値とすることができる。
 図14Aは、フィードバック信号が出力直流電圧に対して単調増加する電圧値を有する場合の、最大オンデューティーサイクルMAXDC検出時(つまり入力直流電圧Vinが第1閾値になったとき)のコントロール端子電圧VCと基準電圧との関係を示す図である。同図の縦軸は、VC維持レベルつまり前記信号値を示す。横軸は、最大オンデューティーサイクルMAXDC検出時(つまり入力直流電圧Vinが第1閾値になった時)のコントロール端子電圧VCの値を示す。
 Aの線およびBの線共に、信号制御部163は、出力直流電圧の電圧値が第2閾値未満の場合、前記信号値を第1レベルとし、出力直流電圧の電圧値が前記第2閾値以上の場合、前記信号値を前記第1レベルより高い第2レベルとすることを示す。
 Bの線では、最大オンデューティーサイクルMAXDCを検出したときのフィードバック信号のレベルを、前記信号値としている。ここで、第2閾値および第1レベルはそれぞれ、スイッチング素子3に過電流が流れることを防止するための電圧値と実質的に等しい電圧値としてもよい。
 図15は、図14Aにおける「負荷」の大きさと、「コントロール端子電圧VC」、「誤差電圧信号VEAO」および「基準電位VR」との関係をまとめた表である。この表では、入力直流電圧Vinが第1閾値になる直前の負荷が小さいとき(コントロール端子電圧VCは高くなり、誤差電圧信号VEAOは低くなっているとき)、VEAO用比較器41の基準電位VRは、低いレベルで維持されることを表している。また、入力直流電圧Vinが第1閾値になる直前の負荷が大きいとき(コントロール端子電圧VCは低くなり、誤差電圧信号VEAOは高くなっているとき)、VEAO用比較器41の基準電位VRは、高いレベルで維持される。
 このように、本実施形態におけるスイッチング電源装置は、入力直流電圧Vinが第1の閾値になったときの負荷の大きさに応じて、基準電位VRひいてはVC(保持電圧)のレベルを変更することができる。
 負荷が軽いときにオーバーシュートが起きやすいので、負荷状態に応じてオーバーシュートを抑えるように制御する必要がある。図14Aによれば、入力直流電圧Vinが第1の閾値になったときの負荷の大きさに応じて、VC(保持電圧)のレベルを最適化することができる。
 また、図14Bはフィードバック信号が出力直流電圧に対して単調減少する電圧値を有する場合の、最大オンデューティーサイクルMAXDC検出時のコントロール端子電圧VCと基準電圧との関係を示す図である。同図は、図14Aに対して、コントロール端子電圧VCの増加方向が逆である点が異なっている。
 (実施の形態4)
 実施の形態4に係るスイッチング電源装置は、実施の形態2に係るスイッチング電源装置とほぼ同じであるが、実施の形態2に係るスイッチング装置と比較して、スイッチング素子のスイッチング制御方法が異なる。具体的には、スイッチング素子の制御方法が、実施の形態2ではPWM制御であったが、本実施の形態4ではPFM制御である点が異なる。
 本発明の実施の形態4のスイッチング電源装置を、図面に基づいて説明する。
 図16は本実施の形態4のスイッチング電源装置の一構成例を示す回路図である。
 図3Bのスイッチング電源装置と比べて、半導体装置151の代わりに半導体装置154を備える点と、信号制御部161の代わりに信号制御部164を備える点とが異なり、その他は同様の構成である。なお、信号制御部164は信号制御部161と同じでよい。
 誤差増幅器33により、コントロール端子電圧VCと基準電圧とを比較して得られる誤差電圧信号VEAOは、発振周波数調整回路45に入力される。
 発振周波数調整回路45は、誤差増幅器33から出力される誤差電圧信号VEAOの電圧が、ここでは図示されない発振周波数調整回路45内部で設定された基準電圧を越えた差分に応じてクロック信号CLKの発振周波数を変化させる。
 素子電流検出回路35は、スイッチング素子3に流れる電流を検出して素子電流検出信号VCLを出力する。素子電流検出用比較器46は、電流保護基準電源の電圧VLIMITと素子電流検出信号VCLとを比較して、両者の信号が等しくなったときに、出力信号をRSフリップフロップ回路37のリセット端子へ出力する。
 図17は、コントロール端子電圧VCと発振周波数の関係を示した図である。図17において、fosc_maxはドレイン電流ピーク値IDPがILIMITになるときの発振周波数である。VC(fosc_max)は図4AのVC(ILIMIT)に、VC(fosc_min)は図4AのVC(min)に対応している。領域(III)では、コントロール端子電圧VCの変化に応じて発振周波数が変化する。例えば、負荷30が軽くなるときには、出力電圧Voが上昇して、フォトカプラ27のフォトトランジスタ27bに流れる電流が増えると、コントロール端子電圧VCが上昇するので、半導体装置154は、図17のように発振周波数を低下するように制御し、負荷30へ供給する電力を低減する。負荷30が重くなるときは、逆に、出力電圧Voが低下して、フォトトランジスタ27bに流れる電流が減少すると、コントロール端子電圧VCも減少するので、発振周波数を上昇させるように制御する。このような帰還がなされることで、スイッチング素子3の発振周波数が制御されて、これにより、負荷30が重くなっても出力電圧Voを一定値に安定化できる。
 図17の領域(IV)では、コントロール端子電圧VCが変化しても、発振周波数が最大周波数fosc_maxで固定されている。
 図18は負荷30が変化したときの、コントロール端子電圧VCとスイッチング素子3の発振周波数の波形の様子を示している。図18からわかるように、コントロール端子電圧VCが低下することで発振周波数を増加させ、重負荷時にコントロール端子電圧VCがVC(fosc_max)以下では最大発振周波数になる。コントロール端子電圧VCが上昇してVC(fosc_max)を越えると、発振周波数は最大発振周波数fosc_maxから低下していく。このとき、スイッチング素子3のドレイン電流IDは、素子電流検出用比較器46の過電流保護基準電源43の電圧VLIMITによって決まり、コントロール端子電圧VCが変化しても、固定された状態としている。
 すなわち、前述の式(2)に基づき、実施の形態2ではスイッチング素子3のドレイン電流IDを制御していたが、実施の形態4ではスイッチング素子3の発振周波数foscを制御することで、出力電力Poを調整している。
 図19は、実施の形態4のスイッチング電源装置における、瞬断時の動作を説明するためのタイミングチャートである。
 実施の形態2と実施の形態4では、負荷30に供給する出力電力Poを調整するパラメータがスイッチング素子3のドレイン電流IDか、発振周波数foscかだけの違いである。すなわち、図19では、図7Aのスイッチング素子のドレイン電流ピーク値IDPの波形が発振周波数foscの波形に変わっているだけで、実施の形態2と同じメカニズムで出力電圧Voのオーバーシュートに効果がある。
 また、VC(保持電圧)をVC(fosc_max)以上に設定した場合にも、負荷30に供給する出力電力Poを調整するパラメータがスイッチング素子3のドレイン電流ピーク値IDPか、発振周波数foscかの違いだけであり、瞬断からの復帰時には、発振周波数foscが変化できるように変化し、出力電圧Voのオーバーシュートが防止できる。
 また、VC(保持電圧)をVC(fosc_max)になるように、図16においてVEAO用比較器41のマイナス入力の電圧を設定するときには、図11において、スイッチング素子3のドレイン電流ピーク値IDPの波形が発振周波数foscの波形に変わるだけで、オーバーシュートに対して同じように効果を得られる。よって、出力電圧Voの立ち上がり遅れ時間がなく、負荷30に供給される過大な出力電力Poを抑制でき、出力電圧Voのオーバーシュートを抑制することができる。
 (実施の形態5)
 実施の形態5に係るスイッチング電源装置は、実施の形態2に係るスイッチング電源装置と比較して、フィードバック信号の制御方向が逆である点が異なっている。言い換えると、フィードバック信号は、出力直流電圧に対して単調減少する電圧値を有する。信号制御部は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、フィードバック信号を前記予め定められた値を上回らない値に制御する。予め定められた値は、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値でよい。。
 本発明の実施の形態5のスイッチング電源装置を、図面に基づいて説明する。
 図20Aは本実施の形態5のスイッチング電源装置の一構成例を示す回路図である。また、図20Bは、図20A中の半導体装置155の構成例を示す回路図である。図20Bは、図3Bと比べて、半導体装置151の代わりに半導体装置155を備える点と、信号制御部161の代わりに信号制御部165を備える点とが異なる。実施の形態5において、実施の形態2のスイッチング電源装置と同一の構成要素については、同一の符号を付して説明を省略する。
 定電流源47はコントロール端子に接続され、コントロール端子から定電流が流れ出す。
 フォトカプラ27のフォトトランジスタ27bは、ダイオード31のカソードとコンデンサ49と半導体装置155のコントロール端子に接続されている。
 48は誤差増幅器であり、半導体装置155のコントロール端子電圧VCがプラス入力として与えられる。この誤差増幅器48のマイナス入力端子には、予め設定された所定の基準電圧が与えられており、誤差増幅器48は、入力されるコントロール端子電圧VCと基準電圧とを比較して得られる誤差電圧信号VEAOを、素子電流検出用比較器36のマイナス入力に出力する。
 図21、図22は、実施の形態5におけるコントロール端子電圧VCとスイッチング素子3のドレイン電流IDとの関係を示した図である。実施の形態5では、図4A、図4Bに対して、コントロール端子電圧VCの向きが異なる。
 領域(VI)では、コントロール端子電圧VCの変化に応じてスイッチング素子3のドレイン電流ピーク値IDPが変化する。例えば、負荷30が軽くなるときには、出力電圧Voが上昇して、フォトカプラ27のフォトトランジスタ27bに流れる電流が増えると、コントロール端子電圧VCが下降するので、半導体装置155は、図22のようにドレイン電流ピーク値IDPを低下するように制御し、負荷30へ供給するエネルギーを低減する。負荷30が重くなるときは、逆に、出力電圧Voが低下して、フォトトランジスタ27bに流れる電流が減少すると、コントロール端子電圧VCが上昇するので、ドレイン電流ピーク値IDPを上昇させるように制御する。このような帰還がなされることで、スイッチング素子3のドレイン電流IDが制御されて、これにより、負荷30が重くなっても出力電圧Voを一定値に安定化できる。
 図21、図22の領域(V)では、コントロール端子電圧VCが変化しても、スイッチング素子3のドレイン電流ピーク値IDPがILIMITで固定されている。負荷30が重負荷になり、出力電圧Voが低下して、スイッチング素子3のドレイン電流ピーク値IDPが過電流保護レベルになるまでコントロール端子電圧VCが低下した後、コントロール端子電圧が領域(V)にある間は過電流保護レベル(ILIMIT)で固定されたままである。
 さらに、図22は負荷30が変化したときの、コントロール端子電圧VCとスイッチング素子のドレイン電流IDの波形の様子を示している。図22からわかるように、コントロール端子電圧VCが上昇することでドレイン電流ピーク値IDPを増加させ、重負荷時にコントロール端子電圧VCがVC(ILIMIT)以下では過電流保護レベルILIMITになる。コントロール端子電圧VCが下降してVC(ILIMIT)を越えると、ドレイン電流ピーク値IDPは過電流保護レベルILIMITから低下していく。
 次に、実施の形態5のスイッチング電源装置における瞬断時の動作について、図23に示すタイミングチャートに基づいて説明する。
 図23の実施の形態5のタイミングチャートと図7Aの実施の形態1のタイミングチャートの違いは、コントロール端子電圧VCが負荷変動に対して単調増加するか、単調減少するかだけである。すなわち、実施の形態2では、負荷が重くなり、出力電圧Voが低下するときには、コントロール端子電圧VCが上昇していたのに対し、実施の形態5では負荷が重くなり、出力電圧Voが低下するときには、コントロール端子電圧VCが上昇する。
 よって、図23のVC波形において、コントロール端子電圧VCを予め定められた値を上回らない又は下回らない信号値に制御することで、図7Aの実施の形態1のように、出力電圧Voのオーバーシュートを防ぐのに同じ効果がある。
 (実施の形態5の変形例1)
 また、図20Aのスイッチング電源装置において、VC(保持電圧)をVC(ILIMIT)より低くなるように設定することで、図24の瞬断発生時のタイミングチャートでは、図9に示した実施の形態2変形例1のように、出力電圧Voのわずかな立ち上がり遅れ時間は発生するが、出力電圧Voのオーバーシュートを抑制することができる。
 (実施の形態5の変形例2)
 図25は実施の形態5の変形例2のスイッチング電源装置の一構成例を示す回路図である。図25における実施の形態5のスイッチング電源装置と、実施の形態5のスイッチング電源装置との違いは、半導体装置155の代わりに半導体装置156を備える点と、信号制御部165の代わりに信号制御部166を備える点とが異なる。半導体装置156中のスイッチ制御回路14におけるVEAO用比較器41のマイナス入力だけが異なり、このVEAO用比較器41のマイナス入力は、実施の形態5の変形例2では素子電流検出用比較器36の過電流保護基準電源43の電圧VLIMITと共通になっている。スイッチ制御回路14が、入力電圧判定回路10の信号を受け取ったときには、信号制御部166により誤差電圧信号VEAOをVLIMITで保持するような制御がかかる。
 図25のスイッチング電源装置における瞬断時の動作について、図26のタイミングチャートは、図23のタイミングチャートと比べて、VC(保持電圧)だけが異なる。図26において、VC(保持電圧)はVC(ILIMIT)である。
 また、図10に対してコントロール端子電圧VCが単調減少であるか、単調増加であるかが異なるのみで、出力電圧のオーバーシュートに対して図10と同じ効果がある。
 (実施の形態6)
 実施の形態6では、入力直流電圧Vinを利用して、第1スイッチのオン及びオフを制御することにより、フィードバック信号のレベルを制御する構成について説明する。
 図27は、実施の形態6のスイッチング電源装置の一構成例を示すブロック図である。
 スイッチ13は、フィードバック信号ラインと、補助電流供給回路13aを介して入力端子VInに接続されている。
 図28Aは実施の形態6のスイッチング電源装置の一構成例を示す回路図である。図28Bは、図28A中の半導体装置158の一構成例を示す回路図である。図28Bは、図3Bと比べて、半導体装置151の代わりに半導体装置158を備える点と、信号制御部161の代わりに信号制御部167を備える点とが異なる。実施の形態6において、実施の形態2のスイッチング電源装置と同一の構成要素については、同一の符号を付して説明を省略する。
 半導体装置158は、DRAIN端子とSOURCE端子およびコントロール端子(CONTROL端子)の3端子に加え、入力端子(Vin端子)を併せ持つ。
 図28Aの実施の形態6において、図3Aの実施の形態2との違いは、信号制御部167において、スイッチ13に接続される補助電源12のみである。図28Bにおいて、補助電源12として入力電圧Vin供給ラインは、半導体装置158の入力端子Vinに接続され、半導体装置158の内部の補助電流供給回路13aを介してスイッチ13に接続されている。
 信号制御部167は、入力直流電圧VinからVin端子を介して電流を取り出して供給する補助電流供給回路(第1電流供給回路)13aと、補助電流供給回路13aと制御回路140のフィードバック信号入力端子(CONTROL端子)との間に介在する第1スイッチ13と、第1スイッチ13のオン及びオフを制御するスイッチ制御回路14とを備える。
 スイッチ制御回路14は、入力直流電圧Vinの電圧値が前記第1閾値以下であると判定されている期間、フィードバック信号を予め定められた値を上回らない又は下回らない信号値にするように、第1電流供給回路とフィードバック信号入力端子との間の第1スイッチをオンおよびオフ制御する。
 制御回路140および信号制御部167は、フィードバック信号入力端子CONTROLから供給される電圧を電源電圧として動作する。
 信号制御部167は、さらに、入力直流電圧VinからDRAIN端子を介して電流を取り出して供給する内部回路電流供給回路(第2電流供給回路)7cと、内部回路電流供給回路7cと制御回路140のフィードバック信号入力端子CONTROLとの間に介在する第2スイッチ7bと、スイッチング電源装置の起動時に第2スイッチ7bをオンにする起動制御回路7aとを備える。
 この構成によれば、2つのスイッチと2つの電流供給回路を供えるので、フィードバック信号のレベル制御と、起動時の電源電圧供給とのそれぞれに必要な電流(電流駆動能力)およびスイッチ特性を個別に設定でき、回路設計を容易にすることができる。
 なお、図28Bでは、補助電流供給回路(第1電流供給回路)13aがVin端子に、内部回路電流供給回路7cがDRAIN端子に接続されているが、この逆でもよい。つまり、図28Cに示すように、補助電流供給回路(第1電流供給回路)13aが1次巻線21aの一端に、内部回路電流供給回路(第2電流供給回路)7cが1次巻線21aの他端に接続されていてもよい。
 また、図28Dに示すように、補助電流供給回路(第1電流供給回路)13aおよび内部回路電流供給回路(第2電流供給回路)7cの両者が、1次巻線21aの一端または他端に接続されていてもよい。
 また、図28Eのように、補助電流供給回路(第1電流供給回路)13aおよび内部回路電流供給回路(第2電流供給回路)7cの両者が、共通の端子(VinまたはDRAIN)を介して1次巻線21aの一端または他端に接続されていてもよい。
 (実施の形態7)
 実施の形態7では、RCC方式(Ringing-Choke-Converter)のスイッチング電源の一例について説明する。
 実施の形態7のスイッチング電源装置を、図面に基づいて説明する。
 図29Aは、本発明のRCC方式(Ringing-Choke-Converter)のスイッチング電源の一例を示す回路図である。図29Bは、図29A中の半導体装置159の構成を示す回路図である。
 半導体装置159は、DRAIN端子とSOURCE端子およびコントロール端子(CONTROL端子)の3端子に加え、トランスリセット検出端子(TR端子)を併せ持つ。
 トランスリセット検出端子の電圧を検出し、トランスリセット検出回路76から出力される信号が、トランスリセットパルス発生回路77に与えられている。
 変圧器2の補助巻線21bには、ダイオード31およびフォトカプラ27を介して、半導体装置159のコントロール端子に接続されている。
 スイッチング素子3の入出力間に接続されたコンデンサ72は変圧器2による共振の大きさおよび周期を決定するためのものである。
 ツェナーダイオード83はトランスリセット検出端子がマイナス電圧となることを防止する役割を果たし、バイアス巻線電圧の抵抗80と81によって抵抗分割された電圧が、トランスリセット検出端子に印加され、コンデンサ82はバイアス巻線電圧の振動の位相を遅らせる役割をする。
 変圧器2のインダクタンスとコンデンサ72およびスイッチング素子3の寄生容量で決定される共振動作により、スイッチング素子3のドレイン端子電圧が低下し、変圧器2のバイアス巻線である21bの電圧が正から負になるとき、トランスリセット検出回路76により検出されトランスリセットパルス発生回路77からの、ワンショットパルスの出力がRSフリップフロップ回路37のセット端子にHが入力され、スイッチング素子3はターンオンする。
 実施の形態2と比較したとき、大きな違いは下記の2点である。
 1点目の違いとしては、RSフリップフロップ回路37のセット側に、発振器34のクロック信号が入力されるか、トランスリセット発生回路からの77ワンショットパルスの信号が入力されるだけの違いだけであり、瞬断時に発生するオーバーシュートへの効果は、実施の形態2と同じである。
 2点目の違いは、図29Bでは、MAXDC信号を生成する回路がない代わりに、最大オン時間生成回路78が設けられていることである。これは、回路構成を簡単にするために、MAXDC信号の変わりに、任意に設定されるパルス幅を有する最大オン時間信号生成する最大オン時間生成回路78を設けているが、この最大オン時間信号はMAXDC信号と同じ役割を果たす。
 図29Aの実施の形態8について、図6の入力電圧判定回路10のオン時間生成回路69を、この最大オン時間生成回路78と置き換えて、考えることができる。
 以上説明してきたように、本発明に係るスイッチング電源装置によれば、擬似共振動作を行う場合でも、入力電圧判定回路10が入力電源の入力電圧が低下したことを検出すると、信号制御部161に信号を出力する。信号制御部161は、入力電圧判定回路10からの出力信号を受け取ると、フィードバック制御回路8の入力電圧信号を、出力電圧の立ち上がり遅れが発生しない程度の電圧に保持するように、スイッチ制御回路14がフィードバック制御回路8の入力信号ラインと補助電源12の間のスイッチ13を制御する。これにより、瞬断から復帰するとき、スイッチング素子3のスイッチング動作によって供給される出力電力を抑制できるので、出力電圧のオーバーシュートを防ぐことができる。
 また、信号制御部161における補助電源12には、スイッチング素子3の高電位側や入力電源を使用することで、容易に補助電源を形成することができるが、図29Bでは、図3Bのように、スイッチ13は、内部回路電流供給回路7cを介して、DRAIN端子に接続されている。
 また、入力電圧判定回路10において、スイッチング素子3のオン時間が広がったことから入力電圧の低下を検出するようにすることで、スイッチング電源用半導体装置の端子数を増やすことなく、入力電圧が第1の閾値になったことを検出できる。
 これまでに述べたように、信号制御部161は、出力電圧検出部5から出力されたフィードバック信号を補助電源により制御するため、固定周波数のPWM制御やPFM制御、そして、スイッチング素子のボトムでオンする擬似共振制御のように、制御方式によらず、応用することができる。
 以上により、スイッチング電源装置において瞬断時の課題であった、出力電圧のオーバーシュートを簡単な構成で、かつ容易に低減することができる。
 なお、各実施の形態におけるスイッチング電源装置は、種々の変形が可能であって、例えば、以下のような変形を施してもよい。
 (変形例A)
 上記の各実施の形態における入力電圧判定回路10では、スイッチング素子3のオンデューティーがMAXDCとなる期間を測定することによって、入力直流電圧Vinの電圧値が前記第1閾値以下であるか否かを判定する構成を説明した。この代わりに、入力電圧判定回路10は、前記入力直流電圧Vinを測定することにより、入力直流電圧Vinの電圧値が前記第1閾値以下であるか否かを判定するようにしてもよい。
 図30は、変形例Aにおけるスイッチング電源装置の構成例を示すブロック図である。同図の半導体装置15a中の入力電圧判定回路10は、入力直流電圧Vinラインに接続されている。図31は、図30中の入力電圧判定回路10の構成例を示す回路図である。図31において、抵抗64と抵抗65により、Vinから抵抗分割した電圧が、入力電圧検出用比較器62のプラス側に入力され、第2の基準電源63の電圧VR2がマイナス側に入力されている。瞬断時、入力直流電圧Vinが低下し、抵抗64と抵抗65により抵抗分割された電圧が第2の基準電源63の電圧VR2の閾値を下回ったとき、入力電圧検出用比較器62をスイッチ制御回路14へ出力する。
 このような構成にすることで、入力電圧の低下を、MAXDCを使わずに検出できるので、MAXDCで決まる閾値とは異なる、閾値を設けることが出来る。
 なお、図31の代わりに図32の構成とすることができる。このような構成にすることで、入力電圧判定回路10の閾値を半導体装置15aの外部で設定でき、また、入力電圧の検出の精度も良くなる。
 (変形例B)
 図3Bでは、第1スイッチ13と第2スイッチ7bとが別々に設けられているが、変形例Bでは、これらのスイッチを1つのスイッチで兼用にする構成例について説明する。
 図33Aは、第1スイッチ13と第2スイッチ7bとを共用化したスイッチング電源装置の一構成例を示すブロック図である。図33Bは、図33A中の半導体装置15bの一構成例を示す回路図である。図33Bは、図3Bと比べて、半導体装置151の代わりに半導体装置15bを備える点と、信号制御部161の代わりに信号制御部168を備える点とが異なる。
 図33A、図33Bにおいて、信号制御部168は、入力直流電圧Vinから電流を取り出して供給する内部回路電流供給回路7cと、内部回路電流供給回路7cと半導体装置15bのフィードバック信号入力端子との間に介在する第1スイッチ13と、第1スイッチ13のオン及びオフを制御するスイッチ制御回路14とを備える。
 スイッチ制御回路14は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、フィードバック信号を予め定められた値を上回らない又は下回らない信号値にするように、第1スイッチのオンおよびオフを制御する。
 制御回路140および信号制御部168は、フィードバック信号入力端子から供給される電圧を半導体装置15bの電源電圧として動作する。
 信号制御部168は、スイッチング電源装置の起動時に第1スイッチをオンおよびオフを制御する起動制御回路7aを備える。
 このように、起動回路7が動作する起動時はスイッチング素子3が発振する前の状態であり、スイッチ制御回路14が動作する瞬断時はスイッチング素子3が継続して発振している状態であり、それぞれ制御のタイミングが異なるので、これらのスイッチを1つのスイッチで兼用にすることも可能である。
 兼用のスイッチには、例えば、図33Bの回路において、起動制御回路7aとスイッチ制御回路14からのそれぞれの出力信号を、入力信号として受け取るOR回路を追加し、そのOR回路からの出力信号で共通のスイッチをオンオフするようにすることで、実現可能である。第1スイッチ13を第2スイッチ7bと兼用にすることで、一つスイッチを減らすことができ、回路構成が簡単になり、半導体装置15bの回路面積を小さくすることができる。
 また、2つの電流供給回路を備える必要がないので、この点でも回路面積を小さくすることができる。
 (変形例C)
 変形例Cでは、図33A、図33Bの構成に対して、第1スイッチ13と第2スイッチ7bとが別々に設けられ、2つのスイッチが内部回路電流供給回路7cを兼用する構成例について説明する。
 図34は、2つのスイッチが内部回路電流供給回路7cを兼用するスイッチング電源装置の一構成例を示すブロック図である。図34は、図3Bと比べて、半導体装置151の代わりに半導体装置15cを備える点と、信号制御部161の代わりに信号制御部169を備える点とが異なる。
 同図において、半導体装置15c中の信号制御部169は、入力直流電圧Vinから電流を取り出して供給する内部回路電流供給回路7cと、内部回路電流供給回路7cと半導体装置15bのフィードバック信号入力端子との間に介在する第1スイッチ13と、第1スイッチ13のオン及びオフを制御するスイッチ制御回路14とを備える。
 スイッチ制御回路14は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、フィードバック信号を予め定められた値を上回らない又は下回らない信号値にするように、第1スイッチ13のオンおよびオフを制御する。
 制御回路140および信号制御部169は、フィードバック信号入力端子から供給される電圧を電源電圧として動作する。
 信号制御部169は、さらに、内部回路電流供給回路7cとフィードバック信号入力端子との間に介在する第2スイッチ7bと、スイッチング電源装置の起動時に第2スイッチ7bをオンにする起動制御回路7aとを備える。
 変形例Cによれば、第1電流供給回路は、第1スイッチと第2スイッチの双方に電流を供給することを兼用するので、2つの電流供給回路を備える必要がなく、回路面積を小さくすることができる。
 (変形例D)
 変形例Dでは、図34に対して、電源端子VDDを有し、起動回路を簡略化した構成例について説明する。
 図35は、電源端子VDDを有し、起動回路を簡略化したスイッチング電源装置の構成例を示すブロック図である。図35は、図3Bと比べて、半導体装置151の代わりに半導体装置15dを備える点と、信号制御部161の代わりに信号制御部16aを備える点とが異なる。
 同図において、半導体装置15d中の信号制御部16aは、入力直流電圧Vinから電流を取り出して供給する内部回路電流供給回路7cと、内部回路電流供給回路7cと半導体装置15dのフィードバック信号入力端子との間に介在する第1スイッチ13と、第1スイッチ13のオン及びオフを制御するスイッチ制御回路14とを備える。
 スイッチ制御回路14は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、フィードバック信号を予め定められた値を上回らない又は下回らない信号値にするように、第1スイッチ13のオンおよびオフを制御する。
 制御回路140は、制御回路140および信号制御部16aへ電源電圧を供給する電源端子VDDを有し、内部回路電流供給回路(第1電流供給回路)7cは、電源端子VDDに直接接続され、制御回路140に電力を供給する。電源端子VDDにコンデンサ6aが接続される。起動時には、コンデンサ6aは、内部回路電流供給回路7cから供給される電流により充電され、コンデンサ6aが起動電圧に達すると制御回路140および信号制御部16aの動作が開始する。
 制御回路140および信号制御部16aは、フィードバック信号入力端子からの電圧ではなく電源端子VDDから供給される電圧を電源電圧として動作する。
 変形例Dによれば、入力直流電圧Vinの電圧値が第1の閾値と判定されている期間、VDD端子の電圧を電圧源として、フィードバック信号を予め定められた値を上回らない又は下回らない信号値に制御を行うが、電源端子VDDとフィードバック信号入力端子を分ける場合には、フィードバック信号を電流値で制御することができ、応答性を速くすることができ、瞬断からの復帰を早くすることができる。
 (変形例E)
 変形例Eでは、図34の構成に対して、2つの電源端子VCC、VDDを備える構成例について説明する。
 図36は、2つの電源端子VCC、VDDを有するスイッチング電源装置の構成例を示すブロック図である。図35は、図3Bと比べて、半導体装置151の代わりに半導体装置15eを備える点と、信号制御部161の代わりに信号制御部16bを備える点とが異なる。
 同図において、半導体装置15e中の信号制御部16bは、入力直流電圧Vinから電流を取り出して供給する内部回路電流供給回路7cと、内部回路電流供給回路7cと半導体装置15eのフィードバック信号入力端子との間に介在する第1スイッチ13と、第1スイッチ13のオン及びオフを制御するスイッチ制御回路14とを備える。
 スイッチ制御回路14は、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、フィードバック信号を予め定められた値を上回らない又は下回らない信号値にするように、第1スイッチ13のオンおよびオフを制御する。
 変圧器2は、1次巻線と、2次巻線と、補助巻線とを有する。補助巻線は、スイッチング素子3のスイッチング動作開始前の起動時には電圧が生じず、スイッチング素子3のスイッチング動作開始後に電圧を発生させる。補助巻線に生じる電圧は、1次巻線、2次巻線と比べて低電圧である。
 半導体装置15eは、内部回路電流供給回路170を備える。
 制御回路140(半導体装置15e)は、第1電源端子VDDと第2電源端子VCCを備える。
 第1電源端子VDDは、内部回路電流供給回路170から供給される電圧を、電源電圧として制御回路140および信号制御部16bへ供給するための端子である。第1電源端子VDDには、コンデンサ6aが接続される。
 第2電源端子VCCは、ここでは図示されていない整流平滑用のダイオードとコンデンサを介して、補助巻線に接続され、スイッチング電源装置の起動時以外の時に、内部回路電流供給回路170を介して第1電源端子VDDへ電圧を供給するための端子である。
 信号制御部16bは、さらに、内部回路電流供給回路(第1電流供給回路)7cと第1電源端子VDDとの間に介在する第2スイッチ7bと、スイッチング電源装置の起動時に第2スイッチ7bをオンにする起動制御回路7aとを備える。
 制御回路140および信号制御部16bは、フィードバック信号入力端子からの電圧ではなく電源端子VDDから供給される電圧を電源電圧として動作する。
 この構成によれば、スイッチング電源装置の起動時には、起動回路7によって第1電源端子VDDの電圧が生成される。起動後の動作時における第1電源端子VDDの電圧は、補助巻線の電圧を整流平滑された電圧が、内部回路電流供給回路170を通して供給される。これにより、入力電圧よりも低い補助巻線の電圧から、VDD端子の電圧が生成されるので、省電力化を図ることができる。
 また、第1電源端子VDDは、フィードバック信号入力端子と分離されることにより、遅延要素となる大きな容量は電源端子VDDに接続されるので、フィードバック信号の応答性が速くなり、瞬断からの復帰に、フォトトランジスタ27bに電流が流れるとコントロール端子はすぐに応答し、出力電圧のオーバーシュートを抑えることができる。
 また、内部回路電流供給回路7cは、第1スイッチ13と第2スイッチ7bとに共用されるので、2つの流供給回路を備える場合と比べて半導体装置15eの回路面積を小さくすることができる。
 なお、図36では、第1スイッチ13の一端は、内部回路電流供給回路7cに接続されているが、半導体装置15eの内部回路における、VDD端子につながるラインや、VCC端子につながるラインに接続する構成としてよい。
 (変形例F)
 変形例Fでは、図35に対して、電流供給部をもう1つ追加した構成例について説明する。
 図37は、2つの電流供給部を備えるスイッチング電源装置の構成例を示すブロック図である。同図は、図35と比べて、半導体装置15fにおいて信号制御部16c中の補助電流供給回路が追加されている。この点以外は、図35と同じなので、以下異なる点を中心に説明する。
 信号制御部16cは、入力直流電圧Vinから電流を取り出して供給する補助電流供給回路(第2電流供給回路)を備える。
 制御回路140は、内部回路電流供給回路(第1電流供給回路)7cから電源電圧の供給を受ける電源端子VDDを備える。電源端子VDDにはコンデンサ6aが接続される。
 変形例Fによれば、電源電圧供給用の内部回路電流供給回路7cと、フィードバック信号のレベル制御用の補助電流供給回路13aとが個別に備えられるので、それぞれの供給電流または供給電圧を最適化することができ、設計を容易にする。また、変圧器2に補助巻線が不要なので、トランスの簡略化およびスイッチング、装置の小型化に適している。
 なお、補助電流供給回路13aと内部回路電流供給回路7cと、変圧器2の1次巻線との接続形態は、図28C、図28D、図28Eのいずれかでもよい。
 (変形例G)
 変形例Gでは、図36に対して、電流供給部をもう1つ追加した構成例について説明する。
 図38は、2つの電流供給部を備えるスイッチング電源装置の構成例を示すブロック図である。同図は、図36と比べて、半導体装置15gにおいて信号制御部16d中の補助電流供給回路13aが追加されている。この点以外は、図36と同じなので、以下異なる点を中心に説明する。
 変圧器2は、1次巻線と、2次巻線と、補助巻線とを有する。
 半導体装置15g中の信号制御部16dは、さらに、補助巻線から、整流平滑用のダイオードとコンデンサを通して電力を受ける電源端子VCCと、電源端子VCCの電圧を電源端子VDDに供給する内部回路電流供給回路170と、制御回路140および信号制御部16dを動作させる電源電圧として、内部回路電流供給回路170から安定化された電圧の供給を受ける電源端子VDDと、1次巻線から電流を取り出して第2スイッチ7bに供給する内部回路電流供給回路(第2電流供給回路)7cと、内部回路電流供給回路(第2電流供給回路)7cと第2電源端子との間に介在する第2スイッチ7bと、スイッチング電源装置の起動時に第2スイッチ7bをオンにする起動制御回路7aとを有する。第2スイッチ7bと起動制御回路7aにより、起動回路7を構成している。
 制御回路140および信号制御部16dは、フィードバック信号入力端子からの電圧ではなく電源端子VDDから供給される電圧を電源電圧として動作する。
 起動後の動作時における第1電源端子VDDの電圧は、補助巻線の低電圧から生成されるので、省電力化を図ることができる。
 また、第1電源端子VDDは、フィードバック信号入力端子と分離されることにより、遅延要素となる大きな容量は電源端子VDDに接続されるので、フィードバック信号の応答性が速くなり、瞬断からの復帰に、フォトトランジスタ27bに電流が流れるとコントロール端子はすぐに応答し、出力電圧のオーバーシュートを抑えることができる。
 変形例Gによれば、電源電圧供給用の内部回路電流供給回路7cと、フィードバック信号のレベル制御用の補助電流供給回路13aとが個別に備えられるので、それぞれの供給電流または供給電圧を最適化することができ、設計を容易にする。
 なお、補助電流供給回路13aと内部回路電流供給回路7cと、変圧器2の1次巻線との接続形態は、図28C、図28D、図28Eのいずれかでもよい。
 (変形例H)
 変形例Hでは、フィードバック信号が電圧信号ではなく電流信号である場合の構成例について説明する。
 図39Aは、フィードバック信号が電流信号であるスイッチング電源装置の一構成例を示すブロック図である。図39Bは、図39A中の半導体装置15hの一構成例を示す回路図である。図39A、図39Bは、例えば図37と比べて、半導体装置15f」の代わりに半導体装置15gを備える点と、信号制御部16cの代わりに信号制御部16dを備える点とが異なり、主にフィードバック信号が電圧信号ではなく電流信号である点が異なっている。この点に関連する構成要素以外は、基本的に図37と同じなので、以下異なる点を中心に説明する。
 図39Aにおける出力電圧検出部5は、出力電圧Voに応じて電流値が増加するフィードバック信号を生成するよう構成されている。出力電圧Voが増加すればフィードバック信号の電流も増加する。
 信号制御部16dは、図37の補助電流供給回路13aの代わりに電流源12aを備える点が異なる。これにより、信号制御部16dは、入力直流電圧Vinの電圧値が第1閾値以下であると判定されている期間、制御回路140に入力されるフィードバック信号の電流値を予め定められた値を上回らない又は下回らない信号レベル(電流値)に制御する。具体的には、スイッチ13のオンおよびオフを制御することにより、フィードバック信号に電流を重畳して信号レベル(電流値)を制御する。
 制御回路140は、例えば図37のフィードバック制御回路8の代わりにIV変換回路8aを備えている。IV変換回路は、フィードバック信号の電流を電圧に変換することにより誤差電圧信号VEAOを生成する。
 変形例Hによれば、フィードバック信号が電流信号であっても、フィードバック信号が電圧信号である場合と同様に発明を実施することができる。
 なお、上記の各実施形態において、スイッチング素子3は、半導体装置15hに内蔵されていてもよいし、半導体装置15hに外付けされる構成であってもよい。
 以上、本発明に係るスイッチング電源装置および半導体装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 本発明のスイッチング電源装置は、入力直流電圧が供給されるスイッチング素子と、前記スイッチング素子によりスイッチングされた前記入力直流電圧を出力直流電圧に変換する入出力変換部と、前記出力直流電圧の電圧値を検出し、前記出力直流電圧の電圧値に対応するフィードバック信号を生成する出力電圧検出部と、前記入力直流電圧の電圧値が第1閾値以下であるか否かを判定する入力電圧判定部と、前記フィードバック信号に応じて前記スイッチング素子のスイッチング動作を制御する制御回路と、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記制御回路に入力される前記フィードバック信号を予め定められた信号値を上回らない又は下回らない値に制御する信号制御部とを備える。これにより、瞬断からの復帰時に、スイッチング素子のスイッチング動作によって負荷に供給される出力電力を抑制できるので、出力電圧のオーバーシュートを防ぐことができ、AC-DCコンバータやDC-DCコンバータなどのスイッチング電源装置等に有効に適応できる。
1 入力電源
2 変圧器
3 スイッチング素子
4 出力電圧生成回路
5 出力電圧検出部
6a、28、32、49、72、82 コンデンサ
7 起動回路
7a 起動制御回路
7c、170 内部回路電流供給回路
8 フィードバック制御回路
9 スイッチング制御回路
10 入力電圧判定回路
12 補助電源
13、7b スイッチ
13a 補助電流供給回路
14 スイッチ制御回路
15、151~159、15a~15h 半導体装置
16a~16d、160~169 信号制御部
21a 1次巻線
21b 補助巻線
21c 2次巻線
22、31 ダイオード
23 出力コンデンサ
24、25、26、64、65、80、81 抵抗
27 フォトカプラ
27a フォトダイオード
27b フォトトランジスタ
29 シャントレギュレータ
30 負荷
33、48 誤差増幅器
34 発振器
35 素子電流検出回路
36、46 素子電流検出用比較器
37、66 RSフリップフロップ回路
38 NAND回路
39 ゲートドライバ
40 スイッチング制御回路
41 VEAO用比較器
42、68b AND回路
43 過電流保護基準電源
44 第1の基準電源
45 発振周波数調整回路
47 定電流源
62 入力電圧検出用比較器
63 第2の基準電源
67 遅れ時間発生回路
68a インバータ
69 オン時間生成回路
76 トランスリセット検出回路
77 トランスリセットパルス発生回路
78 最大オン時間生成回路
83 ツェナーダイオード
140 制御回路
200 入出力変換部
210 電圧保持回路

Claims (24)

  1.  スイッチング電源装置であって、
     入力直流電圧が供給されるスイッチング素子と、
     前記スイッチング素子によりスイッチングされた前記入力直流電圧を出力直流電圧に変換する入出力変換部と、
     前記出力直流電圧の電圧値を検出し、前記出力直流電圧の電圧値に対応するフィードバック信号を生成する出力電圧検出部と、
     前記入力直流電圧の電圧値が第1閾値以下であるか否かを判定する入力電圧判定部と、
     前記フィードバック信号に応じて前記スイッチング素子のスイッチング動作を制御する制御回路と、
     前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記制御回路に入力される前記フィードバック信号を予め定められた値を上回らない又は下回らない信号値に制御する信号制御部と
     を備えるスイッチング電源装置。
  2.  前記フィードバック信号は、前記出力直流電圧に対して単調増加する電圧値を有し、
     前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を前記予め定められた値を下回らない値に制御し、
     前記予め定められた値は、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値である
     請求項1記載のスイッチング電源装置。
  3.  前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を、前記予め定められた値を下回らない値、かつ、前記予め定められた値より高い上限値未満の値に制御し、
     前記上限値は、前記スイッチング動作の停止電圧値である
     請求項2記載のスイッチング電源装置。
  4.  前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を前記予め定められた値とし、
     前記予め定められた値は、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値である
     請求項2又は3記載のスイッチング電源装置。
  5.  前記フィードバック信号は、前記出力直流電圧に対して単調減少する電圧値を有し、
     前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を前記予め定められた値を上回らない値に制御し、
     前記予め定められた値は、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値である
     請求項1記載のスイッチング電源装置。
  6.  前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を、前記予め定められた値を上回らない値、かつ、前記予め定められた値より低い下限値より高い値に制御し、
     前記下限値は、前記スイッチング動作の停止電圧値である
     請求項5記載のスイッチング電源装置。
  7.  前記信号制御部は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を前記予め定められた値とし、
     前記予め定められた値は、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値である
     請求項5又は6記載のスイッチング電源装置。
  8.  前記フィードバック信号は、前記出力直流電圧に対して単調増加する電圧値を有し、
     前記信号制御部は、
     前記出力直流電圧の電圧値が第2閾値未満の場合、前記信号値を第1レベルとし、
     前記出力直流電圧の電圧値が前記第2閾値以上の場合、前記信号値を前記第1レベルより高い第2レベルとする
     請求項1記載のスイッチング電源装置。
  9.  前記第2閾値および前記第1レベルはそれぞれ、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値である
     請求項8記載のスイッチング電源装置。
  10.  前記第2レベルは、前記入力直流電圧の電圧値が第1閾値以下になった時の前記フィードバック信号の電圧値である
     請求項8または9記載のスイッチング電源装置。
  11.  前記フィードバック信号は、前記出力直流電圧に対して単調減少する電圧値を有し、
     前記信号制御部は、
     前記出力直流電圧の電圧値が第2閾値未満の場合、前記信号値を第1レベルとし、
     前記出力直流電圧の電圧値が前記第2閾値以上の場合、前記信号値を前記第1レベルより低い第2レベルとする
     請求項1記載のスイッチング電源装置。
  12.  前記第2閾値および前記第1レベルはそれぞれ、前記スイッチング素子に過電流が流れることを防止するための電圧値と実質的に等しい電圧値である
     請求項11記載のスイッチング電源装置。
  13.  前記第2レベルは、前記入力直流電圧の電圧値が第1閾値以下になった時の前記フィードバック信号の電圧値である
     請求項11または12記載のスイッチング電源装置。
  14.  前記信号制御部は、
     前記入力直流電圧から電流を取り出して供給する第1電流供給回路と、
     前記第1電流供給回路と前記制御回路のフィードバック信号入力端子との間に介在する第1スイッチと、
     前記第1スイッチのオン及びオフを制御するスイッチ制御回路と
    を備え、
     前記スイッチ制御回路は、前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記フィードバック信号を予め定められた値を上回らない又は下回らない信号値にするように、前記第1スイッチのオンおよびオフを制御する
     請求項1~13のいずれか1項に記載のスイッチング電源装置。
  15.  前記制御回路および前記信号制御部は、前記フィードバック信号入力端子から供給される電圧を電源電圧として動作し、
     前記信号制御部は、さらに、
     前記スイッチング電源装置の起動時に前記第1スイッチをオンにする起動制御回路を備える
     請求項14記載のスイッチング電源装置。
  16.  前記制御回路および前記信号制御部は、前記フィードバック信号入力端子から供給される電圧を電源電圧として動作し、
     前記信号制御部は、さらに、
     前記第1電流供給回路と前記フィードバック信号入力端子との間に介在する第2スイッチと、
     前記スイッチング電源装置の起動時に前記第2スイッチをオンにする起動制御回路と
    を備える
     請求項14記載のスイッチング電源装置。
  17.  前記制御回路および前記信号制御部は、前記フィードバック信号入力端子から供給される電圧を電源電圧として動作し、
     前記信号制御部は、さらに、
     前記入力直流電圧から電流を取り出して供給する第2電流供給回路と、
     前記第2電流供給回路と前記制御回路のフィードバック信号入力端子との間に介在する第2スイッチと、
     前記スイッチング電源装置の起動時に前記第2スイッチをオンにする起動制御回路と
    を備える
     請求項14記載のスイッチング電源装置。
  18.  前記入出力変換部は、1次巻線と、2次巻線と、補助巻線とを有し、
     前記制御回路は、前記制御回路および前記信号制御部へ電源電圧を供給する第1電源端子と、
     前記補助巻線に接続され、前記スイッチング電源装置の起動時以外の時に第1電源端子へ電源電圧を供給するための第2電源端子とを有し、
     前記信号制御部は、さらに、
     前記第1電流供給回路と前記第1電源端子との間に介在する第2スイッチと、
     前記スイッチング電源装置の起動時に前記第2スイッチをオンにする起動制御回路と
    を備える
     請求項14記載のスイッチング電源装置。
  19.  前記制御回路は、前記制御回路および前記信号制御部へ電源電圧を供給する電源端子を有し、
     前記第1電流供給回路は、前記電源端子に電圧を供給する
     請求項14記載のスイッチング電源装置。
  20.  前記入力電圧判定部は、
     (a)前記スイッチング動作における前記スイッチング素子のオン時間を検出し、検出したオン時間が所定の時間以上であるか否か、
      (b)前記スイッチング動作における前記スイッチング素子のスイッチング周期に対するオン時間の割合が所定値以上であるか否か
     のいずれかを判定することによって、前記入力直流電圧の電圧値が前記第1閾値以下であるか否かを判定する
     請求項1~19のいずれか1項に記載のスイッチング電源装置。
  21.  前記入力電圧判定部は、前記入力直流電圧を測定することにより、前記入力直流電圧の電圧値が前記第1閾値以下であるか否かを判定する
     請求項1~20のいずれか1項に記載のスイッチング電源装置。
  22.  前記フィードバック信号の変動は、前記出力直流電圧の変動に対して遅延する
     請求項1~21のいずれか1項に記載のスイッチング電源装置。
  23.  前記スイッチング電源装置は、次の(a)および(b)の少なくとも一方を備える
     (a)前記出力電圧検出部に備えられ、前記フィードバック信号を出力するフォトカプラ
     (b)前記出力電圧検出部で生成された前記フィードバック信号を前記制御回路に伝達するためのフィードバック配線と、一端が前記フィードバック配線に接続された容量素子
     請求項1~22のいずれか1項に記載のスイッチング電源装置。
  24.  入力直流電圧が供給されるスイッチング素子と、前記スイッチング素子によりスイッチングされた前記入力直流電圧を出力直流電圧に変換する入出力変換部と、
     前記出力直流電圧の電圧値を検出し、前記出力直流電圧の電圧値に対応するフィードバック信号を生成する出力電圧検出部とを備えるスイッチング電源装置に備えられる半導体装置であって、
     前記入力直流電圧の電圧値が第1閾値以下であるか否かを判定する入力電圧判定部と、
     前記フィードバック信号に応じて前記スイッチング素子のスイッチング動作を制御する制御回路と、
     前記入力直流電圧の電圧値が前記第1閾値以下であると判定されている期間、前記制御回路に入力される前記フィードバック信号を予め定められた値を上回らない又は下回らない値に制御する信号制御部とを備える
     半導体装置。
PCT/JP2011/003048 2011-05-31 2011-05-31 スイッチング電源装置および半導体装置 WO2012164613A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/003048 WO2012164613A1 (ja) 2011-05-31 2011-05-31 スイッチング電源装置および半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/003048 WO2012164613A1 (ja) 2011-05-31 2011-05-31 スイッチング電源装置および半導体装置

Publications (1)

Publication Number Publication Date
WO2012164613A1 true WO2012164613A1 (ja) 2012-12-06

Family

ID=47258509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003048 WO2012164613A1 (ja) 2011-05-31 2011-05-31 スイッチング電源装置および半導体装置

Country Status (1)

Country Link
WO (1) WO2012164613A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI657650B (zh) * 2013-09-05 2019-04-21 美商英特希爾美國公司 電源供應器及用於電源供應器的控制器、系統和方法及其電腦可讀取媒體
TWI826072B (zh) * 2022-10-26 2023-12-11 宏碁股份有限公司 高輸出穩定度之電源供應器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283056A (ja) * 1988-05-09 1989-11-14 Mitsubishi Electric Corp 電源装置
JP2002044943A (ja) * 2000-07-26 2002-02-08 Matsushita Electric Works Ltd 電源装置
JP2010011563A (ja) * 2008-06-25 2010-01-14 Mitsumi Electric Co Ltd 直流電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283056A (ja) * 1988-05-09 1989-11-14 Mitsubishi Electric Corp 電源装置
JP2002044943A (ja) * 2000-07-26 2002-02-08 Matsushita Electric Works Ltd 電源装置
JP2010011563A (ja) * 2008-06-25 2010-01-14 Mitsumi Electric Co Ltd 直流電源装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI657650B (zh) * 2013-09-05 2019-04-21 美商英特希爾美國公司 電源供應器及用於電源供應器的控制器、系統和方法及其電腦可讀取媒體
TWI660565B (zh) * 2013-09-05 2019-05-21 美商英特希爾美國公司 電源供應器及用於電源供應器的控制器、系統和方法及其電腦可讀取媒體
TWI826072B (zh) * 2022-10-26 2023-12-11 宏碁股份有限公司 高輸出穩定度之電源供應器

Similar Documents

Publication Publication Date Title
US7492615B2 (en) Switching power supply
JP6528561B2 (ja) 高効率力率改善回路およびスイッチング電源装置
JP5170117B2 (ja) スイッチング制御回路及びスイッチング電源装置
JP5485390B2 (ja) スイッチング電源装置および半導体装置
JP4687958B2 (ja) Dc−dcコンバータ
US7714556B2 (en) Quick response switching regulator and control method thereof
US20130301310A1 (en) Isolated switching mode power supply and the method thereof
JP5489502B2 (ja) 電源装置
US20140146581A1 (en) Power Controller with Over Power Protection
US20090201705A1 (en) Energy converting apparatus, and semiconductor device and switching control method used therein
US8077488B2 (en) Switching-type power-supply unit and a method of switching in power-supply unit
US7639516B2 (en) Switching power source device
JP2016052161A (ja) 電流共振型電源装置
JP2017103889A (ja) スイッチング電源装置
WO2011115236A1 (en) Switching regulator
US9318961B2 (en) Switching power-supply device
JP5974563B2 (ja) 昇圧型スイッチング電源
US20160087534A1 (en) Methods and power controllers for primary side control
JP2010093922A (ja) スイッチング電源装置
JP2014082831A (ja) スイッチング電源装置
WO2010125751A1 (ja) スイッチング電源装置
JP4255487B2 (ja) スイッチング電源装置、スイッチング周波数設定方法
JP2008118755A (ja) 省電力回路、スイッチング電源装置
WO2012164613A1 (ja) スイッチング電源装置および半導体装置
US20090153116A1 (en) Switching controller and semiconductor device used in the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP