WO2012164603A1 - Steam turbine power generation system - Google Patents

Steam turbine power generation system Download PDF

Info

Publication number
WO2012164603A1
WO2012164603A1 PCT/JP2011/002990 JP2011002990W WO2012164603A1 WO 2012164603 A1 WO2012164603 A1 WO 2012164603A1 JP 2011002990 W JP2011002990 W JP 2011002990W WO 2012164603 A1 WO2012164603 A1 WO 2012164603A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam turbine
cooling medium
power generation
generation system
turbine power
Prior art date
Application number
PCT/JP2011/002990
Other languages
French (fr)
Japanese (ja)
Inventor
英樹 小野
晋 中野
清 瀬川
岸部 忠晴
吉田 卓弥
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2011/002990 priority Critical patent/WO2012164603A1/en
Publication of WO2012164603A1 publication Critical patent/WO2012164603A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • F03G7/05Ocean thermal energy conversion, i.e. OTEC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/08Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being steam
    • F22B1/12Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being steam produced by an indirect cyclic process
    • F22B1/123Steam generators downstream of a nuclear boiling water reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a steam turbine power generation system, and more particularly to a steam turbine power generation system using deep ocean water.
  • a large amount of cooling water with a daily amount of 140 kt or more per 1 GW of power generation is used.
  • used cooling water is discharged to the surface of the ocean, but the deviation between the seawater temperature and the used cooling water temperature must be kept small in order to reduce the environmental impact of changes in water temperature. Must not.
  • a method has been proposed in which used cooling water is mixed with surface water, and the temperature difference from the ocean surface layer is reduced and then discharged to the ocean surface layer.
  • an object of the present invention is to provide a steam turbine power generation system capable of reducing temperature fluctuations of ocean water due to condensate cooling using deep ocean water and improving power generation efficiency. is there.
  • a steam turbine power generation system of the present invention is connected to a steam turbine driven by steam, a condenser for cooling and condensing steam discharged from the steam turbine, and the steam turbine.
  • a steam turbine power generation system including a generator that generates electric power with the rotational power of the steam turbine, wherein a cooling medium for cooling the steam introduced into the condenser is used as a cooling medium between the condenser and the deep sea water in the sea. It is characterized by having a circulation system that circulates between them.
  • the steam turbine power generation system of the present invention local rise and fall of seawater temperature due to condensate cooling using deep ocean water can be suppressed, and ocean water temperature fluctuation can be reduced.
  • the power generation efficiency can be improved.
  • FIG. 5 shows a configuration example of a conventional steam turbine power generation system.
  • This system includes a boiler 1 as a high-temperature heat source for heating a heat medium, an evaporator 2 that heats feed water with the heat medium heated by the boiler 1 to generate steam, and feed water that preheats feed water supplied to the evaporator 2.
  • a generator 6 that is mechanically connected and generates power with the rotational power of the steam turbine 4 is a basic component. The electric power generated by the generator 6 is supplied to the outside through the electric power system 7.
  • the evaporator 2 is generally constructed integrally with a boiler building.
  • the cooling medium that cools and condenses the main steam in the condenser 5 deep ocean water is used.
  • the deep ocean water is taken from the cooling medium introduction pipe 12 extending to the deep ocean area where the deep ocean water exists, and is pressurized by the cooling medium transport pump 10 and introduced into the condenser 5.
  • the deep ocean water that has cooled the main steam by the condenser 5 is sent from the cooling medium delivery pipe 11 to the ocean surface layer.
  • the cooling medium delivery pipe 11 is provided with a marine surface water introduction pipe 19 for mixing the marine surface water with the cooling medium and a flow rate adjusting valve 17. The temperature and cooling medium temperature are detected, and both are mixed and discharged to the ocean so that the difference is within the environmental standard value.
  • FIG. 1 shows a first embodiment of the steam turbine power generation system of the present invention devised to solve the above problems.
  • the components of this system are a boiler 1 as a superheater that heats a heat medium, and an evaporator that generates steam by heating feed water with the heat medium heated by the boiler 1. 2, a feed water heater 3 for preheating the feed water supplied to the evaporator 2, a steam turbine 4 driven by the main steam generated in the evaporator 2, and the main steam discharged from the steam turbine 4 is cooled and condensed.
  • the basic configuration includes a condenser 5 that returns the water to the water, a water feed pump 9 that boosts the feed water condensed in the condenser 5 and returns the water to the feed water heater 3, and a generator 6 that generates power with the rotational power of the steam turbine 4. Element.
  • the power generated by the generator 6 is supplied to the outside through the power system 7.
  • the feature of this embodiment is that the cooling medium introduction pipe 12 that supplies the cooling medium to the condenser 5 and the distal end portions of the cooling medium delivery pipe 11 that sends the cooling medium discharged from the condenser 5 to the ocean.
  • the cooling medium introduction pipe 12 that supplies the cooling medium to the condenser 5 and the distal end portions of the cooling medium delivery pipe 11 that sends the cooling medium discharged from the condenser 5 to the ocean.
  • a part of the cooling medium introduction pipe 12 and the cooling medium delivery pipe 11 and the connected tip are installed in the sea (deep sea part) where the deep sea water exists, and the cooling medium introduction pipe 12 And the heat exchange between the condenser 5 and the deep sea water through the cooling medium filled in the cooling medium delivery pipe 11.
  • the cooling medium introduction pipe 12 is provided with a cooling medium transport pump 10 for boosting and transporting the cooling medium.
  • the condenser 5, the cooling medium introduction pipe 12, and the cooling medium delivery pipe 11 constitute a closed circulation system, and the cooling medium circulates between the deep sea water and the condenser in the circulation system.
  • the cooling medium it is desirable to use water (H 2 O) having a larger specific heat than seawater and good cooling efficiency. If it is water, it will not affect the marine ecosystem even if the water pipe is broken.
  • the length of the cooling medium delivery pipe 11 and the cooling medium flow rate will be mentioned. Since deep ocean water exists on the seabed at 200 m or less above sea level, the length of the cooling medium introduction pipe 12 and the cooling medium delivery pipe 11 is several hundred to several thousand meters. In order to keep the pipe flow resistance low, the coolant flow rate is designed to be about 1 m / s.
  • the cooling medium introducing pipe 12 has a good heat insulating property.
  • a hard polyethylene pipe coated with a heat insulating material is used.
  • heat transfer between the cooling medium and the ocean water is lowered, so that the temperature of the cooling medium introduced into the condenser 5 is kept at a low temperature equivalent to the deep sea water. Therefore, the turbine output can be increased and the turbine efficiency can be improved.
  • the electric power for the cooling medium transport pump 10 is increased.
  • the power consumption of the cooling medium transport pump 10 is sufficiently small with respect to the steam turbine power generation system power generation amount, and the configuration of the present invention improves the output of the steam turbine power generation system by using the deep ocean water, that is, improves the power generation efficiency. Can be planned.
  • the whole or a part of the cooling medium delivery pipe 11 is formed of a material having a high thermal conductivity or a shape having a high heat transfer coefficient.
  • a material having a high thermal conductivity or a shape having a high heat transfer coefficient For example, an aluminum tube having fins is used. Thereby, heat transfer between the cooling medium and the ocean water can be promoted.
  • the cooling medium that is cooled before the cooling medium reaches the deep ocean area from the condenser 5 and reaches the deep ocean area at the tip of the cooling medium delivery pipe 11 is the deep sea water. Equivalent temperature.
  • the cooled cooling medium is again pressurized by the cooling medium transport pump 10, flows through the cooling medium introduction pipe 12, is introduced into the condenser 5, and cools and condenses the steam.
  • the cooling medium introduction pipe 12 and the cooling medium delivery pipe 11 are connected to form a closed circulation system, so that the cooling medium circulates between the condenser 5 and the deep ocean water in the sea.
  • the cooling medium whose temperature has risen in the condenser 5 is cooled while moving from the condenser 5 through the ocean surface layer portion to reach the ocean deep layer portion. That is, in this embodiment, the cooling medium is not discharged from one fixed place to the ocean as in the prior art, but is cooled while moving the cooling medium. , Can avoid the drop and reduce the temperature fluctuation of the ocean water. As a result, the temperature fluctuation of the ocean water can be reduced and the environmental load can be reduced when exchanging heat between the used cooling water and the ocean water, compared to the conventional method of releasing the cooling water to the ocean.
  • a large capacity power plant requires a large amount of cooling water (140 kt / day per 1 GW of power generation).
  • the cooling medium introduction pipe 12 and the cooling medium delivery Since it connects with the pipe
  • the basic configuration is the same as in the first embodiment.
  • the internal flow path cross-sectional area of the cooling medium delivery pipe 11 is formed larger than the internal flow path cross-sectional area of the cooling medium introduction pipe 12.
  • the internal flow of the water supply pipe constituting the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12 is a laminar flow, and the amount of heat transfer is proportional to the flow time of the cooling medium in the pipe. Therefore, according to the present embodiment, the cooling medium introduction pipe 12 can reduce the heat transfer heat quantity between the cooling medium and the ocean water because the flow velocity increases as the flow path area decreases. Further, since the flow rate of the cooling medium delivery pipe 11 is reduced by increasing the flow path area, the heat transfer heat quantity between the cooling medium and the ocean water can be further increased.
  • FIG. 2 shows a third embodiment of the present invention.
  • the basic configuration of this embodiment is the same as that of the first embodiment.
  • the present embodiment is different from the first embodiment in that the connecting portion at the tip of the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12 has a structure that promotes heat exchange between the deep sea water and the cooling medium. Is a point. That is, in the present embodiment, a plurality of connecting pipes in which the connecting portion 13 between the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12 has a smaller cross-sectional area than each of the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12. It is the structure connected by.
  • the connecting pipe has a structure having heat radiation fins, and can promote heat exchange between the deep ocean water and the cooling medium. According to the present embodiment, heat exchange between the deep sea water and the cooling medium can be further promoted.
  • FIG. 3 shows a fourth embodiment of the present invention.
  • the basic configuration of this embodiment is the same as that of the first embodiment.
  • This embodiment differs from the first embodiment in that the condenser 5 performs air conditioning of the steam turbine power generation system management building, cooling of the steam turbine bearing oil, and the like by the cooling medium that has cooled the main steam. .
  • the cooling medium that has cooled the condenser 5 is sufficiently low in temperature for these applications, and the configuration of this embodiment eliminates the need for new electric power for air conditioning. Reliability can be improved.
  • the cooling medium used for the refrigerant of the auxiliary equipment of the steam turbine power generation system such as the air conditioning of the steam turbine power generation system management building and the bearing device of the steam turbine is then sent to the deep ocean through the cooling medium delivery pipe 11.
  • the connecting portion 13 between the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12 is connected by a plurality of connection pipes having cross-sectional areas smaller than the cross-sectional areas of the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12.
  • the connecting pipe has a structure that can promote heat exchange between the deep sea water and the cooling medium.
  • the means for supplying steam is not necessarily a boiler, and steam is generated by heat such as gas turbine, nuclear power, solar energy, etc. Any means can be adopted as long as it has a mechanism.
  • FIG. 4 shows an example of a steam turbine power generation system using solar energy as an example of an alternative to a boiler that is a heating device.
  • the basic configuration of this embodiment is the same as that of the first embodiment except for the boiler 1.
  • a solar heat collector 18 that collects heat by collecting sunlight or the like is used instead of the boiler 1.

Abstract

The present invention addresses the problem where, in a steam turbine power generation system using deep ocean water to cool a condenser, it is difficult to keep changes in seawater temperature at a specified value or lower because a large amount of spent cooling water is generated and there are major fluctuations in the differential temperature between the spent cooling water and the seawater. A steam turbine power generation system comprising: heating devices such as a boiler (1) or a solar heat collector (18) for heating a heat medium; an evaporator (2) for heating feed water with the heat medium heated by the heating devices to generate steam; a feed water heater (3) for pre-heating with the heat medium the feed water to be supplied to the evaporator (2); a steam turbine (4) in which driving is performed using main steam generated by the evaporator; and a condenser (5) for cooling and condensing the steam discharged from the steam turbine (4). By providing the steam turbine power generation system with a circulation system for circulating, between the condenser (5) and deep ocean water in the sea, a cooling medium for cooling the steam introduced to the condenser (5), increases and decreases in the local seawater temperature due to the condensate cooling using the deep ocean water can be suppressed and temperature fluctuations in the ocean water can be reduced.

Description

蒸気タービン発電システムSteam turbine power generation system
 本発明は、蒸気タービン発電システム、特に海洋深層水を利用した蒸気タービン発電システムに関わる。 The present invention relates to a steam turbine power generation system, and more particularly to a steam turbine power generation system using deep ocean water.
 蒸気サイクル(ランキンサイクル)による発電効率、すなわち、投入エネルギーに対する発電量を高める手段として、蒸気タービン入口蒸気の高温化、若しくは、排出温度の低下がある。後者の手段として、海洋深層水を用いる手法が提案されてきた。その例としては、復水器の冷却水に海洋深層水を用いる特開平10-331605号公報があり、海洋深層水の取水方法,利点などが示されている。海洋深層水は、水温が低いばかりでなく、年間を通じて温度の変動が小さく、蒸気サイクルの発電効率を向上させることができる。また、水温が低いため、微生物の発生が抑止され、配管や、熱交換器のメンテナンスが容易になることが知られている。 As a means of increasing the power generation efficiency by the steam cycle (Rankine cycle), that is, the amount of power generation with respect to the input energy, there is an increase in the temperature of the steam turbine inlet steam or a decrease in the discharge temperature. As the latter means, a method using deep ocean water has been proposed. As an example, Japanese Patent Laid-Open No. 10-331605 using deep ocean water as cooling water for a condenser shows a method of taking deep ocean water, advantages, and the like. Deep ocean water not only has a low water temperature, but also has small temperature fluctuations throughout the year, and can improve the power generation efficiency of the steam cycle. Moreover, since the water temperature is low, the generation of microorganisms is suppressed, and it is known that maintenance of piping and heat exchangers becomes easy.
特開平10-331605号公報JP-A-10-331605
 このように、復水冷却に海水を用いる蒸気タービン発電システムでは、発電1GWあたり日量140kt以上の大量の冷却水を用いる。従来の技術では、使用済みの冷却水は、海洋表層部に放水されるが、水温変化という環境への負荷を低減するために、海水温度と使用済み冷却水温度の偏差は、小さくしなくてはならない。具体的な手段としては、使用済みの冷却水を表層水と混合し、海洋表層との温度差を小さくした上で、海洋表層部に放出する方法などが提案されている。 Thus, in a steam turbine power generation system using seawater for condensate cooling, a large amount of cooling water with a daily amount of 140 kt or more per 1 GW of power generation is used. In the conventional technology, used cooling water is discharged to the surface of the ocean, but the deviation between the seawater temperature and the used cooling water temperature must be kept small in order to reduce the environmental impact of changes in water temperature. Must not. As specific means, a method has been proposed in which used cooling water is mixed with surface water, and the temperature difference from the ocean surface layer is reduced and then discharged to the ocean surface layer.
 しかしながら、復水器に海洋深層水を用いた場合、冷却媒体温度と海水表層温度の差異を環境基準値以内に制御するのは難しい。というのは、冷却媒体の排出量が多量であることと、海洋深層水が年間を通じて温度の変動が小さく、そのため復水器から送出直後の冷却媒体温度の変動も小さいのに対し、海洋表層温度が、短期(時間),長期(年間)を通して大きく変動するため、復水器直後の冷却媒体と海水表層温度の偏差が、短長期的に大きく変動するためである。 However, when deep ocean water is used for the condenser, it is difficult to control the difference between the cooling medium temperature and the seawater surface temperature within the environmental standard value. This is because the discharge of the cooling medium is large and the temperature fluctuation of the deep sea water is small throughout the year, so the fluctuation of the cooling medium temperature immediately after delivery from the condenser is also small. However, since it fluctuates greatly throughout the short term (hours) and long term (years), the deviation between the cooling medium immediately after the condenser and the seawater surface layer temperature greatly fluctuates in the short and long term.
 以上の状況を鑑み、本発明の目的は、海洋深層水を用いた復水冷却による海洋水の温度変動を低減でき、また発電効率の向上を図ることができる蒸気タービン発電システムを提供することにある。 In view of the above situation, an object of the present invention is to provide a steam turbine power generation system capable of reducing temperature fluctuations of ocean water due to condensate cooling using deep ocean water and improving power generation efficiency. is there.
 上記目的を達成するために、本発明の蒸気タービン発電システムは、蒸気によって駆動する蒸気タービンと、該蒸気タービンから排出された蒸気を冷却して凝縮する復水器と、前記蒸気タービンに接続し、蒸気タービンの回転動力で発電する発電機とを備えた蒸気タービン発電システムであって、復水器に導入された蒸気を冷却するための冷却媒体を復水器と海中の海洋深層水との間で循環させる循環系統を備えることを特徴とする。 In order to achieve the above object, a steam turbine power generation system of the present invention is connected to a steam turbine driven by steam, a condenser for cooling and condensing steam discharged from the steam turbine, and the steam turbine. , A steam turbine power generation system including a generator that generates electric power with the rotational power of the steam turbine, wherein a cooling medium for cooling the steam introduced into the condenser is used as a cooling medium between the condenser and the deep sea water in the sea. It is characterized by having a circulation system that circulates between them.
 本発明の蒸気タービン発電システムによれば、海洋深層水を用いた復水冷却による局所的な海水温の上昇,低下を抑制でき、海洋水の温度変動を低減できる。また発電効率の向上を図ることができる。 According to the steam turbine power generation system of the present invention, local rise and fall of seawater temperature due to condensate cooling using deep ocean water can be suppressed, and ocean water temperature fluctuation can be reduced. In addition, the power generation efficiency can be improved.
本発明の蒸気タービン発電システムの第1の実施例のシステム系統図である。It is a system distribution diagram of the 1st example of the steam turbine power generation system of the present invention. 本発明の蒸気タービン発電システムの第3の実施例のシステム系統図である。It is a system distribution diagram of the 3rd example of the steam turbine power generation system of the present invention. 本発明の蒸気タービン発電システムの第4の実施例のシステム系統図である。It is a system distribution diagram of the 4th example of the steam turbine power generation system of the present invention. 本発明の蒸気タービン発電システムの第5の実施例のシステム系統図である。It is a system distribution diagram of the 5th example of the steam turbine power generation system of the present invention. 従来の蒸気タービン発電システムのシステム系統図である。It is a system distribution diagram of the conventional steam turbine power generation system.
(従来の蒸気タービン発電システムと問題点)
 本発明と対比するため、はじめに、従来の蒸気タービン発電システムを説明する。
(Conventional steam turbine power generation system and problems)
For comparison with the present invention, a conventional steam turbine power generation system will be described first.
 図5に、従来の蒸気タービン発電システムの構成例を示す。本システムは、熱媒体を加熱する高温熱源としてのボイラ1と、ボイラ1で加熱された熱媒体で給水を熱して蒸気を発生させる蒸発器2と、蒸発器2に供給する給水を予熱する給水加熱器3と、蒸発器2で発生した主蒸気によって駆動する蒸気タービン4と、該蒸気タービン4から排出された主蒸気を冷却・凝縮させて水に戻す復水器5と、蒸気タービン4に機械的に接続され、蒸気タービン4の回転動力で発電を行う発電機6とを基本構成要素とする。発電機6で発電した電力は電力系統7を通して外部に供給される。なお、蒸発器2は、ボイラ建屋と一体で建設されるのが一般的である。 FIG. 5 shows a configuration example of a conventional steam turbine power generation system. This system includes a boiler 1 as a high-temperature heat source for heating a heat medium, an evaporator 2 that heats feed water with the heat medium heated by the boiler 1 to generate steam, and feed water that preheats feed water supplied to the evaporator 2. A heater 3, a steam turbine 4 driven by main steam generated in the evaporator 2, a condenser 5 that cools and condenses the main steam discharged from the steam turbine 4 and returns it to water, and a steam turbine 4 A generator 6 that is mechanically connected and generates power with the rotational power of the steam turbine 4 is a basic component. The electric power generated by the generator 6 is supplied to the outside through the electric power system 7. Note that the evaporator 2 is generally constructed integrally with a boiler building.
 復水器5で主蒸気を冷却・凝縮させる冷却媒体としては、海洋深層水が用いられる。海洋深層水が存在する海洋深層部まで延びた冷却媒体導入管12から海洋深層水を取水し、冷却媒体輸送ポンプ10で昇圧して復水器5に導入する。復水器5で主蒸気を冷却した海洋深層水は、冷却媒体送出管11から、海洋表層部に送出される。冷却媒体送出管11には、冷却媒体に海洋表層水を混合する海洋表層水導入管19と流量調整弁17がついており、図示しない海水表層温度検出手段と冷却媒体温度検出手段により、それぞれ海水表層温度,冷却媒体温度を検出し、その差異が、環境基準値以内となるように、両者を混合し、海洋に排出する。 As the cooling medium that cools and condenses the main steam in the condenser 5, deep ocean water is used. The deep ocean water is taken from the cooling medium introduction pipe 12 extending to the deep ocean area where the deep ocean water exists, and is pressurized by the cooling medium transport pump 10 and introduced into the condenser 5. The deep ocean water that has cooled the main steam by the condenser 5 is sent from the cooling medium delivery pipe 11 to the ocean surface layer. The cooling medium delivery pipe 11 is provided with a marine surface water introduction pipe 19 for mixing the marine surface water with the cooling medium and a flow rate adjusting valve 17. The temperature and cooling medium temperature are detected, and both are mixed and discharged to the ocean so that the difference is within the environmental standard value.
 しかしながら、冷却媒体の排出量が多量であることと、海洋深層水の温度の変動が小さいため、復水器5から送出直後の冷却媒体温度の変動が小さいのに対し、海洋表層温度が、短期(時間),長期(年間)を通して大きく変動するため、復水器5直後の冷却媒体と海水表層温度の偏差が短長期的に大きく変動することとにより、冷却媒体温度と海水表層温度の差異を環境基準値以内に制御するのは難しい。 However, since the discharge amount of the cooling medium is large and the temperature fluctuation of the deep sea water is small, the fluctuation of the cooling medium temperature immediately after being sent out from the condenser 5 is small, whereas the ocean surface temperature is short-term. (Hours) and long-term (yearly), it varies greatly over the long-term (yearly), and the difference between the cooling medium immediately after the condenser 5 and the seawater surface temperature varies greatly in the short and long term. It is difficult to control within environmental standards.
(発明システムの第1例)
 以上の課題を解決するために考案した本発明の蒸気タービン発電システムの第1の実施例を図1に示す。本システムの構成要素は、図6に示した従来のシステムと同様、熱媒体を加熱する過熱装置としてのボイラ1と、ボイラ1で加熱された熱媒体で給水を熱して蒸気を発生させる蒸発器2と、蒸発器2に供給する給水を予熱する給水加熱器3と、蒸発器2で発生した主蒸気によって駆動する蒸気タービン4と、該蒸気タービン4から排出された主蒸気を冷却・凝縮させて水に戻す復水器5と、復水器5で凝縮した給水を昇圧して給水加熱器3に戻す送水ポンプ9と、蒸気タービン4の回転動力で発電を行う発電機6とを基本構成要素とする。発電機6で発電した電力は、電力系統7を通して外部に供給される。
(First example of the invention system)
FIG. 1 shows a first embodiment of the steam turbine power generation system of the present invention devised to solve the above problems. As in the conventional system shown in FIG. 6, the components of this system are a boiler 1 as a superheater that heats a heat medium, and an evaporator that generates steam by heating feed water with the heat medium heated by the boiler 1. 2, a feed water heater 3 for preheating the feed water supplied to the evaporator 2, a steam turbine 4 driven by the main steam generated in the evaporator 2, and the main steam discharged from the steam turbine 4 is cooled and condensed. The basic configuration includes a condenser 5 that returns the water to the water, a water feed pump 9 that boosts the feed water condensed in the condenser 5 and returns the water to the feed water heater 3, and a generator 6 that generates power with the rotational power of the steam turbine 4. Element. The power generated by the generator 6 is supplied to the outside through the power system 7.
 本実施例の特徴は、復水器5に冷却媒体を供給する冷却媒体導入管12と、復水器5から排出された冷却媒体を海洋に送出するための冷却媒体送出管11との先端部が連結され、冷却媒体導入管12と冷却媒体送出管11の一部、および連結された先端部が、海洋深層水が存在する海中(海洋深層部)に設置されており、冷却媒体導入管12と冷却媒体送出管11に充填された冷却媒体を介して復水器5と海洋深層水との間で熱交換を行う点にある。冷却媒体導入管12には冷却媒体を昇圧して輸送するための冷却媒体輸送ポンプ10が設けられている。復水器5,冷却媒体導入管12,冷却媒体送出管11は閉じた循環系統を構成し、この循環系統内を冷却媒体が海洋深層水と復水器との間で循環する。冷却媒体には、海水よりも比熱が大きく、冷却効率の良い水(H2O)を用いるのが望ましい。水であれば、万が一、送水管が破損した場合にも、海洋生態系に影響を及ぼさずにすむためである。 The feature of this embodiment is that the cooling medium introduction pipe 12 that supplies the cooling medium to the condenser 5 and the distal end portions of the cooling medium delivery pipe 11 that sends the cooling medium discharged from the condenser 5 to the ocean. Are connected, and a part of the cooling medium introduction pipe 12 and the cooling medium delivery pipe 11 and the connected tip are installed in the sea (deep sea part) where the deep sea water exists, and the cooling medium introduction pipe 12 And the heat exchange between the condenser 5 and the deep sea water through the cooling medium filled in the cooling medium delivery pipe 11. The cooling medium introduction pipe 12 is provided with a cooling medium transport pump 10 for boosting and transporting the cooling medium. The condenser 5, the cooling medium introduction pipe 12, and the cooling medium delivery pipe 11 constitute a closed circulation system, and the cooling medium circulates between the deep sea water and the condenser in the circulation system. As the cooling medium, it is desirable to use water (H 2 O) having a larger specific heat than seawater and good cooling efficiency. If it is water, it will not affect the marine ecosystem even if the water pipe is broken.
 ここで、冷却媒体送出管11の長さ、冷却媒体流速について、言及する。海洋深層水は、海抜200m以下海底に存在するため、冷却媒体導入管12と冷却媒体送出管11の長さは数百~数千メートルである。また、管路流動抵抗を低く抑えるために、冷却媒体流速は1m/s程度に設計する。 Here, the length of the cooling medium delivery pipe 11 and the cooling medium flow rate will be mentioned. Since deep ocean water exists on the seabed at 200 m or less above sea level, the length of the cooling medium introduction pipe 12 and the cooling medium delivery pipe 11 is several hundred to several thousand meters. In order to keep the pipe flow resistance low, the coolant flow rate is designed to be about 1 m / s.
 冷却媒体導入管12は、断熱性が良い構成とする。例えば、断熱材を被覆した硬質ポリエチレン管などを用いる。冷却媒体導入管12の断熱性を良くすることにより、冷却媒体と海洋水間の熱伝達が低下するため、復水器5に導入する冷却媒体温度を海洋深層水と同等の低い温度に保持することができるため、タービンの出力を増加させ、タービン効率を向上させることができる。冷却媒体送出管11と冷却媒体導入管12を連結することにより、冷却媒体輸送ポンプ10用電力は、増加する。しかしながら、冷却媒体輸送ポンプ10の消費電力は、蒸気タービン発電システム発電量に対し、十分小さく、本発明の構成により、海洋深層水利用により蒸気タービン発電システムの出力向上、すなわち、発電効率の向上を図ることができる。 The cooling medium introducing pipe 12 has a good heat insulating property. For example, a hard polyethylene pipe coated with a heat insulating material is used. By improving the heat insulating property of the cooling medium introduction pipe 12, heat transfer between the cooling medium and the ocean water is lowered, so that the temperature of the cooling medium introduced into the condenser 5 is kept at a low temperature equivalent to the deep sea water. Therefore, the turbine output can be increased and the turbine efficiency can be improved. By connecting the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12, the electric power for the cooling medium transport pump 10 is increased. However, the power consumption of the cooling medium transport pump 10 is sufficiently small with respect to the steam turbine power generation system power generation amount, and the configuration of the present invention improves the output of the steam turbine power generation system by using the deep ocean water, that is, improves the power generation efficiency. Can be planned.
 冷却媒体送出管11の全部、若しくは、一部は、熱伝導性が良い素材、若しくは熱伝達率の高い形状で形成する。例えば、フィンを有するアルミ管を用いる。これにより冷却媒体と海洋水間の伝熱を促進できる。 The whole or a part of the cooling medium delivery pipe 11 is formed of a material having a high thermal conductivity or a shape having a high heat transfer coefficient. For example, an aluminum tube having fins is used. Thereby, heat transfer between the cooling medium and the ocean water can be promoted.
 本実施例によれば、冷却媒体が復水器5から海洋深層部に到達するまでの間に冷却され、冷却媒体送出管11の先端の海洋深層部に達した冷却媒体は、海洋深層水と同等の温度となる。冷却された冷却媒体は、再び冷却媒体輸送ポンプ10で昇圧され、冷却媒体導入管12を流れて復水器5に導入され、蒸気を冷却・凝縮する。 According to the present embodiment, the cooling medium that is cooled before the cooling medium reaches the deep ocean area from the condenser 5 and reaches the deep ocean area at the tip of the cooling medium delivery pipe 11 is the deep sea water. Equivalent temperature. The cooled cooling medium is again pressurized by the cooling medium transport pump 10, flows through the cooling medium introduction pipe 12, is introduced into the condenser 5, and cools and condenses the steam.
 このように、本実施例では、冷却媒体導入管12と冷却媒体送出管11とを連結し、閉じた循環系統としたため、冷却媒体は復水器5と海中の海洋深層水との間を循環する。復水器5で温度上昇した冷却媒体は、復水器5から海洋表層部を通過して海洋深層部に到達するまでの間に、移動しながら冷却される。即ち、本実施例は、従来のように冷却媒体を固定された一箇所から海洋に放出するのではなく、冷却媒体を移動させながら冷却するので、復水冷却水による局所的な海水温の上昇,低下を回避でき、海洋水の温度変動を低減できる。その結果、冷却水を海洋に放出する従来の手法よりも、海洋水の温度変動を低減でき、使用済みの冷却水と海洋水間で熱交換をするにあたり、環境負荷を小さくできる。 Thus, in the present embodiment, the cooling medium introduction pipe 12 and the cooling medium delivery pipe 11 are connected to form a closed circulation system, so that the cooling medium circulates between the condenser 5 and the deep ocean water in the sea. To do. The cooling medium whose temperature has risen in the condenser 5 is cooled while moving from the condenser 5 through the ocean surface layer portion to reach the ocean deep layer portion. That is, in this embodiment, the cooling medium is not discharged from one fixed place to the ocean as in the prior art, but is cooled while moving the cooling medium. , Can avoid the drop and reduce the temperature fluctuation of the ocean water. As a result, the temperature fluctuation of the ocean water can be reduced and the environmental load can be reduced when exchanging heat between the used cooling water and the ocean water, compared to the conventional method of releasing the cooling water to the ocean.
 従って、本発明によれば、海洋深層水を用いた復水冷却による局所的な海水温の上昇,低下を抑制でき、海洋水の温度変動を低減できる。また海洋深層水を利用して、発電効率の向上を図ることができる。 Therefore, according to the present invention, local rise and fall of seawater temperature due to condensate cooling using deep ocean water can be suppressed, and temperature fluctuation of ocean water can be reduced. Moreover, power generation efficiency can be improved by using deep ocean water.
 容量の大きい発電所では、多量の冷却水を必要とする(発電1GWあたり日量140kt以上)。大量の冷却水を、海底で放水したり、給水したりした場合、それに伴う海底流の生態系への影響を検討する必要があるが、本実施例では、冷却媒体導入管12と冷却媒体送出管11とを連結し、冷却媒体が循環して海中に排出されないように構成しているため、生態系への影響を低減できる。 A large capacity power plant requires a large amount of cooling water (140 kt / day per 1 GW of power generation). When a large amount of cooling water is discharged or supplied on the seabed, it is necessary to study the influence of the resulting seafloor flow on the ecosystem. In this embodiment, the cooling medium introduction pipe 12 and the cooling medium delivery Since it connects with the pipe | tube 11 and it is comprised so that a cooling medium may circulate and not be discharged | emitted in the sea, the influence on an ecosystem can be reduced.
 また、海底で取水した場合、海洋生物や、地底の砂等を吸い込む可能性があるが、本実施例によれば、そのような懸念も低減できる。 In addition, when water is taken from the seabed, there is a possibility that marine organisms and sand on the ground will be sucked in. According to this embodiment, such a concern can be reduced.
(発明システムの第2例)
 本発明の蒸気タービン発電システムの第2の実施例について説明する。
(Second example of the invention system)
A second embodiment of the steam turbine power generation system of the present invention will be described.
 基本構成は、第1の実施例と同じである。ただし、冷却媒体送出管11の内部流路断面積を冷却媒体導入管12の内部流路断面積よりも大きく形成する。冷却媒体送出管11,冷却媒体導入管12を構成する送水管の内部流は、層流であり、冷却媒体の管内流動時間に、伝熱量は比例する。よって、本実施例によれば、冷却媒体導入管12は、流路面積が小さくなることにより流速が大きくなるため、冷却媒体と海洋水間の熱伝達熱量をより小さくできる。また、冷却媒体送出管11は、流路面積が大きくなることにより流速が小さくなるため、冷却媒体と海洋水間の熱伝達熱量をより大きくできる。 The basic configuration is the same as in the first embodiment. However, the internal flow path cross-sectional area of the cooling medium delivery pipe 11 is formed larger than the internal flow path cross-sectional area of the cooling medium introduction pipe 12. The internal flow of the water supply pipe constituting the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12 is a laminar flow, and the amount of heat transfer is proportional to the flow time of the cooling medium in the pipe. Therefore, according to the present embodiment, the cooling medium introduction pipe 12 can reduce the heat transfer heat quantity between the cooling medium and the ocean water because the flow velocity increases as the flow path area decreases. Further, since the flow rate of the cooling medium delivery pipe 11 is reduced by increasing the flow path area, the heat transfer heat quantity between the cooling medium and the ocean water can be further increased.
(発明システムの第3例)
 図2に本発明の第3の実施例を示す。本実施例の基本構成は、第1の実施例と同じである。本実施例が第1の実施例と異なるのは、冷却媒体送出管11,冷却媒体導入管12の先端部の連結部が、海洋深層水と冷却媒体の熱交換を促進する構造となっている点である。すなわち、本実施例では、冷却媒体送出管11と冷却媒体導入管12の連結部13が、冷却媒体送出管11,冷却媒体導入管12それぞれの断面積よりも小さい断面積を有する複数の連結管により連結される構造になっている。また、連結管は、放熱フィンを有する構造になっており、海洋深層水と冷却媒体の熱交換を促進できる。本実施例によれば、海洋深層水と冷却媒体との熱交換をより促進できる。
(Third example of the invention system)
FIG. 2 shows a third embodiment of the present invention. The basic configuration of this embodiment is the same as that of the first embodiment. The present embodiment is different from the first embodiment in that the connecting portion at the tip of the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12 has a structure that promotes heat exchange between the deep sea water and the cooling medium. Is a point. That is, in the present embodiment, a plurality of connecting pipes in which the connecting portion 13 between the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12 has a smaller cross-sectional area than each of the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12. It is the structure connected by. Moreover, the connecting pipe has a structure having heat radiation fins, and can promote heat exchange between the deep ocean water and the cooling medium. According to the present embodiment, heat exchange between the deep sea water and the cooling medium can be further promoted.
(発明システムの第4例)
 図3に本発明の第4の実施例を示す。本実施例の基本構成は、第1の実施例と同じである。本実施例が第1の実施例と異なるのは、復水器5において、主蒸気を冷却した冷却媒体により、蒸気タービン発電システム管理建屋の空調,蒸気タービン軸受けオイルの冷却などを行う点である。
(Fourth example of the invention system)
FIG. 3 shows a fourth embodiment of the present invention. The basic configuration of this embodiment is the same as that of the first embodiment. This embodiment differs from the first embodiment in that the condenser 5 performs air conditioning of the steam turbine power generation system management building, cooling of the steam turbine bearing oil, and the like by the cooling medium that has cooled the main steam. .
 復水器5を冷却した冷却媒体は、これらの用途に十分低温であり、本実施例の構成により、空調のための新たな電力が不要になり、かつ、オイルの冷却などで、タービンシステムの信頼性を向上させることができる。蒸気タービン発電システム管理建屋の空調や、蒸気タービンの軸受装置等の蒸気タービン発電システムの補助機器類の冷媒に使用された冷却媒体は、その後、冷却媒体送出管11にて海洋深層部まで送出される。 The cooling medium that has cooled the condenser 5 is sufficiently low in temperature for these applications, and the configuration of this embodiment eliminates the need for new electric power for air conditioning. Reliability can be improved. The cooling medium used for the refrigerant of the auxiliary equipment of the steam turbine power generation system such as the air conditioning of the steam turbine power generation system management building and the bearing device of the steam turbine is then sent to the deep ocean through the cooling medium delivery pipe 11. The
 なお、冷却媒体送出管11と冷却媒体導入管12の連結部13は、冷却媒体送出管11,冷却媒体導入管12それぞれの断面積よりも小さい断面積を有する複数の連結管により連結される構造とし、連結管は、放熱フィンを有する構造とする等、実施例3同様に、海洋深層水と冷却媒体の熱交換を促進できる構造とするのが望ましい。 The connecting portion 13 between the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12 is connected by a plurality of connection pipes having cross-sectional areas smaller than the cross-sectional areas of the cooling medium delivery pipe 11 and the cooling medium introduction pipe 12. As in the third embodiment, it is desirable that the connecting pipe has a structure that can promote heat exchange between the deep sea water and the cooling medium.
(発明システムの第5例)
 これまで実施例1乃至4で説明してきた本発明の蒸気タービン発電システムにおいて、蒸気を供給する手段は、必ずしもボイラである必要は無く、ガスタービン,原子力,太陽エネルギーなど、熱により蒸気を発生させる機構を有するものであれば、いかなる手段であっても採用可能である。
(Fifth example of the invention system)
In the steam turbine power generation system of the present invention described so far in Examples 1 to 4, the means for supplying steam is not necessarily a boiler, and steam is generated by heat such as gas turbine, nuclear power, solar energy, etc. Any means can be adopted as long as it has a mechanism.
 加熱装置であるボイラの代替手段の一例として、図4に太陽エネルギーを用いた、蒸気タービン発電システムの一例を示す。本実施例の基本構成は、ボイラ1を除いて第1の実施例と同じである。本実施例では、ボイラ1の代わりに、太陽光を集光する等して集熱する太陽熱集熱器18を用いている。 FIG. 4 shows an example of a steam turbine power generation system using solar energy as an example of an alternative to a boiler that is a heating device. The basic configuration of this embodiment is the same as that of the first embodiment except for the boiler 1. In this embodiment, instead of the boiler 1, a solar heat collector 18 that collects heat by collecting sunlight or the like is used.
 太陽熱発電は、発電の過程でCO2を排出しないため、地球温暖化に寄与しない発電手段として注目されているが、現在主流の火力,原子力発電所に対して、単位設備費あたりの発電量が、小さいという課題がある。これまで、太陽熱蒸気タービン発電システムの復水冷却には、空冷,水冷が適用されてきたが、海洋深層水を用いることにより、出力を増加させることができ、火力,原子力発電所に対し、競争力が強化できる。 Solar power generation is attracting attention as a means of power generation that does not contribute to global warming because it does not emit CO 2 during the process of power generation, but the amount of power generation per unit facility cost is currently limited to the mainstream thermal power and nuclear power plants. There is a problem of being small. So far, air cooling and water cooling have been applied to condensate cooling in solar thermal steam turbine power generation systems, but by using deep ocean water, the output can be increased and competitive with thermal power and nuclear power plants. Strength can be strengthened.
1 ボイラ
2 蒸発器
3 給水加熱器
4 蒸気タービン
5 復水器
6 発電機
7 電力系統
8 媒体輸送ポンプ
9 送水ポンプ
10 冷却媒体輸送ポンプ
11 冷却媒体送出管
12 冷却媒体導入管
14 建屋空調
15 オイル冷却器
16,17 流量調整弁
18 太陽熱集熱器
DESCRIPTION OF SYMBOLS 1 Boiler 2 Evaporator 3 Feed water heater 4 Steam turbine 5 Condenser 6 Generator 7 Electric power system 8 Medium transport pump 9 Water pump 10 Cooling medium transport pump 11 Cooling medium delivery pipe 12 Cooling medium introduction pipe 14 Building air conditioning 15 Oil cooling 16 and 17 Flow control valve 18 Solar collector

Claims (8)

  1.  蒸気によって駆動する蒸気タービンと、該蒸気タービンから排出された蒸気を冷却して凝縮する復水器と、前記蒸気タービンに接続し、蒸気タービンの回転動力で発電する発電機とを備えた蒸気タービン発電システムであって、
     前記復水器に導入された蒸気を冷却するための冷却媒体を前記復水器と海中の海洋深層水との間で循環させる循環系統を備えることを特徴とする蒸気タービン発電システム。
    A steam turbine comprising: a steam turbine driven by steam; a condenser that cools and condenses steam discharged from the steam turbine; and a generator that is connected to the steam turbine and generates electric power using the rotational power of the steam turbine. A power generation system,
    A steam turbine power generation system comprising a circulation system for circulating a cooling medium for cooling steam introduced into the condenser between the condenser and deep sea water in the sea.
  2.  請求項1に記載の蒸気タービン発電システムにおいて、
     熱媒体を加熱する加熱装置と、加熱装置で加熱された熱媒体で給水を熱して、前記蒸気タービンを駆動する蒸気を発生させる蒸発器と、該蒸発器に供給する給水を前記熱媒体で予熱する給水加熱器とを備え、
     前記循環系統は、前記冷却媒体を復水器に導入する冷却媒体導入管と、前記冷却媒体を送出する冷却媒体送出管と、前記冷却媒体を輸送するための冷却媒体輸送ポンプとを備え、
     前記冷却媒体導入管と前記冷却媒体送出管の先端部は連結され、前記冷却媒体導入管と前記冷却媒体送出管の一部、および前記先端部は、海洋深層水が存在する海中に設置されていることを特徴とする蒸気タービン発電システム。
    The steam turbine power generation system according to claim 1,
    A heating device that heats the heat medium, an evaporator that heats feed water with the heat medium heated by the heating device to generate steam that drives the steam turbine, and water that is supplied to the evaporator is preheated with the heat medium. A feed water heater
    The circulation system includes a cooling medium introduction pipe for introducing the cooling medium into a condenser, a cooling medium delivery pipe for sending the cooling medium, and a cooling medium transport pump for transporting the cooling medium,
    The cooling medium introduction pipe and the tip of the cooling medium delivery pipe are connected, and the cooling medium introduction pipe, a part of the cooling medium delivery pipe, and the tip are installed in the sea where deep ocean water exists. A steam turbine power generation system.
  3.  請求項2に記載の蒸気タービン発電システムにおいて、
     前記冷却媒体送出管の全部、若しくは、一部が、熱伝導性が良い素材、若しくは熱伝達率の高い形状で形成され、前記冷却媒体導入管は、断熱材で被膜されていることを特徴とする蒸気タービン発電システム。
    The steam turbine power generation system according to claim 2,
    All or part of the cooling medium delivery pipe is formed of a material having good thermal conductivity or a shape having a high heat transfer rate, and the cooling medium introduction pipe is coated with a heat insulating material. Steam turbine power generation system.
  4.  請求項2に記載の蒸気タービン発電システムにおいて、
     前記冷却媒体送出管の内部流路断面積を前記冷却媒体導入管の内部流路断面積よりも大きく形成することを特徴とする蒸気タービン発電システム。
    The steam turbine power generation system according to claim 2,
    A steam turbine power generation system characterized in that an internal flow path cross-sectional area of the cooling medium delivery pipe is formed larger than an internal flow path cross-sectional area of the cooling medium introduction pipe.
  5.  請求項2に記載の蒸気タービン発電システムにおいて、
     前記冷却媒体導入管と前記冷却媒体送出管の連結された先端部が、海洋深層水と冷却媒体の熱交換を促進する構造を有することを特徴とする蒸気タービン発電システム。
    The steam turbine power generation system according to claim 2,
    The steam turbine power generation system according to claim 1, wherein a front end portion of the cooling medium introduction pipe and the cooling medium delivery pipe connected to each other has a structure for promoting heat exchange between the deep sea water and the cooling medium.
  6.  請求項2又は5に記載の蒸気タービン発電システムにおいて、
     復水器において、蒸気を冷却した前記冷却媒体を、蒸気タービン発電システムの補助機器の冷媒に用いることを特徴とする蒸気タービン発電システム。
    In the steam turbine power generation system according to claim 2 or 5,
    A steam turbine power generation system characterized in that in the condenser, the cooling medium that has cooled the steam is used as a refrigerant for auxiliary equipment of the steam turbine power generation system.
  7.  請求項2又は5に記載の蒸気タービン発電システムにおいて、
     前記加熱装置は、太陽熱集熱器であることを特徴とする蒸気タービン発電システム。
    In the steam turbine power generation system according to claim 2 or 5,
    The steam turbine power generation system, wherein the heating device is a solar heat collector.
  8.  請求項3乃至7のいずれか1項に記載の蒸気タービン発電システムにおいて、
     前記循環系統内部を循環する冷却媒体は、水であることを特徴とする蒸気タービン発電システム。
    The steam turbine power generation system according to any one of claims 3 to 7,
    The steam turbine power generation system according to claim 1, wherein the cooling medium circulating in the circulation system is water.
PCT/JP2011/002990 2011-05-30 2011-05-30 Steam turbine power generation system WO2012164603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002990 WO2012164603A1 (en) 2011-05-30 2011-05-30 Steam turbine power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002990 WO2012164603A1 (en) 2011-05-30 2011-05-30 Steam turbine power generation system

Publications (1)

Publication Number Publication Date
WO2012164603A1 true WO2012164603A1 (en) 2012-12-06

Family

ID=47258500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002990 WO2012164603A1 (en) 2011-05-30 2011-05-30 Steam turbine power generation system

Country Status (1)

Country Link
WO (1) WO2012164603A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206311A (en) * 2013-04-11 2014-10-30 三菱重工業株式会社 Device and method for cooling steam condenser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110872A (en) * 1982-12-17 1984-06-26 Mitsubishi Heavy Ind Ltd Compound generation device which utilizes sea temperature difference and solar heat
JPS59165579U (en) * 1983-04-19 1984-11-06 三菱電機株式会社 Temperature difference power generation device
JP2006242479A (en) * 2005-03-03 2006-09-14 Toshiba Corp Cooling system and electronic equipment
US20080314043A1 (en) * 2007-06-19 2008-12-25 Lockheed Martin Corporation Clathrate ice thermal transport for ocean thermal energy conversion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110872A (en) * 1982-12-17 1984-06-26 Mitsubishi Heavy Ind Ltd Compound generation device which utilizes sea temperature difference and solar heat
JPS59165579U (en) * 1983-04-19 1984-11-06 三菱電機株式会社 Temperature difference power generation device
JP2006242479A (en) * 2005-03-03 2006-09-14 Toshiba Corp Cooling system and electronic equipment
US20080314043A1 (en) * 2007-06-19 2008-12-25 Lockheed Martin Corporation Clathrate ice thermal transport for ocean thermal energy conversion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206311A (en) * 2013-04-11 2014-10-30 三菱重工業株式会社 Device and method for cooling steam condenser

Similar Documents

Publication Publication Date Title
CN102405349B (en) There is the steam power station of solar collector
US20130037236A1 (en) Geothermal facility with thermal recharging of the subsoil
JP6230344B2 (en) Steam turbine plant
SA111320102B1 (en) Molten Salt Solar Receiver and Procedure to Reduce the Temperature Gradient in Said Receiver
JP2010190218A (en) Waste heat utilization for pre-heating fuel
JPS6354882B2 (en)
CN102884317A (en) Solar power plant part of a solar thermal power plant and solar thermal power plant provided with solar collector surfaces for a heat transfer medium and working medium
JP2016166705A (en) Solar heat storage device
CN103277147A (en) Dual-power ORC power generation system and power generation method of same
CN101832623B (en) Pre-heat system of thermal power plant
WO2012164603A1 (en) Steam turbine power generation system
JP5713824B2 (en) Power generation system
JP6124003B2 (en) Hot spring thermal power generation system
Ramorakane et al. Evaluation of parasitic consumption for a CSP plant
CN105164411A (en) System and process of cooling OTEC working fluid pump motor
JP2017227130A (en) Independence arrangement type geothermal recovery device and geothermal power generation system with the same
JP6600605B2 (en) Solar thermal power generation system and solar thermal power generation method
JP5295203B2 (en) Transformer cooling method
WO2016098263A1 (en) Heat exchanger and heat pump type hot water generating device using same
Mendrinos et al. Geothermal binary plants: water or air cooled
US9574808B2 (en) Active stress control during rapid shut down
JP2015161284A (en) control system and heat supply method
Alkhasov et al. Heat exchangers for utilization of the heat of high-temperature geothermal brines
Sharma et al. Experimental study on an enhanced performance solar water heater
US10655923B1 (en) Special cooling coating design for fossil fuel, nuclear, geothermal, and solar heat driven power plants; for HVAC cooling applications; and for heat rejection systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP